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Abstract

ADAMs (a disintegrin and metalloprotease) can influence multiple cellular processes involved

in normal development and pathogenesis. ADAM12 expression levels are elevated in many patho-

logical conditions including cancer, cardiovascular disease, and muscle regeneration. Recently,

ADAM12 has emerged as a candidate cancer gene in a comprehensive genetic analysis of human

breast cancers. The regulation of ADAM12 expression is poorly understood. Identification of

new substrates for ADAM12 metalloprotease can expand our knowledge of processes in which

ADAM12 is involved.

Here, we show that ADAM12 expression is upregulated by transforming growth factor β

(TGFβ), an essential signaling pathway for many cellular processes. This upregulation requires

proteosomal degradation of a transcriptional repressor SnoN. Furthermore, breast cancer cell lines

expressing high levels of SnoN have significantly impaired induction of ADAM12 by TGFβ, sug-

gesting an inverse correlation between SnoN and the extent of regulation of ADAM12 by TGFβ.

Additionally, we demonstrate that ADAM12 is one of the metalloproteases involved in shed-

ding a Notch ligand, Delta like 1 (Dll1). The Notch signaling pathway plays a crucial role in cell

fate decision during development and in adults. Cleavage of Dll1 by ADAMs occurs in cis and re-

sults in activation of Notch signaling in a cell-autonomous manner. Furthermore, the intracellular

domain of Dll1 created after cleavage further enhances TGFβ signaling in response to TGFβ.

Our analysis of breast cancer-associated mutations in the ADAM12 gene showed a lack of

proper proteolytic processing of the ADAM12 protein and its mislocalization to the endoplasmic

reticulum . Additionally, ADAM12 mutants show a dominant-negative effect on the processing of

the wild-type ADAM12 and result in loss of the functional ADAM12 at the cell surface.



Collectively, our results indicate a new mechanism of regulation of ADAM12 expression, ex-

pand the role of ADAM12 in the regulation of Notch signaling, and characterize cancer-associated

mutations in the ADAM12 gene.
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Chapter 1

Introduction

1.1 Family of ADAM metalloproteinases

The ADAM (a disintegrin and metalloprotease) family, together with astacins and matrix metal-

loproteases (MMPs), form the metzincin family of metalloproteinases. ADAMs, snake venom

metalloproteases (SVMPs), and ADAMTS (ADAMs containing thrombospondin motifs) belong

to the adamalysins subfamily. ADAMs are expressed in all animals ranging from worms to hu-

mans. As of today, 40 ADAM genes are found in various species, and 23 known ADAMs are

present in humans (http://people.virginia.edu/∼jw7g/Table of the ADAMs.html).

The typical domain layout of ADAMs is shown in Fig. 1.1. They possess signal sequences at

their N-termini that direct the protein to the secretory pathway. This is followed by the prodomain

which assures proper protein folding and maintains enzyme latency. The metalloprotease domain

of many, but not all, ADAMs contains a zinc-binding consensus sequence (HEXGHXXGXXHD)

and a downstream methionine. ADAMs lacking one or more critical features of the consensus

sequence do not show catalytic activity. The disintegrin domain is immediately C-terminal to the

metalloprotease, and is responsible for interactions between ADAMs and integrins (White, 2003).

This is followed by a cysteine-rich domain which is involved in substrate interactions (Iba et al.,

2000; Gaultier et al., 2002). Most ADAMs have an epidermal growth factor (EGF)-like domain

after the cysteine-rich domain, followed by a transmembrane domain and a cytoplasmic tail. The
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cytoplasmic domain varies widely in length and sequence. Several ADAMs contain motifs in their

cytoplasmic domain that can act as binding sites for proteins containing the SH3 (Src homology

region-3) domain, and serine, threonine, and tyrosine residues that can be phosphorylated by

various kinases (Seals & Courtneidge, 2003).

ADAMs are capable of proteolytically processing multiple proteins, and therefore they are

involved in many biological processes, such as adhesion, migration, and intracellular signaling.

ADAMs have been implicated in the development and in pathological processes including cancer

(Mochizuki & Okada, 2007), inflammation (Charrier-Hisamuddin et al., 2008), neurodegenera-

tion, and fibrosis. Most studies on ADAM12 focused on the role of ADAM12 in cancer (Iba

et al., 1999; Kveiborg et al., 2005; Peduto et al., 2006; Kodama et al., 2004), but ADAM12 is

also involved in muscular dystrophies (Borneman et al., 2000; Galliano et al., 2000), cardiac hy-

pertrophy (Fedak et al., 2006) and neurological disorders such as multiple sclerosis (Toft-Hansen

et al., 2004). Genetic analysis has shown polymorphism of the ADAM12 gene in patients with os-

teoarthritis (Valdes et al., 2004, 2006) and Alzheimer’s disease (Harold et al., 2007). The clinical

importance of ADAMs requires an understanding how their activity is regulated. This work will

focus on the current knowledge of how ADAMs are regulated, with an emphasis on ADAM12.

1.1.1 Regulation of ADAMs activity

The activity of ADAM metalloproteases can be regulated by several mechanisms including gene

expression, post-transcriptional control through trafficking, intracellular localization, and zymo-

gen activation or inhibition.

Gene expression

ADAMs have different expression patterns. ADAM2, 7, 18, 20, 21, 29, and 30 expression is

restricted to testis, where they are involved in spermatogenesis and sperm function. ADAM8

is present in hematopoetic cell types. Other members of the family have broader spectrum of

expression in somatic tissues. Some ADAMs are also upregulated during pathological events
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such as cancer (ADAM8, 9, 12, 15, 17, 19, 28) (Mochizuki & Okada, 2007) or asthma (ADAM8,

9, 12, 33) (Paulissen et al., 2006). In Silico Transcriptomic Datamining studies have shown the

presence of ADAM12 in placenta, mesenchymal, and adult stem cell populations (Edwards et al.,

2008)

Several members of the ADAM family are regulated at the transcriptional level. Foxm1 (tran-

scriptional factor) is responsible for the regulation of ADAM17 expression (Kim et al., 2005). Tu-

mor Necrosis Factor-α induces ADAM8 expression through interferon-regulating factor 1 (Schlo-

mann et al., 2000), and ADAM9 expression is induced by oxygen species generated in response

to cell stress (Sung et al., 2006). TGFβ is involved in upregulation of ADAM12 in hepatic stellate

cells (Le Pabic et al., 2003) and ADAM19 in alveolar epithelial cells (Keating et al., 2006).

Some of the ADAMs are regulated by alternative splicing of their mRNAs and generate various

transmembrane or soluble protein forms. Human ADAM12 encodes both a long transmembrane

form (ADAM12L) and a short form, lacking the transmembrane and cytoplasmic tail (ADAM12S)

(Gilpin et al., 1998). Similar alternative splicing occurs for ADAM9 (Mazzocca et al., 2005),

ADAM11 (Katagiri et al., 1995), and ADAM28 (Roberts et al., 1999). The ADAM15 gene can

give rise to as many as 13 different splice variants with different cytoplasmic tails (Kleino et al.,

2007). Change in the cytoplasmic domain can influence interaction with cytosolic proteins. Inter-

estingly, recent data suggest that different variants of human ADAM15 are differently expressed

in human mammary carcinoma tissue and show differential association with prognosis in breast

cancer (Zhong et al., 2008).

Post-transcriptional control and trafficking

ADAM proteins are glycoproteins. Glycosylation is required for the full enzyme activity. Muta-

tions in glycosylation sites of ADAM10 lead to its accumulation in the endoplasmic reticulum, de-

creased enzymatic activity, or an increased susceptibility for proteolysis (Escrevente et al., 2008).

ADAMs are first transported to the endoplasmic reticulum (ER) and are trafficked through the

Golgi apparatus to the cell membrane (Fig. 1.2). Maturation of ADAMs occurs in the Golgi where
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the prodomain is cleaved at the consensus motif RX(R/K)R by pro-protein convertases (PCs) such

as furin. PCs are also regulated by proteolysis, which adds an additional level to the regulation

of metalloprotease activation (Seidah et al., 2008). The prodomain functions through a cysteine

switch mechanism blocking activation of the metalloproteases. ADAM8 (Schlomann et al., 2002)

and ADAM28 (Howard et al., 2000) are able to autocatalytically remove the prodomain. The

prodomains also functions as a chaperone, helping in proper protein folding (Cao et al., 2002;

Leonard et al., 2005). Sometimes, the prodomain can stay non-covalently associated with the

mature enzyme (Gonzales et al., 2004; Wewer et al., 2006).

ADAM proteins are regulated by trafficking and localization of the enzyme to the particular

sites within the cell, for example ADAM19 and ADAM17 are present and function in lipid rafs

(cholesterol-rich membrane microdomains) in the membrane. The cytoplasmic domain plays an

important role in the proper localization of ADAMs. Replacement of the cytoplasmic domain of

ADAM12 with the cytoplasmic tail of ADAM9 leads to a significant increase in the transport of

the protein to the cell surface, suggesting that the cytoplasmic domain plays a role in the exit of

ADAM12 from the ER (Cao et al., 2002). Proline-rich motifs in the cytoplasmic domain are also

important for proper basolateral localization of ADAM10 in polarized epithelial cells (Wild-Bode

et al., 2006).

Additional control of ADAMs’ activity occurs through protein internalization. ADAM17 is

rapidly removed from the cell surface by endocytosis (Doedens & Black, 2000). Epidermal growth

factor (EGF) can upregulate the mature form of ADAM17 present on the membrane, possibly by

enhancing stabilization of the protein (Santiago-Josefat et al., 2007).

Intracellular signaling

The cellular localization of ADAMs and their substrates is important in the regulation of shedding

activity. Specificity of ADAMs’ substrate cleavage and what triggers the activation is not fully

understood. The presence of proline-rich SH3-binding sites in the cytoplasmic domain, as well

as phosphorylation sites, suggests that their function may be regulated through different binding
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partners and phosphorylation.

Mitogen-activated protein kinase (MAPK) and protein kinase C (PKC) pathways have been

implicated in the regulation of ADAMs activity. As was mentioned before, the subcellular lo-

calization of ADAMs plays a key role in their regulation. Furthermore, intracellular signaling is

involved in the trafficking of ADAMs. For example, ADAM17 is localized mainly to the Golgi

apparatus, and Erk-MAPK mediated phosphorylation of a tyrosine in the ADAM17 cytoplasmic

tail translocates it to cell surface (Soond et al., 2005). ADAM12 interacts with the p85α domain

of phosphatidyl inositol 3-kinase (PI3K) and facilitates its recruitment to the membrane (Kang

et al., 2001). Tks5/Fish, a Src substrate, interacts with ADAM12, 15, and 19, and ADAM12 was

shown to co-localize with Tks5 (Abram et al., 2003). ADAM12 binds and activates Src kinase,

potentially activating Tks5/Fish (Kang et al., 2000).

Another possible regulation mechanism of ADAMs’ activity is by direct or indirect binding

of adapter proteins. Several SH3-domain containing proteins, such as PACSIN3 and Eve-1, can

interact with the cytoplasmic tail of ADAM12 and are required for the activation of its proteolytic

activity (Mori et al., 2003; Tanaka et al., 2004). PKCδ phosphorylates the cytoplasmic domain

of ADAM9, stimulating shedding of heparin-binding EGF-like growth factor (HB-EGF) (Izumi

et al., 1998).

Phorbol myristate acetate (PMA) has been shown to transiently activate ADAM17 through

the PKC pathway, but longer treatments led to decreasing amount of ADAM17 at cell surface,

probably due to endocytosis (Doedens & Black, 2000). PMA has been also shown to induce

ADAM12 translocation through PKCε. This translocation requires catalytic activity of PKCε

(Sundberg et al., 2004). Ionomycin stimulated Ca2+ influx upregulates ADAM10 and enhances

shedding of chemokines.

G-protein-coupled receptors (GPCR) can activate ADAMs, which leads to activation of EGFR.

Exactly how GPCR activates ADAMs is not fully understood, but current results suggest involve-

ment of Src. Src is required for the GPCR-mediated activation of phosphatidyl inositol-3 kinase

(PI3K), subsequently necessary for the activation of phosphatidyl inositol-dependent kinase-1
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(PDK-1). PDK-1 activates ADAM17 through phosphorylation and shedding of EGFR (Zhang

et al., 2006).

The modification of ADAM cytoplasmic tails by phosphorylation may lead to conformational

changes, and consequently to activation of ADAMs. Interaction with SH3-containing proteins can

result in an accumulation of ADAMs and their substrates in specific subcellular localizations, thus

allowing substrate processing. Involvement of different signaling pathways can explain the cell

and/or stimuli-specific manner of ADAMs regulation.

Inhibitors

The tissue inhibitors of metalloproteases (TIMPs) are major natural inhibitors of ADAMs. TIMPs

are also able to inhibit matrix metalloproteases, but they generally display much greater selectivity

towards ADAMs. Each of the four TIMPs inhibits one or more ADAMs at physiologically rele-

vant concentrations. TIMP-1 inhibits ADAM10, and TIMP-2 inhibits ADAM12. TIMP-3 has a

broader inhibition range (ADAM10, 12, 17, 28, 33), and TIMP-4 inhibits ADAM28 and ADAM33

(Huovila et al., 2005). ADAM10 proteolytic activity in the embryonic brain is also directly inhib-

ited by the reversion-inducing cysteine-rich protein with Kazal motif (RECK) (Muraguchi et al.,

2007), indicating that additional natural inhibitors of ADAM activity may exist.

1.1.2 ADAMs sheddase activity

The major function of ADAMs is the release of the extracellular domains of transmembrane pro-

teins by cleaving them in their juxtamembrane region, known as shedding. ADAMs are capable of

shedding type-I and type-II transmembrane protein, as well as GPI-anchored molecules. ADAMs

activity leads to cell-surface remodeling, regulation of growth factors, and the cell ability to re-

spond to extracellular stimuli. Functionally, ADAM mediated proteolysis has three major roles

(Fig. 1.3). First, shedding of the membrane-bound factors leads to the release of active peptides.

Then, soluble factors activate downstream signaling (Fig. 1.3a) in an autocrine manner (binding

of active ligands to their receptors on the same cells) or a paracrine manner (ligands bind to the
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receptors on opposite cells). Epidermal growth factor (EGF) ligands, such as amphiregulin, beta-

cellulin, EGF, epigen, epiregulin, heparin-binding EGF-like growth factor (HB-EGF), neuregulin

1-4, and TGF-α, are synthesized in the inactive, membrane-bound form. These EGF ligands must

be cleaved by members of the ADAM family in order to be activated. Different ADAMs shed

different EGF ligands. ADAM17 mainly cleaves TGF-α, HB-EGF, epiregulin, and amphiregulin

(Sahin et al., 2004; Sahin & Blobel, 2007). ADAM10 is involved in the shedding of EGF and

betacellulin (Sahin et al., 2004). ADAM12 cleaves HB-EGF, and this function of ADAM12 is

linked to cardiac pathophysiology (Asakura et al., 2002).

The second functional role of ADAMs’ sheddase activity is abrogation of protein function

(Fig. 1.3b). ADAMs are able to selectively decrease the amount of specific proteins in the mem-

brane or inactivate receptors and ligands. They can shed proteins in cis (in the same cell) or in

trans (on the surface of an opposing cell). Trans-shedding induces cellular repulsion of two cells.

The released ectodomains also act as soluble antagonists. A perfect example of abrogation of

protein function by ADAMs is proteolysis of cell adhesion molecules (CAMs), such as cadherins

or selectins. Cadherins are important for cell-cell adhesion, and cleavage by ADAMs plays a role

in tissue morphogenesis, wound healing, and cell migration. Releasing of intracellular domain

after cleavage, in some cases, can lead to intracellular signaling. ADAM12 is capable of cleav-

ing several extracellular matrix proteins such as collagen IV, fibronectin, and gelatin (Roy et al.,

2004).

Additionally, ADAMs’ shedding can be a prerequisite for regulated intramembrane proteolysis

(RIP; Fig. 1.3c). Transmembrane proteins cleaved in the extracellular domain are followed by

further cleavage in the intramembrane region. This intramembrane cleavage leads to the release of

the intracellular domain (ICD), which may participate in signal transduction. A good example of

ADAM function in RIP is the Notch signaling pathway. ADAMs’ cleavage of the Notch receptor

is necessary for subsequent cleavage by γ-secretase and the release of the intracellular domain,

which further transduces the signal. This pathway is described in more detail in Section 1.2.

A second example is the shedding of the amyloid precursor protein (APP) in the central nervous

7



system (CNS). ADAM9, 10, and 17 are capable of cleaving APP. It is hypothesized that increasing

these ADAMs’ activity could help patients with Alzheimer’s disease (Deuss et al., 2008).

1.2 Notch signaling

The Notch signaling pathway is evolutionarily conserved between species from C. elegants to

humans. Notch plays critical roles in apoptosis, cell proliferation, differentiation, and lineage

decision during embryonic development as well as during self-renewing processes in adulthood

(Bray, 2006). Aberrant gain or loss of Notch signaling is implicated in many human diseases,

including developmental syndromes (Hansson et al., 2004), adult-onset diseases (Louvi et al.,

2006), and cancer (Miele et al., 2006).

The primary proteins involved in the Notch signaling pathway are Notch receptors, DSL (Delta

/Serrate/Lag2) ligands, and nuclear effectors. In mammals, there are four Notch receptors (Notch

1-4), and five ligands (Delta-like (Dll) 1, 3, 4, Jagged 1, 2).

Notch is a transmembrane protein containing several EGF-like repeats and a conserved nega-

tive regulatory region (NRR) composed of three Lin12/Notch repeats (LNR) and a heterodimeriza-

tion domain (HD). EGF-like repeats 11 and 12 are essential for ligand binding. NRR helps to keep

Notch in a metalloprotease resistant conformation before ligand-induced activation (Gordon et al.,

2007). The intracellular part of Notch contains the RAM (RBP-Jκ association module) domain,

six ankyrin repeats, and a C-terminal PEST (proline/glutamic acid/serine/threonine-rich motifs)

domain. The PEST domain contains degradation signals. All Notch ligands at the N-terminus

contain a cysteine-rich DSL domain, which is essential for its interaction with receptors. Similar

to Notch receptors, ligands contain in their extracellular domains various number of EGF-like re-

peats. Jagged (and Serrate in Drosophila) ligands also contain a cysteine-rich domain between the

EGF-like repeats and the transmembrane domain. This domain is not present in the Delta class of

ligands (Kopan & Ilagan, 2009).

Notch is glycosylated and cleaved by a furin-like convertase at site 1 (S1) within the secre-

tory pathway (Logeat et al., 1998). This cleavage leads to formation of a heterodimer, held to-
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gether by non-covalent interactions, that is present in cell membrane. Notch signaling requires

interactions between receptors present on the surface of the signal-receiving cell and a ligand

located on a signal-sending cell. This interaction triggers the cleavage of Notch by ADAM met-

alloproteases in site 2 (S2) and generates Notch extracellular truncation (NEXT). Two ADAMs,

ADAM17 and ADAM10, are capable of Notch cleavage at the S2 site (Brou et al., 2000; Pan

& Rubin, 1997). Generation of NEXT is a prerequisite for intramembrane cleavage of Notch by

γ-secretase complex at site 3 (S3) (De Strooper et al., 1999; Wolfe & Kopan, 2004). Cleavage

at S3 frees the Notch intracellular domain (NICD) to enter the nucleus. NICD cannot bind di-

rectly to DNA. Rather, NICD forms a heterodimer with CSL (CBF1 in mammals, also known

as RBP-Jκ in mouse, Su(H) in Drosophila and Lag1 in C. elegans) transcription factors through

the RAM domain. Ankyrin repeats of NICD associate with CSL and help recruit the coactivator

Mastermind/Lag3. This Mastermind-CSL-NICD interaction leads to transcriptional activation of

the responsive genes. An overview of Notch signaling pathway is shown in Fig. 1.4.

Notch ligands also undergo ADAM-mediated cleavage in the juxtamembrane region of the

extracellular domain (Six et al., 2003; Dyczynska et al., 2007). This cleavage is followed by γ-

secretase cleavage in the intramembrane region (Ikeuchi & Sisodia, 2003). Until recently only,

ADAM17 have been implicated in cleavage of Dll1 and Jagged1 (LaVoie & Selkoe, 2003), and

ADAM10 was known to be involved in the cleavage of Dll1 (Six et al., 2003; Qi et al., 1999). In

Chapter 3, our results show that ADAM12 and ADAM9 are also capable of cleaving Dll1 (Dy-

czynska et al., 2007). The intracellular domain (ICD) of Notch ligands is released after cleavage

by γ-secretase, and is translocated to the nucleus (Bland et al., 2003). The Notch ligand ICD

does not contain any recognizable DNA binding motifs, but the ICD of Dll1 can interact with

transcriptional factors such as Smad2/3/4 and enhance Smad dependent transcription (Hiratochi

et al., 2007). Also, the soluble ICD of Jagged1 can activate gene expression through the AP1

transcription factor (LaVoie & Selkoe, 2003). This suggests a bi-directional function of the Notch

signaling pathway where, not only the cell with the Notch receptor can receive signal, but also the

cell presenting the ligand.
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Only the membrane-bound ligand is able to activate Notch signaling. Therefore, ADAM-

mediated processing of ligands results in a lack of functional ligands on the cell surface and

down-regulation of Notch signaling in a neighboring cell. This has been demonstrated during

cortical development in the mouse embryo. Inhibition of ADAM10, which mediates shedding of

Notch ligands, leads to impaired Notch signaling (Muraguchi et al., 2007).

Interestingly, interactions between Notch ligands and Notch in trans activate the Notch path-

way, whereas ligand binding to Notch in cis inhibits Notch signaling (Katsube & Sakamoto, 2005).

Interaction of Notch with its ligand on the same cell requires different EGF-like repeats of Notch

(24-29) than interaction in trans. Notch ligands presented in the same cell as Notch can interact

with each other, and this interaction leads to decreased receptivity to Notch signals (Sakamoto

et al., 2002). A possible function for shedding of the ligand by ADAM proteases is relieving

cis-inhibition. This hypothesis is discussed in Chapter 3.

1.3 Transforming growth factor β (TGFβ) signaling pathway

The TGFβ signaling pathway is important during development and in adulthood. This conserved

mechanism of signaling is involved in regulation of proliferation, differentiation, apoptosis, and

extracellular matrix remodeling. It is not surprising that dysregulation of this pathway leads to

many disorders such as cancer, fibrosis, and vascular disease, as well as, hereditary conditions

including familial primary pulmonary hypertension and hereditary hemorrhagic telangiatacsia

(HHT) (Gordon & Blobe, 2008).

The primary components in TGFβ signaling are ligands, receptors, and intracellular effectors–

Smads. More then 60 members of the TGFβ family have been identified. Among these, ligands

consist of three TGFβ isoforms, four activins, ten bone morphogenic proteins (BMPs), and eleven

growth and differentiation factors (GDFs) (Feng & Derynck, 2005). The characteristic feature of

the TGFβ family of ligands is the “cysteine knot” formed by three intramolecular disulfide bonds

between six cysteine residues, which are highly conserved between ligands (Feng & Derynck,

2005). All ligands are synthesized as dimeric pre-proteins and are secreted. All three mammalian
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TGFβ isoforms, TGFβ1, 2 and 3, are secreted in the latent form, where the latency associated

peptide (LAP) is non-covalently attached to the active peptide. LAP must be removed in order to

release the active ligand. This removal occurs by proteolytic cleavage or physical interactions of

LAP with other proteins, such as integrins (Annes et al., 2003).

Two classes of TGFβ receptors exist: type I (TβRI) and II (TβRII). In vertebrates there are

five type-II receptors and seven type-I receptors, called activin receptor-like kinases (ALK). They

are Serine/threonine kinase receptors. On the membrane, receptors form homodimers. Type-II

receptors are constitutively active. Type-I receptor is inactive, due to presence of Glycine/Serine-

rich (GS) region in the kinase domain (Huse et al., 1999). Upon ligand binding receptors are

brought together and type II receptor phosphorylates the GS region of type I receptor, allowing its

activation.

Smads are the only TGFβ receptor substrates with a demonstrated ability to propagate sig-

nals (Ross & Hill, 2008). Receptor-activated Smads (R-Smads; Smad1, Smad2, Smad3, Smad5,

Smad8) are activated by TβRI. They contain conserved two Mad-homology (MH) domains: N-

terminal MH1 and C-terminal MH2, connected by a linker. The MH1 domain is responsible

for DNA binding (except in Smad2) and the MH2 domain is responsible for interaction with

receptors, Smad-Smad interaction, and binding of the transcription factors, co-activators, and co-

repressors. Linkers can be phosphorylated by MAPKs, glycogen synthase kinase-3β, and cyclin

dependent kinases. Common-Smads (co-Smad; Smad4) form a heteromeric complex with acti-

vated R-Smads (Moustakas et al., 2001). The primary difference between co-Smad and R-Smad

is that co-Smad does not contain a phosphorylation site in its C-terminus. Additionally, two in-

hibitory Smads (I-Smads) are present, Smad6 and Smad7. These I-Smads can interact with TβRI,

ubiquitin ligases, and protein phosphatase 1 (PP1) to inhibit signaling by enabling degradation or

dephosphorylation of active receptors. I-Smads are also upregulated in response to TGFβ, leading

to a negative-feedback loop mechanism.

TGFβ signaling is surprisingly straightforward. Upon binding of active TGFβ to TβRII,

TβRII forms a complex with TβRI. Formation of this complex leads to the phosphorylation of
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TβRI. This signal is further transduced by R-Smads proteins. Smad2 and Smad3 transduce the

signal activated by TGFβ or activin, and Smad1, Smad5, and Smad8 are activated in response

to BMP. R-Smads are phosphorylated by TβRI. Upon phosphorylation, R-Smads form a com-

plex with Smad4 and translocate to the nucleus where they collaborate with distinct transcription

co-regulators to induce or block TGFβ responsive genes. A simplified overview of the TGFβ path-

way is presented in Fig. 1.5. The Smad binding element (SBE) is a short sequence 5’-AGAC-3’

or complement 5’-GTCT-3’ that binds to the MH1 domains of Smad3/4 complexes. This binding

is very weak and requires a series of repeated SBE sequences and additional transcription factors

interacting with Smad complexes. Additionally, non-Smad pathways are involved in TGFβ sig-

naling. One can distinguish three signaling mechanisms in which non-Smad pathways affect the

Smad-dependent pathway. Non-Smad pathways can directly modify Smad function, and Smads

can modify the function of non-Smad proteins and transmit signals to other pathways. TGFβ

receptors can directly phosphorylate non-Smad proteins (Moustakas & Heldin, 2005). The non-

Smad pathways involved in TGFβ signaling are p38 MAPK, c-Jun MAPK, PI3K-AKT, mTOR

and PP2A. Interplay between Smad-dependent and non-Smad pathways allow the cell-type and

context-dependent activation of responsive genes.

ADAM12 has been shown to be upregulated by TGFβ in human activated hepatic stellate

cells. mRNA of both long and short human ADAM12 isoforms is upregulated after three days of

treatment (Le Pabic et al., 2003), and this upregulation is decreased by PI3K and MAPK inhibitors

(Le Pabic et al., 2003, 2005). Additionally, ADAM12 has been shown to interact with TGFβ

receptor type II. This interaction modulated receptor trafficking and positively regulated the TGFβ

signaling (Atfi et al., 2007).

1.3.1 SnoN as transcriptional repressor

SnoN and closely related Ski were discovered as oncogenes, able to transform fibroblasts when

over-expressed (Boyer et al., 1993). However, more recent studies of heterozygous sno (Shina-

gawa et al., 2000) and ski (Shinagawa et al., 2001) mice have shown that they can function as
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tumor suppressors. SnoN is ubiquitously expressed at low levels, and has an altered expression

in cancer (Zhang et al., 2003; Fukuchi et al., 2004; Poser et al., 2005; Akagi et al., 2008), liver

regeneration (Macias-Silva et al., 2002), and obstructive neurophathy (Tan et al., 2006). The fact

that SnoN and Ski can interact with Smad2/3 and Smad4 opens new possibilities for regulation of

TGFβ signaling (Stroschein et al., 1999; Sun et al., 1999; Luo et al., 1999; Xu et al., 2000).

In humans, the Sno gene is alternatively spliced forming SnoN, SnoN2, SnoI, and SnoA (No-

mura et al., 1989; Pearson-White, 1993; Pearson-White & Crittenden, 1997). All four isoforms

share 366- amino acids from exon 1. SnoN is the largest of the Sno isoforms, 684 amino acid

long, in human cells. SnoN2 has 46 amino acid deletion in exon 3 (Pearson-White & Crittenden,

1997). SnoI contains the first 399 residues of SnoN, and SnoA has only first exon common with

other forms. Rodents only express SnoN and SnoN2 with a different tissue distribution (Pelzer

et al., 1996; Pearson-White & Crittenden, 1997). The functional implications of various Sno

splice forms are currently not known. SnoN in the N-terminus contains a DS domain which has

extended homology between Ski and Sno proteins. This is followed by a SAND-like domain

(Sp100, AIRE-1, NucP41/75 and DEAF-1 protein) found in chromatin remodeling nuclear pro-

teins. The SAND-like domain does not directly bind DNA but is responsible for Smad4 binding.

The C-terminal part contains α-helical dimerization domains. A schematic representation of hu-

man Sno isoforms is shown in Fig. 1.6a. Mouse SnoN/SnoN2 are shorter and do not contain

dimerization domain.

Overexpression of SnoN inhibits the ability of TGFβ to induce transcription (Stroschein et al.,

1999; Sun et al., 1999). Crystal structures reveal that Ski and SnoN interact with the R-Smads

through their N-terminal region and with co-Smad through SAND-like domain, suggesting that

Ski/SnoN disrupt the formation of functional complex between Co- and R-Smads. Ski and SnoN

also prevent binding of R-Smads to transcriptional co-activators p300/CBP (Wu et al., 2002). Ad-

ditionally, SnoN and Ski bind directly to the nuclear hormone receptor co-repressor (N-coR) and

mSin3A, components of the histone deacetylase (HDAC) complex, and repress TGFβ responsive

genes (Luo et al., 1999; Akiyoshi et al., 1999; Nomura et al., 1999). Other cellular partners for
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SnoN and Ski include different transcriptional factors pRb, GATA1, Gli3, RAPα (retinoic acid

receptor α) (Deheuninck & Luo, 2009). SnoN is mostly localized to the nucleus, but some reports

suggest that SnoN can work in the cytoplasm by sequestering Smad proteins (Krakowski et al.,

2005).

TGFβ induction leads to degradation of SnoN and, to a lesser extent, Ski. Several E3 ubiquitin

ligases have been shown to be directed to SnoN in response to TGFβ. Smad ubiquitin regula-

tory factor (Smurf)-2 interacts with Smad2 in a TGFβ-dependent manner and targets SnoN for

ubiquitin mediated degradation by proteosome (Bonni et al., 2001). Smad3 recruits the anaphase-

promoting complex (APC) and causes ubiquitination and degradation of SnoN through the inter-

action of Destruction-box (D box) in SnoN with the CDH1 subunit of APC (Stroschein et al.,

2001). Arkadia, an E3 ubiquitin ligase, has also been shown to form a complex with Smad2/3 and

SnoN, and lead to degradation of SnoN only in the presence of phosphorylated Smad2 or Smad3

(Levy et al., 2007; Nagano et al., 2007). The rapid degradation of SnoN in response to TGFβ

releases the repression of responsive genes, allowing activation by binding of R-Smads/co-Smad

complexes to SBE. Schematic activation of TGFβ responsive genes by degradation of SnoN is

shown in Fig. 1.6b.

SnoN is also upregulated in response to TGFβ signaling through direct binding of the Smad2/

Smad4 complexes to SBE in the SnoN promoter. This upregulation occurs within short times

of TGFβ treatment (Sun et al., 1999; Stroschein et al., 1999), suggesting a negative feedback

mechanism between TGFβ signaling and SnoN.

1.4 Goal of the study

To better understand how ADAM12 is regulated and how it functions, we focused on three goals.

• Previous studies show that ADAM12 can be upregulated by TGFβ in hepatic stellate cells

(Le Pabic et al., 2003), but the general mechanism of how ADAM12 is regulated by TGFβ

is not fully understood. My goal was to investigate the TGFβ-Smad pathway and its in-

volvement in the regulation of ADAM12 in different cell lines.
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• ADAMs are important in the Notch signaling pathway, but little is known about ligand

cleavage by ADAMs. My goal was to test several ADAMs for their ability to proteolytically

cleave Dll1. Main focus has been put on what effect this will have on Notch signaling in the

cell in which cleavage takes place and on Notch signaling in the neighboring cell.

• Recently, ADAM12 emerged as a Candidate Cancer Gene in a comprehensive genetic anal-

ysis of human breast cancers and three somatic mutations were observed at significant fre-

quencies in breast cancers (Sjöblom et al., 2006). The effect of these mutations on ADAM12

function have been tested.
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Figure 1.1: Domain structure of ADAM metalloproteases. Typical ADAMs contain a signal
sequence at the N-terminus, followed by prodomain, metalloprotease, disintegrin, cysteine-rich
EGF-like, transmembrane domain, and cytoplasmic tail. Prodomain blocks the active site of me-
talloprotease by the “cysteine switch” mechanism, where a cysteine residue in the prodomain
forms a bond with zinc in the catalytic site. Tissue inhibitors of metalloprotease (TIMP) are natu-
ral inhibitors of metalloprotease activity. Cytoplasmic tail contains several putative binding motifs
and kinase target sites. Based on Huovila et al. (2005).
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Figure 1.2: An overview of ADAMs synthesis and processing. ADAMs can be regulated at
the transcriptional level (1). They are synthesized in the endoplasmic reticulum (ER), where the
signal peptide is removed (2). Maturation of ADAMs occurs in the Golgi apparatus, where furin
cleaves the prodomain (3) and an active form is transported to the membrane. ADAMs are also
regulated by interactions of cytosolic proteins with the cytoplasmic tail. ADAMs presented at the
cell surface are able to shed the ectodomains of their substrates (4).
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(a)

(b)

(c)

Figure 1.3: Functional roles of ADAMs sheddase activity. (a) Shedding releases active peptide
from pro-proteins which leads to autocrine and paracrine signaling. (b) Abrogation of protein
function, repulsion by trans-shedding. The released ectodomains can be sequestrated by soluble
factors. (c) Shedding is a prerequisite for regulated intramembrane proteolysis (RIP). Released
intracellular fragments can act as transcription factors. Based on Reiss & Saftig (2009).
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Figure 1.4: Notch signaling pathway. Delta or Jagged (Notch ligands) are present on a signal-
sending cell whereas Notch receptor is present on an opposite, signal-receiving cell. After Notch
binds to its ligands, two proteolytic cleavages occur, the first cleavage at the S2 site by ADAM10
or TACE (ADAM17) is followed by a cleavage by the γ-secretase complex at the S3 site. Nicd
(Notch intracellular fragment) is released from the membrane and transported to the nucleus,
where it interacts with CSL (CBF1, Su(H) and Lag1). The coactivator Mastermind (Mam) is also
required for releasing the repression and transcriptional activation. Adapted by permission from
Macmillan Publishers Ltd: Nature Rev Mol Cell Biol (Bray, 2006), copyright (2006).
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Figure 1.5: TGFβ signaling pathway Ligand binds to TGFβ receptors, and brings them together.
TGFβ receptor type II (TβRII) phosphorylates TGFβ receptor I (TβRI). Active TβRI phosphory-
lates R-Smads, which leads to complex formation with Smad4. R-Smad/Smad4 complex translo-
cates to the nucleus where it interacts with co-repressors or co-activators and regulates TGFβ
responsive genes. Adapted by permission from Macmillan Publishers Ltd: Nature (Derynck &
Zhang, 2003), copyright (2003).
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(a)

(b)

Figure 1.6: Domain structure of SnoN family of proteins (a) and mechanism of regulation by
SnoN (b). (a) Schematic representation of human Sno isoforms with structural domains. SnoN
is the longest isoform containing 684 amino acid residues. SnoN2 has a deletion of amino acids
431-476 (denoted with dashed lines) due to alternative splicing of exon 3. SnoA has first 366
amino acids identical to the other isoforms, and contains 49 residues (shown in brown) which
are specific for this isoform. SnoI is a truncated form of SnoN. DS domain (green) is a Ski/Sno
conserved homologous region. SAND-like domain (red) and two α-helical dimerization domains
are shown in yellow. Figure based on Pot & Bonni (2008) and Deheuninck & Luo (2009). (b)
SnoN, Smad4 and various transcriptional co-repressors and histone deacetylase complex (HDAC)
maintain repressed state of TGFβ responsive genes. After TGFβ stimulation, receptor phospho-
rylated Smad2/3 bring E3 ubiquitin ligases (APC/Smurf/Arkadia) leading to degradation of SnoN
and activation of transcription. Figure based on Luo (2004).
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Chapter 2

The role of SnoN in transforming growth
factor β1-induced expression of ADAM12

The data presented in this chapter have been submitted as a journal article:

Solomon E., Li H., Syta E., Zolkiewska A.

The role of SnoN in transforming growth factor β1-induced expression of ADAM12

2.1 Abstract

Increased expression of metalloprotease-disintegrin ADAM12 is a hallmark of several patholog-

ical conditions, including cancer, cardiovascular disease, and certain inflammatory diseases of

the central nervous system or the muscoskeletal system. We show that transforming growth fac-

tor β1 (TGFβ1) is a potent inducer of ADAM12 mRNA and protein in mouse fibroblasts and in

mouse and human mammary epithelial cells. Induction of ADAM12 mRNA is detected within

2 h of treatment with TGFβ1, is Smad2/Smad3-dependent, and is a result of derepression of the

ADAM12 gene. SnoN, a negative regulator of the TGFβ signaling pathway, is a master reg-

ulator of ADAM12 expression in response to TGFβ1 stimulation. Overexpression of SnoN in

NIH3T3 cells reduces the magnitude of ADAM12 induction by TGFβ1 treatment. Downregula-

tion of SnoN expression by shRNA leads to elevation of basal levels of ADAM12 expression and

enhances TGFβ1-induced expression of ADAM12. In a panel of TGFβ1-responsive cancer cell
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lines with high expression of SnoN, induction of ADAM12 by TGFβ1 is significantly impaired,

suggesting that the endogenous SnoN plays a role in regulating ADAM12 responses to TGFβ1.

Identification of SnoN as a repressor of the ADAM12 gene should contribute to advances in the

studies on the role of ADAM12 in tumor progression and in the development of other pathologies.

2.2 Introduction

ADAM12, a member of the metalloprotease-disintegrin family of proteins, has been implicated in

the progression of cancer, cardiovascular disease, osteoarthritis, and neurological disorders (Kvei-

borg et al., 2008). ADAM12 gene is frequently mutated in human breast cancers (Sjöblom et al.,

2006; Wood et al., 2007), and cancer-associated mutations cause mislocalization of ADAM12 pro-

tein in cells and alter its function (Dyczynska et al., 2008). Missense single nuclear polymorphism

in the ADAM12 gene shows strong association with osteoarthritis (Valdes et al., 2004, 2006). In

addition to changes in its amino acid sequence, expression levels of ADAM12 are significantly

increased in many pathological states. For example, ADAM12 expression levels are 20-30-fold

higher in human breast tumors than in normal mammary epithelium (Iba et al., 1999; Kveiborg

et al., 2005; Lendeckel et al., 2005; Roy et al., 2004; Mitsui et al., 2006; Turashvili et al., 2007).

ADAM12 expression is also markedly upregulated in cancers of the liver, lung, stomach, colon,

prostate, bladder, and in glioblastoma (Le Pabic et al., 2003; Mino et al., 2009; Carl-McGrath

et al., 2005; Peduto et al., 2006; Fröhlich et al., 2006; Kodama et al., 2004). Increased ADAM12

expression levels are found in the cardiac tissue of patients with hypertrophic obstructive car-

diomyopathy (Fedak et al., 2006) and in mice with angiotensin II-induced hypertension and car-

diac hypertrophy (Wang et al., 2009a,b). During inflammatory responses and aseptic osteolysis

associated with loosened hip replacement implants, ADAM12 is upregulated in the interface tissue

around loosening implants (Ma et al., 2005). In the experimental autoimmune encephalomyelitis

(EAE), an animal model of multiple sclerosis, ADAM12 level is markedly increased in T cells

that infiltrate spinal cords (Toft-Hansen et al., 2004).

The mechanisms regulating ADAM12 expression, in particular those that may be responsible
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for altered levels of ADAM12 in various pathological states, are poorly understood. Previous

studies employing hepatic stellate cells, a mesenchymal cell type in hepatic parenchyma, have

indicated that ADAM12 expression is induced by transforming growth factor β (TGFβ) (Le Pabic

et al., 2003, 2005). The TGFβ signaling pathway is initiated when one of the family members,

e.g. TGFβ1, β2, or β3, binds to a complex of TGFβ type I and type II serine/threonine kinase

receptors (TβRI and TβRII, respectively) and induces phosphorylation and activation of TβRI by

TβRII. TβRI then phosphorylates receptor Smads (R-Smads), Smad2 and Smad3. Phosphorylated

Smad2/3 associate with the common partner Smad4 and translocate to the nucleus, where they

regulate transcription of target genes (Massagué et al., 2005; Feng & Derynck, 2005). In addition,

receptor activation in certain cell types leads to Smad-independent responses via the activation of

mitogen-activated protein kinases (MAPKs), phosphoinositide 3-kinase (PI3K), and Rho family

members (Moustakas & Heldin, 2005; Derynck & Zhang, 2003).

SnoN and the related Ski protein are negative regulators of TGFβ signaling. They bind to nu-

clear Smad complexes and repress their transcriptional activities (Deheuninck & Luo, 2009; Lönn

et al., 2009; Pot & Bonni, 2008). In response to TGFβ stimulation, SnoN (and to a lesser extent

Ski) undergoes ubiquitination and rapid proteasomal degradation (Stroschein et al., 1999; Sun

et al., 1999). The ubiquitin ligases implicated in ubiquitination of SnoN, the anaphase promoting

complex (APC), Smurf2, and Arkadia, are recruited to SnoN via the phosphorylated R-Smads

(Bonni et al., 2001; Stroschein et al., 2001; Wan et al., 2001; Nagano et al., 2007; Levy et al.,

2007).

Previous study on the regulation of ADAM12 expression by TGFβ in hepatic stellate cells

used rather long (24 - 72 h) stimulation times and showed that ADAM12 induction was partially

blocked by inhibitors of MAPKs, PI3K, or p70S6 kinase (Le Pabic et al., 2003, 2005). Based on

these results, it was postulated that induction of ADAM12 expression by TGFβ might be Smad-

independent, but a direct role of R-Smads in the regulation of ADAM12 expression has not been

tested. In this report, we investigate short term (0 - 24 h) effects of TGFβ on ADAM12 mRNA and

protein levels in mouse fibroblasts. We find that TGFβ causes derepression of the ADAM12 gene
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in a Smad2/3-dependent manner, and that the repressor responsible for the negative regulation of

ADAM12 expression is SnoN. Our studies uncover a new mechanism of ADAM12 regulation by

TGFβ that may contribute to aberrant expression of ADAM12 in various diseases.

2.3 Materials and Methods

Cell culture

NIH3T3 fibroblasts, HT1080 fibrosarcoma cell line, DU145 prostate cancer cell line (American

Type Culture Collection), and retroviral packaging cell line Phoenix Eco (G. P. Nolan, Stanford

University) were grown in DMEM supplemented with 10% FBS. SMAD2−/− MEFs (E. Bottinger,

Mount Sinai School of Medicine), SMAD3−/− MEFs (K. Flanders, NCI), ADAM9/12/15−/− (C.

P. Blobel, Hospital for Special Surgery), and wild-type MEFs were grown in DMEM containing

10% FCS and 1% penicillin/streptomycin. Normal mouse mammary gland epithelial cell line

NMuMG and human MCF7 breast cancer cells were grown in DMEM with 10% FBS and 10

µg/ml insulin. Normal human mammary epithelial cells MCF-10A were cultured in DMEM-

F12 supplemented with 5% horse serum, 0.5 µg/ml hydrocortisone, 20 ng/ml hEGF, 10 µg/ml

bovine insulin, 100 ng/ml cholera toxin and 1% penicillin/streptomycin. MDA-MB-468 breast

cancer cells were cultured in Liebovitz’s L-15 medium supplemented with 10% FBS. MDA-MB-

435S melanoma cells were maintained in Liebovitz’s L-15 medium supplemented with 10% FBS

and 10 µg/ml bovine insulin. MDA-MB-231 breast cancer cells were cultured in DMEM-F12

medium supplemented with 10% FBS. T47D breast cancer cells were cultured in RPMI-1640

medium supplemented with 10% FBS. Cells were plated 24 h before experiment and allowed

to reach ∼70% confluency. The medium was changed at the time of TGFβ1 treatement. Cells

were treated with 2 ng/ml of TGFβ1 (R&D Systems) for 24 h (unless indicated otherwise), 10

µM MG132 (EMD Biosciences) for 16 h, 5 µg/ml actinomycin D (Sigma-Aldrich) for 15 min

prior to and during TGFβ1 treatment, 5 µg/ml cycloheximide (Sigma-Aldrich) for 2 h prior and

during TGFβ1 treatment; or 10 µM SB-431542 (Sigma-Aldrich) 30 min prior and during TGFβ1

25



treatment; control incubations with vehicle alone were included in each experiment.

Viral transduction

Human SnoN cDNA was transferred from pCI-Neo HA-hSnoN plasmid vector into the retroviral

pBMN-I-GFP vector (both from Addgene). Phoenix Eco cells were transfected with SnoN retro-

viral vector (15 µg plasmid DNA/100-mm plate) using calcium phosphate precipitation method.

Viral supernatants were harvested 48 hours later, supplemented with 5 µg/ml polybrene, and

used without further dilution for infection of NIH3T3 cells. For SnoN knockdown, NIH3T3

cells were incubated with MISSIONTM Lentiviral shSnoN Transduction Particles (Sigma, clone

ID TRCN0000088306) or with MISSIONTM Non-Target shRNA Control Transduction Particles

(Sigma, SHC002V), according to the manufacturer’s instructions. After one day, media contain-

ing retroviral particles were replaced with fresh media, and after additional 24 h, stably transduced

cells were selected with 2 µg/ml of puromycin for 7 days.

Immunoblotting

Immunoblotting was performed as described (Dyczynska et al., 2007). For ADAM12 detection,

cell extracts were enriched for glycoproteins using concanavalin A agarose prior to SDS-PAGE

and Western blotting (Cao et al., 2002). The following primary antibodies were used: rabbit

anti-ADAM12 cytoplasmic peptide antibody (Cao et al., 2002, 1:3000), rabbit anti-ADAM9 (Cao

et al., 2002, 1:400), goat anti-ADAM15 (R&D Systems, 1:100), rabbit anti-SnoN (H-317, Santa

Cruz Biotechnology, 1:1,000), mouse anti-α-tubulin (Sigma, 1:100,000). Secondary antibodies

were horseradish peroxidase-conjugated anti-rabbit, anti-mouse, or anti-goat IgG antibodies.

RNA analysis

Total RNA was extracted using PureLink Micro-to-Midi Total RNA Purification System contain-

ing TRIzol (Invitrogen). Northern blot analysis was performed using NorthernMax kit (Ambion).

Membranes were hybridized with ADAM12 cDNA probe (nt 161-2202) or β-actin probe provided
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with the kit. Probes were labeled using DECAprime II Random Primed DNA Labeling kit (Am-

bion) and [α-32P] dATP. For RT-PCR analysis, RNA (1 µg) was treated with deoxyribonuclease

I (Invitrogen), followed by reverse transcription using SuperScript III First-Strand Synthesis Sys-

tem for RT-PCR (Invitrogen) and oligo(dT) primers. Semi-quantitative PCR was performed in 50

µl reaction volumes using 1 µl cDNA, 0.2 mM dNTPs, 2 units of BIO-X-ACT Short DNA Poly-

merase (Bioline), and 1 µM primers (Table 2.1). PCR reaction conditions were: 94◦C, 30s; 55◦C,

30s; 72◦C, 45s; 29-32 cycles for mADAM12, and 24-26 cycles for mGAPDH. PCR products were

resolved in 2% agarose/TAE gels, visualized after ethidium bromide staining and UV illumina-

tion, and quantified by densitometry. Quantitative RT-PCR was performed in a total volume of 25

µl in a 96-well spectrofluorometric thermal cycler (iCycler, Bio-Rad). The final reaction mix con-

tained 10.5 µl of diluted cDNA (1:5 for human cDNA, 1:50 for mouse cDNA), 12.5 µl iQSYBR

Green Supermix, and 0.4 µM primers (Table 2.1). PCR conditions were: 95◦C, 30s; 55◦C, 30s;

72◦C, 40s. The relative expression of ADAM12 mRNA, normalized to mouse GAPDH or human

β-actin, was calculated using the 2(−∆∆Ct) method.

Statistical analysis

Paired t test was used to compare values of two groups. When fold change in ADAM12 expression

was calculated (stimulus- or inhibitor-treated cells versus vehicle control), data were analyzed by

one sample t test (GraphPad Prism Software, San Diego, CA).

2.4 Results

Previous reports have shown that treatment of human hepatic stellate cells with TGFβ1 induces

expression of ADAM12 (Le Pabic et al., 2003, 2005). Here, we extended the analysis of TGFβ1

effects on ADAM12 expression to other cell types. We observed that treatment of mouse NIH3T3

fibroblasts or normal mouse mammary epithelial cell line NMuMG for 24 h with TGFβ1 led to

dramatic increase in ADAM12 protein levels (Fig. 2.1a, 2.1b). The levels of two other ADAMs,

ADAM9 and ADAM15, were not changed after similar TGFβ1 treatment (Fig. 2.1c), demonstrat-
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Table 2.1: Primer sequences

Primer Sequence Product size

Primers used for semi-quantitative RT-PCR

mADAM12 (F) TAA AAC GTA CAG CTT AGA GC 300 bp
mADAM12 (R) CTT GTC AAC GTG ATT GGC GAT CTC

mGAPDH (F) TCG GTG TGA ACG GAT TTG 228 bp
mGAPDH (R) GCC GAT CCA CAC GGA GTA CT

Primers used for real-time qRT-PCR

mADAM12 (F) GGA TGT GCC TCT TCA ACC TAC 134 bp
mADAM12 (R) AGC GTT ACA GCA GCG ATT C

hADAM12L (F) AGC CAC ACC AGG ATA GAG AC 106 bp
hADAM12L (R) CGC CTT GAG TGA CAC TAC AG

mGAPDH (F) GCC TTC CGT GTT CCT ACC 101 bp
mGAPDH (R) GCC TGC TTC ACC ACC TTC

hβ-actin (F) TTG CCG ACA GGA TGC AGA A 101 bp
hβ-actin (R) GCC GAT CCA CAC GGA GTA CT
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ing that among three ADAMs tested, the effect of TGFβ1 was specific for ADAM12.

Induction of ADAM12 protein in cells that were starved in 0.5% serum for 24 h prior to adding

TGFβ1 was comparable to the induction observed in the presence of 10% serum (Fig. 2.2a).

Therefore, all subsequent experiments were performed using media supplemented with 10% FBS,

without starvation. It has to be stressed that when cells were incubated for prolonged times (∼48

h) without adding fresh media, the basal level of ADAM12 expression was significantly elevated,

and it was efficiently reduced by adding SB-431542, an inhibitor of TβRI (Fig. 2.2a). This re-

sult suggests that the increase in the basal level of ADAM12 expression was most likely due to

the autocrine/paracrine effect of the endogenous TGFβ1 produced in NIH3T3 cells that was ac-

cumulating over time in cell medium. The induction of ADAM12 protein in NIH3T3 cells by

exogenously added TGFβ1 was dose-dependent and reached a maximum at 2 ng/ml of TGFβ1

(Fig. 2.2b, 2.2c), the concentration used in the remaining part of this study. The upregulation

of ADAM12 protein was evident after 8 h of stimulation of cells with TGFβ1 (Fig. 2.2d, 2.2f).

Semi-quantitative reverse-transcription PCR (RT-PCR) analysis further demonstrated that TGFβ1

treatment increased the level of ADAM12 mRNA, and the changes in ADAM12 mRNA preceded

the changes in ADAM12 protein levels (Fig. 2.2e, 2.2f).

Pre-treatment of cells with actinomycin D, an inhibitor of transcription, completely blocked

the upregulation of ADAM12 protein (Fig. 2.3a), indicating that induction of ADAM12 expression

by TGFβ1 occurred at the transcriptional level. Consistently, real-time quantitative RT-PCR (qRT-

PCR) (Fig. 2.3b) or Northern blot analysis of NIH3T3 cells treated with TGFβ1 (Fig. 2.3c) showed

that the induction of ADAM12 mRNA by TGFβ1 was also blocked by pre-treatment of cells with

actinomycin D.

Smad2 and Smad3 are the main mediators of the transcriptional responses to TGFβ1. To de-

termine whether Smad2 and/or Smad3 are involved in TGFβ1-induced upregulation of ADAM12

expression, we examined the effect of TGFβ1 on ADAM12 levels in Smad2- or Smad3-deficient

cells. As shown in Fig. 2.4, the induction of ADAM12 by TGFβ1 in Smad2−/− or Smad3−/−

mouse embryonic fibroblasts (MEFs) was significantly impaired when compared to wild-type
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MEFs, indicating that Smad2/3 did play a role in upregulation of ADAM12.

Two lines of evidence further suggested that induction of ADAM12 expression by TGFβ1

involves derepression of the ADAM12 gene. First, pretreatment of cells with cycloheximide, an

inhibitor of translation, did not abolish the induction of ADAM12 mRNA by TGFβ1 (Fig. 2.5a).

In fact, cycloheximide alone increased the level of ADAM12 mRNA (Fig. 2.5b). These results

suggest that de novo protein synthesis is not required for the upregulation of ADAM12 by TGFβ1

and that cycloheximide might block synthesis of a transcriptional repressor acting on the ADAM12

promoter/gene. Second, pre-treatment of cells with MG132, a proteasomal inhibitor, efficiently

blocked the induction of ADAM12 protein and mRNA by TGFβ1 (Fig. 2.5c, 2.5d). This result,

together with the effect mediated by cycloheximide, indicates that TGFβ1 signaling leads to pro-

teasomal degradation of a repressor of the ADAM12 gene. SnoN, a negative regulator of TGFβ1

signaling, is known to be rapidly degraded in response to TGFβ1 stimulation, and thus may be

a good candidate for a repressor of the ADAM12 gene. Indeed, analysis of SnoN protein levels

in cell treated with TGFβ1 confirmed that SnoN, a 75-kDa protein, was degraded within 30 min

of TGFβ1 treatment and remained at a low level for up to 4 h after adding TGFβ1 (Fig. 2.5e).

As SnoN expression is upregulated by TGFβ1 signaling as a part of the negative feedback loop

mechanism that limits the duration and strength of the TGFβ1 signals (Stroschein et al., 1999),

the level of SnoN began to rise and eventually returned to its initial level after 8-16 h of TGFβ1

treatment (Fig. 2.5e).

To determine whether SnoN is directly involved in TGFβ1-induced upregulation of ADAM12,

we first studied the effect of SnoN overexpression on the level of ADAM12 in TGFβ1-treated

cells. NIH3T3 cells were transduced with SnoN or control retroviruses, and 24 h later they were

incubated for 16 h with or without TGFβ1. As shown in Fig. 2.6a, 2.6b, overexpression of SnoN

caused ∼50% reduction in ADAM12 expression in response to TGFβ1, and this effect was sta-

tistically significant. The lack of a stronger inhibition of ADAM12 expression by SnoN may be

caused by the fact that the efficiency of viral transduction was only ∼50-60% (as determined by

GFP fluorescence, result not shown).
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Next, we examined the effect of knocking down the expression of the endogenous SnoN in

NIH3T3 cells on the expression levels of ADAM12. NIH3T3 cells were infected with lentiviral

SnoN shRNA or control shRNA particles, and cells with stable incorporation of shRNA vec-

tors were selected in the presence of puromycin. The level of the endogenous SnoN protein in

shSnoN cells was reduced to an undetectable level (Fig. 2.7a). Induction of ADAM12 mRNA by

TGFβ1 was more potent and occurred with faster kinetics in shSnoN cells than in shRNAControl,

as revealed by qRT-PCR (Fig. 2.7b). Consistently, after 16 h of TGFβ1 treatment, the level of

ADAM12 protein was ∼2.5-fold higher in SnoN-deficient cells than in control cells (Fig. 2.7c,

2.7d). Furthermore, the level of basal ADAM12 protein expression, which was most likely due to

the autocrine/paracrine effect of the endogenous TGFβ1 produced in NIH3T3 cells (as shown in

Fig. 2.2a) was also ∼2-fold higher in SnoN-deficient than in control cells (Fig. 2.7c, 2.7d).

As the induction of ADAM12 by TGFβ1 was very efficiently blocked by MG132 (Fig. 2.5c,

2.5d), suggesting that degradation of a transcriptional repressor is required for ADAM12 expres-

sion, we asked whether MG132 would be equally potent in blocking the induction of ADAM12 in

SnoN-deficient cells. If SnoN is the repressor of the ADAM12 gene, then in the absence of SnoN,

MG132 should have little effect on ADAM12 expression. As shown in Fig. 2.7c, right panel, in-

cubation of shSnoN cells with TGFβ1 in the presence of MG132 led to the induction of ADAM12

expression, whereas no induction was observed in control cells under the same conditions. The

induction of ADAM12 in shSnoN cells in the presence of MG132 was more modest than in the

absence of the inhibitor, but this can be explained by the effective levels of SnoN in these cells.

While no SnoN was detected in shSnoN cells in the absence of the inhibitor, MG132 treatment

resulted in a significant accumulation of SnoN (Fig. 2.7c). This most likely was the result of

incomplete double stranded mRNA degradation, active synthesis of SnoN protein, and very po-

tent inhibition of SnoN degradation. The accumulation of SnoN in MG132-treated shSnoN cells

might be the reason why SnoN knockdown by shRNA did not fully bypass the inhibitory effect of

MG132 on the induction of ADAM12 by TGFβ1. Collectively, reduced induction of ADAM12

in cells overexpressing SnoN, increased basal and TGFβ1-induced levels of ADAM12 in shSnoN
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cells in the absence of MG132, and a partial induction of ADAM12 by TGFβ1 in shSnoN cells

treated with MG132 suggest that SnoN is a repressor of the ADAM gene in NIH3T3 cells and that

degradation of SnoN after TGFβ1 treatment is responsible for derepression of the ADAM12 gene.

To determine whether the role of SnoN in TGFβ1-induced expression of ADAM12 observed in

NIH3T3 cells can be extended to other cell types, we examined the effects of TGFβ1 on ADAM12

expression in human cancer cell lines, which typically express higher levels of SnoN than untrans-

formed cells. For our analysis, we selected several cell lines in which the major components of

the canonical TGFβ1 signaling pathway remain intact and which are responsive to TGFβ1 sig-

nals: MDA-MB-231, MDA-MB-435S, DU145, and HT1080 (Zhu et al., 2007; Kim et al., 1996;

Pouliot & Labrie, 1999). In agreement with previous reports, the level of SnoN in cancer cells

was significantly higher than in normal mammary epithelial cell line MCF10A (Fig. 2.8a). The

basal level of ADAM12 mRNA in all four cancer cell lines was also higher than in MCF10A cells,

but it was not inhibited by SB-431542 (results not shown), indicating that this was not a result of

an elevated autocrine/paracrine TGFβ1 signaling. Upon TGFβ1 treatment, there was a ∼7-fold

increase in ADAM12 expression in MCF10A cells and a much lower (<2-fold) increase in MDA-

MB-231, MDA-MB-435S, DU145, and HT1080 cells. As expected, no induction of ADAM12

was detected in Smad4-deficient MDA-MB-468 cells, or in T47D and MCF7 cells, which express

very low levels of TβRII and do not respond to TGFβ1 signals (Lynch et al., 2001) (Fig. 2.8b).

These results suggest that, among TGFβ1-responsive cells, there is an inverse correlation between

SnoN levels and the extent of ADAM12 induction by TGFβ1.

2.5 Discussion

The induction of ADAM12 expression by TGFβ1 was first reported in hepatic stellate cells (Le

Pabic et al., 2003, 2005). Our studies demonstrate that induction of ADAM12 by TGFβ1 is a

more general phenomenon and it takes place in fibroblasts and in epithelial cells. TGFβ1 does not

appear to cause general upregulation of ADAM proteins, as at least two other ADAMs, ADAM9

and ADAM15, are not affected by the cytokine treatment (Le Pabic et al., 2003, and this report).
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Up to our knowledge, the only other ADAM reported to be upregulated by TGFβ1 is ADAM19,

whose mRNA levels increase in alveolar epithelial cells treated with TGFβ1 (Keating et al., 2006).

The same study showed that TGFβ1 treatment leads to downregulation of ADAM28 mRNA level,

further highlighting the specificity of TGFβ1 in regulating the expression of individual ADAMs.

According to previous reports, the induction of ADAM12 by TGFβ1 in hepatic stellate cells

occurred with slow kinetics, as the level of ADAM12 mRNA was not significantly changed be-

fore 24 h of TGFβ1 treatment (Le Pabic et al., 2003). Furthermore, the effect of TGFβ1 on

ADAM12 expression was partially blocked by inhibitors of MAPKs, PI3K, or p70S6 kinase (Le

Pabic et al., 2005), indicating that TGFβ1 might upregulate ADAM12 via SMAD-independent

pathways. In this report, we show that the induction of ADAM12 by TGFβ1 in mouse fibroblasts

is more rapid, and increased levels of ADAM12 mRNA are detected within ∼2 h after TGFβ1

treatment. ADAM12 induction is completely blocked upon inhibition of transcription or protea-

somal degradation, but is not blocked by cycloheximide, an inhibitor of translation. Based on

these observations, we conclude that TGFβ1 induces ADAM12 expression by relieving a tran-

scriptional repression of the ADAM12 gene. We show that SnoN, a transcriptional repressor that

is efficiently degraded after TGFβ1 stimulation, is involved in regulation of ADAM12 expression.

Overexpression of SnoN reduces ADAM12 induction, and downregulation of SnoN expression by

shRNA leads to increased levels of both basal and induced ADAM12 expression. At this point,

we are not able to conclude whether SnoN is the sole repressor controlling ADAM12 expression.

Our attempts to test whether MG132 still blocks ADAM12 induction by TGFβ1 in shSnoN cells

were compromised by the fact that MG132 treatment leads to build up of SnoN protein in these

cells. Nevertheless, a modest induction of ADAM12 by TGFβ1 in shSnoN cells in the presence of

MG132, compared to a complete block of induction in control cells where SnoN levels are much

higher, clearly indicates that SnoN is a repressor that needs to be degraded in order to derepress

the ADAM12 gene. Another possible candidate for repression of ADAM12 is a SnoN-related pro-

tein Ski, but its degradation in response to TGFβ1 appears to be less efficient than that of SnoN

(Stroschein et al., 1999).
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Although SnoN was first described as a negative regulator of TGFβ1 signaling, it is not a

universal repressor of TGFβ1 responsive genes. Rather, SnoN acts in a gene-specific manner, and

inhibition of the proteasome leads to abrogation of certain TGFβ1 target gene regulation, without

any effect on other TGFβ1 target genes (Zhang et al., 2002). Furthermore, recent reports indicate

that under certain circumstances SnoN can act as a positive mediator of transcription (Sarker et al.,

2005). Indeed, a microarray analysis of human lung cancer A549 cells demonstrated that a large

set of genes is downregulated in cells lacking SnoN, suggesting that SnoN may function as a

transcriptional activator, in addition to acting as a transcriptional repressor of the Smad proteins

(Zhu et al., 2007). Thus, the effect of SnoN on a particular target gene is not easily predictable,

and a negative or positive regulation is possible. As shown in this study, in the case of ADAM12,

SnoN is a negative regulator of its expression.

ADAM12 expression is dysregulated in many cancers, cardiac hypertrophy, during aseptic

loosening of hip replacement implants, and in the EAE (Kveiborg et al., 2008; Fedak et al., 2006;

Wang et al., 2009a,b; Ma et al., 2005; Toft-Hansen et al., 2004). Each of these pathological con-

ditions is accompanied by increased levels of TGFβ1 and/or abnormal expression of SnoN (Pot &

Bonni, 2008; Massagué, 2008; Leask, 2007; Holt et al., 2007; Swanborg & Stepaniak, 2001). It is

tempting to speculate that upregulation of ADAM12 expression in cardiac hypertrophy, in inflam-

matory responses related to osteolysis, or in the EAE is directly linked to activation of TGFβ1

signaling. Furthermore, during fibrotic kidney disease after obstructive injury, SnoN is downregu-

lated due to enhanced ubiquitin-mediated degradation, which in turn is a result of TGFβ1-induced

expression of Smurf2 ubiquitin ligase (Yang et al., 2003; Tan et al., 2006). It is possible that a

similar chain of events leads to degradation of SnoN during fibrosis associated with cardiac hyper-

trophy, which would explain high levels of ADAM12 expression in hypertrophic myocardium. In

cancer, the situation is more complex, as both TGFβ1, a positive ADAM12 regulator, and SnoN,

a negative ADAM12 regulator, are elevated. Our studies in cancer cells show that increased basal

expression of ADAM12 is not due to the autocrine/paracrine effects of TGFβ1 produced by some

of these cell lines. Rather, it is an inherent feature of cancer cells and may be a result of genetic
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or epigenetic changes associated with the oncogenic transformation. Increased basal levels of

ADAM12 expression also do not correlate with increased SnoN levels in cancer cells. However,

cancer cells have many other components of the TGFβ1 pathway aberrantly expressed, includ-

ing TGFβ receptors and Smads, and direct correlations between absolute expression levels of

ADAM12 and SnoN in different cell types may be difficult to establish. Importantly, our results

indicate that there is an inverse correlation between the level of SnoN in cancer cells and the ability

of TGFβ1 to induce ADAM12 expression.

TGFβ signaling plays dual roles during tumor development. During early phases of tumori-

genesis, TGFβ acts as a tumor suppressor by limiting cancer cell proliferation and enhancing

differentiation. In later stages, TGFβ promotes tumor growth by stimulating cell migration, in-

vasion, and metastasis, by modifying tumor microenvironment, and by modulating host immune

responses (Massagué, 2008; Bierie & Moses, 2006). High expression of SnoN makes cancer

cells resistant to the anti-proliferative effects of TGFβ (a pro-oncogenic role of SnoN) and limits

their metastatic potential (an anti-tumorigenic activity of SnoN) (Zhu et al., 2007). Interestingly,

both tumor-promoting and tumor-suppressing roles have been postulated for ADAM12. Trans-

genic expression of ADAM12∆cyt (lacking the cytoplasmic domain) in mammary tumors of

MMTV-PyMT mice accelerates tumor growth, which is consistent with tumor-promoting func-

tion of ADAM12 (Kveiborg et al., 2005). On the other hand, ADAM12 is frequently mutated in

breast cancer (Sjöblom et al., 2006; Wood et al., 2007), and cancer-associated mutations cause

mislocalization of ADAM12 protein in cells and interfere with its function at the cell surface, sug-

gesting that the wild-type ADAM12 may also play an anti-tumor role (Dyczynska et al., 2008).

We believe that identification of SnoN as a repressor of the ADAM12 gene will contribute to ad-

vances in studies on the role of ADAM12 in tumor progression and in the development of other

pathological conditions.
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(a) (b)

(c)

Figure 2.1: Induction of ADAM12 expression by TGFβ1. (a) NIH3T3 fibroblasts, (b) normal
mouse mammary gland epithelial cells NMuMG, and (c) mouse embryonic fibroblasts (MEFs)
(wt, wild-type; 9/12/15−/−, isolated from triple knockout mice lacking ADAM9,12, and 15) were
incubated for 24 h in the presence of TGFβ1 (2 ng/ml), as indicated. Cells were lyzed and
glycoprotein-enriched fractions were analyzed by Western blotting using anti-ADAM antibodies;
tubulin is a loading control. The full-length ADAM proteins are indicated by short arrows, the ma-
ture forms lacking the pro-domains are indicated by long arrows, asterisk denotes a non-specific
band. Experiments in Fig. 2.1 were performed by Dr. Emilia Syta.
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(a)

(b) (c)

Figure 2.2: Characterization of TGFβ1-induced expression of ADAM12. (a) The effect of
serum on the induction of ADAM12 by TGFβ1. NIH3T3 cells were pre-incubated for 24 h in
the presence of 0.5% or 10% FBS, as indicated, followed by treatment with 2 ng/ml of TGFβ1
for additional 16 h or 48 h. In some cases, 10 µM SB-431543, an inhibitor of TβRI, was added
30 min prior to TGFβ1 treatment. (b), (c) TGFβ1 dose-response of the induction of ADAM12.
(b) NIH3T3 cells were incubated for 24 h with the indicated doses of TGFβ1, and the levels of
ADAM12 protein were analyzed as in Fig. 2.1. Quantitative differences in the abundance of the
full-length ADAM12 (short arrow) are best shown after short exposure of the immunoblot, the
mature ADAM12 (long arrow) is visualized after long exposure. (c) The intensities of the bands
corresponding to the full-length ADAM12 protein in panel (b) were quantified using densitometry
and ScionImage software. The data represent the means +/- SEM from 3 independent determina-
tions.
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(d)

(e)

(f)

Figure 2.2: Characterization of TGFβ1-induced expression of ADAM12 (continued). (d) -
(f) Time course of ADAM12 induction by TGFβ1. NIH3T3 cells were incubated without or
with 2 ng/ml of TGFβ1 for the indicated times. (d) The levels of ADAM12 protein were an-
alyzed by Western blotting, as in Fig. 2.1. (e) The levels of ADAM12 mRNA were analyzed
by semi-quantitative RT-PCR, GAPDH is a gel-loading control. (f) The intensities of the bands
corresponding to the full-length ADAM12 protein in (d) and ADAM12 mRNA in (e) were quan-
tified using densitometry and ScionImage software. The data represent the means +/- SEM from
3 independent determinations. Experiment in (e) was performed by Dr. Hui Li.
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(a) (b)

(c)

Figure 2.3: Induction of ADAM12 expression by TGFβ1 occurs at the transcriptional level.
(a) NIH3T3 cells were pretreated for 15 min with 5 µg/ml actinomycin D or with DMSO, then
incubated for 8 h with or without TGFβ1, followed by Western blotting with anti-ADAM12 anti-
body, as in Fig. 2.1. Tubulin is a gel loading control. The experiment was repeated 3 times with
similar results. (b) Quantitative real-time RT-PCR analysis of ADAM12 expression. NIH3T3 cells
were pretreated for 15 min with 5 µg/ml actinomycin D or with DMSO, and then treated without
or with 2 ng/ml of TGFβ1 for 4 h. The level of ADAM12 mRNA was normalized to GAPDH. The
data represent the means +/- SEM from 3 independent experiments. Asterisk indicate statistically
significant effect (p < 0.05) of inhibitor treatment. (c) Northern blot analysis of ADAM12 expres-
sion. NIH3T3 cells were pretreated for 15 min with 5 µg/ml actinomycin D or with DMSO, and
then treated without or with 2 ng/ml of TGFβ1 for indicated times. Total mRNA was extracted
and hybridized with ADAM12 and β-actin probes. The analysis was repeated 3 times with similar
results.
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Figure 2.4: Induction of ADAM12 by TGFβ1 is reduced in Smad2- and Smad3-deficient cells.
Smad2−/−, Smad3−/−, or the corresponding wild-type (WT) MEFs were incubated for 24 h with
or without 2 ng/ml TGFβ1, followed by analysis of ADAM12 expression by Western blotting, as
in Fig. 2.1; tubulin is a loading control. The full-length ADAM proteins are indicated by short
arrow, the mature forms lacking the pro-domains are indicated by long arrow, asterisk denotes a
non-specific band.
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(a)

(b)

Figure 2.5: Induction of ADAM12 expression by TGFβ1 involves derepression of the
ADAM12 gene. (a), (b) ADAM12 expression is induced in the absence of protein synthesis.
In (a), NIH3T3 cells were pretreated for 2 h with 5 µg/ml cycloheximide (CHX), an inhibitor of
translation, and then treated with or without 2 ng/ml of TGFβ1 for indicated amounts of time,
with the continuous presence of CHX. Total RNA was extracted and hybridized with ADAM12
or β-actin probes. In (b), NIH3T3 cells were pre-treated for 15 min with 5 µg/ml actinomycin
D or DMSO, and then treated for 4 h with or without 5 µg/ml CHX, as indicated. The level of
ADAM12 mRNA was evaluated by semi-quantitative RT-PCR, GAPDH is an internal control.
The experiment shown in (a) and (b) were repeated 3 times with similar results. Experiment in (b)
was performed by Dr. Hui Li.
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(c) (d)

(e)

Figure 2.5: Induction of ADAM12 expression by TGFβ1 involves derepression of the
ADAM12 gene (continued). (c), (d) Induction of ADAM12 by TGFβ1 is blocked by a pro-
teasomal inhibitor. NIH3T3 cells were pretreated for 1 h with or without 10 µM MG132, and
then treated for 16 h (c) or 4 h (d) with or without 2 ng/ml TGFβ1, in the presence or absence
of MG132, as indicated. The level of ADAM12 protein (c) was analyzed by Western blotting,
as in Fig. 2.1; the level of ADAM12 mRNA was quantified by real time qRT-PCR (d). In (d),
ADAM12 mRNA was normalized to GAPDH mRNA; the data represent the means +/- SEM from
2 independent experiments. Asterisk indicate statistically significant effect (p < 0.05) of inhibitor
treatment. (e) The level of SnoN repressor at the indicated times after adding TGFβ1 was evalu-
ated by Western blotting.

43



(a) (b)

Figure 2.6: Overexpression of SnoN partially inhibits the induction of ADAM12 by TGFβ.
(a) NIH3T3 cells were transduced with SnoN or control retroviruses, and 24 h later they were
treated for additional 16 h with or without 2 ng/ml of TGFβ1. ADAM12 and SnoN levels were
examined by Western blotting. The full length ADAM12 (short arrow) and the mature ADAM12
(long arrow) are best visualized at short and long film exposures, respectively. (b) The experiment
shown in panel (a) was repeated three times, and the relative changes in the level of ADAM12
protein were quantified by densitometry and Scion Image; the data represent the means +/- SEM;
asterisk indicates statistically significant effect (p < 0.05) of SnoN.
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(a) (b)

(c) (d)

Figure 2.7: Knockdown of SnoN expression increases basal and TGFβ1-induced ADAM12
expression. NIH3T3 cells were stably transduced with SnoN shRNA or control shRNA
lentiviruses. (a) The level of SnoN protein in shSnoN or shControl cells was evaluated by Western
blotting. (b) shSnoN and shControl cells were incubated with 2 ng/ml of TGFβ1 for indicated
times. ADAM12 mRNA levels, normalized to GAPDH mRNA, were measured by qRT-PCR;
fold changes over the levels at time 0 are shown. (c) shSnoN and shControl cells were incubated
for 16 h with 2 ng/ml TGFβ1, in the absence or presence of 10 µM MG132, followed by eval-
uation of ADAM12 and SnoN protein levels. (d) The intensities of the bands corresponding to
the full-length ADAM12 protein in panel (c) were quantified using densitometry and ScionIm-
age software. The data represent the means +/- SEM from 3 independent experiments. Asterisks
indicate statistically significant differences (p < 0.05) compared to shControl cells.
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(a)

(b)

Figure 2.8: Diminished induction of ADAM12 by TGFβ1 in cancer cell lines. (a) The level
of SnoN expression in different cell lines. (b) Fold induction of ADAM12 mRNA, normalized
to β-actin mRNA, after 24 h treatment with 2 ng/ml TGFβ1 was evaluated by qRT-PCR. The
data represent the means +/- SEM from 2 independent experiments. Asterisk indicate statistically
significant differences (p< 0.05) compared to MCF10A cells. MCF10A are untransformed human
mammary epithelial cells, MDA-MB-231, MCF7, MDA-MB-468 and T47D are breast cancer cell
lines, MDA-MB-435S are melanoma cells, DU145 is a prostate cancer line, and HT1080 is a
fibrosarcoma cell line.
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Chapter 3

Proteolytic processing of Delta-like 1 by
ADAM proteases

The data presented in this chapter have been published in the following journal article:

Dyczynska E., Sun D., Yi H., Zolkiewska A.

Proteolytic processing of Delta-like 1 by ADAM proteases

J Biol. Chem. 282:436-444 (2007)

3.1 Abstract

Delta-like 1 (Dll1) is a mammalian ligand for Notch receptors. Interactions between Dll1 and

Notch in trans activate the Notch pathway, whereas Dll1 binding to Notch in cis inhibits Notch

signaling. Dll1 undergoes proteolytic processing in its extracellular domain by ADAM10. In this

work we demonstrate that Dll1 represents a substrate for several other members of the ADAM

family. In co-transfected cells, Dll1 is constitutively cleaved by ADAM12, and the N-terminal

fragment of Dll1 is released to medium. ADAM12-mediated cleavage of Dll1 is cell density-

dependent, takes place in cis orientation, and does not require the presence of the cytoplasmic

domain of ADAM12. Full-length Dll1, but not its N- or C-terminal proteolytic fragment, co-

immunoprecipitates with ADAM12. By using a Notch reporter construct, we show that Dll1

processing by ADAM12 increases Notch signaling in a cell-autonomous manner. Furthermore,
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ADAM9 and ADAM17 have the ability to process Dll1. In contrast, ADAM15 does not cleave

Dll1, although the two proteins still co-immunoprecipitate with each other. Asn-353 present in

the catalytic motif of ADAM12 and other Dll1-processing ADAMs, but absent in ADAM15, is

necessary for Dll1 cleavage. Dll1 cleavage is reduced in ADAM9/12/15−/− mouse embryonic

fibroblasts (MEFs), suggesting that the endogenous ADAM9 and/or ADAM12 present in wild

type MEFs contribute to Dll1 processing. Finally, the endogenous Dll1 present in primary mouse

myoblasts undergoes cleavage in confluent, differentiating myoblast cultures, and this cleavage is

decreased by ADAM12 small interfering RNAs. Our findings expand the role of ADAM proteins

in the regulation of Notch signaling.

3.2 Introduction

Notch signaling regulates cell fate decisions during development and in the adult (Lai, 2004;

Kadesch, 2004; Louvi & Artavanis-Tsakonas, 2006). The signaling pathway is activated by direct

interactions between Notch receptor, a transmembrane protein present at the surface of a signal-

receiving cell, and a DSL (Delta/Serrate/Lag2) ligand, a transmembrane protein at the surface

of a signal-sending cell. In mammals, there are four different Notch receptors (Notch 1 - 4),

and five DSL ligands (Delta-like 1, 3, and 4, Jagged 1 and 2). Ligand-bound Notch undergoes

proteolytic cleavage at the S2 site in the extracellular domain, which is mediated by ADAM10 or

ADAM17 (Brou et al., 2000; Mumm et al., 2000; Hartmann et al., 2002), members the ADAM

family of metalloprotease-disintegrins (Blobel, 2005; Huovila et al., 2005). This is followed by the

cleavage at the S3 site in the transmembrane domain of Notch by a γ-secretase complex (Mumm

& Kopan, 2000; Selkoe & Kopan, 2003). The intracellular domain of Notch translocates to the

nucleus, where it interacts with CSL transcription factors and activates expression of target genes

(Hayward, 2004).

Similar to their receptors, Notch ligands also undergo ADAM-mediated cleavage in their extra-

cellular domains, which is then followed by processing by γ-secretase (Ikeuchi & Sisodia, 2003;

Six et al., 2003; LaVoie & Selkoe, 2003; Bland et al., 2003). Two ADAMs were postulated to
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cleave Notch ligands in mammalian cells, ADAM10 and -17. ADAM10 has been implicated in

the processing of mouse (Six et al., 2003) and rat Delta-like 1 (Dll1) (LaVoie & Selkoe, 2003),

whereas ADAM17 was suggested to cleave rat Jagged 1 (LaVoie & Selkoe, 2003). Proteolytic

cleavage of Dll1 in ADAM10−/− mouse embryonic fibroblasts (MEFs) still amounts to 50% of

the processing observed in ADAM10+/+ MEFs (Six et al., 2003), suggesting that ADAM10 is

only partially responsible for Dll1 cleavage and other ADAMs may account for the remaining

processing in ADAM10−/− cells. MEFs express several ADAM proteins with catalytically active

metalloprotease domains, including ADAM9, -12, -15, and -17 (Sahin et al., 2004). However, to

date, none of these ADAMs has been shown to be capable of cleaving Dll1.

Furthermore, although it is well established that proteolytic processing of Notch ligands down-

regulates Notch signaling in neighboring cells (Qi et al., 1999; Mishra-Gorur et al., 2002), the

effect of ligand cleavage on the Notch pathway within the same cell is less clear. Notch receptors

can associate with their ligands in a cell-autonomous manner (Sakamoto et al., 2002; Katsube &

Sakamoto, 2005; Ladi et al., 2005). Associations between receptors and ligands in cis decrease

Notch receptivity and attenuate the Notch pathway (Ladi et al., 2005; Sakamoto et al., 2002;

Katsube & Sakamoto, 2005; Franklin et al., 1999). In Drosophila, proteolytic processing of Delta

by ADAM10-like (Kuzbanian-like; Kul) alleviates the inhibitory effect of Delta on Notch in the

same cell (Sapir et al., 2005). In contrast, processing of Jagged 1 in mammalian cells by ADAM17

was postulated to inhibit Notch signaling in cis due to competition of the C-terminal fragments of

Jagged 1 and Notch for γ-secretase (LaVoie & Selkoe, 2003).

In this work, we have tested the ability of several ADAMs other than ADAM10 to cleave

murine Dll1 and examined the effect of Dll1 cleavage on Notch signaling in the same cell. We

show that ADAM12, which has not been previously implicated in Notch signaling, can efficiently

process Dll1, but not Notch1. We demonstrate that Dll1 cleavage by ADAM12 activates Notch

in a cell-autonomous manner. In addition, we show that two other ADAMs, ADAM9 and 17,

are capable of Dll1 processing, and we identify a residue within the ADAM catalytic motif that

appears necessary for the cleavage of Dll1. The extent of processing of Dll1 transfected into
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ADAM9/12/15−/− MEFs is reduced when compared with the processing in wild type MEFs,

suggesting that the endogenous ADAM9 and/or ADAM12 present in wild type MEFs contribute

to Dll1 cleavage. Finally, we show that the endogenous Dll1 present in primary mouse myoblasts

undergoes cleavage in confluent, differentiating myoblast cultures, and this cleavage is decreased

by ADAM12 small interfering RNAs (siRNAs).

3.3 Materials and Methods

Expression constructs

Mouse Dll1 cDNA was amplified by PCR using a full-length clone (ID 6402691; Invitrogen) as

a template and cloned into pIRESpuro expression vector. c-Myc-Dll1 containing an internal c-

Myc tag between amino acids 46 and 47, inserted into the SacII site in Dll1 cDNA, was cloned

into pcDNA3.1 vector. Mouse full-length cDNAs of ADAM9, -12, -15, and -17 were cloned into

pcDNA3.1 vector; these ADAMs contained c-Myc and His6 tags at their termini. An untagged

ADAM12 was generated by introducing a stop codon after the C-terminal Lys residue. The E349Q

and N353S ADAM12 mutants and the S354N ADAM15 mutant were generated by site-directed

mutagenesis using QuikChange kit (Stratagene). Mouse Notch1 containing an intact extracellu-

lar domain and in which 348 C-terminal amino acids were replaced with 6 copies of c-Myc tag

(pCS2+mN1FL6MT) was provided by R. Kopan (Washington University). CBF1 reporters con-

taining four wild type or mutated CBF1 binding sites (pJH23A and pJH25A, respectively) were

provided by D. Hayward (Johns Hopkins School of Medicine); Notch reporter containing eight

CBF1 binding sites (pJT123A) was provided by P. D. Ling (Baylor College of Medicine). p3PTlux

vector was obtain from Addgene (plasmid 11767) (Wrana et al., 1992).

Cell culture and plasmid transfection

COS-7, NIH3T3, and CHO-K1 cells (American Type Culture Collection) were grown in Dul-

becco’s modified Eagle’s medium (DMEM; COS-7 and NIH3T3) or F12K nutrient mixture (CHO-
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K1), supplemented with 10% fetal bovine serum, at 37◦C in the presence of 5% CO2 under a

humidified atmosphere. Primary myoblasts were isolated from 2-3-day-old C57BL/6 mice ac-

cording to Rando & Blau (1994) and grown on collagen I-coated plates in DMEM supplemented

with 20% fetal bovine serum and 100 µg/ml each penicillin and streptomycin. MEFs isolated from

ADAM9/12/15−/− (Sahin et al., 2004) or from wild type mice and immortalized with simian virus

40 large T antigen were grown on gelatin-coated dishes in DMEM containing 10% FCS and 100

µg/ml each penicillin and streptomycin.

One day after plating, cells were transfected using Fugene6 (Roche Applied Science). In most

experiments the amount of total DNA was 1 µg/well in a 6-well plate; for CBF1 reporter assays,

2.05 µg of DNA/well was used (see below). For stable expression of c-Myc-Dll1 in CHO-K1

cells, transfected cells were grown for 2 weeks in the presence of Geneticin (800 µg/ml); a clone

positive for c-Myc-Dll1 expression was isolated. Cells with the highest expression of cell-surface

c-Myc were further selected by cell sorting using FACSCalibur (BD Biosciences).

RNA interference

Three different Silencer siRNA duplexes specific for mouse ADAM12 and a negative control

siRNA (control #1) were purchased from Ambion. The sequences of sense RNA strands were:

CCAGAGAGGAGCUUACGAAtt (siRNA1); GCCAAUGAAAAACACCACUtt (siRNA2); GCA

AAUUACCACAUUGUCUtt (siRNA3). Mouse primary myoblasts were trypsinized and trans-

fected with individual siRNA duplexes (30 nM) using siPORT NeoFX transfection reagent (Am-

bion) as cells attached to plates. One day after transfection, confluent cells were transferred to

differentiation medium (DMEM with 2% horse serum). The level of expression of ADAM12 and

the amount of Dll1 cleavage were analyzed 40 h later.

Cell treatments

In some experiments, before harvesting, cells were incubated for 3 h with 5 µM lactacystin (a

proteasomal inhibitor), for 6 h with 1 µM L685,458 (a γ-secretase inhibitor), for 1 h with 1 µM
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ionomycin, or for 1 h with 25 ng/ml phorbol myristate acetate (PMA). Cells were serum-starved

for 30 min before and during the PMA treatment.

Western blotting

Cellular proteins were extracted with extraction buffer (50 mM Tris-HCl, pH 7.4, 150 mM NaCl,

1% Triton X-100, 1% sodium deoxycholate, 0.1% SDS, 1 mM 4-(2-aminoethyl)-benzene-sulfonyl

fluoride hydrochloride (AEBSF), 5 µg/ml aprotinin, 5 µg/ml leupeptin, 5 µg/ml pepstatin A, 10

mM 1,10-phenanthroline; 0.5 ml extraction buffer/well in a 6-well plate). Cell extracts were cen-

trifuged at 21,000 x g for 15 min, and supernatants were resolved by SDS-PAGE and transferred

to a nitrocellulose membrane. The membrane was blocked with 3% (w/v) dry milk and 0.3% (v/v)

Tween 20 in DPBS, then incubated with primary antibodies in blocking buffer, followed by in-

cubation with horseradish peroxidase-labeled secondary antibodies and detection using the West-

Pico chemiluminescence kit (Pierce). To detect the endogenous ADAM12 in primary myoblasts,

cell extracts were enriched for glycoproteins using concanavalin A-agarose beads (20-µl bed vol-

ume/ml cell extract) before SDS-PAGE and Western blotting (Cao et al., 2002). The following

primary antibodies were used: rabbit anti-ADAM12 cytoplasmic peptide antibody (1:3000), rabbit

anti-ADAM12 disintegrin antibody (1:3000), rabbit anti-Dll1 (Santa Cruz Biotechnology, H-265;

0.2 µg/ml), mouse anti-c-Myc (clone 9E10, Upstate Biotechnology; 1 µg/ml). Secondary anti-

bodies were horseradish peroxidase (HRP)-conjugated anti-rabbit IgG or anti-mouse IgG (heavy

and light chain-specific) or HRP-conjugated anti-rabbit IgG (Fc fragment-specific, Jackson Im-

munoResearch; 0.8µg/ml; used in the experiment shown in Fig. 3.4c). Intensities of the bands in

Western blots were determined by densitometry and quantified using ScionImage software. Each

experiment involving quantitative determination of Dll1 cleavage was repeated at least three times.

Metabolic labeling and immunoprecipitation

To immunoprecipitate the N-terminal fragment of Dll1 from culture media, 24 h after co- transfec-

tion with c-Myc-Dll1 and ADAM12, COS-7 cells were transfered to DMEM:methionine/cysteine-
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free : DMEM (1:9) containing 35S-labeled EasyTag Express protein labeling mix (267 µCi/mL,

PerkinElmer Life Sciences). After 16 h medium was collected, cell debris was removed by cen-

trifugation, and supernatant was used for immunoprecipitation with 9E10 antibody (5 µg/mL).

To immunoprecipitate c-Myc-tagged ADAMs or untagged ADAM12, 36 h after transfection cells

were lysed with extraction buffer, cell extracts were centrifuged at 21,000 x g for 15 min, and

supernatants were used for immunoprecipitation with 9E10 antibody (5 µg/ml) or with anti-

ADAM12 cytoplasmic peptide antibody (1:250), respectively. To immunoprecipitate Dll1 from

transfected MEFs or the endogenous Dll1 from primary myoblasts, anti-Dll1 antibody (H-265,

5 µg/ml) was used. After preclearing, supernatants were incubated with antibodies and protein

G-Sepharose 4 Fast Flow (Amersham Biosciences), the beads were washed three times with ex-

traction buffer, and immunocomplexes were eluted with SDS-PAGE sample buffer and analyzed

by electrophoresis and autoradiography or Western blotting.

Luciferase reporter assay

NIH3T3 cells in 6-well plates were transfected at 50% confluence with 0.5 µg of Notch1, 0.5 µg

of CBF1 firefly luciferase reporter, 0.05 µg of Renilla luciferase (pRL-TK), 0.5 µg ADAM12 or

empty pcDNA3.1 vector, and 0.5 µg of Dll1 or empty pIRES-puro vector. A9/12/15−/− MEFs

cells in 6-well plates were with 0.5 µg ADAM12, ADAM12 E349Q or empty pcDNA3.1 vec-

tor, 0.5 µg p3TPlux firefly luciferase reporter, 0.05 µg pRL-TK and increasing amounts of c-

Myc-Dll1 or empty pcDNA3.1 vector. Twenty-four hours after transfection, CHO-K1 cells stably

transfected with c-Myc-Dll1 or with empty vector were added (106 cells/well) to NIH3T3 cells

and co-cultured for an additional 24 h. MEFs treated with 2 ng/ml TGFβ1 or vehicle (BSA/HCl)

for additional 24 h. Firefly and Renilla luciferase activities were determined using the Dual-

Luciferase reporter assay system (Promega). The activity of Renilla luciferase was used as an

internal control for transfection efficiency.
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3.4 Results

First, we asked whether ADAM12 is capable of processing Dll1. When untagged Dll1 was trans-

fected into COS-7 cells, antibody specific for the C terminus of Dll1 detected the full-length

protein of ∼90 kDa and a low level of the C-terminal Dll1 fragment (CTF) of ∼29 kDa in cell

lysates (Fig. 3.1a). Co-transfection of wild type mouse ADAM12, but not the catalytically inactive

E349Q mutant, strongly increased the abundance of CTF (Fig. 3.1a), suggesting that ADAM12

cleaved Dll1. To follow the fade of the N-terminal portion of Dll1, we introduced c-Myc tag

between amino acids 46 and 47 of Dll1 (Fig. 3.1b). After metabolic labeling of transfected cells

with [32S]methionine+cysteine, we immunoprecipitated the∼60kDa soluble N-terminal fragment

(NTF) of Dll1 from cultured medium (Fig. 3.1b, middle panel). The amount of detected NTF

was much higher when cells were co-transfected with wild type ADAM12, indicating that Dll1

cleavage took place in intact cells and that NTF was released to medium.

ADAM12-catalyzed processing of Dll1 (as well as the processing mediated by endogenous

ADAMs present in COS-7 cells) was more efficient at high cell density (∼90% confluence at the

time of assaying) than at low cell density (∼50% confluence; Fig. 3.2a). This result suggested that

the cleavage might have taken place in trans orientation. However, co-transfection of ADAM12

and Dll1 yielded significantly more CTF than co-culture of cells that were singly transfected with

Dll1 or with ADAM12 (Fig. 3.2b), indicating that the cleavage occurred in cis. Thus, cell density

dependence of Dll1 cleavage suggests that interactions of Dll1 or ADAM12 with proteins present

on the surface of neighboring cells may be required for the efficient processing of Dll1.

It was reported that removal of the extracellular domain of Dll1 was followed by cleavage

of CTF by γ-secretase (Ikeuchi & Sisodia, 2003; Six et al., 2003; LaVoie & Selkoe, 2003). In

our experiments the product of γ-secretase cleavage (ICD, intracellular domain of Dll1, ∼3 kDa

smaller than CTF) was poorly detectable in immunoblots, but it was augmented after cells were

treated with lactacystin, a proteasomal inhibitor (Fig. 3.3a). Incubation of cells with L685,458, a

γ-secretase inhibitor, resulted in increased accumulation of CTF (Fig. 3.3a). These results suggest

that at least part of ADAM12-generated CTF Dll1 is further processed by γ-secretase to produce
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ICD Dll1, and the ICD fragment is then subject to proteasomal degradation.

ADAM10- or ADAM17-mediated cleavage of several substrate proteins is increased by iono-

mycin or phorbol esters, respectively (Sahin et al., 2004; Reiss et al., 2005; Maretzky et al., 2005;

Nagano et al., 2004). Here, ADAM12-mediated processing of Dll1 was not increased by iono-

mycin and was only weakly stimulated by PMA (Fig. 3.3b). This result indicates that ADAM12

is capable of constitutive rather than stimulated cleavage of Dll1.

To test whether ADAM12 can also cleave Notch, a receptor for Dll1, we co-transfected COS-7

cells with ADAM12 and Notch1 and cultured cells at high density. As a positive control, we used

ADAM17, which acts as α-secretase for Notch and, upon ligand binding, cleaves Notch at the

S2 site (Brou et al., 2000). After stimulation of cells with PMA, the S2 cleavage product NEXT,

was clearly detected in ADAM17-cotransfected cells (Fig. 3.3c). In contrast, the S2 product was

not detected in ADAM12-transfected cells, suggesting that ADAM12 lacks α-secretase activity

toward Notch1.

ADAM12-mediated Dll1 processing did not require an intact cytoplasmic tail of ADAM12,

as the full-length ADAM12 and the XT fragment containing a 169-amino acid deletion at the

C terminus (Yi et al., 2005) processed Dll1 equally well (Fig. 3.4a). Dll1 and ADAM12 co-

immunoprecipitated together by an antibody specific to the C-terminus of ADAM12 (Fig. 3.4b).

Interestingly, the immunocomplexes contained the full-length Dll1, but not the 29-kDa CTF (Fig.

3.4c). The N-terminal extracellular fragment of Dll1 generated after ADAM12 cleavage was,

however, also excluded from the ADAM12-Dll1 immunocomplexes (Fig. 3.4d), suggesting that

only the full length Dll1 was capable of interacting with ADAM12. The lack of 60-kDa NTF Dll1

in ADAM12 immunoprecipitates is consistent with the result shown in Fig. 3.1b, in which the

N-terminal fragment of Dll1 was released to medium and was not found in association with cells.

Having established that Dll1, a Notch ligand but not Notch itself, is cleaved by ADAM12,

we examined the effect of Dll1 cleavage on Notch signaling. To monitor the activation status

of the Notch pathway, we utilized CBF1-luc reporters containing four (Hsieh et al., 1996) or

eight binding sites (Peng et al., 2000) for CBF1, a CSL transcription factor activated by Notch
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(Hayward, 2004). NIH3T3 cells were transiently co-transfected with mouse Notch1 and a Notch

reporter and co-cultured with CHO cells stably transfected with Dll1 (CHO.Dll1) or with empty

vector (CHO.Vec). Co-culture with CHO.Dll1 cells led to higher activity of the reporter than co-

culture with CHO.Vec cells (Fig. 3.5a), suggesting that the exogenous Dll1 expressed in CHO.Dll1

cells activated Notch. The extent of this activation was more modest than reported previously

in several other studies, in which quail QT6 or mouse L fibroblasts were employed to present

Notch ligands to Notch-expressing cells (Ladi et al., 2005; Jarriault et al., 1998). One of the

reasons of a modest increase in Notch activity in our system may be that co-culture with control

CHO.Vec cells had already stimulated Notch 4-5-fold when compared with the conditions without

CHO.Vec cells (results are not shown). This was most likely due to high expression levels of the

endogenous Notch ligands in CHO cells that were capable of Notch activation. In such case,

further increase of the amount of ligand by transfecting exogenous Dll1 might have had a limited

effect and, understandably, might not have produced additional strong increase in Notch activity.

Nonetheless, increased activity of the Notch reporter induced by co-culture with CHO.Dll1 versus

CHO.Vec cells was observed for the reporter containing intact, but not mutated, CBF1 binding

sites (Fig. 3.5a), which validated our co-culture assay to measure Notch activation. When Dll1 was

further co-expressed with Notch in NIH3T3 cells, the activation of Notch was abolished (Fig. 3.5b)

due to formation of Notch/Dll1 complexes in cis (Sakamoto et al., 2002; Katsube & Sakamoto,

2005; Ladi et al., 2005; Franklin et al., 1999). Most importantly, further co-transfection of Dll1-

processing ADAM12 resulted in re-activation of the Notch reporter (Fig. 3.5b). The catalytically

inactive mutant of ADAM12, E349Q, which did not process Dll1 (Fig. 3.1), did not activate Notch

either (Fig. 3.5b). This result suggested that when Notch and Dll1 were expressed in the same cell,

proteolytic processing of Dll1 increased the ability of Notch to receive signals and to activate its

downstream signaling pathway.

We next tested whether Dll1 can serve as a substrate for three other ADAMs that have not

been previously implicated in Dll1 cleavage, ADAM9, -15, and -17. All these ADAMs as well

as ADAM12 were engineered to contain a C-terminal c-Myc tag for a common detection with
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anti-c-Myc antibody (Fig. 3.6). Co-transfection with Dll1 demonstrated that ADAM9 and -17,

similarly to ADAM12, had catalytic activity toward Dll1, but ADAM15 was not able to pro-

cess Dll1 (Fig. 3.6a). After comparing the amounts of the 29-kDa fragment of Dll1 and the

amounts of mature, catalytically active forms of each ADAM, we concluded that the cleavage of

Dll1 occurred with the following potency order: ADAM17 >ADAM12 >ADAM9. Interestingly,

all ADAM proteins used in this study formed stable complexes with Dll1, as assessed by co-

immunoprecipitation with anti-c-Myc antibody (Fig. 3.6b). Thus, ADAM15 interacted with Dll1

but was unable to cleave it. Importantly, ADAM15 contains a consensus sequence of the catalytic

site of zinc-dependent metalloproteases and appears catalytically active (Martin et al., 2002).

To better understand molecular features that are required for Dll1 cleavage, we compared the

sequences of the catalytic site of Dll1-processing ADAMs and of ADAM15. In addition to the

newly identified Dll1-processing enzymes ADAM9, -12, and -17, we included the sequence of

the catalytic site of ADAM10, a well established Dll1 cutter (Six et al., 2003; LaVoie & Selkoe,

2003). The consensus motif for ADAM proteases is HEXXHXXGXXH (Kopan et al., 1994),

with three His residues binding a zinc ion at the active site and Glu being the catalytic residue

(Fig. 3.7a). We observed that all Dll1-cleaving ADAMs contained an Asn after the second His. In

contrast, ADAM15 contained a Ser (Ser-354) at this position. We thus asked whether the identity

of the amino acid following the second His was important for Dll1 cleavage. We generated two

mutants, N353S ADAM12 and S354N ADAM15. When expressed in COS-7 cells, both mutants

were processed correctly, and both their nascent and mature forms lacking the pro-domains were

detected (Fig. 3.7b). Although the N353S ADAM12 mutant completely lost its ability to process

Dll1, the S354N ADAM15 mutant did not gain catalytic activity towards Dll1 (Fig. 3.7b). The

lack of Dll1 processing by N353S ADAM12 was not due to its lost capacity to interact with Dll1,

as demonstrated in the co-immunoprecipitation experiment (Fig. 3.7c). We thus conclude that

Asn-353 in ADAM12 is necessary for Dll1 cleavage, but the presence of Asn at the corresponding

position in ADAM15 is not sufficient for the cleavage. Fig. 3.7d shows a predicted structure of

the metalloprotease domain of ADAM12, obtained by homology modeling using the structure of
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ADAM33 metalloprotease as a template. It is apparent that the side chain of Asn-353 faces the

catalytic cleft, where it might participate in the interactions with Dll1.

To determine whether ADAM proteases studied in this work can process Dll1 when they

are expressed at the endogenous levels, we compared the amount of Dll1 cleavage in wild type

(wt) and ADAM9/12/15−/− triple knock-out (T) MEFs. Dll1 was transfected into wt-MEFs or

T-MEFs, and the extent of Dll1 cleavage was examined by subjecting total cell lysates to im-

munoblotting with anti-Dll1 antibody (Fig. 3.8a) or by immunoprecipitation of FL Dll1 and CTF

Dll1 from 35S-labeled cells (Fig. 3.8b). The level of Dll1 cleavage mediated by endogenous

proteases in MEFs was significantly lower than the cleavage observed in COS-7 overexpressing

ADAM9, -12, or- 17 (compare Fig. 3.8a and Fig. 3.6a). Significant differences in the intensities

of the bands corresponding to FL Dll1 and CTF Dll1 in Fig. 3.8a precluded an accurate quantifi-

cation of the extent of cleavage (the CTF Dll1/FL Dll1 ratio). These differences were even more

pronounced in Fig. 3.8b because the number of cysteine and methionine residues in FL Dll1 is

∼10 higher than in CTF Dll1 (Six et al., 2003). Nevertheless, whereas the amounts of FL Dll1

in wt-MEFs and T-MEFs were similar, the level of CTF Dll1 in T-MEFs corresponded to ∼60%

of the level in wt-MEFs (Fig. 3.8a and 3.8b). Because ADAM15 is not capable of cleaving Dll1

(Fig. 3.6a), this result suggested that ADAM9 and/or ADAM12 contributed to Dll1 processing in

wt-MEFs.

Activation of the Notch pathway inhibits myogenic differentiation in vitro and in vivo (Kopan

et al., 1994; Shawber et al., 1996; Nofziger et al., 1999; Kuroda et al., 1999; Delfini et al., 2000),

suggesting that this pathway may act to maintain the myogenic cells in an undifferentiated prolif-

erating state (Conboy & Rando, 2002; Luo et al., 2005; Kitzmann et al., 2006; Shinin et al., 2006).

Here, we asked whether the endogenous Dll1 present in myogenic cells interacts with ADAM12,

whether it undergoes proteolytic processing, and what role ADAM12 might have in this process-

ing. To address these questions, we used mouse primary myoblasts, which express the endogenous

Dll1 and ADAM12 and in which the expression of both proteins increases during the first few days

after transfer to differentiation medium (Kitzmann et al., 2006; Cao et al., 2003; Dahlqvist et al.,
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2003). As shown in Fig. 3.9a, the endogenous ADAM12 co-immunoprecipitated with the endoge-

nous Dll1 from primary myoblasts. Metabolic labeling of cells with [35S]methionine+cysteine fol-

lowed by immunoprecipitation with anti-Dll1 antibody revealed the presence of antibody-specific

bands of 90 and 29 kDa, corresponding to the FL Dll1 and CTF Dll1, respectively. Transfection

of cells with three different siRNAs targeting ADAM12, but not with a control siRNA, decreased

ADAM12 protein levels by ∼50-60% and reduced the amount of CTF Dll1 by more than 50%

(Fig. 3.9b). Thus, we conclude that the endogenous Dll1 is subject to proteolytic processing in

confluent, differentiating myoblast cultures, giving rise to the 29-kDa fragment, and that the en-

dogenous ADAM12 contributes to this processing.

3.5 Discussion

Notch ligands undergo proteolytic processing by ADAMs, but the identities of ADAMs that can

mediate the cleavage, as well as the consequences of such processing are not clear. In Drosophila,

the best characterized Notch ligand is Delta. Co-transfection experiments in Drosophila S2 cells

demonstrated that three ADAMs could cleave Delta: Kuzbanian (a Drosophila homolog of ADAM

10), Kuzbanian-like (Kul), and DTACE (a homolog of ADAM17) (Qi et al., 1999; Sapir et al.,

2005). Interestingly, DMeltrin, a Drosophila homolog of ADAM12, clearly lacked the ability to

process Delta (Sapir et al., 2005).

Mammalian Dll1 expressed in HEK293, COS, CHO, N2a, or NIH3T3 cells was cleaved by

endogenous ADAMs present in these cells (Ikeuchi & Sisodia, 2003; Six et al., 2003; LaVoie &

Selkoe, 2003). Transfection of Dll1 into ADAM10−/− or ADAM10+/+ MEFs demonstrated that

the cleavage was reduced by∼50% in the absence of ADAM10 (Six et al., 2003). This result sug-

gested that ADAM10 was partially responsible for Dll1 cleavage and that other ADAMs catalyzed

the remaining cleavage of Dll1 in ADAM10−/− cells. MEFs express several catalytically active

ADAMs, including ADAM9, -12, -15, and -17 (Sahin et al., 2004), and we focused our study on

these proteases. ADAM17 is the closest relative of ADAM10, and its activity towards Dll1 has

been somewhat expected (Six et al., 2003). Dll1 processing in CHO cells was not affected, how-
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ever, by ADAM17 inhibitors batimistat or TAPI-1, raising questions about the ability of ADAM17

to cleave Dll1. Processing of Dll1 by ADAM9, -12 or -15 has not been tested previously.

Here we show that ADAM 9, -12, and -17, but not ADAM15, when co-transfected with Dll1

into COS-7 cells, are capable of Dll1 cleavage. Although we have not determined the exact cleav-

age sites in Dll1, each of these ADAMs generated a CTF of the same size, suggesting that the

cleavage sites were either identical or located very close to each other. In the case of ADAM12,

we provided evidence that Dll1 processing was accompanied by the release of the N-terminal frag-

ment of Dll1 to medium, it was cell density-dependent and occurred in cis, and it was weakly stim-

ulated by PMA. Furthermore, processing of Dll1 transfected into ADAM9/12/15−/− MEFs was

diminished when compared with processing in wild type MEFs. This result suggested that Dll1

was also subject to processing by the endogenous ADAM9 or ADAM12 or both (since ADAM15

was not capable of cleaving Dll1 even when overexpressed in COS-7 cells, most likely it did not

contribute to Dll1 processing in MEFs at the endogenous level). Although the reduction of Dll1

cleavage in ADAM9/12/15−/− MEFs was rather modest (∼40%), it was consistent with ∼50%

inhibition of Dll1 processing observed in ADAM10−/− MEFs (Six et al., 2003) and with the

remaining activity of ADAM17, which might have also contributed to the processing.

Our studies show that Asn-353 in ADAM12 is required for Dll1 cleavage. Replacement of

Asn-353 with a Ser residue found in ADAM15 completely abolished ADAM12 activity toward

Dll1. Consistently, other ADAMs capable of cleaving Dll1, namely ADAM9 and -17 (this study)

and ADAM10 (Six et al., 2003), also contain an Asn residue at the corresponding position, sug-

gesting that this may be a general feature of Dll1-processing ADAMs. Currently, high resolution

structures of metalloprotease domains are available only for ADAM17 and ADAM33. Analysis

of the architecture of the catalytic site in ADAM17 and in the predicted structure of ADAM12

modeled onto the closely related ADAM33 (this work) indicates that the side chain of Asn-410 in

ADAM17 and of Asn-353 in ADAM12 face the catalytic cleft and, thus, might be involved in the

interaction with Dll1. Replacement of Ser-354 in ADAM15 with Asn, however, did not increase

Dll1 cleavage by ADAM15, indicating that the presence of Asn at that position is not sufficient
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for Dll1 processing and that other molecular events in ADAMs are required for efficient cleavage

of the Dll1 substrate.

The ability of ADAM12 to cleave Dll1 and the apparent lack of activity toward Notch allowed

us to study the effect of ligand cleavage on Notch signaling. Although shedding of the extracellular

domain of Notch ligand limits the ligand presentation in trans and terminates Notch signaling

in a neighboring cell (Qi et al., 1999; Mishra-Gorur et al., 2002), cell-autonomous effects of

ligand cleavage are less clear. Notch ligands form complexes in cis with Notch, which leads

to sequestration of Notch receptors, reduction of Notch receptivity to signals from outside, and

attenuation of Notch signaling (Sakamoto et al., 2002; Katsube & Sakamoto, 2005; Ladi et al.,

2005; Franklin et al., 1999). Shedding of the extracellular domain of the ligand could relieve this

inhibitory effect and activate Notch, a scenario that is supported by results of in vivo experiments

in flies. Overexpression of Kuzbanian-like in juxta-marginal cells in Drosophila wing discs (which

are characterized by high levels of Delta and low levels of Notch signaling) resulted in increased

expression of Notch target genes (Sapir et al., 2005). Alternatively, the C-terminal fragment of

a ligand could compete with Notch S2 cleavage product for γ-secretase and, thus, interfere with

Notch signaling. Indeed, overexpression of an ectodomain-truncated Jagged 1 in COS-7 cells

together with an ectodomain-truncated Notch led to inhibition of the Notch function (LaVoie &

Selkoe, 2003). However, expression of a truncated Jagged that mimicked an already cleaved

Jagged, did not allow evaluation of the actual effect of the removal of the N-terminal portion of

Jagged by ADAMs. In our studies, both Dll1 and Notch constructs represented the intact proteins,

and the relative contribution of Dll1 ectodomain shedding (a stimulatory effect) and competition

of Dll1 and Notch C-terminal fragments for γ-secretase (an inhibitory effect) were addressed.

Our results demonstrate that ADAM12, capable of mediating a constitutive cleavage of Dll1 but

not of Notch, activated Notch signaling in a cell autonomous manner, whereas the catalytically

inactive ADAM12 mutant did not process Dll1 and did not activate Notch. Thus, alleviation of

the inhibition of Notch mediated by Dll1 appears to out-weigh the generation of a Dll1 fragment

that can compete for γ-secretase.
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The essence of Notch signaling is the amplification of small differences in the levels of Notch

receptors and their ligands between adjacent cells (Lai, 2004; Kadesch, 2004; Louvi & Artavanis-

Tsakonas, 2006). Cells that are initially equivalent but at one point develop a bias towards re-

ceptors or ligands will eventually become signal-receiving and signal-sending cells, respectively.

Amplification of the differences in receptor/ligand levels is mainly achieved by a transcriptional

feedback mechanism (Lai, 2004; Kadesch, 2004; Louvi & Artavanis-Tsakonas, 2006). We pro-

pose that proteolytic cleavage of Dll1 may represent another mechanism for reinforcing small

differences in the signaling capacities of different cells and for establishing the uni-directionality

in Notch signaling.

During myogenic differentiation in vitro, a pool of seemingly equivalent cells assume different

fates that coincide with different levels of Notch signaling (Kitzmann et al., 2006). In proliferating

cells and then in cell cycle-arrested but undifferentiated ”reserve cells,” the Notch activity is high,

whereas in differentiated myotubes the level of Notch signaling is low (Kitzmann et al., 2006).

Although Notch signaling is generally regulated at multiple levels, one of the most direct mecha-

nisms involves regulation of expression and membrane localization of Notch ligands. In Xenopus,

expression of XDelta-1 is positively regulated at the transcriptional level by MyoD (Wittenberger

et al., 1999). In Drosophila, expression of Delta has been recently shown to be negatively regu-

lated by dmiR-1 (Kwon et al., 2005), a muscle-specific microRNA (Rao et al., 2006). Our results

suggest that in mouse myogenic cells, the Dll1 protein may be additionally regulated at the post-

translational level by cell surface proteolysis and that ADAM12 is one of the ADAM proteases

mediating this processing (Fig. 3.9). Interestingly, gene profiling experiments suggest that sev-

eral ADAMs capable of cleaving Dll1, including ADAM9, -10, and -12, are strongly up-regulated

during muscle regeneration in vivo ((Zhao & Hoffman, 2004); data are available at the Children’s

National Medical Center web site), and several reports suggested a role for ADAM12 in myogen-

esis (Yagami-Hiromasa et al., 1995; Kurisaki et al., 2003). Whether Dll1 processing by ADAMs

indeed represents a mechanism of regulation of Notch signaling during myogenic differentiation

associated with muscle regeneration remains to be determined.
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ADAM12 enhances TGFβ signaling in Dll1-dependent manner (Not included
in the J Biol. Chem. paper)

Our previous study showed that ADAM12 is strongly up-regulated by TGFβ1 at protein and

mRNA level in mouse embryonic fibroblasts (MEFs), NIH3T3 fibroblasts, and NMuMG epithelial

cells (Chapter 2). ADAM12 cleaves Dll1 which is followed by cleavage of Dll1 by γ-secretase

and release of the ICD of Dll1 from the membrane. ICD of Dll1 can interact with Smad2, Smad3,

and Smad4 and enhance Smad-dependent transcription in response to stimulation of cells with

TGFβ1 (Hiratochi et al., 2007) (Fig. 3.10a). To test whether ADAM12 is able, through cleav-

age of Dll1, to enhance TGFβ signaling we co-transfected ADAM9,12,15−/− MEFs with Dll1

and ADAM12. We monitored the response to TGFβ1 stimulation with p3TP-Lux reporter, before

and after TGFβ1 treatment (Fig. 3.10b). We noticed that Dll1 did not increase cellular responses

to TGFβ1 in the absence of ADAM12. In contrast, when cells where co-transfected with wild

type ADAM12 and Dll1, Dll1 stimulated TGFβ1 responses in a dose-dependent manner. This

effect was not observed when cells were transfected with catalitycally inactive ADAM12. Thus,

ADAM12-mediated cleavage of Dll1 increases cell responsiveness to TGFβ1.
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(a) (b)

Figure 3.1: ADAM12 cleaves Dll1 in intact cells. (a), COS-7 cells were transiently transfected
with two empty vectors (lane 1), with mouse Delta-like 1 and empty ADAM12 expression vec-
tor (Dll1; lane 2), co-transfected with Dll1 and catalytically inactive mutant form of ADAM12
(E349Q A12; lane 3), or cotransfected with Dll1 and wild type ADAM12 (A12; lane 4). Total cell
lysates were analyzed by Western blotting using antibody specific for the C terminus of Dll1 (top
panel) or for the C-terminal domain of ADAM12 (middle panel). Full-length (FL, 90-kDa band)
and the C-terminal fragment (CTF, 29-kDa band) of Dll1 are indicated; the nascent pro-form of
ADAM12 and the mature form of ADAM12 lacking the pro-domain are shown. The extent of
Dll1 cleavage was determined as the ratio of intensities of the 29- and 90-kDa Dll1 bands (mean
+/- S.E., n = 5, bottom panel). (b) cells were transfected as in (a); Dll1 construct contained c-Myc
tag in the N-terminal domain. Cells were metabolically labeled with [32S]methionine+cysteine,
cell lysates were analyzed by Western Blotting using anti-c-Myc antibody (top) or anti-ADAM12
antibody (bottom), and the NTF of Dll1 was immunoprecipitated from medium using anti-c-Myc
antibody and visualized by SDS-PAGE and autoradiography (middle). Experiment in (a) was
performed by Dr. Haiqing Yi.
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(a) (b)

Figure 3.2: Dll1 cleavage by ADAM12 is cell density-dependent and occurs in cis. (a) COS-7
cells were co-transfected with Dll1 and either empty ADAM12 expression vector (lanes 1 and 2) or
with vector containing ADAM12 cDNA (lanes 3 and 4). Cells were ∼50% confluent (low density
(L)) or ∼90% confluent (high density (H)) at the time of harvesting. (b) COS-7 cells (∼90%
confluent) were co-transfected with Dll1 and empty vector (lane 1) or Dll1 and ADAM12 (lane
2). Alternatively, cells (∼50% confluent) were transfected with Dll1 alone and co-cultured with
vector-transfected (lane 3) or ADAM12-transfected cells (lane 4). In (a) and (b), total cell lysates
were analyzed by Western blotting using antibodies specific for the C termini of Dll1 or ADAM12
(top and middle panels, respectively). The extent of Dll1 cleavage was determined as the ratio
of intensities of the 29- and 90-kDa Dll1 bands (mean +/- S.E., n = 3, bottom). Experiments in
Fig. 3.2 were performed by Dr. Haiqing Yi.
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(a) (b)

(c)

Figure 3.3: Dll1 cleavage by ADAM12 is followed by γ-secretase cleavage (a), is not stimu-
lated by ionomycin, and is weakly enhanced by PMA (b). (a), COS-7 cells co-transfected with
Dll1 and empty vector (lane 1) or ADAM12 (lanes 2-5) were incubated with for 3 h with 5 µM
lactacystin (a proteasomal inhibitor, lanes 3 and 5) or for 6 h with 1 µM L685,458 (a γ-secretase
inhibitor, lanes 4 and 5). Cell lysates were analyzed by Western blotting using anti-Dll1 antibody.
ICD, intracellular domain of Dll1, is the product of γ-secretase cleavage of CTF. (b), COS-7 cells
were co-transfected with Dll1 and either empty vector (lanes 1 and 2) or ADAM12 (lanes 3 and
4). Left, Twenty four hours after transfection, cells were incubated for 5 h with 5 µM L685,458
and for additional 1 h with or without 5 µM ionomycin (left) or 25 ng/ml of PMA, as indicated
(right), followed by analysis of Dll1 cleavage. Cells were serum-starved for 30 min prior to and
during the PMA treatment. (c) evidence for a role of ADAM17, but not ADAM12, in cleaving
Notch1. COS-7 cells were transfected with Notch1 containing C-terminal c-Myc tag (lanes 2-7,
Notch-c-Myc) and either empty vector (lanes 1, 2, and 5), ADAM12 (lanes 3 and 6), or ADAM17
(lanes 4 and 7). Two days after transfection, confluent cells were serum-starved for 30 min and
then incubated for 1 h without (lanes 1-4) or with 25 ng/ml PMA (lanes 5-7) followed by analysis
of Notch cleavage by Western blotting using anti-c-Myc antibody. TMIC, the S1 cleavage prod-
uct; NEXT, Notch extracellular truncation, the S2 cleavage product; NICD, Notch intracellular
domain, the S3 cleavage product. Experiment in (c) was performed by Dr. Elena Tasheva.
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(a) (b)

Figure 3.4: ADAM12 forms a complex with the full length Dll1, but not with NTF or CTF.
(a) cytoplasmic domain of ADAM12 is dispensable for Dll1 cleavage. COS-7 cells were co-
transfected with Dll1 and either the full-length ADAM12 (lane 1) or ADAM12 containing a 169-
amino acid deletion at the C terminus (XT; lane 2). Total cell lysates were analyzed by Western
blotting using antibody specific for the C terminus of Dll1 (top) or the disintegrin domain of
ADAM12 (bottom). The upper bands detected with anti-ADAM12 antibody in ADAM12- and
XT-transfected cells represent the nascent forms of ADAM12 or XT, respectively; the lower bands
represent the mature forms lacking the prodomain. ADAM12 forms a complex with the full-
length Dll1 but not with NTF or CTF. (b), Cells were co-transfected with Dll1 and ADAM12
(lanes 1 and 3) or with Dll1 and empty ADAM12 expression vector (lane 2), cell extracts were
immunoprecipitated with antibody specific for the C-terminus of ADAM12 (lanes 1 and 2) or
were incubated without antibody (lane 3), the immunoprecipitates (IPs) and inputs were analyzed
by Western blotting using anti-Dll1 antibody. Experiment in (a) was performed by Dr. Haiqing
Yi.
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(c) (d)

Figure 3.4: ADAM12 forms a complex with the full length Dll1, but not with NTF or CTF
(continued). (c), Experiment was performed as in (b) using the Dll1 construct with c-Myc tag
in the N-terminal domain. The immunoprecipitates (IPs) and inputs were analyzed by Western
blotting using anti-c-Myc antibody. (d), COS-7 cells were co-transfected with Dll1 and ADAM12,
cell extract was immunoprecipitated with (lane 1) or without (lane 2) anti-ADAM12 antibody;
immunoprecipitates (IPs) and input were analyzed by immunoblotting with anti-Dll1 antibody.
The secondary antibody was anti-rabbit IgG, Fc fragment-specific, and detected only the heavy
chain of anti-ADAM12 antibody used for immunoprecipitation. Notice that the relative abundance
of CTF Dll1 was much higher in the input than in the immunoprecipitate.
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(a) (b)

Figure 3.5: Proteolytic processing of Dll1 by ADAM12 increases Notch signaling in a cell-
autonomous manner (a) NIH3T3 cells were co-transfected with mouse Notch1 and either a
CBF1 reporter (CBF1-Luc; pJH23A) or the same reporter in which CBF1 binding sites were
mutated (Mut CBF1-Luc; pJH25A). After 24 h cells were co-cultured with CHO cells stably
transfected with vector only (CHO.Vec; white bars) or with CHO-cells stably transfected with
Dll1 (CHO.Dll1; black bars). The activities of firefly luciferase, normalized to Renilla luciferase
as internal control, were assayed 24 h later. (b) NIH3T3 cells were transiently co-transfected with
Notch1, a CBF1 reporter (pJT123A) and Dll1, wild type ADAM12 (A12), or catalytically inac-
tive ADAM12 (E349Q A12) as indicated. After 24 h, cells were co-cultured for an additional 24 h
with CHO.Vec (white bars) or CHO.Dll1 cells (black bars) followed by measurement of luciferase
activity. Notice that co-expression of Dll1 with Notch in the same cell inhibits Notch signaling in-
duced by CHO.Dll1 (black bars) in the absence of A12 or in the presence of the E349Q mutant (∗,
p < 0.05). In the presence of catalytically active A12 the inhibition was diminished and was not
statistically significant. In (a) and (b), error bars represent S.E. of the mean (n = 3). Experiments
in Fig. 3.5 were performed by Dr. Danqiong Sun.
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(a) (b)

Figure 3.6: Dll1 is a substrate for ADAM9, -12, and -17 but not for ADAM15. (a) COS-
7 cells were co-transfected with Dll1 and empty vector (V), c-Myc-tagged ADAM9, -12, -15,
or -17. Cell extracts were analyzed by Western blotting using anti-c-Myc tag antibody (top) or
anti-Dll1 antibody (bottom). Upper bands detected with anti-c-Myc antibody represent nascent
full-length ADAM proteins, and lower bands correspond to the catalytically active forms lack-
ing pro-domains. (b) COS-7 cells were co-transfected with Dll1 and empty vector, c-Myc-tagged
ADAM9, -12, -15, or -17. ADAM proteins were immunoprecipitated with anti-c-Myc tag anti-
body. The inputs (left) and immunoprecipitates (right) were analyzed by anti-Dll1 (upper panels)
and anti-c-Myc (lower panels) antibodies. Experiments in Fig. 3.6 were performed by Dr. Haiqing
Yi.
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(a) (b)

Figure 3.7: Asn353 in ADAM12 is necessary for Dll1 cleavage. (a), Amino acid sequence
alignment of the catalytic sites of mouse ADAM9, 10, 12, 15, and 17. The consensus sequence of
the catalytic site of ADAM proteases is shown on the top. (b), COS-7 cells were co-transfected
with Dll1 and either wild-type or the N353S ADAM12 mutant, wild-type or S354N ADAM15
mutant, or empty vector. All ADAM constructs contained a C-terminal c-Myc tag. Cell extracts
were analyzed by Western blotting using anti-Dll1 antibody (upper panel) or anti-c-Myc antibody
(bottom panel).
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(c) (d)

Figure 3.7: Asn353 in ADAM12 is necessary for Dll1 cleavage (continued). (c), COS-7 cells
were co-transfected with Dll1 and wild-type ADAM12, the N353S mutant of ADAM12, or empty
vector, as indicated. Cell extracts were immunoprecipitated using anti-ADAM12 antibody (lanes
1-3) or were incubated without antibody (lane 4). Immunoprecipitates (IPs) and inputs were
analyzed by Western blotting with anti-Dll1 antibody, the expression of ADAM12 was verified
by Western blotting of the inputs with anti-ADAM12 antibody. (d), The predicted structure of the
metalloprotease domain of ADAM12, obtained by threading mouse ADAM12 sequence (amino
acids 212-414) onto mouse ADAM33 (PDB structure 1R55) using the Swiss-PdbViewer software,
and then submitted to the SWISS-MODEL server for refinement. Residues 339-358 are displayed
as a cartoon, side chains of His348, His352, and His 358 coordinating Zn2+ are shown in blue,
catalytic E349 is shown in red, and N353 is depicted in green.
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(a) (b)

Figure 3.8: Endogenous ADAM9 and/or ADAM12 contribute to Dll1 cleavage in MEFs.
SV40-immortalized MEFs isolated from wild type mice (wt) or from ADAM9/12/15−/− triple
knock-out mice (T) were transiently transfected to express Dll1 as indicated. (a) after 48 h, Dll1
processing was analyzed by Western blotting with anti-Dll1 antibody. The intensities of the bands
corresponding to FL Dll1 were determined after short exposure times (left), and the intensities of
the bands representing CTF Dll1 were measured after long exposure times (right). The amounts
of FL Dll1 and CTF Dll1 in T-MEFs were normalized to the amounts in wt-MEFs; the results
(mean from three different experiments, +/- S.E.) are shown below each Western blot. (b) 24 h
after transfection cells were metabolically labeled with [35S]methionine+cysteine, and 16 h later
cell lysates were subjected to immunoprecipitation using anti-Dll1 antibody, as indicated. The im-
munoprecipitates were resolved by SDS-PAGE and analyzed by autoradiography. The intensities
of the bands corresponding to FL Dll1 and CTF Dll1 were determined after short exposure times
(left) and long exposure times (right), respectively, and the results were plotted as in A (mean
+/- S.E., n = 2). In (a) and (b), cells were incubated for 6 h in the presence of 1 µM γ-secretase
inhibitor L685,458 before harvesting. Experiments in Fig. 3.8 were performed by Dr. Danqiong
Sun.
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(a) (b)

Figure 3.9: Endogenous ADAM12 co-immunoprecipitates with Dll1 and contributes to Dll1
cleavage in primary mouse myoblasts. (a) primary mouse myoblasts grown to confluence
and incubated for 1 day in differentiation medium were subjected to immunoprecipitation with
anti-ADAM12 antibody. The immunoprecipitates were analyzed by immunoblotting with anti-
ADAM12 (top) or anti-Dll1 antibody (bottom). (b) primary mouse myoblasts were transfected
with one of three ADAM12 siRNAs or control siRNA, as described under ”Experimental Proce-
dures.” One day after transfection, cells reached confluence and were transferred to differentiation
medium. After 24 h, cells were metabolically labeled with [35S]methionine+cysteine for 10 h,
1 µM γ-secretase inhibitor L685,458 was added, and the labeling was continued for next 6 h.
The level of endogenous ADAM12 was analyzed by Western blotting after partial purification on
concanavalin A-agarose (bottom). In parallel, the endogenous Dll1 was immunoprecipitated with
anti-Dll1 antibody (Ab), and the immunoprecipitates were analyzed by SDS-PAGE and direct au-
toradiography (top). The exposure time of the region in the autoradiogram containing the FL Dll1
was five times longer that the exposure time of the region containing CTF Dll1. Notice that the
abundance of CTF Dll1 is diminished in cells transfected with ADAM12 siRNAs.
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(a)

(b)

Figure 3.10: ADAM12 enhances TGFβ1 signaling in Dll1-dependent manner. (a) Schematic
illustration of a possible cross-talk between TGFβ1 signaling and ADAM12 involving proteolytic
cleavage of Dll1. (b) A9/12/15−/− MEFs cells were co-transfected with TGFβ1 signaling reporter
(p3TPlux), wild type ADAM12 (red bars), catalytically inactive ADAM12 (ADAM12 E349Q,
yellow bars), or empty vector (grey bars), and increasing amounts of Dll1. After 24 h, cells were
treated with 2 ng/mL TGFβ1 or vehicle, followed by measurement of luciferase activity. Cells
co-transfected with wild type ADAM12 and Dll1 show increasing TGFβ1 signaling in a dose
dependent manner. This effect is not present in cells co-transfected with catalytically inactive
ADAM12. Error bars represent standard error of the mean (n=3).
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Chapter 4

Breast cancer-associated mutations in
metalloprotease disintegrin ADAM12
interfere with the intracellular trafficking
and processing of the protein

The data presented in this chapter have been published in the following journal article:

Dyczynska E., Syta E., Sun D., Zolkiewska A.

Breast cancer-associated mutations in metalloprotease disintegrin ADAM12 interfere with intra-

cellular trafficking and processing of the protein

IntJ̇. Cancer 122:2634-2640 (2008)

Available at

http://www3.interscience.wiley.com/cgi-bin/fulltext/117905136/PDFSTART.
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Chapter 5

Summary

Members of the ADAM family can influence multiple cellular processes involved in normal devel-

opment, as well as in pathogenesis. Better understanding of how ADAM12 is regulated and which

signaling pathways and proteins are involved in this regulation sheds more light on proper and ab-

normal functions of ADAM12. Additionally, finding new substrates for this metalloprotease can

expand our knowledge of processes in which ADAM12 is involved.

The TGFβ signaling pathway play an important role in many pathological processes where

ADAM12 expression is dysregulated. It was shown in Chapter 2 that TGFβ upregulates ADAM12

through degradation of the SnoN repressor. Changes in the expression level of ADAM12 and

SnoN, as well as increased levels of TGFβ were shown in many cancers, cardiac hypertrophy, and

liver regeneration (Asakura et al., 2002; Tan et al., 2006; Massagué, 2008; Verrecchia & Mauviel,

2007), suggesting interplay of these factors.

Additionally, Smad2/3 have been shown to interact with E3-ubiquitin ligases and target SnoN

for ubiquination and proteosomal degradation (Bonni et al., 2001; Stroschein et al., 2001; Levy

et al., 2007; Nagano et al., 2007). Interestingly, Smad3-regulated proteosomal degradation is a

downstream signaling event of Smad3 and can serve as a mechanism for Smad3 to cross-talk with

other SnoN-dependent signaling pathways. Smad3 has been shown to interact with NICD, the

intracellular domain of Notch (Blokzijl et al., 2003). Our unpublished data also suggest that NICD

is able to upregulate the ADAM12 gene. Whether or not this upregulation is due to degradation
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of SnoN protein and releasing SnoN-mediated repression needs to be further investigated.

The Notch signaling pathway plays a crucial role in cell fate decision during embryonic de-

velopment and in adulthood. Small differences in the levels of Notch ligands and receptors are

amplified, and, in consequence, divide the cell population to two groups: signal-receiving and

signal-sending.

Here, we expanded the list of ADAMs involved in Notch ligand cleavage. Our results pre-

sented in Chapter 3 show that ADAM12 is capable of proteolytic cleavage of Notch ligand, Dll1.

Processing of Dll1 by ADAMs has three known functions: down-regulation of Notch signaling in

neighboring cells, activation of Notch signaling in a cell-autonomous manner, and cross-talk with

different signaling pathways through the interaction of intracellular domain (ICD) of Dll1 with

transcription factors.

ADAM12 is able to modulate Notch signaling through the shedding of the Dll1 extracellular

domain and activation of Notch in a cell-autonomous manner. During myogenic differentiation,

cells can differentiate or stay as non-differentiate progenitor cells. Activation of Notch signaling

inhibits myogenic differentiation and also functions as a positive regulator of progenitor cells

(Kitzmann et al., 2006). Sun et al. (2008) have shown that proteolytic processing of Dll1 helps

achieve asymmetry in Notch signaling and this helps sustain the balance between differentiation

and maintenance of undifferentiated cells.

The Notch signaling pathway plays also key roles in breast cancer progression. Adult mam-

mary glands contain mammary stem cells, and mutations in a population of stem cells can lead

to development of breast cancer (Wicha et al., 2006). The Notch signaling pathway is critical for

maintaining the population of self-renewing stem cells and facilitates their proliferation (Dontu

et al., 2004). ADAM12 expression is an increased in mammary stem cells (Dontu et al., 2003),

suggesting that ADAM12 can play a similar role in maintaining balance between stem cells and

progenitor cells as in myogenic differentiation.

Additionally, the ICD of Dll1 was shown to translocate to the nucleus where it interacts with

different transcriptional factors and cross-talks with different signaling pathways. Documented
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partners for the ICD of Dll1 are Smad2/3/4. This interaction leads to an enhanced Smad-dependent

signaling response to TGFβ (Hiratochi et al., 2007). The ICD of Dll1 is generated by consecutive

cleavage by an ADAM protease and γ-secretase. We tested whether catalytically active ADAM12

can increase TGFβ signaling through processing of Dll1 (Fig. 3.10b). ADAM12-mediated cleav-

age of Dll1 increased cell responsiveness to TGFβ. As shown in Chapter 2, TGFβ upregulates

ADAM12, suggesting a positive feedback loop between TGFβ signaling and ADAM12 through

Dll1. This situation could take place during cardiac development when Dll1 is strongly up-

regulated in endothelial cells, following arterial injury (Miceli-Libby et al., 2008), and during

ischemia-induced arteriogenesis (Limbourg et al., 2007). When stimulated with TGFβ, cardiac

endothelial cells promote endothelial-to-mesenchymal transition (EndMT) and contribute to accu-

mulation of fibroblasts (Zeisberg et al., 2007) which in the long term leads to cardiac fibrosis and

heart failure. Thus, ADAM12 together with TGFβ signaling pathway, through cleavage of Dll1,

can have an important role in cardiac remodeling and failure.

Chapter 4 focuses on the role of ADAM12 cancer-associated mutants. Our data show that

ADAM12 cancer-associated mutations block generation of the mature, active form of ADAM12,

leading to the loss of function at the plasma membrane. Only ADAM12 present at the cell sur-

face is capable of cleaving of Dll1 and interacting with TβRII, suggesting that cancer-associated

ADAM12 mutants are unable to modulate Notch and TGFβ signaling pathways. Additionally,

both pathways are able to upregulate the ADAM12 protein leading to higher amount of misfolded

proteins in ER. Further study on cancer-associated mutations should give more information on the

role of ADAM12 proteolytic activity during cancer progression.

Because of ADAMs involvement in a variety of pathological events, they are attractive tar-

gets for novel therapies. ADAMs play redundant roles in substrate shedding, so further research

on the regulation and control of individual ADAM activity is necessary to create more specific

drugs. ADAM12 is an interesting protein due to its involvement in two major signaling pathways:

Notch and TGFβ. ADAM12 has been shown to modulate TGFβ signaling through interaction

with TβRII (Atfi et al., 2007), as well as, Notch signaling through cleavage of Notch ligand, Dll1
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(Chapter 3). Additionally, ADAM12 is also upregulated by TGFβ (Chapter 2) and by Notch (our

unpublished data). ADAM12 is also the only member of the ADAM family to be mutated in

breast cancer (Sjöblom et al., 2006). Our characterization of ADAM12 cancer-associated muta-

tions have shown loss of functional proteins at the cell surface (Chapter 4). Collectively, these

results suggest that ADAM12 may be one of the most important ADAMs in regulating cancer

progression. Elucidation of the precise role of ADAM12 in cancer is a large and important task

for future studies.

81



Bibliography
ABRAM, C. L., SEALS, D. F., PASS, I., SALINSKY, D., MAURER, L., ROTH, T. M. & COURT-

NEIDGE, S. A. (2003). The adaptor protein fish associates with members of the ADAMs family
and localizes to podosomes of Src-transformed cells. J Biol Chem 278, 16844–51.

AKAGI, I., MIYASHITA, M., MAKINO, H., NOMURA, T., HAGIWARA, N., TAKAHASHI, K.,
CHO, K., MISHIMA, T., TAKIZAWA, T. & TAJIRI, T. (2008). SnoN overexpression is predic-
tive of poor survival in patients with esophageal squamous cell carcinoma. Ann Surg Oncol 15,
2965–75.

AKIYOSHI, S., INOUE, H., HANAI, J., KUSANAGI, K., NEMOTO, N., MIYAZONO, K. &
KAWABATA, M. (1999). c-Ski acts as a transcriptional co-repressor in transforming growth
factor-beta signaling through interaction with smads. J Biol Chem 274, 35269–77.

ANNES, J. P., MUNGER, J. S. & RIFKIN, D. B. (2003). Making sense of latent TGFbeta activa-
tion. J Cell Sci 116, 217–24.

ASAKURA, M., KITAKAZE, M., TAKASHIMA, S., LIAO, Y., ISHIKURA, F., YOSHINAKA, T.,
OHMOTO, H., NODE, K., YOSHINO, K., ISHIGURO, H., ASANUMA, H., SANADA, S., MAT-
SUMURA, Y., TAKEDA, H., BEPPU, S., TADA, M., HORI, M. & HIGASHIYAMA, S. (2002).
Cardiac hypertrophy is inhibited by antagonism of ADAM12 processing of HB-EGF: metallo-
proteinase inhibitors as a new therapy. Nat Med 8, 35–40.

ATFI, A., DUMONT, E., COLLAND, F., BONNIER, D., L’HELGOUALC’H, A., PRUNIER, C.,
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