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Abstract
Corn and soyabean micronutrient-fortified-blended foods (FBF) are commonly used for food aid. Sorghum and cowpeas have been suggested as alter-
native commodities because they are drought tolerant, can be grown in many localities, and are not genetically modified. Change in formulation of blends
may improve protein quality, vitamin A and Fe availability of FBF. The primary objective of this study was to compare protein efficiency, Fe and vitamin A
availability of newly formulated extruded sorghum-, cowpea-, soya- and corn-based FBF, along with a current, non-extruded United States Agency for
International Development (USAID) corn and soya blend FBF (CSB+). A second objective was to compare protein efficiency of whey protein concentrate
(WPC) and soya protein isolate (SPI) containing FBF to determine whether WPC inclusion improved outcomes. Eight groups of growing rats (n 10) con-
sumed two white and one red sorghum–cowpea (WSC1 +WPC, WSC2 +WPC, RSC +WPC), white sorghum–soya (WSS +WPC) and corn–soya (CSB14
+WPC) extruded WPC-containing FBF, an extruded white sorghum–cowpea with SPI (WSC1 + SPI), non-extruded CSB+, and American Institute of
Nutrition (AIN)-93G, a weanling rat diet, for 4 weeks. There were no significant differences in protein efficiency, Fe or vitamin A outcomes between
WPC FBF groups. The CSB+ group consumed significantly less food, gained significantly less weight, and had significantly lower energy efficiency, protein
efficiency and length, compared with all other groups. Compared with WSC1 +WPC, the WSC1 + SPI FBF group had significantly lower energy efficiency,
protein efficiency and weight gain. These results suggest that a variety of commodities can be used in the formulation of FBF, and that newly formulated
extruded FBF are of better nutritional quality than non-extruded CSB+.

Key words: Fortified blended foods: Corn–soya blends: Sorghum: Vitamin A: Iron: Protein quality: Complementary feeding

Protein–energy malnutrition, Fe and vitamin A remain some of
the most common nutritional deficiencies worldwide(1), and
food aid targeted at improving both food security and foreign
agricultural development is necessary to create sustainable and
effective programmes to treat undernutrition. Fortified-blended

foods (FBF) have traditionally consisted of micronutrient-
fortified, partially precooked blends of milled cereals and pulses.
The most commonly distributed micronutrient-fortified food
aid by the United States Department of Agriculture (USDA) is
corn–soya blend (CSB) FBF. Hundreds of thousands of metric

Abbreviations: AIN, American Institute of Nutrition; CSB, corn–soya blend; DIAAS, digestible indispensable amino acid score; FBF, fortified-blended food; NRC, National
Research Council; RSC, red sorghum with cowpea; SPI, soya protein isolate; USAID, United States Agency for International Development; USDA, United States Department
of Agriculture; WPC, whey protein concentrate; WSC, white sorghum with cowpea.

*Corresponding author: B. L. Lindshield, blindsh@k-state.edu

© The Author(s) 2017. This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence (http://creative-
commons.org/licenses/by/4.0/), which permits unrestricted re-use, distribution, and reproduction in any medium, provided the original work is
properly cited.

JNS
JOURNAL OF NUTRITIONAL SCIENCE

1D
ow

nl
oa

de
d 

fr
om

 h
tt

ps
://

w
w

w
.c

am
br

id
ge

.o
rg

/c
or

e.
 K

an
sa

s 
St

at
e 

U
ni

ve
rs

ity
 L

ib
ra

ri
es

, o
n 

07
 A

ug
 2

01
7 

at
 1

4:
49

:0
9,

 s
ub

je
ct

 to
 th

e 
Ca

m
br

id
ge

 C
or

e 
te

rm
s 

of
 u

se
, a

va
ila

bl
e 

at
 h

tt
ps

://
w

w
w

.c
am

br
id

ge
.o

rg
/c

or
e/

te
rm

s.
 h

tt
ps

://
do

i.o
rg

/1
0.

10
17

/jn
s.

20
17

.1
5

mailto:blindsh@k-state.edu
https://www.cambridge.org/core
https://www.cambridge.org/core/terms
https://doi.org/10.1017/jns.2017.15


tonnes of CSB are distributed annually(2), and themost widely dis-
tributed is CSB+, a roastedCSB blend(3). A recent report cited the
importance of formulating new food aid products to improve
treatment of malnutrition, which included suggestions to utilise
crops that are adapted to climate change, locally available, and uti-
lising processingmethods thatmay destroy anti-nutritional factors
thereby improving the nutritional quality of FBF(2). Despite
recommendations calling for new formulations, there is little
research assessing nutritional outcomes from these changes com-
pared with previous FBF formulations.
Corn, soya, sorghum and cowpea are all crops suitable for

food aid due to their availability and acceptability worldwide.
In 2012, The World Food Program invested 62 % of its food
aid efforts to support sub-Saharan African nations(4). Cowpea
is a nitrogen-fixing, drought-tolerant legume that can be utilised
in intercropping because it is tolerant to shade(5–8), and Africa
produces 96 % of global cowpea hectares(5). Sorghum porridge
is a widely consumed staple in many areas throughout Africa,
and from 1993 to 2013, 36 % of global sorghum production
came from African nations(9,10). The combination of sorghum
with cowpea in FBF has potential to enhance low levels of
cysteine and methionine found in cowpeas, and cowpeas’
amino acid composition complements traditionally low lysine
levels in sorghum(5,8). Formulating new blends with sorghum
and cowpea may allow for local and regional procurement
aimed at improving local agricultural markets and nutritional
outcomes in food aid-receiving countries(2).
When consumed in large quantities, antinutritional factors

such as trypsin and haemagglutinins in legumes, and phytates
and tannins in cereals, may negatively affect the bioavailability
of amino acids and minerals such as Zn and Fe that may con-
tribute to stunting, wasting and micronutrient deficiencies in
low-income countries(11,12). Extrusion is a processing tech-
nique that has been shown to decrease antinutritional factors
and improve protein and Fe bioavailability(13–15) by an oper-
ation that first grinds, then partially cooks, and finally applies
pressure to products to promote expansion to a desired dens-
ity(16). Additionally, because density of extruded products is
controlled, a unique benefit of this processing is its ability to
create FBF with enhanced energy and micronutrient density(2).
Extrusion may further benefit food aid consumers because it
can create pre-cooked porridges, which take less energy and
time to prepare.
In addition to suggestions to use alternative commodities

and processing methods, it has been proposed that lack of
animal-source protein may be a reason why FBF have not
traditionally adequately prevented stunting and wasting(2),
although this has not been supported in a recent review(17).
Limitations to utilising animal protein isolates like whey pro-
tein concentrate (WPC) include: they are costly, may not pro-
vide the protein quantity to support linear growth in suggested
amounts, and may lack beneficial bioactive components
reported as important components of supporting growth(18).
A recent field trial comparing CSB+ against a complementary
food product containing an animal-source protein found no
difference in Fe status, or lean mass between protein-rich
complementary foods in children at 6 months of age for 9
months, although there were significant improvements in

knee–heel height(19). Utilisation of soya-based proteins may
be a safe, cost-effective and efficacious alternative to
WPC(20), and therefore, whey and soya protein may similarly
enhance protein quality of FBF by providing amino acids
that are highly bioavailable.
The primary objective in this study was to assess protein, Fe

and vitamin A outcomes of newly (according to United States
Agency for International Development (USAID) guidelines(2))
formulated extruded sorghum-, cowpea-, corn- and soya-
based FBF, compared with a current, non-extruded USAID
corn and soya blend FBF, CSB+. Combinations of corn,
soya, sorghum and cowpea were chosen as commodities to
assess whether sorghum or cowpea consumption, as recom-
mended as alternative to corn or soya in the Food Aid
Quality Report, would result in similar or better protein, vita-
min A or Fe outcomes. A second aim was to compare the pro-
tein quality of a WPC-containing FBF with a soya protein
isolate (SPI)-containing FBF(17,18).

Methods

Ethical standards

We chose weanling rats, which are a well-known nutritional
model, to allow for assessment of FBF protein quality, and
vitamin A and Fe bioavailability during a linear growth period.
The Institutional Animal Care and Use Committee at Kansas
State University approved all animal procedures (protocol
3399). Welfare assessments were carried out prior to and dur-
ing the experiment.

Diets

In order to compare nutritional outcomes related to recom-
mended formulation, six FBF were developed according to
USAID food aid recommendations(2), and were later reformu-
lated to meet viscosity requirements. In reformulation, sugar
replaced 15 % grain and legume flours to meet viscosity
requirements and enhance acceptable sensory characteristics,
and additional WPC or SPI and oil were added to meet protein
and fat requirements (Table 1). The content of 15 % sugar was
estimated to not exceed daily WHO guidelines, with the rec-
ommendation that no more than 50 % of energy intake
come from FBF consumption assuming that the remaining
energy intake would not exceed 5 % free sugar(2). Vitamin
and mineral premixes were formulated according to recom-
mendations by the Food Aid Quality Report(2), as 3·2 % of
FBF (Research Products Company). Blends were created by
extruding grain and legume flours, milling to powder, then
adding sugar, vitamin and mineral premix, oil and WPC 80 %
(WPC80) (Davisco Foods) or SPI 80 % (Organic Puris
1060; World Food Processing). For comparison of commodity
types within FBF formulation, two white (Fontanelle 4575,
738Y), one red (217X Burgundy) sorghum with cowpea
(WSC1 +WPC, WSC2 +WPC, RSC +WPC, respectively), a
white sorghum (Fontanelle 4575) soya (WSS +WPC), and
corn–soya blend (CSB14 +WPC), all with WPC, along with
white sorghum (Fontanelle 4575) cowpea with SPI (WSC1
+ SPI) extruded blends, were developed. WSC1 +WPC,
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WSC2 +WPC, RSC +WPC, WSS +WPC and CSB14 +WPC
were formulated to compare outcomes related to consumption
of different commodity types (sorghum–cowpea blends, sor-
ghum–soya, and corn–soya). Further, CSB14 +WPC was
developed to compare new formulation and extrusion of
blends with a current USAID FBF (CSB+). WSC1 + SPI
was formulated to compare soya with whey protein in
WSC1 +WPC. CSB+ was purchased from a USDA producer
(Bunge Milling), with standard preparation, which includes
utilisation of heat-treated corn and soyabeans which are
mixed, and micronutrient fortified. American Institute of
Nutrition (AIN)-93G, which is a diet formulated to meet
the National Research Council (NRC) requirements for grow-
ing rats, was included as a control diet group to facilitate
assessment of adequacy of the FBF. Of note, Fe forms and
concentrations, as well as vitamin A concentrations, were dif-
ferent between the CSB+, extruded FBF and AIN-93G.
AIN-93G contained ferric citrate (6·6/100 g), while extruded
FBF and CSB+ contained sodium ferric EDTA/ferrous
fumarate, although at different concentrations; vitamin A con-
centrations in CSB+ were nearly twice those in newly formu-
lated FBF (Table 2), and more than forty times the levels in
AIN-93G. Sodium ferric EDTA was chosen to reduce min-
eral–antinutrient interactions found in ionised Fe forms, to
improve bioavailability(2). Therefore, Fe availability of FBF
was expected to surpass AIN-93G (ferric citrate alone).

Fortified blended food production

Sorghum–cowpea, sorghum–soya and corn–soya flours were
extruded on a single screw extruder (X-20; Wenger
Manufacturing Co.). The dry feed rate was 200 kg/h for formu-
lations made from commercially sourced flours and 166 kg/h
for formulations that were obtained from flours produced
from pilot milling (cowpea flour-containing FBF).
Steam and water were added in the preconditioner, where

discharge temperature was maintained above 85°C, and
screw speed ranged from 500 to 550 rpm. In-barrel moisture
content ranged between 18 and 20 %, the die had a single cir-
cular opening of 4·1 mm. After cutting, extrudates were dried
using a double-pass dryer/cooler (series 4800; Wenger
Manufacturing Co.) operating at 104°C, where they were
retained for 10 min, before being cooled for 5 min at room
temperature. Vitamins and minerals were mixed in with

other dry ingredients in steps to ensure mixing uniformity.
Once dry ingredients were mixed and combined through
this process, oil was added and mixed.

Diet, macronutrient and antinutrient analysis

FBF were analysed by AOAC official methods by the
University of Missouri Agricultural Chemical Laboratories.
Methods included measurement for total energy (by calcula-
tion: protein = 4, carbohydrate = 4, fat = 9 kcal/g; protein =
16·7, carbohydrate = 16·7, fat = 37·7 kJ/g), protein (LECO;
AOAC 990.03, 2006), fat (acid hydrolysis, 954.02, 2006),

Table 1. Newly formulated extruded fortified-blended foods, corn–soya blend plus (CSB+) and American Institute of Nutrition (AIN)-93G formulations (%)*

Sorghum

flour

Cowpea

flour

Soya

flour

Corn

flour Sugar

Whey

protein

Soya

protein

Vegetable

oil

Micronutrient

premix

WSC1 +WPC, WSC2 +

WPC, RSC +WPC

24·7 38·6 0 0 15 9·5 0 9·0 3·2

WSS +WPC 47·6 0 15·7 0 15 9·5 0 9·0 3·2
WSC1 + SPI 24·7 38·6 0 0 15 0 9·5 9·0 3·2
CSB14 +WPC 0 0 15·2 48·1 15 9·5 0 9·0 3·2
WSC1 +WPC, white sorghum–cowpea 1 with whey protein concentrate; WSC2 +WPC, white sorghum–cowpea 2 +WPC; RSC +WPC, red sorghum–cowpea +WPC; WSS +

WPC, white sorghum–soya +WPC; WSC1 + SPI, WSC1 + soya protein isolate; CSB14 +WPC, corn–soya blend 14 +WPC.

* CSB+ (%): whole corn (78·4), whole roasted soya (20), vitamin mineral (0·2), tricalcium phosphate (1·16), potassium chloride (0·17). AIN-93G (%): corn starch (39·7), casein (20),

maltodextrin (13·2), sucrose (10), soyabean oil (7), powdered cellulose (5), AIN-93 vitamin and mineral mix (4·5), L-cystine (0·3), choline bitartrate (0·25), t-butylhydroquinone
(0·001).

Table 2. Newly formulated extruded fortified-blended foods (FBF) and

corn–soya blend plus (CSB+) vitamin and mineral forticant levels (mg

per 100 g)(2)

Newly formulated

extruded FBF CSB+

Vitamin A palmitate 0·488 Vitamin A retinyl

ester

1·04

Thiamin mononitrate

(B1)

0·652 Thiamin mononitrate

(B1)

0·2

Riboflavin (B2) 0·933 Riboflavin (B2) 1·4
Niacinamide (B3) 9·07 Niacinamide (B3) 8

Calcium

D-pantothenate (B5)

3·646 Calcium

D-pantothenate (B5)

1·6

Pyridoxine

hydrochloride (B6)

0·752 Pyridoxine

hydrochloride

1

Folic acid (B9) 0·087 Folic acid (B9) 0·11
Vitamin B12 0·0015 Vitamin B12 0·002
Vitamin D3 0·0292 Vitamin D3 0·011
Vitamin E 13·224 Vitamin E 8·3
Vitamin K 0·033 Vitamin K 0·03
Coated ascorbic acid 40·0 Coated ascorbic acid 90

Ca (tricalcium

phosphate)

279·08 Ca (tricalcium

phosphate)

452

Fe 13·0* Fe 6·5*
Sodium ferric EDTA 2·0 Sodium ferric EDTA 2·5
Ferrous fumarate 11·0 Ferrous fumarate 4·0
Iodine (potassium

iodide)

0·23 Iodine (potassium

iodide)

0·04

Magnesium oxide 9·47
P (tricalcium

phosphate)

290·97 P (tricalcium

phosphate)

290

K (potassium

monophosphate)

163·19 K (potassium

chloride)

140

Sodium chloride 225·67 Sodium chloride 326

Zinc sulfate 5·50 Zinc sulfate

monohydrate

5

* Amount of Fe the forticant is providing.
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carbohydrates (by calculation: 100 % – (% crude protein + ash
+ crude fat + moisture)), and amino acids including available
lysine (HPLC and spectrophotometry AOAC 982.30E;
975.44). Phytate and tannin contents of blends were analysed
as described by Joseph(21). Briefly, phytates and tannins were
assessed using a Megazyme kit (Megazyme International)
and methods described previously(22), respectively.

Study design

Weanling, 21- to 23-d-old male Sprague–Dawley rats (Charles
River) were randomised into eight diet groups (n 10 per group,
n 80 total). Animals were housed individually in wire-
bottomed cages (to prevent coprophagy) with a resting
board beneath food and water feeders, in a temperature-
controlled facility with 12-h light and dark cycles. Rats were
provided food and water ad libitum, fed every other day
when food intake was measured, and weighed weekly for 4
weeks. Study length and size were based on the preventative
prophylactic(23), and protein efficiency ratio(24) methods,
respectively.

Data and sample collection

At study end, rats were anaesthetised by CO2 inhalation,
weights and lengths were recorded, and euthanised by exsan-
guination. Length from nose to base of tail was measured as
a comparison of overall linear growth. Blood collected from
cardiac puncture was divided into 2 ml EDTA-K2 vacuum
tubes (Fisher) and 2 ml microcentrifuge tubes for Hb and
serum, respectively. EDTA tubes were immediately placed
on ice and subsequently stored at 4°C for 48 h before analysis.
Blood samples in microcentrifuge tubes collected for serum
analysis were allowed to rest at room temperature under Al
foil to protect them from light. They were then centrifuged
at 3000 g for 15 m, supernatant fraction was pipetted into
microcentrifuge tubes, flash frozen in liquid N2, and stored
at −80°C. Following blood collection, liver tissue was col-
lected, weighed, flash frozen in liquid N2, and stored at
−80°C. After hepatic samples were collected, bone density
and total body fat mass were measured via a PIXIMUS densi-
tometer (Lunar) following manufacturer instructions. Prior to
the study, it was verified that hepatic removal had a consistent,
and minimal, effect on fat mass and bone density measured.

Iron quantification

Hepatic and diet iron. Hepatic Fe analysis was determined by
wet ashing before quantification by flamed atomic absorption
spectrometry (AAS) (Perkin Elmer AAnalyst 100). Briefly, 1 g
of hepatic tissue was placed into a 50 ml acid-washed beaker,
10 ml of full-strength nitric acid was slowly added and left for
1 h for chemical decomposition. Samples were then brought to
the boil, reduced to 1 ml over 2–3 h, titrated to 10 ml with
deionised-distilled water, and quantified in duplicate (n 10)
by AAS. Fe content of blends was analysed in duplicate (n
1) by atomic absorption spectrometry (Great Plains
Analytical Laboratory AACC method 40-70.01).

Hb. Hb samples were prepared in triplicate (n 10) using
Drabkin’s reagent for cyanmethaemoglobin measurement
(Sigma Aldrich). Samples were compared with a standard
Hb curve prepared with lyophilised bovine Hb and
measured by spectrophotometer at a wavelength of 540 nm
according to the manufacturer’s instructions.

Retinol quantification

Hepatic retinol. Hepatic retinol concentrations were analysed
in duplicate (n 10) using an adapted protocol(25,26). In initial
samples analysed, butylated hydroxytoluene did not protect
retinol from oxidation, and was not included in the protocol.
A liver sample (0·1 g) was weighed and homogenised by
vortexing well with 0·25 g ascorbic acid in 5 ml ethanol(26,27).
Samples were placed on ice, and 1 ml of supersaturated KOH
was added. After vortexing, samples were heated for 30 min in
a waterbath (70°C), vortexing every 10 min for 30 s. After
ensuring that tissue was totally dissolved, samples were cooled
on ice for 10 min. After cooling, 6 ml of hexane were added,
the sample was vortexed, the supernatant fraction was
removed, and samples were dried down in a Vacufuge
(Eppendorf) at 20°C. This process was repeated twice more.
When approximately 1 ml of sample remained, it was vortexed
for 30 s, pipetted into Eppendorf tubes, dried under N2, and
stored at −20°C overnight (<24 h). Samples were
reconstituted into 400 µl of mobile phase, vortexed well, and
20 µl were injected into the HPLC.

Serum retinol. Serum for all rats was pooled and prepared in
duplicate (n 1), because of low volumes of CSB+ serum due to
small body size. Pooling has been shown to be highly
representative of individual serum samples in vivo(28). Serum
was extracted using a modified protocol(26,29). Serum
samples (150 µl) were added to an equal volume of ethanol
with ascorbic acid (0·25 g/5 ml), vortexed, and extracted
three times with 1 ml of hexane, with the supernatant
fraction removed after each extraction. Supernatant samples
were dried down under N2, and stored at −20°C overnight
(<24 h). Samples were reconstituted into 40 µl of mobile
phase, vortexed well, and 30 µl were injected into the HPLC.

Diet retinol. Vitamin A content of blends was analysed as
described previously in duplicate(30). A sample of 0·25 g of
blend was weighed, transferred into a 50 ml glass centrifuge
tube, then 3·5 ml of ethanol and 1·5 ml deionised-distilled
water were added to the sample with 0·25 g ascorbic acid,
followed by 1 ml of supersaturated KOH. FBF samples
were vortexed, then placed in a 60°C waterbath for 30 min,
vortexing every 10 min, then 2 ml of deionised-distilled
water were added, and FBF samples were cooled on ice.
Hexane (7 ml) was added, the entire sample was vortexed,
the supernatant fraction was removed, and the supernatant
fraction was dried down in a Vacufuge (Eppendorf) at 20°C.
This process was repeated twice more. When approximately
0·5 ml of sample remained, it was vortexed for 30 s,
pipetted into Eppendorf tubes, dried under N2, and stored
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at −32°C overnight (<24 h). AIN93-G, extruded FBF and
CSB+ were reconstituted in 40, 80 and 160 µl, respectively,
with 20 µl injected into the HPLC. Different reconstitution
volumes were utilised to obtain similar retinol values, across
blends with a wide range of vitamin A content.

Sample analysis. Samples were run on an Agilent Eclipse
XDB 5 µM C18 (250 × 4·6 mm) analytical column at a flow
rate of 1 ml/min for 20 min at 23·4°C with an autosampler
(Shimadzu SIL) on an HPLC containing a LC20AB pump
(Shimadzu), and a Shimadzu SPD-M20A PDA. Mobile
phase consisted of 47:47:6 methanol, acetonitrile and
chloroform. Samples were analysed against an external
standard curve prepared using retinyl acetate (US
Pharmacopeia); standards were prepared in duplicate daily
from stock solutions after analysis on a spectrophotometer
at 325 nm to quantify absorbance. Concentration was
calculated using a molar extinction coefficient of 0·155 for
retinyl acetate in ethanol(31).

Calculations

Due to differences in protein, fat, carbohydrate and total
energy content between blends, as well as evidence suggesting
that protein intake may not directly relate to linear growth as
protein reaches a certain concentration in the diet(32), energy
efficiency was calculated along with protein efficiency as an
indicator of protein quality:

Energy efficiency (weight gain per kJ consumed) =
Weight gain (g)

Food intake (g) × kJ per g of FBF

Protein efficiency (weight gain per g of protein consumed)

= Weight − gain (g)
Total protein intake (g)

Lean mass was calculated to monitor for weight gain related
to adiposity rather than linear or lean mass:

Lean mass ( proportion of non-fat mass measured)

= Weight − fat mass
Weight

Blends were compared with digestible indispensable amino
acid score (DIAAS) recommendations for protein quality
assessment. DIAAS was utilised to analyse protein quality
because of limitations of the protein digestibility-corrected
amino acid score (PDCAAS) as an estimate of crude protein
digestibility, and the recent recommendation of the FAO
that DIAAS replace PDCAAS(20).

Statistical analysis

Group differences were assessed using one-way ANOVA with
Tukey’s test after satisfying Levene’s test for homogeneity.

Significance was set at P < 0·05; statistics were performed
using SAS version 9.3 (SAS Institute, Inc.).

Results

Composition of fortified-blended foods

CSB+ contained 8·3 % less energy, 6·9 % more carbohydrate,
23·9 % less protein (16·4 % of composition) and 41·5 % less
fat (12·1 % of composition) compared with newly formulated
extruded FBF (Table 3). Lysine- and sulfur-containing amino
acids did not meet DIAAS requirements for children aged 6
months to 4 years(20) in CSB+ and WSC1 + SPI diets, respect-
ively. CSB+ and AIN-93G (6·6 mg/100 g) contained 48 and
58 % less Fe than the newly formulated extruded FBF,
respectively. Vitamin A content of blends was higher and
lower in CSB+ and AIN-93G, respectively, compared with
newly formulated extruded FBF. WPC-containing FBF groups
had comparable macronutrient and micronutrient composi-
tions (Table 3). CSB+ mean phytate content was more than
three times greater than newly formulated extruded FBF
(Table 3)(21). There was no detectible tannin content in any
of the FBF blends. Phytate content of WSC2 +WPC, RSC
+WPC and WSS +WPC were similar, and more than 1·5
times greater than CSB14 +WPC; WSC1 +WPC mean phy-
tate content was 1·2–2·5 times greater than other newly for-
mulated blends(21).

Food intake, anthropomorphic and micronutrient outcomes

Food intake, weight gain, final body weights, energy efficiency,
protein efficiency and linear growth changes were not signifi-
cantly different between the five WPC-containing FBF groups
(WSC1 +WPC, WSC2 +WPC, RSC +WPC, WSS +WPC,
and CSB14 +WPC; Table 4, Figs 1 and 2). The CSB+ group’s
total intake was significantly reduced by 30 %, final body
weight, protein efficiency were significantly decreased by
greater than 50 %, energy efficiency was significantly decreased
by >50 %, and length was significantly reduced by greater than
20 % compared with all groups (Table 4). During week 1, all
groups consumed the same amount of FBF, while weight
gain was significantly decreased (>50 %) in the CSB
+-consuming group. In subsequent weeks, CSB+ consump-
tion and growth were significantly decreased (Figs 1 and 2).
Compared with the AIN-93G group, the WSC1 + SPI group
gained significantly less total weight (Fig. 2). Compared with
the WSC1 +WPC and AIN-93G groups, the WSC1 + SPI
group had significantly lower energy and protein efficiency
(Table 4).
There were no significant differences in lean mass, bone

mineral density, Hb, hepatic Fe, serum retinol or hepatic Fe
in newly formulated extruded FBF groups. Bone mineral dens-
ity was significantly lower in the CSB+ group compared with
the AIN-93G group. Liver weight as a percentage of body
mass was significantly lower in the CSB+ group compared
with all groups (Table 5). The AIN-93G group had signifi-
cantly, and WSS+WPC non-significantly, lower hepatic Fe
levels compared with the remaining groups (Table 6). WSC2
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+WPC, RSC +WPC and WSC1 + SPI groups had signifi-
cantly lower Hb levels than the CSB+ group (Table 6).
Serum retinol levels were not significantly different between
groups, while CSB+ and AIN-93G had significantly higher
and lower hepatic retinol concentrations than all groups,
respectively (Table 6).

Comparing fortified-blended foods with National Research
Council recommendations

Due to significantly different anthropometric outcomes,
WSC1 + SPI and CSB+ macronutrient and micronutrient con-
tents were compared with NRC recommendations for growing
rodents(33). WSC1 +WPC content is also included as a repre-
sentative WPC-containing FBF given its similarity in formula-
tion to WSC1 + SPI. Comparing WSC1 +WPC composition
with the NRC recommendations assisted in identifying com-
position differences that may have contributed to significant
outcomes observed in the CSB+ and WSC1 + SPI groups.
Micronutrient content of CSB+ and WSC1 + SPI met or
exceeded recommended requirements for weaning rodents
with the exception of vitamin B12, folic acid and vitamin K,
which were not different from WSC-1 +WPC, whose growth
was not suppressed compared with control (Table 7). CSB+
thiamine content did not compare to WSC1 +WPC or meet
NRC requirements. CSB+ and WSC1 + SPI levels were
below requirements for sulfur-containing amino acids (53
and 48 % of recommendation, respectively), and CSB+ lysine
concentration was 15·2 % less than requirement. WSC1 +
WPC met all NRC recommendations(33).

Discussion

In this study, consumption of newly formulated, protein
quality-enhanced blends resulted in improved protein effi-
ciency, and vitamin A and Fe availability outcomes compared
with a current FBF (CSB+) and a control diet formulated for
growing rats regardless of cereal or legume combination.
Further, there were no differences in protein efficiency, vita-
min A and Fe outcomes among newly formulated extruded
FBF. This suggests that cowpea- and sorghum-based FBF
support protein, vitamin A and Fe outcomes as effectively
as corn and soya in developed blends.
CSB+ consumption resulted in poor growth outcomes, sug-

gesting poor protein quality in the blend. The CSB+ group
consumed less FBF, had weight and length suppression, and
lower energy and protein efficiency compared with all groups.
The SPI-containing FBF-consuming group also had signifi-
cantly lower energy efficiency, protein efficiency and weight
gain compared with a similar FBF group with WPC.
Adiposity did not differ between FBF groups, micronutrient
outcomes were similar among extruded FBF; however, the
CSB+ group’s vitamin A and Fe hepatic levels were signifi-
cantly greater than other groups.
Several factors probably led to changes in growth observed

in the CSB+ group, and to a lesser extent, the SPI-consuming
group. Certainly, significant reduction in CSB+ consumption
contributed to growth suppression, but growth was inhibited
with similar food intake to other groups from week
1. Although reductions in growth were seen in the first week
of feeding, when intake was consistent with other groups,
CSB+ intake in subsequent weeks was significantly less than

Table 3. Analysed macronutrient, micronutrient, and antinutrient content of fortified blended foods*

WSC1 +WPC WSC2 +WPC RSC +WPC WSC1 + SPI WSS +WPC CSB14 +WPC CSB+

Total energy

kcal/100 g 394·6 396·5 397·1 395·1 392·19 392·4 361·64
kJ/100 g 1651·0 1659·0 1661·5 1653·1 1640·9 1641·8 1513·1

Carbohydrate

g/100 g 60·8 59·6 60·7 59·9 60·7 61·1 64·7
% energy content 61·6 60·1 61·1 60·6 61·9 62·3 71·6

Protein

g/100 g 19·0 19·7 19·5 19·2 19·4 19·3 14·7
% energy content 19·2 19·9 19·6 19·4 19·8 19·7 16·3

Fat

g/100 g 8·4 8·8 8·5 8·7 8·0 7·7 4·9
% energy content 19·2 20·0 19·2 20·0 18·3 18·0 12·1

Ash (g/100 g) 3·7 3·6 3·6 3·8 3·7 3·2 3·9
Crude fibre (g/100 g) 1·3 1·8 1·3 1·9 1·3 1·5 2·8
Moisture (g/100 g) 6·8 6·5 6·5 6·5 6·9 6·9 9·0
Lysine (mg/g) 74·1 70·9 72·2 60·5 69·5 68·3 52·9†
Cysteine +methionine (mg/g) 33·1 30·9 32·2 24·5† 35·0 35·7 35·3
Available lysine (mg/g)‡ 72·0 67·9 68·6 58·9 67·4 66·2 52·2
Fe (mg/100 g) 15·2 15·9 15·2 16·3 15·6 15·6 8·2
Vitamin A (μg/100 g) 598·9 496·9 527·7 488·4 553·7 462·6 846·0
Phytates (mg/100 g)§ 832·0 561·0 689·0 ND 557·0 318·0 1885·0
Tannins (mg/100 g)§ 0·00 0·00 0·00 ND 0·00 0·00 0·00
WSC1 +WPC, white sorghum–cowpea 1 with whey protein concentrate; WSC2 +WPC, white sorghum–cowpea 2 +WPC; RSC +WPC, red sorghum–cowpea +WPC; WSC1 +

SPI, WSC1 + soya protein isolate; WSS +WPC, white sorghum–soya +WPC; CSB14 +WPC, corn–soya blend 14 +WPC; CSB+, corn–soya blend plus; ND, not determined; AIN,

American Institute of Nutrition.

* AIN-93G is formulated to contain 6·6 mg/100 g Fe; 23·1 µg/100 g vitamin A; macronutrient and micronutrient contents analysed in duplicate.

†Does not meet recommended mg/g amino acid content for children aged 6 months to 3 years(20).

‡By HPLC.

§ From Joseph(21).
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all other groups. Given growth issues despite similar food
intake in the first week of feeding, food quality issues should
be considered. Blends met requirements of total protein and
fat intake when compared with NRC recommendations for
rodents(33); however, selected amino acids were lower than
recommendations, including methionine + cysteine (WSC1 +
SPI and CSB+) and lysine (CSB+, Table 7). While severe lim-
itations in lysine may reduce rodent growth, it was probably
not the only cause of growth restriction in the CSB
+-consuming group. For example, up to 50 % of lysine
recommendations in feed did not reduce growth in 6-week-old
Sprague–Dawley rats(34). Relative deficiency of methionine is a
well-known growth inhibitor in weanling rats(35), but given that
the methionine content was lower in WSC1 + SPI than CSB+,
it is unlikely that lack of methionine was the cause of observed
growth suppression. These findings may, however, explain the
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Fig. 1. Average weekly food intake. The corn–soya plus (CSB+) group’s aver-

age weekly food intake was significantly decreased during weeks 2–4 com-

pared with extruded fortified blended food (FBF) groups and American

Institute of Nutrition (AIN)-93G (n 10; * P < 0·05).

Fig. 2. Weekly average body weights. The corn–soya plus (CSB+) group’s

average body weight was significantly reduced compared with extruded forti-

fied blended food groups; the sorghum–cowpea 1 with soya protein isolate

(WSC1 + SPI) group’s body weight was reduced compared with American

Institute of Nutrition (AIN)-93G and WSC1 with whey protein concentrate

(WSC1 +WPC) (n 10; * P < 0·05 CSB+ v. comparison with all groups, † P <

0·05 WSC1 + SPI v. WSC1 +WPC and AIN-93G).
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small but significant decreases in weight gain and energy effi-
ciency in the WSC1 + SPI group compared with the WSC1 +
WPC group. Some of the growth impairment in the CSB+
group may have been due to several limiting amino acids
(methionine, cysteine, lysine, leucine and tryptophan) or,
more likely, reduction in protein and starch digestibility. The
NRC recommends that protein sources be ‘high quality’(33),
and while protein content may have been adequate, protein
digestibility may have been poor in the CSB+ group compared
with the newly formulated extruded FBF. One noteworthy con-
sideration is that CSB+ is partially cooked, but its preparation
requires boiling to complete cooking, while extruded blends
are considered completely cooked. Complete cooking improves
starch and protein digestibility, supported by multiple observa-
tions that extrusion improves cereal and legume amino acid
digestibility(36–38). It is important to note that lack of extrusion,
and reduced digestibility in CSB+may have caused reductions in
overall feeding by rats during the study duration. Perhaps more
importantly, phytate content of blends was greatly reduced in
newly formulated extruded blends, potentially due to extrusion,
and reformulation of extruded FBF with less grain and legume
by volume. CSB+ phytate content was more than three times
the levels found in newly formulated extruded blends(21), and
inhibition of growth may be attributed in part to reductions in
amino acid bioavailability and enzyme activity of dietary and
mucosal proteins, found in vivo with consumption of phytate-
containing foods(39).
In the SPI-consuming group, it is possible that reduced pro-

tein digestibility when compared with WPC may have
accounted for the small decrease (10 %) in weight gain.
Whether outcomes in this study would result in differences
in children consuming a varied diet remains to be seen. For
example, no differences in growth were found in 6- to
12-month-old infants consuming soya, casein or rice formula
along with complementary feeding(40). In infant studies,
plant protein sources have been as efficacious as other
ready-to-use foods for growth(41,42), despite possibly poor pro-
tein quality identified in our study. Dietary variety beyond food
aid may contribute to these findings as well. A 2014 review
found that FBF containing isoenergetic, isonitrogenous
sources of animal-source proteins did not enhance linear
growth compared with plant proteins, suggesting that animal
protein itself may not be needed to be included in FBF(17).

While total weight gained is used as a surrogate for protein
efficiency, studies have also supported that weight gain is
not an accurate surrogate for prevention of stunting, more
accurately depicted by linear growth. Despite reduced protein
efficiency and weight gain, our study supports that a
WPC-containing FBF did not significantly enhance linear
growth compared with an SPI-containing FBF in rats. Given
the higher cost of WPC when compared with SPI, it may be
prudent to further explore the use of SPI, or other high-quality
plant protein sources within FBF.
It is possible that animal feeding behaviours had an effect

on growth in the CSB+ group. One possibility is that the
CSB+ group did not consume CSB+ as well as other FBF
groups because they contained sugar. Given that lean mass
and food intake were unchanged in newly formulated extruded
FBF groups compared with the AIN-93G group, which also
did not contain sugar, it is unlikely that sugar led to overeating
of blends. It is possible that sugar enhanced taste, or masked
unappealing flavours of the extruded FBF. For example, some
studies have cited an improved taste of corn and soya blended
foods with enhanced sweetness(43).
Similarities in the micronutrient outcomes make it unlikely

that micronutrient differences were responsible for the
observed growth suppression. While extrusion has been
demonstrated to enhance micronutrient bioavailability(44,45),
the combination of higher levels of vitamin A in CSB+ and
subsequently less demand for micronutrients due to slower
growth rates probably resulted in the elevated hepatic Fe
and retinol levels observed. Additionally, animals in the CSB
+ group did not show overt signs of other micronutrient defi-
ciencies, and their livers were not enlarged compared with
other groups. Given that circulating retinol and Hb differences
were not observed among groups, vitamin A toxicity or Fe
toxicity were also unlikely causes for growth suppression.
One interesting outcome was the decrease in the WSS +

WPC group’s hepatic Fe levels. Compared with other
sorghum-containing groups, WSS +WPC contained 23 %
more sorghum, and, despite no differences in tannin or phytic
acid content among blends, higher sorghum composition may
explain this downward trend in hepatic Fe levels. One study
found that in mice fed rice, wheat, millet or sorghum, Fe
was most poorly absorbed from sorghum compared with all
other grain types(46). Despite these findings, given the non-

Table 5. Anthropometric outcomes

(Mean values with their standard errors)

AIN-93G

WSC1 +

WPC

WSC2 +

WPC RSC +WPC

WSC1 +

SPI

WSS +

WPC

CSB14 +

WPC CSB+

Mean SEM Mean SEM Mean SEM Mean SEM Mean SEM Mean SEM Mean SEM Mean SEM

Lean mass (%)* 89·9a 0·5 90·0a 0·4 89·6a 0·3 89·7a 0·4 88·1a 0·6 90·3a 0·3 89·5a 0·5 90·4a 0·5
Bone mineral density (g/cm2) × 1000 87·4a 3·1 80·4a,b 2·2 78·3a,b 1·7 82·0a,b 2·5 77·3a,b 1·0 79·0a,b 1·3 80·7a,b 4·6 73·7b 1·6
Liver weight/body weight (%)† 5·63a 0·2 5·46a 0·1 5·50a 0·2 5·47a 0·2 4·90a 0·2 5·58a 0·2 5·73a 0·2 4·00b 0·1
AIN, American Institute of Nutrition; WSC1 +WPC, white sorghum–cowpea 1 with whey protein concentrate; WSC2 +WPC, white sorghum–cowpea 2 +WPC; RSC +WPC, red

sorghum–cowpea +WPC; WSC1 + SPI, WSC1 + soya protein isolate; WSS +WPC, white sorghum–soya +WPC; CSB14 +WPC, corn–soya blend 14 +WPC; CSB+, corn–soya

blend plus.
a,b Mean values with unlike superscript letters were significantly different (P < 0·05).
* Lean mass: total weight minus fat mass and divided by total weight × 100.

† Liver weight/body weight %: liver weight divided by body weight × 100.
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significant relationship between hepatic Fe and grain types, it
may be most important to consider availability, cost and pref-
erence of consumers of these products rather than small
changes in biochemical markers when selecting commodities
for FBF.
Interestingly, our findings do not support further differences

in protein quality or in biochemical markers with the consump-
tion of newly formulated blends containing varying levels of
antinutritional factors regardless of grain type. For example,
WSC1 +WPC contained more phytates than the other
sorghum–cowpea formulations, but had similar energy and pro-
tein efficiency, and micronutrient outcomes. Our results may
suggest that differences in digestibility and bioavailability of
nutrients in sorghum and cowpea may be negated by reductions
in antinutritional factors. Further, lack of differences in out-
comes between groups consuming newly formulated extruded
blends regardless of phytate level may suggest possible thresh-
old, or dose-mediated adaptation, suggested previously(47–49).
Long-term studies exploring protein and micronutrient adapta-
tion in humans may enhance understanding of FBF quality and
efficacy during different lifecycle stages.

Limitations

Given consumption level and composition differences, it is
not possible to specifically identify factors that contributed
to the inhibition of CSB+ growth outcomes compared with
other groups. FBF were consumed as dry powders rather
than cooked porridges. Sorghum protein digestibility has
been reported to decrease after cooking in water(50), although
our blends are cooked during extrusion, and it is possible that
protein digestibility would not be decreased with addition of
hot water during their preparation. Lack of cooking may
have contributed to poor protein and starch digestibility of
CSB+. Further, lack of cooking limits generalisability of this
study to human consumption, where blends would be con-
sumed as porridge. We did not obtain antinutritional informa-
tion for WSC1 + SPI, so our interpretation of findings in this
group is limited. Newly formulated extruded FBF prepared
porridges contain increased solids when compared with CSB
+ (20 and 13·79 %, respectively), which is not a difference
we were able to assess in this study. This study was limited
to a rapid growth period, but did not follow animals through
transitions into later life. This limits the ability to ascertain
whether newly formulated extruded FBF support long-term
growth. Additionally, the study was limited to FBF consump-
tion only, rather than ‘complementary’ consumption along
with other food items.

Conclusions

These results suggest that a variety of commodities can be
used in extruded FBF newly formulated with high-quality pro-
tein, sugar and oil, which are of better nutritional quality than
CSB+. Further studies that compare prepared FBF porridges
to gain a better understanding of poor growth outcomes in the
CSB+ group are warranted. Given the potential cost savings of
using plant protein sources, further research comparing soya,Ta
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or other plant proteins, v. whey protein in FBF is warranted.
A field trial is currently assessing the efficacy of these newly
formulated extruded porridges in combating micronutrient
deficiencies and supporting linear growth in children.
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