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Abstract  

Many decision-making methods have been developed to help decision makers (DMs) make 

efficient decisions. One decision making method involves selecting the best choice among 

alternatives based on a set of criteria. Multiple Attribute Decision-Making (MADM) methods 

allow opportunities to determine the optimal alternative based on multiple attributes. This 

research aims to overcome two concerns in current MADM methods: uncertainty of attributes 

and sensitivity of ranking results. 

Based on availability of information for attributes, a DM maybe certain or uncertain on his 

judgment on alternatives. Researchers have introduced the use of linguistic terms or uncertain 

intervals to tackle the uncertainty problems. This study provides an integrated approach to 

model uncertainty in one of the most popular MADM methods: TOPSIS (Technique for Order 

Preference by Similarity to Ideal Solution).  

Current MADM methods also provide a final ranking of alternatives under consideration and, 

the final solution is based on a calculated number assigned to each alternative. Results have 

shown that the final value of alternatives may be close to each other uncertain attributes, but 

current methods rank alternatives according to the final scores. It exhibits a sensitivity issue 

related to formation of the ranking list. The proposed method solves this problem by simulating 

random numbers within uncertain intervals in the decision matrix. The proposed outcome is a 

ranking distribution for alternatives. 

The proposed method is based on TOPSIS, which defines the best and the worst solution for 

each attribute and defines the best alternative as closest to best and farthest from the worst 



 

 
 

solution. Random number distributions were studied under the proposed simulation solution 

approach. Result showed that triangular random number distribution provides better ranking 

results than uniform distribution.  

A case study of building design selection considering resiliency and sustainability attributes was 

presented to demonstrate use of the proposed method. The study demonstrated that proposed 

method can provide better decision option for designers due to the ability to consider uncertain 

attributes. In addition using the proposed method, a DM can observe the final ranking 

distribution resulted from uncertain attribute values.  
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Chapter 1. Introduction 

1.1. Background  

In the field of operation research, Multi-Criteria Decision Making (MCDM) is one of the most 

researched fields in terms of annual publication. MCDM studies include various mathematical 

and hierarchical models that incorporate methods from mathematics, behavioral decision 

theory, economics, computer technology, software engineering and information systems 

(Behzadian, et al., 2012). Figure 1.1 depicts the yearly publication trend of MCDM studies from 

1955 to 2007 (Bragge, et al., 2010) showing that the number of MCDM publications has 

increased dramatically during the last decade.  

 

Figure  1.1 MCDM yearly publication trend (Bragge, et al., 2010) 
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MCDM techniques aim to give decision maker (DM) tools to make decisions when several 

contradictory points of view often must be taken into account (Tam, et al., 2007). MCDM 

methods have been designed to designate a preferred alternative, classify alternatives in a 

small number of categories, and/or rank alternatives in a subjective preference order 

(Behzadian, et al., 2012). A study by Charles, Cooper, and Ferguson (1955) was considered to be 

the first study on decision making (Ruiz, 2012). Modern forms of MCDM methods emerge 

during the 1970s, were strongly developed in the 1980s, and grew rapidly during the 1990’-s 

(Bragge, et al., 2010). Hwang and Yoon (1981) introduced TOPSIS (Technique for Order 

Preference by Similarity to Ideal Solution), one of the most popular MADM (Multiple Attribute 

Decision Making) methods. Saaty (1986) introduced AHP (Analytic Hierarchy Process) to 

compare alternatives or attributes in a pairwise manner (Forman, et al., 2001). After Zadeh 

(1965) introduced fuzzy sets, researchers extended MADM methods to solve problems with 

uncertain attributes. Chen and Hwang (1992) developed fuzzy TOPSIS to solve MADM problems 

with uncertain attributes. Opricovic (1998) developed a method called VIKOR to solve MADM 

problems. The name VIKOR stands for VIseKriterijumska Optimizacija I Kompromisno Resenje 

which, in Serbian means Multi Criteria Optimization and Compromise Solution.  

MCDM problems can be categorized into two groups: MADM and MODM (Multi-Objective 

Decision Making). MADM methods make a selection or prioritization from alternatives that are 

evaluated by multiple, usually conflicting, attributes (Hwang, et al., 1981). On the other hand, 

MODM problems aim to find the best alternative given a set of conflicting objectives (Yoon, et 

al., 1995). This study focused on MADM methods. 
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The most popular MADM methods include AHP, TOPSIS, and VIKOR. In the study of decision 

making, a decision is made from alternatives based on a set of criteria called attributes. For 

example, selection of a daily commute method may include alternatives such as use of public 

transportation, a bicycle, or a personal car. Attributes may include travel time, cost, 

convenience, health factors, and traffic. Various attributes may conflict with each other (Yoon, 

et al., 1995). Attributes may be quantitative, such as travel time, or qualitative, such as 

convenient. In some cases the attributes are not well defined. In the daily commute example, 

the attribute convenience may not be easily quantified.  

1.2. Problem Statements 

The environment in which DM makes a decision can affect a decision. For example, the 

decision-making environment for selecting a car differs from the environment when deciding a 

daily commute. External factors, such as traffic in the daily commute example, comprise the 

decision-making environment, potentially affecting the DM’s evaluation of alternatives. Most 

MADM techniques assume that attributes are certain, but that assumption is not always true. In 

many real-world applications, a DM may be uncertain about some attributes (Bonissone, 2008). 

Chen (2000) and Jahanshahloo, et al. (2006) attempted to solve MADM problems with 

uncertain attributes. They defined uncertainty by fuzzy membership functions (Chen, 2000), 

intervals (Sayadi, et al., 2009; Jahanshahloo, et al., 2006) or some other forms.  

Two problems are inherent in existing MADM methods. First, most existing MADM methods 

assume a deterministic environment for attributes. Chen (2000) used triangular fuzzy numbers 

to model linguistic terms to model uncertainty. Sometimes, however, expressing uncertainty as 
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linguistic terms is not possible. Some uncertainty may diminish after time passes, but a decision 

must be made at the present time not later. For example, at the beginning of a construction 

project, designers may not know the energy consumption of a finished building. They can 

estimate based on experience and historical data, but the estimate may not be perfect. 

Therefore, they can express their estimations by intervals to evaluate alternatives. 

Jahanshahloo, et al. (2006) introduced intervals to solve MADM problems with uncertain 

attributes. They suggested that DM evaluate alternatives by considering the inherited 

uncertainty and express evaluations by intervals. However, they did not provide a guideline for 

how to generate intervals that reflect uncertainty in attributes.  

Second, most MADM methods use a single scale or score to rank alternatives. The problem 

arises when the final scores of different alternatives are close to each other. The current 

methods do not consider the similarity of final scores; therefore, by changing a small amount of 

uncertainty, the ranking list generated by current methods may change, thereby increasing the 

sensitivity inherited in the existing MADM method. In addition, Yeh (2002) suggested that 

various MADM methods may generate different ranking results. When results obtained by 

various methods differ significantly, DMs may have a difficult time selecting the best choice 

(Jahan, et al., 2013). This study examined methods proposed by Chen (2000) and Jahanshahloo, 

et al. (2006) considering uncertain environments and improving their shortcomings. The 

proposed method intended to enable a DM to make decisions based on distributions of ranking 

using simulations to account for uncertain environment.  
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1.3. Proposed method  

The proposed method attempted to overcome the problems discussed in the previous section 

for existing MADM methods. To consider uncertainty, the proposed method applied 

percentages of uncertainty that a DM assigns to each attribute. In the construction project 

example, a project manager may assign some percentage of uncertainty based on experience or 

past data. These percentages formed intervals of uncertainty, providing a tool to generate 

intervals. The larger the uncertainty, the wider the interval. Then, this study proposed to adopt 

the extended TOPSIS method for interval numbers developed by G. R. Jahanshahloo, et al. 

(2006) in order to obtain weighted normalized intervals.  

In order to solve sensitivity issues in current MADM methods, simulations were applied to the 

uncertain intervals. Simulated random numbers were generated based on uniform distribution 

and triangular distribution. Uniform distribution considers equal probability for all values within 

the interval; triangular distribution assigns more probability to the most likely value within the 

interval. Finally the regular TOPSIS method developed by Hwang and Yoon (1981) was applied 

to find the result of ranking for each set of simulated runs. Ranking distribution was then 

formed from all simulation runs. The proposed method addressed sensitivity issues in the 

model via ranking distribution.  

1.4. Thesis Outline 

This thesis contains the following chapters. Chapter 1 defines, the problem and outlines the 

proposed method. Chapter 2 provides, a brief literature review of MADM methods and studies. 

Chapter 3 contains the proposed method and user guidelines and provides a numerical 
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example. Chapter 4 describes a case study containing a mock construction project in which two 

sets of attributes related to resiliency and sustainability are considered. Chapter 5 contains 

conclusions and future research.  
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Chapter 2. Literature Review 

 

2.1. Types of Decision Making Methods  

MCDM consists of constructing a global preference relation for a set of alternatives evaluated 

by several criteria (Vansnick, 1986). The aim of any MCDM technique is to provide guidance to 

the DM in order to determine the most desired solution to a problem (Stewart, 1992). In 

general, MCDM can be divided into two different groups: Multi Attribute Decision Making 

(MADM) and Multi Objective Decision Making (MODM).  In MODM problems, the decision 

space is often continuous, whereas the decision space in MADM problems is primarily discrete. 

This thesis focuses on MADM methods with uncertain attributes. Most MADM problems 

contain predefined number of attributes. For example, selecting a car based on price, 

performance and quality can be modeled as an MADM problem. The alternatives are cars under 

consideration, and the attributes are price, performance and, quality.  

2.2. Environment of Decision Making 

When solving an MADM problem, one important factor that may affect the decision outcome is 

the decision environment in which knowledge of attributes may be known or uncertain. The 

decision-making environment can be divided into three types: certainty, uncertainty, and risk. 

Each type is examined in details in the following paragraphs.  

Certainty: In a certainty environment, a DM has full knowledge of an attribute quantified by a 

number. In many real-world cases, however a DM may not know a decision environment 

completely and it is very difficult to be 100% certain. However, a DM can assume that the 

knowledge of an attribute is certain to a certain degree. 
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Uncertainty: In an uncertain environment, a DM has less knowledge of an attribute at the time 

of decision. In most cases, uncertainty arises due to external factors (Chand, 2015). For 

example, when introducing a new product to a market, selecting between several designs is an 

extremely important decision. The result of a decision may be related to external factors such 

as competitors, consumer taste, or economy. One way to counter uncertainty is to postpone 

decision making until more information is available. In some cases, however, a decision cannot 

be postponed.  

Risk: Many researchers consider risk as a special type of uncertainty (Chand, 2015); in which a 

DM can assign probabilities to events from past experience.  

Zimmermann (2001) proposed that fuzzy sets can be used to model uncertainty. This study 

examined fuzzy sets since many MCDM methods use fuzzy sets to solve problems in uncertain 

environments. Details of fuzzy sets are briefly summarized in the following sections.  

2.3. Fuzzy Set Theory 

Zadeh (1965) wrote the first notes about fuzzy sets, and Salii (1965) introduced more general   

L-relations. Fuzzy sets, which are currently used in areas such as linguistics, decision-making, 

and clustering, are special cases of L-relations in which L is the unit interval [0, 1] ( Latha, et al., 

2015).  

Zadeh (1965) defined a fuzzy set as a convenient point of departure for construction of a 

conceptual framework that parallels the framework used for ordinary sets. However, a fuzzy set 

is more general than an ordinary set and may potentially prove to have a much wider scope of 

applicability, particularly in fields of pattern classification and information processing. 
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Essentially, Zadeh’s (1965) framework provides a natural way of dealing with problems in which 

the source of imprecision is the absence of sharply defined criteria. Zimmermann (2001) 

clarified that “imprecision” in Zadeh’s statement means vagueness rather than lack of 

knowledge about parameters. Fuzzy set theory provides a mathematical base in which vague 

concepts can be defined and studied precisely (Zimmermann, 2001). Fuzzy set theory permits 

gradual assessment of the membership of elements in a set as described with the aid of a 

membership function valued in the real interval [0, 1]. Zimmermann (2001) classified the 

development of fuzzy sets into two categories: 

a)  “As a formal theory which, when maturing, became more complex and specified and 

was enlarged by original ideas and concepts.” 

b) “As an application oriented ‘fuzzy technology’ that means as a tool for modeling 

problem solving and data mining that has proven superior to existing methods in many 

cases and as an attractive ‘add-on’ to classical approaches in other cases.” 

2.3.1. Fuzzy Set 

A fuzzy set    in a set   is defined as 

  = {( ,    ( ))| ∈  } where membership space  = [0,1] the set    is non fuzzy and    ( ) 

becomes membership grade of   in   .  
2.3.2. Membership Function 

A membership function is assigned to each number   in  . A fuzzy number is a fuzzy subset of 

the universe of discourse X that is both convex and normal (Haghighi, et al., 2011). Figure 2.1 

shows a fuzzy number    in the set of  .  
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Among various shapes of fuzzy numbers, triangular fuzzy number (TFN) shown in Figure 2.1 is 

the most popular fuzzy membership function (Bahri, et al., 2014). A triangular fuzzy number can 

be defined as a triplet (  ,  ,  ). The mathematic schema of this number is defined by: 

   ( ) = ⎩⎪⎨
⎪⎧0                                               ≤   ;                                  <  ≤   ;                                 <  ≤   ;0                                               >   ;     (2.1) 

Mathematical operations for fuzzy numbers with positive real numbers for fuzzy numbers are 

defined as 

  = (  ,  ,  )       = (  ,  ,   )           +   = (  +   ,  +   ,  +   )       (2.2)  ×   = ( ×  1,  ×  2,  ×  3)       (2.3)   ×   = (  ×   ,  ×   ,  ×   )       (2.4)     ,    =    [(  −   ) + (  −   ) + (  −   ) ]    (2.5) 

Figure  2.1 Triangular fuzzy number A  ̃

X 

   ( )

         

1 

0 
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where     ,     is the distance between two fuzzy numbers of    and    (Haghighi, et al., 2011). 

Section 2.4.2 describes a MADM method to solve problems with uncertain attributes using 

fuzzy sets to cover uncertainty. 

2.4. MADM Methods 

As shown in Figure 1.1, many MCDM methods have been developed to solve decision making 

problems in certain and uncertain environments. Hwang and Yoon (1995) framed a MADM 

problem into the following components: 

Alternatives: Each decision making problem has number of alternatives that a DM tries to 

screen, prioritize, select, or rank in the process of decision making. For example, in deciding a 

daily commute, public transportation, bike, and car are alternatives of choice. The number of 

alternatives may differ in each case. In the decision of graduate admission for a well-known 

university, alternatives may include thousands of applicants, where as in the daily commute 

example, alternatives are limited to less than five. Various names for alternatives include 

choice, option, and candidate.  

Attribute: Attributes are criteria used to evaluate alternatives. Each problem may have multiple 

attributes which may conflict with each other. The number of attributes also depends on a 

problem. For the problem of selecting a building design, thousands of attributes may be 

considered whereas in the problem of daily commute, the number of attributes is much 

smaller. Attributes are grouped into cost attributes and benefit attributes. An Attribute such as 

convenience is a benefit attribute and an attribute such as traffic is a cost attribute.  
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Incommensurable Units: Each attribute in the problem may have its own unit. In the car 

selection problem, attributes of price and gas usage have unique units of dollar and gallons per 

mile, respectively. Normalization solves the problem of incommensurable units. 

Normalization: Because attributes may have different units, normalization is necessary to 

eliminate the effect of different units and bring the numbers to a common scale. Normalization 

allows values of alternatives     to be transformed into a scale [0,1] or into one of its sub-

segments (PAVLICIC, 2001). Most MADM methods adopt very similar normalization schemes.  

Attribute Weights: Some attributes are more important than others. Almost all MADM methods 

use weights for attributes to reflect attribute importance. A DM typically defines weights, but 

when the problem is complex, weights may occasionally be calculated by mathematical 

methods such as the AHP method (Saaty, 1986).  

Decision Matrix: MADM problems are typically defined by a matrix in which columns represent 

attributes and rows indicate alternatives. In this decision matrix, each element of     indicates 

the performance rating of the     alternative with respect to the      attribute. In the group of 

cost attributes alternatives with smaller scores (   ) are preferred; in the group of benefit 

attributes, alternatives with larger scores (   ) are preferred.  

Based on availability of problem information, MADM methods can be categorized as decision 

making with no information, decision making with information of attributes, and decision 

making with information about the environment. Hwang and Yoon (1995) presented a 

taxonomy of MADM methods based on these categories, as shown in Figure 2.2. If no 

information is given to a DM, the dominance method is applicable. The dominance method is 
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one of the simplest methods in which, an alternative is dominated if another alternative has 

outcomes at least as good for each attribute. Conversely, an alternative is non-dominated if no 

alternative excels it in all attributes considered. One or more non-dominated choice is defined 

as an optimal choice at the end of process.  

  

 

 

 

 

 

 

 

 

 

 

Figure  2.2 Taxonomy of methods for classical MADM methods (Yoon, et al., 1995) 

If a DM has pessimistic or optimistic information on environment, Maximin or Maximax 

methods are applicable. For the Maximin method, the poorest attribute value for each 

alternative is first selected, followed by the alternative with the best value on the poorest 

values. For the Maximax method, however, the best attribute value for each alternative is 
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initially selected, and then the alternative with the best values is selected as the best choice 

from those selected values.  

If attribute information is available to the DM, then a subcategory (i.e., -the salient feature of 

information received by DM-) is used to further classify MADM methods. Information can be a 

standard level (minimum acceptable level) of each attribute or attribute weights assessed by 

ordinal or cardinal scales (Yoon, et al., 1995). Methods classified in the standard level group 

require an acceptable level of attributes defined by the DM in order to select the alternative. 

Attribute weights are introduced to reflect the DM thoughts on the importance of attributes. 

Weights can be assessed by ordinal or cardinal scales; most MADM methods use cardinal 

scales, as adopted in this study as well.  

Uncertainty in decision making has been studied in the field of fuzzy MCDM (FMCDM). 

Scientists use fuzzy numbers to apply linguistic terms in order to deal with uncertainty in a 

problem. Fuzzy MCDM models can be used to assess alternatives based on attributes and 

weights (Kahraman, et al., 2015). The first notations of fuzzy MCDM were cited by Bellman and 

Zadeh in 1970. They applied fuzzy data to MCDM methods by defining goals and constraints as 

fuzzy sets (Mokhtari, 2013).  

Chen and Hwang (1992) later introduced fuzzy TOPSIS based on original TOPSIS introduced by 

Hwang and Yoon (1981). Chen (2000) defined a table of linguistic terms in order to overcome 

uncertainty on attributes. In Chen’s (2000) method, a DM can use linguistic terms represented 

by fuzzy numbers to overcome inherited uncertainty in a problem. Table 2.1 shows the equal 

fuzzy number of each linguistic variable defined by a DM. 
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Table  2.1 -Linguistic variables to reflect the uncertainty of attributes (Chen, 2000) 

Linguistic variable Triangular fuzzy number 

Very Low (VL) (0, 0, 0.1) 

Low (L) (0, 0.1, 0.3) 

Medium Low (ML) (0.1, 0.3, 0.5) 

Medium (M) (0.3, 0.5, 0.7) 

Medium High (MH) (0.5, 0.7, 0.9) 

High (H) (0.7, 0.9, 1.0) 

Very High (VH) (0.9, 1.0, 1.0) 

 

The following sections provide brief information about the original TOPSIS method introduced 

by Hwang and Yoon (1981), fuzzy TOPSIS introduced by Chen (2000), an extended TOPSIS to 

solve interval-based numbers by Jahanshahloo, et.al. (2006), and VIKOR, which has similar 

background to TOPSIS but was introduced by different methodology.  

 2.4.1. TOPSIS 

Among numerous MADM methods developed to solve real-world decision problems, TOPSIS 

continues to be applied satisfactorily in diverse application areas (Behzadian, et al., 2012). Yoon 

(1980; 1981) initially proposed TOPSIS, which has subsequently been used in many studies and 

many researches (Behzadian, et al., 2012).  
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The basic concept of TOPSIS is that the best alternative should have the shortest distance to the 

ideal solution and the farthest distance from the negative ideal solution. Therefore, before 

using TOPSIS, one must select the best and worst solutions for the problem of interest in an 

attempt to reach a solution that has the farthest distance from the worst solution and closest 

distance to the best solution.  

 

 

Figure  2.3 NIS and PIS distances in TOPSIS 

As shown in Figure 2.3 A
+ 

Positive Ideal Solution (PIS) and A
-
 Negative Ideal Solution (NIS) are 

defined as the best and the worst solutions, respectively. Specifically, PIS contains the best 

scores among all considered criteria or attributes. NIS contains the worst scores among all 

criteria considered. For example, if a problem has cost and benefit attributes, alternatives with 

lower scores are preferred for the cost attribute. For benefit criteria, however, alternatives with 

higher scores are preferred. One TOPSIS assumption is that the decision matrix is given. A 

X1 

X2 

A
+
 

A2 

A1 

A
-
 

A
+  

: Positive Ideal Solution     A1 : Alternative Plan 1 

A
-  

: Negative Ideal Solution    A2 : Alternative Plan 2 
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decision matrix includes scores of each alternative regarding to all criteria.     is the score of 

alternative   with respect to attribute  . A decision matrix with   alternatives and   attributes 

is shown in Table 2.2.  

Table  2.2 Decision matrix 

 Attribute 

Alternatives       …    

           …     

           …     

⋮ ⋮ ⋮ … ⋮ 
           …     

 

The final solution using TOPSIS can be obtained via the following steps: 

Step 1: Normalize the decision matrix: Normalization is an important step to mitigate various 

units of all attributes into a comparable scale. Normalization allows alternatives to be combined 

using the comparable scale. A decision matrix can be normalized in several ways. One of the 

normalization methods (Behzadian, et al., 2012) is to divide the score by the square root of sum 

of score squared. 

    =     ∑ (   )      ,  = 1, … ,  ,  = 1, … ,        (2.6) 

where   is the index for alternatives and   is the index for attributes. 
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Step 2: Calculate the weighted normalized matrix: Some criteria are more important than 

others. In this case, a DM may introduce weights to consider the preference. If one criterion is 

more important than the others, that criterion should have a higher weight. However, 

according to Equation (2.7), all weights should be added to one.  

∑   = 1               (2.7) 

where    is the weight assigned for scores under     column (attribute). The weighted 

normalized value is then calculated as 

 ̅  =   .               (2.8) 

Step 3: Identify NIS and PIS: As discussed, this identification is an important step in the TOPSIS 

method. The PIS and NIS can be defined as: 

  =    = { ̅  , ̅  , … ,  ̅  } = { max  ̅    ∈   ,  min  ̅    ∈   }   (2.9) 

  =    = { ̅  , ̅  , … ,  ̅  } = { min  ̅    ∈   ,  max  ̅    ∈   }   (2.10) 

where   is the benefit criteria group and   is the group of cost criteria.  

Step 4: Calculate distances from NIS and PIS. Distances can be calculated by the Euclidean 

distance as in the following equations: 

   =  ∑ ( ̅  −  ̅  )     ,  = 1, … ,        (2.11) 

   =  ∑ ( ̅  −  ̅  )     ,  = 1, … ,        (2.12) 
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For the     alternative, the distance to the PIS is defined by     using Equation (2.11) while its 

distance to the NIS defined by     is calculated by Equation (2.12). 

Step 5: Calculate the closeness coefficient. The closeness coefficient can be calculated by: 

   =                ,  = 1, … ,          (2.13) 

Note that 0 ≤    ≤ 1 where    = 0  when   =    , and    = 1 when   =    . 

Step 6: Rank the alternatives: Alternatives can be ranked in descending order of their closeness 

coefficient. The alternative with the largest     value is the best solution because it has the 

farthest distance from the worst solution.  

This basic TOPSIS method is based on the assumption that all attributes are certain at the time 

of decision making. Several methods have been proposed to solve problems in uncertain 

environments in which some or all of the attributes are uncertain. Many proposed TOPSIS 

methods have adopted fuzzy sets for uncertain environments.  

2.4.2. Chen’s (2000) Fuzzy TOPSIS  

Chen and Hwang (1992) proposed one of the most important improvements to the TOPSIS 

method that addresses uncertain environment issues using fuzzy sets. Triangular fuzzy 

membership functions were considered for uncertain attributes. The     scores in a decision 

matrix were modeled in fuzzy values rather than crisp numbers, as shown in Table 2.3. Chen 

(2000) used linguistic variables shown in Table 2.1 for the importance weight of attributes and 

linguistic variables for ratings in the decision matrix.  
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This fuzzy TOPSIS method defines three numbers for each cell of a decision matrix. The left 

number is the lowest support of fuzzy number and the right number is the highest value of 

support of fuzzy number. The middle number is the most likely value for an alternative of an 

attribute. For example in (6.3, 7, 7.7), 6.3 is the lowest value of support, 7 is the most likely 

value and 7.7 is the highest value of a cell. The solution for Chen’s (2000) fuzzy TOPSIS can be 

obtained using the following steps: 

Step 1: Normalize the table. The equations to normalize the scales are 

     =      ∑ (                           ) ,  = 1, … ,  ,     = 1, … ,       (2.14) 

     =      ∑ (                           ) ,  = 1, … ,  ,     = 1, … ,       (2.15) 

     =      ∑ (                           ) ,  = 1, … ,  ,     = 1, … ,      (2.16) 

where      ,     ,      ∈ [0,1] 
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Table  2.3 Fuzzy decision matrix 

 Attribute 

Alternatives       …    

   [    ,     ,     ] [    ,     ,     ] … [    ,     ,     ] 

   [    ,     ,     ] [    ,     ,     ] … [    ,     ,     ] 

⋮ ⋮ ⋮ … ⋮ 
   [    ,     ,     ] [    ,     ,     ] … [    ,     ,     ] 

 

Step 2: Calculate weighted normalized matrix. If a set of weights is assumed to be                          = [  ,  , … ,  ] for attributes where ∑   = 1    , then the weighted values after 

normalizing are calculated by the following equations: 

 ̅   =   .                 (2.17)  ̅   =   .                 (2.18)  ̅   =   .                (2.19) 

Step 3: Identify PIS and NIS. The PIS and NIS can be defined by the following equations, 

respectively: 

 ̅ = {   ,    , … ,    } = {(max  ̅   | ∈  ), (min  ̅   | ∈  )}    (2.20)  ̅ = {   ,    , … ,    } = {(max  ̅   | ∈  ), (min  ̅   | ∈  )}    (2.21) 
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where   is associated with benefit attributes,   is associated with cost attributes,     is the PIS, 

and     is NIS associated with the first attribute.  

As      ,      ,      ∈ [0,1], Chen (2000) defined PIS and NIS by Equation (2.22) and (2.23) 

respectively.   ̅ = {((1,1,1)|  ∈  ) , ((0,0,0)| ∈  )}       (2.22)  ̅ = {((0,0,0)|  ∈  ) , ((1,1,1)| ∈  )}       (2.23) 

New definitions of PIS and NIS based on Equations (2.22) and (2.23) are FPIS and FNIS, 

respectively. In the proposed method, PIS and NIS generated from Equations (2.20) and (2.21) 

were used to define the PIS and NIS. In the original PIS and NIS, the numbers came from original 

data from the decision matrix. In FPIS and FNIS, however, the numbers were chosen regardless 

of the decision matrix.  

Step 4: Calculate the distance of alternatives from NIS and PIS. The distances of alternatives 

from PIS and NIS can be calculated by Equation (2.24) and (2.25), respectively.  

   =    [( ̅   −    ) + ( ̅   −    ) + ( ̅   −    ) ] +⋯+   [( ̅   −    ) + ( ̅   −    ) + ( ̅   −    ) ] (2.24) 

   =    [( ̅   −    ) + ( ̅   −    ) + ( ̅   −    ) ] +⋯+   [( ̅   −    ) + ( ̅   −    ) + ( ̅   −    ) ] (2.25) 

Step 5: Calculate the closeness coefficient and rank alternatives. Calculation of the closeness 

coefficient is similar to Equation (2.13) where  ̅   denotes the distance of alternative from NIS 

and  ̅   is representative of the distance of the alternative from PIS. Ranking the alternatives in 

this method is similar to the original TOPSIS based on the closeness coefficient shown in 

Equation (2.13). The largest value of the closeness coefficient is the best solution.  
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A numerical example of Chen’s (2000) fuzzy MADM with four alternatives, three criteria, and 

decision matrix is shown in Table 2.4. The assumptions were made that the first and third 

attributes were profit attributes and the second attribute was a cost attribute. Also, weights 

considered by the DM for attributes were 0.3, 0.4, and 0.3 for the first, second, and third 

attribute, respectively. 

Table  2.4 Decision matrix for fuzzy TOPSIS 

 Attribute/Weights 

Alternatives C1/0.3 C2/0.4 C3/0.3 

   (6.3  7  7.7) (1.5  3  4.5) (0.8  8  15.2) 

   (0.9  1  1.1) (3.5  7  10.5) (0.5  5  9.5) 

   (8.1  9  9.9) (1      2      3) (0.3  3  5.7) 

   (4.5  5  5.5) (3      6      9) (0.5  5  9.5) 

 

The solution to the problem is obtained using the following steps: 

Step 1: Normalize the table. The normalized table according to equations provided is shown in 

Table 2.5. 
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Table  2.5 Normalized decision matrix for fuzzy TOPSIS 

 Attribute/Weights 

Alternatives C1/0.3 C1/0.3 C1/0.3 

   (0.29  0.32  0.35) (0.08  0.16  0.24) (0.03  0.33  0.63) 

   (0.05  0.04  0.05) (0.18  0.37  0.56) (0.02  0.20  0.39) 

   (0.45  0.41  0.45) (0.05  0.10  0.16) (0.01  0.12  0.23) 

   (0.51  0.23  0.25) (0.16  0.32  0.48) (0.02  0.20  0.39) 

Values in the first cell for A1 and C1 can be calculated as 

     = 6.3√6.3 + 7 + 7.7 + 0.9 + 1 + 1.1 + 8.1 + 9 + 9.9 + 4.5 + 5 + 5.5 = 0.2902 

     = 7√6.3 + 7 + 7.7 + 0.9 + 1 + 1.1 + 8.1 + 9 + 9.9 + 4.5 + 5 + 5.5 = 0.3225 

     = 7.7√6.3 + 7 + 7.7 + 0.9 + 1 + 1.1 + 8.1 + 9 + 9.9 + 4.5 + 5 + 5.5 = 0.3547 

Step 2- Calculate the weighted normalized scales. After applying the weights to the decision 

matrix, the updated decision matrix is shown in Table 2.6. 
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Table  2.6 Weighted normalized decision matrix for fuzzy TOPSIS 

 Attribute/Weights 

Alternatives C1/0.3 C1/0.3 C1/0.3 

   (0.087  0.097  0.106) (0.032  0.065  0.097) (0.010 0.101 0.191) 

   (0.015  0.014  0.015) (0.076 0.151 0.227) (0.006 0.063 0.120) 

   (0.136  0.124  0.137) (0.022 0.043 0.065) (0.004 0.038 0.072) 

   (0.155  0.069  0.076) (0.065  0.130   0.194) (0.006 0.063 0.120) 

 

Values in the first cell for A1 and C1 can be calculated as 

0.3* (0.29, 0.32, 0.35) = (0.087, 0.097, 0.106) 

Step 3: Define the NIS and PIS. Based on Equations 2.20 and 2.21, NIS and PIS can be calculated 

as 

 ̅ = {   ,    ,    } = {0.155, 0.022, 0.191}  ̅ = {   ,    ,    } = {0.014, 0.227, 0.004} 

Values in  ̅ can be calculated as 

   = max{0.087, 0.097 , … , 0.076} = 0.155 

   = min{0.032, 0.065 , … , 0.194} = 0.022 

   = max{0.010, 0.101 , … , 0.120} = 0.191 
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Step 4: Calculate the distances of alternatives from NIS and PIS. The distances calculated by 

Equations (2.24) and (2.25) are shown in Table 2.7. 

Table  2.7 Distances from NIS and PIS in fuzzy TOPSIS 

Alternatives  ̅    ̅   

   0.369 0.226 

   0.173 0.420 

   0.346 0.207 

   0.280 0.324 

 

Values of  ̅   and   ̅   of A1 are calculated as: 

   =  13 [(0.087 − 0.014) + (0.097 − 0.014) + (0.106 − 0.014) ] +  13 [(0.032 − 0.227) + (0.065 − 0.227) + (0.097 − 0.227) ]
+  13 [(0.010 − 0.004) + (0.101 − 0.004) + (0.191 − 0.004) ] = 0.369 

   =  13 [(0.087 − 0.155) + (0.097 − 0.155) + (0.106 − 0.155) ] +  13 [(0.032 − 0.022) + (0.065 − 0.022) + (0.097 − 0.022) ]
+  13 [(0.010 − 0.191) + (0.101 − 0.191) + (0.191 − 0.191) ] = 0.226 

Step 5: Calculate the closeness coefficient and rank alternatives. Closeness coefficients and 

ranking of alternatives are shown in Table 2.8 Using Equation 2.13,    

   = 0.3690.369 + 0.226 = 0.3690.595 = 0.619 
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Table  2.8 Closeness coefficient and final ranking in fuzzy TOPSIS 

Alternatives     Rank 

   0.619 2 

   0.292 4 

   0.625 1 

   0.463 3 

 

The DM chooses A3 as the best alternative although the    value for A1 is very similar to that of 

A3.  

2.4.3. Extended TOPSIS Method by Jahanshahloo et al. (2006) with Interval Numbers 

Chen (2000) used fuzzy membership functions to define uncertainty in the problem. Chen 

(2000) assumed that fuzzy parameters have known membership functions. However, a DM may 

not be able to specify membership functions or probability distribution in an inexact 

environment (Sayadi, et al., 2009). Uncertainty can also be defined using intervals. Interval 

numbers are more suitable for decision-making problems in an imprecise and uncertain 

environment because they are the simplest form to represent uncertainty in the decision 

matrix (Sayadi, et al., 2009). Jahanshahloo, et al (2006) proposed use of intervals for TOPSIS. 

They assumed that the score of alternative   with regard to criterion   was not known exactly 

but belonged to an interval between[    ,     ] in which       is the lower limit and      is the upper 

limit of interval.  
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Table 2.9 shows a decision matrix for an interval-based problem with   alternatives and   

attributes. 

Table  2.9 Interval-based decision matrix 

 Attribute 

Alternatives       …    

   [    ,     ] [    ,     ] … [    ,     ] 

   [    ,     ] [    ,     ] … [    ,     ] 

⋮ ⋮ ⋮ … ⋮ 
   [    ,     ] [    ,     ] … [    ,     ] 

Similarly, weights  = [  ,   , … ,   ] where ∑   = 1     are introduced for attributes. The 

solution for interval-based TOPSIS is similar to the steps for the original TOPSIS with minor 

modifications. The following steps provide a summary of this method. 

Step 1: Normalize the table. Similar to the original TOPSIS method, normalization is necessary 

here, but the equation is different. For each interval, the upper limit and lower limit must be 

normalized.       is the normalized value of the lower limit and       represents the normalized 

value of the upper limit, calculated by the following equations:  

     =      ∑ (                   ) ,  = 1, … ,  ,     = 1, … ,        (2.26) 

     =      ∑ (                   ) ,  = 1, … ,  ,     = 1, … ,        (2.27) 
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All normalized values fall in the interval of [0,1].  

Step 2: Find the weighted normalized values. Weighted normalized values are calculated by the 

following equations:  ̅   =   .                (2.28)  ̅   =   .                (2.29) 

where the importance (weight) of attribute   is introduced by    and ∑   = 1    .  

Step 3: Define the PIS and NIS. As mentioned PIS and NIS can be calculated by the following 

equations:   ̅ = {   ,    , … ,    } = {(max  ̅   | ∈  ), (min  ̅   | ∈  )}    (2.30)  ̅ = {   ,    , … ,    } = {(max  ̅   | ∈  ), (min  ̅   | ∈  )}    (2.31) 

where   is associated with the benefit attribute and   is associated with cost attribute and     is 

the PIS and     is NIS associated with first attribute. FPIS and FNIS defined in Equations (2.22) 

and (2.23) can also be used in this step as discussed.  

Step 4: Calculate the distances of alternatives from PIS and NIS. Distances of alternatives from 

NIS and PIS are calculated by n-dimensional Euclidean distance as described in the following 

equations: 

 ̅  =  ∑ ( ̅   −   ) + ∑ ( ̅   −   )  ,  = 1, … , ,     = 1, … ,      (2.32) 

 ̅  =  ∑   ̅   −     + ∑   ̅   −      ,  = 1, … , ,     = 1, … ,     (2.33) 

where  ̅   is the distance of     alternative of PIS and  ̅   is the distance of     of NIS. 

Step 5: Calculate the closeness coefficients. Final ranking of alternatives depends on the 

closeness coefficient, a unique number associated with each alternative. It is calculated as 
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   =                ,  = 1, … ,          (2.34) 

where 0 ≤    ≤ 1 . The special cases are    = 0  when   =    , and    = 1 when    =    . 

A preferred alternative is closest to its PIS and farthest from its NIS. The closer that     is to 1, 

the better.  

Chen’s fuzzy TOPSIS and Jahanshaahloo’s interval based TOPSIS both used the TOPSIS method 

developed by Hwang and Yoon (1981). Both methods attempted to solve MADM problems with 

uncertain attributes. The main difference between methods, though, is that Chen (2000) 

defined uncertainty by fuzzy membership functions, where Jahanshahloo, et al. (2006) 

introduced uncertain attribute values by intervals. Beside this difference, both modified 

methods solved MADM problems similarly.   

2.4.4. VIKOR 

Opricovic (1998) proposed another MADM method, called VIKOR based on measure of 

closeness to  the ideal solution. VIKOR finds a compromised solution among conflicting 

attributes. The basic function of VIKOR adopts the   −        calculation as an aggregation 

function proposed by Yu (1973). In a MADM problem with   alternatives and   criteria, the 

score of each alternative regard with each criteria is    ( = 1,2, … ,  ;  = 1,2, … ,  ). The 

equation of discrete form of   −         distance is defined by: 

  , = (∑ (    ∗      ∗    )     )  ,         1 ≤  ≤ ∞;       = 1,2, … ,      (2.35) 

  ∗ = {  ∗,   ∗, … ,   ∗ } = {(max(   ) | ∈  ), (min (   )| ∈  )},   = 1,2, … ,   (2.36) 

   = {  ∗,   ∗, … ,   ∗ } = {(min(   ) | ∈  ), (max (   )| ∈  )},  = 1,2, … ,    (2.37) 



 

31 
 

where   is associated with benefit attribute,   is associated with cost attribute,    is the 

corresponded weight of each attribute, and   ∗ and     are identical to PIS and NIS in the TOPSIS 

method. In this method,     is an evaluation of corresponded attribute for alternatives which 

plays the same role as     plays in the TOPSIS method. 

The following steps summarize the VIKOR method: 

Step 1: Under the assumption of availability of the decision matrix and scores of each 

alternative regarding to attributes, calculate    and   . Two important factors in VIKOR are 

group utility (  ) and individual regret (  ), calculated using the following equations: 

   =   , = ∑      ∗      ∗          ,  = 1,2, … ,  ;   = 1,2, … ,      (2.38) 

  =   , = max      ∗      ∗      ,  = 1,2, … ,  ;   = 1,2, … ,      (2.39) 

Step 2: Calculate    
  =      ∗     + (1 −  )     ∗              (2.40) 

where the definition of  ∗,   , ∗,   and   are 

  = max              (2.41) 

 ∗ = min              (2.42) 

  = max              (2.43) 

 ∗ = min              (2.43) 
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Variable   in Equation (2.40) is used as the weighting strategy for a majority of attributes or the 

maximum group utility. Variable   is usually set at 0.5 without loss of generality (Liao, et al., 

2013).    in Equation (2.40) considers individual regret and group utility.  

Step 3: Sort the alternatives based on decreasing order in three categories:   ,  , and   . The 

results are three ranking lists of alternatives.  

Step 4: Obtain the best choice or a compromise solution. The choice with smaller    is the 

better solution. However, the best solution requires two qualifications to obtain a unique 

solution: 

Qualification 1: (   −    ) ≥      where    and    are the first and second positions at 

ranking list.  

Qualification 2: The best solution based on    should be the best ranked in    and    as well.  

When these qualifications are not met simultaneously, VIKOR generates a set of compromised 

solutions as follows: 

If the first qualification is not obtained, then all alternatives in {  ,  , … ,  } are compromised 

solutions where the value of   is obtained by Equation (2.45). 

(  −    ) <               (2.45) 

If the second qualification is not obtained, then both    and    are compromised solutions.  

One of the most important differences between VIKOR and TOPSIS is that TOPSIS does not 

consider individual regret between alternatives while VIKOR considers it as an important factor 



 

33 
 

in calculations. Individual regret defines how far an alternative is from the ideal solution. 

Parameter   in Equation (2.35) plays the role of individual regret. VIKOR relies on this 

parameter because it uses   ,  (as    in Equation 2.38) and   ,  (as   in Equation 2.39) to 

formulate ranking measure. 

Another significant difference between TOPSIS and VIKOR is that the solution proposed by 

VIKOR is closest to the ideal solution, whereas the solution provided by TOPSIS is not 

necessarily closest to the ideal solution.  

Chen’s fuzzy TOPSIS and Jahanshaahloo’s interval based TOPSIS both extended the original 

TOPSIS to solve problems with uncertain attributes. Chen (2000) used fuzzy membership 

functions to address uncertainty in the problem that is dependent on complex mathematical 

concepts. Jahanshahloo et. al. (2006) used intervals to address the uncertainty; however, they 

did not provide a guideline for how to generate intervals. Both methods selected the best 

alternative based on a final value derived from the equations provided. The final values of 

alternatives obtained to find the best solution may be close to each other, but any existing 

MADM method selects the alternative with the highest value. This decision-making process 

reveals an inherent sensitivity issue in these methods discussed in Chapter Three. The proposed 

method overcomes this concern by repeating the ranking processes via simulations. The 

proposed method also addresses the issue of needing a guideline to generate uncertain 

intervals, as discussed in the following chapter.  
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Chapter 3. Proposed TOPSIS Method with Uncertain Attributes 

3.1. Introduction 

Chapter Two described several MADM methods for certain and uncertain environments. 

However, Chen and Hwang’s (1992) fuzzy TOPSIS, required that fuzzy numbers be defined for 

uncertain attributes, but fuzzy numbers are not easily defined. Jahanshahloo, et al. (2006) 

extended TOPSIS to solve MADM problems with uncertain attributes via intervals. However, 

both methods ranked alternatives based on a single number. This chapter proposes a new 

approach to model uncertainty and a simulation procedure to generate a ranking distribution. 

The proposed method defines uncertainty by intervals, maintaining the three-number fuzzy 

number syntax with the middle number as the most likely value. In addition simulation of 

numbers in each interval of uncertain attributes according to a triangular or uniform 

distribution is proposed, resulting in each iteration containing one decision matrix with all 

attribute values simulated. 

The proposed method is also based on TOPSIS, one of the most adopted methods in decision 

making (Rahimi, et al., 2007). TOPSIS was chosen for this study to tackle uncertainty in 

attributes for the following reasons: 

- TOPSIS is commonly used, resulting in access to numerous published papers (Behzadian, 

et al., 2012). 

- Many software packages, such as R, include the TOPSIS algorithm. 

- TOPSIS was developed to deal with uncertain attributes as fuzzy membership functions 

or uncertain intervals (Chen. 2000, Jahanshahloo, et al. 2006). 
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- Among all MCDM methods, TOPSIS and VIKOR have been developed most recently. 

TOPSIS offers a ranking at the end whereas VIKOR offers three lists of rankings. DMs 

may be confused about final decision due to the complexity of rules in VIKOR (Liao, et 

al., 2013). Therefore, TOPSIS was selected as the base method in this study to tackle 

uncertainty in attributes. 

3.2. Proposed Method on Uncertain Attributes 

Solving MADM problems with uncertain attributes was the main subject of this study. 

Uncertainty can be modeled by fuzzy numbers, vague sets, or intervals. Uncertainty can also be 

defined based on percentages defined by DMs, who can subjectively define the uncertainty 

percentage for each attribute. For a construction project, a DM must select one design 

(alternative) based on criteria such as maintenance expenses, waste output, and CO2 emission. 

Estimates of attribute values may not be clear at the beginning of a project, but evaluation of 

uncertain attributes can be obtained based on experience or historical data. In this case, DMs 

may assign a percentage of uncertainty to scores. For example, DMs may assign 70% 

uncertainty to an attribute, showing that very limited information exists for this attribute. 

Therefore, the range generated from this uncertainty value will be larger than those with small 

uncertainty values.  

This study proposed the following method for handling uncertain attributes. First, a percentage 

of uncertainty was used to model uncertain attributes, a DM was asked to define the most 

likely attribute value. Similar to the method described by Jahanshahloo, et al(2006), the 

uncertainty percentage was used to build an interval around the most likely value. Simulations 
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were then used to generate random values within intervals, and the original TOPSIS was applied 

to obtain one ranking of alternative based on the simulated decision matrix. Finally, the final 

ranking of alternatives was determined by examining ranking distributions of multiple 

simulation runs. The proposed method consisted of four parts: defining uncertainty, finding 

weighted normalized values by interval-TOPSIS method, applying simulation runs, and applying 

original TOPSIS. Details of the proposed method are discussed in the following sections. Steps 

of the proposed method are shown in Figure 3.1. 

3.2.1. Defining Uncertainty 

Step 1: Fill the decision matrix with the most likely scores. As discussed in Section 2.4.2, one 

assumption in the original TOPSIS method is that the decision matrix is provided. In general, 

scores of   alternatives and   criteria must be determined in the decision matrix, as shown in 

Table 3.1.  

 Table  3.1 Decision matrix  

 Attribute 

Alternatives       …    

           …     

           …     

⋮ ⋮ ⋮ … ⋮ 
           …     
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Figure  3.1 Flowchart of the proposed method  
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Step 2: Define uncertainty. Assuming   criteria and   alternatives allows DMs to assign some 

percentage for uncertainty on    . Let ∝ %, ∝ % and ∝ % be the percentage of uncertainty 

of the first, second and third attribute, respectively.  ∝ % is the uncertainty percentage about   . In this case, the interval for     is [   − ∝ % ×    ,    + ∝ % ×    ]. The difference 

between defining intervals and fuzzy membership is that defining intervals is much easier than 

defining certain fuzzy membership functions (Sayadi, et al., 2009). The final score for the first 

alternative and the first criterion is modeled by an uncertainty range. Based on this definition, 

the new matrix is defined in Table 3.2. 

Table  3.2 Interval-based decision matrix 

 Attribute 

Alternatives       …    

   [    ,     ] [    ,     ] … [    ,     ] 

   [    ,     ] [    ,     ] … [    ,     ] 

⋮ ⋮ ⋮ … ⋮ 
   [    ,     ] [    ,     ] … [    ,     ] 

 

In the interval-based decision matrix,      means the lower limit of interval and      means the 

upper limit of the uncertainty interval.  
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3.2.2. Finding Weighted Normalized Values by Interval-TOPSIS Method 

Step : Normalize values. The table can be normalized using Equations (3.1) and (3.2).        is the 

normalized value of the lower limit and       is the normalized value of the upper limit, calculated 

by the following equations:  

     =      ∑ (                   ) ,  = 1, … , ,     = 1, … ,       (3.1) 

     =      ∑ (                   ) ,  = 1, … , ,     = 1, … ,       (3.2) 

Normalized values fall in the interval of [0,1].  

Step 4: Define the weights of criteria and find weighted normalized values. Because DMs may 

consider certain attributes to be more important than others, a larger weight should be 

assigned to reflect their importance. Let   ,  = 1, … ,  be the weight for each criteria 

and ∑   = 1    .  A weight adjusted decision matrix is obtained by multiplying each interval by 

the corresponding weight according to Equations (3.3) and (3.4). 

 ̅   =   .                (3.3)  ̅   =   .                (3.4) 

3.2.3. Application of Simulation Runs 

Step 5: Applying simulation. According to the method described by Jahanshahloo, et al.(2006), 

NIS and PIS were initially defined in thid study and then the distances of each alternative from 

NIS and PIS and the closeness coefficient of each alternative were calculated. Then the 

alternatives were ranked based on their closeness coefficients. As shown in Section 2.4.3, the 
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final rankings of alternatives were obtained according to their closeness coefficients. Figure 3.2 

shows a numerical example of two alternatives (  = 2) when the same uncertainty values 

were assigned to each alternative. The  -axis is various uncertainty values and the  -axis is the 

computed     (Equation 2.34). As shown in the figure, when the uncertainty increased, the rank 

of the first and the second alternative changed.  

 

Figure  3.2 Changing ranks by increasing the percentage of uncertainty  

In order to overcome this concern, this study proposed use of simulation to generate many 

solutions in the form of ranking distribution. One hundred numbers in each interval were 
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bar chart. As a numerical example with four alternatives, the final result showed 5 times first 

rank, 20 times second rank, 45 times third rank and 30 times fourth rank in 100 iterations for 

the first alternative as shown in Figure 3.3.  

 

Figure  3.3 Final ranking for alternatives by 100 iterations 

The next step was to obtain a rank based on a matrix resulting from the random numbers 

simulated. In order to obtain the random numbers and simulate the problem, two strategies of 
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score in the decision matrix. The second method used a triangular distribution that selected a 

random number within the interval that gave higher probability to the middle number 
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method selected a number close to the middle number of the interval due to its most likely 

occurrence. However, the uniform method randomly selected numbers in an interval with 

equal probability. Using the numerical example in Section 3.3, Figures 3.4 and 3.5 show results 

from both random numbers selection.  

Implementation of the proposed simulation studies was done using the language R. In order to 

generate a random number in R from a uniform distribution in the interval of [ ,  ],      runif(1) ∗ (a − b) + a was used. The R function      (1) generated a random number based 

on a uniform distribution between zero and one. In the case of creating random numbers based 

on a triangular distribution, the R function          (     (1), ,  ,     ) was used.  

3.2.4. Application of Original TOPSIS on Simulated Numbers 

After obtaining random values, the rest of the steps were identical to the regular TOPSIS 

method discussed in Section 2.4.1, including defining NIS and PIS, calculating distances of each 

alternative from NIS and PIS, calculating the closeness coefficients of each alternative, and 

ranking the alternatives. Values obtained by simulation, were normalized and weighted by 

corresponding associated weights of attributes. 

3.3. Numerical Example Solution Provided by Multiple Methods 

In this section, a numerical problem is solved using the proposed method and then compared 

to Chen and Hwang’s (1992) fuzzy TOPSIS. The numerical problem under consideration had four 

alternatives (  ,  ,         ) and three attributes (  ,         ) in addition to various 

assigned weights. Various confidence values were assigned to each attribute. Table 3.3 shows 
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information needed for MADM analysis. The attributes came with their weights and uncertainty 

as attribute, weight, and uncertainty, respectively.  

Table  3.3 Decision matrix 

 Attribute/Weight/Uncertainty 

Alternatives 
  /0.35/60% 

(Benefit attribute) 

  /0.25/70% 

(Cost attribute) 

  /0.40/30% 

(Benefit attribute) 

   3 5 4 

   6 5 1 

   7 3 3 

   2 3 8 

  

Table 3.3 shows that    had 30% uncertainty on his attribute and that    is more important 

than the other attributes due to its weight (0.4). Less information was available for attribute    

compared to the other attributes. Finally, the assumption was made that    is a cost attribute 

and    and    are benefit attributes. MADM analysis was performed for two methods:  

the proposed method and Chen’s (2000) fuzzy TOPSIS method discussed in Chapter Two. 
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3.3.1. The Proposed Method 

Step 1: The decision matrix is provided in Table 3.3. 

Step 2: Calculate the intervals. The first step to obtaining the intervals is identical for all 

methods. Based on the definition provided in Chapter Three, the decision matrix containing 

intervals is shown in Table 3.4. 

Table  3.4 Interval based decision matrix 

 Attribute/Weight/Uncertainty 

Alternatives   /0.35/60%   /0.25/70%   /0.40/30% 

   [2.1  3.9] [3.25  6.75] [3.4  4.6] 

   [4.2  7.8] [3.25  6.75] [0.85  1.15] 

   [4.9  9.1] [1.95  4.05] [2.55  3.45] 

   [1.4  2.6] [1.95  4.05] [6.8  9.2] 

 

For example, the interval for the first alternative in regards to the first attribute is calculated as 

3 ± (3 × 0.6)/2 = [2.1,3.9]. 

Step 3: Normalize the scales. The normalized table is shown in Table 3.5. 
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Table  3.5 Normalized interval-based decision matrix 

 Attribute/Weight/Uncertainty 

Alternatives   /0.35/60%   /0.25/70%   /0.40/30% 

   [0.144, 0.267] [0.263, 0.546] [0.251, 0.339] 

   [0.287, 0.534] [0.263, 0.546] [0.063, 0.085] 

   [0.335, 0.623] [0.158, 0.328] [0.188, 0.254] 

   [0.096, 0.178] [0.158, 0.328] [0.501, 0.678] 

 

For example, the lower limit in the first cell between alternative    and attribute    is 

calculated as 

     = 2.1√2.1 + 3.9 + 4.2 + 7.8 + 4.9 + 9.1 + 1.4 + 2.6 = 0.144 

Step 4: Calculate weighted normalized values. Table 3.6 contains weighted normalized values. 

For example, the weighted normalized for the first cell is calculated as 

0.35*[0.144, 0.267] = [0.050, 0.093] 

Step 5: Generate random values. The next step was to simulate different numbers and perform 

simple TOPSIS for each iteration (defined as 100). Then the regular TOPSIS with the simulated 

numbers was used. In this study, the processes that defined the PIS and NIS, calculated the 

distances, calculated the closeness coefficient, and ranked alternatives were coded in R 

language.  
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Table  3.6 Weighted normalized interval-based decision matrix 

 Attribute/Weight/Uncertainty 

Alternatives   /0.35/60%   /0.25/70%   /0.40/30% 

   [0.050, 0.093] [0.066, 0.137] [0.100, 0.136] 

   [0.101, 0.187] [0.066, 0.137] [0.025, 0.034] 

   [0.117, 0.218] [0.039, 0.082] [0.075, 0.102] 

   [0.034, 0.062] [0.039, 0.082] [0.200, 0.271] 

 

After obtaining the ranking result of each iteration, the total ranking of each alternative was 

summarized to form Figures 3.4 and 3.5, which show alternative ranking distributions based on 

100 times iterations by uniform and triangular membership functions. According to Figures 3.4 

and 3.5, alternative A4 obtained the most first ranks by either the triangular random numbers 

or the uniform random numbers. Therefore, A4 was deemed the best alternative, followed by 

A3 as has the most second-place outcome. The triangular distribution assigns more weight on 

most-likely value within the uncertain interval rather than the uniform distribution. Therefore, 

triangular distribution was proposed for use in order to provide better ranking distribution.  
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Figure  3.4 Final ranking for 100 simulated runs by triangular random numbers 

 

Figure  3.5 Final ranking for 100 simulated runs by uniform random numbers  
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3.3.2. Chen’s (2000) Fuzzy TOPSIS 

Step 1: Integrate uncertainty with decision matrix. This step, which calculates the intervals, was 

identical to the proposed method. The values are shown in Table 3.4. 

Step 2: Calculate fuzzy scales. In order to solve the problem using fuzzy TOPSIS, the intervals 

were converted into fuzzy memberships. Triangular fuzzy membership was chosen in this study 

to represent fuzzy values. Upper and lower numbers in intervals were same as before, and the 

middle number was calculated as the average of the upper limit and lower limit of the interval. 

Fuzzy scales are shown in Table 3.7. 

Table  3.7 Fuzzy decision matrix in fuzzy TOPSIS 

 Attribute/Weight/Uncertainty 

Alternatives   /0.35/60%   /0.25/70%   /0.40/30% 

   (2.1, 3 ,3.9) (3.25, 5, 6.75) (3.4, 4, 4.6) 

   (4.2, 6, 7.8) (3.25, 5, 6.75) (0.85, 1, 1.15) 

   (4.9, 7, 9.1) (1.95, 3, 4.05) (2.55, 3, 3.45) 

   (1.4, 2, 2.6) (1.95, 3, 4.05) (6.8, 8, 9.2) 

 

For example, the fuzzy number for the first cell was calculated as (2.1, 3, 3.9), with 2.1 and 3.9 

as the upper limit and lower limit of the first cell in Table 3.7. The middle number was 

calculated as (2.1+3.9)/2=3. 

Step 3: Normalize the scales. The normalized table is provided in Table 3.8. 



 

49 
 

Table  3.8 Normalized decision matrix in fuzzy TOPSIS 

 Attribute/Weight/Uncertainty 

Alternatives   /0.35/60%   /0.25/70%   /0.40/30% 

   (0.119, 0.170, 0.221) (0.219, 0.337, 0.454) (0.205, 0.242, 0.278) 

   (0.250, 0.340, 0.442) (0.219, 0.337, 0.454) (0.051, 0.060, 0.069) 

   (0.337, 0.397, 0.515) (0.131, 0.202, 0.273) (0.154, 0.181, 0.208) 

   (0.393, 0.113, 0.147) (0.131, 0.202, 0.273) (0.411, 0.483, 0.556) 

  

For example, the first element in the first cell originated from the following calculation: 

     =      ∑ (       +           +        ) → 

     = 2.1√2.1 + 3 + 3.9 + 4.2 + 6 + 7.8 + 4.9 + 7 + 9.1 + 1.4 + 2 + 2.6 = 0.119 

Step 4: Calculate weighted normalized values. Weighted normalized values are shown in Table 

3.9. 
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Table  3.9 Weighted normalized decision matrix in fuzzy TOPSIS 

 Attribute/Weight/Uncertainty 

Alternatives   /0.35/60%   /0.25/70%   /0.40/30% 

   (0.042, 0.059, 0.077) (0.055 0.084, 0.114) (0.082,0.097,0.111) 

   (0.087, 0.119, 0.155) (0.055 0.084, 0.114) (0.021, 0.024, 0.028) 

   (0.132, 0.139, 0.180) (0.033, 0.050, 0.068) (0.062, 0.072, 0.083) 

   (0.137, 0.040, 0.052) (0.033, 0.050, 0.068) (0.164, 0.193, 0.222) 

  

For example, the first number in the first cell was calculated as 0.35*0.119=0.042 

Step 5: Identify NIS and PIS. Definitions of NIS and PIS are provided based on the definitions of 

FNIS and FPIS discussed in Section 2.4.3. The following terms show the PIS and NIS for each 

attribute: 

 ̅ = {   ,    ,    } = {1, 0, 1}  ̅ = {   ,    ,    } = {0, 1,0} 

Step 6: Calculate the distances of NIS and PIS. Distances of each alternative of NIS and PIS are 

calculated in Table 3.10. 
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Table  3.10 Distances from PIS and NIS in fuzzy TOPSIS 

Alternatives  ̅    ̅   

   1.074 1.931 

   1.063 1.943 

   1.174 1.829 

   1.232 1.784 

 

For example, the values of  ̅   and   ̅   were calculated as 

   =  13 [(0.042 − 0) + (0.059 − 0) + (0.077 − 0) ] +  13 [(0.055 − 1) + (0.084 − 1) + (0.114 − 1) ]
+  13 [(0.082 − 0) + (0.097 − 0) + (0.111 − 0) ] = 1.074 

   =  13 [(0.042 − 1) + (0.059 − 1) + (0.077 − 1) ] +  13 [(0.055 − 0) + (0.084 − 0) + (0.114 − 0) ]
+  13 [(0.082 − 1) + (0.097 − 1) + (0.111 − 1) ] = 1.931 

Step 7: Calculate the closeness coefficient and rank alternatives. The last step was to calculate 

the closeness coefficient and rank the alternatives. Final results are shown in Table 3.11. 

Using Equation (2.13),    =  .    .     .   = 0.357. Table 3.11 shows that alternative    is the 

best choice.  
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Table  3.11 Closeness coefficient and final ranking of alternatives in fuzzy TOPSIS 

Alternatives       Rank 

   0.357 3 

   0.353 4 

   0.390 2 

   0.408 1 

 

Using the proposed method, a DM can observe which alternative has the most first-rank 

outcome. This process is an important factor in decision making because a DM has more 

information. In the original TOPSIS, fuzzy TOPSIS, and VIKOR methods, a DM only had a ranking 

list. When alternatives are close to each other, only one ranking outcome does not provide 

adequately describe sensitivity of the result. Using the proposed method, however, a DM 

obtains ranking results, as shown in Figures 3.4 and 3.5.  
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Chapter 4. A Case Study 

4.1. Introduction 

This chapter describes a case study that selected a building design with consideration of 

resiliency and sustainability. In the context of MADM, candidates were various building designs 

and attributes were related to multi-hazard resilience and sustainability factors impacting 

building structures. Multi-hazard resilience and sustainability have recently become two of the 

most discussed topics among building design and construction researchers as well as the 

general public (Saunders, et al., 2015). The concepts of multi-hazard resilience and 

sustainability in building design have originated from multiple societal disciplines (architecture, 

science, engineering, economics, and sociology) and project scales such as individual buildings 

and infrastructure, institutions, communities, and regions. However, resilience and 

sustainability have seldom been holistically considered together for building design. These two 

categories interact with multiple attributes to evaluate alternatives considered in a study. 

However, quantifying those assessments does not provide absolute certainty because some 

concepts (alternatives) may evolve over time. For example, this study considered attributes 

such as the LEED (Leadership in Energy & Environmental Design) score and life cycle analysis to 

evaluate sustainability of alternatives. One tool to evaluate the LEED score of alternatives is 

energy consumption of a building as related to many different items, such as HVAC systems. 

When a DM decides that the HVAC systems are not yet established and therefore he does not 

has 100% accurate estimation, leading to uncertainty about the estimations. This uncertainty 

applies to all attributes, thereby complicating the decision-making process. Based on the nature 

of building design, a DM can assign percentages of uncertainty to each attribute related to 
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resiliency or sustainability. In this chapter, a case study demonstrates application of the 

proposed method to solve the decision-making problem of building design under uncertainty. 

The following sections describe the case study and a solution generated from the proposed 

method. The terms resiliency and sustainability are described in Sections 4.2 and 4.3, 

respectively.  

4.2. Multi-Hazard Resilience 

According to the United States Geological Survey (USGS) (2013), “Every year in the United 

States, natural hazard events threaten lives and livelihoods, resulting in deaths and billions of 

dollars in damage.” Natural hazards include earthquakes, extreme winds (hurricanes and 

tornadoes), landslides (mudslides), floods, volcanos, and wild fires.  

 

Figure  4.1 Taxonomy of multi-hazards 
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Among these hazards, earthquakes extreme winds, and floods can cause extensive and severe 

building damages and collapse, and loss of life. The following sections briefly describe each 

natural hazard. Figure 4.1 provides a taxonomy of hazards studied in this section.  

4.2.1. Earthquake Hazards  

Earthquake is one of the most studied natural hazards in research. A large amount of research 

has been conducted on earthquake hazard mitigation since the 1989 Loma Prieta earthquake 

and the 1994 Northridge earthquake, both in California. Among them most notably are the SAC 

(SEAOC ATC CUREe) Steel Project funded by the Federal Emergency Management Agency 

(FEMA), and the NEES (Network for Earthquake Engineering Simulation) Program funded 

through the National Science Foundation (NSF). SAC is a joint venture of Structural Engineers 

Association of California (SEAOC), the Applied Technology Council (ATC), and the Consortium of 

Universities for Research in Earthquake Engineering (CUREE). The joint venture, was formed in 

1994 after the Northridge earthquake, received funding from FEMA and the California Office of 

Emergency Services (OES). SAC focused on steel moment frames and largely updated AISC 

(American Institute of Steel Construction) seismic design provisions. A few new connections 

were prequalified as the result of the SAC project, including the reduced beam section (RBS), 

which has become very popular in seismic applications. More recently, NSF created the George 

E. Brown, Jr. Network for Earthquake Engineering Simulation (NEES) “to give researchers the 

tools to learn how earthquakes and tsunami impact the buildings, bridges, utility systems and 

other critical components of today’s society.” (Chamot, 2004). The NEES network infrastructure 

includes 14 earthquake engineering and tsunami research facility sites at universities 

throughout the United States available for testing on-site, in the field, or through telepresence 
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and cyberinfrastructure operations that connect the work of experimental facilities, 

researchers, educators and students. The Division of Civil, Mechanical and Manufacturing 

Innovation (CMMI) of NSF has supported more than 160 NEES research awards through annual 

research program solicitations (Chamot, 2004).  

Seismic design for buildings and other structures is performed using the Seismic Design Hazard 

maps developed and updated by USGS. Current seismic design is based on collapse prevention 

(life safety) philosophy, aiming a uniform low collapse probability for structures built 

throughout the United States. The design hazard maps give spectral acceleration values 

according to geographic locations. USGS seismic design hazard maps were adopted by the 

American Society of Civil Engineers (ASCE) in its publication ASCE 7 (ASCE, 2006) – Minimum 

Design Loads for Buildings and Other Structures. ASCE 7 was then adopted by the International 

Building Code (IBC) published by the International Code Council (ICC). Most state and local 

jurisdictions have adopted IBC as their model building code. ASCE 7 (ASCE, 2006), contains 

dozens of preapproved types of lateral load-resisting structural systems that can be readily 

used in seismic design with corresponding design parameters and detailing requirements. 

These systems are commonly referred to as Prequalified Seismic Design Structural Systems. 

Structural systems not listed can be used per the approval of building officials based on 

experimental and/or analytical evidence. Specific material trade organizations, such as the 

American Concrete Institute (ACI), the American Institute of Steel Construction (AISC), and the 

American Wood Council (AWC), published their standards (e.g., AISC 358 – Prequalified 

Connections for Special and Intermediate Steel Moment Frames for Seismic Applications) and 

specifications (e.g., AISC 341 – Seismic Provisions for Structural Steel Buildings and ACI 318 – 
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Building Code Requirements for Structural Concrete) that further prescribed seismic design 

requirements for structural systems using these materials. 

The focus of seismic design traditionally has been on ductility and energy dissipation. Ductile 

systems are preferred in seismic design because they can withstand large inelastic deformation 

under strong ground excitation without major damage or collapse. Ductility is correlated to a 

structure’s energy dissipating capacity. In general, materials and structures with increased 

energy dissipating capacity can sustain large inelastic deformation without failure. Instead of 

using prescribed design provisions in building codes and related references, the performance 

based design approach sets performance targets and designs the structure to meet 

performance targets. Performance targets equal or exceed minimum performance 

requirements of the code. This method provides great flexibility in design and performance 

targets (e.g., life safety and property damage control) and is able to be set at different levels of 

hazard, often yielding optimal designs. Recent and current research on seismic design has 

explored new analysis methods, such as push-over analysis and, incremental dynamic analysis, 

and new concepts, such as fragility, for assessing building performance. FEMA’s recent 

publication, FEMA P695 – Quantification of Building Seismic Performance Factors- introduced a 

quantified methodology for assessing a building structure’s seismic performance, that can be 

used to quantify seismic design parameters for new systems. Self-centering structures have also 

been studied recently for their advantages of reduced repair cost and decreased downtime of 

buildings after major earthquakes. 
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4.2.2. Extreme Wind Hazards  

Wind hazard is another extensively studied natural hazard. Extreme winds can cause extensive 

casualty and property loss. Two main types of damaging winds are, hurricanes and tornadoes. 

Hurricanes often affect the East Coast and Mexican gulf states, while tornadoes primarily 

impact the southern and mid-western states (tornado alley). Hurricanes cause damages to 

buildings and structures in a large region or regions while tornadoes affect relatively smaller 

areas with much stronger winds and devastating damages. Both types of extreme winds exert 

high pressure (inward and outward) to building structural and nonstructural systems, causing 

potential failures of components (roofs, facades, windows, and doors) and/or main structural 

frames. Both types of extreme winds generate wind-borne debris that is hazardous to humans 

and other structures. Hurricanes are often accompanied by extensive rainfalls that cause 

flooding in large regions 

Current building design codes address wind resistance design by assigning design basic wind 

speed according to geographic locations (wind speed maps) and calculating pressures 

associated with the wind based on topographic configuration of the site and height and 

geometric configuration of the buildings. In hurricane-prone areas, wind-borne debris 

resistance is taken into consideration. However, current building codes lack tornado resistance 

design provisions (Kuligowski, et al., 2014). Some existing tornado resistance design guidelines 

and documents exist but without general acceptance and adoption. Therefore, tornadoes often 

cause devastating, and catastrophic damages and fatalities, such as in May 2011 in Joplin, 

Missouri, and May 2013 in Moore, Oklahoma, both tornadoes which hit local areas with dozens 

of fatalities and significant amounts of property losses. 
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4.2.3. Other Hazards 

4.2.3.1. Fire  

Fire can be an individual event or an accompanying event from other hazards, such as 

aftermath of earthquakes. Fire resistance has been incorporated into building design for 

decades. Fire ratings are in accordance with building occupancies. Structures and components 

are fireproofed based on fire ratings. In recent years, performance of structures (especially 

steel structures) under fire has been studied by researchers. 

4.2.3.2. Blast and Progressive Collapse  

The effects of blasts on buildings have been studied extensively in recent decades, mostly as 

anti-terrorism measures. The studies have focused on damage control of buildings and 

prevention of progressive collapse of structures. Stand-off distance and alternative load path 

are the two main considerations in blast and progressive collapse design. 

4.2.3.3. Flooding  

Floods often accompany extreme wind events, especially hurricanes. Floods typically do not 

cause direct damage to building structures upon the first hit. However, damage of non-

structural components (exterior, interior of buildings, and mechanical and electrical systems) 

can cause great inconvenience to building occupants and communities and cause massive 

property loss and fatalities. Hurricane Katrina and Hurricane Sandy are examples of such a 

catastrophic event. 

4.2.3.3. Soil and Foundation Related Hazards 

Gonzales de Vallejo and Ferrer (2011) identified geological or meteorological processes and 

their associated risks.  Geo-hazard risks include liquefaction, erosion, expansive and collapsible 
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soils, landslides, collapse, and subsidence.  The following section briefly overviews each of these 

risks and how in situ soils may be identified as susceptible.   

4.2.3.3.1. Liquefaction 
Soil liquefaction due to earthquakes occurs in loose to moderately dense saturated       

cohesion-less soils and sensitive clays. Soil loses shear strength and will fail when in a high 

stress state, such as under a foundation.  Detrimental effects to soils and foundations due to 

liquefaction can be grouped into three categories: ground subsidence, lateral spread, and 

damage induced by buoyancy (Huang, et al., 2013).  Settlement is particularly troublesome to 

structures where the settlement is non-uniform, leading to titling or cracking of the structure.  

Lateral spread typically occurs in floodplains.  Damage induced by buoyancy causes 

underground utilities to be uplifted and damaged.  Many advanced tests are available to 

identify liquefaction potential of a site. 

4.2.3.3.2. Erosion 
Soil erosion due to flooding undermines building foundations, Extent of soil erosion depends on 

soil properties, site geometry, hydraulic conditions, vegetation, and many other factors. 

Hydrodynamic aspects of soil erosion and transport are well understood, as are erosion 

mechanisms of coarse grain soils.  Erodibility of fine-grained soils, however, is much more 

difficult to predict, and current methods are either conservative or require specialized testing.  

Soil erosion can be deterred by covering susceptible soils with aggregate or rip-rap, grass, or 

other native plants with shallow root systems, or engineered products such as a synthetic 

erosion blanket or geotextile.     
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4.2.3.3.3. Expansive and collapsible soils 
Expansive and collapsible soils similarly undergo volume change with the addition of water.  

Most shallow foundation problems are due to expansive soils.  Expansive soils typically are 

highly plastic clays that shrink and swell due to seasonal moisture changes or water infiltration.  

Four common options are used to design foundations in expansive soils: stiffened slab on 

grade, elevated structural slab on piers, a raft foundation, or a post tensioned slab.  Collapsible 

soils, or metastable soils, are unsaturated soils that undergo large volume change when 

saturated.  Most collapsible soils are wind deposited sands and/or silts.  Design of foundations 

for collapsible soils is similar to expansive soils in that foundation depth can simply be below 

the depth of anticipated wetting. 

4.2.3.3.4. Landslides 
Landslides are fundamentally gravity driven soil or rock failures along the weakest plane.  

Landslides can be caused by earthquakes, excessive rainfall or rapid snow melt, undercutting of 

a slope, or excessive loading on a slope.  Although landslides occur in all 50 states, areas such as 

the West Coast are more susceptible to landslides.  The USGS has a landslide hazard program 

that reports and monitors landsides across the United States. Developers utilize landslide 

hazard maps to determine if their structures will be built in an area susceptible to landslides. 

4.3. Sustainability 

Sustainability has attracted much attention since the late 1970s in consideration of energy and 

resource uses, ecological system preservation, and societal development. The World 

Commission on Environment and Development of the United Nations says that sustainable 

development “… meets the needs of the present without compromising the ability of future 
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generations to meet their own needs” (WCED, 1987). Sustainability relates not only to the 

environment, but it also encompasses economic, social, and political development of human 

societies. In building design, construction and operation, sustainability means minimization or 

effective, efficient use of materials, water, and energy to minimize the impact of buildings on 

the environment while providing a healthy environment and satisfactory service to building 

occupants. The building sector has incorporated sustainable design practice since the 1990s. 

Currently, some countries utilize several sustainable building design guidelines and rating 

systems (Fowler, et al., 2006), most of which address multiple categories, including site 

selection, energy use, water use, and indoor environment quality. In the United States, the US 

Green Building Council (USGBC) publishes and implements the LEED rating system (USGBC 

2009, USGBC 2014), and trains and certifies design professionals for LEED sustainable building 

design and construction practice.  

The LEED 2009 Rating System (USGBC 2009) gives credits in six categories of sustainable design 

(five basic categories plus one for innovation), including: Sustainable Sites, Water Efficiency, 

Energy and Atmosphere, Materials and Resources, Indoor Environmental Quality, and 

Innovation in Design. Each category has prerequisites (except Innovation in Design) that must 

be complied with in order to be LEED-certified and various credits with scores ranging from 1 to 

19 (most credits can just score one point). Sustainable Sites encourages minimizing building 

footprints, reducing impact on the surrounding environment, and improving stormwater 

management practices. Water Efficiency encourages reduction in water use, and Energy and 

Atmosphere encourages minimizing energy use, reducing ozone depleting gas releases, and 

increasing use of renewable energy. Materials and Resources encourages building and material 
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reuse, increased recycling, use of local materials and rapidly renewable materials, and good 

waste management practice. Indoor Environmental Quality encourages a healthier and more 

pleasant indoor environment for building occupants, including increased air quality, daylight, 

and views. Innovation in Design encourages novel design approaches in sustainability in any of 

the above categories or beyond. 

The goal of sustainability is to minimize the impact of buildings on the environment. A primary 

tool for assessing building impact is the Life Cycle Assessment (LCA). LCA, which has been used 

in the manufacturing industry for quite long time, conducts a cradle to grave analysis to assess 

the impact of material use for the product. LCA for buildings analyzes energy and water use and 

environmental impact of construction materials production, construction of the building, 

operation of the building, and demolition of the building (Junnila et al., 2006; Bribian et al., 

2009; Ortiz et al., 2009). Energy use throughout a building’s life includes energy used in building 

operation as well as embodied energy used during material production. Same is true for water 

use. Li et al. (2010) proposed a quantitative LCA-based environmental impact assessment for 

construction processes. Environmental impact includes ozone depleting gas and greenhouse 

gas releases. Other environmental impacts, such as light pollution and heat island effect, are 

also included in the assessment, depending on building location and type. 

4.4. The Case Study 

The building considered in this case study was an office building in Los Angeles, California. The 

building had a square floor plan, with five 30 ft. bays in each direction; plan dimensions were 

150 ft. by 150 ft. The building was six-stories tall, with the story height of the bottom level at 18 
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ft. and the story height of the other levels at 13 ft. Six designs were considered in order to find 

an optimal building considering all multi-hazard resilient and sustainable criteria. Several 

attributes or design factors were essential for selecting the best design. The attributes were 

grouped into two categories: sustainability and resiliency. Attributes in the sustainability group 

were related to the building designs impact on the environment, while attributes in the 

resiliency group were related to the amount of building resiliency in the midst of natural 

disasters.  

Attributes in the resiliency group were further divided into groups based on information 

available over time. Uncertainty for the DM in this case study was tied to time, meaning that 

the DM felt more uncertain about attributes that were scheduled later in project rather than 

attributes that were evaluated at the beginning of the project. For example, as shown in Table 

4.1, the DM had less uncertainty on Attribute 1 (ductility) compared to Attribute 9 (Story Drift 

(Wind)) because, the DM has more information about ductility of the designs. However, the 

amount of certainty the DM had on scores of Story Drift (Wind) was less because he can only 

roughly estimate it without precise computation, which will take place after a design is chosen. 
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Table  4.1 Decision matrix of the case study 

  Resiliency Sustainability Resiliency 

  Att1/Weight Att2/Weight Att3/Weight Att4/Weight Att5/Weight Att6/Weight Att7/Weight Att8/Weight Att9/Weight 

Row Alternatives Ductility/0.2 
Wind-

borne/0.1 

LEED 

scores/0.1 

Life Cycle 

Analysis/0.1 

Embodied 

Energy/0.05 

Material 

Use/0.05 

Fragility 

FEA/0.2 

Story Drift 

FEA/0.1 

Story 

Drift(Wind)/0.1 

1 
Steel-Braced 

Frame No.1 
0.9/0.1 0.8/0.1 0.7/0.1 0.7/0.2 0.5/0.3 0.6/0.3 0.4/0.5 0.7/0.5 0.6/0.5 

2 
Steel-Braced 

Frame No.2 
0.8/0.1 0.8/0.1 0.7/0.1 0.6/0.2 0.5/0.3 0.5/0.3 0.6/0.3 0.6/0.3 0.5/0.3 

3 
Steel-Braced 

Frame No.25 
0.9/0.2 0.8/0.1 0.7/0.1 0.8/0.2 0.5/0.3 0.6/0.3 0.5/0.5 0.8/0.5 0.6/0.5 

4 
Steel-Braced 

Frame No.26 
0.9/0.2 0.9/0.2 0.7/0.1 0.8/0.2 0.6/0.3 0.7/0.3 0.4/0.5 0.7/0.3 0.5/0.3 

5 
Steel-Moment 

No.1 
0.9/0.1 0.8/0.1 0.7/0.1 0.7/0.2 0.7/0.3 0.8/0.3 0.5/0.4 0.8/0.4 0.7/0.4 

6 
Steel-Moment 

No.2 
0.8/0.1 0.8/0.1 0.7/0.1 0.6/0.2 0.8/0.3 0.8/0.3 0.6/0.4 0.8/0.5 0.7/0.5 
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Table 4.1 represents the decision matrix with attributes and alternatives. Each cell contains two 

numbers: the first number represents the most likely alternative score, and the second number 

represents the uncertainty score. For example, the first cell containing evaluation of alternative 

one (Steel-Braced Frame No.1) regarding the first attribute (Ductility) has values of 0.9/0.1 of 

which 0.9 is the most likely alternative score and 0.1 is the uncertainty score.  

In this case study, the design engineer provided evaluation of all cells in the decision matrix. 

Embodied Energy, Material Use, Fragility FEA, Story Drift FEA, and Story Drift (Wind) were in the 

cost group of attributes and the others were in the benefit group of attributes. Each score ranged 

between 0 to 1 with 0 being the least desirable score in the benefit attributes (most desirable 

score in cost attributes) and 1 being the most desirable score in the benefit attributes (least 

desirable score in cost attributes).  

Attributes were selected based on final design goals of the resilience against multi-hazard and 

sustainability for environmental friendliness. The alternatives were the building's structural 

systems, which were in the category of Lateral Force Resisting System (LFRS) or, if focusing on 

seismic loads of the building, were in the category of Seismic Force Resisting System (SFRS). 

ASCE 7 - Minimum Design Loads for Buildings and Other Structures- contains dozens of 

different SFRS systems are preapproved for use in seismic applications (ASCE, 2006) .  

In this case study, material selection was limited to steel; therefore only a few systems were 

used for the building in the high seismic design category. Corresponding systems based on the 

standard table in ASCE 7 (ASCE, 2006)  formed the following design candidates: 

• B. Building Frame Systems, No. 1 Steel eccentrically braced frames. 
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• B. Building Frame Systems, No. 2 Steel special concentrically braced frames. 

• B. Building Frame Systems, No. 25 Steel buckling-restrained braced frames. 

• B. Building Frame Systems, No. 26 Steel special plate shear walls. 

• C. Moment-Resisting Frame Systems, No. 1 Steel special moment frames. 

• C. Moment-Resisting Frame Systems, No. 2 Steel special truss moment frames. 

These established and approved systems can be chosen for various design and analysis 

methods and detailing requirements. 

Each attribute should be evaluated independently in regards to uncertainties because, the 

uncertainty for one attribute may not be affected by pinning down options for another 

attribute. For example, attributes for sustainability may not be related to attributes for 

resilience. Even within one category, such as resilience, those related to seismic resilience may 

not have any effect on hurricane resilience. Therefore, uncertainties are largely independent. 

One advantage of the proposed method is that the uncertainty of attributes can differ for each 

alternative. The percentages of uncertainty means the amount of uncertainty the DM has on 

scores. For example, the uncertainty the DM assigned on scores for Attribute 2 (Wind-borne 

Impact) was 10% for all alternatives except Alternative 4, which was set at 20% meaning that 

the DM was 80% certain on this score compared to 90% on the other alternative scores. 
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4.5. Solution provided by Proposed Method 

The solution based on the proposed method is provided in the following steps: 

Step 1: Calculate the intervals. The intervals of each cell were generated based on uncertainty 

provided in Table 4.1. Table 4.2 shows intervals generated from uncertainty and scores 

provided in Table 4.1. For example, the interval for the first alternative in regards to the first 

attribute is calculated as 

0.9 ± (0.9 × 0.1)/2 = [0.855,0.945]. 

Step 2 Normalize the values. The normalized table used Equations (3.1) and (3.2) are as Table 

4.3. For example, the lower limit in the first cell between Alternative 1 and Attribute 1 is 

calculated as 

     = 0.85 0.85 + 0.94 + 0.76 + 0.84 + 0.81 + 0.99 + 0.85 + 0.94 + +0.76 + +0.84  

     = 0.2836340 

Step 3: Calculate weighted normalized values. Weighted normalized values are shown in Table 

4.4. For example, the weighted normalized value for the first cell is calculated as 

0.2*[0.28, 0.31] = [0.056, 0.062]  
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Table  4.2 Interval based decision matrix 

  Resiliency Sustainability Resiliency 

  Att1/Weight Att2/Weight Att3/Weight Att4/Weight Att5/Weight Att6/Weight Att7/Weight Att8/Weight Att9/Weight 

Row Alternatives Ductility/0.2 
Wind-

borne/0.1 

LEED 

scores/0.1 

Life Cycle 

Analysis/0.1 

Embodied 

Energy/0.05 

Material 

Use/0.05 

Fragility 

FEA/0.1 

Story Drift 

FEA/0.1 

Story 

Drift(Wind)/0.1 

1 
Steel-Braced 

Frame No.1 
[0.855,0.945] [0.76,0.84] [0.655,0.735] [0.63,0.77] [0.425,0.575] [0.51,0.69] [0.3,0.5] [0.525,0.875] [0.45,0.75] 

2 
Steel-Braced 

Frame No.2 
[0.76,0.84] [0.76,0.84] [0.655,0.735] [0.54,0.66] [0.425,0.575] [0.425,0.575] [0.51,0.69] [0.51,0.69] [0.425,0.575] 

3 
Steel-Braced 

Frame No.25 
[0.81,0.99] [0.76,0.84] [0.655,0.735] [0.72,0.88] [0.425,0.575] [0.51,0.69] [0.375,0.625] [0.6,1] [0.45,0.75] 

4 
Steel-Braced 

Frame No.26 
[0.81,0.99] [0.81,0.99] [0.655,0.735] [0.72,0.88] [0.51,0.69] [0.595,0.805] [0.3,0.5] [0.595,0.805] [0.425,0.575] 

5 

Steel-

Moment 

No.1 

[0.855,0.945] [0.76,0.84] [0.655,0.735] [0.63,0.77] [0.595,0.805] [0.68,0.92] [0.4,0.6] [0.64,0.96] [0.56,0.84] 

6 

Steel-

Moment 

No.2 

[0.76,0.84] [0.76,0.84] [0.655,0.735] [0.54,0.66] [0.68,0.92] [0.68,0.92] [0.48,0.72] [0.6,1] [0.525,0.875] 
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Table  4.3 Normalized values 

 

 

 

  Resiliency Sustainability Resiliency 

  Att1/Weight Att2/Weight Att3/Weight Att4/Weight Att5/Weight Att6/Weight Att7/Weight Att8/Weight Att9/Weight 

Row Alternatives Ductility/0.2 
Wind-

borne/0.1 

LEED 

scores/0.1 

Life Cycle 

Analysis/0.1 

Embodied 

Energy/0.05 

Material 

Use/0.05 

Fragility 

FEA/0.1 

Story Drift 

FEA/0.1 

Story 

Drift(Wind)/0.1 

1 
Steel-Braced 

Frame No.1 
[0.28,0.31] [0.26,0.29] [0.27,0.30] [0.25,0.31] [0.19,0.26] [0.21,0.29] [0.16,0.27] [0.20,0.33] [0.20,0.34] 

2 
Steel-Braced 

Frame No.2 
[0.25,0.27] [0.26,0.29] [0.27,0.30] [0.22,0.26] [0.19,0.26] [0.17,0.24] [0.28,0.34] [0.19,0.26] [0.19,0.26] 

3 
Steel-Braced 

Frame No.25 
[0.26,0.32] [0.26,0.29] [0.27,0.30] [0.29,0.35] [0.19,0.26] [0.21,0.29] [0.20,0.34] [0.22,0.38] [0.20,0.34] 

4 
Steel-Braced 

Frame No.26 
[0.26,0.32] [0.28,0.34] [0.27,0.30] [0.29,0.35] [0.23,0.32] [0.25,0.34] [0.16,0.27] [0.22,0.3] [0.19,0.26] 

5 

Steel-

Moment 

No.1 

[0.28,0.31] [0.26,0.29] [0.27,0.30] [0.25,0.31] [0.27,0.37] [0.28,0.38] [0.22,0.33] [0.24,0.36] [0.26,0.39] 

6 

Steel-

Moment 

No.2 

[0.25,0.27] [0.26,0.29] [0.27,0.30] [0.22,0.26] [0.31,0.42] [0.28,0.38] [0.26,0.40] [0.22,0.38] [0.24,0.40] 
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Table  4.4 Weighted normalized values 

  Resiliency Sustainability Resiliency 

  Att1/Weight Att2/Weight Att3/Weight Att4/Weight Att5/Weight Att6/Weight Att7/Weight Att8/Weight Att9/Weight 

Row Alternatives Ductility/0.2 
Wind-

borne/0.1 

LEED 

scores/0.1 

Life Cycle 

Analysis/0.1 

Embodied 

Energy/0.05 

Material 

Use/0.05 

Fragility 

FEA/0.1 

Story Drift 

FEA/0.1 

Story 

Drift(Wind)/0.1 

1 
Steel-Braced 

Frame No.1 
[0.056,0.062] [0.026,0.029] [0.027,0.03] [0.025,0.031] [0.009,0.013] [0.01,0.014] [0.033,0.055] [0.020,0.033] [0.020,0.034] 

2 
Steel-Braced 

Frame No.2 
[0.05,0.055] [0.026,0.029] [0.027,0.03] [0.022,0.026] [0.009,0.013] [0.008,0.012] [0.056,0.076] [0.019,0.026] [0.019,0.026] 

3 
Steel-Braced 

Frame No.25 
[0.053,0.065] [0.026,0.029] [0.027,0.03] [0.029,0.035] [0.009,0.013] [0.01,0.014] [0.041,0.069] [0.022,0.038] [0.020,0.034] 

4 
Steel-Braced 

Frame No.26 
[0.053,0.065] [0.028,0.034] [0.027,0.03] [0.029,0.035] [0.011,0.016] [0.012,0.017] [0.033,0.055] [0.022,0.030] [0.019,0.026] 

5 

Steel-

Moment 

No.1 

[0.056,0.062] [0.026,0.029] [0.027,0.03] [0.025,0.031] [0.013,0.018] [0.014,0.019] [0.044,0.066] [0.024,0.036] [0.026,0.039] 

6 

Steel-

Moment 

No.2 

[0.05,0.055] [0.026,0.029] [0.027,0.03] [0.022,0.026] [0.015,0.021] [0.014,0.019] [0.053,0.080] [0.022,0.038] [0.024,0.040] 
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Step 4: Generate random numbers. As discussed in Chapter 3, triangular distribution provides a 

distribution of rankings for alternatives that is better than result from a uniform distribution. In 

this study, a total of 100 iterations were performed to generate 100 decision matrices based on 

the proposed triangular distribution random number generator.  

Step 5: Applying original TOPSIS method to rank alternatives. The original TOPSIS method was 

applied to each decision matrix. NIS and PIS were found, distances of alternatives from NIS and 

PIS and closeness coefficients were calculated, and alternatives were ranked. The original 

TOPSIS was executed 100 times, one for each decision matrix generated in the previous step, as 

shown in Figure 4.2. Alternative Steel-Braced Frame No.26 was the best choice among all 

candidates, followed by Steel-Braced Frame No.1 with the second-place of first-rank among 

alternatives. The proposed method guarantees introduction of the best alternative despite 

random distribution.  

In this case study, the proposed method selected Steel-Braced Frame No.26 as the best 

alternative because it obtained more first-rank than the other alternatives. However, the 

second-place design, Steel-Braced Frame No.1 obtained 28 first ranks. Other existing MADM 

methods can obtain only one ranking result. For example, Chen’s (2000) fuzzy TOPSIS and the 

method developed by Jahanshahloo, et al(2006) both provide a ranking list. Figure 3.2 in 

Chapter Three demonstrated that by taking account the uncertainty into MADM models, the 

final result used by current MADM methods to rank alternatives may be close to each other. 

Therefore, ranking can change when the uncertainty number increases, demonstrating inherent 

sensitivity in the current methods. The proposed method provides a ranking distribution for 

MADM problems with uncertainty in attributes, thereby overcoming inherent sensitivity in 
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these problems. Using the ranking distribution provided by the proposed method, DMs are 

presented with more ranking information that takes uncertainty into account.  

Figure  4.2 Rank distribution based on triangular random numbers 
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Chapter 5. Conclusions 

5.1 Summary of the Research 

This research studied several MADM methods for problems with uncertain attributes. This 

study primarily focused on the TOPSIS method, one of the most popular MADM methods. Fuzzy 

concepts have been adopted in some MADM methods for uncertain attributes. Chen’s (2000) 

and the interval-based TOPSIS developed by Jahanshahloo, et al (2006) are two important 

TOPSIS methods in order to develop method to tackle the uncertainty in attributes.  

Chen’s (2000) fuzzy TOPSIS used linguistic terms to solve the uncertainty issue. Specifically, 

linguistic terms were converted into fuzzy numbers and used in the original TOPSIS method. 

The method by Jahanshahloo, et al (2006) used intervals to model uncertainty into interval-

based scores and then the original TOPSIS method was applied to the lower bound and upper 

bound of the interval.   

Although both methods extended TOPSIS to solve uncertain problems, Chen’s (2000) fuzzy 

TOPSIS method was more difficult to use in term of modeling. A study by Sayadi, et al (2009) 

confirmed that interval numbers are more suitable to deal with decision-making problems in 

uncertain environments. The method by Jahanshahloo, et al.(2006) did not provide a guideline 

to obtain uncertain intervals; they just extended the TOPSIS method to solve interval-based 

scores. The proposed method uses intervals introduced by Jahanshahloo, et al.(2006) and 

provided a guideline for how to obtain uncertain intervals. The proposed method used 

uncertainty percentages defined by a DM to generate uncertain intervals. This simple, logical 

method quantifies uncertainty in mathematical models, and when uncertainty increases in the 

model, the numerical interval in the decision matrix logically increases.  
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This research also studied VIKOR, one of the newest methods in the field of MADM. VIKOR is 

advantageous compared to TOPSIS because VIKOR considers individual regret between 

alternatives; TOPSIS does not consider individual regret. However, a disadvantage of VIKOR is 

the complexity of alternative rankings using three ranking lists of alternatives; TOPSIS generates 

only one unique ranking list.  

Chapter Three proposed generation interval numbers based on uncertainty values and decision 

matrix provided by a DM. The method developed by Jahanshahloo, et al (2006) was then used 

to generate weighted normalized values. Simulation runs provided random numbers within 

uncertain intervals, and two random generator distributions based on uniform distribution and 

triangular distribution were studied. Triangular distribution was recommended because it 

assigns more weight on the most likely value within the uncertain interval.  

Random numbers according to distributions were generated to form multiple different decision 

matrices. This study simulated and generated the decision matrix 100 times with the possibility 

of generating more decision matrices if needed. The method was coded in R language. The 

original TOPSIS method developed by Hwang and Yoon (1981) was used to generate a ranking 

list. Ranking distribution was obtained by summing the ranking for each alternative. An 

alternative with maximum first-rank outcomes was selected as the best choice. However, in 

cases when some alternatives may not be feasible, other alternatives should be selected based 

on ranking distribution. A numerical example provided in Chapter Three was solved by the 

proposed method and Chen’s (2000) fuzzy TOPSIS method. Discussions were provided to 

motivate use of the proposed method.  
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Chapter Four contained a case study related to building design and architecture engineering in 

which various alternatives were considered for construction of an office building. Designs were 

judged against multiple attributes grouped into two categories: sustainability and resiliency. 

Due to the nature of the case study, all attributes contained uncertainty, with some attributes 

containing more uncertainty than others.  

For current practice building designers compare alternatives in multiple steps over time. In each 

step they consider attributes that are certain, first comparing alternatives based on  attributes 

that are fixed and do not have uncertainty. Then between designs, designers come up to a 

limited amount of alternatives. When more information is provided on remaining attributes, 

building designers compare the chosen alternatives, re limiting their choices. The process is 

repeated until they come up to a solution.  

Because the decision should be made at the beginning of the project (not in steps), the 

proposed method simultaneously considers all attributes. A DM provides the most likely scores 

for all alternative attribute combinations based on experience, but based on availability of 

information about specific different attributes, the DM assigns unique uncertainty values on 

scores. In this case study, the uncertainty for the resiliency attributes such as fragility and story 

drift are larger than those resiliency attributes related to ductility and wind-borne impact. 

Ranking distribution of alternatives via simulation provides a guideline for choosing the best 

alternative. Ranking distribution also provides much richer information since the most likely 

best alternative should process more first-place and second-place rankings than other 

alternatives. 
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5.2 Future Studies 

The proposed method can be applied to various MADM methods. Sayadi, et al. (2009) extended 

the VIKOR to solve interval-based problems. Similarly, the proposed method can also be applied 

to VIKOR. Because this study focused only on the TOPSIS method, further study should be 

conducted for the VIKOR method.  

The assessment used on the case study was based on the experience of the DM with high 

uncertainty percentages. After a while the amount of uncertainty will decrease and the scores 

will be more precise than previous estimates. Therefore, the proposed method can be feasibly 

applied at a later time when more information on attributes is available, leading to more 

precise solution. By comparing the final choice revealed by the proposed method and the 

method building engineers use to evaluate alternatives (in multiple steps), the proposed 

method can be validated.  
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