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INTRODUCTION

This report examines some techniques which are
useful in solving descriptor systems. A descriptor
system is an implicit system of ordinary differential
equations (ODEs) coupled to a system of algebraic
equations. Sophisticated programs for solving systems
of ODEs have been available for many years. But the
presence of algebraic equations in a descriptor systen
causes problems for programs which are designed to
solve systems of ODEs. One of the major problems is
in error control. I will discuss an error filtering
mechanism proposed by Sincovec (1) which enables a
projram to perform seperate error control on the
algebraic and ODEs. A discussion of the
implementation of the error filtering mechanism and an
analysis of the results for some sample problems will
also be given. Some other topics which are relevant
to numerical methods for solving descriptor systems
will also be discussed. These topics include
1. Recovery from inconsistent initial conditioms
2. Interpolation problenms

3. Nonlinear problems
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SCOPE OF RESEARCH

A descriptor system is an implicit system of
algebraic equations coupled to a system of ODEs.
Thus, a linear descriptor system can be written in the
form Ey'=Ay+g where E and A may be singular. This
report examines some techniques which are useful for

solving descriptor systenms.

In order to see whether Sincovec's error filtering
mechanism has any beneficial effects for nonlinear
problems, I ran one nonlinear problem with and without
the error filter. Since the solutions were accurate
in both <cases, I was unable to draw any conclusions
from this experiment. So the remainder of my research
effort on error control was devoted to linear
problems. I also used the same nonlinear problem to
test a recovery technigue for problenmns with
inconsistent initial conditions. The noenlinear
problem and the results from this experiment are given

in the section on ipmitial conditions.
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Initial Conditions

In the formulation of a descriptor system, it nmay
be impossible or impractical to derive a set of exact
initial conditions. If +the given set of initial
conditions do not satisfy a solution to the descriptor
systemn then the initial conditions are inconsistent
with the descriptor system. In the section on initial
conditions, I will discuss a theorem proved by
Sincovec (1} which describes a way to recover from
inconsistent initial conditions. I will also give
results from a problem whickh I ran that will
illuostrate the recovery from inconsistent initial

conditions.

Error Control

The algebraic equations in a descriptor systen
cause problems for an error control procedure which
Was désigned for systems of ODEs. In the section on
error control, I will discuss apnd illustrate the
nature of these problems and an error filter which
will enable a program to perform sSeperate error
control on the algebraic and differential equations.

The implem=zntation of the error filtering mechanisnm
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will be discussed and the results from a sample

problem will be given and explained.

Implementation

I implemented the error filter as a modification to
a program writtem by Alan Hindmarsh (2). The progranm
uses Gear's k step method to solve descriptor systems
of the form Ey' = Ay + g. Gear's k step method is
defined in (3).

In addition to the wmodification of the error
control procedure of Hindmarsh's program, I wrote two
subroutines for the program and two additional
procedures for each problem I ran to define the
problem and its parameters and to print out the

results.

INITIAL CONDITIONS

Sincovec proves a theorem in (1) which will allow a
pregranm to recover from ipconsistent initial

conlitions. The theorem states that in solving a
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problem with inconsistent initial conditions, Gear's
method will converge to the analytic solution of a
descriptor system after n steps where n is greater
than or equal to the nilpotency of the system. (The
nilpotency of a descriptor system will be defined
later.) So, the recovery techmnigue for inconsistent
initial conditiors is +to simply take n >= nilpotency
steps. In (1), Sincovec also describes a wWay to
calculate a consistent set of initial conditions for a
problem so that the validity of the solution can be
assesed.

I ran two problems with inconsistent initial

conditions. The first was a linear problemr of the

form

L 3 L ] i) L3 | 1

| i i i i i

111} 11 i 0|

| | | i 1 l

111 | y*=120]y+ | 5|

| l | | | |

L | L L L ]
Given the incomnsistent initial conditiomns yi(1) = 2
and y2{1) = 1, the program produced accurate results

on the first step. (The nilpotency of this system is

ZeTr0.)
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The second probliem I ran was a nonlinear problem of

the forna
¥ 1 R 1
| | | |
{ 10 0 | I y2*%y3 |
i i i |
F 00 0 7' = | y1 = t%%10 |
| H i {
| 0 0 1} | 10t*%9 I
| i I |
L L A1 ]

The program produced good results for this problem
with consistent 4initial conditions, but it could not
achieve corrector convergence with inconsistent
initial conditions. Thus, this indicates that
Sincovect's theory on initial conditions only holds for

linear problenms.

In order to facilitate the discussion of error
control, vwe need to examine the structure of
descriptor systems. A linear descriptor system can be

written in the form
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EY' = Ay + g (4-1)

where the matrix E is singular. The singularity of E
implies that the system 4.1 contains ar aljebraic
subsystem. For example, the system might contain an
algebraic egquation like y1 = t#*10. In a general
descriptor system, the algebraic equations are nmot
easy to identify since they may be expressed as a
linear combination of the other equations. But the
system 4.1 can be +transformed 4into canonical form
where the algebraic equations are seperated out into
an independent subsysten.

In general, the transformationn of a desgriptor
system into canonical form can be accomplished by the

equation

PEQ INVERSE(Q) y'(t) = PAQ INVERSE(Q) y(t) + P g3 (t)

wvhere P and Q are appropriate nonsingular matrices

(1). The canonical representation of Ey' = Ay + g

contains two (solvable)independent subsysteams:
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STATE SUBSYSTEHM:

x1' (t) = E1 x1(t) + £1(t) (4.2.2)

NONSTATE SUBSYSTEHN:

E2 x2'(t) = x2(t) + £2(t) (4.2.Db)

In this representation, x1, x2, £1, and £2 are vectors
which are related to the orignial system by the

equations

|

INVERSE(Q) y(T) = z1(T)

x2(T)

[ — ¢ g—

|

}

|
P g(T) = | £1(T)

|

I F2(T)

i

—_

— e S w—

L.

Since x1, x2, f1, and f2 are vectors, the notation

1

xk,1 (k 1,2) will represent component i of xk and

fk,i (k

I

1,2) will represent component i of fk.
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The matrix E2 of the non-state subsystem 1is composed

of Jordan blocks which are of the form

N 1
I i
10100 0]
i

10010 0]
| |
j00 0 1 0]
| |
10000 1]
|

{00 0 0 0]
| |
| J

The nilpotency (m) of the system is defined to be the
size of the largest Jordan block in E2.

Because of the special structure of E2, we can
solve the system 4.2.b by backward substitution aand

differentiation. For example, the nonstate subsysten
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has a solution of

=i 2,30 = F£2.2% = $£2,:1

]

x2 =L2y38 = L£2,2

-£2,3

[T T T T T

Thus, the non-state subsystem is 1like an algebraic

system.
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The error control components in most ODE solvers
assume that the truncation error at a given step is
propagated to later steps. An error control procedure
(ECP) which is based on this assumption m®must place a
much tigkter error tolerance on each step than the
global error tolerance which is expected after the
final step. This strategy is reasornable for the
control of error in a typical ODE system, but it is
not appropriate for descriptor systems, where some of
the variables may not contain propagated truncation
errors. This can be illustrated by applying a

backward EFuler step to the systen
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100 110 —t*%10
yt = 2t (4. 3)
00 1 100 -t*%x10 + 2t
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A backward Euler step on the descriptor system Ey' =

Ay + g is defined by the equation

(E-hA) y(n+1) = E y(u) + h g(n+1) (4.4)

After n backward Euler steps on the system 4.3 we

obtain

¥ L] v L T 1
| | [ I [ |
I - -h 0 | i 100 | | —t**10 |
i | | i | |
] 1 -h 1] y(u+#1) = § 1 0 1 Jy(n) +#+ h | 2t i
| | | | | |
| -h 0 1] i 00 1] i-t%%10 + 2t]
| l | | | [
L L 1 L L '

From this equation, it appears as tkough the
truncation errors from y1(n) will be propagated to
y1(n+1) and y2(n+1) and the truncation errors froa
y3(n) will be propagated to y2{(n+1) and y3(n+1). But

the solution is given by
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y(n+1) = INVERSE(E - hA) * (E y(n) + h q)

So

-1/ (2h) 1/ (2h) -1/(2h)

-1/2 172 1/2

— g e S

I
|
i
y(n+1)= | (-1-h) / (2h¥*2)  (1-h)/(2h**2) (-1+h)/(2h**2)
|
i
|

L

* (Ey(n) + hg).

After simplifying,

t**10
y(p+1) = | (t¥*10-y1(n))/bh = (y1(n+1)-yi(n))/h

y3 (n) + 2ht

(o e B . S —
h.—-—.—_.—-—-—-J

So, we can see that there is no truncation error on
y1(n+1) since it is calculated exactly as t*%*10. The
truncation error on y2 will not be propagated since

y2(n) is not present as a term in the solution at time
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t = n+1. But the truncation error on y3(n) will be
propagated to y3(n+l).

An equivalent canonical representation for the

system 4.3 is given by

r LJ L] L Ll 1
| | i | | l
i 000 | i 100 | | -t**10 |
I l | | I |
11004 y*"=101v0 1 y+ 1 O |
| i i i i |
1 001 | 00 0 j 1 2t I
i | | i | |
L AL —L 1 1 g

In this form, we can see that the independent

algebraic subsystem contains the equations

y1 t*%x10

y2 = y1!

Therefore, this example shows that

1. Truncation errors from the algebraic subsystem are
not propagated to the system of ODEs.

2. Ssome of the solutions to the algebraic subsysten
may not contain propagated truncation errors. {In
this particular example, neither of the two solutions

contained propagated truncation errors.)
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A typical error control procedure (ECP), such as
the one used in Hindmarsh's program (2) accepts a step
if the sum of a function of the error estimates for
all variables in the system is less than a local error
bound (LB) . The value of this local error bound is
dependent on factors such as the desired accuracy of
the solutions, the size of the system, and the order
of the method.

If the ECP assumes that all of +the solution
components contain propagated truncation errors, then
the LB must be tight enough so2 that the propagated
truncation errors will not cause a large global error.
In other words, the LB must be much wmore stringent
than the desired global accuracye. But, as I have
showr. in the previous sectioL, some of the solutions
to the algebraic subsystem may not contain propagated
truncation errors. So an ECP which assumes that all
components of a salution contain propagated truncation
errors will attempt to place a much tighter LB on some
components of a descriptor system solution than the
specified global error tolerance. In fact, the
components of a solution which do not contain
propagated truncation errors need to be no more
accurate at a given step than the global error

tolerance.
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This effect 1is even more significant when you
consider the size of the truncation errors. If we
start with exact 1initial values and calculate the
truccation errors on a system of the form Ey' = Ay + g

then the error after one backward Euler step is

(INVERSE (E-hbA) ) E{h**2/2) y"(T) (4. 5)

vhere to <= T <= t1 (&)

For a system like 4.3, the truncation error is

[=]

~h/2 * y1v (1)

-h*%2/2 % y3n(T) (4.6)

[* S S S — — — )
e e e e e e ey e o

50, we can see that the truncation error im y2 is
O(h) while the truncation error on y3 is 0 (h*%2).

This observation has important conseguences for an
ECP which assumes that all variables have propagated
truncation errors since an EZCP of this type will be
placing a very stringent Lb on the variables which do
not propagate truncation errors. And if the errors in

these variables are larger than the errors in the
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other variables (This differeance is potentially
several orders of magnitude.) then the error test will
only pass with a very large LB. So the accuracy of
the results for variables which do contain propagated
truncation errors will be as weak as the LB.

It should be noted here that if the ECP calculates
error estimates which are based on h*%*2, then the ECP
will underestimate the actual errors in the algebraic
equations. This underestimation could partially
negate the effect of the other invalid assumption that
non-state variables will contain propagated truncation
errors. But in any case, such an error estimate would
be inaccurate for the non-state variables. In fact,
any ECP which assumes that the size and/or propagation
of errors is the same for algebraic equations as it is
for ODEs will be inappropriate for error control in a
descriptor systen.

In order to illustrate these effects, I used
Hinimarsh's program to run problem 4.3. Then, I added
Sincovec's error filter and ran the same problem. The

results are summarized imn Table 1.
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TABLE 1
¥ L] L) 1
i | STANDARD ECP | SINCOVEC'S ECP |
! + + 1
|TIME | EYt EY2 EY3 | EY1 EY2 EY3 |
: + - ~
1.2 |} O .002 - 127 1 0 .002 + 00000114
1.4 | 0 .000003 .228 | 0 .005 -000001]
i1.6 | O . 000001 .262 | O . 004 .000001]
1.8 I 0 .000002 .248 I O .003 - 0000601
12.0 i 0 . 000002 .210 | O .009 .000001}
F i + i
I { I |
| STEPS: | 3654 | 80 |
i | i |
L 1 . ' 3

(Eyi indicates relative error in component i of y)

Without the error filter, the program had to use a
very 1large 1local bound (.1e-2) and a very small
stepsize in order to pass the error test. (The error
test fails if a smaller LB is used.)

As a result, the accuracy on variables y1 and y2 is
much better than LB was meant to require and the
accuracy on y3 is poor. In contrast, by usieg
Sincovec's error filter, the errors in y1, y2, and y3
satisfy a much tighter LB (.1E-6). And, as the number
of steps indicates, the amount of computation with
Sincovec's error filter is a small fraction of that

which is required without it.
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It should be noted here that Sincovec's error
filter (hereafter refered to as the EF) does not
eliminate error control problenms for descriptor
systems. The EF will enable a program to partition
the solutions of a descriptor system into two sets.
One set contains the solutions to a standard system of
ODEs in which there is not a large difference in the
size of the errors, and all of the variables contain
propagated truncationm errors. Thus, a standard ECP
will work well for this set. The second set containms
solutions to a system of algebraic equations where the
solutions are defined by derivatives. If this
subsystem has n > 2 equations, then the approximation
of derivatives can generate truncation errors ou some
of the solutions which are propagated to later steps.
So, the general problem with propagation of truncation
errors is still present in this subsysten. But, at
least the werror filter will enable a program to
calculate accurate solutions for the system of ODEs.
And even though there are some difficult problems in
solving the algebraic subsystem, this subsystem should
be easier to solve if we know which of the solutions
it defines. This is discussed furthur in the next

sectior.
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Traditional ODE solvers have had little success in
solving descriptor systems because the behavior of the
algebraic subsystem is so much diferent from that of
the ODEs. One area where this Dbehavior differs
radically is in the size and propagation of truncation
€CLOrS. As I have shown previously, some of the
variables in the algebraic subsystem may not contain
propagated +truncation errors. And the errors in
these variables can be much larger than the errors in
variables which do contain propagated truncation
errors.

Until rescently, there has been 1o practical way to
determine whether a given variable in the solution to
a descriptor system belongs to the O0ODEs or the
algebraic eguations. Ir theory, a descriptor system
can be transformed into canonical form, where the
algebraic equations are independent of the ODEs, but
this transformation is wmuch too expensive to be
practical. (The amount of computation required to
convert a general descriptor system with ©n equatioas
to canonical form in on the order of n**4.,) But the
error filter proposed by Sincovec (1) wiil enable a

program to determime which <components of a solution
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correspond to the ODEs and which belong to the
algebraic eguations. Thus, this error filter will
facilitate the implementation of separate error
control procedures for the ODEs and the algebraic

eguations.

The EF is a matrix

M = INVERSE(E - hbAa)E)**k

where k is greater tham or equal to the nilpotency =,
and b is a constant. Wken o is multiplied by a vector
of error estimates for the descriptor system 4.1, the
error estimates which correspond to solutions for the
nonstate subsystem are filtered out (They are set to
zero.)

The matrix M would be difficult to calculate if it
werz not for the fact that Gear's k step method (3)
uses the matrix INVERSE(E - hba). This matrix is
available with no additional calculations. So the
calculation of M is relatively easy.

Since the error filter M is multiplied by a vector
€0 of error estimates for the <current step, I have
implemented the error filtering mechanism with the

folliowing procedure:
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M*¥e( = INV(E - hba) ** k * g0
STEP1:
d4*¥eQ = (INV(E-hbA)E)*=%=(k-1)*{INV(E-hbA) E*e0)

Let et = (INV(E - hbA) E e0

Then, calculate el by solving the systenm

(E - hbdA) el = E e0.

(Note that if INKV(E - hbA) has been factored into a
pair of lower and upper triangular matrices - as it
Hindmarsh's prograk - then the calculation of el
can be accomplished with a forward and backward
substitution.)

Now M e0 = (INV(E - hbA))*%(k-1) * e1

STEPi: (1 <= i <= k)

M e0 = (INV(E-hbA)) **(k-i) *INV(E-hbA)E e(i-1)
Let ei = INV(E - hbA)Z e(i-1)

Solve (E - hbi) el = E e(i-1)

Then M e0 = (INV(E - hbA) ** (k-i)) ei

In order to illustrate the error filtering
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mechanism, I will calculate the EF for problem 4.3:

-1/h 0 0
INV(E - hbA) = -1/h**2 -1/h 0

0 0 1

o e e S RO Sas Sk S
e os. Bt g SSe sme S guee =)

Since the nonstate subsystem has nilpotency 2,

|

i |
{ 000 i
{ |
d = (INV(E - hbA)E)**2 =] 0 0 0 |
I |
] 00 1}
I {

————1

If the error estimates at the current step are

|
J

™
-

o
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|

o

Then H e =

S —— — — — —
® o
w

e e e - —

|

Thus, the error estimates for the non-state subsysten

variables are set to zero.

The error filtering mechanism will enable a progran
to perform separate error tests on the algebraic
equations and the differential egquations. If the
error estimates for the descriptor systen are
contained in a vector e then the error on the ODEs is
e (0ODE) = M*e and the error on the algebraic equations
is e(alg) = e - M¥e. The vector e(0ODE) can be used by
a conventional error control procedure to control the
error on the (QDEs. But some problems remain in
coptrolling error on the algebraic subsystem. These
problems include
1. Propagation of truncation errors

2. Special problems for systems with nilpotency >= 3.
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3. Determication of the nilpotency.
4, Interpolation.

A discussion of these problems follows.

Propagation of +truncation errors: One of the
problems in error control for the nonstate subsysten
is that some components of +the solution may contain
propagated truncation errors while others do not. For
example, if we use <the backward Euler formula to

calculate a solution to the system

L B ¥ b 1
| I i |
1 010 | 1111
| i i I
0011y =10101}(7+g
[ i i I
1 000 | 1 00 1]
i I i |
L L [ 1 §

(y2(n+1) - y2(n))/h - g1(n+1)
Then y(n+1 = (y3(a+1) - y3(n))/hk - g2(n+1)

-g3(n+1)

[ e e mme S e e
h-—-—-n-—-—_.-l
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So y1(n+1) will contain propagated truncation errors
while y2(n+1) and y3(n+1) will not.

Note however, that if the nilpotency of the
nonstate subsystem is 1less than or equal to two then
none of the nonstate variables will contain propagated
truncation errors. In this case, an error control
procedure for the nonstate subsystem could use a
global error tolerahce for the nonstate variables
instead of a more strimngent local error tolerance. Iun
the examples I ran with nilpoteacy equal to two, the
errar control on the ODEs was stringent enough so that
the prograr produced good results for the nonstate
subsystem with no error control on this subsystem at
all (see table 1).

But, when the nilpotency is greater than or equail
to three, some of the variables in the nonstate
subsysten will contair propagated truncatiom errors,
and these errors will be larger than the errors in the
state subsystem (as an example, see 4.6). So there
must be some error control on the algebraic subsystenm
when the nilpotency is greater than or equal to three.

Error control is difficult on a system where some
of the variables contain propagated truncation errors
and some of the variables do not. But this problen

should be easier to deal with in +the algebraic
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subsystem than it is within the coupled descriptor
system for two reasons:

1. Due to the special structure of the nonstate
subsystem, it may be possible to determine which of
the variables do not «contain propagated truncation
errors. I1f this can be accomplished then the error
control procedure for the nonstate subsystem could use
a global error tolerance for these wvariables and a
local error tolerance for the variables which do
contain propagated truncation errors.

2. In the coupled descriptor system, the errors on
variables which do not contain propagated truncation
errors are O0O{(h) for the algebraic equations and
O(h**2) for the ODEs. But within the nonstate
subsystem, all of the variables which do not contain
propagated truncation errors have errors on the order
of h. Thus, the accuracy of the results should be
mor2 consistent within the nonstate subsystem than it
is in the coupled descriptor systean.

Special problems for systems with nilpotency >= 3 :
Linja Petzold {(4) discusses two problems which
complicate error control for nonstate subsystems. One
problen for nonlinear nonstate subsystens with
nilpotency >= 3 is that Gear's k step method produces

solations on the first step which do not beconme
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arbitrarily small as the stepsize is decreased. These
errors can be relatively large, and for nonlinear
problems, they may be present throughout +the entire
interval of integration. Another problem is that
"...large errors are introduced into some components
of the solution whenever the stepsize is changed.®
These problems must be solved before a good error
control procedure can be designed for nonstate

subsystems with nilpotency >= 3.

Determination of the nilpotency : The filtering
matrix ¥ is defined to be (INV(E - hbA)E) *¥% p where m
is greater than or equal to the nilpotency of the
descriptor system. So we must be able to determine a
lowzr bound on the nilpotency of a descriptor system
in order to calculate the matrix M. Since the matrix
M is constant for any m greater tham the nilpotency of

the system, +then m is the smallest positive integer

such that
(INV(E - hbAjf**m = (INV(E - hbA) E))** (m+1)
So a program could generate m by repeated

exponentiation of the matrix (INV(EZ - hbA)E) until the
result is a constant matrix. In my implementation of
the procedure to generate M, I read in the nilpotency
of the system as an input parameter. But the

procedure described above would work just as well.
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Interpolation : One of the difficulties which I
encountered while experimenting with Sincovec's error
filter was interpolation on the algebraic equatioas.
In Hindmarsh's program, the output time (the time when
the solutions to the system are printed) is specified
by the user of the program as an input parameter.
When the integrator passes the specified output time,
it interpolates back to the ouptut time in order to
print out the solutions at that time. I noticed that
the solutions to the algebraic eguations in the system
4.3 were in error by as much as 50% when the program
used interpolation. Yet, the solutions to the
differential equation were accurate. And 1if the
integrator is able to hit the output time exactly,
then the errors on the algebraic eguations are reduced
to .3%.

The explanation for this effect 1is simple:
Interpolation works on the differential egquatioms
since the solution to a differential is a trajectory.
But the solution to an algebraic eguation is a point.
So it makes no sense to try and interpolate back to a
previous time. Therefore, in order to dget accurate
results on the algebraic equations, interpolation must

be avoided.
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CONCLUSIONS

This report has examined some techniques which are
useful in solving descriptor systems. The major
focus was on the implementation anmd experimentation
with tke error filter proposed by Sincovec. Some
other topics which were investigated include recovery
from inconsistent initial conditions, interpolation
problems, nonlinear problems and determination of
nilpotency. From this experimentation, I drew the
following conclusions:

1. Sincovec's theorem on initial conditions only holds
for linear problems.

2. The error filter described by Sincovec is an easy
and inexpensive mnmodification to a program which uses
Gear's k step method.

3. The error filter will allow a program which uses
Gear's method to perform seperate error control on the
algebraic and ODEs.

4., For problems with nilpotency <= 2, a global error
tolerance can be used to control error on the
algebraic subsystem. In some cases the error control
on the ODEs will be stringent enough to produce good

ansWwers on the algebraic subsysten.
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5. Furthur research is needed for solving problems
with nilpotency >= 3.
6. Interpolation yields inaccurate results on the
algebraic equations. In order to avoid this problem,
the output time must be "hit exactly" by the
integrator. That is, interpolation must be avoided on

algebraic equations.
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ABSTRACT

This report examines some techniques which are
useful in solving descriptor systems. A descriptor
system is an implicit system of ordinary differential
equations coupled to a system of algebraic equations.
Sophisticated programs for solviag systems of ordinarjy
differential eguatioans have been available for many
years. But tha presence of algebraic equations in a
descriptor system causes problems for programs which
are designed to solve systems of ordimary differential
equations. One of the major problems 1is in error
control. I will discuss an error filtering mechanism
proposed by Sincovec whick enables a program to
perform separate error control on the algebraic and
differential eguations. A discussion of the
implementation of the error filtering mechanism and an
analysis of the results for some sample problems will
also be given. Some other topics which are relevant
to numerical methods for solving descriptor systenms
will also be discussed. These topics include recovery
from inconsistent initial conditions, interpolation

problems, and nonlinear problems.



