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ABSTRACT 
 
The Calibration-Inverse Prediction Problem was investigated in a mixed model setting.  

Two methods were used to construct inverse prediction intervals.  Method 1 ignores the 

random block effect in the mixed model and constructs the inverse prediction interval in 

the standard manner using quantiles from an F distribution.  Method 2 uses a bootstrap to 

estimate quantiles of an approximate pivotal and then follows essentially the same 

procedure as in method 1.  

 

A simulation study was carried out to compare how the intervals created by the two 

methods performed in terms of coverage rate and mean interval length. Results from our 

simulation study suggest that when the variance component of the block is large relative 

to the location variance component, the coverage rate of the intervals produced by the 

two methods differ significantly.  Method 2 appears to yield intervals which have a 

slightly higher coverage rate and wider interval length then did method 1.  Both methods 

yielded intervals with coverage rates below nominal for approximately 1/3 of the 

simulation settings.   
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Chapter 1- Introduction 
 

1.1: Problem Statement 

  

This report proposes and studies a solution to what is called the calibration or inverse 

prediction problem in a mixed model setting where experimental units are selected from 

blocks that are treated as random effects. This problem was motivated by a study 

currently being carried out at Fort Riley, Kansas.  One of the objects of the study is to 

measure “bare ground” coverage in military maneuver plots.  Among other variables, the 

researchers are interested in measuring the density of plant vegetation in these plots at 

different time periods (the blocks).  Let Xtj be the density measurement taken on the 

ground at time t at location j, as identified by some coordinate system, for example, 

longitude and latitude.  Let Ytj be the estimated density measurement by satellite at time t 

and location j.  Assume that the Ytj’s can be easily obtained (less labor intensive than 

ground measurements).  We are interested in solving the following calibration problem.  

We have data D = {(Xtj,Ytj), t=1, …., K;   j=1, …, nt} obtained from the ground and the 

satellite. Additionally, we have a density measurement Ysk independent of D made at 

location k at some ‘future’ time s obtained from the satellite. The objective here is to 

estimate the corresponding, unobserved Xsk based on the data and the newly observed 

Ysk.  In particular, we are interested in constructing what is called a 1 α−  inverse 

prediction set S computed from data D and Ysk so that P( Xsk є S) = 1 – α.  We use a 

random ‘time’ effect to model the possible dependence among responses measured 

during the same time period. Assume that for all time periods t and all locations j, Ytj, is 

linearly related to Xtj  =  tjx  by the model: 

 

1 ,tj o tj tj

tj t tj

Y x e

e

β β

η ε

= + +

= +  (1.1) 
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The random time components t{ }η are assumed to be independently normally distributed 

N(0, 2
ησ ), independent of the location errors {εtj}, which are taken to be independent  

N(0, 2
εσ ). Ground data is obtained at Fort Riley over intervals of time spaced far apart.  

Accordingly the ground has become so altered as to make our assumption - that responses 

measured at different periods of time are independent - a reasonable one. 

Further, assume that the error terms {etj} are independent of the ground measurements 

{Xtj}, whose joint distribution is free of the parameters { 0 1,β β , 2 2, η εσ σ }.  

This last assumption, allows inference to be carried out conditional on the observed 

ground cover values {Xtj} = {xtj}. Given that inference is carried out conditional on the 

observed x’s, inverse prediction sets S are often called confidence sets. Following 

common practice, we will focus on the case where S  is an interval. 

 

Our assumptions lead to the following covariance structure: 

 2 2

2

0,                

( , ) ( , ) ,     

,              .

tj tjsk sk

t s

Cov Y Y Cov e e t s and j k

t s and j k

η ε

η

σ σ

σ

 ≠
= = + = =


= ≠

 (1.2) 

 
 
This model can be expressed as a split-plot design where ηt is the whole plot error – i.e. 

the random error for the whole-plot experimental unit.  Here, ηt is the error for tth whole 

plot experimental unit and εtj is the error for the subplot experimental unit.  In this mixed 

model setting we wish to obtain set estimates for skX .  

 

 

1.2: Proposed Solution 

 

Let 0 1
ˆ ˆ{ , }β β  denote the maximum likelihood estimators of the regression 

parameters 0 1 and β β . When 2
ησ  = 0, as described below, standard ‘inverse prediction 

sets’ for xsk may be obtained by inverting the quantity 
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( )
0 1

0 1

ˆ ˆ

ˆ ˆˆ
sk sk

sk sk

Y x
T

Var Y x

β β

β β

− −
=

− −
%  (1.3) 

 

viewed as a function of  xsk  with  D and Ysk set equal to their observed values. Correcting 

for the bias in the maximum likelihood estimator of 2
εσ , a scaled version ofT% , denotedT , 

has a t-distribution with n-2 degrees of freedom when 2
ησ  = 0, and      

 

( )
0 1

0 1

ˆ ˆ

2 ˆ ˆˆ
sk sk

sk sk

Y xn
T

n Var Y x

β β

β β

− −
=

− − −
 (1.4) 

           
T2

 has an F distribution with 1 degree of freedom in the numerator and n-2 degrees of 

freedom in the denominator, Graybill (1976).  However, the exact distribution of T or T2 

has not been determined when 2
ησ  > 0 and cannot be simply simulated because xsk is an 

unknown quantity.  This report proposes and investigates two solutions to this problem, 

(i) ignore the block effect and use a t-distribution with n-2 degrees of freedom; (ii) use 

quantiles obtained from a bootstrap. As in the standard case, we will use a two stage 

procedure where the inverse prediction interval is constructed if and only if H0: 1β  = 0 is 

rejected in favor of Ha: 1   0β ≠  (Graybill 1976).  Simulation will be used to evaluate and 

compare these two solutions based on coverage rate and interval length.   

 

 

1.3: An Example 

 

To illustrate what we propose in section 1.2, consider the following example.  Suppose 

we have measurements taken from the ground and satellite for times, K=8, and 

1 2 8... 6n n n= = = =  locations at each time.  Using SAS and the following parameter 

settings: slope ( 1β ) = 8, time variance ( ησ ) = 5, and location variance ( εσ ) = 0.05 we 

simulated ytj according to the model described in equation (1.1).  This data is presented in 

table 1.3.1 on the following page.  Similarly, by means of equation (1.1) we generated a 
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“new” observation, ysk= -0.19902 corresponding to xsk = 0.09207.  Both xtj’s and xsk were 

generated from a U(0, 1) distribution.   

 

Using the dataset above, the statistical software SAS 9.1 was used to fit a standard least 

squares line and to construct one at a time 0.95 prediction intervals for Ysk=ysk  given by,  

 

 

2

(1 / 2: 1)

( )1ˆ 1 sk
n n

xx

x x
y t S

n Sα  − −

−
± + +

 (1.5) 

 
where 0 1ŷ xβ β= +% % , 0β% , 1β% , are the least squares estimates of intercept and slope,  n=48 

observations, and  

 

Sn =

2

1

( )

1

n

i
i

Y Y

n
=

−

−

∑
,     2

1,..., , 1,...,

( )
t

xx tj
t k j n

S x x
= =

= −∑  

 

A scatter plot of these standard least squares prediction intervals for ysk is given in Figure 

1.3.1.  The target point xsk = 0.09207, corresponding to ysk= -0.19902, appears as a red 

dot in the figure. 
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Table 1.3.1: Data D = {(Xtj,Ytj), t=1, …., 8;   j=1, …, nt,=6} 
 
 
 

 
 

ytj xtj 
2.3414 0.26257 
8.9471 0.72354 
6.8076 0.49223 
9.0282 0.85998 
-0.1256 0.56269 
6.525 0.77666 
12.9706 0.95183 
3.5447 0.67328 
4.2364 0.47355 
1.9865 0.22848 
-0.1129 0.13894 
3.5799 0.13257 
2.9719 0.2258 
4.2976 0.74852 
8.6529 0.89218 
3.8538 0.65574 
5.9868 0.76902 
3.6032 0.32458 
-0.4854 0.56355 
2.6332 0.32623 
0.624 0.12862 
-1.5436 0.02563 
6.7194 0.70074 
5.4871 0.6679 
0.674 0.04329 
9.7178 0.84142 
3.3617 0.33593 
6.8714 0.32671 
-1.4588 0.0194 
1.5276 0.23993 
2.7107 0.16502 
9.1589 0.98023 
1.7803 0.10218 
6.98 0.9628 
3.8422 0.64433 
6.0644 0.63606 
6.2047 0.8407 
0.113 0.05604 
-0.2211 0.48219 
6.7121 0.82239 
3.2543 0.17164 
5.1456 0.40807 
5.9303 0.34821 
1.6563 0.54267 
4.8079 0.34307 
1.0414 0.33842 
8.0992 0.87013 
10.8316 0.61968 
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Figure 1.3.1: A plot of the standard least squares prediction intervals for ysk 

 

 
 

As will be explained later, first ignoring the block effect, we used the 95th percentile of an 

F distribution with 1 df in the numerator and 46 df in the denominator to construct an 

approximate 95% inverse prediction interval for xsk (method 1).  Additionally, we 

bootstrapped the distribution of T2 and used the 95th percentile of the bootstrapped 

distribution (F*) to form an approximate 95% inverse prediction interval for xsk (method 

2) .  The two intervals are given in table 1.3.2 below.   
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Table 1.3.2:  Approximate 95% Inverse Prediction Intervals for xsk 

 

  95th 
percentile lower bound Upper bound 

method 1 5.12197 -0.69963 0.5618 

method 2 4.05175 -0.61373 0.4969 

 

Note that both intervals contain the value of xsk=0.092073 we are interested in predicting. 

 

 

1.4: Organization of Remaining Chapters 

 
In Chapter 2 we will show how we constructed approximate 1-α inverse prediction 

intervals for xsk with the methods used in the example above.  Chapter 3 outlines the 

simulation study that was used to compare the two methods.  Chapter 4 explains the 

results of the simulation study, and Chapter 5 will summarize the findings of this report.  

Although many figures will be presented in the results chapter, for ease of reading it was 

necessary to place many of the tables and figures used to summarize our simulation 

results in appendices. 

 

 

 

 

 

 

 
 
 
 
 
 
Equation Section (Next) 
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Chapter 2 – Inverse Prediction Interval 
 
 
2.1:  Background 

 

The inverse prediction problem for a linear model with uncorrelated errors given by  

          

 2
1 , , ~ (0, ), 1,2,..., ;i o i i iY x where N i nεβ β ε      ε σ     = + + =  (2.1) 

 

has been widely studied.  See, for example, Brown (1979), Williams (1969), and Graybill 

(1976).  Information on the robustness of these intervals may be found in Xiao (2000).  

However, to the best of my knowledge, the inverse prediction problem has not been 

studied in models with correlated errors.  For the model with uncorrelated errors such as 

given in (2.1) above, Graybill (1976) developed a procedure for constructing an inverse 

prediction interval for a value xo having observed Y = yo. 

 

 
2.2: Constructing an Inverse Prediction Set  

 
We propose a method for constructing one-at-a-time interval estimates of the unobserved 

value skx  corresponding to the observed value sk skY y=  in the mixed model setting 

presented in section 1.1.  This method closely follows Graybill’s procedure with a few 

adjustments. To illustrate, using equation (1.3), let             

 
( )

2
2 0 1

0 1

ˆ ˆ( )
ˆ ˆˆ

sk sk

sk sk

Y x
F T

Var Y x

β β

β β

− −
 = =

− −
%  (2.2) 

   
Assume that F%  is pivotal so that the quantiles of its distribution, denoted { }Fγ

% , are free 

of unknown parameters and skx . Recall that when there is no block effect and the 

maximum likelihood estimators are corrected for bias, 1 1 :1, 2nF Fα α− − −=% , the 1 α−  quantile 
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from an F distribution with 1 degree of freedom in the numerator and n-2 degrees of 

freedom in the denominator, where n=n1+n2+…+nt . Then, replacing all the entries in 

(2.2) except skx  by their observed values, a 1- α  inverse prediction set, S  for xsk is given 

by    

 { }1:skS x F F α−= ≤% %  (2.3) 

 

 
                                 
We proceed to solve for xsk by first noting that, after some simplification, the inequality 

in (2.3) is equivalent to  

  

 ( )2

0 1 0 1 1
ˆ ˆ ˆ ˆˆ ( ) 0sk sk sk skY x Var Y x F αβ β β β −− − − − − ≤%  (2.4) 

 
 where, 

 

 2
0 1 0 1 0 1

ˆ ˆ ˆ ˆ ˆ ˆ ˆˆ ˆ ˆˆ ˆ( ) ( ) ( ) 2 ( , )
sksk sk skVar Y x Var x Var x Covε ηβ β σ σ β β β β− − = + + + +   

  

Combining terms, we obtain a quadratic equation that is a function of xsk 

 

 

2 2
1 1 1 1 1 1 1

2
1 1

ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆˆ ( ) 2 2 ( , )

ˆ ˆˆˆ ˆ2 ( ( ) 0

sk o sk o sk

sk o sk

Var F x Y Cov F x

Y Y F Var

α α

α

β β β β β β β

β σ σ β

− −

− ε η

   − + − −   

 + − − + + ≤ 

% %

%
 (2.5) 

 
which can be expressed as 2( ) 2 0sk sk skq x ax bx c= + + ≤  where a, b, and c are 

straightforwardly obtained from (2.5) and given by 

 

2
1 1 1

0 1 1 0 1 1

2
0 1 1

ˆ ˆˆ ( )
ˆ ˆ ˆ ˆ ˆ ˆ2 ( , )

ˆ ˆˆˆ ˆ2 ( ( )

sk

sk sk

a Var F

b Y Cov F

c Y Y F Var

α

α

α

β β

β β β β β

β σ σ β

−

−

− ε η

= −

= − −

= − − + +

%

%

%

 (2.6) 
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The solutions to the quadratic equation obtained by setting the left hand side of (2.5) 

equal to zero can be one of the following: 

 

Case 1:  a<0 and b²-ac<0: The resulting confidence interval is the whole real line. 

Case 2:  a<0 and b²-ac<0: b²-ac>0: the resulting confidence interval is the union of   two 

semi-infinite pieces. 

Case3:  a>0 and b²-ac<0: the confidence interval does not exist. 

Case4:  a>0 and b²-ac>0: a confidence interval of finite length can be obtained. 

 

We illustrate these cases with the subsequent figures: 

 

Figure 2.2.1:   Case 1: a<0 and b²-ac<0 
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Figure 2.2.2:  Case 2: a<0, b²-ac>0 

 

 
 

 

 

Figure 2.2.3:  Case 3: a>0 and b²-ac<0 
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Figure 2.2.4:  Case 4: a>0 and b²-ac>0 

 

When there is no block effect, Graybill (1976) showed that Case 4 holds and a 1-α 

confidence interval for xsk exists if and only if 0a > , which is equivalent to rejecting the 

hypothesis Ho: β1 = 0 in favor of  Ha: β1 ≠ 0  with type I error rate α..  Graybill’s 

algorithm, therefore, first carries out the test for zero slope and terminates without 

yielding a confidence interval for xsk if Ho is not rejected.  The situation is more 

complicated for the problem studied here where a block effect may exist, and ‘ 0a > ’ 

does not guarantee that the discriminant, b²-ac, is positive. Nonetheless, the calibration 

problem is only meaningful if β1 ≠ 0 and we also use a two stage procedure where we 

first test Ho: β1 = 0 vs. Ha: β1 ≠ 0.  We use the asymptotic normality of REML estimators 

and reject Ho with nominal type I error rate α if / 2
ˆ ˆ/ se z1 1 αβ β ≥ . If Ho is rejected and b2-

ac>0, we construct an inverse prediction interval for xsk with lower limit 

2 4
,

2
b b ac

a
 − − −
and upper limit

2 4
2

b b ac
a

 − + −
.  Method 1 will use the 1-α quantile 

from an F distribution to evaluate a, b, and c.  Method 2 will use the algorithm described 

below based on a bootstrap estimation of F%  to evaluate a, b, and c.  
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2.3: Introduction to the Bootstrap  

 
Using a bootstrap to approximate the distribution of a statistic is common practice.  See 

for example Efron and Tibshirani (1998) where it is shown that an approximate 

confidence interval for a parameter can be obtained by using the percentiles of the 

bootstrap distribution of an appropriate pivotal.  An assumption of the simple bootstrap is 

that the observations are independently and identically distributed.  When this assumption 

holds, the bootstrap can be executed by sampling randomly with replacement from the 

observed data.  Ideally, when bootstrapping the distribution of a pivotal, it is preferable to 

have a large number of bootstrap repetitions.  Common practice is to carry out at least 

1000 repetitions.  Because of time limitations, in our study it was necessary to limit the 

number of bootstraps to 150. 

 

 

2.4: Bootstrap Algorithm for Estimating 0.95F%   

 

Suppose we have observed or generated data D = {(Xtj,Ytj), t=1, …., K;   j=1, …, nt} 

described in section 1.1 according to the algorithm given in section 3.3.  And suppose we 

have rejected the hypothesis Ho: 1β = 0 in favor of Ha: 1 0β ≠  at nominal type I error rate.   

 

Step 1*:  Using a random number generator we simulated { } 2ˆ(0, )
tj

iid N εε  σ∗  and 

    independently{ }* 2ˆ(0, )t iid N η  ση  . 

 

Step 1a*:  Independently, also generate * 2 2ˆ ˆ ˆ~ (0, )
sk

e N η εσ σ+ and store for step 3b* 

 

Step 2*:  To create the bootstrap data we will use the errors we simulated in step 1* and    

                the REML estimators 0 1
ˆ ˆ ˆ ˆ, , ,ε ηβ  β  σ  σ  to obtain data: 

 * * *
1

ˆ ˆ{( , ), 1, 2,..., , 1, 2,..., }tj tj o tj tj t tD x y x t T j nβ β ∗= = + + ε + η   =   =  (2.7) 
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Step 3*:  From data *D  using PROC MIXED of SAS we find estimators * * * *
0 1

ˆ ˆ ˆ ˆ, , , .ε ηβ  β  σ  σ  
 

Step 3a*: We test Ho: 1̂β =0. If Ho is rejected, go to 3b*. Otherwise, no interval is    

                 obtained and return to bootstrap step 1*. 

 

Step3b*: Using 1a*, estimate skx  by 

 

 0

1

ˆ ˆ( )
ˆ

ˆ
sk sk

sk

y e
x

β
β

− −
=  (2.8) 

 

Step 4*: Compute 

 * * * * *
0 1

ˆ ˆ ˆsk sk sk sY xβ β ε η=  + + +  (2.9) 

 
 

Step 5*:  Compute scaled *F% to simplify the notation, we will denote this as F* given by 

 

 

2
* * *

* 0 1

* * * *
0 1

2
* * *

0 1

* * * 2 * * *
0 1 0 1

ˆ ˆ ˆ
2 ˆ ˆˆ ˆ( )

ˆ ˆ ˆ
2 ˆ ˆ ˆ ˆ ˆˆ ˆˆ ˆ ˆ ˆ( ) ( ) 2 ( , )

sk

sk sk

sk sk

sk sk

sk

Y xn
F

n Var Y x

Y xn
n Var x Var x Covε η

β β

β β

β β

σ σ β β β β

 − − = 
−  − −   

 
− − =

 − + + + + 

 

(2.10)
 

 
 
 

 

Independently steps 1-5 are repeated 150 times, yielding { }150*

1j j
F

=
, which will then be 

arranged in increasing order: 
* * *

(1) (2) (150)...F F F≤ ≤ ≤ .  These order statistics can be used to 

approximate the 0.95 percentile of the distribution of F%  
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An approximate 0.95 inverse prediction interval for Xsk  is then given by  

24 4
2

b b ac
a

− ± −
 

 
where 

 

2 *
1 1 0.95

*
0 1 1 0 1 0.95

2 *
0 0.95 1

ˆ ˆˆ ( )
ˆ ˆ ˆ ˆ ˆ ˆ2 ( , )

ˆ ˆˆˆ ˆ2 ( ( )

sk

sk sk

a Var f

b Y Cov f

c Y Y f Varε η

β β

β β β β β

β σ σ β

= −

= − −

= − − + +
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Equation Section (Next) 

Chapter 3 – Simulation Study 
 

 
3.1: Overview of Simulation Study 

 
Our simulation investigates the performance of our two methods in constructing inverse 

confidence intervals.  The investigation was carried out by simulating data that follow the 

model in equation (1.1) using a variety of settings.  We then bootstrapped the distribution 

of F%  using the algorithm described in section 3.4 and constructed approximate 95% 

inverse prediction intervals for xsk. using the 0.95 quantile of the bootstrapped distribution 

and the 0.95 quantile of an F distribution. The performance of both methods was 

examined by measures such as coverage rate and average length of the confidence 

intervals.  Our simulation was run in the statistical software SAS 9.1.  Summary tables 

were made with Excel and figures of the results were made with the statistical software R 

as well as SAS 9.1.   

 

 

3.2: Fitting the Model 

 
The model from which we generated our data from can be expressed in matrix notation as  

 X= +Y eββββ , (3.1) 

 

The way in which we generate the independent variables ensures that the design matrix  

X has full rank with probability 1 and e~N(0, V) where V=(etj), where etj is defined as in 

(1.2).  If we define ysk to be a new observation of the response Y, the covariance matrix K 

is given by 

 
2 2

( , )
0

t s

J I for t s
K Cov e e

for t s
η εσ σ      

                    

 + = = =  
≠  

 (3.2) 
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where J is a matrix of 1’s and I is the identity matrix, both having nt  rows and nt 

columns.   Because we want to predict xsk given Y=ysk it was necessary to generate an xsk 

so that we would have a way to compare our methods based on how the prediction 

intervals captured xsk.  We chose to randomly generate xsk from a  Uniform (0, 1) 

distribution using the SAS RANUNI command.  

 

 

3.3: Data Generation  

 

Simulations were run in SAS using proc mixed for analysis and proc SQL for data 

manipulation. SQL statements were needed in order to manipulate data properly, and join 

data sets together so that computations could be handled easier. Seed generation for each 

simulation was done using a random uniform number on (0, 1) and multiplying that 

number by 81 10× , and truncating the result. 

 

Steps used to generate data D. 

 
Step 1:  Generate ηt from N(0, ση), and independently {εtj} from N(0, σε).  
 

Step 2:  Generate xtj from a Uniform(0,1) distribution. 

 

Step 3:  Let 

 

                                           0 1 ,tj tj tjY x eβ β= + +  

where 

                                          tj t tje η ε= + . 

 
Step 4: Generate xsk from a Uniform (0,1) (store it for later). 

 

Step 5:  Independently we generate ηs from N(0, ση), and εsk from N(0, σε). 
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Step 6:  Compute  

 

1     osk sk skY x eβ β= + +  

where, 

esk= ηs+ εsk 

 

Step 7: Use PROC MIXED of SAS to estimate 1, ,  o andβ β ε ησ ,  σ ,store for later use. 

 

Step 8: Test Ho: 1β =0, if Ho is rejected we will not form a confidence interval for that    

replication of the simulation.  We carry out the bootstrap only on the cases where  

Ho: 1β  =0 is rejected.   

 

 

3.4: Simulation Settings 

 
 
Simulation settings where chosen to see how coverage rates varied over different 

parameter values.  Three different settings for β1 were chosen, these varied from low, 

medium, and high.  The parameter β0 was set to 0 for all simulations. 

 

For the time variance, ,ησ  and location variance, εσ ,  settings were chosen so that the 

ratio of these quantities varied from low, medium and high. In the low ratio setting the 

location variance has a higher setting then the time variance.  In the medium ratio setting, 

the ratio of the variances is equal. In the high ratio setting the time variance has a higher 

setting then the location variance. These settings were chosen in relation to the analysis 

of a split-plot design, and how well these tests perform due to the ratio of whole plot to 

sub plot error. 

 

Time settings and location settings were chosen in a similar manner having both high and 

low settings. Two other settings, the number of replications of a given simulation setting, 
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and the number of bootstraps per unique simulation setting had to be set in conjunction 

with the time and location settings so that a specific simulation could be completed in a 

reasonable amount of time. Thus settings for the factors time and location were chosen 

with only two levels, low and high.  This was necessary to ensure that simulations would 

be able to be completed on time.  A total of 36 different simulations were run.  Below is a 

table with the settings discussed above: 

 

Table 3.4.1: Parameter Settings 
 
 

 Low Medium High 

oβ  0 0 0 

1β  2 8 20 
2 2/η εσ σ  0.05/5 5/5 5/0.05 

Time=t 8 - 12 
Location=j 6 - 20 

  

Number of Bootstraps Replications: 150 

Number of Replicated Simulations: 200 

 

 

3.5: Simulation ID  

  

In order to identify the different simulations a 5-digit character identifier was adopted for 

each simulation. The first digit represented the settings for the slope in our model: 1 = 

low (2), 2 = medium (8), and 3 = high (20). The second digit represented the settings for 

the ratio of the time variance to the location variance: 1=low (time .05/loc 5), 2=med 

(time 5/loc 5), and 3= high (time 5/loc .05). The third digit represented the amount of 

times in our model: 1=low (8), and 2=high (12). The fourth digit represented the amount 

of locations in our model: 1=low (6), and 2=high (20). The fifth digit was the value of the 

intercept and for this simulation study always had a default of zero.  
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An example of a simulation id would be: 12120. This id can be interpreted as having the 

following configuration: The first digit represents the slope and it has a value of 1 so the 

slope of our simulated model has been given the low setting (2).  The second digit 

represents the ratio of time variance and location variance.  The second digit has a value 

of 2 so the ratio of time variance over location variance has been given the medium 

setting (5/5).   The third digits represents the number of times, it has a value of 1, which 

tells us that time has been given the low setting (8).  The fourth digit represents the 

number of locations; and has a value of 2 so location has been given the high setting (20). 

The fifth digit represents the intercept, and for the purposes of this report will always be 

given the value of 0. 

EQUATION SECTION (NEXT)
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Chapter 4 - Results 
 
 

4.1: Introduction to Results Chapter 

 
We conducted a simulation study to compare the performance of the two methods 

described in section 1.1.  These methods were used to obtain inverse prediction intervals 

for xsk in the mixed model setting given in equation (1.1).  Evaluative measures such as 

coverage rate, and average length and standard deviation of the interval lengths were used 

to compare the two methods.  Additionally, McNemar’s test was carried out using PROC 

FREQ in SAS 9.1 to determine if the methods were performing the same for each distinct 

simulation setting.  Tables of the simulation results used to create figures in sections 4.2, 

and 4.3 are in appendix B, and additional figures related to results described in section 

4.2 are in appendix C.  Each 2x2 table created using PROC FREQ and McNemar’s test 

can be found in appendix D.  

 

 Keep in mind that “Method 1” refers to the method that uses f0.95 , the 95th quantile of  an 

F distribution, to form approximate 95% inverse prediction sets for xsk, “Method 2” refers 

to the method that uses *
0.95f from the bootstrapped distribution of F% to form approximate 

95% inverse prediction sets for xsk.  The sections that follow will make use of the unique 

simulation identifier denoted ‘simulation ID’ that was defined in section 3.5. 

 
 
4.2: Average Interval Width and Standard deviation  
 
Using the table of data in appendix B, whisker plots were made for each unique 

simulation and grouped by 1β  settings (low=2, medium=8, high=20) and /η εσ σ  settings 

(low=0.05/5, medium=5/5, high=5/0.05).   These figures are placed in Appendix D.  The 

dot represents the mean length and whiskers extend to 1.96 times the standard error of the 

interval length, so that what are represented are 95% confidence intervals for the mean 

interval length.   
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The lengths for both methods are very large for the first twelve cases relative to the target 

values skx , which lies in the unit interval.  Those 12 cases coincide with the 12 

simulations where 1β  was set to low.  Using the SAS procedure, PROC UNIVARIATE, a 

two-sided sign test was performed to compare mean interval length between method 1 

and method 2 across the 36 separate simulation settings.  The test yielded a p-value of 

0.003 indicating that the mean lengths of the two methods are statistically significantly 

different.  

 

To further study interval length, Figures 4.2.1 – 4.2.4 present box plots of length plotted 

against an effect size type parameter ∆ defined by 

 2 2/ η εβ σ σ∆ = +  (4.1) 

 
 For small ∆ ,  observing ‘Y’ conveys little information about the corresponding ‘X’ and 

the test for zero slope is expected to have low power when ∆  > 0, unless sample size is 

large. The non-decreasing values of ∆ in our design are given in the next to last column 

of table 4.2.1. All labels with same first letter, A-F, have the same ∆ value. As expected, 

ignoring sample size, interval lengths for both methods decrease with increasing ∆ . The 

intervals are very wide for the first twelve cases, where ∆ is smallest. Plots for both 

methods of mean length in figure 4.2.5 and median ‘mean length’ vs. ∆  in figure 4.2.6 

convey the same information.  As in previous graphs where both methods were plotted 

red circles represent results based on method 1 and black circles represent results based 

on method 2.  Note that in figure 4.2.5 and 4.2.6 it appears that mean length for method 2 

tends to be higher than for method 1 for small values of ∆.  
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Table 4.2.1:  Simulation ID with corresponding ∆ 
 

Sim 
Id 

1β  

 

 
2 2/η εσ σ  

 

2 2
1 / η εβ σ σ ∆+ =  

 

Label given 
in figures 

12110 2.00 med 0.632456 A12110 
12120 2.00 med 0.632456 A12120 
12210 2.00 med 0.632456 A12210 
12220 2.00 med 0.632456 A12220 
11110 2.00 low 0.889988 B11110 
11120 2.00 low 0.889988 B11120 
11210 2.00 low 0.889988 B11210 
11220 2.00 low 0.889988 B11220 
13110 2.00 high 0.889988 B13110 
13120 2.00 high 0.889988 B13120 
13210 2.00 high 0.889988 B13210 
13220 2.00 high 0.889988 B13220 
22110 8.00 med 2.529822 C22110 
22120 8.00 med 2.529822 C22120 
22210 8.00 med 2.529822 C22210 
22220 8.00 med 2.529822 C22220 
21110 8.00 low 3.559953 D21110 
21120 8.00 low 3.559953 D21120 
21210 8.00 low 3.559953 D21210 
21220 8.00 low 3.559953 D21220 
23110 8.00 high 3.559953 D23110 
23120 8.00 high 3.559953 D23120 
23210 8.00 high 3.559953 D23210 
23220 8.00 high 3.559953 D23220 
32110 20.00 med 6.324555 E32110 
32120 20.00 med 6.324555 E32120 
32210 20.00 med 6.324555 E32210 
32220 20.00 med 6.324555 E32220 
31110 20.00 low 8.899883 F31110 
31120 20.00 low 8.899883 F31120 
31210 20.00 low 8.899883 F31210 
31220 20.00 low 8.899883 F31220 
33110 20.00 high 8.899883 F33110 
33120 20.00 high 8.899883 F33120 
33210 20.00 high 8.899883 F33210 
33220 20.00 high 8.899883 F33220 
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Figure 4.2.1:  Box plots of method 1 interval lengths vs. ∆ (A-B) 

 

 
 
Figure 4.2.2:  Box plots of method 2 interval lengths vs. ∆ (A-B) 
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Figure 4.2.3: Box plots of method 1 interval lengths vs. ∆ (C-F) 

 
Figure 4.2.4: Box plots of method 2 interval lengths vs. ∆ (C-F) 
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Figure 4.2.5: Plot of mean length vs. ∆  
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Figure 4.2.6: Plot of median mean length vs. ∆ 
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4.3: Coverage Rate 

 
Table (4.3.1) presents estimated coverage rates of nominal 0.95 confidence intervals for 

skx  based on those data sets for which intervals could be constructed. The standard errors 

of these estimates vary among the Simulation ID’s since the number of sets where S is an 

interval varies among the parameter settings (see section 4.4). As a rough guide, 

(.89)(.11) /100 0.031= provides an approximate upper bound on these standard errors.  

Cases where a 95% confidence interval for coverage rate contains the target rate of ‘0.95’ 

are indicated in bold. Method 2 appears to have more simulations where the coverage rate 

is captured by the 0.95 confidence interval then does method 1. However, overall both 

methods appear to have coverage rates below nominal for about 1/3 of the simulation 

settings.   

 

McNemar’s test for the equality of two correlated proportions was used to test for a 

difference between the coverage rates across the cases that were investigated. The 

estimated rates are correlated since both methods were used on the same data set 

generated under each setting.  P-values from McNemar’s test are given in Table (4.4.1). 

From this table we see that with the exception of a few simulations, the simulations 

where McNemar’s test found a significant difference between the two methods are those 

where the variance ratio is set to high.  This signifies that the performance of the two 

methods is significantly different in terms of coverage rate as long as the time variance 

component is large relative to the location variance component.   
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Table 4.4.1:  Simulation coverage rates for method 1 and method 2 
 

Simulation ID Method 1  Method 2 P-value 
11110 96.51 89.29 0.014
11120 94.29 92.57 0.180
11210 95.04 93.97 0.564
11220 94.90 93.33 0.180
12110 91.94 89.83 0.317
12120 92.09 91.43 0.655
12210 93.40 91.09 0.317
12220 91.62 92.15 0.655
13110 91.00 94.00 0.014
13120 90.00 92.00 0.046
13210 90.00 92.00 0.046
13220 92.50 94.00 0.083
21110 96.50 95.50 0.157
21120 96.00 96.00 1.000
21210 95.50 95.50 1.000
21220 92.00 93.00 0.317
22110 92.50 94.00 0.083
22120 92.50 94.50 0.103
22210 97.00 97.00 1.000
22220 95.00 95.00 1.000
23110 91.00 96.00 0.002
23120 91.00 94.50 0.008
23210 93.47 94.47 0.157
23220 92.00 92.50 0.317
31110 94.00 93.50 0.564
31120 94.00 94.00 N/A
31210 94.50 94.50 1.000
31220 96.00 97.00 0.157
32110 93.50 93.50 1.000
32120 96.00 97.00 0.157
32210 93.00 94.00 0.317
32220 92.50 93.00 0.564
33110 91.00 95.00 <.00001
33120 90.00 95.50 0.001
33210 92.50 95.00 0.025
33220 91.00 95.50 0.003
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Figure 4.4.1 plots the coverage rates for the two methods given in Table 4.4.1 against one 

another. Here, we see little relation between the rates for the two methods.  

 

Figure 4.4.1:  Plot of coverage rate for method 1 vs. coverage rate for method 2 

 

 

 
 
 
 
 
Coverage rates for both methods are plotted against the slope 1β  in Figure 4.4.2 against 

variance ratio in Figure 4.4.3, against time in Figure 4.4.4 and against location in Figure 

4.4.5.  Black Circles Represent results based on method 2 and red circles represent results 

based on method 1.  From these plots we see that, overall, method 1 appears to have a 
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higher coverage rate then method 2 when the slope ( 1β ) is set to low (2), and method 2 

appears to have a higher coverage rate then does method 1 when the variance ratio 

( 2 2/η εσ σ ) is high (5/0.05). 

 
Figure 4.4.2:  Plot of coverage vs 1β  for method 1 and method 2 
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Figure 4.4.3: Plot of coverage vs. η εσ /σ  for method 1 and method 2  
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Figure 4.4.4: Plot of coverage vs. time for method 1 and method 2  
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Figure 4.4.5: Plot of coverage vs. location for method 1 and method 2 
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Figure 4.4.6 plots coverage rate vs. mean length.  There appears to be a slight downward 

trend in coverage rate as mean length increases, but this could be due to the low slope 

setting for those simulations and the resulting smaller number of confidence intervals that 

could be constructed due to the slope being zero.  Other then this there appears to be little 

relation between these variables for both methods.  

 

 
Figure 4.4.6: Plot of coverage rate vs. mean length for method 1 and method 2 
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4.4: Bootstrap Diagnostics 

 
Although the number of bootstraps used to approximate the distribution of F% was fixed to 

be 150, not every bootstrap was able to be carried to the final step.  If the condition 

1̂ 0β ≠ from Step 3a* in Section 2.4 was not met, f* could not be computed.  To 

determine, on average, how many f*’s were actually involved in approximating the 

distribution of F% for each unique simulation setting, the following measure was adopted.   

 

Consider a given simulation setting, and a single inverse prediction interval i, i=1,…,200, 

within that setting.  For that given simulation, and inverse prediction interval i, denote the 

number of bootstraps where 1̂ 0β ≠  by Mi.   The table below summarizes the average 

number of ' ,iM s  denoted ,M and standard deviation of the ' ,iM s  denoted MS , for each 

unique simulation id.   
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Table 4.3.1: , MM S  
 

Simulation ID M  Ms  

11110 69.59 44.9697 
11120 121.995 32.9077 
11210 87.225 46.1277 
11220 138.52 19.9136 
12110 91.85 43.3037 
12120 118.66 33.8763 
12210 79.07 44.4412 
12220 137.18 23.0223 
13110 149.955 0.2307 
13120 150 0 
13210 149.935 0.2667 
13220 150 0 
21110 149.535 5.6059 
21120 150 0 
21210 150 0 
21220 150 0 
22110 149.77 0.8723 
22120 150 0 
22210 149.99 0.0997 
22220 150 0 
23110 149.935 0.2471 
23120 150 0 
23210 149.905 0.3113 
23220 150 0 
31110 150 0 
31120 150 0 
31210 150 0 
31220 150 0 
32110 150 0 
32120 150 0 
32210 150 0 
32220 150 0 
33110 149.975 0.1565 
33120 150 0 
33210 149.965 0.1842 
33220 150 0 

 
 
Note that most of the bootstraps where : 0oH 1β =  was not rejected were those where the 

slope, 1β  was set to low and the variance ratio was at the low and medium settings. 
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4.5: Simulation Diagnostics 

 
Recall that both methods first test 0 1: 0H β = and check to see if the discriminate is 

positive before attempting to construct a confidence interval for .skx Table (5.3.1) 

indicates that both methods fail at high rates to yield intervals when β1 is at its low 

setting.  This agrees with what we found in Table (4.3.1) when we summarized for which 

simulations ˆ 01β ≠  Additionally Table (4.4.1) shows that Method 1 did not have any 

intervals where the discriminant was negative, but Method 2 did give some confidence 

intervals where the discriminant was negative in spite of the fact that the slope was found 

to be nonzero for those intervals. 

 

 
Table 4.4.1:  Settings for which β1=0 or b2-ac<0 

 

Sim Id 

Total number of 
intervals that 
could not be 

formed 
Method 1 

Total number of 
intervals that 
could not be 

formed 
Method 2 

Intervals where 
slope non-zero, 
but b^2-ac<0 
Method 1 

Intervals where 
slope non-zero, 
but b^2-ac<0 
Method 2 

Intervals 
where 

Slope is 0 
11110 114 116 0 2 114 
11120 25 25 0 0 25 
11210 79 84 0 5 79 
11220 4 5 0 1 4 
12110 76 82 0 6 76 
12120 23 25 0 2 23 
12210 94 99 0 5 94 
12220 9 9 0 0 9 
23210 1 1 0 0 1 
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Chapter 5 - Summary and Conclusion 
 

This report proposed and studied a solution to the calibration or inverse prediction 

problem in a mixed model setting where experimental units were selected from blocks 

that are treated as random effects. Two methods for producing inverse prediction 

intervals for xsk were compared.  Method 1 made inverse prediction intervals in the same 

way as Graybill proposed for the simple linear model by using quantiles from an F 

distribution.  Method 2 accounts for the block effect by using a bootstrap to approximate 

the distribution of F%  and forms inverse prediction intervals for xsk with quantiles from 

the bootstrapped distribution of .F%   While results from each method indicate that both 

methods maintain coverage rates below 0.95 for approximately 1/3 of the chosen 

simulation settings. method 2 appears to have a slightly better coverage rate then does 

method 1.   

 

Overall, method 2 produced coverage rates for prediction intervals near ninety-five 

percent. Thus within the space of our parameter settings, one might prefer method 2 over 

method 1. However when the slope setting is set to low, we notice some problems with 

method 2’s approach. Specifically, some prediction intervals fail to form due to the 

discriminate being negative. In this case method 1 is a better choice since this procedure 

never failed to yield an interval where the discriminate was negative.  Other problems 

such as computer resources may limit the use of method 2, since the bootstrap algorithm 

used to produce the intervals must be performed on a machine with good resources, 

namely a fast processor.  For a researcher with limited resources and time, method 1 

might be the best choice; especially since the coverage rate of intervals constructed using 

method 1 is comparable to the coverage rate of intervals constructed using method 2.  

One must also take into consideration that method 1 makes a strong assumption by using 

a statistic from an F distribution, thus one can see the utility of method 2.  While the 

author of this paper would recommend method 2 with some restrictions as stated, further 

studies should be carried out before one can say one method is ‘better’ than the other. 
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Additionally, investigation should be carried out into why, for certain settings, Method 2 

produced intervals that could not be formed due to the discriminant being negative.  Also, 

other simulations should be carried out with added settings for all the parameters, in 

particular the settings for number of locations and times, and the variance ratio.  Limited 

resources were available for running our simulations, and thus settings had to be chosen 

accordingly.  However, in a high performance computing environment (HPC) one could 

take advantage of clusters and run very fast simulations with additional settings for all 

parameters as well as higher location and time settings. The availability of HPC would 

give us a better understanding of the behavior of both methods, and might lead to a better 

theoretical understanding behind the performance the two methods.   
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APPENDIX A – SIMULATION CODE 

 
The following is the simulation code I ran for my report. Following this is additional code 

I used to merge information from all simulations together, and perform additional 

analyses that were required. 

 
/********************************************************************** 
 
 Version history Documentation: 
  
 04-01-07 Beginning step 1 and 2 have been verified.  
  Verification: 
   Steps 3 and 4, must be properly verified by hand. 
  Future/Current issues: 
   *Data clean up, clean up data not needed/or used 
during process. 
   *variance formula needs to be computed from proposal. 
   *need to asses how SAS determines arbitrary 
percentiles from a data sample. 
   *Denominator 0 issue will need to be adressed. 
   *Optimize sql statements IF needed.   
  
 06-04-07s 
  Verification: 
   Code had been verified. 
  Future/Current issues: 
   Generating multiple real experiments is taken care 
of.  
   See above. 
 
    06-13-07 
  Future issues: 
   Made good progress but now optimization is an issue 
SQL, 
 
 12-26-07 
  Verification: 
   Have checked program for errors.All the data 
  sets are producing what is desired. 
   
***********************************************************************
********************/ 
 
/*time v and loc v represent the variances for time and location in the 
"real" experiment*/ 
 
 
%macro do_simulation( 
seed, 
alpha, 
num_t, 
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num_l, 
intercept, 
slope, 
var_terror, 
var_lerror, 
num_stat, 
num_reps, 
ID); 
 
libname storage 'C:\test_case'; 
run; 
 
libname output 'C:\test_case'; 
run; 
 
 
PROC PRINTTO LOG="c:\logfile.log";  
run; 
 
proc printto print="c:\output.out"; 
run; 
 
 
%let seed_increment=1;  
run; 
 
/****************************************************/ 
/* This is the real life data set that we are using */ 
/* This will contain the estimated b_0 and b_1      */ 
data real_Dset; 
good_b1hat=0; 
do rep=1 to &num_reps; 
 x_sk=ranuni(&seed); 
 time_sk=sqrt(&var_terror)*rannor(&seed); 
 loc_sk=sqrt(&var_lerror)*rannor(&seed); 
 
 do t=1 to &num_t;  
  time_error = 0+sqrt(&var_terror)*rannor(&seed); 
 
  do j=1 to &num_l; 
   location_error = 0+sqrt(&var_lerror)*rannor(&seed); 
   x=ranuni(&seed); 
   bo=&intercept; 
   b1=&slope; 
   y=bo+b1*x+time_error+location_error; 
   y_sk=bo+b1*x_sk+time_sk+loc_sk; 
  output; 
  end; 
 end; 
end; 
 
DROP time_sk loc_sk; 
run; 
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/* Analyze the data set real_dset marking those ones with good=1 and 
good=0 */ 
 
DM 'Log; Clear;output;clear;'; 
run; 
 
ods exclude all; 
 
proc mixed data=real_dset CL method=REML; 
by rep; 
class t j; 
model y=x / cl ddfm=kr solution CovB; 
random t; 
ods output covparms=var_params CovB=Cov_fix solutionf=solution_fixed 
tests3=type3test; 
run; 
 
ods exclude none; 
 
 
/* Note that this step is redundant but it's an extra check. 
   One should not see a good value of 0 anymore! Examine type3test 
below if worried about it. 
 */ 
data type3test; 
set type3test; 
good_b1hat=0; 
if probf<=.05 then good_b1hat=1; 
run; 
 
 
data solution_fixed; 
set solution_fixed; 
if effect="Intercept" then effect="B_0hat"; 
if effect="x" then effect="B_1hat"; 
run; 
 
data var_params; 
set var_params; 
if covparm="t" then covparm="time_v"; 
if covparm="Residual" then covparm="loc_v"; 
run; 
 
 
 
 
/**********************************************************************
***********************/ 
/* Finding the covariance between B_0hat and B_1hat, 
   finding the variance of B_1hat  
   finding the variance of B_0hat*/ 
 
proc sql; 
create table data_prep8a as 
select  
 col1 as var_b0hat, 
 col2 as cov_b1b0hat, 
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 rep 
from cov_fix 
where row=1; 
quit; 
 
proc sql; 
create table data_prep8b as 
select  
 col2 as var_b1hat, 
 rep 
from cov_fix 
where row=2; 
quit; 
 
proc sql; 
create table data_prep8c as 
select a.*, 
    b.* 
from data_prep8a as a, data_prep8b as b 
where a.rep=b.rep; 
 
 
 
 
proc transpose data=solution_fixed out=solution_fixed2; 
by rep; 
ID Effect; 
run; 
 
proc transpose data=var_params out=var_parms2; 
by rep; 
ID covparm; 
run; 
 
/******* End real data set  *****/ 
 
 
/******** Begin step 1 ***********/ 
 
 
data step1; 
do rep=1 to &num_reps; 
do exp=1 to &num_stat; 
 do t=1 to &num_t;  
  time_error_star = 0+rannor(&seed); 
 
  do j=1 to &num_l; 
   location_error_star =0+rannor(&seed); 
  output; 
  end; 
 end; 
end; 
end; 
run; 
 
 
proc sql; 
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create table temp_step as 
select distinct  
 a.*, 
 b.time_v, 
 b.loc_v 
from step1 as a, var_parms2 as b 
where  
a.rep=b.rep AND 
b._name_="Estimate"; 
quit; 
 
 
data step1; 
set temp_step; 
time_error_star=time_error_star*sqrt(time_v); 
location_error_star=location_error_star*sqrt(loc_v); 
DROP time_v loc_v; 
run; 
 
 
 
 
 
proc sql; 
create table step1a as 
select a.*, 
    b.x, 
    b.x_sk, 
    b.y_sk, 
    c.B_0hat, 
    c.B_1hat, 
    d.time_v, 
    d.loc_v, 
    e.good_B1hat 
from step1 as a, real_dset as b, solution_fixed2 as c,var_parms2 as d, 
type3test as e 
where a.t=b.t AND a.j=b.j  
AND c._name_="Estimate" 
AND d._name_="Estimate"  
AND a.rep=b.rep 
AND a.rep=c.rep 
and a.rep=d.rep 
and a.rep=e.rep; 
quit; 
 
proc sort data=step1a; 
by rep exp; 
run; 
 
proc datasets library=work; 
delete solution_fixed2 var_parms2 step1 temp_step; 
run; 
quit; 
 
 
 
/***** begin step 2 *************************************/ 
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/* Step 2 needed no modification for multiple intervals */ 
/********************************************************/ 
 
data dstar; 
set step1a; 
y_star=B_0hat+B_1hat*x+time_error_star+location_error_star; 
good_b1hatstar=0; /* again for generate macro below */ 
run; 
 
 
 
proc datasets library=work; 
delete step1a; 
run; 
 
 
/* This finishes step2 */ 
 
/******************************************************************/ 
/** STEP 3 
/*        
/******************************************************************/ 
  
 
 
DM "Log; Clear; output; clear"; 
run; 
 
ods exclude all; 
 
proc mixed data=dstar CL method=REML; 
by rep exp; 
class t j; 
model y_star=x  / cl ddfm=kr solution CovB; 
random t; 
ods output covparms=var_params_star CovB=Cov_fixstar 
solutionf=solution_fixed_star tests3=type3test; 
run; 
 
ods exclude none; 
 
 
 
data type3test; 
set type3test; 
good_b1hatstar=0; 
if probf<=.05 then good_b1hatstar=1; 
run; 
 
 
/* Now just grab parameter estimates like last time, just by using */ 
 
 
data solution_fixed_star; 
set solution_fixed_star; 
if effect="Intercept" then effect="B_0hatstar"; 
if effect="x" then effect="B_1hatstar"; 
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run; 
 
data var_params_star; 
set var_params_star; 
if covparm="t" then covparm="time_vhatstar"; 
if covparm="Residual" then covparm="loc_vhatstar"; 
run; 
 
 
 
 
 
 
proc transpose data=solution_fixed_star out=solution_fixed_star2; 
by rep exp; 
ID Effect; 
run; 
 
proc transpose data=var_params_star out=var_params_star2; 
by rep exp; 
ID covparm; 
run; 
 
proc sql; 
create table step3a as 
select a.*, 
    c.B_0hatsta as B_0hatstar, 
    c.B_1hatsta as B_1hatstar, 
    d.time_vhat as time_vhatstar, 
    d.loc_vhats as loc_vhatstar, 
    e.good_b1hatstar as testing_b1hatstar 
from dstar as a, solution_fixed_star2 as c,var_params_star2 as d, 
type3test as e 
where a.exp=c.exp AND a.exp=d.exp AND a.exp=e.exp  
      AND 
   a.rep=c.rep AND a.rep=d.rep AND a.rep=e.rep 
AND c._name_="Estimate" 
AND d._name_="Estimate"; 
quit; 
 
data step3a; 
set step3a; 
testing_b1hat=good_b1hat; 
drop good_b1hat; 
run; 
 
 
 
 
/* Must generate the x_skhats 
*/ 
data step3temp; 
do rep=1 to &num_reps; 
 do exp=1 to &num_stat; 
 x_skhat=0; 
 e_skhat_source = rannor(&seed+9); 
 time_error_source=rannor(&seed+9); 
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 loc_error_source=rannor(&seed+9); 
  /* These should be in step 4 but it runs easier */ 
  do t=1 to &num_t; 
   do j=1 to &num_l;  
    output; 
   END; 
  END; 
 END; 
END; 
run;  
 
proc sql; 
create table step3b as 
select a.*, 
    b.x_skhat, 
    b.e_skhat_source, 
    b.time_error_source, 
    b.loc_error_source 
from step3temp as b, 
  step3a as a 
where 
a.rep=b.rep AND 
a.exp=b.exp AND 
a.t=b.t AND 
a.j=b.j; 
quit; 
 
 
data step3; 
set step3b; 
if testing_b1hat = 1 then 
    x_skhat=(y_sk-B_0hat-
(sqrt(time_v)*e_skhat_source+sqrt(loc_v)*e_skhat_source))/B_1hat; 
else 
 x_skhat = .; 
run; 
 
proc datasets library=work; 
delete step3temp step3a step3b dstar; 
run; 
 
 
/**********/ 
/* Step 4 */ 
/**********/ 
/* 
For naming conventions I use the _sk to denote a subscript of sk, the 
star suffixed at the end means a stared notation variable, thus: 
y_skstar = a variable y with sk subscript that is superscripted with 
star. 
While this sounds complex, it clearly explains the intended usage of 
this variable in our work.*/ 
 
/* Generate the error_skstar variables */ 
 
data step4; 
set step3; 
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timeerror_skstar=sqrt(time_v)*time_error_source; 
locerror_skstar=sqrt(loc_v)*loc_error_source; 
y_skstar=b_0hat+b_1hat*x_skhat+timeerror_skstar+locerror_skstar; 
drop time_error_source loc_error_source; 
run; 
  
 
 
 
proc datasets library=work; 
delete step3; 
run; 
quit; 
 
 
 
 
/*************************************/ 
/* End of step 4             */ 
/*************************************/ 
 
/*** Begin step 5 ***/ 
 
 
proc sql; 
create table step5a as 
select  
    exp, 
 rep, 
 col1 as var_b0hatstar, 
 col2 as cov_b1b0hatstar 
from cov_fixstar 
where row=1 
order by rep, exp; 
quit; 
 
proc sql; 
create table step5b as 
select  
    exp, 
 rep, 
 col2 as var_b1hatstar 
from cov_fixstar 
where row=2 
order by rep, exp; 
quit; 
 
proc sql; 
create table step5c as 
select a.*, 
    b.* 
from step5a as a, step5b as b 
where a.exp=b.exp and a.rep=b.rep; 
quit; 
 
proc sql; 
create table step5d as 
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select a.*, 
    b.* 
from step5c as a, step4 as b 
where 
a.exp=b.exp 
and 
a.rep=b.rep; 
run; 
 
data step5; 
set step5d; 
num_t=&num_t; 
num_l=&num_l; 
scale = (num_t*num_l) / ( (num_t*num_l) - 2 ) ; 
top=y_skstar-B_0hatstar-(B_1hatstar*x_skhat); 
bottom=sqrt(time_vhatstar+loc_vhatstar+var_b0hatstar+((x_skhat*x_skhat)
*var_b1hatstar)+2*(x_skhat*cov_b1b0hatstar)); 
F_star=(scale)*((top/bottom)**2); 
drop num_t num_l scale; 
run; 
 
proc sql; 
create table storage.counting_mi_&ID as 
select distinct 
exp, 
rep, 
testing_b1hat, 
testing_b1hatstar 
from 
step5; 
quit; 
 
 
 
 
 
 
 
 
 
proc datasets library=work; 
delete step5a step5b step5c step5d step4; 
quit; 
 
 
/**** Step 6 is already completed. ****/ 
 
/* step7 */ 
proc sort data=step5 out=step7 NODUPKEY; 
where testing_b1hat=1 and testing_b1hatstar=1; 
by rep exp f_star; 
run; 
 
 
 
 
proc univariate data=step7 noprint; 
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by rep; 
   var F_star; 
   output out=percentiles pctlpts=95 pctlpre=P; 
run; 
 
 
 
 
/****************** STEP 8 *************************/ 
/* Computing the confidence intervals        */ 
/***************************************************/ 
 
data step8a; 
set percentiles; 
f1=p95; 
run; 
 
/* First grab the data needed from tables lying about */ 
proc sql; 
create table step8b as 
select distinct  
 c.f1, 
 a.b_1hat, 
 a.b_0hat, 
 a.testing_b1hat, 
 b.var_b1hat, 
 b.var_b0hat, 
 a.y_sk, 
 b.cov_b1b0hat, 
 a.time_v, 
 a.loc_v, 
 a.x_sk, 
 a.rep 
from step7 as a, 
  data_prep8c as b, 
  step8a as c 
where 
 c.rep=a.rep AND 
 c.rep=b.rep AND 
 testing_b1hat=1 
order by rep; 
quit; 
 
 
data quadratic_coefficients; 
set step8b; 
a = (b_1hat**2)-(var_b1hat*f1); 
b = ((b_0hat*b_1hat)-(b_1hat*y_sk)-(cov_b1b0hat*f1)); 
c = (y_sk**2)-2*(b_0hat*y_sk)+(b_0hat**2)-f1*(time_v+loc_v+var_b0hat); 
run; 
 
data storage.quadratic_coefficients_&ID; 
 set quadratic_coefficients; 
run; 
 
proc sort data=quadratic_coefficients; 
by a; 
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run; 
 
/* finally the confidence interval */ 
data step8(KEEP=a b c lower upper rep x_sk p_score); 
set quadratic_coefficients; 
lower=(-2*b-sqrt((4*b**2)-4*a*c))/(2*a); 
upper=(-2*b+sqrt((4*b**2)-4*a*c))/(2*a); 
if (x_sk>=lower) AND (x_sk<= upper) AND (lower^=.) AND (upper^=.) then 
p_score=1; 
else if lower=. AND upper=. then p_score=-1; 
else p_score=0; 
run; 
 
 
 
proc sql; 
create table p_valinformation as 
select count(*) as total, 
       sum(p_score) as successes 
from step8 where 
p_score^=-1; 
quit; 
 
data p_valinformation; 
 set p_valinformation; 
 coverage=successes/total; 
run; 
 
 
 
 
/* At the end of the simulation now need to count up proper scores  
 1. Count the number of times proc mixed grabbed the true value of 
B_1hat B_0hat and 
    time error and location error hats. 
 2. Same for Stars. 
 3. Coverage rate for x_sk 
 4. Mean length of intervals 
 5. Number of runs actually computed. 
 
 */ 
 
/* For this table our rates of estimation only care about where B_1hat 
was estimated to not be 0. 
*/ 
 
/* This is used as a reference table for calculations */ 
/* First part is to tally the parameter estimates */ 
/* Begin with only checking those experiments that have B_1hat being 
non-zero. 
   This is done by establishing a reference table that tells you what 
the good real 
   experiments are. Then cross referencing that with other tables */ 
proc sql; 
create table 
good_reference as 
select distinct 
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 testing_b1hat, 
 rep 
from step5  
where 
 testing_b1hat=1; 
quit; 
 
proc sql; 
create table b0b1_checking as 
select a.*  
from solution_fixed as a, good_reference as b  
where 
 a.rep=b.rep; 
quit; 
 
proc sql; 
create table time_loc_varchecking as 
select a.* 
from var_params as a, good_reference as b 
where 
 a.rep=b.rep; 
quit; 
 
data b0b1_checking; 
 set b0b1_checking; 
 
 intercept_score=0; 
 if &intercept>= lower AND &intercept<=upper then 
intercept_score=1; 
 
 slope_score=0; 
 if &slope>= lower and &slope<=upper then slope_score=1; 
run; 
 
data time_loc_varchecking; 
 set time_loc_varchecking; 
 
 time_score=0; 
 if &var_terror >= lower AND &var_terror <= upper then 
time_score=1; 
 
 loc_score=0; 
 if &var_lerror >= lower AND &var_lerror <= upper then 
loc_score=1; 
run; 
 
proc summary data=b0b1_checking; 
class effect; 
var intercept_score slope_score; 
output out=b0b1_score sum=; 
run; 
 
proc summary data=time_loc_varchecking; 
class covparm; 
var time_score loc_score; 
output out=timeloc_score sum=; 
run; 
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/* Now to do the same with the star sets */ 
/* Must form a reference table again, I only want to check those that 
   had B_1hat being not 0, and B_1hatstar being not 0 
 */ 
 
proc sql; 
create table good_reference_star as 
select  
 distinct 
 a.rep, 
 a.exp, 
 a.testing_b1hat, 
 a.testing_b1hatstar 
 from 
 step5 as a 
where 
 a.testing_b1hat=1 AND 
 a.testing_b1hatstar=1; 
quit; 
 
 
proc sql; 
create table b0b1star_checking as 
select a.*  
from solution_fixed_star as a, good_reference_star as b  
where 
 a.rep=b.rep AND 
 a.exp=b.exp; 
quit; 
 
proc sql; 
create table timestar_locstar_varchecking as 
select a.* 
from var_params_star as a, good_reference_star as b  
where 
 a.rep=b.rep AND 
 a.exp=b.exp; 
quit; 
 
data b0b1star_checking; 
 set b0b1star_checking; 
 
 intercept_score=0; 
 if &intercept>= lower  AND &intercept<=upper then 
intercept_score=1; 
 
 slope_score=0; 
 if &slope>= lower and &slope<=upper then slope_score=1; 
run; 
 
data timestar_locstar_varchecking; 
 set timestar_locstar_varchecking; 
 
 time_score=0; 
 if &var_terror >= lower AND &var_terror <= upper then 
time_score=1; 
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 loc_score=0; 
 if &var_lerror >= lower AND &var_lerror <= upper then 
loc_score=1; 
run; 
  
 
 
proc summary data=b0b1star_checking; 
class effect; 
var intercept_score slope_score; 
output out=b0b1star_score sum=; 
run; 
 
proc summary data=timestar_locstar_varchecking; 
class covparm; 
var time_score loc_score; 
output out=timelocstar_score sum=; 
run; 
 
/* Now we need to put this data set together */ 
 
 
 
 
/* Grab data from the score tables and put it into variables */ 
 
 
proc sql; 
select intercept_score into :b0_hatscores 
from b0b1_score 
where effect="B_0hat"; 
quit; 
 
proc sql; 
select slope_score into :b1_hatscores 
from b0b1_score 
where effect="B_1hat"; 
quit; 
 
proc sql; 
select time_score into :time_varscores 
from timeloc_score 
where covparm="time_v"; 
quit; 
 
proc sql; 
select loc_score into :loc_varscores 
from timeloc_score 
where covparm="loc_v"; 
quit; 
 
proc sql; 
select _freq_ into :good_b1hats 
from b0b1_score 
where effect="B_1hat"; 
quit; 
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/* Now we adress stars */ 
 
proc sql; 
select intercept_score into :b0star_hatscores 
from b0b1star_score 
where effect="B_0hatsta"; 
quit; 
 
proc sql; 
select slope_score into :b1star_hatscores 
from b0b1star_score 
where effect="B_1hatsta"; 
quit; 
 
proc sql; 
select time_score into :timestar_varscores 
from timelocstar_score 
where covparm="time_vhat"; 
quit; 
 
proc sql; 
select loc_score into :locstar_varscores 
from timelocstar_score 
where covparm="loc_vhats"; 
quit; 
 
proc sql; 
select _freq_ into :good_b1hatsandstars 
from b0b1star_score 
where effect="B_1hatsta"; 
quit; 
 
 
 
/* Now need to do calculations for statistics based on the confidence 
intervals: 
 1. Get the mean length. 
 2. Count the number of good ones 
 3. Give the numbers for a coverage rate. 
  */ 
 
/*  define the length of a CI as abs(upper-lower) */ 
data step8; 
set step8; 
length=abs(upper-lower); 
run; 
 
/* Now use proc means to obtain the length where the CS is valid: 
 p_score=1 or p_score=0 
 */ 
 
proc summary data=step8; 
where p_score=1 or p_score=0; 
var length; 
output out=CIlengths mean=averagelength; 
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run; 
 
/* The data set P_valinformation has all the information about coverage 
for 2. */ 
 
proc sql; 
select averagelength into :average_ci_length 
from cilengths; 
quit; 
 
proc sql; 
select coverage into :ci_coverage 
from p_valinformation; 
select successes into :ci_goodcount 
from p_valinformation; 
select total into :total_cis 
from p_valinformation; 
quit; 
 
 
 
 
/* Final report datasets */ 
data storage.final_report_&ID; 
b0=&b0_hatscores; 
b1=&b1_hatscores; 
timev=&time_varscores; 
locv=&loc_varscores; 
b1_hatcount=&good_b1hats; 
 
b0_star=&b0star_hatscores; 
b1_star=&b1star_hatscores; 
timev_star=&timestar_varscores; 
locv_star=&locstar_varscores; 
b1_hatstarcount=&good_b1hatsandstars; 
 
Total_possible_b1hats=&num_reps; 
Total_possible_b1hatstars=%eval(&num_reps*&num_stat); 
 
average_length=&average_ci_length; 
x_skci_successes=&ci_goodcount; 
x_skci_total=&total_cis; 
coverage=&ci_coverage; 
 
bad_cis=Total_possible_b1hats-x_skci_total; 
 
run; 
 
 
proc sql;  
create table diagnostic_&id as  
select distinct  
rep,  
exp,  
testing_b1hat,  
testing_b1hatstar  
from step5;  
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quit; 
 
 
proc summary data=diagnostic_&id; 
class rep; 
var testing_b1hat testing_b1hatstar; 
output out=sums sum=; 
run; 
 
data storage.diagnostic_&id(keep= rep testing_b1hat testing_b1hatstar 
rate);  
set sums;  
if testing_b1hat>0 then testing_b1hat=1;  
if rep=. then delete; 
rate=testing_b1hatstar/&num_stat;  
run; 
 
 
quit; 
 
%mend; 
 
%do_simulation( 
  seed=11099504, 
  alpha=.05, 
  num_t=8, 
  num_l=6, 
  intercept=0, 
  slope=20, 
  var_terror=.05, 
  var_lerror=5, 
  num_stat=50, 
  num_reps=50, 
  ID=31110); 
run; 
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The following is the code I used to merge simulation results across computers and 

perform additional analysis of simulations. 

 
/********************************************************************** 
/* This program merges all results from every computer and puts them 
all together into one 
 file 
 
There are three datasets for this: 
 processed_mis = performance of the bootstrap per confidence 
interval per sim. 
 methods = counts if x_sk was in one ci vs another type of ci ( 
since we had two types ) 
  comparison_table = compares the means and stds across the 
methods. 
 
 
 
 */ 
 
libname storage 'C:\real_case'; 
run; 
 
%let datasetlist="11110, 
11120, 
11210, 
11220, 
12110, 
12120, 
12210, 
12220, 
13110, 
13120, 
13210, 
13220, 
21110, 
21120, 
21210, 
21220, 
22110, 
22120, 
22210, 
22220, 
23110, 
23120, 
23210, 
23220, 
31110, 
31120, 
31210, 
31220, 
32110, 
32120, 
32210, 
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32220, 
33110, 
33120, 
33210, 
33220"; 
run; 
 
%let num_datasets=36; 
 
 
data merged_results; 
run; 
 
%macro combine(); 
 
%DO I=1 %to &num_datasets; 
 %let current_dataset=%scan(&datasetlist,&I,","); 
 
 
     proc contents data=storage.final_report_&current_dataset; 
   run; 
 
  proc sql; 
  create table new_result as 
  select 
  a.*, 
  &current_dataset as ID 
  from 
  storage.final_report_&current_dataset as a; 
  quit; 
 
  data merged_results; 
  set merged_results new_result; 
  run; 
 
 
%END; 
 
proc sql; 
create table new_results as 
select distinct * from merged_results; 
quit; 
 
%MEND; 
 
%combine(); 
run; 
 
proc sort data=new_results; 
by id; 
run; 
 
 
/*******************************************************/ 
/* Now compute the cis using the percentile method    */ 
/*******************************************************/ 
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%let datasetlist="11110, 
11120, 
11210, 
11220, 
12110, 
12120, 
12210, 
12220, 
13110, 
13120, 
13210, 
13220, 
21110, 
21120, 
21210, 
21220, 
22110, 
22120, 
22210, 
22220, 
23110, 
23120, 
23210, 
23220, 
31110, 
31120, 
31210, 
31220, 
32110, 
32120, 
32210, 
32220, 
33110, 
33120, 
33210, 
33220"; 
run; 
 
%let num_datasets=36; 
 
 
 
data results_percentile; 
run; 
 
 
 
%macro average_sd_percentile(); 
 
%DO I=1 %to &num_datasets; 
 %let current_dataset=%scan(&datasetlist,&I,","); 
    
    data ci_formula; 
    set storage.Quadratic_coefficients_&current_dataset; 
    lower  = (-2*b - sqrt((4*b**2)-4*a*c) )/(2*a); 
    upper = (-2*b + sqrt((4*b**2)-4*a*c) )/(2*a); 
    distance = abs(upper-lower); 
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 if (x_sk>=lower) AND (x_sk<= upper) AND (lower^=.) AND (upper^=.) 
then p_score=1; 
    else if lower=. AND upper=. then p_score=-1; 
    else p_score=0; 
    run; 
 
 data ci_&current_dataset; 
  set ci_formula; 
 run; 
 
 proc freq data=ci_formula; 
 where p_score in (1,0); 
 tables p_score / out=computing_coverage; 
 run; 
 
 proc sql; 
 select percent into :coverage 
 from computing_coverage 
 where p_score=1; 
    quit; 
 
 
    proc means data=ci_formula; 
 where p_score=1 or p_score=0; 
    var distance; 
    output out=ci_means_sds; 
    run; 
 
    proc transpose data=ci_means_sds out=flipped_ci_sds; 
    id _stat_; 
    run;  
 
    proc sql; 
    create table atom as 
    select 
    "&current_dataset" as id, 
    mean, 
    std, 
 &coverage as coverage 
    from flipped_ci_sds 
    where _NAME_="distance"; 
    quit; 
 
 data results_percentile; 
  set results_percentile atom; 
 run; 
 
%END; 
 
%MEND; 
 
%average_sd_percentile(); 
run; 
 
data ci_22220_percentile; 
 set ci_22220; 
run; 
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/*******************************************/ 
/* Newer versions of the percentiles 
   using an F distribution 
 */ 
 
data results_fconf; 
run; 
 
data methods; 
run; 
 
 
data loctime_keys; 
 set storage.time_locations_table; 
 if id=. then delete; 
run; 
 
 
%let datasetlist="11110, 
11120, 
11210, 
11220, 
12110, 
12120, 
12210, 
12220, 
13110, 
13120, 
13210, 
13220, 
21110, 
21120, 
21210, 
21220, 
22110, 
22120, 
22210, 
22220, 
23110, 
23120, 
23210, 
23220, 
31110, 
31120, 
31210, 
31220, 
32110, 
32120, 
32210, 
32220, 
33110, 
33120, 
33210, 
33220"; 
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run; 
 
%let num_datasets=36; 
 
 
 
%macro average_sd_tformula(); 
 
%DO I=1 %to &num_datasets; 
 %let current_dataset=%scan(&datasetlist,&I,","); 
    
 /* Need to grab the number of locations and times into the new 
f_statistic */ 
 
 proc sql; 
 select num_t into :num_times from loctime_keys 
 where id=&current_dataset; 
 quit; 
 
 proc sql;  
 select num_l into :num_locs from loctime_keys 
 where id=&current_dataset; 
 quit; 
 
 %let bottom_df=%eval(&num_times*&num_locs); 
 run; 
 
 
    data ci_formula; 
    set storage.Quadratic_coefficients_&current_dataset; 
 f_new=finv(.95,1,&bottom_df-2); 
 af = (b_1hat**2)-(var_b1hat*f_new); 
    bf = ((b_0hat*b_1hat)-(b_1hat*y_sk)-(cov_b1b0hat*f_new)); 
    cf = (y_sk**2)-2*(b_0hat*y_sk)+(b_0hat**2)-
f_new*(time_v+loc_v+var_b0hat); 
    lower  = (-2*bf - sqrt((4*bf**2)-4*af*cf) )/(2*af); 
    upper = (-2*bf + sqrt((4*bf**2)-4*af*cf) )/(2*af); 
    distance = abs(upper-lower); 
 if (x_sk>=lower) AND (x_sk<= upper) AND (lower^=.) AND (upper^=.) 
then p_score=1; 
    else if lower=. AND upper=. then p_score=-1; 
    else p_score=0; 
 
 lower_p  = (-2*b - sqrt((4*b**2)-4*a*c) )/(2*a); 
    upper_p = (-2*b + sqrt((4*b**2)-4*a*c) )/(2*a); 
    distance_p = abs(upper_p-lower_p); 
 if (x_sk>=lower_p) AND (x_sk<= upper_p) AND (lower_p^=.) AND 
(upper_p^=.) then pp_score=1; 
    else if lower_p=. AND upper_p=. then pp_score=-1; 
    else pp_score=0; 
    run; 
 
 data ci_&current_dataset; 
  set ci_formula; 
 run; 
 
 proc freq data=ci_formula; 
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 where p_score in (1,0); 
 tables p_score / out=computing_coverage; 
 run; 
 
 proc freq data=ci_formula; 
 tables p_score / out=inves_p_&current_dataset; 
 run; 
 
 proc freq data=ci_formula; 
 where ( p_score in (1,0) ) AND ( pp_score in (1,0) ); 
 tables p_score*pp_score / SPARSE out=compare_table; 
 run; 
 
 data compare_table; 
 set compare_table; 
 id=&current_dataset; 
 run; 
 
 proc sql; 
 create table method_&current_dataset as 
 select 
 id, 
 p_score as in_f_approach, 
 pp_score as in_perc_approach, 
 count, 
 percent 
 from 
 compare_table; 
 quit; 
 
  
 data methods; 
  set methods method_&current_dataset; 
 run; 
 
 proc sql; 
 select percent into :coverage 
 from computing_coverage 
 where p_score=1; 
    quit; 
 
 
    proc means data=ci_formula; 
 where p_score=1 or p_score=0; 
    var distance; 
    output out=ci_means_sds; 
    run; 
 
    proc transpose data=ci_means_sds out=flipped_ci_sds; 
    id _stat_; 
    run;  
 
    proc sql; 
    create table atom as 
    select 
    "&current_dataset" as id, 
    mean, 
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    std, 
 &coverage as coverage 
    from flipped_ci_sds 
    where _NAME_="distance"; 
    quit; 
 
 data results_fconf; 
  set results_fconf atom; 
 run; 
 
%END; 
 
%MEND; 
 
%average_sd_tformula(); 
run; 
 
 
 
/*******************/ 
/* Now do the mi's */ 
/*******************/ 
 
 
 
 
data processed_mi; 
run; 
 
 
%macro do_mis(); 
 
 
%DO I=1 %to &num_datasets; 
 %let current_dataset=%scan(&datasetlist,&I,","); 
    
 
proc sort data=storage.counting_mi_&current_dataset; 
by rep; 
run; 
 
proc summary data=storage.counting_mi_&current_dataset; 
by rep; 
var testing_b1hatstar; 
output out=tallies sum=tally_perrep; 
run; 
 
proc means data=tallies; 
var tally_perrep; 
output out=results_tallies; 
run; 
 
proc transpose data=results_tallies out=temp; 
ID _STAT_; 
run; 
 
proc sql; 
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create table temp as 
select 
&current_dataset as id, 
mean as mean_mis, 
std as std_mis 
from 
temp 
where 
_NAME_="tally_perrep"; 
quit; 
 
 
 
data processed_mi; 
 set processed_mi temp; 
run; 
 
%END; 
 
%MEND; 
 
%do_mis(); 
run; 
 
/* FINALLY, we simply want to merge the result datasets about coverages 
and mean, sd together */ 
proc sql; 
create table comparison_table as 
select 
a.id, 
a.mean as mean_f, 
a.std as std_f, 
a.coverage as coverage_f, 
b.mean as mean_perc, 
b.std as std_perc, 
b.coverage as coverage_perc 
from 
results_fconf as a 
 left join 
results_percentile as b 
 on 
a.id=b.id; 
quit; 
 
/**************************/ 
/* learning proc tabulate */ 
/**************************/ 
 
 
 
%let datasetlist="11110, 
11120, 
11210, 
11220, 
12110, 
12120, 
12210, 



69 

12220, 
13110, 
13120, 
13210, 
13220, 
21110, 
21120, 
21210, 
21220, 
22110, 
22120, 
22210, 
22220, 
23110, 
23120, 
23210, 
23220, 
31110, 
31120, 
31210, 
31220, 
32110, 
32120, 
32210, 
32220, 
33110, 
33120, 
33210, 
33220"; 
run; 
 
%let num_datasets=36; 
 
%macro make_tables(); 
 
 
ODS HTML FILE="C:\TEMP.XLS"; 
 
 
%DO I=1 %to &num_datasets; 
 %let num=%scan(&datasetlist,&I,","); 
 
  data ci_&num; 
 set ci_&num; 
 if p_score = 1 then Method_1 = "Yes"; 
 else if p_score= 0 then method_1 = "No"; 
 if pp_score= 1 then Method_2 = "Yes"; 
 else if pp_score=0 then method_2 = "No"; 
  run; 
 
  proc freq order=data data=ci_&num; 
   title1 "Count of Method 1 vs. Method 2 for sim: &num"; 
 tables Method_1*Method_2 / agree NOPERCENT NOROW NOCOL; 
  run; 
 
%END; 
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ODS HTML CLOSE; 
run; 
 
%mend(); 
 
%make_tables(); 
run; 
 



71 

 

Appendix B- Simulation Tables 
The following tables were made to summarize the results of our simulation study. 
 

Table B.1    Table of Mean Interval Length and Standard Deviation 
 

Simulation 
ID 

Method 1 
Coverage 

Method 1 
Mean Length 

Method 1 
Standard 

Deviation of 
Length 

Method 2 
Coverage 

Method 2 
Mean Length 

Method 2 
Standard 

Deviation of 
Length 

11110 96.51 9.00 15.73 89.29 10.19 29.28 
11120 94.29 6.63 3.72 92.57 6.46 4.48 
11210 95.04 15.41 87.89 93.97 8.57 20.91 
11220 94.90 6.74 8.73 93.33 6.43 5.21 
12110 91.94 18.60 43.34 89.83 16.44 49.29 
12120 92.09 14.99 33.81 91.43 11.94 11.32 
12210 93.40 14.00 18.90 91.09 18.54 60.30 
12220 91.62 8.54 4.21 92.15 9.66 13.40 
13110 91.00 4.64 1.21 94.00 5.56 1.60 
13120 90.00 4.54 1.22 92.00 5.43 1.58 
13210 90.00 4.61 1.00 92.00 5.15 1.24 
13220 92.50 4.63 2.88 94.00 5.16 3.10 
21110 96.50 1.34 0.63 95.50 1.37 0.61 
21120 96.00 1.64 0.28 96.00 1.72 0.36 
21210 95.50 1.70 0.36 95.50 1.78 0.42 
21220 92.00 1.61 0.21 93.00 1.68 0.30 
22110 92.50 1.81 0.46 94.00 1.94 0.55 
22120 92.50 1.61 0.27 94.50 1.69 0.35 
22210 97.00 1.71 0.35 97.00 1.80 0.44 
22220 95.00 1.58 0.19 95.00 1.64 0.26 
23110 91.00 1.18 0.32 96.00 1.41 0.40 
23120 91.00 1.10 0.31 94.50 1.32 0.42 
23210 93.47 1.16 0.23 94.47 1.30 0.29 
23220 92.00 1.18 0.75 92.50 1.31 0.82 
31110 94.00 0.46 0.05 93.50 0.47 0.07 
31120 94.00 0.45 0.03 94.00 0.45 0.04 
31210 94.50 0.46 0.05 94.50 0.47 0.06 
31220 96.00 0.44 0.02 97.00 0.45 0.04 
32110 93.50 0.67 0.12 93.50 0.71 0.16 
32120 96.00 0.64 0.09 97.00 0.67 0.12 
32210 93.00 0.65 0.10 94.00 0.68 0.12 
32220 92.50 0.64 0.08 93.00 0.67 0.10 
33110 91.00 0.46 0.13 95.00 0.54 0.16 
33120 90.00 0.44 0.12 95.50 0.53 0.15 
33210 92.50 0.45 0.10 95.00 0.50 0.12 
33220 91.00 0.45 0.10 95.50 0.50 0.12 
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Appendix C- R Code Used to Make Figures of Results 
 
The following code produces the graphs within my work. Please note that one must load 

the R package called ‘gplots’ in order to generate the whisker plots produced by this 

code.  

 

 

############################# 

# for ‘method 2’# 

# BY SLOPE # 

############ 

 

x<-read.csv("C:\\celeste\\simulation_c\\MakeGraphs\\graph_by_error_data.csv") 

y<-1:36 

 

maintitle="" 

ylabval="Mean Length" 

par(xaxt="n") 

plotCI(y[1:12],x$MEAN[1:12],uiw=1.96*x$STD[1:12]*(1/sqrt(x$n[1:12])),main=mainti

tle,xlab="Simulations where Slope = 2",ylab=ylabval,gap=0,ylim=c(2,35)) 

par(xaxt="n") 

plotCI(y[13:24],x$MEAN[13:24],uiw=1.96*x$STD[13:24]*(1/sqrt(x$n[13:24])),main=

maintitle,xlab="Simulations where Slope = 8",ylab=ylabval,gap=0,ylim=c(1,2.4)) 

par(xaxt="n") 

plotCI(y[25:36],x$MEAN[25:36],uiw=1.96*x$STD[25:36]*(1/sqrt(x$n[25:36])),main=

maintitle,xlab="Simulations where Slope = 20",ylab=ylabval,gap=0,ylim=c(0.3,0.8)) 

 

############################ 

# for ‘method 1’# 

# BY SLOPE                   # 
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############################ 

 

x<-read.csv("C:\\celeste\\simulation_c\\MakeGraphs\\f_graph_by_error_data2.csv") 

y<-1:36 

 

maintitle="" 

ylabval="Mean Length" 

 

par(xaxt="n") 

plotCI(y[1:12],x$MEAN[1:12],uiw=1.96*x$STD[1:12]*(1/sqrt(x$nf[13:24])),main=mai

ntitle,xlab="Simulations where Slope = 2",ylab=ylabval,gap=0,ylim=c(2,35)) 

par(xaxt="n") 

plotCI(y[13:24],x$MEAN[13:24],uiw=1.96*x$STD[13:24]*(1/sqrt(x$nf[13:24])),main=

maintitle,xlab="Simulations where Slope = 8",ylab=ylabval,gap=0,ylim=c(1,2.4)) 

par(xaxt="n") 

plotCI(y[25:36],x$MEAN[25:36],uiw=1.96*x$STD[25:36]*(1/sqrt(x$nf[13:24])),main=

maintitle,xlab="Simulations where Slope = 20",ylab=ylabval,gap=0,ylim=c(0.3,0.8)) 

 

##THE FOLLOWING CODE CREATES THE CONFIDENCE INTERVALS 

WHISKERS # 

########################### by VARIANCE ratio ########################## 

#for ‘method 2’# 

x<-read.csv("C:\\celeste\\simulation_c\\MakeGraphs\\graph_by_error_data_varc.csv") 

y<-1:36 

 

maintitle="" 

ylabval="Mean Length" 

par(xaxt="n") 

plotCI(y[1:12],x$MEAN[1:12],uiw=1.96*x$STD[1:12]*(1/sqrt(x$n[1:12])),main=mainti

tle,xlab="Simulations where Variance Ratio = .05/5",ylab=ylabval,gap=0,ylim=c(0,16)) 

par(xaxt="n") 
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plotCI(y[13:24],x$MEAN[13:24],uiw=1.96*x$STD[13:24]*(1/sqrt(x$n[13:24])),main=

maintitle,xlab="Simulations where Variance Ratio = 

5/5",ylab=ylabval,gap=0,ylim=c(0,32)) 

par(xaxt="n") 

plotCI(y[25:36],x$MEAN[25:36],uiw=1.96*x$STD[25:36]*(1/sqrt(x$n[25:36])),main=

maintitle,xlab="Simulations where Variance Ratio = 

5/.05",ylab=ylabval,gap=0,ylim=c(0,6)) 

 

############################ 

# for ‘method 1’ # 

############################ 

 

x<-read.csv("C:\\celeste\\simulation_c\\MakeGraphs\\f_graph_by_error_data3.csv") 

y<-1:36 

 

maintitle="" 

ylabval="Mean Length" 

 

par(xaxt="n") 

plotCI(y[1:12],x$MEAN[1:12],uiw=1.96*x$STD[1:12]*(1/sqrt(x$nf[13:24])),main=mai

ntitle,xlab="Simulations where Variance Ratio = 

.05/5",ylab=ylabval,gap=0,ylim=c(0,16)) 

par(xaxt="n") 

plotCI(y[13:24],x$MEAN[13:24],uiw=1.96*x$STD[13:24]*(1/sqrt(x$nf[13:24])),main=

maintitle,xlab="Simulations where Variance Ratio = 

5/5",ylab=ylabval,gap=0,ylim=c(0,32)) 

par(xaxt="n") 

plotCI(y[25:36],x$MEAN[25:36],uiw=1.96*x$STD[25:36]*(1/sqrt(x$nf[13:24])),main=

maintitle,xlab="Simulations where Variance Ratio = 

5/.05",ylab=ylabval,gap=0,ylim=c(0,6)) 
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Appendix D- Figures Discussed in Section 4.2 
 
 
Figure D.1:  Method 1: 95% confidence intervals for mean length when β=2 
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Figure D.2:  Method 2: 95% confidence intervals for mean length when β=2 
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Figure D.3:   Method 1: 95% confidence intervals for mean length when β=8 
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Figure D.4:  Method 2: 95% confidence intervals for mean length when β=8 

 

 
 

 

 

 

 

 

 

 

 



 79

Figure D.5:  Method 1: 95% confidence intervals for mean length when β=20 
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Figure D.6:  Method 2: 95% confidence intervals for mean length when β=20 
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Figure D.7:  Method 1: 95% confidence intervals for mean length when /η εσ σ =.05/5 
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Figure D.8:  Method 2: 95% confidence intervals for mean length when /η εσ σ =.05/5 
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Figure D.9: Method 1: 95% confidence intervals for mean length when /η εσ σ =5/5 
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Figure D.10: Method 2: 95% confidence intervals for mean length when 2 2/ 5 / 5η εσ σ =  
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Figure D.11:  Method 1: 95% confidence intervals for mean length when /η εσ σ =5/.05 
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Figure D.12:  Method 2: 95% confidence intervals for mean length when /η εσ σ =5/.05 
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Appendix E- McNemar’s Test 
 
What follows are the 2x2 tables output by SAS’s PROC FREQ and the result of 

McNemar’s Test for each 2x2 table. 

 
Count of Method 1 vs. Method 2 for sim: 11110 
 
The FREQ Procedure 

Frequency  
 

Table of Method_1 by Method_2 

Method_1 Method_2 Total 

Yes No  

Yes 75 6 81 

No  0 3 3 

Total  75 9 84 

Frequency Missing = 2 
 

 

Statistics for Table of Method_1 by Method_2 

McNemar's Test 

Statistic (S) 6.0000 

DF 1 

Pr > S 0.0143 

 

Simple Kappa Coefficient 

Kappa 0.4717 

ASE 0.1765 

95% Lower Conf Limit 0.1258 

95% Upper Conf Limit 0.8176 

 

Effective Sample Size = 84 
Frequency Missing = 2 
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Count of Method 1 vs. Method 2 for sim: 11120 
 
The FREQ Procedure 

Frequency  
 

Table of Method_1 by Method_2 

Method_1 Method_2 Total 

Yes No  

Yes 161 4 165 

No  1 9 10 

Total  162 13 175 
 

 

Statistics for Table of Method_1 by Method_2 

McNemar's Test 

Statistic (S) 1.8000 

DF 1 

Pr > S 0.1797 

 

Simple Kappa Coefficient 

Kappa 0.7676 

ASE 0.1000 

95% Lower Conf Limit 0.5715 

95% Upper Conf Limit 0.9637 

 

Sample Size = 175 
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Count of Method 1 vs. Method 2 for sim: 11210 
 
The FREQ Procedure 

Frequency  
 

Table of Method_1 by Method_2 

Method_1 Method_2 Total 

Yes No  

Yes 108 2 110 

No  1 5 6 

Total  109 7 116 

Frequency Missing = 5 
 

 

Statistics for Table of Method_1 by Method_2 

McNemar's Test 

Statistic (S) 0.3333 

DF 1 

Pr > S 0.5637 

 

Simple Kappa Coefficient 

Kappa 0.7556 

ASE 0.1358 

95% Lower Conf Limit 0.4895 

95% Upper Conf Limit 1.0000 

 

Effective Sample Size = 116 
Frequency Missing = 5 
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Count of Method 1 vs. Method 2 for sim: 11220 
 
The FREQ Procedure 

Frequency  
 

Table of Method_1 by Method_2 

Method_1 Method_2 Total 

Yes No  

Yes 181 4 185 

No  1 9 10 

Total  182 13 195 

Frequency Missing = 1 
 

 

Statistics for Table of Method_1 by Method_2 

McNemar's Test 

Statistic (S) 1.8000 

DF 1 

Pr > S 0.1797 

 

Simple Kappa Coefficient 

Kappa 0.7692 

ASE 0.0995 

95% Lower Conf Limit 0.5743 

95% Upper Conf Limit 0.9642 

 

Effective Sample Size = 195 
Frequency Missing = 1 
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Count of Method 1 vs. Method 2 for sim: 12110 
 
The FREQ Procedure 

Frequency  
 

Table of Method_1 by Method_2 

Method_1 Method_2 Total 

No  Yes 

No  9 1 10 

Yes 3 105 108 

Total  12 106 118 

Frequency Missing = 6 
 

 

Statistics for Table of Method_1 by Method_2 

McNemar's Test 

Statistic (S) 1.0000 

DF 1 

Pr > S 0.3173 

 

Simple Kappa Coefficient 

Kappa 0.7997 

ASE 0.0969 

95% Lower Conf Limit 0.6097 

95% Upper Conf Limit 0.9897 

 

Effective Sample Size = 118 
Frequency Missing = 6 



 92

 

 
Count of Method 1 vs. Method 2 for sim: 12120 
 
The FREQ Procedure 

Frequency  
 

Table of Method_1 by Method_2 

Method_1 Method_2 Total 

Yes No  

Yes 158 3 161 

No  2 12 14 

Total  160 15 175 

Frequency Missing = 2 
 

 

Statistics for Table of Method_1 by Method_2 

McNemar's Test 

Statistic (S) 0.2000 

DF 1 

Pr > S 0.6547 

 

Simple Kappa Coefficient 

Kappa 0.8120 

ASE 0.0818 

95% Lower Conf Limit 0.6517 

95% Upper Conf Limit 0.9723 

 

Effective Sample Size = 175 
Frequency Missing = 2 
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Count of Method 1 vs. Method 2 for sim: 12210 
 
The FREQ Procedure 

Frequency  
 

Table of Method_1 by Method_2 

Method_1 Method_2 Total 

Yes No  

Yes 91 3 94 

No  1 6 7 

Total  92 9 101 

Frequency Missing = 5 
 

 

Statistics for Table of Method_1 by Method_2 

McNemar's Test 

Statistic (S) 1.0000 

DF 1 

Pr > S 0.3173 

 

Simple Kappa Coefficient 

Kappa 0.7289 

ASE 0.1289 

95% Lower Conf Limit 0.4763 

95% Upper Conf Limit 0.9815 

 

Effective Sample Size = 101 
Frequency Missing = 5 
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Count of Method 1 vs. Method 2 for sim: 12220 
 
The FREQ Procedure 

Frequency  
 

Table of Method_1 by Method_2 

Method_1 Method_2 Total 

Yes No  

Yes 173 2 175 

No  3 13 16 

Total  176 15 191 
 

 

Statistics for Table of Method_1 by Method_2 

McNemar's Test 

Statistic (S) 0.2000 

DF 1 

Pr > S 0.6547 

 

Simple Kappa Coefficient 

Kappa 0.8245 

ASE 0.0766 

95% Lower Conf Limit 0.6744 

95% Upper Conf Limit 0.9746 

 

Sample Size = 191 
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Count of Method 1 vs. Method 2 for sim: 13110 
 
The FREQ Procedure 

Frequency  
 

Table of Method_1 by Method_2 

Method_1 Method_2 Total 

No  Yes 

No  12 6 18 

Yes 0 182 182 

Total  12 188 200 
 

 

Statistics for Table of Method_1 by Method_2 

McNemar's Test 

Statistic (S) 6.0000 

DF 1 

Pr > S 0.0143 

 

Simple Kappa Coefficient 

Kappa 0.7845 

ASE 0.0846 

95% Lower Conf Limit 0.6186 

95% Upper Conf Limit 0.9503 

 

Sample Size = 200 
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Count of Method 1 vs. Method 2 for sim: 13120 
 
The FREQ Procedure 

Frequency  
 

Table of Method_1 by Method_2 

Method_1 Method_2 Total 

No  Yes 

No  16 4 20 

Yes 0 180 180 

Total  16 184 200 
 

 

Statistics for Table of Method_1 by Method_2 

McNemar's Test 

Statistic (S) 4.0000 

DF 1 

Pr > S 0.0455 

 

Simple Kappa Coefficient 

Kappa 0.8780 

ASE 0.0599 

95% Lower Conf Limit 0.7606 

95% Upper Conf Limit 0.9955 

 

Sample Size = 200 
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Count of Method 1 vs. Method 2 for sim: 13210 
 
The FREQ Procedure 

Frequency  
 

Table of Method_1 by Method_2 

Method_1 Method_2 Total 

Yes No  

Yes 180 0 180 

No  4 16 20 

Total  184 16 200 
 

 

Statistics for Table of Method_1 by Method_2 

McNemar's Test 

Statistic (S) 4.0000 

DF 1 

Pr > S 0.0455 

 

Simple Kappa Coefficient 

Kappa 0.8780 

ASE 0.0599 

95% Lower Conf Limit 0.7606 

95% Upper Conf Limit 0.9955 

 

Sample Size = 200 
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Count of Method 1 vs. Method 2 for sim: 13220 
 
The FREQ Procedure 

Frequency  
 

Table of Method_1 by Method_2 

Method_1 Method_2 Total 

Yes No  

Yes 185 0 185 

No  3 12 15 

Total  188 12 200 
 

 

Statistics for Table of Method_1 by Method_2 

McNemar's Test 

Statistic (S) 3.0000 

DF 1 

Pr > S 0.0833 

 

Simple Kappa Coefficient 

Kappa 0.8810 

ASE 0.0677 

95% Lower Conf Limit 0.7482 

95% Upper Conf Limit 1.0000 

 

Sample Size = 200 
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Count of Method 1 vs. Method 2 for sim: 21110 
 
The FREQ Procedure 

Frequency  
 

Table of Method_1 by Method_2 

Method_1 Method_2 Total 

Yes No  

Yes 191 2 193 

No  0 7 7 

Total  191 9 200 
 

 

Statistics for Table of Method_1 by Method_2 

McNemar's Test 

Statistic (S) 2.0000 

DF 1 

Pr > S 0.1573 

 

Simple Kappa Coefficient 

Kappa 0.8699 

ASE 0.0908 

95% Lower Conf Limit 0.6920 

95% Upper Conf Limit 1.0000 

 

Sample Size = 200 
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Count of Method 1 vs. Method 2 for sim: 21120 
 
The FREQ Procedure 

Frequency  
 

Table of Method_1 by Method_2 

Method_1 Method_2 Total 

Yes No  

Yes 191 1 192 

No  1 7 8 

Total  192 8 200 
 

 

Statistics for Table of Method_1 by Method_2 

McNemar's Test 

Statistic (S) 0.0000 

DF 1 

Pr > S 1.0000 

 

Simple Kappa Coefficient 

Kappa 0.8698 

ASE 0.0909 

95% Lower Conf Limit 0.6915 

95% Upper Conf Limit 1.0000 

 

Sample Size = 200 
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Count of Method 1 vs. Method 2 for sim: 21210 
 
The FREQ Procedure 

Frequency  
 

Table of Method_1 by Method_2 

Method_1 Method_2 Total 

Yes No  

Yes 189 2 191 

No  2 7 9 

Total  191 9 200 
 

 

Statistics for Table of Method_1 by Method_2 

McNemar's Test 

Statistic (S) 0.0000 

DF 1 

Pr > S 1.0000 

 

Simple Kappa Coefficient 

Kappa 0.7673 

ASE 0.1125 

95% Lower Conf Limit 0.5468 

95% Upper Conf Limit 0.9878 

 

Sample Size = 200 
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Count of Method 1 vs. Method 2 for sim: 21220 
 
The FREQ Procedure 

Frequency  
 

Table of Method_1 by Method_2 

Method_1 Method_2 Total 

Yes No  

Yes 183 1 184 

No  3 13 16 

Total  186 14 200 
 

 

Statistics for Table of Method_1 by Method_2 

McNemar's Test 

Statistic (S) 1.0000 

DF 1 

Pr > S 0.3173 

 

Simple Kappa Coefficient 

Kappa 0.8559 

ASE 0.0707 

95% Lower Conf Limit 0.7173 

95% Upper Conf Limit 0.9945 

 

Sample Size = 200 
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Count of Method 1 vs. Method 2 for sim: 22110 
 
The FREQ Procedure 

Frequency  
 

Table of Method_1 by Method_2 

Method_1 Method_2 Total 

Yes No  

Yes 185 0 185 

No  3 12 15 

Total  188 12 200 
 

 

Statistics for Table of Method_1 by Method_2 

McNemar's Test 

Statistic (S) 3.0000 

DF 1 

Pr > S 0.0833 

 

Simple Kappa Coefficient 

Kappa 0.8810 

ASE 0.0677 

95% Lower Conf Limit 0.7482 

95% Upper Conf Limit 1.0000 

 

Sample Size = 200 
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Count of Method 1 vs. Method 2 for sim: 22120 
 
The FREQ Procedure 

Frequency  
 

Table of Method_1 by Method_2 

Method_1 Method_2 Total 

Yes No  

Yes 184 1 185 

No  5 10 15 

Total  189 11 200 
 

 

Statistics for Table of Method_1 by Method_2 

McNemar's Test 

Statistic (S) 2.6667 

DF 1 

Pr > S 0.1025 

 

Simple Kappa Coefficient 

Kappa 0.7536 

ASE 0.0964 

95% Lower Conf Limit 0.5647 

95% Upper Conf Limit 0.9425 

 

Sample Size = 200 
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Count of Method 1 vs. Method 2 for sim: 22210 
 
The FREQ Procedure 

Frequency  
 

Table of Method_1 by Method_2 

Method_1 Method_2 Total 

Yes No  

Yes 193 1 194 

No  1 5 6 

Total  194 6 200 
 

 

Statistics for Table of Method_1 by Method_2 

McNemar's Test 

Statistic (S) 0.0000 

DF 1 

Pr > S 1.0000 

 

Simple Kappa Coefficient 

Kappa 0.8282 

ASE 0.1193 

95% Lower Conf Limit 0.5944 

95% Upper Conf Limit 1.0000 

 

Sample Size = 200 
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Count of Method 1 vs. Method 2 for sim: 22220 
 
The FREQ Procedure 

Frequency  
 

Table of Method_1 by Method_2 

Method_1 Method_2 Total 

Yes No  

Yes 189 1 190 

No  1 9 10 

Total  190 10 200 
 

 

Statistics for Table of Method_1 by Method_2 

McNemar's Test 

Statistic (S) 0.0000 

DF 1 

Pr > S 1.0000 

 

Simple Kappa Coefficient 

Kappa 0.8947 

ASE 0.0737 

95% Lower Conf Limit 0.7502 

95% Upper Conf Limit 1.0000 

 

Sample Size = 200 
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Count of Method 1 vs. Method 2 for sim: 23110 
 
The FREQ Procedure 

Frequency  
 

Table of Method_1 by Method_2 

Method_1 Method_2 Total 

Yes No  

Yes 182 0 182 

No  10 8 18 

Total  192 8 200 
 

 

Statistics for Table of Method_1 by Method_2 

McNemar's Test 

Statistic (S) 10.0000 

DF 1 

Pr > S 0.0016 

 

Simple Kappa Coefficient 

Kappa 0.5928 

ASE 0.1146 

95% Lower Conf Limit 0.3682 

95% Upper Conf Limit 0.8175 

 

Sample Size = 200 
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Count of Method 1 vs. Method 2 for sim: 23120 
 
The FREQ Procedure 

Frequency  
 

Table of Method_1 by Method_2 

Method_1 Method_2 Total 

Yes No  

Yes 182 0 182 

No  7 11 18 

Total  189 11 200 
 

 

Statistics for Table of Method_1 by Method_2 

McNemar's Test 

Statistic (S) 7.0000 

DF 1 

Pr > S 0.0082 

 

Simple Kappa Coefficient 

Kappa 0.7409 

ASE 0.0929 

95% Lower Conf Limit 0.5588 

95% Upper Conf Limit 0.9230 

 

Sample Size = 200 
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Count of Method 1 vs. Method 2 for sim: 23210 
 
The FREQ Procedure 

Frequency  
 

Table of Method_1 by Method_2 

Method_1 Method_2 Total 

Yes No  

Yes 186 0 186 

No  2 11 13 

Total  188 11 199 
 

 

Statistics for Table of Method_1 by Method_2 

McNemar's Test 

Statistic (S) 2.0000 

DF 1 

Pr > S 0.1573 

 

Simple Kappa Coefficient 

Kappa 0.9114 

ASE 0.0621 

95% Lower Conf Limit 0.7896 

95% Upper Conf Limit 1.0000 

 

Sample Size = 199 
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Count of Method 1 vs. Method 2 for sim: 23220 
 
The FREQ Procedure 

Frequency  
 

Table of Method_1 by Method_2 

Method_1 Method_2 Total 

Yes No  

Yes 184 0 184 

No  1 15 16 

Total  185 15 200 
 

 

Statistics for Table of Method_1 by Method_2 

McNemar's Test 

Statistic (S) 1.0000 

DF 1 

Pr > S 0.3173 

 

Simple Kappa Coefficient 

Kappa 0.9650 

ASE 0.0349 

95% Lower Conf Limit 0.8967 

95% Upper Conf Limit 1.0000 

 

Sample Size = 200 
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Count of Method 1 vs. Method 2 for sim: 31110 
 
The FREQ Procedure 

Frequency  
 

Table of Method_1 by Method_2 

Method_1 Method_2 Total 

Yes No  

Yes 186 2 188 

No  1 11 12 

Total  187 13 200 
 

 

Statistics for Table of Method_1 by Method_2 

McNemar's Test 

Statistic (S) 0.3333 

DF 1 

Pr > S 0.5637 

 

Simple Kappa Coefficient 

Kappa 0.8720 

ASE 0.0729 

95% Lower Conf Limit 0.7292 

95% Upper Conf Limit 1.0000 

 

Sample Size = 200 
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Count of Method 1 vs. Method 2 for sim: 31120 
 
The FREQ Procedure 

Frequency  
 

Table of Method_1 by Method_2 

Method_1 Method_2 Total 

Yes No  

Yes 188 0 188 

No  0 12 12 

Total  188 12 200 
 

 

Statistics for Table of Method_1 by Method_2 

McNemar's Test 

Statistic (S) . 

DF 1 

Pr > S . 

NOTE: There are no discordant 
pairs. 

 

Simple Kappa Coefficient 

Kappa 1.0000 

ASE 0.0000 

95% Lower Conf Limit 1.0000 

95% Upper Conf Limit 1.0000 

 

Sample Size = 200 
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Count of Method 1 vs. Method 2 for sim: 31210 
 
The FREQ Procedure 

Frequency  
 

Table of Method_1 by Method_2 

Method_1 Method_2 Total 

Yes No  

Yes 187 2 189 

No  2 9 11 

Total  189 11 200 
 

 

Statistics for Table of Method_1 by Method_2 

McNemar's Test 

Statistic (S) 0.0000 

DF 1 

Pr > S 1.0000 

 

Simple Kappa Coefficient 

Kappa 0.8076 

ASE 0.0938 

95% Lower Conf Limit 0.6238 

95% Upper Conf Limit 0.9914 

 

Sample Size = 200 
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Count of Method 1 vs. Method 2 for sim: 31220 
 
The FREQ Procedure 

Frequency  
 

Table of Method_1 by Method_2 

Method_1 Method_2 Total 

Yes No  

Yes 192 0 192 

No  2 6 8 

Total  194 6 200 
 

 

Statistics for Table of Method_1 by Method_2 

McNemar's Test 

Statistic (S) 2.0000 

DF 1 

Pr > S 0.1573 

 

Simple Kappa Coefficient 

Kappa 0.8521 

ASE 0.1029 

95% Lower Conf Limit 0.6503 

95% Upper Conf Limit 1.0000 

 

Sample Size = 200 
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Count of Method 1 vs. Method 2 for sim: 32110 
 
The FREQ Procedure 

Frequency  
 

Table of Method_1 by Method_2 

Method_1 Method_2 Total 

Yes No  

Yes 186 1 187 

No  1 12 13 

Total  187 13 200 
 

 

Statistics for Table of Method_1 by Method_2 

McNemar's Test 

Statistic (S) 0.0000 

DF 1 

Pr > S 1.0000 

 

Simple Kappa Coefficient 

Kappa 0.9177 

ASE 0.0577 

95% Lower Conf Limit 0.8046 

95% Upper Conf Limit 1.0000 

 

Sample Size = 200 
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Count of Method 1 vs. Method 2 for sim: 32120 
 
The FREQ Procedure 

Frequency  
 

Table of Method_1 by Method_2 

Method_1 Method_2 Total 

Yes No  

Yes 192 0 192 

No  2 6 8 

Total  194 6 200 
 

 

Statistics for Table of Method_1 by Method_2 

McNemar's Test 

Statistic (S) 2.0000 

DF 1 

Pr > S 0.1573 

 

Simple Kappa Coefficient 

Kappa 0.8521 

ASE 0.1029 

95% Lower Conf Limit 0.6503 

95% Upper Conf Limit 1.0000 

 

Sample Size = 200 
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Count of Method 1 vs. Method 2 for sim: 32210 
 
The FREQ Procedure 

Frequency  
 

Table of Method_1 by Method_2 

Method_1 Method_2 Total 

Yes No  

Yes 185 1 186 

No  3 11 14 

Total  188 12 200 
 

 

Statistics for Table of Method_1 by Method_2 

McNemar's Test 

Statistic (S) 1.0000 

DF 1 

Pr > S 0.3173 

 

Simple Kappa Coefficient 

Kappa 0.8355 

ASE 0.0805 

95% Lower Conf Limit 0.6778 

95% Upper Conf Limit 0.9933 

 

Sample Size = 200 
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Count of Method 1 vs. Method 2 for sim: 32220 
 
The FREQ Procedure 

Frequency  
 

Table of Method_1 by Method_2 

Method_1 Method_2 Total 

Yes No  

Yes 184 1 185 

No  2 13 15 

Total  186 14 200 
 

 

Statistics for Table of Method_1 by Method_2 

McNemar's Test 

Statistic (S) 0.3333 

DF 1 

Pr > S 0.5637 

 

Simple Kappa Coefficient 

Kappa 0.8885 

ASE 0.0636 

95% Lower Conf Limit 0.7638 

95% Upper Conf Limit 1.0000 

 

Sample Size = 200 
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Count of Method 1 vs. Method 2 for sim: 33110 
 
The FREQ Procedure 

Frequency  
 

Table of Method_1 by Method_2 

Method_1 Method_2 Total 

Yes No  

No  8 10 18 

Yes 182 0 182 

Total  190 10 200 
 

 

Statistics for Table of Method_1 by Method_2 

McNemar's Test 

Statistic (S) 154.0833 

DF 1 

Pr > S <.0001 

 

Simple Kappa Coefficient 

Kappa -0.1047 

ASE 0.0337 

95% Lower Conf Limit -0.1708 

95% Upper Conf Limit -0.0387 

 

Sample Size = 200 
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Count of Method 1 vs. Method 2 for sim: 33120 
 
The FREQ Procedure 

Frequency  
 

Table of Method_1 by Method_2 

Method_1 Method_2 Total 

Yes No  

Yes 180 0 180 

No  11 9 20 

Total  191 9 200 
 

 

Statistics for Table of Method_1 by Method_2 

McNemar's Test 

Statistic (S) 11.0000 

DF 1 

Pr > S 0.0009 

 

Simple Kappa Coefficient 

Kappa 0.5956 

ASE 0.1084 

95% Lower Conf Limit 0.3831 

95% Upper Conf Limit 0.8081 

 

Sample Size = 200 
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Count of Method 1 vs. Method 2 for sim: 33210 
 
The FREQ Procedure 

Frequency  
 

Table of Method_1 by Method_2 

Method_1 Method_2 Total 

Yes No  

Yes 185 0 185 

No  5 10 15 

Total  190 10 200 
 

 

Statistics for Table of Method_1 by Method_2 

McNemar's Test 

Statistic (S) 5.0000 

DF 1 

Pr > S 0.0253 

 

Simple Kappa Coefficient 

Kappa 0.7872 

ASE 0.0918 

95% Lower Conf Limit 0.6073 

95% Upper Conf Limit 0.9672 

 

Sample Size = 200 
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Count of Method 1 vs. Method 2 for sim: 33220 
 
The FREQ Procedure 

Frequency  
 

Table of Method_1 by Method_2 

Method_1 Method_2 Total 

Yes No  

Yes 182 0 182 

No  9 9 18 

Total  191 9 200 
 

 

Statistics for Table of Method_1 by Method_2 

McNemar's Test 

Statistic (S) 9.0000 

DF 1 

Pr > S 0.0027 

 

Simple Kappa Coefficient 

Kappa 0.6454 

ASE 0.1080 

95% Lower Conf Limit 0.4337 

95% Upper Conf Limit 0.8571 

 

Sample Size = 200 
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