THE EFFECT OF CHEMICAL ADDITIVES ON CUTTING FORCES AND RATE OF WEAR OF NATURAL DIAMONDS by BOKKA NARASIMHA. RAD B.E., OSMANIA UNIVERSITY, 1974

A MASTER'S THESIS

Submitted in Partial Fulfillment of the Requirements for the Degree

MASTER OF SCIENCE

Department of Mechanical Engineering KANSAS STATE UNIVERSITY

Manhattan, Kansas
1978

Approved By:
7. C. Cupel

Major ProfessorDocumentLD
2668T41978R37 TABLE OF CONTENTSC. 2
CHAPTER
LIST OF TABLES iii
LIST OF FIGURES iv
NOMENCLATURE v
I INTRODUCTION 1
II RESEARCH OBJECTIVES 4
III EXPERIMENTAL PROCEDURE 6
IV ANALYSIS OF EXPERIMENTAL DATA 12
v dISCUSSION OF RESULTS 27
Results for Single Point Cutting 27
Expected Results for Drilling 27
with Diamond Bits
Agreement with Former Results 32
Disagreement with Former Results 32
Aspects of Results which are 32
not Understood
VI CONCLUSIONS 33
REFERENCES 34
APPENDIX 39

1. Computer Program 39
2. Experimental Data 42
3. Photographs of the Worn Diamond 55

LIST OF TABLES

TABLE
PAGE

1. VALUES OF THE RATIO $\left(\frac{\mathrm{dV}_{\mathrm{d}}}{\mathrm{d}_{r}}\right)$ FOR DIFFERENT CONCENTRATION LEVELS OF THE SURFACTANT.
2. VALUES OF THE RATIO ($\frac{d F}{d A}$) FOR DIFFERENT CONCENTRATION LEVELS OF THE SURPACTANT.

LIST OF FIGURES
FIGURE PAGE

1. Test Dynamometer 8
2. Test Diamond in Holder 9
3. Test Set-Up 10
4. Normal Force vs Volume of Rock Removed 13
5. Diamond Wear Rate vs the Logarithm 28
of Concentration of Surfactant
6. Effective Cutting Hardness vs the
Logarithm of Concentration of the 29
Surfactant
7. $\left(\frac{d F_{T}}{d A}\right)$ vs the Logarithm of Concentration 30 of the Surfactant
8. Comparison of Diamond Wear Rate with Bureau of Mines Specific Damping

NOMENCLATURE

a	Radius of Diamond
A_{W}	Wear Area of Diamond
H_{W}	Depth of Diamond Wear
A_{W}	Diamond Wear Angle
X	Axial Cutting Force
Y	Tangential Cutting Force
Z	Normal Cutting Force
F	Resultant Normal Cutting Force
F_{T}	Tangential Cutting Force

CHAPTER I

INTRODUCTION

The projected total expenditure for drilling and tunneling in the US during the next decade runs as high as $\$ 100$ billion (19). Considering the increased demands for improved environmental quality, underground excavation and tunneling through hard rock, drilling for oil and exploration for minerals, any modest improvement in the efficiency of comminution processes would drastically reduce the high cost of operation. One important issue in achieving reduced costs in hard rock drilling is improved bit performance. It is therefore necessary to obtain a better understanding of rock fracture mechanisms, so that more effective bits can be designed.

Another potentially important alternative, is to modify the mechanical behavior of rock by chemical means so as to enhance drilling efficiency. During recent years researchers have attempted to increase drilling efficiency by adding chemical additives to the flushing medium (1), (2), (4), (5). The physical as well as the chemical nature of the environment is found to influence significantly the performance of comminution operations (10).

If the comminution involves primarily the creation of new surfaces, then the basic principle is that reduction in surface free energy of the solid being fragmented results in an increase of the effective efficiency of the operation. Also the physical properties of the flushing fluid such as density, viscosity and the heat transfer coefficient 'h' between the bit and the fluid have an effect on the efficiency of comminution processes (10).

Many investigators have studied the effects of chemicals added to the flushing medium on rock properties and drill bit penetration rate, and explanatory theories have been advanced (1), (2), (4), (5), (7), (9), (12), (13), (15), (19). Basically two major theories were proposed to explain these effects. The first by Rehbinder, et. al. is based on surface energy reductions owing to the adsorption of chemical reagents and observed changes in penetration rates during drilling (20). The second theory was postulated by Westwood, et. al. and is based on the adsorptioninduced alterations in the movement of dislocations at the surface of the solids (19).

Several workers have reported increased penetration rates by chemical additives but the explanation of these effects remain somewhat obscure (9), (19). Some conflicting results have been published by the US Bureau of Mines (2) indicating that there is no significant effect on drilling rate, by surface active chemicals in drilling microcline or serpentine.

In 1975 Cooper and Berlie (1) showed that there is no significant increase in drilling rate for marble and granite,
but the rate of diamond wear is significantly affected when drilled with surface active chemicals.

The identification of the true mechanisms and their relative importance in the overall comminution process together with a clear explanation of the observed effects in drilling with surface active chemicals has not been found. This can only be established by careful experimentation and systematic control of all the system variables such as ionic strength, adsorption capacity of the solid, pH value, chemical composition of the solution etc. But, no clearly understood theory exists today to explain what occurs at the mineral-solution interface, and the reason for large variations in the results of mineral hardness research.

CHAPTER II

RESEARCH OBJECTIVES

In view of the recently published results on the effect of surface active chemicals in hard rock diamond drilling, there does not appear significant increase in penetration rate, but the distinct promise of extending the bit life is very encouraging (2).

The investigations in this field were carried out using different types of diamord bits such as diamond-impregnated core drills (2), surface-set diamond coring bits (4), and hemispherical diamond-impregnated bits (9). This means that the experimental results obtained by drilling tests represent the combined effects of many individual diamonds cutting under widely varying conditions. Due to many variables such as chip removal, diamond wear, matrix wear, cutting force on diamonds and complex interrelationships between them, it is not possible to understand and correlate the effects of chemicals on drilling.

Essentially the many individual diamonds protruding from the surface may be regarded as individual cutting tools. In the particular case of drilling with surface set diamond bits a theoritical model has been developed by first considering the cutting action of a single diamond and then properly combining the effects of all the individual diamonds on the bit face (21),
(22), (23). Accordingly, a single point diamond tool was chosen for the present research to measure and study the controversial yet interesting chemically induced effects of surface active chemicals on cutting rock. Using a single diamond to cut rock is a more direct approach and the complications which arise in the case of drilling with diamond bits are avoided. The chief objective of this investigation is to study the rate of wear of the diamond while cutting granite rock using different concentrations of a cationic surfactant solution.

CHAPTER III

EXPERIMENTAL PROCEDURE

The test material used in the investigation was a cylindrical specimen of Georgia granite. The cylindrical rock was 9 inches in diameter and 10 inches long and mounted on a steel mandrel between the centers of a Reed-Prentice lathe. The cutting parameters such as the speed of the lathe (94.8 rpm), the feed rate (0.0025 inches per revolution), and the depth of cut (0.003 inches) were held constant throughout the investigation.

The cutting tool was a single spherically shaped natural diamond. The diamond as shown in Figure 1 was 0.092 inch in diameter and held in a metal matrix. The tool was mounted in a three-component force dynamometer as shown in Figure 2. This allowed continuous recording of the force components acting on the diamond during the cutting process. The dynamometer had a range of 100 pounds in the normal direction and 50 pounds in the axial and tangential directions. Two channels of a Sanborn recorder were used to record the normal and tangential forces, whereas the axial force was recorded on a second Sanborn recorder. Each component of the dynamometer was initially calibrated to a known force on the corresponding channels of the recorders.

The liquid environments consisted of cationic aqueous Aluminum Chloride, deionized distilled water, and tap water.

The selection of the surfactant and the concentration levels was guided by the experimental results relating to the specific damping of the pendulum, published by the US Bureau of Mines (14). A stock solution of this reagent was made 0.1 Molar with deionized distilled water and then diluted to the required concentration levels. Five concentration levels were used in the cutting experiments. In view of the extremely low concentration levels of Aluminum Chloride used, distilled water was deionized before using for diluting the stock solution. This was done to eliminate the presence of any traces of Chloride ions in the distilled water. Sufficient cutting fluid for one complete cut across the rock was mixed and stored before each cut. To avoid difficulties of filtering the fluid was discarded and new fluid used for each cut.

The entire storage and pumping system was made of plastic to avoid any possible contamination of the chemical fluid used. The solution was stored in a graduated plastic tank and through a plastic nozzle on to the rock just ahead of the cutting tool. The pipe-line contains a pressure gauge and a needle valve, and by controlling the needle valve, the pressure of the flushing medium can be regulated. Thus the rate of flow of the fluid was held essentially constant for all the cuts. The complete experimental set-up is shown in Figure 3.

A continuous cut was taken with each concentration level of the surfactant and the forces continuously recorded on the

Figure 2. Test Diamond in Holder

Sanborm recorders. From the charts of the recorders, the readings for the forces were taken at twenty equidistant points along the entire length of the rock.

Each concentration level was used once for an entire cut and the diamond was removed from the dynamometer at the end of the cut and photographed through a microscope. The area of the wear flat was determined from these photographs and the wear volume computed. Also the diameter of the rock was measured after every cut.

Deionized distilled water and ordinary tap water were also used during the invertigation as flushing mediums in addition to the different concentration levels of the surfactant for comparison. Typical photographs of the worn diamond are shown in Appendix 3.

CHAPTER IV

ANALYSIS OF EXPERIMENTAL DATA

The photographs of the diamond taken at the end of each run were used to determine the amount of diamond wear. The area of the wear flat A_{W} was obtained using a planimeter. This wear area was approximated to an equivalent circle to get the depth of diamond wear H_{W}.

$$
\begin{aligned}
H_{w} & =a\left(1-\operatorname{Cos} \lambda_{W}\right), \ldots \ldots \ldots 1 . \\
\text { Where, } \quad \lambda_{W} & =\sin ^{-1} \frac{1}{2}\left(\frac{A_{W}}{\pi}\right)^{\frac{1}{2}}, \ldots \ldots \ldots 2 .
\end{aligned}
$$

The volume of diamond worn was then computed using the equation

$$
\begin{equation*}
\text { Wear volume }=\pi\left(a H_{w}^{2}-\frac{H_{w}^{3}}{3}\right) \text {, } \tag{3.}
\end{equation*}
$$

The volume of rock removed for every cut was also computed.
From the experimental data obtained, graphs between the resultant normal force and the volume of rock removed were plotted as shown in Figure 4. Because of the inherent inhomogeneities of the granite rock the average slopes ($\left.\frac{d F}{d V}\right)_{r}$ for each run were obtained from these graphs as shown in Figure 4. The ratio between the average normal force and the wear area $\left(\frac{d F}{d A}\right)$ for each cut was calculated using the relation given by,

$$
\left(\frac{d F}{d A}\right)=\left(\frac{d F}{d V}\right)_{r}\left(\frac{d V_{r}}{d A_{d}}\right),
$$

4.

The ratio between the volume of diamond worn and the volume

of rock removed was also computed for all the cuts. These results were summarized in Tables 1 and 2 respectively. Graphs were plotted for the diamond wear rate $\left(\frac{d V}{d V}{ }_{r}\right)$ versus the logarithm of concentration and for the effective cutting hardness $\left(\frac{d F}{d A}\right)$ versus the logarithm of concentration as shown in Figures 5 and 6 respectively. The corresponding values for deionized distilled water and tap water are also given in these graphs for comparison. Computer programs for the volume of diamond worn and the volume of rock removed are given in Appendix 1. The cutting hardness $\left(\frac{d F_{T}}{d A}\right)$ from the data for tangential cutting force was obtained similar to $\left(\frac{d F}{d A}\right)$. Graph plotted for the cutting hardness $\left(\frac{d F_{T}}{d A_{d}}\right)$ versus the logarithm of concentration is shown in Figure 8.

DISCUSSION OF THE RESULTS

Results for Single Point Cutting

The rate of diamond wear $\left(\frac{d V}{d}_{d}\right)$ and the cutting hardness $\left(\frac{d F}{d A}\right)$ and $\left(\frac{d F_{T}}{d A}{ }_{d}\right)$ have been plotted as functions of the logarithm of concentration in Figures 5, 6 and 7 respectively. It is clear from the graph that the minimum diamond wear rate occurs at the concentration level 3×10^{-6} Molar. For comparison, the diamond wear rate with deionized distilled water and tap water are shown as level lines on the graph. From the graphs plotted between ($\frac{d F}{d A}$) versus the logarithm of concentration and $\left(\frac{d F_{T}}{d A}\right)$ versus the logarithm of concentration level, it appears that the cutting hardness is maximum at approximately 3×10^{-6} Molar concentration. It was also found that the diamond wear rate correlates with the hardness determined by the Pendulum Sclerometer as published by the Bureau of Mines (14). This is shown in Figure 8. Expected Results for Drilling with Diamond Bits

The single diamond cutting tests were performed with essentially constant rock removal rate. Under these conditions the cutting forces were maximum when the diamond wear rate was minimum. It is therefore believed that when drilling with constant weight on a diamond bit, the penetration rate will be minimum at 3×10^{-6} Molar concentration. The diamond wear rate will also be minimum at this concentration level. To improve the drilling performance of a bit, it is desired to increase the penetration rate and to decrease the wear rate. But, from the results obtained, it is expected that both the objectives, namely minimum wear rate

and maximum penetration rate cannot be achieved at the same time. Agreement with former Results

The experimental results, that the diamond wear rate is minimum and the cutting hardness is maximum at the concentration level 3×10^{-6} Molar, are in agreement with results published by Westwood, et al (9) and Selim, et al (12). Westwood states that microhardness is maximum at the isoelectric point which should be in the vicinity of $3 \times 10^{-6} \mathrm{Molar}$ concentration. Selim found that the additives simultaneously increased the energy consumption (corresponding to increased tangential cutting force) while the diamond wear rate was decreased.

Disagreement with former Results

The results published by Engelmann and Terichow of the Bureau of Mines (14) however don't appear to agree with our results. The hardness determined by the Pendulum Sclerometer was minimum at the isoelectric point.

Aspects of the Results which are not understood
Several aspects of the results are not presently understood. These are:

1. Why the diamond wear rate is minimum when the cutting hardness is maximum.
2. Why the Pendulum hardness is minimum when the cutting hardness is maximum.
3. Why the diamond wear rate correlates with the Pendulum hardness.

The reason that wear rate is decreased when cutting hardness is increased may be that although the rock becomes stronger the mode of failure becomes more brittle in nature.

CONCLUSIONS

It is clear that there are still many unanswered questions regarding the effects of chemical additives on the cutting action and wear rate of diamond cutting tools. Based on the single diamond cutting tests in granite rock, it can be concluded that:

1. The cutting forces are increased by the Aluminum Chloride solution.
2. The diamond wear rate is decreased by the Aluminum Chloride solution.

It therefore appears that "optimum" drilling performance must be some compromise between decreased penetration rate and increased bit life.

REFERENCES

1. G. A. Cooper and J. Berlie. On the Influence of the Flushing Fluid During Diamond Drilling. Journal of Materials Science 11 (1976).
2. D. R. Tweeton, W. H. Engelmann, G. A. Savanick, and D. I. Johnson. Influence of Surface Active Chemicals on Drilling and Fracturing Rock. Bureau of Mines Report of Investigations. 8186, 1976.
3. D. R. Tweeton. Effect of Environment on Friction and Wear Between Quartz and Steel. Bureau of Mines Report of Investigations. 8124, 1976.
4. W. H. Engelmann, H. F. Unger, and B. S. Snowden. Diamond Drilling With Surfactants in Upper Michigan Amygdaloidal Basalts Using Surface Set Bits. Society of Mining Engineers. AIME Transactions- Volume 258. September 1975.
5. A. R. C. Westwood and John J. Mills. Application of Chemomechanical Effects to Fracture-Dependent Industrial Processes. MML Technical Report No. 75-39 c, 1975.
6. M. M. Khruschov. Principles of Abrasive Wear. Wear, 28 (1974) 69-88.
7. A. R. C. Westwood. Tewksbury Lecture. Control and Application of Environment-Sensitive Fracture Processes. Journal of Materials Science. 9 (1974).
8. N. H. Macmillan, R. D. Huntington, and A. R. C. Westwood. Chemomechanical Control of Sliding Friction Behavior in Non-Metals. Journal of Materials Science 9 (1974).
9. A. R. C. Westwood, N. M. Macmillan, and R. S. Kalyoncu. Chemomechanical Phenomena in Hard Rock Drilling. Society of Mining Engineers, AIME Transactions- Volume 256 June 1974.
10. P. Somasundaran and I. J. Lin. Effect of the Nature of Environment on Comminution Processes. Ind. Eng. Chem. Process Des. Develop., Volume 11, No. 3, 1972.
11. V. S. Vutukuri. Effect of Aluminum Chloride Solution on the Tensile Strength of Quartzite. Society of Mining Engineers, AIME Transactions- Volume 252 December 1972.
12. A. A. Selim, C. W. Schultz, and K. C. Streibeg. The Effect of Additives on Impregnated Diamond Bits Performance. Bureau of Mines Report of Investigations. December 1969.
13. L. H. Robinson. Effect of Hardness Reducers on Failure Characteristics of Rock. Society of Petroleum Engineers. September 1967.
14. W. H. Engelmann, O. Terichow, and A. A. Selim. Zeta Potential and Pendulum Sclerometer Studies of Granite in a Solution Environment. Bureau of Mines Report of Investigations. 7048, 1967.
15. 0. Terichow, and W. C. Larson. Pendulum Sclerometer for Surface Hardness Studies. Bureau of Mines Report of Investigations. 6952, 1967.
1. G. D. Boozer, K. H. Hiller, and S. Serdengecti. Effects of Pore Fluids on the Deformation Behavior of Rocks Subjected to Triaxial Compression. Rock Mechanisms, Proceedings. Fifth Symposium. May 1962.
2. R. Shepherd. Improving the Efficiency of Rotary Drilling of Shotholes. The Institution of Mining Engineers Transac-
tions. Volume 113, 1953-1954.
3. A. E. Long and W. G. Agnew. Effect of Lubricating Agents in a Diamond-Drilling-Bit Coolant and Cuttings-Removal Medium. Bureau of Mines Report of Investigations. 3793, January 1945.
4. Application of Chemomechanical Effect to Full Scale Hard Rock Drilling. MML Proposal No. MA 77 - 04R. January 1977.
5. P. A. Rehbinder, L. A. Schreiner, and K. F. Zhigach. Hardness Reducers in Drilling. Moscow Academy of Sciences 1944. Translated by Council. Sci. Ind.Res. Melbourne, Australia.
6. F. C. Appl, D. S. Rowley, and H. C. Bridwell. Theoritical Analysis of Cutting and Wear of Surface Set Diamond Cutting Tools. Christensen, Inc. Salt Lake City, Utah. June '67.
7. F. C. Appl and D. S. Rowley. Analysis of the Cutting Action of a Single Diamond. Society of Petroleum Engineers Journal. Volume 243, 1968.
8. D. S. Rowley and F. C. Appl. Analysis of Surface Set Diamond Bit Performance. Society of Petroleum Engineers Journal. Volume 9, 1969.
TABLE 1

1. Deionized Dist	$: 0.103 \times 10^{-6}$	7. Deionized Distilled Water : 0.177×10^{-6}
2. 3×10^{-6} Molar	$: 0.037 \times 10^{-6}$	8. 1×10^{-6} Molar $\quad: 0.134 \times 10^{-6}$
3. 1×10^{-4} Molar	$: 0.163 \times 10^{-6}$	9.3×10^{-6} Molar $\quad: 0.066 \times 10^{-6}$
4. 1×10^{-6} Molar	$: 0.104 \times 10^{-6}$	10. 1×10^{-5} Molar $\quad: 0.078 \times 10^{-6}$
5. 3×10^{-5} M0lar	$: 0.085 \times 10^{-6}$	11. 3×10^{-5} Molar $\quad: 0.132 \times 10^{-6}$
6. 1×10^{-5} Molar	$: 0.068 \times 10^{-6}$	12. $1 \times 10^{-4} \mathrm{MOlar} \quad: 0.338 \times 10^{-6}$
		13. Tap Water $\quad: 0.236 \times 10^{-6}$

TABLE 2
VALUES OF THE RATIO ($\frac{d F}{d A_{d}}$) FOR DIFFERENT CONCENTRATION LEVELS OF THE SURFACTANT
I SET

1. Deionized Distilled Water : 19.69×10^{4}	7. Deionized Distilled Water : 18.58×10^{4}
2. 3×10^{-6} Molar $\quad 22.21 \times 10^{4}$	8. 1×10^{-6} Molar $\quad 13.46 \times 10^{4}$
3. 1×10^{-4} Molar $\quad 6.21 \times 10^{4}$	9. 3×10^{-6} Molar $: 24.19 \times 10^{4}$
4. 1×10^{-6} Molar $\quad 14.28 \times 10^{4}$	10. 1×10^{-5} Molar 26.72×10^{4}
5. 3×10^{-5} Molar $\quad: 11.05 \times 10^{4}$	11. 3×10^{-5} Molar $\quad 9.47 \times 10^{4}$
6. 1×10^{-5} Molar $\quad 23.14 \times 10^{4}$	12. 1×10^{-4} Molar $\quad 6.83 \times 10^{4}$
	13. Tap Water $\quad 8.16 \times 10^{4}$

> \$JOB DOUGLE PRECISICN FA, LK, REO, HhC, VW,PI,R,XI

sentry

$$
\begin{aligned}
& \text { C } \$ J 0 B \quad \text { OUBL } \quad P R E T M E=(, 2 J), P \leq G E S=1 J U
\end{aligned}
$$

analysis Cf planimeter oata for oialiono no. 8

ACTUAL HEAR AREA RAOILS OF
CF CIAMCAC. WEAR AREA
дy 34 Gクกñ 10
30 H 1 d 30

Cut Number 1 : Deionized Distilled Water
Diameter of Rock Before Cut : 8.393 inches
Diameter of Rock After Cut : 8.388 inches

	X (Lbs)	Y (Lbs)	$Z($ Lbs $)$	F_{N} (Lbs)
1.	3.0	4.4	25.0	25.18
2.	3.0	4.6	25.5	25.67
3.	3.1	4.6	25.5	25.69
4.	3.2	4.6	26.5	26.69
5.	3.2	4.6	27.0	27.19
6.	3.3	4.6	27.0	27.20
7.	3.4	4.7	27.5	27.70
8.	3.4	4.7	27.5	27.70
9.	3.4	5.0	28.0	28.21
10.	3.4	5.0	28.0	28.21
11.	3.4	5.0	28.0	28.21
12.	3.5	5.1	29.0	29.21
13.	3.5	5.0	28.5	28.71
14.	3.5	5.1	28.5	28.71
15.	3.6	5.2	29.0	29.22
16.	3.7	5.5	30.5	30.72
17.	3.9	5.7	32.0	32.24
18.	4.0	5.7	32.0	32.25
19.	4.0	5.8	33.0	33.24
20.	4.0	5.8	33.0	33.24

EXPERIMENTAL DATA

Cut Number 2 : Aluminum Chloride Solution (3×10^{-6} Molar)
Diameter of Rock Before Cut : 8.388 inches
Diameter of Rock After Cut : 8.383 inches

	X (Lbs)	Y (Lbs)	Z (Lbs)	F_{N} (Lbs)
1.	3.4	5.0	31.0	31.19
2.	3.5	5.4	31.0	31.20
3.	3.6	5.4	32.0	32.20
4.	3.6	5.1	31.0	31.21
5.	3.6	5.1	31.0	31.21
6.	3.6	5.1	30.0	30.22
7.	3.6	5.3	30.5	30.71
8.	3.6	5.3	30.5	30.71
9.	3.6	5.3	31.0	31.21
10.	3.5	5.3	31.0	31.20
11.	3.6	5.4	32.0	32.20
12.	3.6	5.4	32.0	32.20
13.	3.6	5.3	31.5	31.71
14.	3.6	5.5	32.0	32.20
15.	3.6	5.6	32.5	32.70
16.	3.6	5.6	32.5	32.70
17.	3.6	5.8	33.5	33.70
18.	3.6	5.7	33.5	33.70
19.	3.6	5.7	34.0	34.19
20.	3.6	5.7	34.0	34.19

EXPERIMENTAL DATA

Cut Number 3 : Aluminum Chloride Solution (1×10^{-4} Molar) Diameter of Rock Before Cut : 8.383 inches Diameter of Rock After Cut : 8.377 inches

	X (Lbs)	Y (Lbs)	Z (Lbs)	F_{N} (Lbs)
1.	4.4	6.0	37.0	37.26
2.	4.4	6.1	36.5	36.76
3.	4.4	6.0	37.0	37.26
4.	4.4	5.9	36.5	36.76
5.	4.3	5.8	36.0	36.26
6.	4.2	5.8	35.0	35.25
7.	4.4	5.8	36.0	36.27
8.	4.3	5.9	36.0	36.26
9.	4.3	5.9	36.0	36.26
10.	4.4	5.9	36.0	36.27
11.	4.3	5.9	36.0	36.26
12.	4.4	6.1	37.0	37.26
13.	4.5	6.1	37.5	37.77
14.	4.6	6.3	38.5	38.77
15.	5.1	6.2	38.5	38.84
16.	5.3	6.3	39.0	39.36
17.	5.2	6.4	39.0	39.35
18.	5.2	6.3	39.0	39.35
19.	5.2	6.4	40.0	40.34
20.	5.2	6.4	40.0	40.34

Cut Number 4 : Aluminum Chloride Solution (1×10^{-6} Molar) Diameter of Rock Before Cut : 8.377 inches Diameter of Rock After Cut : 8.371 inches

	X (Lbs)	Y (Lbs)	Z (Lbs)	F_{N} (Lbs)
1.	3.1	5.0	32.0	32.15
2.	3.0	5.0	31.5	31.64
3.	3.1	5.1	32.0	32.15
4.	3.1	5.2	31.0	31.15
5.	3.1	5.0	32.0	32.15
6.	3.0	5.0	31.5	31.64
7.	3.0	5.0	31.5	31.64
8.	2.9	5.0	31.0	31.14
9.	3.0	5.2	31.5	31.64
10.	3.0	5.0	31.5	31.64
11.	2.9	5.0	31.5	31.63
12.	3.1	5.4	33.5	33.64
13.	3.2	5.3	33.5	33.65
14.	3.3	5.5	35.0	35.16
15.	3.3	5.4	35.0	35.16
16.	3.3	5.5	35.0	35.16
17.	3.3	5.5	35.5	35.65
18.	3.2	5.4	35.5	35.64
19.	3.3	5.6	36.5	36.65
20.	3.3	5.6	36.5	36.65

Cut Number 5 : Aluminum Chloride Solution (3×10^{-5} Molar) Diameter of Rock Before Cut : 8.371 inches Diameter of Rock After Cut : 8.365 inches

	X (Lbs)	Y (Lbs)	Z (Lbs)	F_{N} (Lbs)
1.	3.1	5.1	35.0	35.14
2.	3.1	5.3	34.5	34.64
3.	3.2	5.4	35.0	35.17
4.	3.2	5.4	35.0	35.17
5.	3.2	5.4	35.0	35.17
6.	3.2	5.3	34.5	34.65
7.	3.2	5.4	34.5	34.65
8.	3.2	5.5	34.0	34.15
9.	3.2	5.5	34.5	34.65
10.	3.2	5.6	34.5	34.65
11.	3.2	5.6	34.5	34.65
12.	3.1	5.6	35.0	35.14
13.	3.2	5.5	35.0	35.15
14.	3.3	5.6	36.5	36.65
15.	3.3	5.6	36.5	36.65
16.	3.4	5.8	37.0	37.16
17.	3.4	5.8	37.5	37.65
18.	3.3	5.6	37.0	37.15
19.	3.3	5.8	38.0	38.14
20.	3.3	5.8	38.0	38.14

Cut Number 6 : Aluminum Chloride Solution (1×10^{-5} Molar)
Diameter of Rock Before Cut : 8.365 inches
Diameter of Rock After Cut : 8.359 inches

	X (Lbs)	Y (Lbs)	Z (Lbs)	F_{N} (Lbs)
1.	2.7	4.6	32.5	32.61
2.	2.7	4.8	33.5	33.61
3.	2.7	4.8	33.5	33.61
4.	2.7	4.6	32.0	32.11
5.	2.6	4.7	32.5	32.60
6.	2.6	4.5	32.0	32.11
7.	2.6	4.6	32.0	32.11
8.	2.6	4.6	32.0	32.11
9.	2.6	4.7	32.0	32.11
10.	2.6	4.8	32.0	32.11
11.	2.7	5.0	33.0	33.11
12.	2.8	5.0	34.0	34.11
13.	2.8	4.9	34.0	34.11
14.	3.0	5.2	36.0	36.12
15.	3.0	5.2	36.0	36.12
16.	3.0	5.3	37.0	37.12
17.	3.0	5.3	37.5	37.62
18.	2.9	5.3	37.5	37.61
19.	3.0	5.4	38.0	38.12
20.	3.0	5.4	38.0	38.12

Cut Number 7 : Deionized Distilled Water
Diameter of Rock Before Cut : 8.359 inches
Diameter of Rock After Cut : 8.354 inches

	X (Lbs)	$Y($ Lbs $)$	Z (Lbs)	F_{N} (Lbs)
1.	3.0	5.2	38.0	38.12
2.	3.0	5.2	38.0	38.12
3.	3.0	5.3	38.0	38.12
4.	3.1	5.4	39.0	39.12
5.	3.0	5.2	38.5	38.62
6.	3.0	5.2	38.5	38.62
7.	3.0	5.2	38.5	38.11
8.	2.9	5.1	38.0	38.61
9.	2.9	5.3	38.5	36.11
10.	2.9	5.0	36.0	37.12
11.	2.9	5.0	36.0	38.12
12.	3.0	5.2	37.0	38.12
13.	3.0	5.3	38.0	39.12
14.	3.0	5.6	40.0	40.11
15.	3.2	5.7	41.0	41.12
16.	3.2	5.8	41.5	41.62
17.	3.2	5.8	41.0	41.12
18.	3.2	5.8	41.5	41.62
19.	3.2	5.8	41.5	41.62
20.	3.2	5.8	41.5	41.62

Cut Number 8 : Aluminum Chloride Solution (1×10^{-6} Molar) Diameter of Rock Before Cut : 8.354 inches Diameter of Rock After Cut : 8.348 inches

$$
X(\text { Lbs }) \quad Y(L b s) \quad Z \text { (Lbs) } \quad F_{N}(L b s)
$$

Cut Number 9 : Aluminum Chloride Solution (3×10^{-6} Molar) Diameter of Rock Before Cut : 8.348 inches Diameter of Rock After Cut : 8.343 inches

	X (Lbs)	$Y($ Lbs $)$	$Z($ Lbs $)$	F_{N} (Lbs)
1.	2.2	6.3	47.0	47.05
2.	2.2	6.4	48.0	48.05
3.	2.2	6.4	47.5	47.55
4.	2.2	6.2	46.0	46.05
5.	2.2	6.4	48.0	48.05
6.	2.2	6.2	47.5	47.55
7.	2.2	6.2	47.5	47.55
8.	2.2	6.2	47.0	47.05
9.	2.2	6.3	47.0	47.05
10.	2.2	6.4	47.0	47.05
11.	2.2	6.3	47.0	47.05
12.	2.2	6.4	47.0	47.05
13.	2.2	6.4	48.0	48.05
14.	2.4	6.5	49.0	49.06
15.	2.4	6.5	49.0	49.06
16.	2.4	6.6	49.0	49.06
17.	2.4	6.8	50.0	50.06
18.	2.4	6.8	50.0	50.06
19.	2.4	6.8	50.0	50.06
20.	2.4	6.8	50.0	50.06

Cut Number 10 : Aluminum Chloride Solution (1×10^{-5} Molar)
Diameter of Rock Before Cut : 8.343 inches Diameter of Rock After Cut : 8.337 inches

Cut Number 11 : Aluminum Chloride Solution (3×10^{-5} Molar) Diameter of Rock Before Cut : 8.337 inches Diameter of Rock After Cut : 8.332 inches

	X (Lbs)	Y (Lbs)	Z (Lbs)	$\mathrm{F}_{\mathrm{N}}(\mathrm{Lbs})$
1.	2.8	6.2	45.0	45.09
2.	2.9	6.3	45.0	45.09
3.	3.0	6.0	43.0	43.10
4.	3.0	6.0	43.0	43.10
5.	3.0	6.1	43.0	43.10
6.	3.0	5.8	41.0	41.11
7.	3.0	6.2	42.0	42.11
8.	3.0	6.0	41.0	41.11
9.	3.0	6.2	42.0	42.11
10.	3.0	6.2	43.0	43.10
11.	3.1	6.3	44.0	44.11
12.	3.0	6.3	44.0	44.10
13.	3.1	6.3	44.0	44.11
14.	3.2	6.6	46.0	46.11
15.	3.2	6.5	46.0	46.11
16.	3.2	6.5	46.0	46.11
17.	3.2	6.5	46.0	46.11
18.	3.2	6.5	47.0	47.11
19.	3.2	6.6	48.0	48.10
20.	3.2	6.6	48.0	48.10

Cut Number 12 : Aluminum Chloride Solution (1×10^{-4} Molar) Diameter of Rock Before Cut : 8.332 inches Diameter of Rock After Cut : 8.327 inches

	X (Lbs)	Y (Lbs)	Z (Lbs)	F_{N} (Lbs)
1.	2.3	6.1	42.0	42.06
2.	2.3	6.0	41.0	41.06
3.	2.3	6.0	41.0	41.06
4.	2.4	6.1	42.0	42.06
5.	2.5	6.1	42.0	42.07
6.	2.4	5.9	41.0	41.07
7.	2.5	5.9	41.0	41.08
8.	2.4	5.9	41.0	41.07
9.	2.5	5.8	41.0	41.08
10.	2.5	5.8	41.0	41.08
11.	2.6	5.9	42.0	42.08
12.	2.6	6.0	43.0	43.08
13.	2.6	5.9	43.0	43.08
14.	2.6	6.1	44.0	44.08
15.	2.6	6.2	45.0	45.08
16.	2.6	6.2	45.0	45.08
17.	2.6	6.2	45.0	45.08
18.	2.6	6.3	46.0	46.07
19.	2.6	6.4	47.0	47.07
20.	2.6	6.4	47.0	47.07

Cut Number 13: Tap Water
Diameter of Rock Before Cut : 8.327 inches Diameter of Rock After Cut : 8.323 inches

	X (Lbs)	Y (Lbs)	Z (Lbs)	F_{N} (Lbs)
1.	3.3	6.1	46.0	46.12
2.	3.5	6.3	46.0	46.13
3.	3.4	6.2	45.0	45.13
4.	3.4	6.0	43.0	43.13
5.	3.5	6.0	43.0	43.14
6.	3.5	6.1	43.0	43.14
7.	3.6	6.0	42.0	42.15
8.	3.6	5.9	41.0	41.16
9.	3.6	6.0	42.0	42.15
10.	3.6	6.0	43.0	43.15
11.	3.5	6.0	43.0	43.14
12.	3.5	6.3	45.0	45.14
13.	3.5	6.3	45.0	45.14
14.	3.4	6.4	47.0	47.12
15.	3.5	6.5	48.0	48.13
16.	3.6	6.6	48.0	48.14
17.	3.6	6.6	48.0	48.14
18.	3.6	6.6	49.0	49.13
19.	3.6	6.8	50.5	50.63
20.	3.6	6.8	50.5	50.63

APPENDIX III

PHOTOGRAPHS OF THE WORN DIAMOND

PROFILE
Second Run
MAGNIFICATION FACTOR 59X
Photographs of Worn Diamond After

PLAN

ACKNOWLEDGEMENTS

I would like to thank Dr. F. C. Appl for his assistance and advice. I would also like to thank Brent Cook for his assistance with the experimental work. I am also grateful for the financial support given by Kansas State University and Christensen Diamond Products Company.

VITA
BOKKA NARASIMHA RAO

Candidate for the Degree
MASTER OF SCIENCE

THESIS:
The Effect of Chemical Additives on Cutting Forces and Rate of Wear of Natural Diamonds.

MAJOR FIELD: Mechanical Engineering

BIOGRAPHICAL:
Personal Data: Born June 13, 1952 at Secunderabad, Andhra Pradesh, India.

Education: Graduated from Nagarjuna sagar Engineering College, Osmania University. Hyderabad, India. Received a B.E. Degree in Mechanical Engineering from Osmania University in 1974. Completed requirements for the M.S. Degree in Mechanical Engineering in January 1978.

THE EFFECT OF CHEMICAL ADDITIVES ON CUTTING FORCES AND RATE OF WEAR OF NATURAL DIAMONDS
by

BOKKA NARASIMHA RAO
B.E., OSMANIA UNIVERSITY, 1974

AN ABSTRACT OF A MASTER'S THESIS
Submitted in Partial Fulfillment of the Requirements for the Degree

MASTER OF SCIENCE

Department of Mechanical Engineering
KANSAS STATE UNIVERSITY
Manhattan, Kansas
1978

ABSTRACT

The effects of surfactant solution Aluminum Chloride on diamond wear rate while cutting granite rock were investigated. The cutting forces were recorded continuously on a specially built dynamometer.

The experimental results revealed that the diamond wear rate attains a minimum and the cutting hardness a maximum at the Aluminum Chloride concentration level of $3 \times 10^{-6} \mathrm{Molar}$. It has been concluded that both the objectives, minimum wear rate and maximum penetration rate cannot be achieved at the same time, and hence some compromise should be sought between these two objectives which will optimize the total drilling operation.

