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Abstract

Critical infrastructures are repeatedly attacked by external triggers causing tremendous

amount of damages. Any infrastructure can be studied using the powerful theory of complex

networks. A complex network is composed of extremely large number of different elements

that exchange commodities providing significant services. The main functions of complex

networks can be damaged by different types of attacks and failures that degrade the network

performance. These attacks and failures are considered as disturbing dynamics, such as the

spread of viruses in computer networks, the spread of epidemics in social networks, and

the cascading failures in power grids. Depending on the network structure and the attack

strength, every network differently suffers damages and performance degradation. Hence,

quantifying the robustness of complex networks becomes an essential task.

In this dissertation, new metrics are introduced to measure the robustness of techno-

logical and social networks with respect to the spread of epidemics, and the robustness of

power grids with respect to cascading failures. First, we introduce a new metric called the

Viral Conductance (V CSIS) to assess the robustness of networks with respect to the spread

of epidemics that are modeled through the susceptible/infected/susceptible (SIS) epidemic

approach. In contrast to assessing the robustness of networks based on a classical metric,

the epidemic threshold, the new metric integrates the fraction of infected nodes at steady

state for all possible effective infection strengths. Through examples, V CSIS provides more

insights about the robustness of networks than the epidemic threshold. In addition, both the

paradoxical robustness of Barabási-Albert preferential attachment networks and the effect

of the topology on the steady state infection are studied, to show the importance of quan-

tifying the robustness of networks. Second, a new metric V CSIR is introduced to assess the



robustness of networks with respect to the spread of susceptible/infected/recovered (SIR)

epidemics. To compute V CSIR, we propose a novel individual-based approach to model the

spread of SIR epidemics in networks, which captures the infection size for a given effec-

tive infection rate. Thus, V CSIR quantitatively integrates the infection strength with the

corresponding infection size. To optimize the V CSIR metric, a new mitigation strategy is

proposed, based on a temporary reduction of contacts in social networks. The social con-

tact network is modeled as a weighted graph that describes the frequency of contacts among

the individuals. Thus, we consider the spread of an epidemic as a dynamical system, and

the total number of infection cases as the state of the system, while the weight reduction

in the social network is the controller variable leading to slow/reduce the spread of epi-

demics. Using optimal control theory, the obtained solution represents an optimal adaptive

weighted network defined over a finite time interval. Moreover, given the high complexity of

the optimization problem, we propose two heuristics to find the near optimal solutions by

reducing the contacts among the individuals in a decentralized way. Finally, the cascading

failures that can take place in power grids and have recently caused several blackouts are

studied. We propose a new metric to assess the robustness of the power grid with respect to

the cascading failures. The power grid topology is modeled as a network, which consists of

nodes and links representing power substations and transmission lines, respectively. We also

propose an optimal islanding strategy to protect the power grid when a cascading failure

event takes place in the grid.

The robustness metrics are numerically evaluated using real and synthetic networks to quan-

tify their robustness with respect to disturbing dynamics. We show that the proposed

metrics outperform the classical metrics in quantifying the robustness of networks and the

efficiency of the mitigation strategies.

In summary, our work advances the network science field in assessing the robustness of

complex networks with respect to various disturbing dynamics.



MEASURE OF ROBUSTNESS FOR COMPLEX NETWORKS

by

MINA NABIL YOUSSEF

B.S., Alexandria University, Egypt, 2004

M.S., Kansas State University, USA, 2008

A DISSERTATION

submitted in partial fulfillment of the

requirements for the degree

DOCTOR OF PHILOSOPHY

Department of Electrical and Computer Engineering

College of Engineering

KANSAS STATE UNIVERSITY

Manhattan, Kansas

2012

Approved by:

Major Professor
Caterina Scoglio



Copyright

Mina Nabil Youssef

2012



Abstract

Critical infrastructures are repeatedly attacked by external triggers causing tremendous

amount of damages. Any infrastructure can be studied using the powerful theory of complex

networks. A complex network is composed of extremely large number of different elements

that exchange commodities providing significant services. The main functions of complex

networks can be damaged by different types of attacks and failures that degrade the network

performance. These attacks and failures are considered as disturbing dynamics, such as the

spread of viruses in computer networks, the spread of epidemics in social networks, and

the cascading failures in power grids. Depending on the network structure and the attack

strength, every network differently suffers damages and performance degradation. Hence,

quantifying the robustness of complex networks becomes an essential task.

In this dissertation, new metrics are introduced to measure the robustness of techno-

logical and social networks with respect to the spread of epidemics, and the robustness of

power grids with respect to cascading failures. First, we introduce a new metric called the

Viral Conductance (V CSIS) to assess the robustness of networks with respect to the spread

of epidemics that are modeled through the susceptible/infected/susceptible (SIS) epidemic

approach. In contrast to assessing the robustness of networks based on a classical metric,

the epidemic threshold, the new metric integrates the fraction of infected nodes at steady

state for all possible effective infection strengths. Through examples, V CSIS provides more

insights about the robustness of networks than the epidemic threshold. In addition, both the

paradoxical robustness of Barabási-Albert preferential attachment networks and the effect

of the topology on the steady state infection are studied, to show the importance of quan-

tifying the robustness of networks. Second, a new metric V CSIR is introduced to assess the



robustness of networks with respect to the spread of susceptible/infected/recovered (SIR)

epidemics. To compute V CSIR, we propose a novel individual-based approach to model the

spread of SIR epidemics in networks, which captures the infection size for a given effec-

tive infection rate. Thus, V CSIR quantitatively integrates the infection strength with the

corresponding infection size. To optimize the V CSIR metric, a new mitigation strategy is

proposed, based on a temporary reduction of contacts in social networks. The social con-

tact network is modeled as a weighted graph that describes the frequency of contacts among

the individuals. Thus, we consider the spread of an epidemic as a dynamical system, and

the total number of infection cases as the state of the system, while the weight reduction

in the social network is the controller variable leading to slow/reduce the spread of epi-

demics. Using optimal control theory, the obtained solution represents an optimal adaptive

weighted network defined over a finite time interval. Moreover, given the high complexity of

the optimization problem, we propose two heuristics to find the near optimal solutions by

reducing the contacts among the individuals in a decentralized way. Finally, the cascading

failures that can take place in power grids and have recently caused several blackouts are

studied. We propose a new metric to assess the robustness of the power grid with respect to

the cascading failures. The power grid topology is modeled as a network, which consists of

nodes and links representing power substations and transmission lines, respectively. We also

propose an optimal islanding strategy to protect the power grid when a cascading failure

event takes place in the grid.

The robustness metrics are numerically evaluated using real and synthetic networks to quan-

tify their robustness with respect to disturbing dynamics. We show that the proposed

metrics outperform the classical metrics in quantifying the robustness of networks and the

efficiency of the mitigation strategies.

In summary, our work advances the network science field in assessing the robustness of
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Chapter 1

Introduction

1.1 Background

Large networks can suffer from dynamics that degrade their performances leading to extreme

damages. The disturbing dynamics exist due to either random failures of one or more

network elements, or targeted attacks aiming to cause the largest amount of damages. In

both cases, the amount of damage mainly depends on the attack strength and the network

structure. Large networks can represent infrastructures, which are modeled using complex

network theory. A complex network is composed of many elements that are interconnected

together showing heterogeneous properties. For instance, computer networks are composed

of routers and communication links, social networks are composed of individuals who have

contacts among them, and power grids are composed of substations that are interconnected

through transmission lines. Among the various scenarios of attacks that cause damages for

complex networks, the spread of viruses and cascading failures are considered among the

most harmful disturbing dynamics that can take place on a complex network.

1.1.1 Spread of epidemics

The spread of epidemics caused by large scale attacks has become a crucial issue affecting

modern life. For example, in 2001 and 2004, respectively, the Code Red and Sasser computer

viruses infected numerous computers, resulting in costly global damages. Also, the Trojan

1



computer viruses have caused damages to numerous computing machines that are used for

different purposes. Therefore, it is essential to study the spread of viruses and epidemics in

networks through mathematical models to predict the damages.

Epidemics are usually studied via compartmental models, where individuals or nodes can

be in different states, such as susceptible, infected, or recovered. On one hand, for infections

like the common cold among humans in social networks and malware infections in computer

networks, the susceptible/infected/susceptible (SIS) epidemic model [43, 77, 106] is con-

sidered appropriate, since individuals are again susceptible after contracting the infection

and recovering. On the other hand, Influenza-like and other human contagious diseases are

better modeled by the susceptible/infected/recovered (SIR) process, where immunity can

be obtained after contracting the disease. These compartmental models are also integrated

with prediction methods to estimate the infection parameters given the number of confirmed

infected cases during pandemics and epidemics. They can also be utilized to predict the

peak of the infected cases and to define and test efficient mitigation strategies [25, 102].

1.1.2 Cascading failures

Another type of disturbing dynamics is the cascading failure in power grids. During the last

decade, many electric power grids have suffered from enormous cascading failures leading to

major disasters in different parts of the world such as the cascading failure that took place

in the states of Arizona and California in 2011, the black out in Brazil in 2009, and the

famous blackout in North America in 2003. Such disasters resulted in blackouts that left

millions of people without electrical energy.

Many types of triggers can disturb the normal functionality of the electric grid including

but not limited to the voltage dips (voltage sags), brief voltage increases (swells), and tran-

sient events. In addition to the voltage faults that can harm the control devices and motor

speeds, the instability of the frequency of generated voltage with large deviation may lead

2



to asynchronization of the generators, and in turn, to a dramatic reduction of the electric

power causing blackouts. Moreover, the weather storms and lightening may lead to shutting

down some substations and damaging power transmission lines.

1.2 Motivation

Due to the existence of different types of attacks that disturb the performance of complex

networks, it is vital to propose new metrics reflecting the robustness of networks with respect

to different disturbing dynamics. In particular, the new metrics proposed in this dissertation

give insights about the ability of a network to persistently function while its performance is

degraded due to the presence of a disturbing dynamic with a given attack strength. Thus,

we consider the disturbing dynamics as dynamical systems having inputs and corresponding

outputs. The inputs represent the attack strengths, while the outputs represent the amount

of damages in the network. Previous efforts focused on assessing the robustness of networks

based on a single input, which usually represent a critical attack strength. Such critical

attack strength is described as the maximum strength that a network can sustain without

any damage. However, assessing the robustness of networks based on a single attack strength

point is not efficient, since it does not consider the whole attack range that a network can

experience. In addition to the critical attack strength, previous efforts focused on quantifying

the robustness of networks based on the amount of damages. However, this method neglects

both the effect of the network structure on the damages and the attack strength. Therefore,

quantifying the robustness of networks is not a trivial task, and proposing new metrics

becomes vital in complex network theory. Below, we highlight the challenges in quantifying

the robustness of networks with respect to both the spread of SIS and SIR epidemics in

technological and social networks, and the cascading failures in power grids.
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1.2.1 Robustness of networks with respect to spread of epidemics

The epidemic spreading mechanism is mathematically represented via compartmental mod-

els such as SIS and SIR models [7, 57]. The SIS model describes how an epidemic spreads

in the network, and its dynamic is described by any change of a node’s state with time.

Thus, an infected node infects any susceptible neighbor with infection rate β, which is the

number of infection trials per unit time. Then, the infected node cures itself with cure rate

δ, and it becomes susceptible to a new infection. The ratio between β and δ is called the

effective spreading rate τ . The epidemic threshold τc is a function of network characteristics,

and it is a specific value of the effective spreading rate above which an epidemic outbreak

takes place. When an epidemic outbreak takes place in the network, a persistent fraction

of infected population exists at the steady state, and this fraction does not depend on the

initial condition of the infection in the network, but it only depends on the effective infection

rate and the epidemic threshold. Similar to SIS model, in the SIR model, each individual

can be in one of the three states, namely, S susceptible, I infected, and R recovered (cured).

To clarify, an infected individual infects its susceptible neighbors with rate β. Also, an in-

fected individual can cure itself with a cure rate δ. The curing process represents either the

death (removal) or the complete recovery of the individual after the infection. Again, the

ratio between β and δ is called the effective infection rate, and its reciprocal is the effective

cure rate ( δ
β
). The epidemic threshold τc in the SIR model is a specific effective infection

rate value, and it is a function of the network characteristics. Figure 1.1 shows the state

diagram for the SIS and the SIR epidemic models.

Based on the epidemic models, assessing the robustness of complex networks not only al-

lows us to compare the robustness among different network structures, but also gives insights

about mitigation strategies and the design of future network infrastructures. However, even

given the network topology, assessing the robustness of networks is difficult. On one hand,

one way to measure the impact of the epidemic is by the number of infected nodes, which is

not explicitly related to the topological characteristics of the networks. On the other hand,
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Figure 1.1: The state diagram for both the Susceptible/Infected/Susceptible SIS (top dia-
gram) and the Susceptible/Infected/Recovered SIR (bottom diagram) epidemic models given
the transition rates β and δ.

the epidemic threshold τc, used as a measure for the network robustness in the literature

[50, 91], does not consider the number of infected nodes. Ultimately, the epidemic threshold

is not adequate for assessing the network robustness. Therefore, it becomes necessary to

propose a new robustness measure that integrates both various infection strengths and the

corresponding infection sizes.

1.2.2 Robustness of power grids with respect to cascading failures

A power grid can be characterized by its topology and the power flows on it. The topology

represents the connectivity of substations (generation, transmission and distribution), while

the power flows represent the dynamics that are controlled by the electrical characteristics

of the grid, and are delivered from the generators to the distribution substations. The elec-

trical characteristics of the grid are the capacity and the inductance of transmission lines,

the voltage values, the differences between the voltage phase angles at the terminals of each

transmission line, and the loads at the distribution substations. A cascading failure takes

place when a series of single or multiple faults happen in a grid. Due to the line fault(s), the

power flow is redistributed on the existing transmission lines leading to overloading other

lines, and the faulty lines are tripped from the grid. The redistribution of the power flow is
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called transmission loading relief procedures (TLR) [80]. Therefore, during a cascading fail-

ure, the stress on the transmission lines increases causing blackout. Since any transmission

line can be tripped due to a fault, it becomes very critical to predict the amount of failures

and power loss that the grid can experience. Therefore, the robustness of the grid can not

be measured only through the topology of the grid, but the power flows in the grid have to

be involved as well.

1.3 Contribution

In this dissertation, we propose new metrics to assess the robustness of complex networks

with respect to the spread of epidemics, and the cascading failures.

Firstly, we propose the Viral Conductance V CSIS and V CSIR to assess the robustness of

networks with respect to the spread of SIS and SIR epidemics, respectively. The new

metrics are applied to different types of networks to study the effect of network structure on

the spread of epidemics. In addition, the new metrics are used to quantify the performance

of efficiency of different mitigation strategies in reducing the infection size. Differently from

the classical methods that are used in the literature, viral conductance distinguishes the

robustness of networks, which have similar topological characteristics such as average con-

nectivity, spectral radius, and node degree distribution.

Secondly, we propose a new individual-based SIR approach to evaluate the spread of epi-

demics in networks. Basically, the new approach is based on the continuous time Markov

chain model in which the state of every node is independently studied in the network. The

individual-based SIR approach is utilized to evaluate the total infection size for a given

effective cure rate, which are used to evaluate the robustness metric V CSIR. In addition,

the new approach is used to confirm that the epidemic threshold is the reciprocal of the

network spectral radius.

Thirdly, we present an optimal mitigation strategy to the spread of SIR epidemics in social

contact networks. In a social network, every individual has contact strength with other
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individuals in the network. The contact strength between any two individuals is quantified

through the frequency of contact, which is presented as a weight ranging between 0 and 1

in the contact network. The mitigation strategy is based on reducing the contacts among

the individuals during the prevalence of an epidemic, while maintaining a minimum social

contact rate. Therefore, the objective of the mitigation strategy is to minimize both the

total infection size, and the contact reduction among the individuals. In addition to the

obtained optimal solution, we propose two heuristics to find near optimal solutions in a de-

centralized way. In the first heuristic, the contact rate between any two individuals switches

between its normal value and the minimum value, while in the second heuristic, the contact

rate is continuously reduced over a period of time. For both heuristics, the normal contact

rates are retrieved to avoid large contact reduction cost. Extensive numerical simulations

are performed on synthetic networks as well as a survey based network to evaluate the per-

formance of the mitigation strategies.

Finally, a new metric is proposed to quantify the robustness of power grids. The new mea-

sure mainly depends on number of cascading stages and the frequency of link failures due

to the initial removal of a single transmission line from the grid. The DC power flow model

is utilized to evaluate the power flow in the grid. The new measure is applied to real and

synthetic power grids for evaluations. Moreover, a new strategy is proposed to mitigate the

power grid from cascading failure events. The new strategy is based on the grid islanding

in which, the optimal island topologies are found such that the maximum electric loads are

satisfied in the island and in the remaining part of the grid. The mitigation strategy is

applied to real networks showing the structure of the islands, the amount of load shedding,

and the power generation reduction.

We summarize the contributions as follows:

• Robustness of networks with respect to the spread of SIS epidemics

– Introducing a new robustness measure V CSIS with respect to the spread of SIS
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epidemics

– Comparing V CSIS with the epidemic threshold and showing cases where the

epidemic threshold fails to assess the robustness of networks

– Introducing a computational heuristic for V CSIS and upper and lower bounds

– Presenting a framework to compare the robustness of Watts-Strogatz (WS) net-

works and Barabási-Albert (BA) preferential attachment (PA) networks

– Applying V CSIS to a weighted social network to evaluate the efficiency of miti-

gation strategies

• Robustness of networks with respect to the spread of SIR epidemics

– Proposing an individual-based SIR approach

– Outlining the role of the eigenvalues and the eigenvector centrality in the spread

of epidemics

– Validating the new individual-based SIR approach and providing guidelines on

its accuracy

– Extending the individual-based approach to propose a new robustness metric

V CSIR with respect to the spread of SIR epidemics

– Proposing an optimal control framework for mitigation strategies to SIR epi-

demics in contact networks

– Considering realistic scenarios in social networks

– Proposing two heuristics to find near optimal solutions

• Robustness of power grids with respect to cascading failures

– Proposing a new metric to quantify the robustness of the electric power grids

– Utilizing the power flow model and the electric parameters in assessing the ro-

bustness of the grid
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– Outlining the role of the link survival probability and the depth of the cascading

failure

– Proposing an optimal islanding mitigation strategy in power grids

1.4 Organization

The robustness of complex networks is discussed in three main chapters. In chapter 2, we

introduce the metric viral conductance V CSIS to measure the robustness of networks with

respect to the spread of SIS epidemics. The robustness of well-known network models in

the literature is discussed, and we highlight the importance of the new metric with respect

to the classical metric, epidemic threshold. In chapter 3, we propose a new individual-based

model to SIR epidemics. In addition, the viral conductance is extended to propose a new

measure V CSIR to quantify the robustness of networks with respect to the spread of SIR

epidemics. Moreover, a new optimal mitigation strategy to the spread of SIR epidemics

is proposed using optimal control theory. Chapter 4 addresses the robustness of power

grids with respect to cascading failures. Finally, chapter 5 concludes the dissertation, and

guidelines for future research work are also discussed in detail.
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Chapter 2

Robustness of networks with respect
to the spread of SIS epidemics

Complex networks own conductivity properties for many types of dynamics, which are clas-

sified as good dynamics and disturbing dynamics. Good dynamics carry the actual provided

services, while disturbing dynamics degrade the network performance. Among the disturb-

ing dynamics, the spread of viruses can take place in networks. Thus, a connected network

has a viral conductivity property, which depends on the spreading strength and the self

curing process of the network elements. In this chapter, we propose a novel metric Viral

Conductance (V C) [60, 110] to assess the robustness of networks with respect to the spread

of SIS epidemics. The new metric considers the value of epidemic threshold and the number

of infected nodes at steady state above the threshold. Thus the higher the value of V C,

the lower the robustness of the network. One very interesting result obtained using V C,

concerns the robustness of Barabási-Albert (BA) preferential attachment (PA) networks.

While previous work stressed the fact that the epidemic threshold is close to zero in those

networks, V C can quantify the fraction of infected nodes for increasing value of the effective

spreading rates above the threshold. As a matter of fact, infinite Barabási-Albert (BA)

preferential attachment (PA) networks with vanishing epidemic thresholds can still require

strong epidemics to have major outbreaks, while in homogeneous random networks, an epi-

demic does not need to be very much beyond the threshold to cause major outbreaks. Due
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to the computational complexity of the new metric, we propose a heuristic to actually com-

pute the V C for large networks. Moreover, we derive upper and lower bounds for V C. We

performed extensive simulations to validate the new metric, the bounds, and the heuristic.

The numerical evaluation focuses on assessing the robustness of different types of networks,

e.g. correlated preferential attachment (PA) networks, Watts-Strogatz (WS) small world

networks [107] and Barabási-Albert (BA) preferential attachment (PA) networks [10]. Our

results show that assortative PA networks have lower V C than disassortative PA networks

when only the average node degree is preserved. Qualitatively, we compare between the

robustness of Watts-Strogatz (WS) networks and Barabási-Albert (BA) preferential attach-

ment (PA) networks, and we show cases where Watts-Strogatz (WS) networks are less robust

than Barabási-Albert (BA) preferential attachment (PA) networks and vice versa. In ad-

dition, for a given irregular network, we rewired the network to make it almost regular by

decreasing the variance of the node degrees, and we computed the V C before and after the

regularization. Finally, the new robustness metric is used to evaluate the performance of

different mitigation strategies for social networks.

The chapter is organized as follows: In Section 2.1, we review the literature and related

work. In Section 2.2, we review the mathematical models of epidemic spread and their

applications to different types of networks, and we compare the epidemic threshold with

average fraction of infection. In addition, we propose the new robustness metric with respect

to epidemic spread, the viral conductance V C, we compare between the classical measure

and V C, and we discuss the robustness of Barabási-Albert (BA) preferential attachment

networks in Section 2.3. In Section 2.4, a summary of some useful properties of infected

nodes at steady state are presented. In Section 2.5, we propose upper and lower bounds,and

a heuristic to reduce the computational complexity of the viral conductance. The numerical

results are discussed in Section 2.6, and finally the chapter is summarized in Section 2.7.
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2.1 Related work

The history of epidemic modeling in biology dates back to the eighteenth century when

Bernoulli proposed the first deterministic epidemic model for smallpox, which was followed

by other deterministic and stochastic epidemic models during the last two centuries [6, 7,

67, 73]. Those models introduced the basic reproductive number R0, which is the average

number of secondary infections due to a single infected case in the population. If R0 > 1, the

epidemic spreads in the population, while if R0 < 1, the epidemic dies out without causing

an outbreak. In complex network theory, the work in [90, 91] found the epidemic threshold,

which is a function of R0, for SIS epidemics using the heterogeneous mean field approach.

The authors of [90, 91] conclude that the threshold is a function of the heterogeneity of the

network represented by the second moment of the node degree distribution. Later, an exact

expression of the epidemic threshold emerged in the framework of spectral graph theory

in [31, 77]. The work in [91] also concludes that epidemics can spread on any scale-free

network regardless of its effective infection rate when the number of nodes in the network

approaches infinity. In other words, all scale-free networks are vulnerable to epidemic spread.

However, finite scale-free networks have a non-zero epidemic threshold. Therefore, they are

not always vulnerable to epidemic attacks.

Recently, biological epidemic models have been adapted to study the spread of viruses in

technological networks as shown in [21, 55, 77, 106]. For example, in [55], the authors

propose deterministic and probabilistic models to predict the size of the infected population

in homogeneous networks. Unfortunately, the models do not consider the heterogeneous

structure of networks, and hence, they can not be used to measure the robustness of generic

networks with respect to the spread of epidemics. In [106], the authors propose a discrete-

time epidemic model to predict the infection size, finding that the epidemic threshold is the

reciprocal of the largest eigenvalue of the network adjacency matrix. Meanwhile, the N-

Intertwined model in [77] reproduced the epidemic threshold in [106] based on a continuous

time Markov chain process. Also the N-Intertwined model explicitly reveals the role of
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the network in spreading epidemics. However, it does not introduce a metric to assess the

robustness of networks.

In summary, using only the epidemic threshold as a measure for robustness is common

practice: the larger the epidemic threshold, the more robust a network is against the spread

of an epidemic, as in [50]. However, in Section 2.3, we will show some examples of networks

where the epidemic threshold fails to assess their robustness, properly. Moreover, none

of the works in the literature combine both the effective spreading rate and the infected

population to describe the robustness of the network with respect to epidemic spreading.

Specifically, then, we show that the robustness of networks depends on the value of the

epidemic threshold τc (or its reciprocal) as well as the fraction of the infected population

above the threshold.

2.2 Review of epidemic models

In this section, we review basic results about the spread of Susceptible-Infected-Susceptible

(SIS) epidemics on networks. The SIS infection model, which arose in mathematical biol-

ogy, is often used to model the spread of epidemics [7, 38, 55, 82, 90], epidemic algorithms

for information dissemination in unreliable distributed systems like P2P and ad-hoc net-

works [20], [34], and propagation of faults and failures in BGP networks [23]. The SIS

model analytically reveals how a node’s state changes between the two S and I states in

complex networks. To clarify, during the spread of an epidemic, a node is in one of the two

states. First, an infected node can infect susceptible neighbors with infection rate β. Also,

an infected node can cure itself with a cure rate δ and become susceptible to re-infection.

Additionally, the ratio between β and δ is called the effective infection rate, τ = β
δ
. More-

over, the epidemic threshold τc can be defined as follows: for effective spreading rates below

τc, the epidemic contamination in the network dies out; the mean epidemic lifetime is of

order log n, while for effective spreading rates above τc, the epidemic is prevalent, i.e. a

persistent fraction of nodes remains infected with the mean epidemic lifetime [38] of the
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order en
α
, for τ sufficiently large. Thus, the epidemic threshold was found to be τc =

1
λmax

,

i.e. the reciprocal of the spectral radius λmax of the network adjacency matrix [77, 106].

Another basic epidemic model in the literature is the SIR [57], which differs from the SIS

model in many aspects. In the SIR model, the susceptible node becomes infected and later

recovers without being susceptible to further infection. Therefore, this model has no steady

state infected population fraction since all infected nodes recover, while in the SIS model,

a steady state infected population fraction exists, and it depends on the effective infection

rate and the network structure. Below, we review the important results of the spread of

SIS epidemics on regular, bi-partite, and random networks, and we also discuss how the

epidemic threshold is related to the average fraction of infection at steady state.

2.2.1 Epidemic spread on regular, complete bi-partite, and ran-

dom networks

We compare the fraction of infected nodes in the SIS model for different example networks

and show that the value of the effective spreading rate τ determines for which network this

fraction is higher. The first and second example networks belong to the class of regular and

complete bi-partite networks, respectively, while the last example addresses two different

types of random network.

Epidemic spread on regular networks

This model is based on a classical result for SIS models by Kephart and White [55, 58].

We consider a connected network on N nodes where every node has degree k. We denote

the number of infected nodes in the population at time t by Y (t). If the population N is

sufficiently large, we can convert Y (t) to y(t) = Y (t)/N , yielding a continuous quantity

representing the fraction of infected nodes. Now the rate at which the fraction of infected

nodes changes is due to two processes: susceptible nodes become infected and infected nodes

become susceptible. Obviously, the rate at which the fraction y(t) grows is proportional to

the fraction of susceptible nodes, i.e. 1 − y(t). Therefore, for every susceptible node, the
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rate of infection is the product of the infection rate per node (β), the degree of node (k),

and the probability that on a given link the susceptible node connects to an infected node

(y(t)). Therefore, we obtain the following differential equation describing the time evolution

of y(t):

dy(t)

dt
= βky(t)(1− y(t))− δy(t) (2.1)

The steady state solution y∞(τ) of Eq. 2.1 satisfies

y∞(τ) =
βk − δ

βk
= 1− 1

τk
(2.2)

Because an epidemic state only exists if y∞(τ) > 0, we conclude that the epidemic

threshold satisfies

τc =
β

δ
=

1

k
(2.3)

Because for k-regular networks, the spectral radius of the adjacency matrix is equal to

k, see [28], Eq. 2.3 is in line with the result in [106].

Epidemic spread on complete bi-partite networks

A complete bi-partite network KM,N consists of two disjointed sets containing respectively

M and N nodes, such that all nodes in one set are connected to all nodes in the other set,

while within each set no connections occur. Notice that (core) telecommunication networks

often can be modeled as a complete bi-partite topology. For instance, the so-called double-

star topology (i.e. KM,N with M = 2) is quite commonly used because it offers a high

level of robustness against link failures. For example, the Amsterdam Internet Exchange

(see www.ams-ix.net), one of the largest public Internet exchanges in the world, uses this

topology to connect its four locations in Amsterdam to two high-density Ethernet switches.

Sensor networks are also often designed as complete bi-partite networks.
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Figure 2.1: Fraction of infected nodes for an ER network and a Barabási-Albert (BA)
preferential attachment (PA) network with N = 104.

In [86] and [77], a model for epidemic spreading on the complete bi-partite network KM,N

is presented. Using differential equations and two-state Markov processes, the authors show

that above the epidemic threshold τc =
1√
MN

, the fraction of infected nodes at the steady

state for KM,N satisfies

y∞(τ) =
(MNτ 2 − 1)((M +N)τ + 2)

τ(M +N)(Mτ + 1)(Nτ + 1)
(2.4)

It is easy to verify that for the case M = N , Eq. 2.4 reduces to Eq. 2.2, with k = N .

Epidemic spread on random networks

Many classes of random networks are described by their statistical properties, for example

Erdös Rényi (ER), Watts-Strogatz (WS) and Barabási-Albert (BA) preferential attachment

(PA) networks. Erdös-Rényi networks (ER) are homogeneous networks with binomial node

degree distribution and average node degree k. In Erdös Rényi networks (ER), every node

selects its neighbors with probability p independently. For large number of nodes N and for

pN = k, the node degree distribution becomes Poisson distribution with a tail that decays

exponentially for large node degrees. Meanwhile, Barabási-Albert networks BA are built

using the preferential attachment (PA) mechanism in which each node prefers to connect

with high node degree neighbors, and therefore the node degree distribution follows the

16



power law distribution. We will use PA and BA equivalently to refer to Barabási-Albert

preferential attachment networks. The literature shows that large BA networks are scale-free

(SF) networks, and consequently are the most vulnerable networks to spread of epidemics.

However, we study a counter example in which an Erdös Rényi (ER) network can be more

vulnerable to spread of epidemics than Barabási-Albert (BA) preferential attachment (PA)

network given the same number of nodes. Figure 2.1 shows the fraction of infected nodes at

steady state y∞(τ) due to the spread of SIS epidemics for different effective infection rates

τ = β
δ
on an ER network and a PA network with 104 nodes. We observed that the epidemic

threshold of PA is smaller than the epidemic threshold of an ER network showing that PA

network is more vulnerable than ER network. However, there is an inversion in y∞(τ) curves

and after the inversion, the ER network has higher steady state infection fraction than the

PA network. In this region, the ER network is more vulnerable than the PA network. Thus,

the two networks have two opposing features and it is not trivial to measure their robustness.

For a given network, because the range of τ values for which the epidemic prevails is infinitely

large, from now on, instead of considering the effective spreading rate τ , we look at the

reciprocal of τ , that is the effective curing rate s = δ
β
. We are interested in y∞(s), the

fraction of infected nodes in steady state, as a function of the effective curing rate. Note that

the behavior of y∞(s) around s = 0 reflects the behavior of the original system for τ → ∞.

Moreover, the value of y∞(s) for s = λmax (the reciprocal of the epidemic threshold) is 0.

Such a conversion leads to a closed area under the y∞(s) curve. We denote y∞ to be the

average fraction of infection at steady state defined over 0 ≤ s ≤ λmax and it is given by

y∞ = 1
λmax

∫ λmax

0
y∞(s)ds.

2.2.2 Average infection fraction versus the epidemic threshold

Next, we hypothesize a case study, which shows that the epidemic threshold is not capable

to assess the robustness of networks having the same average node degree k within the same

network class. Assume that the epidemic can have any effective cure rate 0 ≤ s = δ
β
≤ λmax,
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Figure 2.2: The relationship between λmax and y∞ for Erdös-Rényi (ER) and Barabási-
Albert (BA) preferential attachment (PA) networks with N = 104 and k = 4, 6, 8 and 10.
For network class and every average node degree k, there are 100 samples of networks. The
solid line represents the average values of λmax and the average values of y∞.

and every effective cure rate has a probability of infection at steady state y∞(s). The av-

erage value of y∞(s) over the defined range of s is y∞ infection fraction. Figure 2.2 shows

how the average infection fraction y∞ is inversely proportional to the maximum eigenvalue

λmax (reciprocal of epidemic threshold) for networks that not only belong to the same class,

but also have the same average node degree. Moreover, in Figure 2.2(b), many networks

with low average node degree and low maximum eigenvalue have a higher average infection

fraction than other networks with high maximum eigenvalues and high average node degree.

However, the average infection fraction shows a general tendency to increase with the max-

imum eigenvalue over different average node degree values. This tendency reflects that as

the number of links increases, the average node degree increases too, so the chance for an

outbreak to take place becomes more relevant and causes a higher number of incidences at

steady state.

We conclude that neither the fraction of infection at steady steady nor the epidemic thresh-

old can solely describe the robustness of networks with respect to spread of SIS epidemics

in networks. Therefore, we need a new metric to quantify the robustness of networks con-

sidering both the fraction of infection at steady state and the epidemic threshold.
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2.3 Viral Conductance

Based on the above conclusions and the mathematical background, in this section, we pro-

pose a new metric to quantify the robustness of networks with respect to spread of epidemics.

Definition 2.3.1. Viral Conductance V C is a robustness measure of a given network G

with respect to the spread of epidemics. It represents the average fraction of infected nodes

for all types of epidemic attacks that are capable of producing outbreaks in the network.

Consequently, the definition of viral conductance is applied to any type of epidemic. In

this Chapter, we extend the concept of viral conductance to be the robustness measure of

networks with respect to the spread of SIS epidemics, and we denote the new measure by

V CSIS.

2.3.1 Definition of viral conductance V CSIS

Because we are considering the effective curing rate s as an independent variable, the area

under the curve y∞(s) is bounded. A logical way to consider the range of s values as well

as the fraction of infected nodes is to evaluate the area under the y∞(s) curve. We can now

introduce a new robustness measure with respect to epidemic spread, viral conductance

V CSIS, that takes into account all values of s, and hence τ .

Mathematically, for non-negative continuous variable, y∞(s) = 1
N

∑
i∈N v

i
∞(s) where

vi∞(s) =
∑

j∈neighbors(i) v
j∞(s)

s+
∑

j∈neighbors(i) v
j∞(s)

is the probability that node i is infected at the steady state [77].

Therefore, V CSIS is defined as follows:

V CSIS =

∫ λmax

0

y∞(s)ds = λmaxy∞ (2.5)

where λmax is the spectral radius (i.e. maximum eigenvalue) of the adjacency matrix of

network G and y∞ is the average value of the fraction of infected nodes for all 0 ≤ s ≤ λmax.

We will now state two theorems for the viral conductance V CSIS, of a network G.

Theorem 2.3.2. For regular networks Gk, where every node has k neighbors, V CSIS(Gk)

= k
2
.
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Figure 2.3: Two examples of ER and PA networks with N = 104 and with the same λmax
(i.e. the same epidemic threshold).

Proof. This follows directly from Eq. 2.2.

Theorem 2.3.3. For complete bi-partite networks KM,N , V CSIS(KM,N) is as follows:

V CSIS(KM,N) =
(M +N)

√
MN −MN

M +N

+
(M −N)(Nln(M +

√
MN))

M +N

− (M −N)(Mln(N +
√
MN ))

M +N

+
(M −N)(MlnM −NlnN)

M +N
(2.6)

Proof. This follows from applying Eq. 2.5 to Eq. 2.4.

The viral conductance V CSIS can also be applied to random networks. For example in

Figure 2.1, the values of V CSIS for Erdös-Rényi (ER) and Barabási-Albert (BA) preferential

attachment (PA) networks are 5.103 and 2.887, respectively. In this case, PA is more robust

than ER.

2.3.2 Viral Conductance versus the epidemic threshold

Traditionally, the epidemic threshold has been used to evaluate the robustness of networks

with respect to spread of epidemics [50, 91]. However, we present a case-study in which the
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Metric ER1 PA1 ER2 PA2

λmax 7.16 7.16 10.98 10.98
VCSIS 3.093 1.652 5.097 2.672

Table 2.1: The values of V CSIS of the networks in Figure 2.3 with the same λmax values.

epidemic threshold fails to assess the robustness of networks. Figure 2.3 show examples of

networks with N = 104 that almost have the same maximum eigenvalues (i.e. same epidemic

thresholds), in which the epidemic threshold thus fails to accurately assess their robustness.

Note that the difference between the maximum eigenvalue values in every pair of networks,

{ER1, PA1} and {ER2, PA2}, is very small and in the order of 10−4. Figure 2.3 represents

two ER networks and two PA networks. ER1 and ER2 networks have the same epidemic

threshold as PA1 and PA2 networks, respectively.

Table 2.1 shows the numerical values of λmax and V CSIS of the four networks discussed

in Figure 2.3. We notice that the value of λmax for both ER1 and PA1 networks is the same,

while the V CSIS value of ER1 network is higher than the V CSIS value of PA1 network. The

same observation is applied on ER2 and PA2 networks. The difference between V CSIS and

λmax is that V CSIS represents the area under the y∞(s) curve.

2.3.3 Paradoxical robustness of Barabási-Albert preferential at-

tachment networks

We addressed the robustness of Erdös-Rényi (ER) networks and Barabási-Albert (BA) pref-

erential attachment (PA) networks in Figure 2.1 and we showed that there are two opposing

features relate to the epidemic threshold and the fraction of infection at steady state. We

summarize the opposing features as follows: On one hand, the PA network has a lower epi-

demic threshold than the ER network showing that the PA network is more vulnerable than

ER network. On the other hand, the ER network has a higher fraction of infection at steady

state than does the BA network. Therefore, looking independently look at the epidemic

threshold or the steady state infection fraction to measure the robustness of networks is not

sufficient. Additionally, to address the paradoxical robustness of PA networks, let us study
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Figure 2.4: Examples of the fraction of infection at steady state y∞(s) given different values
of s = δ

β
for both ER and PA networks with N = 104 and k = 6, 8, and 12.

the steady state infection curves for finite ER and PA networks as shown in Figure 2.4. Be-

cause of the shrinking tail behavior of the fraction of infection at steady state, PA networks

with very high λmax (very low epidemic threshold) would still have tiny fractions of infected

population within the region beyond and away from the maximum eigenvalue (reciprocal of

the threshold). Infinite PA networks with large maximum eigenvalues (vanishing epidemic

threshold) can still require strong epidemics to have major outbreaks, while in ER networks,

an epidemic does not need to be very much beyond the reciprocal of the epidemic threshold

to cause a major outbreak.

2.4 Properties of steady state infected population frac-

tion

Here, we summarize basic properties of the steady state infected population y∞(s) presented

in the literature, which are very useful for the computational heuristic for V CSIS in Sec-

tion 2.5. We also show new results and ideas based on the basic properties of an infected

population at steady state. First, the role of the epidemic threshold was studied in the

literature and found that for any connected network G, denote λmax is the maximum eigen-

value of the adjacency matrix, such that y∞(λmax)=0. Secondly, the fraction of infected
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population at the steady state y∞(s) can be written as y∞(s) = 1 − σs + O(s2), where

σ = 1
N

∑N
i=1

1
di

and di is the degree of node i. Lastly, given a regular network with node

degree d = k, the fraction of infected nodes y∞(s) for s = k
2
equals 1/2. This result directly

follows from Eq. 2.2. For further reading and proofs, we refer the reader to [77]. Below, we

show new results about y∞(s) for s = k
2
(i.e. τ = 2

k
) for any network with average node

degree k.

Lemma 2.4.1. For any complete bi-partite network and for s = k
2
, the fraction of infected

nodes y∞(k
2
) is bounded by 0.5147.

Proof. Let the total number of nodes in any complete bi-partite network be T = M + N

. Then, substituting M = T − N in Eq. 2.4 for s = k
2
= MN

M+N
, we obtain the following

equation:

y∞(
k

2
) =

T 4 + T 3N − 3T 2N2 + 4TN3 − 2N4

2T 4 +NT 3 − T 2N2
(2.7)

Note that Eq. ( 2.7) is symmetric at N = T
2
. By differentiating y∞(k

2
) with respect to N ,

we find that the N values at which the function obtains a maximum are 0.5T , 2.5908T ,

−1.5908T , 0.8587T and 0.1413T . Note that we only consider solutions that satisfy the

condition 0 ≤ N ≤ T . Due to the symmetry of Eq. 2.7, the maximum value of y∞(k
2
) is

0.5147 for N = 0.8587T and N = 0.1413T .

To address the effect of the network structure on the steady state probability of infection

when s = k
2
, we show a simple example on a ring network structure (λmax = k = 2), where

we rewired every link towards a common node. Figure 2.5 represents the y∞(s) curve of

every rewiring step. The figure shows that all the steady state infected population curves

pass close to the point (k
2
, 0.5). In addition, we performed extensive simulations to validate

our assumption on different network classes with network sizes ranging from 100 nodes up to

3×105 nodes with different connectivities. All the simulations are averaged over 103 runs. We

randomly rewired a 100-node regular network with k = 10 and a 100-node Barabási-Albert

(BA) preferential attachment (PA) network with k = 7.2 each with 103 rewiring steps, and
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Figure 2.5: The steady infected populations of a ring network and its rewired versions.

we show that y∞(k
2
) is very close to 0.5 as Table 2.2 shows. Moreover, we created 104-node

Barabási-Albert (BA) preferential attachment (PA) networks with k = 8, 12, 16 and 20.

For every type of network, we computed the average and the variance values of y∞(k
2
) as

in Table 2.2. The results show that the average of samples of y∞(k
2
) is very close to 0.5.

Furthermore, we evaluated y∞(s = k
2
) for Watts-Strogatz (WS) networks with network size

N = 104, average node degree k = 4, and 6, and rewiring probability 0 ≤ p ≤ 1 as shown

in Figure 2.6(a). We noticed that Watts-Strogatz (WS) networks with k = 4 have a larger

deviation from the value 0.5 than the networks with k = 6. Additionally, the deviation

converges with the rewiring probability p reaches 1. Thus, the results show that y∞(k
2
)

can be approximated to 0.5 with small deviation. To study the effect of the finite network

size on the value of y∞(k
2
), we created Barabási-Albert (BA) preferential attachment (PA)

networks with different sizes and different average node degrees, and we evaluated y∞(s = k
2
)

as shown in Figure 2.6(b). Again, the results validate our assumption. We believe that for

any connected network G(N,L) with average node degree k, for s = k
2
, the fraction of

infected nodes at steady state is 0.5 +O(ε) where |ε| � 1. Therefore, in Section 2.5, where

we propose a heuristic for the new robustness metric with respect to spread of epidemics,

we neglect the parameter ε and assume that y∞(k
2
) = 0.5.
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Network N k Average Variance

Randomly rewired regular 102 10 0.499 2.7843× 10−7

preferential attachment 102 7.2 0.4849 2.59× 10−5

preferential attachment 104 8 0.4885 2.34× 10−5

preferential attachment 104 12 0.4883 2.01× 10−5

preferential attachment 104 16 0.4881 1.806× 10−5

preferential attachment 104 20 0.4881 1.8013× 10−5

Table 2.2: The average and variance values of y∞(s) are evaluated at s = k
2
for a randomly

rewired regular network and different Barabási-Albert (BA) preferential attachment (PA)
networks.
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(a) The value of y∞(s = k
2 ) for Watts-Strogatz (WS)

networks given N = 104, k = 4 and 6, and rewiring
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(b) The value of y∞(s = k
2 ) for Barabási-Albert

(BA) preferential attachment (PA) given k = 4 and
6, and different network size N .

Figure 2.6: Evaluation of the steady state infected population y∞(s) for s = k
2
on Watts-

Strogatz (WS) and Barabási-Albert (BA) preferential attachment (PA) networks given dif-
ferent network sizes N and different average node degrees k.
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2.5 Computation of V CSIS and bounds

For general networks with heterogeneous structure, we cannot analytically compute the

fraction of infected nodes y∞(s), and hence the viral conductance, explicitly. Moreover,

computing the solution of y∞(s) for 0 ≤ s ≤ λmax numerically is not feasible for large

scale networks. Therefore, in this section, we propose a heuristic for computing the viral

conductance for general networks. We will use the lemmas and theorems of the previous

section to construct a heuristic to compute the new robustness metric, V CSIS. Our objective

is to make the heuristic as simple as possible to avoid computation complexity.

2.5.1 A heuristic for V CSIS

The heuristic mainly depends on fitting linear and non-linear functions passing through

three main points on the steady state infected population curve y∞(s). The three points

(s,y∞(s)) are as follows:

• Point (0, 1) where s equals 0 (i.e. δ = 0) and hence the whole network is infected at

steady state (i.e. y∞(0) = 1).

• Point (k
2
, 0.5) as discussed in Section 2.4.

• Point (λmax, 0), which is the reciprocal of the epidemic threshold where the network

is cured.

The basic heuristic equation is as follows:

yheuristic∞(s) =

{
y1∞(s)+y2∞(s)

2
0 ≤ s ≤ k

2
y1∞(s)+y3∞(s)

2
k
2
≤ s ≤ λmax

(2.8)

The function yheuristic∞(s) is defined over two intervals of the range of s. In each interval,

yheuristic∞(s) is the average of two fitting curves. For example, in the first interval where

0 ≤ s ≤ k
2
, y1∞(s) is a decreasing exponential function, it continues to the second interval to

the point (λmax, 0) and therefore is constrained to pass by the three main points. Figure 2.7

26



0 1 2 3 4 5 6 7
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

s

y
∞

(s
)

 

 

Exact y∞(s) curves

Linear/Exponential fitting curves

Exponential fitting curve

Heuristic yheuristic∞(s) curve

Figure 2.7: Demonstration of the heuristic fitting curves and the three points on the y∞(s)
curve for a preferential attachment network with average node degree of 2.

shows the heuristic fitting curves and the three points on the y∞(s) curve. The function

y1∞(s) is defined as follows:

y1∞(s) = (
λmax − s

λmax
)e−as (2.9)

To obtain the value of the exponent coefficient a, we solve y1∞(s) at the point (k
2
, 0.5).

Therefore, the value of a becomes as follows:

a = −2

k
ln(

λmax
2λmax − k

) (2.10)

Next, the second function in the first interval y2∞(s) is a linear decreasing function,

proposed to equalize any underestimation due to the exponential function y1∞(s). It is

defined as follows:

y2∞(s) = 1− s

k
(2.11)

In the second interval, the function y3∞(s) is a decreasing exponential function that

passes through the points (k
2
, 0.5) and (λmax, 0), proposed to follow the tail of the y∞(s)
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curve that depends on the irregularity of the network. Thus, the function y3∞(s) is defined

as follows:

y3∞(s) = b(λmax − s)e−cs (2.12)

The exponent coefficient c depends on the irregularity of the network since λmax ≥ k for

all irregular networks [28]. Also, the total exponent of the exponential function of y3∞(s)

should be unitless; therefore, the exponent coefficient c has to hold a unit of (node degree)−1.

To compute the value of c, we propose the following equation:

c =
1

2

√
−1 +

∑N−1
i=1 1i∈ND

λmaxk
(2.13)

1i∈ND =

{
1 if i ∈ ND
0 Otherwise

(2.14)

where 1i∈ND is a set function of the node degree, and ND is the set of node degrees that

exists in the network, and therefore
∑N−1

i=1 1i∈ND represents the irregularity of the network.

Then, the constant b is computed as follows:

b =
ec

k
2

2λmax − k
(2.15)

Note that for regular networks with degree k (k = λmax), the functions y1∞(s) and y3∞(s)

become linear and they are similar to y2∞(s), which is the exact y∞(s) curve for regular

networks.

By integrating yheuristic∞(s) in Eq. 2.8, we obtain the final mathematical formula for the

V CSIS−heuristic as follows:
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Figure 2.8: An example of the upper and lower bounds of the viral conductance for the
Abilene network with N=886, k=2.022 and λmax=9.489. The upper figure represents the
upper bound V CSIS−UB, while the lower figure shows the lower bound V CSIS−LB.

V CSIS−heuristic =
1

2
[
3k

8
+

1

a
− 1

λmaxa2
− e−aλmax

a
− bλmax

c
e−cλmax

+
bλmax
c

e−c
k
2 +

e−aλmax

λmax
(
λmax
a

+
1

a2
)

+ be−cλmax(
λmax
c

+
1

c2
)− be−c

k
2 (
k

2c
+

1

c2
)] (2.16)

2.5.2 Upper and lower bounds for V CSIS

We formulated upper and lower bounds for V CSIS, depending on the topological charac-

teristics of the network, to avoid underestimating and overestimating the actual value of

V CSIS.

Upper bound

We know that the steady state infection population y∞(s) is always a convex function [76]

since connecting two points on the curve with a linear decreasing function renders the area

under the linear function greater than the area under the actual curve (see Figure 2.8).

Therefore, we computed that area under the following linear functions: 1) a linear function
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that connects the points (0, 1) and (k
2
, 0.5), and 2) a linear function that relates the points

(k
2
, 0.5) and (λmax, 0). Thus, we formulated the upper bound as follows:

V CSIS−UB =

∫ k
2

0

(1− s

k
) + ds+

∫ λmax

k
2

1

k − 2λmax
(s− λmax)ds (2.17)

The upper bound V CSIS−UB is as follows:

V CSIS−UB =
1

4
(k + λmax). (2.18)

Lower bound

Section 2.4 shows that the slope of the steady state y∞(s) at s = 0 satisfies −σ, where
σ = 1

N

∑N
i=1

1
di
. Then using the line connecting the points (k

2
, 0.5) and (k, 0) and the

intersection point between the tangent line y∞(s) = 1 − σs and the line y∞(s) = 0.5, we

constructed a lower bound V CSIS−LB as shown in Figure 2.8. By applying Eq. 2.5, we

found the following value for the lower bound:

V CSIS−LB =
1

8
(
1

σ
+ 3k) (2.19)

For any regular network with node degree k, both the upper bound V CSIS−UB and lower

bound V CSIS−LB lead to the same value of V CSIS = k
2
.

2.6 Numerical evaluations

In this section, we numerically evaluate the robustness metric V CSIS, the accuracy of the

heuristic, and the bounds on different types of networks like synthetic networks with 104

nodes, real-world networks, and survey-based networks. The results are averaged over 103

runs.
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2.6.1 Assortative and disassortative preferential attachment net-
works

In this subsection, we show how the new robustness measure V CSIS can differentiate be-

tween assortative and disassortive networks in which node degree correlation is observed.

Such correlation is important since correlated networks exist in the real world. For exam-

ple, social networks are classified as assortative networks, while technological and biological

networks are classified as disassortative networks [84]. In assortative networks, nodes with

similar node degrees are connected together, while in disassortative networks, nodes with

different nodes degrees are connected together. Accordingly, we generated assortative and

disassortative preferential attachment (PA) networks using the algorithm in [47]. The algo-

rithm starts with a connected network having m0 � N nodes. Every new node is connected

to already existing nodes through two stages: In the first stage, a new node is connected

to an existing node u with probability πu = du∑
j dj

where du is the degree of node u; in the

second stage, a new link between the new node and one of the neighbors s of the chosen

node u in the first stage is added with probability ps =
dαs∑

v∈Γu
dαv
, where α is an assortative

tuning coefficient, and Γu is the set of neighbors of individual u chosen in the first stage.

The generated assortative and disassortative preferential attachment (PA) networks have

different node degree distributions. We will address the analytical and numerical studies of

the robustness of correlated PA networks having the same node degree distribution in our

future work.

To show how V CSIS can distinguish among correlated networks and also that the heuris-

tic is accurate and close to the exact V CSIS, we evaluated V CSIS and V CSIS−heuristic on

correlated PA networks with 104 nodes given different average node degrees k as in Fig-

ure 2.9. We noticed that V CSIS−heuristic increases with k, and it is close to the exact V CSIS

for both types of networks. In addition, both exact V CSIS and V CSIS−heuristic of assortative

networks are lower than their corresponding values for disassortative networks, showing that

the new heuristic is capable of evaluating the robustness of networks. Moreover, we com-
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Figure 2.9: The exact value of V CSIS is compared with the heuristic approach
V CSIS−heuristic in Eq. 2.16, and with the previous heuristic approach V CSIS−previous heuristic
presented in [60] on assortative and disassortative preferential attachment (PA) networks
with 104 nodes given different average node degrees k = 4, 8, 12, 16 and 20.

pared the new heuristic presented in this chapter with a previous heuristic presented in [60].

In Figure 2.9, we observed that the new heuristic V CSIS−heuristic is closer to V CSIS−exact

than the previous heuristic V CSIS−previous heuristic. Additionally, the values of V CSIS−heuristic

of disassortative networks do not overlap with V CSIS−exact and V CSIS−heuristic for assorta-

tive networks. Consequently, the new heuristic outperforms the previous heuristic, and

it is capable of evaluating the robustness of large networks for which the computation of

V CSIS−exact may not be feasible.

The robustness of assortative networks with respect to the spread of epidemics is also

discussed in [84] showing that the giant component in assortative networks is smaller than

in dissasortative networks. On one hand, nodes with high degrees are connected together

causing any epidemic to persist in the network. On the other hand, the epidemic survives in

only a small portion of the network. Here, our results show that disassortative preferential

attachment (PA) networks are more vulnerable than assortative preferential attachment

(PA) networks. Notably, the algorithm used to create the correlated PA networks does not

constrain the degree of the nodes in the networks. Therefore, few nodes with very large node
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degrees appear in the disassortative networks, and they are connected with low node degree

nodes. Consequently they increase the network heterogeneity properties; once an epidemic

reaches any node with large node degree, a major outbreak takes place in the network.

2.6.2 Watts-Strogatz small world model

We generated Watts-Strogatz (WS) small world networks [107] with a given number of

nodes N and average node degree k. To create a WS small world network, we started with

a k-regular network; each node has k
2
links that connect it to its nearest counterclockwise

neighbors, while the other k
2
links connect the same node to its nearest clockwise neighbors.

Given a rewiring probability p, we started rewiring the clockwise links for every node. We

created WS networks given N = 104 nodes with average node degrees k = 4, 6, 8, and 10

and different probability of rewiring p ranging from 0 to 1. Then, we used those networks

to evaluate the heuristic value V CSIS−heuristic compared with the exact V CSIS values, and

to study the effect of rewiring the network links on the values of the V CSIS.

Figures 2.10(a) and 2.10(b) show how the exact value of V CSIS changes with a probability

of rewiring p given k = 4 and 6, respectively. For networks with given regular node degrees

(p = 0), V CSIS equals k
2
. In addition, the exact V CSIS value and V CSIS−heuristic non-

linearly increase with the probability of rewiring p because the irregularity of the network

increases with p. We also verified the validity of the upper and lower bounds V CSIS−UB and

V CSIS−LB, noticing that for all networks with different average node degrees and different

probability of rewiring, exact values of V CSIS as well as heuristic values V CSIS−heuristic

are bounded. To evaluate the deviation of V CSIS−heuristic, the upper bound and the lower

bound, we normalized the results with respect to the exact value of V CSIS as shown in

Figures 2.10(c) and 2.10(d) for k = 4 and 6, respectively. We observed that the deviation

of the heuristic value of V CSIS is bounded with the increase of rewiring probability p. All

the above analysis of V CSIS was also applied to the WS small world networks with k = 8

and 10 with the same observations as discussed in this subsection.
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(b) Absolute values of V CSIS given k = 6
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(c) Normalized values of V CSIS given k = 4
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(d) Normalized values of V CSIS given k = 6

Figure 2.10: Absolute values of exact V CSIS, heuristic V CSIS, and upper and lower bounds
V CSIS in Figures 2.10(a) and 2.10(b); normalized values of heuristic V CSIS, and upper and
lower bounds V CSIS with respect to exact value of V CSIS in Figures 2.10(c) and 2.10(d) for
Watts-Strogatz (WS) networks given N = 104 and probability of rewiring 0 ≤ p ≤ 1.
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(b) Normalized values of V CSIS given k = 4 k =
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Figure 2.11: Absolute values of exact V CSIS, heuristic V CSIS, and upper and lower bounds
V CSIS in Figure 2.11(a); normalized values of heuristic V CSIS, and upper and lower bounds
V CSIS with respect to exact value of V CSIS in Figure 2.11(b) for Barabási-Albert BA net-
works given N = 104 and different average node degrees.

2.6.3 Barabási-Albert Preferential attachment network model

We generated Barabási-Albert (BA) preferential attachment (PA) networks as follows: we

started with a small number m0 of disconnected nodes; next we connected a new node to

an existing node u with probability πu = du∑
j dj

, where du is the node degree of the existing

node u. The generated BA network is characterized as an uncorrelated Barabási-Albert

(BA) preferential attachment (PA) network. We evaluated V CSIS on the generated BA

networks with N = 104 and k = 4, 6, 8 and 10 as shown in Figure 2.11(a). The value

of V CSIS increases as k increases, and also the heuristic value of V CSIS is close to its

corresponding V CSIS value. Moreover, both exact and heuristic V CSIS values are bounded.

Also, we evaluated the deviation of the heuristic V CSIS values, and the upper and lower

bounds by computing their normalized values with respect to the exact values of V CSIS as

shown in Figure 2.11(b). We found that the heuristic slightly deviates from its exact value,

and therefore it perfectly estimates the exact value of V CSIS.
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Figure 2.12: Numerical relationship between V CSIS and λmax = ρ = 1
τ
(the reciprocal

of the epidemic threshold) collected from Watts-Strogatz (WS) networks ’+’ with rewiring
probability p = 1 and Barabási-Albert (BA) preferential attachment (PA) networks ’o’ with
N = 104 given different average node degrees.

2.6.4 V CSIS versus λmax

Here, we numerically present the differences between V CSIS and λmax as shown in Fig-

ure 2.12, which comprises models with 100 samples of results for a given network class with

a certain average node degree k. In general, the values of V CSIS tends to increase with

λmax, and simultaneously both measures increase with the average node degrees. Note that

within a module of samples, V CSIS does not always need to increase with λmax. We also

observed that the slope for Watts-Strogatz (WS) networks results is higher than the slope

in Barabási-Albert (BA) preferential attachment (PA) networks results. To relate the slope

with V CSIS and λmax, recall that V CSIS = y∞λmax, and therefore, the slope of the trend

line is y∞. To address the differences between V CSIS and λmax, let us compare the robust-

ness of a WS network with k = 8 and a PA network with the same value of k as shown

in the black box in Figure 2.12. The value of λmax of the PA network is at least twice the

value of λmax of WS network, and therefore the value of y∞ of PA network is at most half

its corresponding value of WS network. Such a trade-off was discussed earlier in this disser-

tation, so on one hand, we can not measure the robustness of networks by considering only

λmax or the average infection y∞, yet on the other hand, V CSIS combines both λmax and
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y∞ to account for them to measure the robustness of networks. Moreover, for any average

node degree in PA networks, the samples widely scatter in the direction of λmax than V CSIS

in a given module, while samples from WS networks do not scatter largely. As a result,

for a given value of λmax, it is not difficult to obtain distinct values of V CSIS for different

networks. For example, for a given value of λmax, WS networks are less robust than PA

networks. Therefore, it is not necessary that PA networks are always more vulnerable than

WS networks, and also λmax is not a unique robustness measure with respect to the spread

of epidemics.

2.6.5 Internet AS-level networks

Next, we apply V CSIS to measure networks like the Internet AS-level networks. Specifi-

cally, we employed three different networks, SKITTER [22] with 9204 nodes and k = 6.29,

BGP [113] with 17446 nodes and k = 4.68, and WHOIS [114] with 7485 and k = 15.22, to

measure their robustness and to study the effect of rewiring the networks with the value of

V CSIS. The rewiring process aims to decrease the variance of node degree by regularizing

the network using the algorithm in [87]. Next, we compared the robustness of each network

in two cases: the original network and its regularized network. Table 2.3 shows that regular-

ized networks have a lower V CSIS−heuristic than original networks. In addition, we used the

metric κ to assess the heterogeneity of the irregular and regularized networks. The metric κ

was introduced in the literature [24] as the ration between the second moment and the first

moment of the node degree distribution. After regularizing a network, the heterogeneity of

the network decreases leading to decrease the degrees of nodes with large degrees and to

increase the degrees of nodes with low degrees. Therefore, all the node degrees are centered

around the average degree value k with low variance in node degrees, while the maximum

degree and the minimum degree are �k	 and 
k�, respectively. Consequently, y∞(s) curve of

the regularized networks shrinks dramatically and approaches a linear decreasing function.

Assessing the V CSIS−heuristic and κ, both metrics confirm that regular networks are more
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V CSIS−LB V CSIS−heuristic V CSIS−UB λmax Heterogeneity κ
k

SKITTER 2.6041 4.3661 21.4559 79.53 6.683
Regularized SKITTER 3.1415 3.1428 3.1559 6.33 1.006

WHOIS 6.0708 9.7964 41.5197 150.86 8.9104
Regularized WHOIS 7.6082 7.61 7.6130 15.23 1.0002

BGP 1.9750 3.2877 19.4348 73.06 12.2295
Regularized BGP 2.3334 2.3385 2.3549 4.73 1.0089

Table 2.3: V CSIS−heuristic, V CSIS−UB, V CSIS−LB, λmax and κ of Internet AS-level net-
works and their regularized networks.

robust than irregular networks against the spread of epidemics. Moreover, the values of

λmax for irregular and regularized networks in Table 2.3 show that both values of V CSIS

and λmax decrease when the networks are regularized. For every network, this behavior

occurs due to the decrease in the maximum node degree, which upper-bounds the spectral

radius of the network, resulting in a largely decreased area under the curve, and therefore

V CSIS decreases too.

2.6.6 Survey-based network

In this subsection, we applied V CSIS to a social network created through a survey to study

the spread of epidemics in rural regions. The survey was conducted in Clay Center, the

county seat of Clay County in the State of Kansas, and the network was created based

on the responses of Clay Center residents. The survey included questions about three

main places, {R,W,G}, that the residents visit, and questions about three levels of contact

each respondent makes with other individuals. The three levels of contact were defined

as follows: 1) Proximity contact, which happens when another person is passing within

five feet, 2) Direct-Low contact, which happens when a person is directly touching another

person for short time period, and 3) Direct-High contact, which happens when a person is

directly touching another person for a long time period. Every respondent i provided the

number of contacts nx,i for every contact level x. We used the survey responses to create a

weighted contact network with 138 nodes (respondents) and 9222 links (contacts) as shown
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Figure 2.13: The survey-based network of individuals and popular locations in Clay Center,
Kansas, where the nodes (survey respondents) in the cloud network are connected via green
edges to the locations in Clay Center according to the survey responses. The map is courtesy
of Google.

in Figure 2.13. The weight between respondent i and respondent j is the average of the

three contact levels. For contact level x, we proposed the following equation:

wx,i,j = (1− (1− µi,jπx)
nx,i)(1− (1− µi,jπx)

nx,j) (2.20)

where πx is a constant that depends on the level of contact x and µi,j quantifies the

location responses for both respondents i and j as follows:

µi,j =
1 + li,j
1 + d

(2.21)

where d is the total number of locations, and li,j represents number of common locations

that respondents i and j used to visit. For more details about the survey questions and the

link weights, we refer the reader to [99].

We applied the measure V CSIS to quantify the robustness of the social network with

respect to the spread of SIS epidemics. We also applied some mitigation strategies to the
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Mitigation strategy V CSIS λmax Immunized nodes

None (weighted network) 71.4985 31.91 0

High strength node immunization 49.1791 23.89 14

High strength node immunization in location R 49.4439 24.08 14

Table 2.4: The value of V CSIS for the survey-based social network in case of the absence
of mitigation strategies and the most two effective mitigation strategies.

network and used V CSIS to rank them. Also, we studied mitigation strategies where 10%

of the nodes were immunized. From a network point of view, the immunized nodes were

removed from the network. Immunized nodes were selected based on 1) node strength (the

sum of link weights of a node), 2) random selection, 3) random selection from a specific

location, and 4) highest strength nodes from a specific location. Table 2.4 shows the values

of V CSIS and λmax in case of the absence of mitigation strategies and the most two effective

mitigation strategies. Clearly, we notice that V CSIS values, when mitigation strategies

are applied, are lower than the V CSIS value in absence of mitigation. Also, the highest

strength mitigation strategy outperforms other mitigation strategies since it has the lowest

V CSIS value because highest strength nodes play a major role in spreading any epidemic.

Also, the highest strength mitigation strategy outperforms the highest strength mitigation

strategies that are applied at different locations because the former considers all nodes with

the highest strength in the network regardless of their locations. This result agrees with the

effect of mitigation strategies presented in the literature (for example see [92]). Therefore,

the highest strength mitigation strategy has the best effectiveness for reducing the spread

of epidemics. Observing the values of robustness metrics in our example, we see that both

V CSIS and λmax rank the mitigation strategies similarly.

2.7 Summary

We summarize the above results and analysis of robustness with respect to spread of epi-

demics in the following conclusions.
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• Viral Conductance is a better measure than the epidemic threshold for robustness of

networks

V CSIS incorporates the fraction of infected nodes at steady state for all possible in-

fection strengths.

• Increasing the probability of rewiring decreases the robustness of Watts-Strogatz (WS)

networks

The initial regular network in the Watts-Strogatz (WS) model has the lowest value of

V CSIS, and therefore it is the most robust of any other obtained network given the

probability of rewiring 0 < p ≤ 1.

• V CSIS−heuristic is close to the exact value of V CSIS

The proposed heuristic satisfies the basic requirements of simplicity and high accuracy

in addressing solutions for any expensive computation quantity.

• V CSIS−UB and V CSIS−LB effectively bound V CSIS and V CSIS−heuristic from above

and from below, respectively

Bounds give the feasible region in which the value of V CSIS is predictable.

• Our numerical results show that the regular structure of a network has a minimum

V CSIS value compared to any other structure

Given N nodes and L links, we can obtain
((N2 )
L

)
different network structures. We

believe that the regular structure of a network is the most robust to any spread of

epidemic.
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Chapter 3

Robustness of networks with respect
to the spread of SIR epidemics

This chapter addresses the robustness of networks with respect to the spread of suscepti-

ble/infected/recovered (SIR) epidemics. Different SIR models are applied to some classes

of contact networks [14–16, 37, 54, 70, 74, 79, 83, 99, 103, 105, 109] depending on the net-

work characteristics. For example, an early SIR approach uses the homogeneous mean field

approximation in which all individuals have the same probability of being infected and infec-

tious. On the other hand, the SIR heterogeneous mean field approach has also been applied

to structured networks considering the local connectivity of the network’s individuals. For

example, scale-free networks, which are networks owning power-law node degree distribution

P (k) ∼ k−ν , show a high level of vulnerability to the spreading of epidemics due to the highly

heterogeneous node degree distribution property when the minimum node degree is greater

than two [16]. In addition, the spread of epidemics has been studied on correlated networks

and uncorrelated networks separately. However, the SIR epidemic approaches studied in

the literature did not consider the whole structure of the network but only the local connec-

tivity. For instance, the heterogeneous mean field approach only considers the node degree

distribution, which is an aggregate representation of the network. However, it has been

shown that networks with distinct topological properties can be characterized by the same

node degree distribution [65]. Consequently, these approaches cannot distinguish among
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individuals having the same node degrees because they neglect the centrality properties of

the individuals. Therefore, the SIR epidemic approaches presented in the literature are not

accurate for studying the effect of the network in the spreading process. Consequently these

approaches cannot used to study the robustness of networks, and hence there is a need for

a generalized SIR epidemic approach that considers not only the network properties (i.e.

average node degree and node degree distribution), but also the whole network structure,

and that represents every individual independently.

In this chapter, before we address the robustness metric V CSIR, firstly, we propose an

individual-based SIR approach [112], which is inspired by the continuous-time Markov chain

model and which represents the network in the most accurate way. We separately study the

state of each individual during the infection process, revealing the role of the individual’s

centrality properties in spreading the infection across the network. Although the continu-

ous time SIR Markov model, based on the Markov chain stochastic process, describes the

global change in the state probabilities of the network, it is limited to small networks due

to the exponential divergence in the number of possible network states 3N with the growth

of network size N . Instead, our approach aims to reduce the complexity of the problem

to O(N) and to offer insights into the epidemic spreading mechanism. Through the new

SIR approach, we study the spread of epidemics on any type of network regardless of its

topological structure. We analytically derive the epidemic threshold for the new approach,

which is inversely proportional to the spectral radius λmax (the supremum eigenvalue within

the eigenvalue spectrum) of the network.

Secondly, we propose a new robustness measure V CSIR, which incorporates the fraction of

infection sizes for different effective infection rates. The new measure is used to quantify

the robustness of correlated preferential attachment networks.

In the last part of the chapter, a mitigation strategy is proposed for the spread of SIR

epidemics in social contact networks. We consider a time variable weighted contact network

43



where the weight variation represents the variation of the level of contact; the initial value

of the weight is the normal contact level, which can be reduced to represent a lower level of

contact. We utilize the individual-based SIR model to determine the optimal adaptive con-

tact network, in which both the total infection size and the variation in the contact weights

of individuals are minimized. To this end, we formulated a continuous time optimal control

problem, where the objective function is given by a weighted sum of the total size of the

epidemic, and the network weight variation. The SIR system of differential equations, de-

scribing the evolution of the infection probability for each individual in the network, become

the constraints of the optimal control problem. The optimal control formulation and two

heuristics were developed and tested extensively on a large set of diverse contact networks,

showing the effectiveness and implementability of the proposed methods.

This chapter is organized as follows: In Section 3.1, we review basic modeling approaches

that are applied to SIR model and the mitigation strategies in the literature. In Section

3.2 we review the continuous time Markov chain model, and in Section 3.3, we present

the individual-based approach in details and we show simulative and numerical results.

The properties of the individual-based approach are discussed in Section 3.4. Moreover,

the theoretical deviation between the individual-based approach and the continuous time

Markov chain model is analyzed in Section 3.5. In Section 3.6 we introduce a new metric

V CSIR to quantify the robustness of networks with respect to the spread of SIR epidemics.

Moreover, we present an optimal mitigation strategy approach for social contact networks in

Section 3.7. Finally, the theoretical and numerical findings are summarized in Section 3.9.

3.1 Related work

The science of the spread of epidemics is based on compartmental models that assume

individuals are classified into non-intersecting sets [8, 81]. Thus, the classical suscepti-

ble/infected/removed SIR model characterizes diseases that lead to either immunization or
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death of individuals. The infected individuals are in the infected set, the healthy ones are in

the susceptible set, and the cured or removed ones are in the removed set. Initially, a small

number of infected individuals exist that try to infect their susceptible (healthy) neighbors.

After receiving the infection, susceptible individuals become infected, and later they try to

infect their susceptible neighbors. In such cases, infected individuals are infectious. Sub-

sequently, every infected individual either is cured due to immunization or removed due to

death.

3.1.1 SIR homogeneous mean field approach

In the SIR homogeneous mean field approach [8, 57], s(t), i(t), and r(t) represent respec-

tively the fraction of susceptible, infected, and recovered populations. As mentioned in the

Introduction, we assume that the population is fixed i.e. s(t) + i(t) + r(t) = 1. In addition,

the approach approximates the representation of the network and assumes that, on the av-

erage, every individual is connected with < k > neighbors neglecting the heterogeneity of

the node degrees. Depending on the fixed population assumption and the network repre-

sentation, the homogeneous mean field approach describes the change in the susceptible,

infected and recovered population fractions over time. The infected fraction i(t) infects the

fraction of susceptible neighbors < k > s(t) with infection rate β, and simultaneously, a

fraction of the infected population recovers δi(t).

The rates of changes in s, i and r fractions are governed by the following continuous time

differential equations:

ds(t)

dt
= − < k > βi(t)s(t), (3.1)

di(t)

dt
= −δi(t)+ < k > βi(t)s(t), (3.2)

dr(t)

dt
= δi(t). (3.3)

These differential equations interpret the infection and cure processes. Initially, the
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spreading process starts with a small infected fraction i(0)  0, a susceptible fraction of

almost one s(0)  1, and the removed fraction of zero r(0) = 0. Every infected individual

infects on average < k > susceptible neighbors, each with an infection rate β, where <

k >=
∑N−1

k=1 kp(k) is the average node degree (average number of contacts), and p(k) is the

probability of having an individual with degree k. Following differential Eq. 3.3, an infected

individual is removed at a rate δ. The removed fraction increases with time until it reaches

a certain fraction level depending on the strength of the epidemic. A non-zero epidemic

threshold exists and it is equal to δ(R0−1) where R0 is the reproductive number and equals

<k>β
δ

. If R0 is greater than 1, the epidemic prevails in the network. On the other hand,

if R0 is less than 1, the initially infected individuals totally recover without infecting other

susceptible individuals [11]. Since on average, every infected individual infects a constant

number of neighbors, the homogeneous approach does not account for heterogeneity in the

node degrees of individuals in the network.

3.1.2 SIR heterogeneous mean field approach

Another approach in the literature is the heterogeneous mean field (also called heterogeneous

mixing) SIR approach [16, 79, 109], which was proposed to overcome the shortcomings of

the homogeneous approach. In this approach, individuals are classified according to their

node degrees. Thus, for a given node degree k, the states’ fractions sk(t), ik(t)and rk(t)

evolve with time t, and their sum is constant, such that sk(t) + ik(t) + rk(t) = 1. The rates

of changes in the three states for a given node degree k are governed by the following set of

differential equations:

dsk(t)

dt
= −kβsk(t)θk(t), (3.4)

dik(t)

dt
= −δik(t) + kβsk(t)θk(t), (3.5)

drk(t)

dt
= δik(t). (3.6)

46



This approach was applied to both uncorrelated and correlated networks, leading to fur-

ther analysis of the epidemic threshold. For uncorrelated networks, the epidemic threshold

is τucr = <k>
<k2>−<k> , where < k2 > is the second moment of the node degree distribu-

tion, and θ(t), representing the probability that a link is pointing to an infected individual,

is found to be
∑

k(k−1)p(k)ik(t)

<k>
. On the other hand, the epidemic threshold for correlated

networks is τ cr = 1
Λm

, where Λm is the maximum eigenvalue of the connectivity matrix

Ckk′ = β k(k
′−1)
k′ p(k′ | k), and θcrk (t) equals

∑
k′ ik′(t)(

k′−1
k′ )p(k′ | k).

Although this approach considers the heterogeneous connectivity in the networks, it does

not reveal the state of each individual in the network. It only reflects the evolution of the

fractions over time for a given node degree, while neglecting the states of individuals within

that node degree.

3.1.3 Mitigation strategies for SIR epidemics

The work in [61] addressed the effect of quarantine strategy on the spread of SIR epidemics.

The quarantine strategy assumed that the susceptible individuals disconnect their contacts

with the infected neighbors, and they reconnect with other susceptible neighbors with a

given probability. Using the rewiring approach, the authors found that there is a phase

transition at a critical rewiring probability below which large number of individuals are

infected. Our approach is different from [61] since individuals do not terminate their daily

contacts with the infected neighbors and create new contacts with new individuals; How-

ever, susceptible individuals reduce their contact frequency with the infected neighbors.

Gao and Ruan in [39] studied the effect of human movement on the spread of infectious

SIS epidemics. They confirmed the existence of reproductive number below which a disease

does not spread out.

Gross and Blasius highlighted the research in adaptive networks as shown in [44] with two

major lines. The first line is related to dynamics of networks that the topology evolves over

time revealing many special characteristics. The second line of research is the dynamics on
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networks in which the states of the individuals in the network change with time. Addition-

ally, the relationship between the dynamics of networks and the dynamics on networks was

studied showing that there is a feedback loop between the state of the individuals and the

topology. Furthermore, surveys on ubiquity of adaptive networks across disciplines, robust

self-organization in Boolean networks, leadership in coupled oscillator networks, cooperation

in games on adaptive networks, and dynamics and phase transitions in opinion formation

and epidemics were briefly discussed.

In addition, Gross et al.in [45] discussed the spread of epidemics on networks, and how the

network can become adaptive by rewiring the links according to the state of the individuals.

The authors proposed three types of rewiring processes. Given rewiring probability, every

susceptible individual drops its link with an infected neighbor and rewires that link with

a randomly selected susceptible individual. The first rewiring process is independent of

the state of the individual. Such process leads to a random network with Poissonian node

degree distribution. The second rewiring process takes place while the dynamics of the epi-

demic spread is turned off. In this case, the susceptible individuals form a cluster, which is

disconnected from the cluster of infected individuals. The third rewiring process, both the

dynamics of the epidemic spreading and link rewiring take place simultaneously resulting in

the creation of two clusters (one for susceptible individuals and the other for the infected in-

dividuals) that are highly internally connected, while the clusters are weakly interconnected.

This process leads to decrease the epidemic spreading chances due to the isolation of the

infected individuals. However, the cluster of susceptible individuals is highly connected with

large variance of node degrees, which increase the epidemic spreading chances. The authors

concluded that the local effect of rewiring suppresses the epidemic, while the topological

effect increases the chance of the epidemic spreading.

Jiang and Dong in [53] proposed an optimal concept of control measures to control the

spread of SARS outbreaks in minimum time. They found that Bang-Bang controller is the

optimal solution when the objective is to minimize the lifetime of an outbreak. They only
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focused on a subsystem of the compartmental model, which only includes the exposed class

E(t) and the infectious class I(t).

V. Marceau et al. studied the coevolution of SIS disease and the network topology simul-

taneously in [72]. They introduced an adaptive rewiring rule through which the topology

changes with time. In their rewiring rule, susceptible individuals replace their links with

infected neighbors by susceptible neighbors that are randomly chosen at a predefined rate.

The results showed that during the initial phase of an epidemic, number of links that connect

susceptible individuals with infectious individuals drop quickly, and hence the susceptible

individuals compose a strong community, which is connected with very few infectious indi-

viduals. Eventually, the epidemic invades the well connected susceptible community causing

a sharp drop in number of links in the susceptible community.

Prakash et al. studied the virus propagation on time-varying networks in [94]. They divided

the time unit into periods. Each period has its own network adjacency matrix represent-

ing the binary contacts among the individuals. They found that the epidemic threshold is

the reciprocal of the maximum eigenvalue of the multiplication of the two system matrices

representing the two periods. They also extended the same concept to general alternative

behaviors during the lifetime of the virus. In addition, the authors proposed different mit-

igation strategies that are based on topological characteristics, namely the average node

degree, and the maximum node degree, and finally a greedy immunization strategy that

causes the largest drop in the maximum eigenvalue of the system matrix.

Bondes et al. [18] studied the relationship between the communicable diseases and the evolu-

tion of social systems. They proposed a game theoretic approach to find the social behavior

of a host during the prevalence of communicable diseases. In addition, the authors presented

the relationship between the strength of the diseases and the contact rates of the hosts.

Reluga addressed the effect of social distancing on the spread of SIR epidemics. For exam-

ple, he used the differential game theory to find the social distancing pattern in population-

based model [95, 96]. The solution represents the equilibrium at which excess social dis-
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Figure 3.1: The Markov chain state diagram for a simple network composed of two indi-
viduals (N=2) that are in contact. Number of states equals 32 = 9. The state SS does not
have any transition with other states because all the individuals are susceptible and there is
no infection incidence presented in the network to cause the spreading of epidemics.

tancing does not improve the solution.

3.2 Continuous time Markov chain SIR epidemic model

In this section, we discuss the exact continuous time Markov chain model and its complexity.

The continuous time Markov chain model describes the epidemic spread process accurately,

based on the fact that each individual in the network is either susceptible, infected, or

recovered. An infected individual infects its susceptible neighbors, each with a rate β.

Additionally, the infected individual cures itself with cure rate δ. Therefore, there are 3N

different states for any network with N individuals. In addition, there are (Nj )2
N−j different

states with j infected individuals. Figure 3.1 shows an example of the state diagram when

the spread of epidemics takes place on a network with two individuals that are in contact.

To analytically describes the exact Markov chain model, let us define the network state X

with 3N configurations, i.e. X1, X2, ... X3N . Each network state describes the state of each

individual X = {x1, x2, ...xN} where x = {s, i, r}. Additionally, the probability that the

network is in state X is given by WX = p(X = {x1, x2, ...xN}). To be more precise, the rate

of change among the different states is described by the infinitesimal Q matrix, which has

dimensions of 3N × 3N . Let qX,Y be an element in the Q matrix representing the rate of

change from network state X to network state Y . The Q matrix is described as follows:

* qX,Y = δ whenever network state X has an infected individual that is cured in network
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state Y , while other individuals do not change their states.

* qX,Y = β
∑N

l=1 am,lδil,1 whenever a susceptible individual m in network state X is

connected with infected neighbors l ∈ N and it becomes infected in state Y , while other

individuals do not change their states. Note that am,l equals 1 when individuals m

and l are connected, and δil,1 is the Kronecker delta function and equals 1 if individual

l is infected (il = 1).

* qX,X = −∑
Y �=X qX,Y .

* qX,Y = 0 otherwise.

At any time t, the network is in any state X, with a given probability WX(t) such that∑
X∈{X1,...,X3N

}WX(t) = 1. The rate of change of every network state is governs by the

following differential equation:

dW T (t)

dt
= W T (t)Q. (3.7)

The solution of the differential equation is as follows:

W T (t) = W T (0)eQt (3.8)

where W T (t) is the transpose of the state probability vector W (t) at time t, and W T (0)

is the transpose of the initial state probability vector.

3.3 Individual-based SIR approach

In this dissertation, we present an individual-based SIR approach to model the spread of

epidemics in networks. A network is composed of nodes and links. A node represents

an individual and the link represents the contact between a pair of individuals. The new

approach overcomes the shortcomings of the homogeneous and heterogeneous mean field

approaches. In the individual-based approach, each individual can be either susceptible S,
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infected I or recovered R with a given probability for each state. The new approach is

inspired by the continuous-time Markov chain SIR model, which is discussed in Section 3.2,

and it aims to decrease the complexity of the solution from exponential O(3N) to polynomial

O(N). Therefore, instead of considering the combinatorial states of the individuals in the

network, we study each individual specifically [77], by decomposing Q3N×3N matrix to N

infinitesimal matrices, each with three states as follows:

qv(t) =

⎡
⎣ −β∑z av,zδiz(t),1 β

∑
z av,zδiz(t),1 0

0 −δ δ
0 0 0

⎤
⎦

where av,z represents the contact level between individual v and individual z in a weighted

or unweighted network, and the Kronecker delta function δiz(t),1 = 1 represents the event

that individual z is infected and zero otherwise. In exact Markov chain model, the infection

event represents a condition given the neighbor individual is infected, and conditioning on

every individual in the network leads to 3N states in Markov chain (review Section 3.2).

In individual-based approach, instead of conditioning on the state of every individual, we

replace the actual random infection rate with its effective average infection rate,

E[β
∑
z

av,zδiz(t),1] = β
∑
z

av,zE[δiz(t),1] (3.9)

where the infection rate β and the network topology are constant. Therefore E[δiz(t),1 =

iz(t) = 1] = p(iz(t) = 1) is the probability that the neighbor individual z is infected.

Replacing the actual random infection rate with its effective rate is basically a mean field

approximation, and therefore the effective qeffv (t) infinitesimal matrix is obtained and has

the following expression:

qeffv (t) =

⎡
⎣ −β∑z av,zp(iz(t) = 1) β

∑
z av,zp(iz(t) = 1) 0

0 −δ δ
0 0 0

⎤
⎦ .
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For every individual v, we derive a system of differential equations by applying the

general differential equation in 3.7 using the effective qeffv (t) infinitesimal matrix as follows:

dStateTv (t)

dt
= StateTv (t)q

eff
v (t) (3.10)

where StateTv (t) = [Sv(t) Iv(t) Rv(t)] is the vector of the state probabilities of individual

v. The obtained differential equations are as follows:

dSv(t)

dt
= −Sv(t)β

∑
z∈N

av,zIz(t), (3.11)

dIv(t)

dt
= Sv(t)β

∑
z∈N

av,zIz(t)− δIv(t), (3.12)

dRv(t)

dt
= δIv(t). (3.13)

At any time t, each individual v will be in any of the states with total probability

of 1, Sv(t) + Iv(t) + Rv(t) = 1. In addition, the sum of rates of changes in the state

probabilities is zero dSv(t)
dt

+ dIv(t)
dt

+ dRv(t)
dt

= 0. Therefore, we only solve 2N simultaneous

differential equations instead of 3N . Figure 3.2 shows the time evolution of new infected

individuals in assortative and disassortative preferential attachment (PA) networks with

different < k >=4, 8, 12, 16 and 20 given β = 0.1 and δ = 0.2.

3.3.1 Numerical evaluations

We performed Monte Carlo (MC) simulation to evaluate the accuracy of the individual-

based SIR approach (numerical solution (NS)). In Monte Carlo approach, every infected

individual tries to infect each of its susceptible neighbors with infection rate β, and it cures

itself with rate δ. Figure 3.3 represents the total incidences with respect to the number of

individuals in the networks when an epidemic spreads on random scale-free networks [10]

with N = 104 and exponents ν equal 2.6, 2.9, 3.3 and 3.6 given different cure rate to infection

rate δ
β
for both MC and NS. The results are averaged over 100 runs. For every cure rate
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Figure 3.2: Normalized new infected individuals as a function of time for β = 0.1 and δ =
0.2 given correlated networks with N = 104 and different average node degree < k >. Two
different types of correlated networks are simulated (a) assortative preferential attachment
(PA) networks, and (b) disassortative preferential attachment (PA) networks. The peak of
the new infected individuals in disassortative networks leads to the corresponding peak in
assortative networks.

Figure 3.3: Normalized total incidences of infection given different effective cure rate δ
β
on

random scale-free networks with different exponents ν (top left ν = 2.6, top right ν = 2.9,
bottom left ν = 3.3, bottom right ν = 3.6). Each network has 104 individuals. The results
are averaged over 100 runs. The dashed line represents the numerical solution (NS) of
the individual-based SIR approach, the ’o’ symbol represents the heterogeneous mean field
approach results, and the ’*’ symbol represents the average of Monte Carlo (MC) results.
The error bar is the standard deviation of MC results. The insets show how the individual-
based approach outperforms the heterogeneous mean field approximation for the values δ

β

that are close to the reciprocal of the epidemic threshold ( 1
τ
).
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δ and infection rate β, we compute the normalized total incidences ρ so that we obtain

the relationship between δ
β
and ρ. In MC, each simulation starts with a single infected

incidence that is randomly chosen among the individuals, while in NS, each individual is

initially infected with probability 10−4. The error bar represents the standard deviation of

MC trials. We notice that NS upper-bounds MC simulations for a large range of δ
β
. In

Section 3.5, we analyze the deviation between the individual-based approach and Markov

chain model and we show that the individual-based approach upper-bounds Markov model

results. The insets in Figure 3.3 show that for 0.7λmax ≤ δ
β
≤ λmax, NS results approach

MC simulations.

Additionally, we compare the individual-based SIR approach with the heterogeneous

mean field approach discussed in Section 3.1 given the same range of cure rate to infection

rate δ
β
values. We use the same random scale-free networks with the same exponent values.

We also assume that the initial probability of infection for every individual is 10−4. In

Figure 3.3, the results show that the heterogeneous mean field approach does not show

any infection incidence for higher values of δ
β
that are near the reciprocal of the epidemic

threshold. On the other hand, the results of the individual-based approach are closer to

MC simulation results, and both show the existence of incidences with non-zero values.

Basically, the difference between the two approaches comes from the epidemic thresholds

and the network representation in each approach. The range of δ
β
≤ 1

τ
in the individual-based

approach is larger than the range in heterogeneous mean field approach, which is observed

in Figures 3.3. Therefore, the individual-based approach captures more chances for the

spread of epidemics with a broader range of δ
β
. Additionally, in the heterogeneous mean

field approach, individuals are represented through their node degrees, which means that all

individuals with the same node degree have the same probability of infection, while in the

individual-based approach, every individual is studied separately. Thus the heterogeneous

mean field approach neglects the centrality properties of the individuals in the network, while

the individual-based approach not only considers the individual probability of infection, but
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also distinguishes among the individuals’ topological characteristics.

3.4 Properties of the individual-based SIR approach

In this section, we derive some useful properties from the individual-based SIR approach.

Those properties describe the infection process more fully, and they relate the infection

process with the contact network topology over which an outbreak takes place. First, we

derive the epidemic threshold, and we show how it is related to the network topological

properties. We also derive the condition under which the infection reaches its peak value

with time, and how the peak infection value is related to the epidemic threshold. Moreover,

we study the role of the network topology on the spread of epidemics.

3.4.1 Epidemic threshold

In epidemiology literature, the epidemic threshold is a function of a quantity called basic

reproductive number R0 [6, 8, 57, 67, 73]. The basic reproductive number is defined as

the average number of secondary infected individuals when a single individual is infected

initially. Mathematically, the reproductive number is <k>β
δ

where < k > is the average

connectivity in the network. Therefore, if R0 is greater than 1, the epidemic spreads on the

network and vice versa. Many networks with individuals characterized by a wide range of

contacts (i.e. some individuals have few contacts and other individuals have many contacts)

can have the same average level of contact [30, 68, 69]. The information on the average

contact does not provide any indication of the contact level distribution. Being R0 only

dependent on the average level of contact, it will be the same for all networks with the same

average level of contact, independently of their contact level distribution. Recent works

showed that the epidemic threshold is a function of non-trivial network characteristics.

Below, we confirm that the epidemic threshold is a function of the maximum eigenvalue

of the matrix representing accurately the contact level among the individuals [77, 106].

To compute the threshold, we follow the analysis presented in [16]. We assume that the
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initial fraction of infected individuals is very small and therefore Sv(0)  1. The differential

Eq. 3.36 is written as follows:

dIv(t)

dt


∑
z

L̃v,zIz(t) (3.14)

where the element L̃v,z = βav,z − δδv,z is the entry of the Jacobian matrix L̃ = {L̃v,z} =

βA− δIN×N , and δv,z is the Kronecker delta function and equals 1 forall v = z. Since any

element av,z of the symmetric adjacency matrix A of the binary contact network is either 0

or 1, and according to Frobenius theorem, the maximum eigenvalue λmax,A of A is positive

and real, the eigenvalues of the matrix L̃ have the form of βλi,A−δ, and the eigenvectors are

the same as those for the adjacency matrix A. Thus, the stability condition of the solution

I = 0 of the differential Eq. 3.14 is −δ+βλmax,A < 0, and the SIR individual-based epidemic

threshold τ for any undirected network becomes:

1

λmax,A
= τ (3.15)

As a consequence, an outbreak will occur if and only if β
δ
> τ .

3.4.2 The existence of a maximum number of infected individuals

The number of infected individuals increases in time following a certain profile [11] depending

on the infection strain. Below, we derive the condition for which a maximum number of

infected individuals occurs, and how the condition is related to the epidemic threshold. Let

uT I(t) =
∑

v Iv(t) be the total number of infected individuals in the network, where uT is

the transpose of a vector of ones uT = [1 1 ...1]. The existence of a maximum value for I(t)

is determined through duT I(t)
dt

=
∑

v
dIv(t)
dt

= 0, and we obtain:

∑
v

[
Sv(t)β

∑
z

av,zIz(t)− δIv(t)

]
= 0 (3.16)

By rewriting Eq. 3.16 in the matrix form, we obtain the following equation:
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[
βST (t)A− δuT

]
I(t) = 0 (3.17)

There are two possible solutions for Eq. 3.17: 1) I(t) equals zero, which happens when

the network becomes cured, or 2) βST (t)A− δuT equals zero. The second solution derives

a condition for the existence of a positive maximum value of I(t). Consequently, the second

solution AS(t) = δ
β
u has the form of Mx = ρx, where x and ρ are an eigenvector and an

eigenvalue of the arbitrary matrix M , respectively. The vector S(t) is equal to the vector u

only if δ
β
is equal to the maximum eigenvalue λmax,A of A, which follows Frobenius theorem

and takes place for t → 0 and S(0) → 1. Moreover, this solution proves the existence of

the epidemic threshold shown in inequality 3.15 whenever δ
β
< λmax,A, and therefore the

epidemic spreads in the network, Sv(t) ≤ 1 forall v, and the maximum number of incidences

takes place before the network becomes cured.

3.4.3 The effect of the network spectrum

This subsection addresses the effect of the network topology on the spread of epidemics.

Rigorously, we show that the eigenvalues and the corresponding eigenvectors reveal the role

of the centrality properties of the individuals in spreading the epidemics in networks. Be-

low, we mathematically derive the effect of the centrality properties of the networks on the

spread of epidemics followed by an interpretation for the final mathematical formula 3.21,

and we show how the eigenvector corresponding to the maximum eigenvalue can predict the

probability of infection of the individuals in the network.

Recall that uT is the transpose of a vector of ones (uT = [1 1 ...1]), and A to be the

adjacency matrix of a binary contact network. Thus, we can write the total rate of change

of infected individuals uT I(t) as follows:

duT I(t)

dt
= β(uT − IT (t)−RT (t))AI(t)− δuT (t)I(t). (3.18)
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If we denote the vector of node degrees D = uTA, and the eigenvalue decomposition of

the adjacency matrix A = UΛUT , we can rewrite the differential Eq. 3.18 as follows:

duT I(t)

dt
= (βD − δu)T I(t)− β(UT I(t))TΛ(UT I(t))

−β(UTR(t))TΛ(UT I(t)) (3.19)

Let xz be the zth element in the vector UT I(t), and let yz be the zth element in the

vector UTR(t). Now we can rewrite the differential equation as follows:

duT I(t)

dt
= (βD − δu)T I(t)− β

N∑
z=1

λzx
2
z − β

N∑
z=1

λzxzyz (3.20)

To relate Imax with the spectrum λz and the eigenvectors U , let duT I(t)
dt

equal zero, and

therefore we can obtain the following equation:

N∑
v=1

(dv − δ

β
)Ivmax =

N∑
z=1

λzx
2
z −

N∑
z=1

λzxzyz (3.21)

The fact that the matrix A is symmetric and therefore λmax is a positive eigenvalue and

elements of the corresponding eigenvector are positive as well is used to understand Eq. 3.21

as follows: As β increases, both the LHS and the RHS increase too. We can also see that

the vector I(t) is proportional to the eigenvectors of the adjacency matrix A, while the

coefficients of the proportion are the eigenvalues; however, the dominant term in the RHS is

λmaxx
2
λmax

= λmax(U
T
λmax

I(t))2 since both the maximum eigenvalue λmax and the elements of

the corresponding eigenvector UT
λmax

are positive. Therefore, the vector I(t) is increasingly

more aligned with the eigenvector corresponding to the maximum eigenvalue on the RHS.

Thus, the elements of the eigenvectors corresponding to the maximum eigenvalue provide

an estimate of the probability of infection for each individual in the network.

To conclude, this property reveals the role of the centrality properties of the individuals in

spreading the infection across the contact network.

59



S I R

Sv=1: Susceptible

Sv=0: Infected

, ,0lv l s
l N

a

Figure 3.4: The state transition diagram of an individual v from susceptible state sv = 1
to infection state sv = 0.

3.5 Markov chain model and mean field approximation

In this section, we analytically show the differences between the continuous time Markov

chain epidemic model that is discussed in Section 3.2 and the individual-based SIR approach,

and the effect of the mean field approximation on the outcome of the model.

Let us first consider the state transition of an individual from susceptible to infection.

Let sv = 1 if individual v is susceptible, and sv = 0 if it is infected. In the SIR model,

the transition happens from susceptible state to infection state, while the opposite does not

happen as shown in Figure 3.4. Thus a susceptible individual v becomes infected with rate

β
∑

l av,lδsl,0 (see Figure 3.4), where δsl,0 is the Kronecker delta function and it equals 1 if

the neighbor l is infected, i.e. sl = 0. Therefore, the susceptible individuals do not increase

with time. In other words, the change in the susceptible state sv = 1 over a small time

interval ∆t is defined as follows:

sv(t+∆t)− sv(t)

∆t
= −δsv(t),1β

N∑
l=1

av,lδsl(t),0 (3.22)

By taking the average on both sides, and considering E[sv(t)] = p(sv = 1) = Sv(t), we

obtain the following equation:

Sv(t +∆t)− Sv(t)

∆t
= −E[δsv(t),1β

N∑
l=1

av,lδsv(t),0] (3.23)

The above equation is only applied for any v �= l. Since we assume that the infection
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rate does not change with time, and the topology is static, we process the expectation only

on the Kronecker delta functions as follows:

E[δsv(t),1.δsl(t),0] = E[(sv(t) = 1) ∩ (sl(t) = 0)]

= p(sv(t) = 1, sl(t) = 0)

= p(sv(t) = 1 | sl(t) = 0)p(sl(t) = 0).

In Eq. 3.23, let ∆t→ 0, and we obtain the following differential equation:

dSv(t)

dt
= −β

N∑
l=1

av,lp(sv(t) = 1 | sl(t) = 0)p(sl(t) = 0) (3.24)

The conditional probability represents the probability that individual v is susceptible given

that the neighbor individual l is infected. Recalling Eq. 3.11,

which is dSv(t)
dt

= −Sv(t)β
∑N

l=1 av,lIl(t) in the individual-based approach, and comparing it

with Eq. 3.24, we notice that the mean field theory assumes that events are independent as

follows:

p(sv(t) = 1 | sl(t) = 0)p(sl(t) = 0) = p(sv(t) = 1, sl(t) = 0)

= p(sv(t) = 1)p(sl(t) = 0)

= Sv(t)Il(t).

Thus, we address the relationship between the conditional probability p(sv(t) = 1 |
il(t) = 1) and the probability p(sv(t) = 1) for an individual v and its neighbor l as follows: we

assume that the state transition takes place over the time interval ∆t. We also assume that

individual v is susceptible at time t. Hence, the conditional probability can be rewritten as

p(sv(t+∆t) | sv(t), il(t)), while the probability p(sv(t) = 1) can be rewritten as p(sv(t+∆t) |
sv(t)). Using the total probability theory, p(sv(t+∆t) | sv(t)) is as follows;
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p(sv(t +∆t) | sv(t)) =
= p(sv(t +∆t) | sv(t), sl(t+∆t))p(sl(t) | sv(t))

+p(sv(t +∆t) | sv(t), rl(t))p(rl(t) | sv(t))
+p(sv(t +∆t) | sv(t+∆t), il(t))p(il(t) | sv(t))

= p(sl(t) | sv(t)) + p(rl(t) | sv(t)) + p(sv(t +∆t) | sv(t), il(t))p(il(t) | sv(t))
= 1− p(il(t) | sv(t)) + p(sv(t +∆t) | sv(t), il(t))p(il(t) | sv(t))

(3.25)

Recall the following inequality:

p(sv(t+∆t) | sv(t), il(t)) ≤ 1

Multiply both sides by (1 − p(il(t) | sv(t))), after rearranging, we obtain the following

inequality

p(sv(t +∆t) | sv(t), il(t)) ≤ 1− p(il(t) | sv(t)) + p(sv(t+∆t) | sv(t), il(t))p(il(t) | sv(t))

which is as follows:

p(sv(t +∆t) | sv(t), il(t)) ≤ p(sv(t+∆t) | sv(t)).

The last inequality is valid since an infected neighbor l does not increase the probability of

an individual v to remain susceptible. Therefore in the Markov chain model, the absolute

rate at which a susceptible individual changes its state to infection state is lower than the

corresponding rate in the individual-based approach.

We conclude that for any individual v, the susceptible probability in the individual-based

SIR approach lower-bounds the susceptible probability in the Markov chain model. There-

fore, we also conclude that the infection probability in the individual-based SIR approach

upper-bounds the infection probability in the Markov chain model. Consequently, the prob-

ability of recovery in the individual-based SIR approach also upper-bounds the probability

of recovery in the Markov chain model.
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3.5.1 Numerical evaluations

We compare the individual-based approach with the continuous time Markov chain model

to study the deviation between the two approaches. In Figures 3.5(a)- 3.5(e), we numer-

ically evaluate the spread of epidemics on a 6-node ring network where initially a single

individual is infected and δ
β
equals 102, 1.6667, 1.25, 0.5, and 10−2, respectively. Note: the

Markov chain model can only be modeled on smaller networks since the number of states

exponentially increases with the number of individuals in the network. In Figure 3.5(a), we

notice that the initially infected individuals recovered and the epidemic dies out, and there

is no new infection since δ
β
is above the reciprocal of the epidemic threshold (λringmax = 2).

However, a deviation is noticeable in Figures 3.5(c) and 3.5(d) between the individual-based

approach and the Markov model, and it is due to the mean field approximation used in the

individual-based approach. In particular, we observe in the same Figures that the suscepti-

ble population in the individual-based approach lower-bounds the corresponding population

in the Markov chain model, while the infected population in the individual-based approach

upper-bounds the corresponding population in the Markov chain model. In Figure 3.5(e), the

individual-based approach almost coincides with the continuous time Markov chain model.

The simulations in Figure 3.3 show that total incidences in the individual-based approach

upper-bounds the total incidences in Monte Carlo simulations. Such a result agrees with

the theoretical prediction that the probability of infection in the individual-based approach

upper-bounds the probability of infection in Markov chain model.

3.6 Viral conductance V CSIR

We employed the individual-based SIR model to assess the robustness of a complex net-

work such that the total number of new infected individuals reflects the vulnerability of

the network to the spread of epidemics given any infection strength. In chapter 2, the

measure V CSIS is introduced that takes into account the number of infected individuals at

steady state for the susceptible/infected/susceptible compartmental model. In this chap-
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Figure 3.5: Comparison between the continuous time Markov chain model and the
individual-based approach given a 6-node ring network and δ

β
= 102, 1.6667, 1.25, 0.5, and

10−2.
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ter, we extend the concept of the viral conductance, and we introduce a new robustness

assessment measure V CSIR with respect to the spread of SIR epidemics. We define the new

metric as the ability of a network to resist the spread of an SIR epidemic given all possible

effective cure rates. The smaller the measure V CSIR, the robust is the network to resist

the spread of the epidemics. Mathematically, we define the assessment measure V CSIR by

fixing β = 1
λmax,A

and for a given cure rate δ, the total number of new infected individuals is∫ t∗
0

∑
k Sk(t)β

∑
j ak,jIk(t, δ)dt. By integrating over the defined range of cure rate 0 ≤ δ ≤ 1,

we obtain V CSIR as follows:

V CSIR =

∫ 1

0

∫ t∗

0

1

N

∑
k

Sk(t)β
∑
j

ak,jIj(t, δ)dtdδ (3.26)

The integration term represents the vulnerability of the network, and hence the reciprocal

of the vulnerability measure is the robustness measure V CSIR.

3.6.1 Numerical evaluations

We use the new measure V CSIR to evaluate the robustness of correlated networks, these

in which node degree correlation is observed. They are also classified as assortative and

disassortative networks. For example, social networks are classified as assortative networks,

while technological and biological networks are classified as disassortative networks [84]. In

assortative networks, individuals of small node degree are connected with other individuals

of small node degree, while individuals with large node degree are connected with other in-

dividuals with large node degree. On the other hand, the opposite is true for disassortative

networks. Pearson assortativity coefficient [29, 84] was proposed to characterize the node

degree correlation numerically. However, it does not give an accurate measure for networks

with complicated degree correlation functions. To accurately describe the degree correla-

tions, we evaluate the average connectivity of the neighbors of an individual k by following

the technique presented in [11, 89, 104]:
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Figure 3.6: Node degree as a function of average neighbors connectivity dn,n(d) of individ-
uals with the same node degree for a sample of correlated PA network with N = 104 and
< k >= 8.

dn,n,k =
1

dk

∑
j∈neighbors(k)

dj (3.27)

The average connectivity of neighbors of an individual is averaged overall of all individuals

for a given node degree d,

dn,n(d) =
1

Nd

∑
k/dk=d

dn,n,k (3.28)

where Nd is the number of individuals of degree d. Figures 3.6(a) and 3.6(b) show two exam-

ples for correlated networks, one for an assortative network and the other for a disassortative

network, respectively.

We focus on the robustness assessment of correlated PA networks. We generate assor-

tative and disassortative PA networks using the algorithm in [47]. The algorithm starts

with a connected graph with m0 � N individuals. Every new individual is connected to

the already existing individuals through two stages: In the first stage, a new individual is

connected to an existing individual k with probability πk = dk∑
j dj

; in the second stage, a

new link between the new individual and one of the neighbors s of the chosen individual k

in the first stage is added with probability ps =
dαs∑

v∈Γk
dαv
, where α is an assortative tunning

coefficient, and Γk is the set of neighbors of individual k chosen in the first stage.
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Figure 3.7: Normalized total of new infected individuals as a function of the effective cure
rate for correlated preferential attachment networks given N = 104 and different average
node degree < k >. The curve starts from the point where δ

β
= 0, and the normalized total

new infected cases is 1, and then it decreases until it reaches the value zero when the value
of δ

β
equals the spectral radius of the network.

To simplify the evaluation of numerical results, both the constructed assortative and disas-

sortative networks have the same number of individuals N and links L with average node

degrees < k >=4, 8, 12, 16 and 20. Next, we apply the new measure V CSIR in Eq. 3.26 to

quantitatively assess the robustness of both assortative and disassortative networks. All the

simulations are averaged over 10 runs. Figures 3.7(a) and 3.7(b) show the numerical sim-

ulations of the spread of an epidemic for 0 ≤ δ
β
≤ λmax,A on assortative and disassortative

preferential attachment PA networks given different average node degrees < k >, where δ
β

is the inverse of the effective infection rate.

Table 3.1 summarizes the values of V CSIR for both types of networks for different average

node degrees. We notice that the disassortative networks have lower values of robustness

measure V CSIR than those of assortative networks regardless of the average node degree

value. In addition, the V CSIR value decreases with increases in L (i.e.< k >) due to the

increase in the effective spreading rate of any infected individual for its susceptible neighbors.

Moreover, in Fig. 3.2, we observe that the peaks of normalized new infected individuals in

disassortative networks are greater than the peaks in assortative networks; meanwhile, the
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< k > Assortative networks Disassortative networks
4 3.32 6.54
8 6.54 12.58
12 9.76 17.65
16 12.98 23.47
20 16.22 28.68

Table 3.1: Robustness measure V CSIR for assortative and disassortative PA networks given
different average node degrees < k >. The network size is N = 104.

peaks in disassortative networks lead the corresponding peaks in assortative networks. In

other words, an epidemic widely spreads in disassortative networks, and it spread faster than

in assortative networks. Fig. 3.2 also reveals insights about any future immunization strategy

that could be applied to both networks. For example, we can assume that immunization

strategies on assortative and disassortative networks are different. Therefore, in assortative

PA networks, mitigation strategies are going to be more effective than in disassortative PA

networks.

3.7 Optimal mitigation of epidemics in weighted net-

works

We adapt the individual-based SIR approach to find the optimal mitigation strategy to

minimize the final size of infection in social networks through the optimal control theory.

Thus, to apply the optimal control theory in social networks, we consider the spread of SIR

epidemic in the network as a system, and the total number of infection cases as the state of

the system, while the controller variable is the reduction in the weights of the social network

leading to slow/reduce the spread of epidemics. Unlike the trivial methods in which infected

individuals are isolated to mitigate the epidemic, the new approach preserves a global min-

imum contact level, which mainly depends on the social activities of individuals within the

social community. Meanwhile, our approach minimizes the reduction in the contact weights.

Hence, the optimal control formulation addresses the trade-off between minimization of total

infection cases and minimization of contact weights reduction. Consequently, the solution
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represents an optimal adaptive weighted contact network.

3.7.1 Weighted SIR epidemic approach

Traditionally, any social network is a weighted graph representing the contact frequency

and the proximity among the individuals. We denote wm,n(t) to be the contact weight

between individuals m and n at time t such that 0 ≤ wm,n(t) ≤ 1. The spread of infectious

disease takes place in social networks due to the contacts among susceptible and infected

individuals. Therefore, the actual infection rate from an infected individual n towards

a susceptible individual m at time t becomes βwm,n(t). Using the system of differential

equations presented in 3.3, we obtain the following SIR epidemic approach for a weighted

network:

dSm(t)

dt
= −Sm(t)β

∑
n∈N

wm,n(t)In(t), (3.29)

dIm(t)

dt
= Sm(t)β

∑
n∈N

wm,n(t)In(t)− δIm(t), (3.30)

dRm(t)

dt
= δIm(t). (3.31)

Differential equations in 3.29 - 3.31 represent the system of epuations in the optimal

control formulation to minimize both the total infected cases as well as the reduction in the

contact weights.

3.7.2 Optimal dynamical weights

In this section, we formulate a continuous time optimal control problem to minimize the

total size of infection by properly reducing the contact weights among individuals within

a finite time interval t ∈[0,Tfinal]. Meanwhile, our objective is to minimize the weight

reduction with respect to original epidemic-free contact weights (t = 0). The weighted

contact network is composed of N individuals and L directed links. Initially, we assume

that the contact network is undirected weighted graph at time t = 0; However, for t > 0,
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Data input Definition

Tfinal Final time
β Infection rate
δ Cure rate
α Global minimum social contact coefficient

wm,n(0) Initial weight ∀ m,n ∈ N
Sm(0) Initial susceptible probability of individual m
Im(0) Initial infection probability of individual m

Variables Definition

wm,n(t) Link weight at time t
Sm(t) The susceptible probability of individual m at time t
Im(t) The infection probability of individual m at time t

Table 3.2: Definitions of the data inputs and the variables

the contact network can become directed weighted graph in which wm,n(t) can be different

from wn,m(t). During the spread of an epidemic t > 0, weights are reduced from their initial

epidemic-free values wn,m(0). In particular, we impose two bounds on each weight (m,n):

a) αwm,n(0) ≤ wm,n(t) and b) wm,n(t) ≤ wm,n(0), where wm,n(0) is the original epidemic-free

weight value between individual m and individual n, and α is a global minimum social level

coefficient 0 < α < 1. These constraints have direct implications on the network as follows:

First, to preserve a minimum contact level among individuals even during epidemics, we

introduce a lower bound on the weights, αwm,n(0) ≤ wm,n(t). Second, during an epidemic,

the level of contact between two individuals can not increase beyond the original level

(wm,n(0)).

3.7.3 Optimal control formulation

For every individual m, the infection probability Im(t) as well as the susceptible probability

Sm(t) are the state variables, while the weight reduction (wm,n(0)−wm,n(t)) is the controller
variable. The data inputs and the variables are summarized in Table 3.2. The objective

function is given by a weighted sum of the weight reduction cost function, and the total

infection size as shown in the following equation:
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Minimize

∫ Tfinal

0

A
∑
m,n∈N

[f(wm,n(0)− wm,n(t))]

+B
∑
m∈N

βSm(t)
∑
n∈N

In(t)wm,n(t)dt (3.32)

The first term f(.) is a non negative convex function representing the weight reduction

cost function, while the second term represents the new infection cases at time t. The

constants A and B are the coefficients for of the weighted sum objective function. The

problem constraints are composed of the system of differential equations 3.29 and 3.30, and

the following weight constraint:

αwm,n(0) ≤ wm,n(t) ≤ wm,n(0) ∀ m,n ∈ N (3.33)

Case study: Homogeneous networks

Homogeneous networks are used to model the spread of infectious diseases in large popu-

lation [9]. In addition, homogeneous network model is used to model the within-household

contact patterns [13, 41, 71]. In a homogeneous network, every individual has the same

number of contacts with other individuals in the population. Therefore, the spatial index

m is reduced from the susceptible probability, infection probability and the contact weight,

and these variables become S(t), I(t), and w(t), respectively. Consequently, the objective

function becomes as follows:

Minimize

∫ Tfinal

0

f(w(0)− w(t)) + βS(t)I(t)w(t)dt (3.34)

The function f(w(0)−w(t)) represents the weight reduction cost such that f(0) = 0. In

addition, we assume that f(w(0)−w(t)) is a strictly convex function where f
′′
(w(0)−w(t)) >

0. The second term represents the fraction of new infection at time t. Therefore, the main

objective is to minimize the weight reduction and the total fraction of new infection for all
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0 < t ≤ Tfinal.

For homogeneous networks, the constraints become as follows:

dS(t)

dt
= −βS(t)I(t)w(t), (3.35)

dI(t)

dt
= βS(t)I(t)w(t)− δI(t), (3.36)

αw(0) ≤ w(t) ≤ w(0). (3.37)

Applying Pontryagin’s minimum principle [93], we obtain the Hamiltonian function H

as follows:

H(S(t), I(t), w(t), λI(t), λS(t)) = f(w(0)− w(t))

+βS(t)I(t)w(t)− δλI(t)

+(λI(t)− λS(t))βS(t)I(t)w(t). (3.38)

(3.39)

The co-state equations and the transversality conditions are as follows:

λ
′
S(t) = − ∂H

∂S(t)
= −βI(t)w(t)− (λI − λS)βI(t)w(t), (3.40)

λ
′
I(t) = − ∂H

∂I(t)
= −βS(t)w(t)− (λI − λS)βS(t)w(t) + λI(t)δ. (3.41)

λI(Tf) = 0 (3.42)

λS(Tf) = 0 (3.43)

We proceed with the optimality condition as follows:

H(w∗(t), S(t), I(t)) ≤ H(w(t), S(t), I(t)) (3.44)

where w∗(t) is the optimal weight value at time t such that H(w∗(t), S(t), I(t)) is minimized.

After substituting the Hamiltonian Eq. 3.38 in the optimality condition, we obtain the

following inequality:
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f(w(0)− w∗(t)) + ψ(t)w∗(t) ≤ f(w(0)− w(t)) + ψ(t)w(t) (3.45)

where ψ(t) = βS(t)I(t)(1 + λI(t)− λS(t)).

Let y(t) = w(0) − w(t) represents the weight reduction such that 0 ≤ y(t) ≤ w(0)(1 − α),

and the inequality becomes as follows:

f(y∗(t))− ψ(t)y∗(t) ≤ f(y(t))− ψ(t)y(t). (3.46)

Since y(t) = 0 is an admissible point and f(y(t) = 0) = 0, therefore, the following

inequality holds for all time t:

f(y∗(t))− ψ∗(t)y∗(t) ≤ 0 (3.47)

Since f(y(t)) ≥ 0 and 0 ≤ y(t) ≤ w(0)(1− α), then:

f(y∗(t)) ≤ ψ∗(t)y∗(t) (3.48)

showing that ψ∗(t) is a positive function

βS∗(t)I∗(t)(1 + λ∗I(t)− λ∗S(t)) > 0. (3.49)

Since S∗(t) and I∗(t) > 0, then:

1 + λ∗I(t)− λ∗S(t) > 0. (3.50)

By following the analysis in [59], we proposed two lemmas that are used to show the

dynamic behavior of the weights in networks.

Lemma 3.7.1. The co-state variable λ∗I(t) is strictly positive, λ∗I(t) > 0 for 0 ≤ t < Tfinal.

Proof. First, we apply the following function property: for any continuous and differentiable

function g(t) and g(t1) = x such that for any t > t1 we have g(t) > x, then limt→t+1
g

′
(t) ≥ 0.
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Secondly, recall that λ∗I(Tfinal) = λ∗S(Tfinal) = 0 and λ∗
′
I (Tfinal) = −βS∗(Tfinal)w(Tfinal),

λ∗
′
I (Tfinal) < 0. Thirdly, we derive the proof by contradiction: Let ta be the time before

Tfinal at which λ
∗
I(ta) ≤ 0, and λ∗I(t) > 0 for ta < t < Tfinal as shown in the following two

cases:

•λ∗I(ta) = 0

lim
t→t+a

λ∗
′
I (t) = lim

t→t+a

−βS∗w∗(1 + λ∗I − λ∗S) + λ∗Iδ (3.51)

Recall that (1 + λ∗I − λ∗S) > 0, and hence

limt→t+a
λ∗

′
I (t) < 0, which contradicts the above property.

•λ∗I(ta) < 0

lim
t→t+a

λ∗
′
I (t) = lim

t→t+a

−βS∗w∗(1 + λ∗I − λ∗S) + λ∗Iδ (3.52)

Therefore limt→t+a
λ∗

′
I (t) is strictly negative, and hence it contradicts the above property.

The above two cases show that ta does not exist. Therefore λ∗I(t) > 0 for 0 < t <

Tfinal.

Lemma 3.7.2. The function ψ∗(t) is a positive concave function in time.

Proof. The first derivative of ψ∗′ is as follows:

ψ∗′ = (λ∗
′
I − λ∗

′
S )βS

∗I∗ + (1 + λ∗I − λ∗S)βS
∗′I + (1 + λ∗I − λ∗S)βS

∗I∗
′

(3.53)

After rearrangement, it becomes as follows:

ψ∗′ = −(1− λ∗S)βδS
∗I∗.

Equation 3.40 can be rewritten as λ∗
′
S (t) = −(1+λ∗I−λ∗S)βI∗(t)w∗(t). Since 1+λ∗I−λ∗S > 0

and λ∗S(Tfinal) = 0, the co-state variable λ∗S(t) is a positive decreasing function for time

0 < t < Tfinal. In addition, λ∗s(t) function may equal 1 since 1 + λ∗I − λ∗S > 0 and λ∗I > 0.

Therefore, the function −(1 − λ∗S) is a decreasing function in time with positive values

(λ∗S > 1), then zero (λ∗S = 1) then negative values (λ∗S < 1). Also, the term βδS∗I∗ is
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positive, therefore, we concluded that ψ∗′ is a decreasing function in time from positive to

negative values and hence, ψ∗(t) is a positive concave function with an inflection point in

time at λ∗S = 1.

Based on inequality 3.47, and the fact that ψ∗(t) is a concave function in time, we state

the following theory, which shows the optimal dynamic weights in homogeneous networks.

Theorem 3.7.3. The optimal dynamic weight reduction during the spread of an SIR epi-

demic in homogeneous networks is as follows:

y∗(t) =

{
0 if ∂f

∂y
|y(t)=0 > ψ(t),

(∂f
∂y
)−1(ψ∗(t)) if ∂f

∂y
|y(t)=0 ≤ ψ(t).

(3.54)

Proof. From Eq. (3.47), ∂(f(y(t))−ψ(t)y(t))
∂y(t)

|y(t)=y∗(t) = 0 is evaluated to find the optimal y∗(t).

Therefore, we obtain y∗(t) as follows:

y∗(t) = (
∂f

∂y
)−1(ψ∗(t)) (3.55)

Since inequality (3.47) has to be preserved for all the time t, Eq. 3.55 is applied if

and only if ∂f
∂y
|y(t)=0 ≤ ψ(t) is true. Hence, Eq. 3.54 is obtained. Consequently, optimal

dynamical weight w∗(t) = w(0)− y∗(t) is obtained as well.

Figure 3.8(a) shows the evaluation of the dynamical weights in time for a homogeneous

network in which every individual is in contact with two other individuals composing a

regular weighted graph. The simulation settings are as follows. 1) initial weight w(0) equals

0.5, 2) infection rate β equals 1, and 3) the weight reduction cost function is convex with the

form f(z) = z2. Every curve in the figure represents the evaluation of the optimal control

problem for a given cure rate δ value (0 ≤ δ ≤ 1). The Figure shows that the amount of

weight reduction increases (w(0) − w(t) increases) for 0 ≤ δ ≤ 0.4, and then the weight

reduction decreases (w(0) − w(t) decreases) for 0.5 ≤ δ ≤ 1. In addition, Figure 3.8(b)
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Figure 3.8: Numerical evaluation of optimal dynamical weight and optimal normalized
infection size for a regular network given different values of cure rate 0 ≤ δ ≤ 1 and
constant infection rate β = 1.

shows the numerical evaluations for the total fraction of infection cases given different cure

rate values 0 ≤ δ ≤ 1, and a constant infection rate β = 1 for both the non-optimal and

optimal solution. The optimal solution has lower fraction of infection than non-optimal

solution. We also notice that for small and large values of cure rate, the optimal solutions

coincide with the corresponding non-optimal solutions. To clarify, there are two factors

leading to reduce the total infection size, which are the cure rate and the weight reduction.

Meanwhile, there is a trade off between their roles in reducing the infection size. Large

cure rate leads to reduce number of infections, and hence the weight reduction becomes

less effective; However, very small cure rate leads to large number of infection, because the

infection process is stronger than the cure process. Hence, the weight reduction becomes

less effective. For intermediate values of cure rates, we find that the weight reduction is

very effective. Both the weight reduction and the cure process, together, minimize the total

infection size. For a given cure rate in Figure 3.8(a), the dynamical behavior of the weight

is described as follows. During the early phase of the epidemic spreading in the population,

few individuals are infected, and hence the weight reduction is not effective; However, when

the infection size increases, the weight reduction becomes more effective. When the infection

process becomes less dominant, the weight reduction decreases due to the exponential decay
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Figure 3.9: The mitigation strategy is effective during the time period [T beginmitigation T
end
mitigation]

in which Ithreshold < In→m(t).

of infection size, which is a property of the SIR model. Such behavior of the dynamical

weight is expect due to the concavity nature of ψ(t) in Eq. 3.57.

3.8 Computational heuristics for the optimal mitiga-

tion strategies

Since the optimal dynamical weight behavior is obtained through the centralized optimal

control framework, and the obtained solution requires solving simultaneous nonlinear equa-

tions in a centralized way, it is beneficial to propose heuristics to find near optimal solutions

in a decentralized way with reduced complexity. Therefore, we proposed two different heuris-

tics that are based on the results found from the homogeneous networks. For each heuristic,

we study the infection between every pair of individuals that have contact. We denote

In→m(t) as the probability that individual m becomes infected because of being in contact

with an infected neighbor n. Mathematically, In→m(t) is described as follows:

dIn→m(t)

dt
= βSm(t)wm,n(t)In(t)− δIn→m(t) (3.56)

The weight reduction mitigation strategy takes place in a time duration [T beginmitigation T
end
mitigation]

during which In→m(t) exceeds a predefined infection threshold Ithreshold as shown in Fig-
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ure 3.9. Analytically, the weight dynamic is described as follows:

wm,n(t) =

{
αwm,n(0) ≤ wm,n(t) < wm,n(0) if In→m(t) > Ithreshold,
wm,n(0) if In→m(t) ≤ Ithreshold.

(3.57)

The weight function in time wm,n(t) is either a Bang-Bang function that changes between

two weight levels (αwm,n(0) and wm,n(0)), or a piecewise nonlinear function in time.

3.8.1 Bang-Bang controller heuristic

In this heuristic, once the infection probability of individual m due to the infection from

neighbor n, In→m(t), exceeds the predefined infection threshold Ithreshold, the initial weight

wm,n(0) changes to the minimum social level αwm,n(0). As long as In→m(t) ≤ Ithreshold,

the contact weight from individual m to individual n, wm,n(t) does not change. Therefore,

weights are reduced to αwm,n(0) during the time period

[T beginmitigation T
end
mitigation] in which In→m(t) > Ithreshold. The Bang-Bang controller reflects the

fact that once an individual receives the infection from one or more of its neighbors, the

individual reduces its contact weight to the minimum social level. This heuristic also repre-

sents a type of homogeneous mitigation strategy in which the mitigation function (weight

reduction profile) is the same among all the individuals; However, every pair of individuals

decides about the start time and the time duration at which the contact weight is sharply

reduced to its minimum level.

3.8.2 Piecewise nonlinear controller heuristic

During the time period [T beginmitigation T endmitigation] in which In→m(t) > Ithreshold, the weights

follow a proposed nonlinear decreasing function, which mainly depends on the infection rate

β, the cure rate δ, and αw(0). The individual decreases the contact weight with its infected

neighbor(s) according to the following rate of change controller differential equations dwm,n(t)
dt

:

* dwm,n(t)
dt

= 0 if Ithreshold ≥ In→m(t), t < T beginmitigation
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* dwm,n(t)
dt

= −β2(wm,n(0)(1 − α))(eβ(t−T
begin
mitigation)) if Ithreshold < In→m(t), T

begin
mitigation < t ≤

T endmitigation

* dwm,n(t)
dt

= 0 if Ithreshold < In→m(t), T
begin
mitigation < t ≤ T endmitigation

* dwm,n(t)

dt
= (wm,n(0)− wm,n(t))(1− e−δ(t−T

end
mitigation)) if Ithreshold ≥ In→m(t), t > T endmitigation

The motivation of proposing this specific nonlinear weight (controller) function is as

follows:

- During the early phase of the spread of epidemic, the infection size is very small, and

therefore, individuals do not change their contact levels dwm,n(t)
dt

= 0 ⇒ wm,n(t) =

wm,n(0).

- Due to the presence of large susceptible population, the spread of the epidemic strength-

ens, and the infection size starts to increase. Consequently, every individual m de-

creases its contact level with each neighbor n according to the infection level In→m(t).

- If a neighbor n persistently is highly infected(Ithreshold < In→m(t)) for longer time, and

the contact weight wm,n(t) reaches its minimum level αwm,n(0), the contact weight

remains constant (dwm,n(t)
dt

= 0 ⇒ wm,n(t) = αwm,n(0)) until the infection level In→m(t)

becomes lower than the infection threshold.

- When the mitigation time ends (t > T endmitigation), individuals recover their contacts

following a nonlinear increasing function, which is proportional to the cure rate δ until

their initial contact levels are retrieved (wm,n(0)).

3.8.3 Numerical evaluations

We perform extensive simulations on two types of networks to evaluate the proposed heuris-

tics. The first type is the preferential attachment networks [10], and the second type is

a survey-based contact social network [99]. In addition, we briefly discuss the differences

between our approaches and social distancing mitigation methods.
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Figure 3.10: Numerical evaluation of the normalized number of infection size for both
the Bang-Bang controller heuristic and the piecewise nonlinear controller heuristic given
preferential attachment networks, different cure rate 0.4 ≤ δ ≤ 0.9 and different infection
threshold Ithreshold. The numerical evaluation is averaged over 20 runs. The best Ithreshold is
the value at which the normalized infection size is minimal.

Preferential attachment networks

The proposed heuristics are applied on preferential attachment networks. Different cure

rates δ, and infection threshold Ithreshold are used with every heuristic, while the infection

rate β is set to be equal to the reciprocal of the epidemic threshold 1
λ1

[112], where λ1 is the

maximum eigenvalue of the original weighted contact network. Figures 3.10(a) and 3.10(b)

show the normalized infection size for different infection thresholds Ithreshold and cure rates

0.4 ≤ δ ≤ 0.9 for Bang-Bang and piecewise nonlinear controller heuristics, respectively. All

results are averaged over 20 different preferential attachment networks, and each network has

104 individuals with initial contact weight value equals wm,n(0) = 0.5 and minimum contact

weight equals αwm,n(0) = 0.05. For Bang-Bang controller, as shown in Figure 3.10(a), for

a given δ and small Ithreshold, the infection size decreases until it reaches a minimum value,

and it increases for higher values of Ithreshold until it reaches its highest value at which the

mitigation strategy is no longer effective. Therefore, small values as well as high values of

Ithreshold are not effective to reduce infection cases. In addition, as shown in Figure 3.11(a),

small values as well as high values of Ithreshold incur extreme high and low weight reduction
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Figure 3.11: Numerical evaluation of the weight reduction cost for both the Bang-Bang
controller heuristic and the piecewise nonlinear controller heuristic given preferential attach-
ment networks, different cure rate 0.4 ≤ δ ≤ 0.9 and different infection threshold Ithreshold.
The numerical evaluation is averaged over 20 runs.

cost, respectively. Hence, for a given δ, there is a best Ibestthreshold value at which the infection

size has the lowest value as shown in Figure 3.10(a) with a moderate weight reduction cost as

shown in Figure 3.11(a). The above observations are analogous with the finding by Bondes

et al. [18] that the optimal immunization investment is maximized for intermediate values

of infection probabilities, while the immunization investment is less effective for low and

high infection probabilities values. The same observations are obtained in the piecewise

nonlinear controller heuristic as shown in Figures 3.10(b) and 3.11(b).

Below, we summarize the numerical evaluation obtained from both heuristics as follows:

• As the cure rate δ increases, the best infection threshold Ibestthreshold decreases. To clarify,

high cure rate represents short infection time, and hence the probability that a suscep-

tible individual receives the infection from an infected neighbor decreases. Therefore

it requires smaller values of Ithreshold for the mitigation strategy to be effective.

• The normalized infection size for the piecewise nonlinear controller heuristic is smaller

than the normalized infection size for Bang-Bang controller heuristic at every cure

rate. Furthermore, the incurred weight reduction cost from the piecewise nonlinear
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Figure 3.12: Numerical evaluation of the Bang-Bang and the piecewise nonlinear heuristics
for the three types of contacts in the survey-based contact network.

controller heuristic is lower than the incurred cost from the Bang-Bang controller

heuristic as shown in Figures 3.11(a) and 3.11(b). Therefore, the piecewise nonlinear

controller heuristic outperforms the well-known Bang-Bang controller in both the in-

fection size and the weight cost. However, every heuristic has different applications.

For example, in Bang-Bang controller, individuals simply change their activities to the

minimum level towards other individuals who are suspected to hold the infection. In

the piecewise nonlinear controller, individuals prefer to maintain their contacts to the

levels that not only allow them to interact with other individuals in the community,

but also become cautious about receiving the infection from their infected neighbors.

Survey-based weighted social network

Bang-Bang and piecewise nonlinear heuristics are applied to a survey-based social network

presented in Figure 2.6.6 to study the effect of the mitigation strategies on the total infection

size.

We applied Bang-Bang and piecewise nonlinear heuristics on every type of contact be-

tween individuals i and j. For every heuristic applied to a certain type of contact, say wx,i,j,

the minimum contact level is αwx,i,j. The total contact rate between individuals i and j is

as follows:
wproximity,i,j + wdirect−low,i,j + wdirect−high,i,j

3
.
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For example, when Bang-Bang heuristic is applied to proximity contact, only the proximity

contact rate is reduced. Similarly, the mitigation strategy is applied to the direct-low,

and direct-high contacts. The same mitigation strategy process is used with the piecewise

nonlinear controller. For different values of infection thresholds, Figure 3.12 shows that the

mitigation of every type of contact has a different impact on the total size of infection. To

clarify, when the mitigation strategy is applied on direct high contacts, the largest impact

on the total infection size is obtained; however, the mitigation strategy has no impact on

the proximity contact. In addition, the piecewise nonlinear heuristic is more effective on the

direct high contact than the Bang-Bang heuristic.

Social distancing

We discuss the differences between the proposed heuristic approaches and social distancing

mitigation strategy. Consider that the normal contact weights among the individuals have

the same value, say w(0). In social distancing, the contact weight is static and it is reduced

to its lowest level αw0 all the time. In this case, the epidemic threshold increases from 1
w(0)λ1

to 1
αw(0)λ1

, which in turn reduces number of infection cases for any effective infection rate β
δ

that is greater than the epidemic threshold. Therefore, static social distancing mitigation

strategy reduces number of infection cases; However, it incurs the maximum weight reduction

cost. On the other hand, in the proposed approaches, the contact weight is dynamically

changed between its maximum and minimum values w(0) and αw(0), respectively. Hence,

the contact network does not incur the maximum weight reduction cost value, and meanwhile

number of infection cases is reduced. Therefore, our approaches outperform the static social

distancing mitigation strategy in balancing between minimization of number of infection

cases and minimization of weight reduction cost.

3.9 Summary

We summarize our findings as follows:
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• The epidemic threshold is the reciprocal of the spectral radius of the network

The theoretical analysis shows the role of the spectral radius in the epidemic spread-

ing in networks, and the simulations verify the accuracy of the theoretical epidemic

threshold.

• A condition exists for the occurrence of a peak value of the infection

The theoretical analysis provides a condition for the existence of a peak value for the

infection incidence, which is related to the epidemic threshold.

• The individual-based SIR approach well approximates the continuous time Markov

chain model

The individual-based approach is accurate for all δ
β
> 1

τ
and δ

β
� 1

τ
. For values

of δ
β
< 1

τ
, the individual-based approach provides an upper-bound for the infection

incidence.

• The accuracy of the individual-based approach increases as the number of individuals

increases

For large networks, the Markov chain closely approximates any stochastic process

given sufficiently large numbers of states (i.e. 3N different states in our case).

• The range of effective infection rates leading to an epidemic is larger for the individual-

based approach than for the heterogeneous mean field approach

For 0.7λmax ≤ δ
β
≤ λmax, the individual-based approach agrees with Monte Carlo

simulations showing the existence of infection incidence, while the heterogeneous mean

field approach does not show any infection incidence.

• The numerical evaluations show that the new measure V CSIR distinguishes between

the robustness of assortative and disassortative preferential attachment networks

According to the robustness measure V CSIR, the assortative preferential attachment

networks is more robust than the disassortative networks.
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• In homogeneous networks, the optimal contact weights are adaptive

To balance between the minimization of the weight reduction cost and number of in-

fection cases, weights decrease nonlinearly from their normal values when the epidemic

spreading process overwhelms the network, and then the normal contact weight values

are retrieved when the curing process overcomes the infection process

• The optimal control problem addresses the relationship between the effective cure rate

and the optimal control function

For intermediate values of effective cure rate, the value of weights are reduced dra-

matically from their normal values.

• The piecewise nonlinear controller outperforms the Bang-Bang controller

Number of infected cases and the incurred weight reduction cost obtained by the

nonlinear heuristic are lower than those obtained by the Bang-Bang controller.

• The most effective strategy is the mitigation of direct-high contact in social networks

Using nonlinear controller, the mitigation strategy of the direct-high contact is the

most effective strategy comparing with the proximity and direct-low contacts.
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Chapter 4

Robustness of power grids with
respect to cascading failures

In this chapter, we address a main question, how robust is the electric power grid to resist

cascading failures? A cascading failure takes place when a single or multiple faults happen

in the grid, and the stress on the transmission lines increases. The stress on the transmission

line is the number of transmission loading relief procedures (TLR) in which the loads on

the faulty lines is shifted to other lines [80].

The North American Electric Reliability Corporation (NERC) [115] introduced Adequate

Level of Reliability (ALR) in which six characteristics of a power system are defined to

guarantee a certain level of reliability under any contingency situation. NERC also intro-

duced Transmission System Standards: Normal and Emergency Conditions [116] in which

four different categories of events that take place in a power system are defined. The four

categories are as follows:

• Category A: No Contingencies

• Category B: Event resulting in the loss of a single element.

• Category C: Event(s) resulting in the loss of two or more (multiple) elements.

• Category D: Extreme event resulting in two or more (multiple) elements removed or

Cascading out of service.
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These categories are used to study the relationship between the likelihood and the severity

of the events as shown in [63].

Any power grid is characterized by its topology and the power flows on it. The topology

represents the connectivity of substations (generation and distributions), while the power

flows represent the dynamics that are controlled by the electrical characteristics of the grid,

and are delivered from the generators to the distribution substations. The electrical char-

acteristics of the grid are the capacity and the inductances of the transmission lines, the

voltage values, the difference between the voltage phase angles at the terminals of each

transmission line, and the loads at the distribution substations. The cascading failure takes

place in the grid because some transmission lines becomes overloaded. Hence, the robust-

ness of the grid can not be assessed only through the topology of the grid. Therefore, the

power flows in the grid have to be involved as well in assessing the robustness of power grids.

In this chapter, we introduce a robustness metric η for the electric grid against cascading

failures. We consider the electric grid as a network, and the electric power represents the

dynamic that flows in the network. A power grid is composed of three different functioning

parts, namely, generation, transmission and distribution. The electric power flows from the

generators to the distribution stations through the transmission lines. Any transmission line

can experience different types of faults causing the circuit breakers that are connected at

the transmission line terminals to trip the line and to shift the electric power flow from the

faulty line to another neighbor line. If the neighbor line becomes overloaded, it reaches its

thermal limits and becomes disconnected as well. Such a process causes a contingency situ-

ation, which may lead to cascading failure that spreads across the electric power grid. Due

to the hazardous situation that an electric power grid can experience due to fault(s) in the

transmission lines, we focus our studies on the transmission system network, which consists

of nodes representing the power substations (buses) and links representing the transmission

lines. The new metric quantifies the robustness of the electric power grid with respect to
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cascading failures. It is mainly based on two essential measures, namely, the frequency of

link survival, and the depth of a cascading failure. The frequency of link survival is the

number of events that a given link does not fails during a cascading failure. Therefore,

it is based on the frequency of link failure, which is computed through the condition that

there exists a link failure in the grid and whether other links fail consequently. The second

quantity is the depth of the cascading failure, which represents number of failure stages in a

grid given the start location of the failure before the grid totally collapses. Therefore, a grid

that experiences a cascading failure with larger cascading depth is more robust than a grid

that experience a cascading failure with shorter depth causing the power grid to collapse

quickly. Also, when a cascading failure with long depth takes place in a grid, it allows the

mitigation strategies to protect the grid before a black out takes place.

Differently from the literature work, in which the power flow is not considered, the new

robustness measure relies on the power flow model to compute the flows in the transmission

lines. It depends on the transmission line parameters, the voltage angles and the power/load

at every bus in the grid. The transmission line parameters are the inductance and the ca-

pacities. The voltage angle controls the flow direction of the electric power, and the power/

load represents the generated/consumed power at each node.

We apply the new robustness measure on three real power grid topologies given the power/load

at each bus and the transmission lines parameters. To extend our numerical simulations, we

generate synthetic topologies that are similar to the three real grids. The numerical results

show that the power grid with large cascading depth preserves a high level of total power

during a cascading failure comparing to the power grids with smaller cascading depth.

In addition to the robustness measure, we propose an optimal islanding mitigation strat-

egy to the power grids with respect to cascading failures. The islanding approach finds

the structures of the islands such that the total load shedding is minimized. To evaluate

the mitigation strategy, real power grids are used to find the islands, the amount of load

shedding, and the power generation reduction.
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This chapter is organized as follows: In Section 4.1, we summarize the literature re-

view. In Section 4.2, we explain the DC power flow model in details, and we propose a

new robustness measure. Next, the computational algorithm of the robustness metric and

the numerical evaluations are addressed in Section 4.3. The optimal islanding mitigation

strategy is discussed in Section 4.4. Finally the chapter is summarized in Section 4.5.

4.1 Related work

Many studies have studied the cascading failure models in the electric grid using the complex

networks approach. Motter and Lai in [80] studied the cascade failures in the complex

network by introducing a capacity with tolerance parameter for each node, and they assumed

that every pair of nodes exchanges homogeneous flow that is routed along the shortest path

connecting them. They simulated the cascading failures through random and targeted

removal of nodes based on the topological characteristics and the load distribution. Their

measure of robustness is the largest connected component of the network.

Lai et al. in [62] introduced an efficiency measure of the complex networks while analyzing

cascading failure. The efficiency measure is inversely proportional to the shortest paths

between pairs of nodes. They showed that scale-free networks are more vulnerable to attacks

on short-range links than attacks on long-range links, where the range of a link connecting

two nodes is the shortest path between them after removing that link. The vulnerability of

the Italian GRTN power grid to the cascading failure was studied in [27] where the authors

introduced an efficiency measure for each link. The link efficiency is initially homogeneous,

and it is updated by the removal of a node and redistribution of the loads. The power flow

between any pair of nodes follows the most efficient path separating them. They concluded

that the Italian GRTN power grid is robust to many failures, while it is vulnerable to the

removal of nodes with highest betweenness.

Albert et al. in [2] studied the robustness of North American power grid with respect to
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failures leading to cascade. They presented a vulnerability measure that is proportional to

the average of the normalized number of generators feeding every distribution substation.

Their conclusions coincided with those in [27].

The vulnerability of the European power grid was studied in [97] and it included 24 countries.

The authors found that for the removal of nodes, the reaction of power grid is similar to the

reaction of scale-free networks. They concluded that the fragility of the power grid increases

with the growth of the network size.

All the above methods are generic and simplified. The dynamic quantity that is carried on

the complex network is routed depending on its nature and its applications. For example,

the dynamic quantity in the power grid is the electric current, which flows on a link with

voltage difference greater than zero. In addition, the inductances of the transmission lines

govern the amount and the direction of power that flow from the power generation nodes

to the distribution substations. Therefore, these methods can not reflect the robustness of

the power grids since they do not consider the amount of power that flow in the grid as well

as the electrical characteristics of the grid. The authors of [17] addressed the obstacles for

applying complex network theory to assess the vulnerability of power systems. The authors

defined a network performance concept to overcome these obstacles.

Different mitigation strategies for the power grids were addressed in the literature. The work

in [35] addressed a mixed integer programming approach to construct islands in the power

grid. The approach mainly depends on integer optimizationin which the islands topologies

are found giving number of islands, the transmission line capacities and inductances. Our

optimal islanding mitigation strategy is different from the one in [35] in that the size of the

islands, the load shedding for all nodes in each island, and the load shedding for all nodes

in the topological complement of each island are minimized.
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4.2 Problem definition

We consider the power grid as a network given that the generation and transmission sub-

stations are the nodes, while the transmission lines are the links, and we denote number

of nodes as N and number of links as L. The DC Power Flow model, a simplification or

linearization of the full AC power flow model, is used for the network analysis of the power

grid in this work. The work [100] suggests that the term DC Power Flow comes from

an old DC network analyzer [48], [19], in which the network branch was represented by a

resistance proportional to its series reactance and each DC current was proportional to a

Mega Watt (MW) flow. However, in the digital era this model became a set of simple, real

(non-complex), nodal admittance matrix equations in terms of bus voltage angles and MW

injections. In the AC model, the relation between real power, complex voltages and line

impedance is expressed through the following equation describing the amount of real power

that flows through a transmission line [49]:

Pij =
|Vi||Vj|
zij

sin(δij) (4.1)

where Vi and Vj are the voltages at nodes i and j, δij is the phase angle between these

voltages and zij is the line impedance. The above equation is modified to make it suitable

for the linearized analysis by making the following assumptions:

• Voltage angle differences are small, i.e. sin(δij) ≈ δij .

• Flat Voltage profile: All voltages are considered 1 p.u.

• Line resistance is negligible i.e. R << X .

Thus, the above equation can now be written as:

Pij =
δij
xij

(4.2)
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In terms of matrices, P is an N ×N matrix of power flows between each node i and j in

the network, δ is the N × 1 vector of phase angles and X is the N ×N weighted adjacency

matrix, and each matrix element represents the reactance of a transmission line. It is a real

number if a line is present between two nodes, and 0 otherwise.

In matrix form,

[P ] = [b][δ] (4.3)

The matrix [b] represents the imaginary part of the Ybus matrix of the power grid, where

bij = − 1
xij

and bii =
∑

i∈N −bij for i �= j. We usually assume that there is a reference node

with 0 voltage angle.

The power handled by each node is the net sum of all the ingoing and outgoing power flows

at that node as follows:

Pi =

N∑
j=1

Pij =

N∑
j=1

(−bijδij) (4.4)

The phase angles are computed given the total load at each bus using the following

equation:

[δ] = [b]−1[P ] (4.5)

We assume that the power flow is below the capacity of the transmission lines [64] in

normal operation. Whenever a link is removed, the power flowing through that link is re-

distributed to neighbor links. These neighbor links then have to carry their own power as

well as the additional power which was redistributed due to the failure of a link. This redis-

tribution may overload some links and these links become disconnected from the grid. The

power from these newly failed links is again redistributed to their neighbors and more fail-

ures may happen in the grid. The redistribution of the power flow ia called the transmission

loading relief procedure (TLR). If a sequence of failures takes place in the grid, a cascade of

overloading failures may be triggered. Every time the redistribution of power takes place,

92



all the required quantities are recomputed using the DC power flow model. This step is

repeated until the cascade stops due to either fragmentation of the grid causing a black out

or there is no more any overloaded transmission line and the grid operates at a different

operating point. In this dissertation, we assume the presence of circuit breakers to trip the

overloaded transmission lines.

Two main quantities are used to obtain a new robustness measure, which are the average

rank of a link, and the link survival frequency. The two quantities are explained in details in

Section 4.3. The product of the average rank of a link and its survival frequency represents

the average depth that a link can survives before its removal due to a cascading failure that

happens in the grid. The larger the average rank, the more robust the grid is to resist the

cascading failure before the power grid totally collapses causing a black out. Therefore, we

propose a new metric η to quantify the robustness of electric power grids with respect to

the cascading failures. The new metric mainly depends on the frequency of link survival,

and on the depth of the cascading failure in the grid as follows:

η =
1

L

L∑
j=1

f(lj survives)rlj (4.6)

Based on the measure in Eq. 4.6, we can compare the robustness of different power grids

numerically. In addition, we can investigate four possible cases as follows:

1. The frequency of survival is high and the average rank is also high.

This is the best case. It means that a given link can survive in most of the cases when

failure occurs in the grid. Whenever a failure takes place, the link failure happens at

late stage of the cascade. This makes the product of the two terms higher and hence

contributes to the robustness of the network.

2. The frequency of survival is high but the average rank is low.

In this case the link is quite robust to failures but when it fails its failure happens at an
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earlier stage of cascade. This causes the product of the two terms to have intermediate

values. Intuitively, this case is also good for the robustness of the grid since these links

can resist failure most of the times.

3. The frequency of survival is low but the average rank is high.

This case will again give intermediate values for the product of the two terms. However,

this case is worse than the previous case because it is an indication of the presence of

a weak link in the network. Although this link fails at later stages, it is almost sure

that this link will fail as a result of other failures in the network.

4. The frequency of survival is low and the average rank is also low.

This is the worst case. This is a set of most vulnerable links in the network and these

links always fail when there is a cascade in the grid.

4.3 Computation algorithm of the robustness metric

The frequency that link lj survives a cascade is computed as follows: We initially assume

that there is a single link failure, say link li, and consequently, other links will fail due to the

transmission loading relief procedure (TLR). Next, we identify the failed links due to the

initial removal of link li. We repeat this process for every link li i ∈ L, and we list all the

links that fail due to the removal of every initial link li. Therefore, the frequency that a link

lj fails p(lj fails) is the total number of times that link lj fails due to the initial removal

of each link independently, divided by the overall number of failed links. Therefore, the

frequency of link failure reveals the most critical links in the grid. A link with the highest

failure frequency is the weakest link in the grid. On the other hand, the frequency of link

survival f(lj survives) is equal to 1− p(lj fails).

To address the depth of cascading failure, we define the link rank rlj |li removed for link lj

as the cascading stage at which link lj fails when link li is initially removed (li removed)
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causing the cascading failure to take place in the grid. For instance, a link, say lj , with rank

0 (rlj |li removed=0) means it does not fail due to the initial removal of link li, while a link

with rank 1 (rlj |li removed=1) means that the link fails in the first stage of the cascade due to

the removal of link li and so on. The average rank of link lj is the summation of all ranks

of that link, divided by number of links L. Mathematically, the average rank of link lj is

rlj =
1
L

∑L
i=1 rlj |li removed.

The robustness measure η basically depends on the probability of survival and the average

link rank. Algorithm 1 introduces a computational heuristic for the robustness metric η.

Algorithm 1 Computational heuristic for the robustness measure η

for i = 1 to L do
Remove link li
while Cascade failure takes place do
Recompute P , and δ
for lj to L do
if Plj ≥ Capacitylj then
Compute the rank rlj |li removed
Remove link lj

end if
end for

end while
Recreate the original power grid

end for
Compute the average rank rli , and the survival frequency of each link f(li survives) ∀i ∈ L

Using algorithm 1, we can assess the robustness of a power grid.

4.3.1 Power grid networks

We use three different realistic power grids to evaluate the new robustness measure. For

each realistic power grid, the load at each bus is given as well as the inductances of the

transmission lines. The realistic grids are described as follows:

• IEEE 247 bus test system [117] with 355 links

• IEEE 118 bus test system [117] with 179 links
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Figure 4.1: Normalized total power at each cascading stage in case of the maximum cas-
cading failures take place in the real three grids.

• WSCC 179 bus equivalent system with 222 links

Since number of available power grid topologies are very limited, we use the network gener-

ator presented in [88] to generate synthetic power grids having the same number of nodes,

the same number of links, and the same maximum node degree.

4.3.2 Numerical evaluations of the robustness metric

We apply the new metric η on the different power grids to measure their robustness with

respect to the cascading failures. To extend the numerical simulations to larger number

of grids, we generate four synthetic grids for each real power grid. We use the power flow

simulator in [88], which is based on the DC power flow model, to evaluate the power flow on

each link. Table 4.1 summarizes the robustness measure η of the four real grids and their

synthetic ones. The table shows that the synthetic grids are generally more robust than

their corresponding real grids. We also report the maximum number of cascading stages

for both real and synthetic grids. We notice that the robustness measure is proportional to

maximum number of cascade stages a power grid can experience. The real IEEE 247 is the

most robust grid among the other real grids, while the real IEEE 118 grid is more robust

than the real IEEE 179 grid.
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Network η Maximum cascade stage

IEEE 247
Real network 142.58 16
Synthetic network 1 160.03 21
Synthetic network 2 133.66 23
Synthetic network 3 138.71 26
Synthetic network 4 130.12 18

IEEE 179
Real network 31.53 7
Synthetic network 1 114.71 15
Synthetic network 2 71.16 12
Synthetic network 3 127.31 17
Synthetic network 4 62.77 11

IEEE 118
Real network 54.82 9
Synthetic network 1 75.42 11
Synthetic network 2 132.98 16
Synthetic network 3 138.63 17
Synthetic network 4 149.11 16

Table 4.1: The robustness measure η and the maximum cascade stage for the real grids
IEEE 247, IEEE 179 and IEEE 118 bus test systems, and four synthetic grids for each real
grid

To emphasize the role of the cascading depth in assessing the robustness of the power

grids, we plot the normalized total power at each stage of the cascading failure. Figure 4.1

shows how the normalized total power decreases when the cascading failure takes place in

the grid. We consider the case when the maximum number of cascading stages happens on

each real grid. The figure shows that the IEEE 247 grid has the largest cascading depth,

while it has the lowest power loss. On the opposite, the other two real grids has larger power

losses and smaller cascading depth. Therefore, the IEEE 247 grid preserves a high level of

total power during a cascading failure with larger depth before a total collapse takes place

in the grid.
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4.4 Optimal islanding mitigation strategy for the power

grids

The main objective of the optimization problem is to find the optimal islands structure

when a fault takes place at any part of the grid. In the presence of the fault, an island

is created to isolate the spreading of the fault to the remaining part of the grid. Hence,

the created island should be small in size, while the delivered power from the generators

is maximized to satisfy the loads. In other words, the objective to minimize the load

shedding at each load bus. Assume that number of islands is nislands, and we denote k

to be the island index such that k = 1 . . . nislands. In addition, we assume that the power

grid topology is G, the island topology is gk, the group of links that interconnects the

island with its topological complement is lk, and the topological complement of the island

is Tk = G\{lk ∪ gk}. Moreover, we denote s to be the index that distinguishes between

the two partitions of the power grid i.e. s = 1 denotes the island topology (gk) and s = 2

denotes the island topological complement (Tk) for island k. Figure 4.2 shows an example

of three islands (k = 1, 2, and 3) for a given power grid topology with 12 nodes, and 21

links. Every island k is denoted by k, s = 1, while the topological complement is denoted

by k, s = 2. When an island is created, links are classified to three categories as shown

in Figure 4.2: 1) links belong to the island (black line), 2) Links belong to the topological

complement T of the island g (gray line), and 3) Links interconnect the island g with its

topological complement T (gray dash line).

The objective function aims to minimize both the amount of generation/load change

from normal operation, and the island size.

Minimize A
i=N∑
i=1

k=nislands∑
k=1

| poweri − dki |

+B

i=N∑
i=1

j=N∑
j=1

k=nislands∑
k=1

µk,1i,j (4.7)
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Figure 4.2: The structure of three islands that belong to a power grid consisting of 12 nodes
and 21 links. In the creation of island k, links are classified as follows: 1) links belong to
island k, s = 1 (black line), 2) Links connect nodes that belong to the topological complement
of the island k, s = 2 (grey line), and 3) Links interconnect island k, s = 1 with its topological
complement k, s = 2 (gray dash line).

Below, the islanding topology constraints are discussed in details.

k=nislands∑
k=1

µk,1i,j ≤ ai,j ∀ i, j = 1 . . . N (4.8)

µk,1i,j + µk,2i,j ≤ 1 ∀ i, j = 1 . . . N, k = 1 . . . nislands (4.9)

i=N∑
i=1

j=N∑
j=1

µk,si,j ≥ 4 ∀ k = 1 . . . nislands, s = 1, 2 (4.10)

j=N∑
j=1

(µk,1i,j + µk,2i,j ) ≥ 1 ∀ i = 1 . . .N, k = 1 . . . nislands (4.11)

k=nislands∑
k=1

(µk,1i,j + µk,2i,j ) ≤ ai,jnislands ∀ i, j = 1 . . . N (4.12)

j=N∑
j=1

k=nislands∑
k=1

µk,1i,j ≥ 1 ∀ i = 1 . . .N (4.13)
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Table 4.2: Definitions of data inputs and decision variables
Data input Definition

ai,j Binary adjacency matrix entry, ai,j = 1 if there is
a transmission line between substations i and j

bi,j Admittance matrix entry of the transmission lines
poweri Normal power/load at substation i
α Coefficient of minimum delivered load
ci,j Capacity of transmission line (i, j)

nislands Total number of islands
ngenerators Total number of generator nodes
nloads Total number of load nodes

Decision variables Definition

µk,s=1
i,j Binary variable equals 1 if link (i, j) belongs to island k

µk,s=2
i,j Binary variable equals 1 if 1) link (i, j) belongs to

the topological complement of island k, and 2) link (i, j) is not
an interconnecting link between two islands

dki Load decision variable at node i, which belongs to island k
or its topological complement. The variable dki is negative
if the node i represents a generator, while it has a positive
value for load nodes.

δki Voltage angel variable at node i,which belongs to island k
or its topological complement

fki,j Network flow variable for link (i, j) that belongs to island k
or its topological complement. It can have positive or
negative value depending on the power flow direction.

( j=N∑
j=1

(µk,1i,j + µk,1j,i ) ≥ 1
)

⇒
( j=N∑
j=1

(µk,2i,j + µk,2j,i ) = 0
)

∀ i = 1 . . . N, k = 1 . . . nislands (4.14)

( j=N∑
j=1

(µk,2i,j + µk,2j,i ) ≥ 1
)

⇒
( j=N∑
j=1

(µk,1i,j + µk,1j,i ) = 0
)

∀ i = 1 . . . N, k = 1 . . . nislands (4.15)
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( j=N∑
j=1

µk,1i,j ≥ 1
)

⇒
( j=N∑
j=1

k′=nislands∑
k′=1,k′ �=k

µk
′,1
i,j = 0

)
∀ i = 1 . . . N, k = 1 . . . nislands (4.16)

µk,si,j = µk,sj,i ∀ i, j = 1 . . . N, k = 1 . . . nislands, s = 1, 2 (4.17)

µk,si,i = 0 ∀i = 1 . . .N, k = 1 . . . nislands, s = 1, 2 (4.18)

The group of inequalities in 4.8 - 4.18 describes the topological constraints in creating

the islands. Inequality 4.8 imposes that a transmission line can belong to one island. In

inequality 4.9, a transmission line at most can belong to either the island µk,s=1
i,j = 1 or

the complement topology of the island µk,s=2
i,j = 1. In addition, the transmission line can

interconnect two islands, and it does not carry power flow, and hence, both µk,s=1
i,j and

µk,s=2
i,j equal 0 since the transmission line belongs to neither the island k, s = 1 nor the

complement of the island k, s = 2. Inequality 4.10 imposes the number of transmission lines

in every island k, s = 1 and its topological complement k, s = 2 to be at least 2. Notice

that µk,si,j = µk,sj,i and therefore the right-hand side of inequality 4.10 is 4. Inequality 4.11

ensures that every node i in the power grid is assigned to either an island k, s = 1, or to

the topological complement k, s = 2. In addition, in inequality 4.12, every link (i, j) at

most can belong to an island k, s = 1 or the topological complement k, s = 2, and it can

belong to any combination of them at most nislands times. Inequality 4.13 guaranties that

every node i is assigned to an island k, s = 1. Inequality constraints 4.14, 4.15 and 4.16 are

formulated using the logical constraint programming, which is composed of two constraints,

the conditional constraint, and the actual constraint. If the conditional constraint is true,

the actual constraint is applied to the problem. Therefore, the conditional constraint implies

the actual constraint. As shown in logical constraint 4.14, if node i belongs island k, s = 1,
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it can not belong to the topological complement k, s = 2. In addition, if node i belongs

to the topological complement k, s = 2, it can not belong to the island k, s = 1 as shown

in 4.15. Logical constraint 4.16 ensures that if node i belongs to a certain island k, s = 1,

then it can not belong to any other island k′ �= k. Inequality 4.17 is a link symmetricity

constraint, and inequality 4.18 avoids self connecting link.

4.4.1 Power flow model constraints

δkgenerator(1) = 0 ∀k = 1 . . . nislands (4.19)

(
µk,1i,j + µk,2i,j = 1

)
⇒

(
| bi,j(δki − δkj ) | ≤ ci,j

)
∀ i, j = 1 . . . N, k = 1 . . . nislands (4.20)

dkgenerator(g) ≤ 0 ∀ g = 1 . . . ngenerators, k = 1 . . . nislands (4.21)

dkgenerator(g) ≥ powergenerator(g) ∀ g = 1 . . . ngenerators, k = 1 . . . nislands (4.22)

dkload(l) ≤ powerload(l) ∀ l = 1 . . . nloads, k = 1 . . . nislands (4.23)

dkload(l) ≥ αpowerload(l) ∀ l = 1 . . . nloads, k = 1 . . . nislands (4.24)

The group of constraints 4.19 - 4.24 represents the DC power flow model equations, the

upper bounds, and the lower bounds of the generated power and loads. For DC power flow

model, we assume that bus 1 is the slack bus with voltage angle equals 0 regardless the island

scheme k as shown in equation 4.19. In logical constraint 4.20, if the link (i, j) belongs to

either the island topology k, s = 1 or the complement topology k, s = 2, the DC power flow
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model is applied such that the amount of power flow on link (i, j) does not exceed the link

capacity. Inequalities 4.21 and 4.22 represent the bounds on the amount of generated power

from each generator generator(g) for each island scheme k, while inequalities 4.23 and 4.24

represent the bounds on the delivered loads. We impose the lower bound on the delivered

power at each node to be a fraction α of the total load.

4.4.2 Network flow model constraints

(
µk,1i,j + µk,2i,j = 1

)
⇒

(
bi,j(δ

k
i − δkj ) = fki,j

)
∀ i, j = 1 . . . N, k = 1 . . . nislands (4.25)

(
µk,1i,j + µk,2i,j = 1

)
⇒

(
| fki,j | ≤ ci,j

)
∀ i, j = 1 . . . N, k = 1 . . . nislands (4.26)

i=N∑
i=1

fki,j = dkj ∀j = 1 . . . N, k = 1 . . . nislands (4.27)

The network flow model plays an important role in the islanding problem formulation.

It separates the total load computation of the island from its topological complement. In

addition, it ensures that links, which interconnect any island with the rest of the topology

(topological complement), do not affect the load computation of nodes belonging to either

the island or the topological complement. Therefore, we consider the network flow model in

the islanding problem as shown in inequalities 4.25 -4.27. Logical constraint 4.25 represents

the condition that if the link (i, j) is either a part of island k, s = 1 or the topological

complement k, s = 2, the amount of flow equals f ki,j, which is constrained by the link

capacity as shown in the logical constraint 4.26. The power flow at node j is the sum of all

the flows on its attached links as shown in 4.27.
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4.4.3 Numerical evaluation for the optimal islanding

We apply the optimal islanding mitigation strategy on a power system with 30 nodes and

42 links. We assume that number of islands is 5. The topology of the islands and their

topological complements are shown in 4.3. The dotted lines (- - -) are the links that inter-

connect every island with its topological complement. The black lines belong to an island,

while the gray lines belong to the topological complement of an island. Nodes that are

surrounded with elliptical shade belong to an island. The green color represents the load

nodes that do not experience any load shedding. The purple color represents both the gen-

erators that generate power less than the normal operation and the loads that experience

load shedding. The red color represents both the links that are operated at their capacity

and the generators that generate the same power in the normal operation.

As shown in Figure 4.3, every island has at least one generator and two transmission lines

to guarantee the island connectivity. In addition, Figure 4.3 shows that there are many loads

do not experience load shedding (green load nodes), however, due to link capacities, few

load nodes experience load shedding as shown in island 2 4.3(b) (red links and purple load

nodes), and hence the power generation is reduced in some generators (purple generators).

Another reason that a generator reduces its output power is that the total load in the island

becomes less than its normal output generation as shown in island 1 4.3(a), island 4 4.3(d),

and island 5 4.3(e).

4.5 Summary

The chapter is summarized as follows:

• The new metric η measures the robustness of power grids respect to cascading failure

The new metric is a function of the survival frequency of the transmission lines, and

the cascading depth when cascading events take place before a blackout happens in

the grid.
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(a) Island 1 (b) Island 2

(c) Island 3 (d) Island 4

(e) Island 5

Figure 4.3: The optimal islanding solution for a power grid with 30 nodes and 42 links.
The power grid has 9 generators and 31 load nodes.
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• The role of the link survival frequency and the depth of the cascading failure is outlined

The power degradation curve shows the importance of the cascading failure depth. In

addition, both the link survival frequency and the cascading depth represent four

different cases, which can describe the state of the power grids due to a single link

failure.

• Optimal islanding strategy are proposed to mitigate the power grids from cascading

failure events

The problem of finding the islands are formulated using the Mixed Integer Non Lin-

ear Programing MINLP. The solution finds the group of transmission lines that are

disconnected to form the islands, the load shedding at the load nodes, and generation

reduction at the generators.
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Chapter 5

Conclusions and future research
work

In this Chapter, we summarize our conclusions for robustness of complex networks,

and we present some directions for future work.

5.1 Conclusions

Different metrics were introduced to quantify the robustness of complex networks

with respect to disturbing dynamics. Firstly, we introduced Viral Conductance V C

to quantify the robustness of complex networks with respect to the spread of suscepti-

ble/infected/susceptible SIS and susceptible/infected/recovered SIR epidemics. The

new metric mainly integrates the effective cure rate with the corresponding infected

population. For instance, the infected population due to the prevalence of SIS epi-

demics in networks represents the persistent fraction of infected nodes, while in the

spreading of SIR epidemics, the infected population represents the accumulation of

the new infected cases until the epidemic prevalence dies out. The new metrics were

applied to different types of synthetic and real networks revealing their robustness

dissimilarity due to the distinct topological structures. In addition, viral conductance

was applied to different networks to measure the efficiency of the mitigation strategies.
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Secondly, we proposed a new individual-based approach to model the spread of SIR

epidemics in networks. The new model outperforms the well-known heterogeneous

mean field approach in modeling the spread of epidemics with effective infection rates

that are close to the epidemic threshold. Moreover, the new approach reveals the effect

of the network structure on the spreading process through the eigenvalues and their

corresponding eigenvectors of the networks.

Thirdly, an optimal mitigation strategy was proposed to reduce the total infected

population in social contact networks due to the spread of SIR epidemics. The new

mitigation strategy is based on the optimal control theory in which, the contact weights

are optimally reduced from their normal rates to slow/reduce the spread of infection.

Therefore, the optimal control problem aims to minimize both the total infected cases

and the reduction in the contact weights. We analytically found the optimal adap-

tive weighted contact networks for homogeneous networks given different effective cure

rates. Since the optimal solution was found based on centralized methods, we intro-

duced two heuristics to find the near optimal solution in a decentralized way. The

two heuristics are based on Bang-Bang controller and a piecewise nonlinear controller,

respectively. In Bang-Bang heuristic, weights can switch between the normal level and

the minimum level, while in the piecewise nonlinear controller, weights are reduced

nonlinearly from their normal values. The results showed that the piecewise nonlinear

controller resulted in lower infected cases and less reduction in the contact weights

than the Bang-Bang controller.

Finally, to extend the robustness measure concept, a new metric was proposed to

measure the robustness of power grids with respect to cascading failures. The new

metric basically depends on two quantities, which are the survival probability and the

link rank. The survival probability represents the probability that a link does not

fail during a cascading process, while the link rank represents the average stage at

which a link failure takes place in the grid. The new metric was applied to different
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real and synthetic power grids to measure their robustness with respect to cascad-

ing failures caused by an initial link fault. Moreover, a new strategy is proposed to

mitigate the power grid from cascading failure events. The new strategy depends

on the grid islanding in which, the optimal island topologies are found such that the

maximum electric loads are satisfied in the island and in the remaining part of the grid.

5.2 Future work

The presented work in this dissertation can be extended to different research directions.

Below, we summarize the possible future work:

– The viral conductance is mainly based on probabilistic epidemic models, which

deterministically evaluate the infection size in time. However, the actual mech-

anism of epidemic outbreaks differ from the probabilistic models. Therefore, an

extensive evaluation for the viral conductance based on actual disease outbreaks

in real networks becomes very vital.

– Viral conductance can be analytically expressed using the mathematical series

aiming to provide a fast computational heuristic that is featured with high ac-

curacy and less complexity. Van Mieghem [75] has proposed a Laurent series

to expand the mathematical expression of viral conductance in the case of SIS

epidemics, however, numerical evaluations are still required for validations.

– In the optimal mitigation strategies, the optimal control theory can be applied

to minimize the total infection sizes by controlling the total contact weight of

an individual. The total contact weight is the sum of weights of an individual

with the neighbors. Instead of studying the individual-neighbor contact weight,

the overall weight of an individual will be the main controller. Therefore, this

approach will reduce the problem complexity.

109



– There are many challenges related to measuring the robustness of dynamic net-

works. The work in [94] addresses the spread of epidemics on dynamic topologies,

and the authors found that the epidemic threshold is the product of individual

epidemic thresholds for the different topologies in discrete time domain. How-

ever, the dynamic of topologies can be modeled in continuous time. The relative

change between the network and the dynamics plays a major role in quantifying

the robustness of networks. On one hand, if the epidemic spreading process is

faster than the dynamic of the topology over a long time duration, the topology

is considered static. On the other hand, if the changes in both the topology and

the epidemic spreading have the same pace, there are some challenges concerning

the change in the epidemic threshold, and hence, the range of effective infection

rate will change accordingly.

– Robustness of power grids with respect to cascading failures is a very challeng-

ing research topic. Analytical and simulative approaches are needed to address

the behavior of the power grids when rare events take place causing blackouts.

Therefore, stochastic as well as deterministic models can be derived to describe

the cascading failures, and extensive numerical evaluations are also required for

accuracy and validation purposes.
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[11] A. Barrat, M. Barthélemy and A. Vespignani, Dynamical processes on complex

networks, Cambridge University Press, Cambridge, 2008.

[12] C. Barrett, K. Bisset, S. Eubank, X. Feng and M. Marathe, EpiSimdemics: an

efficient and scalable framework for simulating the spread of infectious disease

on large social networks, In Proceedings of SuperComputing 08 International

Conference for High Performance Computing, Networking Storage and Analysis.

Austin, Texas, November 15-21, 2008.

[13] C. Barrett, K. Bisset, J. Leidig, A. Marathe and M. Marathe, An integrated

modeling environment to study the co-evolution of networks, individual behavior,

and epidemics, AI Magazine 31: 7587, 2009.
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[43] S. Gómez, A. Arenas, J. Borge-Holthoefer, S. Meloni and Y. Moreno, Discrete-

time Markov chain approach to contact-based disease spreading in complex net-

works, Europhys. Lett, 89, 38009, 2010.

[44] T. Gross and B. Blasius, Adaptive coevolutionary networks: a review,Journal of

the Royal Society Interface, 5(7): e11569, 2010.

[45] T. Gross, C. J. Dommar DLima, and B. Blasius, Epidemic Dynamics on an

Adaptive Network,Phys. Rev. Lett. 96, 208701, 2006.

[46] B. Gungor, Power Systems,Technology Publications, 1988.

115



[47] Q. Guo, T. Zhou, J.-G. Liu, W.-J. Bai, B.-H. Wang, and M. Zhao, Growing

scale-free small-world networks with tunableassortative coefficient, Physica A,

vol. 371, pp.814–822, 2006.

[48] W.C. Hahn, Load studies on the D-C calculating table,General Electric Review,

Vol. 34, 1931.

[49] D.V. Hertem, J. Verboomen, K. Purchala, R. Belmans, and W.L. Kling, Use-

fulness of DC Power Flow for Active Power Flow Analysis with Flow Controlling

Devices, In proceedings of 8th IEEE International Conference on AC and DC

Power Transmission, London, March 2006.

[50] A. Jamakovic, R.E. Kooij, P. Van Mieghem, and E. van Dam, “Robustness of

networks against the spread of viruses: the role of the spectral radius,” in the

13th Annual Symposium of the IEEE/CVT Benelux, Liége,Belgium, 2006.
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