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Water Use, Yield, and Water Use

Efficiency of Differentially Irrigated Alfalfa

by

Matthew Neil Matulka

(Under the instruction of Drs. E. T. Kanemasu,
M. B. Kirkham, and L. R. Stone)

ABSTRACT

The production of alfalfa on the Central Great Plains

is often limited by precipitation. The effect of drought can

be alleviated by the use of supplemental irrigation;

however, competition for available resources restrict the

expansion of irrigated agriculture. Through better

understanding of the relationship between yield and water

use, alfalfa production might be done more economically. The

increased use of supplemental irrigation has increased the

need for information on alfalfa water use.

Alfalfa (Medioago sativa L. Cody) was grown with seven

levels of irrigation water to assess the affect of different

irrigation levels on crop yield, water use, water use

efficiency (WUE), stomatal resistance (SR), plant water

potential, and canopy temperature. Canopy temperature was

measured with an infrared thermometer in 1980, 1981, and

1982. In 1981 and 1982, plant water potential and stomatal

resistance were measured with a pressure chamber and a

stomatal porometer, respectively. In each year of the study,

water use was determined from neutron probe measurements
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taken to a depth of 3.12 m. The soil type was Eudora silt-

loam. The alfalfa was irrigated (treatments were 0, 25, 50,

75, 100, 125, and 150 mm per irrigation) following each

harvest

.

Alfalfa was harvested four times during each year of

the study (1980, 1981, and 1982) in late May, early July,

early to mid August, and mid September at 10% bloom.

When soil water limited yield, a strong linear

correlation existed between yield and water use. Water was a

crucial factor limiting the yield of alfalfa in the drought

year of 1980, and yield was proportional to water use. In

1981 and 1982, environmental conditions were favorable i.

e. , precipitation was more frequent and air temperatures

were lower than in 1980, and consequently the yield of

rainfed alfalfa was similar to that of the irrigated

alfalfa. Seasonal precipitation amounts in 1981 and 1982

were 2.5 and 2.1 times that received in 1980 (26 3 mm). The

high potential evapotranspiration (ET) and low yield in

1980 resulted in lower WUE than in either 1981 or 1982. In

all years of the study, WOE declined with irrigation amount.

The average stomatal resistance of alfalfa grown in

1981 and 1982 was 145 s m" 1 and the leaf water potential of

the alfalfa averaged -0.220 MPa, values similar to those

cited in literature for non-water-stressed alfalfa.

In 1982, alfalfa was shown to have lower SR than grain

sorghum (Sorghum bioolor L. Moench. ) , corn ( Zea mava L.),

soybean (Glycine max L. Merr.), pinto bean ( Phaseolua

v



vulgaris L.), sunflower ( Helianthus annuus L.), or pearl

millet ( Pennisetum americanum L . ) . A relationship between SR

and ET was not firmly established for the crops; however, SR

was found to be correlated with the difference between the

temperature of crop canopy minus the temperature of the air.
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CHAPTER 1

WATER USE, YIELD, AND WATER USE EFFICIENCY

OF DIFFERENTIALLY IRRIGATED. ALFALFA



ABSTRACT

Yield, water use, and water use efficiency (WUE) of

'Cody' alfalfa ( Medicago sativa L.) grown with seven levels

of irrigation (treatments were 0, 25, 50, 75, 100, 125, 150

mm per irrigation) were evaluated during the years 1980,

1981, and 1982. The water content of the soil was measured

at about 10 day intervals during the growing seasons with a

neutron probe. Crop yields were determined by harvesting

three, 1 m x 1 m, samples in the proximity of the neutron

access tubes in each plot. The samples were oven dried (7

days at 70 C) and reported on a dry matter basis.

Irrigation contributed significantly to the production

of alfalfa in the droughty year of 1980, and yields were

proportional to water use. In the wetter years of 1981 and

1982, the effect of irrigation on crop yield was less

apparent. Even with irrigation, the yield of alfalfa was

less in 1980 than in either 1981 or 1982. The WUE of alfalfa

grown in 1 980 averaged 127 kg ha" 1
cm"

1
, 221 kg ha" 1 cm" 1

in

1981, and 176 kg ha" 1 cm" 1 in 1982. During all years of the

study, WUE declined with irrigation amount.



INTRODUCTION

Plant growth in semiarid regions of the western United

States is limited more by water than by any other factor

(Hide, 1954). In Kansas, annual lake evaporation may exceed

1300 mm while annual precipitation amounts range from

approximately 400 mm in the western sections of the state to

1000 mm in the south-east portion (Midwest Plan Service,

1977). Alfalfa ( Medicago saviva L.) may use water at a rate

near the free-water evaporation rate during the growing

season (Doss et al., 1964) when water is readily available.

Water stress is likely to develop if the alfalfa must rely

solely on water that is stored in the soil when the crop is

dormant and on precipitation that is received during the

growing season.

Water use efficiency (WUE) in the present study is

defined as the above ground dry matter (kg ha" ) divided by

water use (cm). WUE is an attribute of the plant and its

environment. In examining the water-plant relationship of

several forage species commonly grown in Wyoming, Fairbourn

(1982) reported greater water use by alfalfa than by the

pasture and range grass species tested. While the alfalfa

varieties used greater amounts of water, its water use

efficiency was not, in most instances, significantly

different from the grass species. The plants were grown in



containers in a greenhouse and harvested four times. As part

of the experiment, the containers were moved to the field

and the plants were allowed to grow under field conditions.

The water use efficiency of all the forage species declined

when they were moved from the greenhouse to the field, and

for alfalfa the ratio declined from 143 to 75 kg ha" 1 cm
-1

.

The change in WUE was ascribed to the added complexity of

the field environment with such factors as wind, solar

radiation intensity, lower air temperatures, and lower

relative humidity.

In Nebraska, Daigger et al. (1970) reported that

overall 86 kg of alfalfa dry matter was produced per

centimeter of water used. With three cuttings annually, the

alfalfa used water more efficiently during the first cutting

— 1 — 1
(104 kg ha cm ) than succeeding harvests in July and

August (89 and 65 kg ha" 1
cm for the second and third

harvests, respectively). Values calculated from data

presented by Bauder et al. (1978) in North Dakota, by Sammis

(1981) in New Mexico, and by Donovan and Meek (1983) in

California were 164, 120, and 108 kg ha" 1 cm" 1

,

respectively.

Where limited resources restrict the expansion of

irrigated agriculture, the efficient use of water is

important. Several investigators working with suboptimally

irrigated alfalfa have reported forage production to be a

linear function of water use (Bauder et al., 1978; Hanks et

al., 1969; Metochis, 1 980 ; Guitjens, 1982). Since the



stomata are avenues of transport for water vapor and carbon

dioxide, the processes of photosynthate production and

transpiration are closely linked (Hsiao and Acevedo, 1974).

When water stress develops, the stomatal aperture

constricts to prevent plant desiccation and photosynthate

production and transpiration are reduced. Waggoner (1966)

likened the flux of gaseous diffusion to a series of

conductors. He proposed that WUE might be improved by

increasing the diffusive resistance to transpiration

relative to the resistance to C0
p

diffusion. The argument

was that since C0_ and water vapor share similar paths, but

CO. also has mesophyll resistance, reductions in

transpiration due to increased stomatal resistance would

increase the resistance to water loss more than the

resistance to C0
2

uptake. He cited evidence involving

anti transpirants that confirmed water use was more affected

than CO- assimilation. The mesophyll cells may not represent

a significant portion of the resistance to CO. diffusion, as

water molecules and dissolved C0
p penetrate cell membranes

rapidly (Salisbury and Ross, 1978). Waggoner's approach to

increasing the WOE of crops was, in effect, to change the

resistance between the leaf and bulk air by chemically

impeding transpiration. Ritchie (1974) and Guitjens (1982)

found that limited irrigation, as opposed to full

irrigation, improved the WUE of crops. Water may have been

used more efficiently because less water was lost by



evaporation from the soil surface or by deep percolation. It

was suggested that the stomata of water-stressed plants had

constricted, thus increasing the resistance to water loss.

Hsiao and Avedeco (1974) reported that transpiration

and COp uptake are proportional to potential gradients from

within the leaf to the bulk air and are inversely

proportional to the resistance to the fluxes of these gases.

Carbon dioxide concentrations of the atmosphere remain

constant over short periods of time; however, atmospheric

water vapor concentration is subject to more variation.

Maximov (1929) studied environmental influences on the WUE

of plants and concluded that the amount of water lost by

transpiration is proportional to the atmospheric water

deficit, but this deficit does not affect the rate of CO

assimilation, except when the plant is near wilting and

stomatal closure occurs. Arkley (1963) studied the

relationship between plant growth and transpiration and

maintained tha't an expression involving relative humidity

was needed to characterize the yield-ET relationship.

The transpiration stream and CO flux are more involved

than just concentration gradients. Because photosynthesis

and respiration are complex biological processes, they are

sensitive to many more variables than the purely physical

ones involved in the diffusion of gases (Lemon, 1966).

The effect of evaporation directly from the soil

surface on the yield-ET relationship is not clearly

understood, but evaporation may constitute a relatively



large portion of the overall water use. Fairbourn (1982)

found evaporation to be 34$ of the total water use by

alfalfa grown in containers. Hanks (1983) reasoned that

since alfalfa covers the ground during most of the growing

season and thus limits the amount of energy incident on the

soil surface, the portion of ET that is evaporation is

small. In simulating crop development and water use, Hanks

had noted that when irrigation was applied frequently, yield

was lower for a given water use than when irrigation was

applied less frequently. He postulated that the difference

was caused by more water being lost by evaporation from the

soil surface when irrigation was more frequent.

In New Mexico, Sammis (1981) irrigated alfalfa with a

range of water levels in a line source irrigation experiment

and found yield and ET increased with irrigation amount.

Further, he concluded, that yield increased linearly with

ET. Based on data from five locations within the state,

Sammis observed that the yield-ET relationship appeared to

be transferable to different locations in New Mexico and was

also statistically the same as the yield-ET relationship for

Nevada, Nebraska, and North Dakota. He reasoned that this

relationship might be utilized by resource planners to

determine the impact of various water allocation decisions.

Stewart and Musick (1982) studied the relationship between

crop yields and water use and concluded that when yields

were transpiration limited, strong linear correlations were
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found. However, when the relationship was found to be

curvilinear, the nonlinearity was most pronounced at the

higher evapotranspiration levels. They deduced that some of

the water was not being used for productive purposes, but

rather was being lost by deep drainage.

Hanks and Rasmussen (1983) argued that the yield-ET

relationship is site specific and does not account for

different climatic conditions. In an earlier publication,

Hanks (1974) had described a model relating crop yield to

water use. Water lost by evaporation from the soil surface

and by deep percolation are incorporated into the model to

distinguish evaporation from transpiration. A basic

assumption of the model is that transpiration is the

predominate factor influencing plant growth. For a given

crop and year, the relation of relative transpiration to

relative yield can be expressed as Y/Yp=B(T/Tp) where Yp is

potential yield (Y=actual yield) when transpiration (T) is

equal to potential transpiration (Tp). B is the potential

crop growth rate and is dependent on the type of crop grown

and climate. The model attempts to take into account

different climate and soil factors. It implies that

reductions in yield are proportional to reductions in

transpiration, when insufficient quantities of soil water

inhibit growth. The fraction of actual to potential growth

could be multiplied by the potential growth rate to

determine the daily estimate of plant growth. These daily

estimates are then summed to predict total dry matter



production under deficit irrigation.

Although alfalfa has been irrigated for some time on

the Great Plains, information on the water requirement of

this crop is incomplete. The objective of this experiment

was to determine the yield and water use of differentially

irrigated alfalfa and to determine if yield could be

described by water use.
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MATERIALS AND METHODS

The irrigation experiment with 'Cody' alfalfa was

conducted during the growing seasons of 1980, 1981, and 1982

at the Evapotranspiration Research Site located 3 km

southwest of Manhattan, Kansas. The geographic position of

the site is 39 degrees north latitude and the elevation is

325 m above mean sea level.

Though subject to much variation, the normal annual

precipitation for the area is 800 mm. Three-fourths of this

amount is expected during the months of April through

September in the form of convective storms. Since 1858,

annual precipitation has ranged from 380 mm in 1860 to 1530

mm in 1951. The winters are cold and the length of the °C

frost-free period is approximately 178 days (Bark, 1959).

During the experiment, precipitation amounts were

recorded at the research site and meteorological data

(solar radiation and minimum and maximum air temperature)

were provided by the Department of Physics, Kansas State

University, from files held in the Climatalogical Library.

The soil is described by Jantz (1975) as the Eudora

series, consisting of deep, nearly level soils that formed

in coarse, silty alluvium on low terraces along the Kansas

River . This soil is classified as a Fluventic Hapludoll. It

is mixed, mesic, and is well drained.

The water holding capacity of the soil is approximately

.3.-30.24 nrm"-3
. Field capacity (0.32 m3 m" 3

) was approximated

from neutron probe readings taken 2 days after an irrigation
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•3 _
and the lower limit of plant available soil water (0.08 nrm

3
at -1.5 MPa soil water potential) was determined by

Anderson et al. (1982).

The experimental area was leveled and a grid of dikes

were constructed prior to the seeding of 'Cody 1 alfalfa in

1978. Cody is a variety of alfalfa that was developed to

resist spotted alfalfa aphids ( Therioaphis maculata )

(Sorensen et al., 1961). This variety initiates growth early

in the spring, grows erect, recovers rapidly after cutting

and has medium sized stems.

The experimental design was a randomized, complete-

block design in which irrigation level was the only

controlled variable. Seven irrigation treatments (six

irrigation levels and one nonirrigated) were replicated six

times. The treatments were 0, 25, 50, 75, 100, 125, and 150

mm per irrigation. Each of the 42 plots measured 9 m x 9 m

and the field was bordered by 6 m of alfalfa.

Water was delivered to the alfalfa plots with 200 mm

diameter gated surface pipe positioned on the dike. The

depth of water applied to each plot was gauged with a meter

stick and the field was irrigated following each harvest

(Table 1.1).

Soil water was measured in the spring, before harvest

time, after each irrigation, and at 7 to 10 day intervals

between each harvest. The surface (75 mm) soil water content

was measured gravimetrically and the volumetric soil water
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content was obtained by multiplying the water content by

mass by the dry bulk density (1.4 Mg m J
). The subsurface

(0.075 m to 3.12 m) water content was determined with one of

three neutron moisture meters (Troxler, Model 3601).

Different probes had to be used because of maintenance

problems. To have comparable calibrations for the probes,

several access tubes were read with all instruments and the

count ratios regressed to predict the count ratio of one

probe taken as a reference. One aluminum neutron access tube

was installed in the center of each plot. These tubes were

capped and remained in the soil for the entire experimental

period (3 years). The neutron source was lowered in 150 mm

increments to a depth of 3.12 m and scaler counts of 15

seconds at each depth were taken.

The volumetric water content of each soil layer was

multiplied by the layer thickness and summed together to

obtain total profile water. Water use was calculated from a

water budget in which the change in soil water over a given

time period was added to the precipitation received.

Evapotranspiration (ET) rates (mm day" 1
) were obtained by

dividing the water used by the number of days between

probing dates. Deep percolation was assumed negligible and

runoff was prevented. Soil water was measured after the

field was irrigated so irrigation did not enter into the

water balance.

The dry matter yield of alfalfa was determined by

harvesting three samples, 1 m x 1 m, in the proximity of the
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neutron access tube in each plot at 10$ bloom. The samples

were oven dried (7 days at 70 °C) and weighed. The water use

efficiency of the above ground alfalfa dry matter production

was calculated by dividing the dry matter yield (kg ha" ) by

the water used (cm).

Statistical interpretations were facilitated using SAS

(1974). An analysis of variance was performed on dry matter

yield and water use data to test whether treatment means

were significantly different. Regression analyses were

performed to determine the form of the relationship between

the amount of applied water and evapotranspiration, applied

water and yield, and mean soil water content and yield. To

determine if yield was related to wafer use, correlation

analysis was used.
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RESULTS AND DISCUSSION

Alfalfa was harvested four times in each of the 3 years

of the study (1980-1982): in late May, early July, early to

mid August, and mid September (Table 1.1). The effect of

irrigation on the dry matter yield of alfalfa was primarily

dependent on the amount and distribution of precipitation

received. Figure 1.1 shows the soil water content (3.12 m

soil profile) of the nonirrigated and 150 mm irrigation

treatment for each of the 3 years of the study. The year of

1980 was comparatively dry and evapotranspiration (ET)

exceeded precipitation and irrigation. As a result, a net

reduction of soil water occurred during the growing season

regardless of irrigation treatment. Drought stress may have

occurred at later stages of vegetative growth in the

treatments receiving higher levels of water as the applied

water was depleted following each irrigation. Seasonal

precipitation amounts (Fig. 1.2) in 1981 and 1982 were 2.5

and 2.1 times that received in 1980 (263 mm). Monthly

precipitation amounts were below normal during all the

months alfalfa was grown in 1980; 2 of the 6 months in 1981;

and 3 of the 6 months in 1982. ET approximated

precipitation during the summers of 1981 and 1982, so

irrigation was added to storage and increased soil water

reserves.

Higher than normal temperatures had accompanied the

drought in 1980 (Fig. 1.3). June, July, and August

temperatures averaged 2.6 °C above the normal in 1980 and
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0.5 and 1.0 °C below the normal temperature for the same

period in 1981 and 1982, respectively.

Irrigation had contributed significantly to the

production of alfalfa in 1980. The yield results (Table 1.2)

show that in 1980 the application of 25 mm of water per

irrigation increased the average dry matter yield of alfalfa

— 1
by 40$ (0.59 Mg ha ) as compared to the nonirrigated

treatment yield of 1.48 Mg ha . Irrigation of 150 mm per

_ i

irrigation increased the yield of alfalfa by 1.01 Mg ha or

68$ more than the rainfed. These results show marked

improvement of yield with limited irrigation under drought

stress, an important consideration where resources are

limiting.

Irrigation was most effective in 1980 during mid summer

(representing the 3rd harvest) when the addition of 150 mm

of water increased yield from 1.06 Mg ha for the rainfed

treatment to 2.27 Mg ha" 1
, an increase of 114$. Figure 1.4

shows the effect of low water availability on the dry matter

yield of alfalfa during this harvest. The graph shows that

the yield potential can be sustained if the average soil

water content is maintained at a level greater than

approximately 0.14 m3 m
-3

. At 0.14 m3 m~ 3
, about 25$ of the

available soil water is present. Ritchie (1973) reported 80$

of the extractable water to be freely available to corn

roots. Low amounts of available water were also present for

plant growth in the spring of 1981 prior to the first
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irrigation (mean soil water content=0.11 m m~^) and

conditions were conducive for an alfalfa weevil outbreak.

Even with the severe insect damage and meager water

supplies, the average yield of alfalfa was 2.45 Mg ha" 1
,

0.45 Mg ha~ more than the average yield attained in mid and

late summer in 1980. The effect of low water availability

was less detrimental to dry matter production in early 1981

as compared to mid and late summer of 1980, possibly as a

result of lower potential ET rates. The average ET rates of

irrigated alfalfa during the August and September harvests

in 1980 were 8.27 mm day" 1 compared with 3.17 mm day" 1 for

the May harvest in 1981 . Higher yields are attainable in the

spring and Daigger et al. (1970) suggested that adequate

soil water should be available during this time since the

most forage is produced with the least amount of water.

Figure 1.5 shows the water depletion pattern of

irrigated (150 mm treatment) and nonirrigated alfalfa during

mid summer in 1980. For the period 23 June to 10 July, the

depletion of soil water to a depth of 2.36 m was 157 mm by

the irrigated treatment and 76 mm by the rainfed treatment.

From the depths between 2.36 m and 3.12 m, the depletion was

statistically similar, although 8 mm was depleted by the

nonirrigated treatment and 1 mm was depleted by the

irrigated treatment. Water use from this layer accounted for

11$ of the water depleted by the nonirrigated and less than

1$ of the water removed by the irrigated treatment. Hobbs

(1953) determined that alfalfa was able to deplete water to
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depths of 5.5 m. However, Janson (1976) acknowledged that

roots penetrating great depths are essentially survival

organs and are largely irrelevant in terms of an irrigation

program.

Table 1.3 shows that the mean WUE of alfalfa was lower

in 1980 (127 kg ha~ 1 cm~ 1
) than in either 1981 or 1982 (221

and 176 kg ha cm , respectively). This may have been a

response to temperatures above 30 °C, the upper limit for

optimal growth (Doorenbos and Kassam, 1979). Daily maximum

temperatures exceeded 30 °C for 101 of the days alfalfa was

grown in 1980 and only 57 and 58 of the days in 1 98 1 and

1982, respectively. For the 2nd, 3rd, and 4th harvests of

each year of the study, alfalfa consumed water at a greater

rate in 1980 than in either 1981 or 1982 (7.17 mm day" 1

compared to 4.61 and 5.43 mm day , respectively). The

alfalfa also produced less dry matter during these harvests

(2.20 Mg ha" 1 in 1980; 3.31 Mg ha" 1
in 1981; 3.09 Mg ha" 1 in

1982). The combination of high potential ET and low yields

in 1980 resulted in low WUE.

The WUE was negatively related to ET (Fig. 1.6) for

each year of the study. These results contradict those of

Carter and Sheaf fer (1983). This inconsistency may be due to

different irrigation management practices, severity of

stress, or to the geographic position of the site. Guitjens

(1982) had found that alfalfa used water more efficiently

under soil water stress; however, he recognized that
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producing higher yields would require a shortening of the

duration of stress when soil water deficits reduced ET.

In general, temperature determines the rate of crop

growth and development (Doorenbos and Kassam, 1 979 ) » and

consequently affects the length of the total growing period.

In this study, higher temperatures had resulted in more

rapid maturation and more frequent harvests. The thermal

units required to produce a cutting was similar, as

evidenced by the similar number of degree-days (GDD) for

each harvest (Table 1.1). The mean GDD for the harvests was

688.3 as calculated with a threshold temperature of 5 °C

(Doorenbos and Kassam, 1979) and a standard deviation of

approximately 3 days was found.

Yield and ET increased curvilinearly with irrigation

amount (Fig. 1.7). The results show that the plants were not

able to utilize all the applied water for productive

purposes with the higher irrigation treatments, and water

was added to 'storage or lost by deep percolation.

To determine if yield was related to ET, linear

correlation analyses were performed using treatment means of

the yield-ET data from each harvest. The regression results

are presented in Table 1.4. The highest correlations were

attained under the drought conditions experienced in 1980.

For the second and third harvests in 1980, 85 and 77$ of the

variation in yield could be attributed to water use. In 1981

and 1982, water was not a major factor limiting the yield of

alfalfa and low correlations were attained.
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To normalize the yield-ET data, the data were

transformed to relative values by expressing each as a

fraction of the maximum yield and its associated water use.

Values used represent the per harvest average for each year.

The results are plotted in Fig. 1.8. Normalizing the data

forced the different years to converge and improved the

relationship between yield and ET. The relationship

illustrates how alfalfa yield is affected by deficit

irrigation; however, to make the relationship useful for

prediction purposes, some estimator of potential yield

must be devised. The efficiency by which alfalfa was able to

utilize water resources differed from year to year.

When water was a major factor limiting the yield of

alfalfa, e.g., 1980, the variation in yield was attributable

to water use. Hanks et al.(1969) observed that where water

was not limiting, plant growth was strongly related to

weather factors. In the wet year of 1982, the two harvests

prior to July (harvests 1 and 2) averaged 4.06 Mg ha" 1
.

Maximum temperatures exceeded 30 °C during 22 of the 30

days that alfalfa was grown in July and August, and average

yield declined to 2.77 Mg ha" 1
. Alfalfa yield was also low

(2.41 Mg ha" 1
) following the fall growth period. Minimum

temperatures had fallen below 10 °C during 6 of the days in

the growing period. The optimal temperature for growth is

about 25 C and growth decreases sharply when temperatures

are above 30 °C and below 10 °C (Doorenbos and Kassam,
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1979). Low yields late in the growing season were also

reported by Carter and Sheaffer (1983), and they attributed

this response to low temperatures that resulted in increased

partitioning of assimilates to roots. The reduced fall

yields were evident in 1981 and 1982, but not in 1980. A

possible explanation is that in 1980 the alfalfa was

recovering from severe drought stress. For all years

inclusive, alfalfa produced the most forage early in the

season, 3.30 Mg ha" 1 for the first harvest and 3.33 Mg ha" 1

for the second harvest, and less forage during the mid

summer and fall harvests, 2.76 and 2.50 Mg ha"
,

respectively.
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CONCLUSIONS

The results of this study show that drought stress can

affect alfalfa dry matter production at any time in the

growing season. In the dry, hot summer of 1980, irrigation

contributed significantly to the production of alfalfa and

yields were proportional to water use. Even with irrigation,

the yield of alfalfa was lower in 1980 than in either 1981

or 1982. The higher temperatures in 1980 as compared to 1981

and 1982 had resulted in more rapid maturation and more

frequent harvests, because the thermal units required to

produce a harvest were similar. The low yields and high

water use associated with the drought in 1980 resulted in

low WUE. During all 3 years of the study, WUE declined with

irrigation amount.
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Table 1.1. Yield-sampling, field-harvesting, and
irrigation dates. Growing degree days (GDD) were
calculated using a base temperature
extended from date field was harvested
date of yield sampling.

of 5 "C and
(machine) to

Year Cutting Sampling

Date

Machine

Growing
Degree

Irrigation Days

1980

1981

1982

1st
2nd 8 July
3rd 6 Aug.
4th 6 Sept.
1st 16 May
2nd 29 June
3rd 5 Aug.
4th 18 Sept.
1st 18 May
2nd 9 July
3rd 16 Aug.
4th 24 Sept

3

11

7

8

26
6

9

18
21

16

18
26

June
July
Aug.
Sept,
May
July
Aug.
Sept,
May
July
Aug.
Sept,

13 June
14 July
11 Aug.

4 June
8 July

11 Aug.

19
24

1
July
Aug.

*

764.0
653.6
6 92 .

2

644.7
654.2
673.1

812.5
665.0
635.0

Mean GDD
Standard Deviation

688.3
60.3

Yield samples not collected for this cutting.
+ Field was irrigated following the 1st cutting of each
year.
• Data insufficient to calculate GDD for spring growth.
I Precipitation had prevented irrigation for the 2nd
cutting in 1982.
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Fig. 1.1. Water content of the 3.12 m soil profile for the
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1980, 1981, and 1982. The abbreviation (I) shows the dates of
irrigation.
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Fig. 2.1. Normal monthly precipitaion for the months Apr. -Sept.
and the deviation from normal experienced in 1980, 1981, and
1982.
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Table 1.2. Effect of different levels of irrigation on the dry
matter yield of alfalfa (Mg ha )

.

Year Cutting
— Irrigation amount (mm)
25 50 75 100 125 150 Mean

1980 1st
2nd
3rd
4 th

Total
Mean

2.08b 2.60ba 2.50ba 2.82b 2.69ba 2.83b 2.72b 2.61
1.06b 1.81a 1.95a 2.29a 2.12a 2.05a 2.27a 1.94
I.^QO 1-80b 2.Q9ba 2.T2a 2.Hba 2.41a 2.47a 2.07

1.48 2.07 2.18 2.48 2.31 2.43 2.49 2.21

1981 1st
2nd
3rd
4 th

Total
Mean

2.28a
3.15b
3.51a
2.96a

11 .90
2.98

2.31a
3.35a
3.58a
2.04a
12.18
3.05

2.65a
3.38a
3.54a
3.07a
12.64
3.16

2.38a
3.36a
3.48a
3.Q1a
12.23
3.06

2.50a
3.36a
3.65a
3.11a
12.62
3.16

2.32a
3.42a
3.61a
2.97a

2.74a
3.46a
3.60a
T.QSa

12.32 12.88
3.08 3.22

2.45
3.35
3.57
3.02

3.10

1982 1st 4.21a 3.99a 4.15a 3.83a 4.07a 4.16a 4.18a 4.18
2nd
3rd
4 th

Total
Mean

4.21a
2.68a
2^Z6_b_

13.36
3.34

4.07a
2.94a
2-30a

13.39
3.35

4.14a
2.74a
2.49a
13.52
3.38

4.02a
2.83a
2.43a
13-11
3.28

3

2

2_

99a
74a
_4_2_a

13.22
3.31

4.15a
2.74a

13

3

,44

36

4.08a
2.69a
2.48a
13.43
3.36

4.09
2.77
2.41

3.36

Treatment effects significantly different at the 0.05 level only
if followed by different letters. Duncan's multiple range test was
used.
+ Yield samples not taken for 1st cutting.
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Table 1.3. Effect of irrigation on the water-use-efficiency
of alfalfa (kg ha cm )

.

Irrigation amount (mm)

Year cutting 25 50 75 100 125 150 Mean

1980 1st
2nd
3rd
4 th

Mean

+

147b
238c
181g
189

145b
158bc
mb c

145

120ab
105ab
1 Q7b
111

133b
110ab
113b
119

93a
92a
80a
88

127b
117ab
IQQab
115

126b 127
121ab 134

n2b na
120 127

1981 1st
2nd
3rd
4th

Mean

142a
626b
252b
180a
300

135a
328a
222b
204a
222

147a
315a
230b
135a
207

130a
38lab
230b
177a
230

128a
268a
208b
171a
194

125a
263a
205b
152a
186

134a
385ab
167a
154a
210

134
367
216
168
221

1982 1st 175a 160a 184a 156a 166a 166a 167a 168
2nd 184a 177a 187a 183a 168a 176a 170a 178
3rd 170a 174a 149a 158a 144a 133a 126a 151
4th 378e 217d 2Q3od 178bcdl66abc1^ab 146a £0_6_

Mean 227 182 181 169 1 6 1 157 152 176

Treatment effects significantly different at
level only if followed by different letters,

range test was used.
not taken for 1st cutting.

mul tiple
+ Yield samples

the 0.05
Duncan 1 s
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Table 1 . 4 . Yield=A(ET)+B, the regression of yield (Mg ha" 1

)

verses evapotranspiration (ET in mm), and the regression
coefficients for the slope (A) and the intercept (B).

Year H arvesit Number
of

A
+

B F
n Coefficientvalue

Qf
Observations Determination

1980 1st _ ______ _____ _____ _____
2nd 7 0.0039 1.793 4.01 0.44
3rd 7 0.0061 0.931 28.90 0.85*
4th 7 0.0054 1.039 16.70 0.77»

1981 1st 7 0.0089 0.821 5.18 0.51
2nd 7 0.0027 3.091 5.56 0.53
3rd 7 0.0015 3.3 07 3.37 0.40
4 th 7 0.0012 2.792 1.99 0.28

1982 1st 7 -0.0041 5.073 0.42 0.08
2nd 7 -0.0007 4.261 0.03 0.01
3rd 7 -0.0016 3.064 0.69 0.12
4 th 7 0.0016 2.204 6.70 0.57*

+
Eq ua tion si gnif icant at the 0. 05 leve1 (F

0.95 =6,61) only
if fo11 owed by *
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CHAPTER 2

EVALUATION OF CANOPY TEMPERATURE, STOMATAL

RESISTANCE, AND PLANT WATER POTENTIAL OF DIFFERENTIALLY

IRRIGATED ALFALFA



38

ABSTRACT

Plant water potential, stomatal resistance, and canopy

temperature of 'Cody' alfalfa ( Medicago sativa L.) grown

with different levels of irrigation were studied. In 1980,

1981, and 1982, canopy temperature was measured with an

infrared thermometer. In 1981 and 1982, stomatal resistance

and plant water potential measurements were taken with a

stomatal porometer and a pressure chamber, respectively. The

water content of the soil was measured at about 10 day

intervals with a neutron probe.

The midday canopy temperature of well-watered alfalfa

averaged 3.2 C below the temperature of the air for the 3

years of the study and this difference was found to be

correlated with atmospheric water vapor deficit. In 1980,

canopy temperature was shown to exceed air temperature when

soil water deficits caused plant water stress.

In 1981 and 1982 weather factors were favorable for

growth and the stomatal resistance of alfalfa averaged 145 s

m" and the mean leaf water potential was 0.220 MPa. Values

similar to those cited in literature for non-water-stressed

alfalfa.

In 1982, the stomatal resistance of alfalfa was found

to be significantly lower than that of well-watered grain

sorghum ( Sorghum bicolor L. Moench), corn (JLfea. mays L.),

soybean (Glycine JH&Z L. Merr.), pinto bean ( Phaseolua

vu l gar i s L.), sunflower (Helianthus .ajmujia L.), and pearl
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millet ( Pennisetum americanum L.). Although the relationship

between stomatal resistance and water use for the different

crops was not well established, stomatal resistance and

canopy-minus-air temperature were found to be correlated

(r
2
=0.53, P=0.10).
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INTRODUCTION

Plant water deficits occur when transpiration exceeds

root absorption. In order to maintain a functional plant

water potential when stressed, stomatal movement is one of

the primary mechanisms by which the plant exercises control

over transpiration (Slayter, 1966). Stomatal closure, as

indicated by increased leaf diffusive resistance, is induced

as plant water potentials decrease to a threshold value

(Hsiao, 1973).

The severity of water deficits on plant growth is

influenced by atmospheric factors as well as soil water

status. Ritchie (1974) acknowleged that plant growth is

controlled directly by water deficits in plants and only

indirectly by soil water deficits. Taylor and Haddock (1956)

asserted that, as water is removed from the soil, additional

energy must be expended by plants to maintain a constant

transpiration rate because of decreasing soil water

potentials. When plants are subjected to a high evaporative

demand, Peters (1960) found growth to be profoundly

influenced by soil water potential; however, at low

evaporative demands, growth is less affected by soil water

potential. Denmead and Shaw (1960) reasoned that since the

decline in relative transpiration rate results from a loss

of turgor in the plant, the soil water content at which

plants wilt will also increase as potential transpiration

increases.
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The onset of plant water stress is most likely to occur

during periods of peak potential transpiration rates during

midday. van Bavel (1967) monitored the leaf diffusive

resistance of alfalfa ( Medicago sativa L.) that was

irrigated and then allowed to deplete soil water reserves to

-1.5 MPa soil water potential. Stomatal regulation became

evident 20 days after the irrigation. The canopy resistance

then showed a diurnal course with low values after sunrise,

increasing during early afternoon, and then decreasing. With

the progression of soil water depletion, the magnitude and

duration of stomatal closure increased and the ratio of

actual to potential evapotranspiration decreased. Carter and

Sheaf fer (1983a) showed that at midmorning, well-watered

alfalfa offered little diffusive resistance to water loss

(30 s m ). At moderate plant water deficits, stomatal

resistance was lowest during morning and late afternoon and

was highest at midday. Under extreme plant water stress,

stomatal resistance remained high the entire day (330 to

1000 s m" 1
).

Hsiao and Acevedo (1974) discussed metabolic and

physiological aspects of plant water relations. They

emphasized that practically all plant activities could be

disrupted by severe water stress; however, some hormonal,

enzymatic, or physiological process may be altered in even

reasonably well irrigated fields, depending on the

sensitivity of that process to water deficit. Cell growth,

cell wall synthesis, protein synthesis, and nitrate
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reductase level were deemed sensitive to moderate water

deficits while stomatal opening, C0
? assimilation, and

abscisic acid accumulation were less sensitive.

Salisbury and Ross (1978) stated that cell expansion

requires that turgor pressure be established in cells by

osmosis. When water deficits occur, the plant water pressure

potential decreases and cell expansion is inhibited. An

adaptive response of plants to water deficits is the

alteration of cellular osmotic concentration. Cutler et al.

(1977) reported 20 to 60$ greater solute concentrations in

cotton ( Gossypium hirsutum L.) leaves from a nonirrigated

treatment than in leaves from a frequently irrigated

treatment. In a latter publication, Cutler et al. (1980)

reported solute potentials of leaves of conditioned rice

(Qryza sativa L.) plants to be 0.3 to 0.5' MPa more negative

than plants that had no stress history but were at similar

leaf water potential. They observed that turgor was

maintained to more negative leaf water potentials in

conditioned plants. Thomas et al. (1976) observed a similar

osmotic adjustment in drought conditioned cotton and found

stomata to remain open at lower leaf water potentials than

plants not previously conditioned.

Carter and Sheaffer (1983b) measured leaf water

potentials of differentially irrigated alfalfa and found the

midday leaf water potential of irrigated alfalfa to range

from -0.7 to -1.3 MPa throughout the season. Leaf water
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potentials attained -2.7 to -4.0 MPa for stressed alfalfa

and little growth occurred at potentials of less than -1.5

MPa. Their results showed a close association between forage

yield and cumulative leaf water potential.

Ritchie (1974) hypothesized that at the beginning of

the day, the leaf and soil water potentials are

approximately equal. Following the onset of stress, Hall and

Larson (1982) found predawn leaf water potential to decline

linearly with soil water potential. Ehrler et al . (1978)

found the leaf water potential curves for stressed and

nonstressed wheat (Triticum .djmuja L.) paralleled each other;

however, the leaf water potential of stressed wheat was more

negative and did not return to the predawn value after

sunset. This hysteresis effect was also noted in alfalfa by

Sharratt et al . (1983), who found hysteresis to be more

pronounced in nonirrigated than irrigated alfalfa.

Plant temperature is an indicator of the response of

the plant to environmental factors such as radiation, air

temperature, relative humidity, wind speed, and soil water

availability (Gates, 1964). Transpiration has a cooling

effect (Salisbury and Ross, 1978) owing to the high latent

heat of vaporization of water. A reduction in the

transpiration rate by stressed plants decreases latent heat

exchange and plant temperatures increase (Tanner, 1963).

Ansari and Loomis (1959) noted that vaseline coated leaves

were 1 to 3 °C warmer than transpiring leaves. Sumayao et

al. (1980) found that when more than 35$ of the available



44

soil water had been depleted, corn ( Zea mays L.) and sorghum

( Sorghum bioolor L.) leaves lost turgor, stomatal resistance

increased, and leaf temperature rose above air temperature

because of the reduced transpiration rate. The results of

Wiegand and Namken (1966) verify those of Sumayao and

colleagues in that variations in plant water stress

significantly alter leaf temperature and leaf-minus-air

temperature.

Idso et al . (1981) devised a technique of quantifying

water stress using an infrared thermometer and a

psychrometer. They found that for well-watered alfalfa,

canopy temperatures were less than air temperature and that

canopy-minus-air temperature was highly * correlated with

atmospheric saturation vapor pressure deficit (VPD). The

degree of stress could be quantified by indexing the well-

watered minus drought stressed canopy temperatures with VPD.

Idso et al. (1981) had recognized the ability of the

infrared thermometer to assess rapidly plant water deficits

caused by inadequate soil water reserves.

Alfalfa consumed more water than most other crops (Blad

and Rosenberg, 1974; Fritschen, 1967; Fairbourn, 1982).

Blad and Rosenberg (1974) found that the ET rate of alfalfa

was greater than for a pasture (predominately a mixture of

grasses). Further, they found, that alfalfa consumed a large

portion of advected sensible heat (ET exceeded the net

radiation equivalent) while sensible heat was generated
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rather than consumed by the pasture (ET was less than the

net radiation equivalent). The ET of the pasture was not

limited by energy supply but rather by the limiting supply

of water. Blad and Rosenberg (1974) surmised that the

pasture used less water than the alfalfa because of one or

more of the following: greater stomatal resistance, higher

root or plant resistance to water movement, a less

aerodynamically rough canopy, or because of less biomass

(leaf area). Alfalfa offered a low resistance to water vapor

diffusion and under favorable soil conditions had a root

system that was in contact with a soil volume several times

larger than grass (Jensen, 1973).

This study was conducted to characterize the alfalfa

water balance, • by measuring stomatal resistance, pressure

potential, and canopy temperature and to determine if leaf

diffusive resistance was a factor contributing to

differences in water use between different crops. Canopy

temperature measurements taken in 1980 and 1981 were

reported by Kirkham et al. (1983). Kirkham et al . (1983)

studied the effect of different levels of irrigation on the

canopy temperature of alfalfa. In this paper, canopy

temperature was compared with soil water content to

determine the soil water content at which plant water stress

will occur.
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MATERIALS AND METHODS

The experiment was conducted during the summers of

1980, 1981, and 1982 at the Evapotranspiration Research

Site, located 3 km southwest of Manhattan, KS. 'Cody'

alfalfa was seeded in the fall of 1978. The soil type was

Eudora silt loam ( coarse- sil ty, mixed, mesic, Fluventic

Hapludoll). The water holding capacity of the upper 1.6 m

soil profile was approximately 0.24 nrm~ . Field capacity

was approximated from neutron probe readings taken 2 days

after an irrigation, and the lower level of plant available,

soil water (0.08 mJ m J at -1.5 MPa potential) was determined

by Anderson et al . (1982).

Soil water content was measured at about 10 day

intervals with a neutron probe to a depth of 3.12 m in each

of the 42 plots in the study area. The water content of the

soil surface (76 mm) was determined gravimetrically

.

The experimental design was randomized, complete-block.

Seven irrigation treatments (0, 25, 50, 75, 100, 125, and

150 mm per irrigation) were replicated six times. Each plot

measured 9 m x 9 m and was enclosed in a grid of berms to

prevent runoff. The field was irrigated following each

harvest.

Stomatal resistance measurements were taken in 1981

and 1982 on fully expanded, sunlit leaves near the apical

meristem on six plants from one plot of the nonirrigated and

from six plants from one plot of the 150 mm treatment using
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a stomatal porometer (Delta-T Devices, Mk II, Burwell,

England). The mainstem was then excised and transferred to

the pressure chamber for water potential determination.

Canopy temperature measurements were taken in paired north-

south directions at an oblique angle to the cropped surface

using an infrared thermometer (Telatemp Corp., Model i»4,

Fullerton, Calif.). In 1980 and 1981, six paired canopy

temperature measurements were taken of each plot. In 1982,

the temperature measurements were restricted to the

nonirrigated and 150 mm treatments. Psychrometric readings

were taken at the beginning and end of each run. Dates that

canopy temperature, stomatal resistance, and plant water

potential were measured are given in Tables 2.1 and 2.2.

Stomatal resistance, evapotranspiration (ET), and

canopy temperature measurements of several row crops that

were grown adjacent to the alfalfa experiment in 1982 were

compared with the alfalfa measurements. The row crops grown

were sorghum, corn, soybean ( Glycine max. L. Merr.), pinto

bean (PhaseolUS vulgaris L.), sunflower ( Helianthus annuus

L.), and pearl millet (Pennisetum amerioanum L.).

Multiple regression analysis (SAS, 1974) was used to

quantify the relationship between canopy-minus-air

temperature (Tc-Ta) and soil water content when soil water

deficits caused plant water stress on 28 July 1980. To

strengthen the relationship between (Tc-Ta) and VPD reported

by Kirkham et al. (1983) for non-water-stressed alfalfa,
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(Tc-Ta) and VPD measurements taken in 1982 were combined

with measurements taken in 1980 and 1981 using linear

regression. A t-statistic was used to compare the stomatal

resistance of alfalfa with that of the row crops. Also, t-

tests were used to determine if differences due to

irrigation treatment existed in canopy temperature, stomatal

resistance, and pressure potential of alfalfa.
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RESULTS AND DISCUSSION

Yield results (Table 1.2) showed that irrigation in the

wet summers of 1981 and 1982 (precipitation amounts were 658

and 552 mm for the months April-September of 1981 and 1982,

respectively) were of little benefit in increasing alfalfa

production . Soil water was not a crucial factor limiting

yield, and hence, plant water deficits were not readily

apparent.

Low precipitation amounts in 1980 (263 mm during the

months April-September) resulted in significant yield

reductions in the nonirrigated alfalfa treatment. Kirkham et

al. (1983) compared canopy temperatures of the different

treatments and concluded that irrigated plots had a cooler

canopy temperature than did the nonirrigated. It was noted

that differences in canopy temperature due to irrigation

treatment were not evident. Figure 2.1 is a graph of the

canopy temperature minus the temperature of the air (Tc-Ta)

versus the soil water content of each plot when high

evaporative demand (6.18 kPa atmospheric water vapor

pressure deficit) and soil water deficits caused plant water

stress (1430 CDT, 28 July 1980). The curve fitted to the

data shows that canopy temperature exceeded air temperature

(39.4 C) as the soil water content was depleted to below

approximately 0.08 m3 m~ 3
, the lower limit of plant
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available, soil water.

In the wet summer of 1981, precipitation approximated

evapotranspiration, and consequently, irrigation water was

added to the soil water reservoir. Kirkham et al . (1983)

concluded that precipitation was adequate for alfalfa growth

in 1981 and found no significant treatment differences in

(Tc-Ta). While large differences in soil water content were

apparent between the nonirrigated and the 150 mm treatment

as shown in Fig. 1.1 for the year of 1981, potential ET

rates were low and the nonirrigated alfalfa was able to

maintain transpiration at the potential rate.

A large amount of soil water was available for plant

growth in the wet year of 1982. To determine if differences

in (Tc-Ta) existed between the nonirrigated and the 150 mm

treatment, a t-test was performed using the treatment

means. In general, significant treatment differences were

not evident at the 95$ level of confidence. Replicated

infrared thermometer data taken on 3 August 1982 showed no

significant treatment differences to occur early in the day;

however, by mid-afternoon (at the 1423 and 1635 CDT sampling

times) the irrigated treatment had a significantly cooler

canopy temperature (Fig. 2.2). The lack of measurable

precipitation in the 12-day period prior to canopy

temperature measurements and high ET potential had resulted

in slight

water deficit; however, yield reductions were not evident

between the two treatments. Evapotranspiration averaged 8.6
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mm day
-

for the nonirrigated treatment compared with 11.4

mm day
-

for the irrigated treatment (31 July to 6 August).

The most prominent feature of the canopy temperature

measurements was that the temperature of the alfalfa canopy

was almost always less than ambient air temperature during

the day when soil water was not limiting. The magnitude of

the difference in midday (measurements taken between 1100

and 1700 CDT) (Tc-Ta) for non-water-stressed alfalfa

averaged -3.2 C for the 3 years of the study and was

p
correlated (r =0.63) with atmospheric water vapor pressure

deficit (Fig. 2.3). The regression equation found, (Tc-

Ta) =0 . 1 1- 1 . 2 1 (VPD) , appeared similar to the regression

equation, (Tc-Ta) = . 5 8- 1 . 96 ( VPD) , presented by Idso et al

.

(1981).

Stomatal resistance and plant water potential were not

measured in the dry year of 1980, so details of the plant

response to drought stress are lacking.

Results show that with an essentially unrestricted

supply of soil water, alfalfa was able to maintain a high

water potential with meteorological conditions conducive for

high transpiration potential, i.e., 25 watts per m
2

net

radiant energy, a -6.5 °C difference in canopy-minus-air

temperature, and a southerly wind averaging 5.4 m sec
-1

for

the day (from replicated data, 3 Aug. 1982). Differences

in stomatal resistance and pressure potential due t

irrigation treatment (nonirrigated and 150 mm treatment)

o
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failed to be significant at the 95$ level of confidence at

any sampling time, so the data were combined and reported as

a single value for each time (Table 2.1). Figure 2.2 shows

the stomatal resistance and plant water potential for

several sampling times on 3 August. Leaf diffusion

resistance decreased after sunrise as the stomata opened in

response to increasing solar radiation. During the day, it

appeared that root water absorption and transpiration were

approximately equal throughout the day so the plant water

potential remained high (-0.25 MPa +0.12 MPa). The

critical water status for stomatal closure was not reached

and stomatal resistance remained low (125 s m~ + 34 s m~ )

.

Similar values for stomatal resistance and alfalfa water

potential were reported by Carter and Sheaffer (1983a and

1983b) for non-water- stressed alfalfa. Further, while

the yield of the alfalfa was high, the stems were weak and

often resulted in lodging.

The detection of short term drought stress by the

infrared thermometer and not by stomatal resistance or plant

water potential measurements on 3 August may have occurred

because a larger sampling area and more measurements were

taken with the portable infrared thermometer than with the

stomatal porometer or the pressure chamber.

In 1981 and 1982, stomatal resistance was similarly

low. The average stomatal resistance of alfalfa in 1982 was

- 1 -

1

139 s m +65 s m , and was significantly less than that of

the row crops: corn (735 s m ), grain sorghum (416 s m~ 1

)

,
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— 1 -

1

pearl millet (363 s m ), soybean (573 s m ) , sunflower

— 1 — 1

(351 s m ), and pinto bean (552 s m ).

It would seem reasonable that crops offering little

resistance to the diffusion of water vapor would transpire

more water and have lower canopy temperatures than crops

with higher stomatal resistance. To examine the correlation

between stomatal resistance and crop water use, average

stomatal resistance and daily evapotranspiration over a

period of 22 days for the alfalfa and 35 days for the row

crops were compared. The time periods coincided and were in

late July to early August in 1982 when plant cover was

complete. Mean daily evapotranspiration was 9.73 mm day

for the alfalfa and daily water use by the row crops ranged

— 1 1from 6.06 mm day for pinto bean to 9.43 mm day" for

sunflower. Values of the stomatal resistance and

evapotranspiration of the different crops are presented in

Table 3. Subsequent correlation analysis indicated that

stomatal resistance is not the only factor determining water

use as the correlation coefficient was low (r
2 =0.22). Leaf

area, radiation load, and aerodynamic roughness are also

factors that govern water use. Crop canopies exibiting low

stomatal resistance tended to be cooler (r 2 =0.53, P=0.10,

Fig. 2.4) than crops exibiting higher stomatal resistance.
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CONCLUSIONS

With the favorable growing conditions experienced in

1981 and 1982, alfalfa offered little resistance to the

diffusion of water vapor. The alfalfa was able to maintain a

high water potential without stomatal regulation. The

alfalfa proved to maintain a lower stomatal resistance than

corn, grain sorghum, pearl millet, soybean, sunflower, and

pinto bean in 1982. Although alfalfa and sunflower exibited

low resistance to the loss of water vapor and high

evapotranspiration potential, the relationship between

stomatal resistance and evapotranspiration was not firmly

established. Stomatal resistance and canopy-minus-air

temperature between the different crops was found to be

correlated.

Canopy temperature measurements taken with an infrared

thermometer show that the temperature of the alfalfa canopy

is likely to be less than the temperature of the air

during the daytime. Midday canopy temperatures averaged 3.2

C (1980, 1981, 1982) below air temperature; however, this

difference was shown to be correlated with atmospheric water

vapor pressure deficit.
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Fig. 2.1. The relationship between soil water content and
canopy-minus-air (Tc-Ta) temperature of alfalfa when high
evaporative demand and soil water deficits caused plant water
stress in 1980. Each point represents the Tc-Ta of one plot.
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non-water-stressed alfalfa. Measurements were taken between 1100
and 1700 CDT in 1980, 1981, and 1982. The dashed line represents
the equation presented by Idso et al . (1981) for alfalfa.
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Table 2.1. Date and time stomatal
resistance and leaf water potential
measurements were taken in 1981 and
1982 for alfalfa. Each value is the
mean of the irrigated (150 mm) and
nonirrigated treatment.

Date Time Stomatal Plant Water
Resistance
(s m" 1

)

Potential
(CDT) MPa

810827 1400 121 0.203
810830 830 148 0.153
810830 1135 105 0. 146
810830 1400 171 0.202
810909 1300 127 0.275
810917 1100 244 0.200
811005 1100 155 0.277
820616 810 47 0.259
820616 910 83 0.253
820616 1040 152 0.380
820616 1125 258 0.185
820616 1240 247 0.223
820616 13 50 125 0.143
820616 1450 196
820616 1600 306 0.312
820629 645 0.085
820629 735 89 0. 108
820629 835 74 0.133
820629 920 94 0.173
820629 1026 133 0.386
820629 1126 120 0.450
820629 1259 131 0.158
820629 1400 125 0.240
820629 1529 152 0.294
820629 1635 137 0.350
820629 1755 194 0.314
820803 644 151 0.128
820803 935 89 0.148
820803 1210 79 0.180
820803 1510 97 0.139
820803 1700 131 0.131
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Table 2.2. Date and time of infrared
thermometer readings. Canopy temperature
(Tc), temperature of air (Ta) and canopy-
minus-air- temperature (Tc-Ta) for non-
water-stressed alfalfa.

Date Time Tc Ta (Tc-Ta) VPD
YMD (CDT) C° C° C° kPa

800624 1430 30.7 33.6 -2.9 2.73
800627 1335 32.6 41 .1 -8.5 6.88
800701 1330 31.3 38.9 -7.6 5.53
800722 1420 29.4 29.7 -0.3 3.30
800728 1520 32.2 39.4 -7.2 6.18
800801 1400 33.3 39.2 -5.9 5.76
800818 1200 32.0 33.9 -1.9 3.31
800819 1417 32.8 34.7 -1.9 3.90
800820 1345 30.0 30.8 -0.8 2.40
800825 1320 30.6 36.7 -6.1 4.88
800826 1100 27.4 34.4 -7.1 4.11
800827 1200 22.3 24.4 -2.1 0.98
800829 1500 32.0 35.6 -3.6 4.62
800902 1230 27.3 31.1 -3.8 2.49
810609 1500 32.2 36.6 -3.4 2.33
810617 1100 21 .6 26.1 -4.5 2.80
810624 1530 28.3 34.7 -6.4 3.07
810713 1010 29.0 33.1 -4.1 2.53
810818 1540 23.9 23.9 0.0 1.81
810821 1530 24.7 28.1 -3.4 2.64
810827 1500 24.4 23.9 0.5 1.39
810829 1130 25.4 29.4 -4.0 2.32
810908 1141 22.5 24.4 -2.0 2.23
820629 0645 16.4 18.3 -1.9 0.00
820629 0735 21.7 20.4 1.3 0.04
820629 0835 23.1 22.0 1.1 0.11
820629 0920 25.3 24.5 0.8 0.47
820629 1026 26.9 26.0 0.9 0.52
820629 1126 28.1 28.5 -0.4 0.90
820629 1255 29.6 31.0 -1.4 1.68
820629 1400 29.6 31.0 -1.4 1.45
820629 1525 28.8 30.0 -1.2 1.09
820629 1635 26.8 30.7 -3.9 1.78
820629 1755 28.3 30.6 -2.3 1.90
820725 1305 30.0 31.2 -1.2 1.59
820729 1051 26.2 27.0 -0.8 1.11
820730 1252 24.9 27.0 -2.1 1.35
820730 1511 25.4 27.0 -1.6 1 .18
820803 0535 23.5 25.0 -1.5 0.70
820803 0845 25.3 28.0 -2.7 1.27
820803 1145 29.0 34.4 -5.4 2.39
820803 1423 30.1 37.0 -6.9 3.96
820803 1635 29.8 34.5 -4.7 3.00
820812 1100 22.4 23.0 -0.6 0.29
820830 1418 30.7 32.0 -1.3 1.88
820Q(n 1425 26.0 29.5 -3.5 2.51
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Table 2.3. Stomatal resistance, canopy-minus-
air temperature and evapotranspiration of
different crops grown in 1982.

Crop SR
s m"

1
)

(Tc-Ta) ET
( (°C) (mm day )

corn 735 -2.50 8.51
grain sorghum H16 -2.65 7.31
millet 363 -2.92 7.77
soy bean 573 -2.87 8.06
sunflower 351 -3.62 9.43
pinto bean 552 -2.62 6.06
alfalfa 139 -3.33 9.73
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Maximum and minimum air temperature, solar radiation, and
net solar radiation for 1980, 1981, and 1982.

Tmax Maximum air temperature (°C)
Tmin Minimum air temperature (°C)
Rs Solar radiation (MJ day" 1

)

Rn Net long wave solar radiation (MJ day
-1

)

Hemispherical net radiometer tser. no. 6875)
Calibration - 0.03388 cal cm min'VmV

Date Tmax Tmin Rs Rn

800321 14 -5 21.5 ... .

800322 18 3 12.6 ....
800323 16 3 5.5 _ — ..
800324 3 -1 7.6 ....
800325 3 -2 5.3 ....
800326 9 2 1.8 ....
800327 9 4 4.4 ....
800328 9 7 1.5 ....
800329 9 6 1.1 ....
800330 7 2 2.8 ....
800331 13 1 22.6 ....
800401 15 6 12.9 ....
800402 11 1 2.6 ....
800403 8 3 4.9 ....
800404 14 23.5 ....
800405 21 3 21 .2 ....
800406 21 8 21 .4 ....
800407 18 7 • 8.9 ....
800408 16 7 16.9 ....
800409 17 3 23.4 ....
800410 23 -1 22.1 ....
800411 18 3 4.0 ....
800412 13 -1 23.5 ....
800413 13 -1 25.2 ....
800414 12 -1 22.7 ....
800415 21 -2 25.7 ....
800416 19 5 9.7 ....
800417 13 6 5.4 ....
800418 19 7 21 .1 ....
800419 26 5 24.8 ....
800420 31 11 25.4 ....
800421 32 12 26.1 ....
800422 30 15 25.9 ....
800423 27 11 23.4 ....
800424 22 8 24.6 . . . .
800425 18 6 16.8 . . . .

800426 17 8 12.4 . . . .
800427 17 8 16.5 . . . .
800428 24 4 27.0 ....
800429 24 3 27.0 . . . .

800430 23 6 24.8 ....
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800501 21 8 15.9
800502 26 7 24.8
800503 26 11 15.9
800504 27 7 21 .9

800505 28 11 23.0
800506 28 12 24.5
800507 23 11 25.3
800508 16 2 29.1
800509 22 21 .5
800510 28 12 23.6
800511 24 1 1 10.0
800512 24 12 18.4
800513 23 8 23.6
800514 23 3 26.7
800515 22 12 15.9
800516 19 11 2.2
800517 17 13 6.6
800518 18 12 13.2
800519 22 8 21.5
800520 25 9 18.6
800521 26 8 24.4
800522 26 11 23.7
800523 27 1 1 25.6
800524 27 14 20.2
800525 34 19 22.5
800526 32 18 22.2
800527 29 19 17.7
800528 30 17 19.0
800529 31 19 22.9
800530 27 14 30.2
800531 26 15 7.6
800601 29 18 20.4
800602 30 22 25.6
800603 33 17 25.3
800604 31 22 20.3
800605 34 23 28.7
800606 34 24 21 .5
800607 31 23 23.5
800608 23 13 26.0
800609 27 13 • 28.7
800610 30 13 29.6
800611 32 15 29.3
800612 32 21 18.5
800613 36 23 27.5
800614 38 23 28.9
800615 34 22 29.0
800616 27 18 19.3
800617 28 13 29.4
800618 32 18 28.4
800619 30 21 23.2
800620 23 14 10.6
800621 28 13 25.3
800622 32 17 25.9
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800623 33 18 29.4
800624 34 19 28.5
800625 36 22 26.4
800626 36 25 28.1
800627 43 26 28.1
800628 37 23 27.1
800629 33 16 29.5
800630 43 19 27.9
800701 40 27 27.7
800702 34 19 22.7
800703 32 19 23.3
800704 39 23 26.9
800705 38 26 25.1
800706 40 27 29.0
800707 40 27 29.1
800708 40 28 2 8.3
800709 42 28 25.2
800710 43 27 27.9
800711 43 26 28.2
800712 40 24 27.2
800713 42 26 28.3
800714 43 28 28.3
800715 42 27 28.3
800716 38 27 28.7
800717 42 23 25.2
800718 39 28 17.8
800719 42 24 27.2
800720 41 24 18.2
800721 32 21 21 .3
800722 31 17 29.2
800723 33 14 27.7
800724 38 18 27.4
800725 34 22 7.9
800726 32 18 24.9
800727 33 15 26. 1

800728 41 19 26.6
800729 42 21 26.8
800730 42 28 25.5
800731 37 24 16.4
800801 41 24 25.9
800802 37 26 20.5
800803 41 20 26.2
800804 36 21 15.1
800805 34 20 10.7
800806 36 21 24.9
800807 38 27 26. 1

800808 38 26 26.2
800809 38 26 25.0
800810 39 26 22.8
800811 32 19 24.6
800812 37 20 22.3
800813 38 22 23.8
800814 35 22 7.3
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800815 27 21 6.4
800816 34 22 18.9
800817 32 21 20.2
800818 36 22 24.7
800819 36 25 23.9
800820 33 27 16.9
800821 32 14 24.6
800822 32 17 16.3
800823 32 16 23.8
800824 38 22 23.4
800825 39 23 23.5
800826 39 21 23.5
800827 33 19 16.2
800828 34 18 14.8
800829 36 21 22.7
800830 36 23 16.3
800831 36 20 19.5
800901 29 17 22.8
800902 34 17 23.0
800903 36 21 22.5
800904 33 22 20.0
800905 37 22 21.3
800906 37 22 20.2
800907 35 23 15.4
800908 36 24 19.5
800909 29 18 20.1
800910 26 12 17.5
800911 33 17 9.9
800912 37 24 20.5
800913 31 19 20.7
800914 24 15 15.7
800915 27 16 9.4
810526 27 12 26.2
810527 27 18 16.6
810528 24 18 6.9
810529 28 17 21.5
810530 26 17 24.6
810531 26 10 27.9
810601 29 10 27.9
810602 29 18 21.0
810603 28 18 23.8
810604 24 18 10.9
810605 30 18 25.5
810606 31 21 26.5
810607 33 20 25.8
810608 36 23 26.7
810609 36 23 26.2
810610 32 19 19.8
810611 24 14 10.5
810612 32 18 26.3
810613 31 23 21 .2
810614 32 24 16.0
810615 29 14 14.1



70

810616 25 11 30.8
810617 29 15 29.8 ____
810618 26 18 16.4 ____
810619 29 14 23.4 -__-
810620 31 19 18.1 ____
810621 30 17 17.9 _

810622 25 18 10.2 ____
810623 33 19 25.5
810624 36 25 28.1 ____
810625 32 21 28.5 ____
810626 28 19 8.3 ____
810627 32 18 18.4 __-_
810628 33 23 28.2 ____
810629 32 21 18.3 ____
810630 27 21 15.1
810701 29 19 22.4 ____
810702 31 21 18.6 10.0
810703 28 21 11 .6 8.0
810704 29 21 15.7 8.0
810705 31 20 26.4 14.7
810706 31 20 27.0 13.1
810707 31 21 24.5 16.4
810708 33 23 24.9 16.2
810709 34 21 27.8 16.4
810710 35 23 28.8 16.2
810711 37 26 28.2 15.5
810712 37 27 27.5 8.5
810713 36 26 27.6 16.7
810714 38 26 26.8 13.9
810715 35 25 23.3 12.6
810716 33 24 23.3 12.9
810717 31 22 15.2 8.3
810718 29 22 10.7 5.1
810719 32 23 18.6 12.3
810720 32 22 20.2 10.8
810721 30 18 16.4 7.5
810722 29 20 17.4 5.7
810723 31 22 24.3 11.6
810724 30 21 9.0 3.4
810725 29 21 21.4 10.3
810726 26 20 13.9 7.0
810727 27 19 13.6 5.4
810728 26 16 8.5 2.9
810729 27 15 11.5 6.7
810730 30 19 16.2 10.0
810731 31 21 18.4 6.5
810801 34 22 25.1 13.9
810802 32 21 20.0 12.4
810803 33 22 25.2 13.1
810804 35 22 25.5 13.4
810805 34 21 22.8 11.1
810806 30 21 9.1 3.1
810807 28 18 26.2 10.3
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810808 30 16 24.9 10.0
810809 30 19 21.1 8.2
810810 27 16 23.6 10.1
810811 28 14 25.4 11.1
810812 29 15 24.4 10.5
810813 28 21 7.9 3.4
810814 34 24 23.8 11 .8

810815 32 22 16.5 7.7
810816 28 21 20.5 9.3
810817 23 17 14.8 7.0
810818 24 13 23.3 9.8
810819 26 12 23.6 7.8
810820 27 11 24.6 11 .6

810821 29 12 24.6 11.4
810822 31 14 23.8 10.6
810823 26 20 7.1 4.3
810824 31 17 21 .3 11.0
810825 29 22 7.2 2.6
810826 28 18 17.4 9.5
810827 26 18 12.4 6.5
810828 27 15 14.5 7.5
810829 32 16 22.8 11 .8

810830 36 24 18.2 7.8
810831 31 21 17.7 11.0
810901 24 15 21 .8 9.3
810902 27 11 22.0 10.3
810903 31 15 15.6 7.7
81 0904 27 17 15.6 ____
810905 31 19 18.8 ____
810906 27 21 4.6 __—
810907 26 19 20.0 —

810908 28 11 22.3 -___
810909 30 1

1

22.2 _-__
810910 31 14 21.7 ____
810911 31 20 12.3 ____
810912 30 14 19.9 ____
810913 32 13 19.0 — __
810914 28 18 19.4 ____
810915 24 13 17.5 — __
810916 18 11 17.4 ____
810917 18 4 19.4 __——
810918 23 2 20.4 ____
810919 29 11 20.3 --__
810920 31 15 19.8 -___
810921 28 14 17.2 ——__
810922 23 14 17.0 —— __
810923 32 14 14.9 _ ___
810924 26 19 4.4 _ _ __
820520 26 16 14.1 ana
820521 23 13 20.9 — — — —

820522 21 12 16.9 ____
820523 24 12 23.1 — — __
820524 22 16 9.2 ____
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820525 23 17 13-7
820526 21 12 12.7
820527 27 10 28.1
820528 27 18 15.5
820529 27 16 22.9
820530 26 15 17.6
820531 22 13 14.3
820601 21 5 28.4 12.0
820602 18 12 10.8 3.7
820603 18 12 7.5 3.2
820604 21 13 14.3 7.4
820605 23 12 21 .3 9.4
820606 31 20 18.7 10.3
820607 28 12 25.5
820608 32 19 20.5
820609 28 17 24.8
820610 24 8 29.1 12.9
820611 22 14 11 .9 3.7
820612 26 14 22.9 11.5
820613 27 15 16.7 8.1
820614 30 18 13.8 6.5
820615 28 17 21.5 6.6
820616 24 13 29.7 13.6
820617 29 13 21 .7 9.5
820618 24 18 17.6 7.5
820619 26 13 26.7 12.5
820620 29 16 27.2 11 .6

820621 30 14 21 .7 9.1
820622 28 14 28.0 13.0
820623 27 17 16.5 7.2
820624 29 18 17.7 8.5
820625 27 19 19.9 8.3
820626 28 17 22.0 10.3
820627 26 19 13.8 5.4
820628 31 19 24.6 10.4
820629 34 19 26.6 14.9
820630 29 22 18.7 10.3
820701 26 20 11 .2 6.9
820702 34 21 25.5 14.6
820703 37 22 28.7 15.4
820704 36 24 28.2 15.5
820705 33 24 21 .9 10.3
820706 32 22 24.8 10.5
820707 31 15 18.0 10.4
820708 31 17 20.5 7.2
820709 30 21 21 .7 11.2
820710 28 19 22.7 12.5
820711 31 17 28.5 14.7
820712 32 17 26.4 11.5
820713 33 20 22.0 __ —

_

820714 33 21 26.7 -___
820715 33 22 18.5 ____
820716 36 25 27.2 _
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820717 37 26 26.9
820718 36 26 22.7
820719 34 26 21 .6 9.1
820720 37 24 27.1 12.4
820721 36 22 25.6 12.1
820722 32 22 26.1 12.4
820723 32 19 28.0 12.4
820724 33 21 27.5 11.5
820725 33 21 26.8 11 .5

820726 34 21 25.6
820727 32 22 19.9
820728 29 20 24.9
820729 30 17 20.9
820730 30 19 26.4 11.4
820731 33 14 26.5 12.9
820801 35 21 25.6 13.6
820802 37 24 25.5 13.6
820803 39 26 25.9 13.2
820804 39 22 23.1 12.2
820805 31 22 16.5 9.7
820806 31 23 17.6 9.7
820807 31 23 16.4 9.9
820808 33 21 25.1 15.0
820809 31 18 24.0 13.2
820810 24 15 5.9 3.2
820811 23 14 11 .0 6.9
820812 29 18 13.0 6.1
820813 28 19 24.4 14.9
820814 26 21 5.7 3.4
820815 29 21 17.0 9.5
820816 27 22 7.4 5.8
820817 29 19 20.4 8.9
820818 31 18 22.5 10.5
820819 34 21 22.7 ____
820820 31 22 9.7
820821 30 17 23.3 9.5
820822 36 22 23.2 11 .2
820823 30 19 20.3 10.6
820824 26 19 10.4 2.2
820825 27 12 23.2 10.3
820826 29 18 13.5 6.9
820827 24 19 6.8 4.5
820828 24 18 8.9 6.0
820829 33 21 15.1 8.7
820830 34 20 22.6 11 .6
820831 33 21 13.9 7.8
820901 34 24 18.1 10.0
820902 31 20 23.2 11 .0
820903 32 14 22.7 10.2
820904 33 15 21.8 9.1
820905 32 20 16.2 6.5
820906 26 18 8.2 3.1
820907 27 18 14.4 7.1
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820908 28 19 10.3 3.2
820909 31 21 13.8
820910 34 22 18.7 ____
820911 32 22 15.0 7.4
820912 32 23 15.9 8.1
820913 24 16 11.5 4.7
820914 21 14 5.1 3.3
820915 18 13 12.5 6.5
820916 22 12 8.3 4.6
820917 24 14 4.3 1.7
820918 22 8 20.5 8.9
820919 26 10 15.4 7.3
820920 17 6 19.8 8.4
820921 18 3 20.5 ____
820922 25 4 20.0 -___
820923 26 16 10.3 ____
820924 23 10 19.2 ____
820925 19 6 18.1 ____
820926 21 Jfi. 15,4 — _ _
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ABSTRACT

The production of alfalfa on the Central Great Plains

is often limited by precipitation. The effect of drought can

be alleviated by the use of supplemental irrigation;

however, competition for available resources restrict the

expansion of irrigated agriculture. Through better

understanding of the relationship between yield and water

use, alfalfa production might be done more economically. The

increased use of supplemental irrigation has increased the

need for information on alfalfa water use.

Alfalfa (Medicago sativa L. Cody) was grown with seven

levels of irrigation water to assess the affect of different

irrigation levels on crop yield, water use, water use

efficiency (WUE), stomatal resistance (SR), plant water

potential, and canopy temperature. Canopy temperature was

measured with an infrared thermometer in 1980, 1981, and

1982. In 1981 and 1982, plant water potential and stomatal

resistance were measured with a pressure chamber and a

stomatal porometer, respectively. In each year of the study,

water use was determined from neutron probe measurements



taken to a depth of 3.12 m. The soil type was Eudora silt-

loam. The alfalfa was irrigated (treatments were 0, 25, 50,

75, 100, 125, and 150 mm per irrigation) following each

harvest

.

Alfalfa was harvested four times during each year of

the study (1980, 1981, and 1982) in late May, early July,

early to mid August, and mid September at 1 0% bloom.

When soil water limited yield, a strong linear

correlation existed between yield and water use. Water was a

crucial factor limiting the yield of alfalfa in the drought

year of 1980, and yield was proportional to water use. In

1981 and 1982, environmental conditions were favorable i.

e. , precipitation was more frequent and air temperatures

were lower, than in 1980, and consequently the yield of

rainfed alfalfa was similar to that of the irrigated

alfalfa. Seasonal precipitation amounts in 1981 and 1982

were 2.5 and 2.1 times that received in 1980 (263 mm). The

high potential evapotranspiration (ET) and low yield in

1980 resulted in lower WUE than in either 1981 or 1982. In

all years of the study, WUE declined with irrigation amount.

The average stomatal resistance of alfalfa grown in

1981 and 1982 was 145 s m" 1
and the leaf water potential of

the alfalfa averaged -0.220 MPa, values similar to those

cited in literature for non-water-stressed alfalfa.

In 1982, alfalfa was shown to have lower SR than grain

sorghum ( Sorghum bicolor L. Moench. ) , corn (£e_a. mays L.),

soybean (Glycine jaajj L. Merr.), pinto bean ( Phaseolus



YUlgaris L.), sunflower ( Helianthus annuus L . ) , or pearl

millet ( Pennlsetum amerlcanum L.). A relationship between SR

and ET was not firmly established for the crops; however, SR

was found to be correlated with the difference between the

temperature of crop canopy minus the temperature of the air.


