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1. INTRODUCTION

Consider & sequence qf observatidns generated by a statis-
tical experiment which depends on an unknown parameter, and, in
addition, consider as given that the parsmeter is a random var-
iable but with an unknown distribution. It will usually be
advantzageous to treat the whole sequence of observations as a
single entity rather than to treat each component separastely.

It was with this idea in mind that Robbins (1$55) first dis-
cussed the use of apriori observations to approximate Bayes pro-
cedures, and hence to establish the "asymptotically optimal”
stetistical solutions. 1In that paper Robbins described sﬁch
approximations as "empiricsl Bayes procedures'.

It has been proved that whenever 2 stastistical experiment
comes to us with such a sequence of observstions, the empirical
Bayes approzch offers certain advantages over any other spprosch
whicn %li;er ignores the fact that the unknown parameter is it-

self a rsnd=n vsrieble, or assumes a personal or subjective

probability distribution of the parameter not subject to changs
with experiencs.

Since ths time of Robbins' initial work--which Neyman (1962;
admired as the first breakthrough in statistical thecry during
the pz3st decsde--on the utilization of previous experlieuce for

3

statistical

'J-

nference, the theory of the empirical Bayes
approasch has been so developed that some of the thecries and

solutions are ready for pracitical applicstions.



This report considers some of the discussions by Robbins
(1955, 1963, 196L4), Johns (1957, 1951), Neyman (1962}, Samuel
(1963), and Tainiter (1965). The empirical Bayes approach to
atatistical estimation is described in Section 2, where for sim-
7plicity only discrete random varigbles are ccnsidered. In
Section 3, the "asymptotically optimal" empirical Bayes rules
and their applications for decision problems are considered.

In Section l, the asymptoticslly optimal empirical Bayes approach
to the testing of hypotheses, together with soms examples, is
considered. Section 5 is an extension which deals with some
recent works by Tainiter. The last section is for concluding

remarxs.

2. EMPIRTICAL BAYES APPROACH TO
STATISTIC ESTIMATION

2.1 Bayes Estimator with Apriori Distribution

Let X be a random variable with a known probability density

function depending on an unknown real parameter A , namely,
plx]A) = PrEX = x|A = l].

Suppose A is itself & random variable with apriori distribution

function
G(r) = Pr[A < 2],

then the marginal p.d.f. of X is given by



Pa(x) = Pr[X = xJ={ plzjn)ac(r). | (2.1)
A

If mean sguare errcr is adopted as the measurement of accuracy,
then the expected squared devistion of any estimator of /A of

the form ‘f(x);is

I

E[Y(x) -A]% = E{E[(Y () -A)3A = 4]} (2.2)

n

B{ZY (0 - MZp(xin)
= [ Zo&Inlyo - AT
= 2%1; p(xll}[f(x) - Kjgda(l).

This quentity attains its minimum if, for each x} the estimator

given by 7’0 = ?}O(X) is such that
1x) = [ plx|)[¥ - 2]%a3(2) = minimum.
f sl - e

But for any fixed x the guantity

I(x) = ngﬁ pdG - QYDI‘L pAdG + f/\ pAZae (2.3)
2
= (YO - JLEEE%)Q pdG + [fphsz - i&LEiffl_
f, pac /A [ pdG
& A

is a minimum w.r.%. lfo when

The minimum value of I{x) is
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Ta(x) = [ o2ag - Js
A

{ pd
/A'
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Hence the Bayes estimator of A corresponding to the apriori dis-
tripvution functiocn G of A is the random varisble ?JG(X} defined

T
7
i

);\p(x!).)?xdG(?i.)
[, plx[naci)

Yo(x) = : . (2.4)

The corresponding minimum expected sguare error is

Eir_ir'G(K) -/a_]g = 5 Ig(x) .

x

2.2 Empirical Distribution Functicn

If the apriori distributicn function G is known, ihen &jG
as defined by (2.4) can ve conputed. Housver, aven when T may
be assumed to exist, it is usuzlly unknown to the experimenter,
and hernce ‘fG cannot be ccomputed,

Now, suppose that the problem of estimeting /N from an

observed velue of X occurs repestedly and independently. Thexn

let

—
ny
i
Bt

(Kl, Xl) s (lz’ X2) F) a . L ] (ln, Xn) F) . -

denote a sequence of pairs of random variables, each palir being
inderendent of all the other pairs. The conditionsl distribu-
tion of x, glwven %k, is p(x[l). Thus the distribution of x, de-

pends only on A, and for A, = A is given by p(x}l). The process
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{kn} is e sequence of independent, identically distributed
random variables having s common apriori distribution G defined
on A.

If it ;s desired to estimate an unkmown A, from an observed
X, &nd if the previous values Kl’ R2, 2 B N Kn—l are knovn,
then we can form the empiricsl distribution function based on'

the n-1 ind

[ 1

pendent trials to te

m

() number of terms Ny,A,, . . .,A, 1 Which ers <A
Gn_l\?\. = .

n - 1 .
(2.6

Next, replace the unkncwn epriori G in (2.L:) by the empirical

G,.q in (2.6) to obtain

| i~ !
J& p(x|A)ada _;{})

[; p(x1)ae, 1 (1)

tnlx) =

It has been proved, Glivenkc (1333), that as the number of trisis

increases indefinitely, an empirical distribution unifcrmly con-

e

verges to a theoretical distribution with probability 1, i.=.,

Gn_lih) —> G{(A). Therefore under suitable conditions ¢ will

tend to Y., the estimstor of N defined in {2.4).

Iw practice, however, 1t will ke unusual for the pravicus

values;ﬂl,/\g, « + «»Ap_q to be known. In most caeses these
values gre unknown snd the cbservations are limited to the vslues

mi- T ] T, il
of Xys Xoy o v a5 X - -« » . Thus G, 5 is unknown and ?n is

n.‘

E

not cbtalnable. However, it is reasonsble to assume thst the

IHRE My Wby w ow vy K

va v X5 v

re availeble when A, 1s to be esti-

mated. Thersiore for any Tixed X, the empirical relative



frequency distribution is given by

number of terms %y, Xp, . . ., X, which equal x

B, lx) =
n
(2.7)
and tends to Pg 8s n—> oo for any apriorli distribution function

G. This convergence property is used in developing the empirical

Bayes approach which follows.

2.3 Empirical Bayés Approach

The object in this approasch is to observe the xi's, and,
on the basis of these observations, to exhibit an empirical rele-
tive frequency function,and hence to estimate the unknown G and
the value of the Bsyes estimator of A . This, of course, will
depend on the nature of tna p.3.f. p(x[l) and on the clasé of
distributions to which the unknown G is assumed tc belong. To
the second part of this problem Robbins (1955) proposed the
following solution. Find 2 function of X1, Koy o 0 ey X9

and of x = X, say
Valxgs X0, « o oy Zy qix) = Yo(x,) (2.8)

such that Yn(xn) is 8 consistent estimsie of YG(X)' If mo

3
m

=

)
—te
2

tﬁan one such function is availeble, determine the cne wnic
best in some sense {(e.g., the fastest rate of convergence, the
best choice for minimizing the deviation from the estimaior,

etec.). Several examples will be considersd to illustrate the

preceding idesas.



Consider first the Poisson case. That is, consider

plx|A) = e x> 0.

From (2.1), it follows that

pg(x) =JAp(xPL)dG(7t)

= [J"ae-7L AZAG(A) | /x! .
0 |

By (2.l), the Bayes estimator of A is

)’x’e”L At lag(n) / x!
0

‘VG_(X) = —

Pr(x+l)
= (x+1) .
pG(X)
Now, define
p{x+1)
P (x) = ()
pp{x)

(2.9)

numoer of terms KygeoerXy which equal x+1

= (x+1)
number oi terms XysenesXy

Then it can be shown that for any fixed x,

which equal x



1im wn(x) > WG(Q)
n—; oo

with probzbility 1 for any unknown G. - In view of this idea, the
computable quantity Wn(x) can bs used as an estimate of the un-

known A, in the sequence (2.5) in the hope that as n—s O

E[(,—Jn(x) - /\n]2 —— E[QJG(X) - A]2

It is of interest to compare the expected squared deviation
of the empirical Bayes estimator Y, (x) with the ususl maximum

likelihood estimator for the Poisson parameter, say X, for which

5 AV
E(X-A)° = EAEy['ix—n)ziA] = E(A) = f AAG(A)
! ’

Suppose that G has gamma distribution function with density

pb
G'(n) = APl g-hA A, b, h > O.
[ (b)
Then
b b
E(A) = -, var (A) = — .

h

=

From (2.l), the Bayes estimator of A is

{ plx|A)AdG(A)
A

I3VG(X) =

); p(xjA)de(n)

f(e'ﬁ”l)(cxb'le‘m)dx / x!
A

f (e”MX) (eaP~le ™M yan / =1
A



f e-l(l+h} L EEB~L 4
A

where ¢ = o /7 (b). Writing both denominator and numerator as
integrals of gamma densivies gives

- x+b+1
[ (x+b+1) f (1+n) e-l(l+h) b=
A

ar
(l+h)X+b+1 (x+b+1)

Yé(x} +h
F(x*b) f (14h)* e'l(1+h} RX+b—1 ar

(1+0) XL A T (x41)

x + b

1 4+ h )

The expected squared deviation of the empirical Bayes estimator

is then

x+b

R 2
E[(nh) A

E][Yg(xj'-AJE

I!

+b +b
B [E{(L)Z - ant—) +n2f{A]

4 1+h 1+h
- 1 2A 5
= Eﬂr~ - fA4f@ +2hﬁ+b2] - — b\+b)£\2j
L(1+n)€ - 1+h
b
h{l+h)

Thus the relative efficliency is



10

B I
E[; -.AJQ 1. F b

As & second example ccnsider the geometric distribution
p{xfa) = (1 -a2%, =x=0,1, ..., O<A\C<1.
Then (2.1) gives
1
pg(x) = r (1 - Ajafae(n)

s

and {(2.4) yizids

| lf‘(l - A lae ()

Vg(K) =

1 -
)( (1 - A2 %a6(n)
0

4

This suggests that the estimator be definad acs

number of terms X, ..., X, which sre egual to x+1

Y (x) = .

number of terms X3, ..., X, which are equal to x

(830
Note that as the number of earlier observations Xy, %o, .
X,,_1 increases, the estimators such as (2.9) and {2.10} will be
almost as accurate as the estimate VG which requires complete
#nowledze of the apriori distribution G. Further, only ons

empirical Bayes estimator of A, has been studied for each of the

two examples discussed above while rmore than one such estimator



1d

mey exist for each distribution. The géih in precision prcduced
'by the emplirical Bayes apprcach over the estimate from any other
procedure depends upon the nature of G and can be considerable.
Most of the ideas discussed in this section are for dis-
crete random variables; however, almost all the rgsults can be
generalized to the continuous cases. Also, the discussion has
béen concerned only withrthe second part of the problem, i.e.,
cbtaining an approximate value of an empirical Bayes estimate of
An. The first part of the provlem, obtaining an appro;imation
to the unknown G, still =waits 5 satisfactory soluticn. To pure
Bayesians G will always be known by introspection, and to pure
non-Bayesians G will not even exist. Thus to these individuals
this question does not exist. Taking the position that G exists
but always remains unknown, Robbins (196l;) prssented a pecssible
way—a special case of the "minimum distance" method of
J. Wolfowitz—for constructing =n empirical zpproximation to

the unknown G.

3. EMPIRICAL BAYES APFKRCACH TO STATISTICAL
DECISION PHOBLEMS

The empirical Bayes approzch 1s applicable to decision
problems for which repeated and independent observations of a
random variable, whose distribution depends upon a parsmeter
with a fixed but unknown apriocri distribution, are available.
Not 81l decision problems come to us with such a sequence, but,

when they do, the empiricsl Bayes approach offers certain
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advantages over any other apprcach which ignores the existencs

of the apriori distribution subject to change with experience.

3.1 Notstion

Consider an observable random varisble x Qefined in & space
X on which ag-finite measure p is defined. Given A (real paresm-
eter), x has conditionsl p.d.f. f5 with respect to p. The param-
eter A is defined in A. Further, A has an apriori distribution
G which may or may not be known to us. Let A denote an action
apace with generic element a, Let L[a, hj 2 0 represent the

loss in teking action a when the parameter is A.

3.2 Bayes Decision Function: Known G

Consider a decision function t defined on X and with values
in A, such that for any x the corresponding action t(x) will be
taken, and heﬁce incur the loss L[t(x), l]. For any t it follows
that the expected loss is given by

me)=YL%(Llf()d().
) [t(x ‘J alxld, (x

Further, the overall expected loss (i.e., Bayes risk relative

to G) is
Mma)zfmmxmmm. (3.1)
A
Let

Fola, x) = I—L[a, K]fk(x)dG(l), (3.2)
A 5
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then (3.1) can be written

R(t, @) =ff Llt(x), ﬂfl(x)dp{x)dc;(x)
AKX T

Lﬁ L[t(x), "A_]fl(x)d(}(_l)dp(x)

= [ Folt(x), xayx)
. -

1l

Assume that there exists a decision,functibn tG such that
for every x,
Foltelx), x) = min.ﬁG(a, x) , (3.3)
a

then for any decision function t,

R(tg, 6) = j min fg(a, xd (x) € R(t, G) .
£ A '

Defining
R(G) = R(tg, G) = LQ’G(‘CG(X), x) 4, (x)
implies that

R(G) = min R(t, G) . (3.4)
t
Thus decision function ty satisfying (3.3) minimizes the Bayes
risk (3.1) and is called the Bayes decision function relative to

G. IT G is known, tG is available and the minirmum possible

‘Bayes risk R(G) is attainable.



1y

3.3 Empirical Bayes Decision Procedure

Since G is assumad to exist, R(t, G) is an sppropriate
criterion for measuring the psrformance of any decision function
t. Also, since G is assumed to be unknown, te 1s not directly
avellshle. _Therefore a method 1s needed for determining R(G)
in (3.) when G is unknown. To find a solutibn, consider an.

experiment which deals with a sequence of pairs of rendom vari-

ables as in (2.5), i.e.,
(?\-1, Xl)’ (7‘-2: ng)’ LI ()Ll'l’ 3%-1) s e e e

The conditional p.d.f. of X, given that Kn = A is fl' The ob-
servations are limited to the values of Xis Xos = v ey Kpy o0 e s
It is assumed that at the time when the decision about ln is to

be made, the values of =, Z,, . . ., X, are known. This sug-

gests that the decision about A, is to be based on a function

of Xy, X5, - « ., X, 7 and %, = x of the form

to(x) = thlxq, x5, « .+, Xpo7:%). (3.5)

Taking action tn(xn) € A will incur the loss L[}n(xn), Kn].

Since the successive terms 1in the séquence are independent and
with the same structure, it seems reasonable to use a fixed deci-
sion funétion t for each n. The reason for using tn instead of

a fixed t ig that as n increszses, the sample points X1s Xp,

o e ey X will contain more information egbout the unknown G.

Thus for large n, t, will be close to the optimal but unknown tg-

Suppose an "empirical decision procedure™ is defined to be



£

a sequence T = {tn} of the form (3.5) with values defined inr
action space A. Then for a given T, the expected loss assceci-

ated with t, € T for the decision about A, given %7, X5, . . .,

. is

"

R (t, G)

J;/; AL WECH l]fl(x)dG(k)dHFx) |

Lﬁg(tn(x), x)d,(x) .

1l

The overall expected loss for T is
Ry(T, @) = L{Eﬁe(tn('x}, x) d, (%) (3.6)

where the symbol x plays the role of a dummy variable of inte-
gration and not a random variable, and E denotes expectation
with respect to the n-1 independent apriori random variables
Xys Xps o o« s X which have the common p.d.f. with respect

to ¢ on X given by
£5(x) ='[Af7t(x)dG(l) : (3.7)

Now, from (3.4) and {3.6) it is obvious that Rn(T, G) > R(G).
Before proceeding with further discussion about R (T, G),
we now quote a definition credited to Robbins (196L).

DEFINITION: T is said to be esymptotically optimal (a.o.)

relative to G if
lim  RL(T, G) = R(G). - (3.8)
N—a 5>
Now the problem i1s to find the emplirical decision sequence T,

which for large n is in some sense "best" relative to the
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unknown G. To answer a part of this-question, it 1s necessary
tc teke a further look at some generalities on asymptotically
optimel. Rewriting (3.8) we have, for T to be a.o. relative to
G, the following condition

Lim XEﬁG(tn(x), x)d,(x) = ];ﬁG(tG(x), x)d,(x), (3.9)
where {Eﬁé(tn(x), x)} is a sequence of-measuring functions ard
X € X is a set of random variables on which a O -finite measure
p is defined. In order to prove T = {tn} is a.0. relative to
G, by Lebesgue's theorem on dominated convergence it suffices
to prove the following equations

(2) 1im Efg(t (x), x) = ggltz(x), x)

n—s>oco

() EFs(tn(x), x) € H(x) (all n)

wheres
j H(x)a,(x) < oo . | (3.10)
X

The main problem is (a); we shall summarily dispose of (b) by

assuming
(c) fL(K)dG(?\) < co,
A

where we have set

0 € L(A) = sup Lfa, 2] < o=

a

By letting

H{x) =£\L(l)fk(x}d(}{?x)2 0,
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we have by (3.2) for any T,
Bolty(x), x) £ H(x) (all n) (3.11)

and from (3.10),

L H(x)d,(x) LLm L{ £ (), (x)46(2)

LL(l)dG(l)<w 5 (3.12)

and (3.11) and (3.12) imply that (t) holds. Moreover, from
(3.12), it follows that H(x) < ™, and hence to prove that (a)

holds it will suffice to prove that

(d) P 1lim ﬂG(tn(x), x] = Q’G(tG(x), x)
Nn-s 6o .

where P 1lim means limit in probability. Therefore, (c) and (d)
insure that T 1s a.o. relative to G.

Let ap be an arbitrary fixed element of A and define
Agla, x) =L [L[a, m:] - Liag, ?x]:‘lfx(x) dg(a),
and
Lo(x) = LLE&O’ ?&]fh(x)dG(?\.) .
so that under (c) we have
ZAG{E, x) =J;\L[a, ljf;t(x) aG(i) -iL a9, R]f}k(x)d(}(l)
= fale, x) - Lo(x)

which 1s equivalent to
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Fola, x) = Lo(x) + 8(a, x) . -~ (3.13)

Supbose we can find a seguence of functions

An(a, x) =An(xl, Eoy » = vy Ky §§ Gy 3) (3.1&)
such that
P 1im sup A.n(a, x) -AG(a, x}! = 0, (3.25)
n->oo &

Let
tn(x) = tp(xy, « « «, X,_1; X) = any element a € A (3.16)
such that for €,> O,

Aple, x) £ inf A (a8, x) + & .
a o

Then by (3.3) and (3.13),
0 < Aglty (x), x) - 85(t,(x), x) (3.17)
=[86(ta(x), ) - AL(t(0), x)]

+ [Bnlalx), %) - Apltgin, ]

* [An(tg(x), x) - Z_‘.G(tG(X), x)]

From (3.15) we see that given eanny € >0, n can be chosen such
that the right-hand side cf (3.17) will be less than or equal
to £_+€n + €; thus
P lim BDglt,(x), x) = Agltg(x), x)
n—> o

which by (2.13) implies (d). The foregoing can be summed up in
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the follcwing theorem.

THEOKZM 3.1: Let G be such that f L(A)dG(A) < oo holds,
1et.An(a, x) be a sequence of functioné\of the form (3.1lL) and
such that (3.15) holds, and define T = {tn} by (3.16). Then T
is a.o0., relative to G.

When the sction space A is finite; especially when A is 2
set of two elemsnts, the following corollary, due to Robbins

(196l), provides a solution ¢ the hypothesis testing problem.

COROLLARY 3.1: Let & = {s, a)), 1ot G be such that
fItas, Mae) < oo, (i=0, 1)

and let A (x)] =8 (x5, + o 5 X _22%) be suck that
n s R E n-1°~

P lim Ap(x) =Ag(x) = [ [Llag,h) - Tlag,Ar{x)as(r).
nsco 2\ -
(3.18)
Define

tn(XJ = apg., it an(x) =z 0,

= aj, Qn(x) < 0.

Then T = {t
1

n} is a.0, relative to G.

3.4 Application--Poisson Case

Consider the problem of testing a one-side null hypcthesis

HotA £ At against the alternstive hypothesis Hy:A > A% f
value of a Polsson parameter A. Then A = {ai, i=0, 1} where
éi denotes the action "accept Hi" and
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e'lhx
fh(x)z ] (;\->O;K:031:21"')3
x!

where a ¢ -Tinite measure p 1s derined on X. Let the loss func-

ticns be

b

0 if Ag ¥,
L[%O, 11 = loss in teking action ag = .
- A-AF 1P A 2> AR,

AF_A If A S AR,
L[al, K] = loss in teking action a; = }
0 if A2 W

Thus

Lley, 2] - Lfeg, Al = 2% -2

and from (3.18),

Ag(x) =f Ly, 2] - L[5y, ?x]]fl(x)d(}(?x)
A

e~ M\X ,
= fw(?\* - A) dg(A)
0 x! )

g—ArX e‘hlx+l
= A ag(a} - {x+1) N, - W
0 x! 0 (x+1)!
Now by (3.7),

e~ MX
Fulx) = Pl. =% 1= dGg(xr) ,
a [x; = x] IO - (1)

so that we can write

Aglx) = A¥r5(x) = (x + 1)f (x + 1). (3.19)

Define



8lx, 7) 3 if % =,

i

0 it x # v,

and consider the expression

n
U, (x) = Op(x9, « « +, ® %) = e ;;; éﬂx, xj).
Noting that
E 6(x, xj) = P[xj & x] = falx).
By the strong lsw of large numbers,
P 1im Un(x) = fglx) (=0, 1, &, s+ 4 i)« (3.22)

n-—yoe

(3.19) and (3.20) together suggest the following equation.

A (x) = A¥0 (%) - (x + 1)UL (x + 1). (3.21)
It follows that for x =0, 1, 2, . . .,

P lim Ap(x) = A¥rg(x) - (x+1)fg(x+l) = Ba(x).

n-3 6o

Set

Il

t(x) = ag if A¥UL(x) - (x+1)Un(x+1) > O,

1

ay otherwise.

Then by the Corollary 3.1, T is a.o. relative to every G such
that

Coes
[ AdG (L) € oo .
6]
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3.5 Remarks

The relation (3.19) was basie to the construction of (3.21)
of a sequence Ap(x) satisfying (3.18). This special case for
the Poisson distribution,aﬁd the loss structure specified illus-
trates the application of Corollary 3.1. Johns (1961), Robbins
(1963), and Saruel (1963) discuss the application of this
Corollary to more general loss models and tc many of the most
common discrete and continuous parametric distributions of
statistics.

When an a.o. T does not exist as may be the case,.or when
it does exist but Rn{T, G) converges to R(G) too slowly, the
empirical Bayes approscn is still useful under certain circum-
stances by using a T which is "asymptotically sutminimax",

This procedure was first established by Robbins (196lL) and

developed by R. Cogburn, Ssmuel and Robbins.

Ly, EMPIRICAL BAYES APPROACH TO
TESTING HYPOTHESES

4.1 Testing Simple Hypotheses: Xnown p

Let a parameter 2», representing the unknown "state of
Neture" in some statisticsl experiment, take only two values
labeled "O" and "1". Now suppose an observable sequence of
random variables x & X has a specified probebility distribution

Pl= 1e8es
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I
o
-

Py, when A
By = (L.1)
Pl’ when A

It
o

For every single observation of X, it is required to take
one of the two sctions ag and 21, 8g being the more appropriate
Wwhen A = 0, and ay the more appropriate when A = 1, Again let
L[i, 1] denote the loss incurred when action a; is taken; sup-

1

pose that

where cy and ¢y are given positive constants.

The choice of acticn depends upon a decision function
t = t(x) with values O and 1 defined on the sample space X. Let
]L[f(x), h] represent the loss function associated with every

decision; it c2n be written as

Lt(x), 1] = Lo, 1] - t(x){L[o, AN 1]} (L.2)

Llo, 2] - t(x)s(n),
where
Vo ' r B
p(xj = Lfo, x] - L[, al.

Suppose A 1s 1itself 2 random variable with apriorl distribution

function
P[A=1]= p; _ .
" 0L p £1. (L.3)
pfr=01=1-p, -
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For any t it follows that the overall expected loss (i.e., Baves

risk relative to G) is

R(t, B) = {2, 2]), (1)

where E denotes expectation w.r.t., the joint distribution of the

pair of random variables (A, x). Using (4.2) we can write
R(t, p) = E{L[t(x), K]} (L4.5)
E{L[O,?J}— E[t(x)L[o,h] - tfx>L[1,lj}

pey - poy [ B(x)aPy(x) + (1-pleg |

n

it

t(x}PO(X)-

X
The family of distributions P, of x can be regarded in terms of
their p.d.f. f3 w.r.t. some measure p on X, so that (l.5) can

be written

R(t,p) = Pcl—Pclj;t(x)fl(X)dp(x)+(1—P)co};t(x)fo(x)dp(x)
(4.6)
= pey -/X t(x)¥p(x)d, (%)
where
¥o(x) = peyfy(x) - (1-plegfy(x). (4.7)

Since t(x) takes only the values O and 1, it is clear that for

L

any given p, R(t, p) is minimized by using the decision function

tD defined bty

1

t,(x) = 1, if Yo(x) 2 0, (L.8)

O otherwise.
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The term tp(x) ig called a Bayes decisicon function corresponding

to a given p. The minimum velue of R(t, p) being

N _ Jw e o Bt g tal. O
R(p) = min R(t,0) = Rlt,,8) = e3p pr(x), a,(x),  (1.9)

Where

[‘f’p(x)]+ [lyp(x)] i D’p(x)] >0,

» i ::. .
0 ir [y (0] <o
R(p) is called the Bayes envelope function. When p is known

we can use tp and thereby incur the minimum possible Bayes risk

R(p}.

li.2 Testing Simple Hypothesis:Unknown p

If the apriori distribution function p 1s unknown, as is
usually the case, theh.gp is not a computable function and tp
is not directiy available. Suppose, however, that the same de-
cision problem occurs repeatedly and independently. Then a

sequence of independent pairs of random variables can bs written

by
(A, x9), (A, %), o 0 oy (Mg, %), - v (L.10)

which has =211 the properties of (2.5). Let the apriori distri-

buticn function be
P(Rn=1)=p, P(A_ =0) =1 - p,

where p is unknown.



Although the values X1, Xo, « o ., X, q 8re supposed to be
" independent of Kn, these observations_do contain useful informa-
tion gbout p; this suggests the use of epriori observations in
making decision about ln' Now, consider as a decision procedure
for the sequence (L.10) any sequence T = {tn) of function

t with values C and 1; in using T we

= tn(XI, X2, . - .3 Xn)

th

n

take action gy, on the n component and incur the loss L[tn,A;].

In view of (4.2) and (4.lL), the Bayes risk is

E{L] by, xn]} = E{L[O,Knj - e (1)

= pey - E[tnb(Kn)] ,

R(t,,p)

where E denotes expectation w.r.t. all the random varisbles
Xis Xps o+ o+ o5 X and ln' The independent random variables

19 Fos o v oes Xy o0 e have the common marginal density funec-

tion w.r.t. p on X which is given by (cf. (3.7))

X

£,(x) = pfy(x) + (1 - p)fy(x). (h.12)
It follows that

E[tyb(ry)] = oE [t b(ay) [y, = i]+ (1—p)E[£nb(xn)!hn_: o],

- . _ 17 o gl -5
= peyEftn|hy = 1] - (1-R)egE [5,]2, = 0],
n
= pclff"“’“) Bt (X)) . . fo{xy )T (xp)a, x)

8 G dp(xn)
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n

—_ ‘ 1

_.y. . 'thn:p(xl’ PR fp(xn_l)[pclfl(xn)
x

- (1-plegfy(x)ja ™,

where

n _ f
dp = dpf*l}ép(x2) dp(xn).
We then have
, n-1
Bltp(r,)] =)[f. . f 6,8 (x)
X

P

where yp(x) is defined by (L.7).
Suppose there exists a sequence of

pn(xl, Xos .'., Xn)'s 1l such thst for

lim P{ipn -pl> 6]_= .
Nn—=>8
Define
tn(xy, SRIRE xn) = tpn(xn) =1
=0
whers ?b{x) is a continuous function of

have for any x that

S S E RO L Ml EREL W EY

(4.13)

functions 0 < Pp

every fixed x and &€ > 0O,

(4.14)

A
L

1f Yy (x) > 0, (4.15)

otherwise,

p. Then by {L.1)) we
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n-1 n-1
e -
SI L] oftnfp(X]-) - . . fp(yh-l) dp‘
p.4

= P["fpn(x) > bjmel if Y (x) = 0,

—>0 otherwise,
and n—>» oo . Hence

n-1

[J : .[tnfp(xl) P NSO L i | €Y

X

— [¥, (=] - (4.16)

Further, the absolute value of the left-hand side of (L.16) is

no greater than lq}p(x) [, end by (L4.7) we have

L["I)p(x)ldp(x) < pey + (1-pleg< oo (4.17)

Thus by Lebesgue's theorem of dominated convergence, it follows

from (l.16) and (4.17) that

n-1
: "]
HJ;ILL [f. - [ tnfp(x1) « o« fplxg 1), W00 a,(0)
+
) fx [Yptx)] a2,
or

lin E[t b(A )] = ([q} T4 NEE (14.18)
n— o0 - o

From (4.9) and (L.11) it follows that

4 : b}
lim R(%t,,p) = 1im {pcl - E[tnb(ln}:]} p
n—%oo n->-co
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I

4 + .
per - f [H0]" 4yt
= R(p) .

go that T = {tn} is asymptoticelly optimal in the sense that

lim E(tn, p) = R{p).
nN— oo

The remaining problem is to exhibit a sequencea{pn} satisfy-
ing (4.14). Let h(x) be any unbiased estimator of
ME[n(x)[2] = A) such that

j (X)L (x)d {x) = A .
X
Define
~ 1 n
pn(xl, .« e g xn) = - B hix;) . (.19}
n i=1

Then since the x;'s are Independent and identically distributed

random varisbles with
Blh(x)] = EENGx)2]] =[] = v, (4.20)

it follows that

PRim T, =p]=1. (L.21)
n-—=>oo

The lim h(x)/n—>0 for any fixed x, =so that (4.21) heolds as
=y o2 '
well for the sequence.{ﬁé(xl, -« .+, X _q'%}t 85 for (e 1) .

Moreover, &any sequence-{%ﬁj satisfying (L.1l4) ecen without loss
of generality be restricted to values between O and 1, by

defining
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P, =0 if <O, C (h.22)

We summarize these results as follows, In testing simple
hypotheses in the sequential situation (4.10) where p is unknown,
the decision function T = {tn} defined by (l.15) is asymptotic-
ally optimal. Moreover, {pn may be any sequence 0 £ p, <€ 1

satisfying (L.1L).

LL.3 Testing Composite Hypotheses: Known G

The decision funetion T derived for testing simple hypoth-
eses can be generalized to the testing ol composite hypotheses.
Here the parameter A may be any element of a general parameter
space A; there are still two actions &g and 81, the loss func-
tion being L[ﬁ, 1] for ay and L[l, Kj for ay. Again, the deci-
sion function t(x) still has wvalues O and 1 defined on the sample

space X, When x is observed we take zction a;

t(x) and thereby

incur the loss L[t(x), K]. Moreover, A is still a random vari-

able with apriori but unknown distribution function G such that
/L[t(x), Aae(r) < 0. (t{x) = 0.1) (4.23)
4\

The Bayes risk of any decision function t is

sfefetx, 2]) . (14.2L)
e{vlo, 2] - t(x)b(?\)}

R(t, G)

1"



a1

= [ L[o, AJaG(R) - E[t(X)b(l)],

A
where E denotes expectation w.r.t. the Joint distribution of
A snd x. Suppose f, 1s still defined to be the density function
of x w.r.t. some measure u as it was in (L.1), then (L4.24) can

be written

I

R(t,0) fL[o,x]aem _ [ft(x)'bmfl(x)aemdp(x) (). 25)
A Z A

I

L[O,G]- };t(x) ?G(x)dp(x),
where
rfo, ¢] = l;IJb, AJac(n)
and |
Yo (x) =£b(l)fh(x)dG(l) . | (L. 26)

It follows that for any given G, R(t, G) is minimized by set-

ting t to be

te(x) =1 if ¥a(x) > 0,

0 otherwise.

As it was in (4.8), ty(x} 1s called a Bayes decision function

corresponding to a given G. The minimum value of R(t, G) is

R(G)

min R(t, G) = R(tg, G)

[
L[O: G] - [ [%}G(X)jﬂl-dp(x‘)
X

R(G) is czlled the Bayes envelope function. If G is knOWn,{VG



is availsble and the minirn possible Bayes rish is attainsble,

L.y Testing Composite Hypotheses: Unknown G

Suppose that we arse in 2 repetitive situation in which we
confront the same problem {with varying A and x) over and over

)
Xn' &

again, then we have a sequence (Ay, %), (%p, x5),. . ., (A,
. « « ©0f independent pairs of random variables. A sequentisl
decision procedure T = {th for the sequence consists of a

sequence of 0, 1 valued functions t, = t. (% , x5, . . ., x,).

For the nth component, the Bayes risk is
_ r >
R(ty, G) = E{LLtn(x_), anJ

L[O, G} - E [tnb(?»n)],

i

where E denotes expectation w.r.t. x;, . . ., x, and Kn. Let

the rendom variables x; have a common marginal density

fG(X) = [\ fK(X) dG(:‘\.)

Then (4.13) generalizes to give

n -
E[tnb(ln)]_ I"‘;‘J tofale) « » o fG(xn_l)‘f"(;(x)dHn

.27
. (4.27)
- - “ %5
j'[(. 5 'j%nkll’ b R xn_l.h,fe(xl)
X x :
n-1=,3 1

where ¢, 1s defined by (l..26),

of the Tform

" -
J

Suppose that a sequence {?n



Wﬂ(xl, o % W xn_l:x) cer. ne found such that for any fixed x,

lim (0, + « o, x__q:x) =Y (x) . {4.28)
n,>oo-¥h 1?2 s T G
Wz than define
tn(xl, i 5 B xn_l) = 1 if Vn(xl, i s 83 vn_lzx);z 0
(L.29)
= 0 otherwise.
It follows that
n-1
~—A— ~ . n-17,.
U T talxg, o xR . Tk 1)@, ()
X .y
(L.30)

= Py (x, « o oy Xy qx) 2 G]YG(xIH-aE,’JG(x)T.

The left side of (L.30) is no grester in absclute value than

]9@(x)i, and by (L.23),

LWC—(") !dp(x) éfx[\ [b(h) [f;\(x)df}(l)dp(x) (4.31)

= f [b(3) [ac(n) < oo,

By Lebesgue's theorem on dominated convergence znd from (L.27),
(L.30), and (L.31), it follows that
- ' +
1im E[t b)) = [ T¥e(0Ta (0 ,
n-—so3 x
s0 that T = {tn} defined by (.22} is s2.o0. in the sense thset
1lim R(tﬂ, G) = R(G) .
n—xoo

1t remains now to exhibit & sequence {yn} satisfying (L.23)},
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i.e., converging to Wb in probability for every fixed x of x,.

The possibility of doing this will dspend on the nature of the

~

Tunction VG and on the cliasz to wnich thes unknown G is assum:zd

%0 belong. We slisll be content here with exhibiting such =

sagusance {?n} for an example which i1s important in applicaticns.

L.5 Application--Kormal Cas

41

+

The Poisson case in Section 3 is an example for tasting
composite hypothesis for discrete cszse. 5 2 second example
consider the normal distribution with variance crz and uanknown
mean A, so that

1 02,2
i l5] = B (x-A) < /20" .

‘P2ﬂ<r2

Ar

The problem is to test the hypothesis HO:K.g A

0]
ct

egein
Hy:A > A¥®, where A is a random varisble with unknown distribu-
tion G on A = (-2, o2) and A¥ is a given constant. Let gy

(i = 0, 1) dencte the action "sccept H;", and suppose the loss

in teking sction ag 1s given by

tfo, 2] =0 if A< A¥
= Kk=R¥ if A > ¥

and the less in taking sction 84 is given by

Lfi, a1=o0 if R > AF
= AF - A If A AT

Since
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v(r) = Lo, A ]- L1, 2] =2 - 2%,
it follows that
e =
‘IJG(x) =j (A - A7)0 (x)aG(A) . (L.32)
: ~ 00
The marginal p.d.f, of x is

£4(x) =£fl(x)dsm; |

so it follcws that

£ralx) = 2 Ejfh(x)dG(h}]
ax

""1

dc(i),

_[2 L) /?G"]
j/\ 3Al

I\J

X-A

end hence
2o (x) = -f (x - V£ (x)as(n)
0" G’ 9 }‘.\}L Qu .
A
From (4.32) we obtain

Yglx)

1

f (x - W) F, (x)d5(A) (4.33)

= (-2 ‘)th(x)dt‘r“\ )’ (x-}) 73 (x)dG (1)

(X—K%)fG(x) +5?2f‘G(x) .

This suggests setting



W;(xl, o ees Xy qiE) = (=T (%, ., X 1X)

2.
+TTg K, e ., Ky 1iX),
and defining T = {tn} by

2
_ Tenlxy, « o s X, 11X) )
Balmiy »w v »y Fg] =3, &8 %, + = AP,

fn(xl, . m w3y xn_lzx)
(4.34)

0, otherwise.

A satisfactory zpproximation to fg end I''y has teen con-
sidered by Robbins (19463} and Samuel (1963; here, we shall only
meke a few remarks about this problem for the general case in
which the random varisble x is continuous. Let

number of terms xq,

e e e
F (xl, « . ey Xy q3X) S are =<

X,,_1 which
n >3

Il

bte the empirical distribution function of Xy, = o e Xg. Choose

a sequence {cn} of positive constants snd define

Folxy,eees Xp_qixte ) -Folxq,...,x,_1ix-¢,)

fn(xl, LR ) }Ln_l:X) =
. 20n

as an approximation to f(x). It follows that
P Aim dnlxyy o o sn Xpoysxl = £plx) (l..35)
n—>co
provided that ¢, ——0, ne, —>» 0o 85 N-3 00, Liwewise, 1if we

define
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Bol 30y wow oy By 3 BRI B o ey Fpyy TGy )

BrlXpsu00, Xpoqix) =
| 28y

a8 an approximation to the derivative_f‘G(x), then

P 1lim gn(xl, 2w my BgapiR) = f'G(x) . (l.36)
n-s o

provided that cn—>0, ncnj——)O as n—% o= and that f*G(x)

exists, i1.e., in some neighborhood of x,
2 ' _
|— f (=] £ BOY ,
2x
where
&H(?\)GG(K) < co. (4.37)

It remains now to show that T = -[tn} defined by (L.3L) is
asymptotically optimal. Notice thst (4.35), (4.36), and (l..33)
together imply (L.28) provided that the condition (l.37) is

verified. Now

so that (l.37) holds provided that

r‘rk{d(}(?x) < oo . _ (L.38)
ol

But (L.38) implies (4.23), so that T = {¢t defined by (L.3L4)
n

is ssymptotically optimal for any G for which {L.38) holds.
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.6 Remsrks

' Suppose that, contrary to our Bayésian assumption, the

paraemeter sequence Aj, Ao, . . ., A . « « 18 not a sequence

n?
of independent and identically distributed random variables
with an unknown apriori distribution, but rather an arbitrary
sequence of unknown constants with values O or 1. The expected
loss on the n'® decision for any decision procedure T = {tn}
where t, = t,(x7, . . ., x,) will depend on the whole pafameter
vector A, = (hl, Aos « « =5 A )(A; =0 or 1). Samuel (1960)
has proved thet if 2. R(p) exists for 0= p < 1, then T still
gas the property of ggproximating tp which is unknown, and if

— R(p) does not exist everywhere, s suitasbly randomized version
%? of T can be used instesd.

The existence and computability of the sequence-{@n} satis-
fying (L.28) is an open question. The binomial distribution,
due to Robbins (1963) and Samuel (1963), is an example for which
{Vn] does not exist. Instesd of trying to approximate to the
function #G, the approximstion tec G itself provides another way
- of finding a solution to the prcblem. Unfortunately, the
theories developed for estimating G so far are still not well
adapted to practical applications,

Again, throughout this section only the existence of a.o.

procasdures have been considered; the rats of convergencs of

R(t

RUt,,, G) to R{(t, G) has been ignored. These and many other

guestions remain to be studied.



S. EXTENSION: SEQUEKTIAL EYPOTHESIS TESTS
FOR STATIONARY PROCESSES

In 196l, Tainiter applied the empirical Bayes procedures
to problems of pulse detection in noisy environments; he con-
cluded that the risk in using the asymptotically optimal se-
quence differed only slightly from the Bayes risk. He also
pointed out thet one of the difficulties in using the.empirical
Bayes procedures wzs that the noise was assumed to be uncofre-
lated. In view of this idea, he extended some of the theories
about empiricsl Bayes procedures to r-dependent'étrictly

stationary processes.

5.1 . Definitions and Notation

Let the observed sequence of random variables be {YnJ:

n=20,1,2, . . .; let B, = B{(Y,, ¥y, « « +, Y,) be generated

by (¥gs « =« =3 Yp) &and Oy = G{¥,,, X . ) be generated by

n+l* -

Y . ¥ . ) for all n2> 0. The following definitions are

n+l’ a -

due to Tainiter (1965).

n’

DEFINITION: The sequence of random variables {Yn} tn=1,
2, «. . « , is said to ve r-dependent if Bn i1s independent of

Coppty TOB E13 B =0, 1, « = ~p Bufey X is independent of

r+1
Yy, Yp4p is independent of ¥y, etc.
We wili furiner require that the sequence {Yn} :n =0, 1,

« « « be strictly stationary 1n the ususl sense.

DEFINITION: The stochsstic process {Yn} tn=20,1, . . .

is said to be marginally strictly stationary if 1=z marginal
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distribution function F(y7,

ity ? - yks) for any s subscripts

<

satisfies F(ykl, .o ey T )= F(yk1+h, Tkyhs = =+ yks+h)’

8

h = o’ l’ 2, L4 - L] -

Suppose the sequence.{Yn}_is marginally strictly stationary
and assume the parameters {Kn} are still a sequence of independ-
ent identically distributed random variables with two possible
values "O" and "1". Let P[ln = 0]'= p and P[Kn = l:1= 1 -p
tor =0, 2a 25 o s » = 598 g(hkl, e e oes Ay ) be the joint

s
density of the corresponding A's, and suppose the distribution
of ¥ is Py if Ay = 0 and Py if A = 1. Let Flkl’ s ey lks
(ykl, e« « o3 i ) be the conditional distribution function of
s :
(Ykl’ .« e ey Yks) given Kkl, « « +5 Ay . Then by the defini-

s
tions given atove we have

; s 1
F(y e e e g y ) = Z FK ERC IR A.k
' =1 7\;{:=O y” s
i
(ykl’ e st)g(lkl’ ] ?\-ksj I
where
s s
L (1-p) ¢ o 9 .

Two actions will be considered; a5 being the more appropriate
when A = 0, and &84 thhe more appropriate when A = 1, To specify

the loss functions, suppose that
2
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Lfo, o] = o, tlo, 1] = cq,
1f1, 0] = ¢, Li1, 1}=o0,"

where cy and cj are given positive constants.

We are reguilired to decide successively forn =1, 2, . . .
on action a, or ay, or, in other-words, to seek a sequence cf
decision functions T = {tn] n=90, 1, . . . which is optimgl in
the sense that it minimizes the Bayes risk. Note that

Y, (n > r+l} depends on (yn_l, s b g yn—r)’ i.e., the decision

gbout A, will depend on y, and conditionally.on (Y 95 « « s

n-r)‘

5.2 Bayes Solution: Known p

Let th(ynrYr) = Fln(Yn[Yn—r: - « «5 Yp-1) denote the con-
ditional distribution function of Yn given Y, 1, + « o5 ¥p_ns
let F(Yn,r) = F(ypeps + + +» ¥p-1) denote the joint distribu-

tion function of (Y s s sy Tpouq), and let g(x,) denote the

n-r?
density of Ap.
Since the loss on any decisicn, say t,» depends on ln and

¥, 2nd 1s conditionally dependent on y - . e Ty (n> r),

n-r’

the Bayes risk is given by

R(tp,p) = )’Y Z [g_ Lo An Py (3,]¥) Jer)ar(y, ) (5.1)
where Y., is the Cartesian product space of the y's.

It can be shown, somewhsat as was done on (L.6), that (5.1)

can be written
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- (1-p)eqt,dPy (3,17, [aF (Y, ) - (5.2)

Without loss of generality we may suppose that the two distribu-
tions Fo(yn[Yr) and Fl(yn]YP) are given in terms of their prob-
ability densities f, fy with respect to some measure p on the

sample space Y, so that

R(tg,p) = (1-plcy - [ I _[(l—p)clfl(srner)_
Lty
s A I
- pcOfO(yn?frljtncply)dpF(Yn,r) 4 (5.3)
which is the function we seek to minimize., Let
Yolvn) = (1-plegfy (3, [¥e) - pegfolyyl¥y) »

then R(ty, p) is minimized by using the decision function

tn(yn) defined by

Llgd =1 if fr'p(yn) =0, (5.4)

0 otherwize.
The corresponding Bayes risk is

R = (opley - [ [f [} e, ) - (5.9)
r 'Y - ,

If p is known, the decision function defined by (5.4) is optimal

and the minimized Bayes risk is attainable.
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£.3 Empirical Bayes Solution: Unkncwn p

The problem is to find a sequence T" = {tn*} of decision
function that is a.o. in the sense that

1im R *(p) = R{p) ,
n—>es

for any unknown p such that 0= p=< 1.
We shall show in a moment how to construct a sequence of
functions 0 < p = P, (¥gs » + +s ¥p) € 1 such that for every

fixed (r+1)-tuple y(l), y(z), . g y(r+l) and € >0,

Pl Polgpe xems Fraporr T95 rurs y{(r+1)) - pl>€]= o.

n>oo0
(5.6)
Assuming this, let
¥p, (Tn) = (1-Pleyfy(y ] ¥.) - proofolyg|Yy)
and define (cf. (5.4))
b, (y,) = 1 if ¥p (Fn) 7 0, (5T

= 0 otherwise,

then the séquence T = {tn?} is asymptoticelly optimal. The
proof is very compliéated and will be omitted; it can be found
in Tainiter (1965).

To exhibit a sequence {pn] satisfying (5.6), let hiy) be

any unbiased estimzter of A such that

f n(y)df(y) =2, (=0, 1),
¥y



';‘;J'l’

where Fl(y} is the conditional distribution of ¥, =y given

" A_ = A. Define
n

n
Os « + o5 Tp) = {n+l)_1 ;E; hiy;) . (5.8)

o

Pl

Since the y's are marginelly identically distrituted with
T
i

E[h{}’i} l

= p, 1t follows that as n—s oo,

[h(YO) + h(Yq) + . e eyt h(Yn)J

> E[n(m)],
(n + 1)

so that

Pliim By =p[=1.
n—ysc

Thus Tor any fixed y(l), e o oy y(r+1}, we have

- R E: h(y(l))——ao as n—>» O , so that convergence still
i=1
holds for ths ssquence

~ (1) r+l
Pn(YO, e s ey yn—r—l’ Vi 3+ o+ ey y( )) .

It follows that 2ny seguence (pn} satisfying (5.5} contin-
ues to5 do so 1f the value 1s restricted to be between O =2nd 31

by defining

o~
= it <
P, 0 if by o,
o~ ~
= 1 =
By if 0 < S 1l 3

- - L
=1 if P, ~ 1.
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To assume {Yn} to be a sequence of stationary prccess is a
modification to the empirical Bayes approach. In scme instances
these assumptions seem to be more realistic than those generally

made.
6. CONCLUSION

In some sequentisgl experiments 1t may be reasonable to
assume thet an apriori probsbility measure actually exists in
the sense that the parameter is distributed acccrding to a cer-
tain specified probability law. Neyman (1962) gave several ex-
amples to illustrate the fact of the existence &and usefulness of
"previous information". In genersl, such information will not
be availsble to the expsrimenter, but the abservable variables
previously selected in the same way from the same population and
under certain circumstances are availlable; these observations do
contain some informaticn about the parsmeter and may be used to
approximate the optimal Bayes solution which coculd be obtained
only if the apriori distribution of the parameter i1s completely
specified.

The utilization of "previous informstion", in other words,
the zpplication of the empirical Bayes approach will offer cer-
tein azdvantages over suny other approach which ignores the exist-
ence cf such informaticn., The gain in precision depends upon
the nature of the uncontrollsble unknown spriori distribution
and may be very impressive.

The empirical Bayes spproasch was first established by
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Robbins (1955)7f0rrestimation problems: since theq, Samuel,
Johns, Godambe, and Tainiter have ccntributed to the development
of this approach. Johns (1957, 1961) has given a géneral dis-
cussion on nonparametric empirical Bayes procedures where the
class of {(conditional) probability-distributions of X is not
restricted to a particular parametric family. Godambe (1965)
worked successfully in the field of empirical Bayes procedures
in sampling finite populations; he slso proved that the ratio-
type estimator for the population total sre "empirical Bayes"
Ww.r.t. squared error as the loss function. Tainiter (1965) gave
a complete analysis of empirical Bayes approach to r-dependent
marginally stationary process. .

Some of the solutions for particular problems are ready for
practical appligations. The following are some examples wﬁere
the empirical Bayes approach seems profitable.

1. Medical Survey. It is qguite reasonable to assume that

the seriousness of a disease can be expressed in terms of a
parameter A, such that the higher the value of A the more serious
the disease. The parameter A for an individuzl cannot be mess-
ured directly, but if the individual is subjected to r-independent
tests and A stands for the probability of a positive result,

then A can be regarded to be a random variable with some unknown
~distribution G. in this model, it seems reasonsbls to assume

that there exists a value A¥ such that an individusl having a
value of A greater than A¥ must be classified as sick. Here

the empirical Bayés decision rule can be used to cleesify each

of the pstients as sick or healthy.
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2. Quality Contrcl. In order to decide whether a lot of

N items should be accepted or not it is customary to sample r
items from it, and to sccept it when the number of defectives

in the sample does not exceed scme specified constant. If A
denotes the proportion of defectives in the lot, then A can be
considered as a random varisble which varies from lot to lot,
and is distributed according to déistribution function G. It has
been shown by Samgel (1963) that for any fixed sample size, an
empirical Bayes rule can be found. This rule will in the linmit
be s good ss any optimal rule if G were known.

3. Pulse Detection. Pulse detection in noisy enviromments

mentioned in Section £ is also a practical applicetion. If the
apriori probability of no pulse is p, and of pulse is (1 - p)
at each observation and p is unknown, we can use the procedure
of Section 5, in particular the asymptectically optimal sequence
T =.{tnf} as given by (5.7) to classify each observaticn on
either pulse or noise.

As of now, the empirical Bayes procecdure has not been fully
developed. Some important problems such as the selecting of the
"best" empirical Bayes estimator, the estimation of the apriori
distribution function G, the study of the rate of convergencs

from R, (T, G) to R(G), etc., still awalt satisfactory solutiocns.
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In the Bayesian approach the parameter A 1is considered a
reslization of a random variable /A, distributed according to
gome distribution function G on L. For a given G there will
usually exist g Bayes ruie with respect to the apriori distri-
bution G. The use of Bayes rule will incur the minimum possible
Bayes risk R{(G).

Though the assumption of the existence of an apriori dis-
tribution G is often reasonable, it is usually difficult in
practice to assert what this distribution actually is; thus one
will usually use a method other than a Bayes rule and incur s
risk which exceeds R(G).

The method of using previous observations to obtain a method
which approaches the Bayes rule was first established by Robbins
(1955), where it is called an "empirical Bayes approach". Johns
(1957) generalizes the results of Robbins (1955) and shows that
for some of the proposed procedures not only the rules, but also
their risks converge to the corresponding R(G), whatever be G.
To describe this important property, Robbins (196l.) coined the
term "asymptotically optimal”.

The essence of the empirical Beyes approach is that under
certain circumstances prior observations may be used to construct
empirical rules having the property that as the number of prior
observaticns increases, the risk of the empiricasl Bayes rules
converge to the risk of the Bayes rule for eny apriori prob-

ability measure provided that certain moments exist.
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The theory of empirical Bsyes approach has not been fully
developed; some of the solutions solved for particular problems
are ready for practical applications,'but some other probleﬁs
still await rigorous investigation. Here, then, is a fruitful

new field for theoretical studies.



