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INTRODUCTION

A great deal of interest centers around nuclel near closed
shells because of the apparent simplicity of the level structure
and theoretical descriptions. In particular, the low-lying
excited states of nuclei neighboring the doubly-closed shell
nucleus, 4OCa, have been studied up to excitation energies of
about 5 MeV (or higher in some cases);_however, in many of these
nuclei, including 39K, the spins of the excited states are known
only for afew levels. This thesis describes an attenpt to deter-
nine spins for more states in 39K in order to allow more complete
comparison of the level structure with the existing theoretical
calculations.

An experiment was performed with the reaction 39K(p,p'r)
in order to determine the spin of the fifth and sixth excited
states of 39K. The experiment employed an angular correlation
technique in order to determine the above mentioned spins. An
angular correlation of gamma rays in coincidence with particles
was observed which had certain am transfers selected out due to
the arrangement of the detectors. These distributions were
compared to theoretical angular correlations by means of a chi-
squared analysis. This analysis determined the most likely spin
and mixing ratic for the states under consideration.

Work had been done previously on this nucleus by Lopes,
Robertson, Gill, Bell, and Rose.l: They were unable to make def-

inite cpin assignments to the fifth and sixth states and were



only able to say that the spin of the fifth state is either 3/2
or 5/2 and the spin of the sixth state is 5/2 or 7/2. Lopes et
al carried out their work using a sodium-iodide detector to
observe gamma rays. Since large lithium-drifted germanium detec-
tors are now avallable with higher resolution for detecting
gamma rays, 1t was felt that 1t might be possible to make a
better measurement of the gamma-ray angular correlation and thus
determine the spin of the fifth and sixth excited states., This

thesis reports the results of this attempt.
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ANGULAR CORRELATION THEORY

The emission-direction probability distribution of a gamma
ray depends on the direction of nuclear spin, If the target
nuclel are excited soc that all nuclear spin orientations are
equally probable, the radiation given off will be isotropic; how-'
ever, if it is possible to select nuclel whose spins are oriented
in one direction, or which have a higher probablility of orientation
in one direction rather than in any other, then the radiation they
emit will be anisotropic and the resulting distribution will
give information about the nuclear spin.

This particular experiment, which involved the reaction
39%(p,p'y ), used the outgoing proton to select & certain ensemble
of nuclei with spins in the same direction. This was accomplished
by using an annular detector to detect protons near 180° to the
bear direction. The gamma rays that were detected in coincidence
with protons were given off by nuclel which had radiated a proton
near 180°, As will be shown below, this procedure selected
certain am transfers, and thus it selected nuclear spins with
non-uniform distributions which led to an anisotropic distribution
of gamma-ray emission.

In order to understand the angular correlétion process one
must first consider a single gamma-ray transition where the
gamma ray has angular momentum L and the initial and final states
of the nucleus have spins I3 and Ip, and I4=If+L. The projection

of L on any quantization axis (call it the Z axis) 1s Lz, and the



associated magnetic quantum number is M, where L,=NMNh. my=me+M
for each transition. Thus my and me are the magnetic substates
of the nucleus before and after the transition. Each transition
my—nge has its own characteristic angular distribution G?jé%
where & is the angle between the gamma ray and the guantization
axis; however, the level splitting (nuclear Zeeman effect) is so
small that in most cases gamma-ray components are unobservable
and one can only see an unresolved line. In order to calculate
the total angular distribution, G (&), for this transition one
must know the initial population parameter, mei), for each sub-
level, the transition probability of geing from my—mr, T(my,mr),
and the distribution function for each m transition; thus
GL(&)siP(my )T (my ,me )GL.(S) (1)
The Wigner-Eckart theérem can be used to separate T(mi,mf) into
a nuclear factor and a geometrical factor. The nuclear factor 1s
a function of nuclear properties, but not my or mg. The geometri-
cal factor contains the m dependence and thus is the relative
transition probability. From the Wigner-Eckart theorem:
Teme| Ty |Tymd ={TemelM|Timgy {14 Tpf 15> (2)
where <{IemeLM|Iym) 1is a Clebsch-Gordon coefficient and Q|| Ty || Ip
is a reduced matrix element. One can see that <f|Op|i is pro-
portional to <IgmrLM|Iimsy ; therefore, the relative transition
probability can be defined as:
T(m1m2)=I<IfmeM]Iimj>|2. (3)
Consider now a gamma-gamma cascade I3—I—I¢ where there is

an intermediate state involved. Assume that the quantization
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axis corresponds to the direction of emission of the first gamma

ray. Thus W(®), the angular correlation, corresponds to Gr(e)

for the second gamma ray. In order to know P(m) for the inter-

mediate state the transitions mj—me must be known. Thus
P(m)=ZT(my , m)GL,(O) (L)

where all initial states are assumed equaily pepulated,

Because of the quantization axis chosen for the first
ganra ray, its angular momentum must be either +h or -h so
Mlztl.3° When combined, all of these results yleld the following:

H(©)cT (TmLitt] Imi>2c;"ﬁ( O)Qfmegmz | Tm) zc“ﬁe») . (5)

The development of this formula has presented a physically
understandable picture of angular correlation analysis; however,
it has limitations because of the difficulty in experimentally
measuring the factors. Fraunfelder and Steffen have done a
rigorous development of this formula and have reduced it into a
form which can be measured.u' This thesis will deal only with the
key points in their development in order to arrive at the
formulae used in this experiment.

To start with, one considers an angular correlation function
between the directions of the emission of the two gamma rays.
These directions are represented by the wave vectors kX1 and Xo.
The ccrrelation function is

(K1, kp)=E4] € (k) 0D @ (k2) | m> (6)
©(k)|[mD is a density matrix. See appendix IT for &

vhere <ﬁ
disecussion of the density matrix. (Equatlons 7-10 of the text

appear as Zquations 1-4 of appendix II.)



The <h]€(5)[mﬁ) matrix elements can be expanded into a
series of Clebsch-Gordon coefficients, reduced matrix elements,
and a rotation matrix. The elements of the rotation matrix are

L
defined as QQN=<QADL @> and the representation for the matrix

is Qjm(g—9§). The argument (k—Z) stands for the Euler angles
which translate the X coordinate system with assoclated magznetlic
guantum number « over into the Z coordinate system with magnetic
quantum number M. From Equation 6 one can see that i(%1,k) in-
volves a product of two rotation matrices. This product can be
expressed as
DZMDi-r,I.:)E@ﬂL vt [k DARL M | k) DYy (11)

where N=NM+M', T=«+4' and X runs from|L-L' to L+L'. The index k
should net be confused with the wave vector k. For the special
choices of gquantum numbers where Y=0 and N=0

Dgo(f6 r)=Pp (cos &), (12)
This is due to the fact that for an axially symmetric counter
there is no ¥ dependence and if the counter is at r=0° or 180°
then the rotation matrix element reduces to a Legendre poly-
nomial, From this point it follows that W(Em-ﬁz) can be repre-
sented by W(e) where & is the angle between kq and k, and

w(e)iéikPk(cosea). (13)
Pecause of the conservation of parity the index k is only even
for measurements in the direction of the radiations.é' Thus
it is possible to represent an angular correlation function in

terms of a sum of even order Legendre polynomials multiplied by

appropriate constants.

[N
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By considering the conservation of angular momentum it
follows that detecting only particles which are emitted zlong the
beam axis limlts the magnetic substates which can be populated %o
the sum of the spins of the incident particles, emitted particle,
and the target nucleus.o* This result is a direct consequence of
the fact that the orbital angular momentum of a plane wave in -
the direction of the quantization axls has no projection on the
axis, .

To go from a gamma-gamma correlation to a particle-zamma
correlation, the initial gamma ray is replaced by a scattered
proton. The coefficients ay have been determined by Poletti and
Warburton for this situation., Poletti and Warburton have broken
the ay coefficlents up into three factors so that:

wéedzgakPk(cos¢9)=§?k(a)Fk(a,b)QkPk(coser) (14)
where one considers a state with spin a and magnetic guantum
numbers =« decaying to & state b.2' The index k runs from 0 to 2Za
for all even integer values of k. The €,(a) are statistical
tensors which describe the alignment of state a, Fi(a,b) depend
on the gamma-ray cascade and do not depend on alignment, and Qk
are attenuation coefficients for the detector. The Qy factors
sccount for the fact that the detector subtends a finite solid
angle as seen by the source. Qr is defined to be less than one
whenever the detector subtends a finite solid angle,

Oy (a)=2%(a,«) P(x) (15)

where the values of €y(a,~<) for a=3/2 to 11/2 are listed by



Poletti and Warburton and P(x} are the population parameters for
the magnetic substates x, It was assumed thaf P(1/2) and P(3/2)
were very densely populated states; therefore, P(1/2)+P(-1/2)+
P(3/2)+P(~3/2)~1 and these were the only values of <« considered.
The Fi(a,b) terms are given by
Fie(a, D)=t T ay Py (Ll ba) /2y 2. (16)

As is customary, only the two lowest allowed multipolarities
were considered since contributions frqm higher order multipoles
than the two lowest cnes allowed by angular momentum and parity
selection rules are negligible. Therefore Equation 16 reduces to:
Fk(a.b):ﬁk(LLba)-2ka(LL'ba)+x2Fk(L-r;~ba)}/(1-::2) (17)
where L is the lowest allowable wvalue, L'=L+1, and the mixing
ratio, x=<|L+1) e /<b|L|8>. The values for Fy(LLba) are given by
Poletti and Warburton for a and b between 3/2 and 11/2.

Equation 14 was used as the general expression for the
angular correlation, and the coefficients were calculated using
the method described above. A computer program was written to
make a calculation of the theoretical angular distribution, W(&)
(see appendix). The program calculated W(e) for varying values
of & and mixing ratio (x). Of course, the initial and final spins
could also be varied. The data obtained from the experiment
were properly normalized and compared to the W(&) values calcu-
lated for various x and © values using a chi-squared analysis.
This analysis was similar to a least-squares fit in that it told
which values of the parameters of W(e&) best fit the experimental
data. Determination of the best fit to W(e) gave the spin of the

state since W(e) is a function of the spin.



PARTICLE-GAMMA COINCIDENCE METHOD

A target of approximately 250.agm/cm2 of potassium-
todide (XI) on a 20 Agm/cmz carbon foll backing was used for this
experiment. Because of the use of the coincidence electronics,
gamma rays from impuritles were unobservable in the final
spectrum and it was necessary only to be concerned with gamma
rays from 41K. Since the abundance of‘the 41K was only 6.88% as
compared to 93.1% from 39K, the gamma rays from 411{ were too few
to influence this particular measurement.

The proton beam was supplied by the 12 MeV Tandem Van de
Graaff accelerator at Kansas State University. The machine was
tuned to supply about three nanoamps of well collimated beam at
an energy of 6.71 MeV. This energy was determined by taking an
excitation function as will be described below.

The target was housed in a chamber and was held in the
path of the beam by a target holder which was capable of posi-
tioning any of three targets in the beam path (see Plate I).
Just before entering the target chamber the beam went through a
1/16 inch slit., As it entered the target chamber it passed
through the center hole of the particle detector. By using this
arrangement particles scattered between 164° and 174° to the
direction of the beam were detected by the particle detector.
Qutside of the target chamber the gamma-ray detector (Ge(Li)) was
set at a distance of 8.86 cm. from the center of the target and

was on a movable stand so that it could detect gamma rays coming
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EXPLANATION OF PLATE I

Top view of the target chamber showing the position of the par-
ticle detector and one position of the Ge(Li) detector. This
detector was moved to various angles between 309 and 90°.
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from the target at various angles.

The detector used to observe particles was a Princeton
Gamma-Tech, Inc. surface barrier detector with an active area of
300 mm?® and a thickness greater than 500 «. The bias on the
detector was 50 volts. The hole in thé center of the detector
was 1/8 inch in diameter and allowed the beam to pass through
without being detected.

The gamma-~ray detector was a Nuclear Diodes, Inc. lithium-
drifted germanium detector, Ge(Li). It had a coaxial cylindrical
crystal 4.1 cm, in diameter. The center hole was 1,1 cm., in
diameter, and the length of the crystal was 2.6 cm., The bias
placed on the detector was -2250 volts.

The arrangement of the coincidence electronics used is
diagrammed in Plate II. The particle pulse came from the annular
particle detector and was sent to the stop side of the time-to-
analog converter (TAC) through a diseriminator (DISC) which
eliminated low energy pulses. The start side of the TAC was
fed by pulses from the Ge{Li) detector. The TAC would produce
a pulse whose amplitude was proportional to the time difference
between the start and stop pulses provided they were within C.2
ssec of each other. If this was not the case then no pulse would
be generated, Since most of the coincidences were true the TAC
spectrum showed a sharp peak for these colncidences; however,
there was a possibility that a particle and a gamma ray could
have entered the system in such a way as to cause the TAC to give

an output without there being a true coincidence. This random
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EXPLANATION OF PLATE II
Block diagram of the coincidence electronics employed.

A¥P=Amplifier

h¥=Amplifier multiplies signal 4 times
DISC=Discriminator

SCA=3ingle channel analyzer
PREAMP=Preamnplifier
TAC=Tinme~-to-analog converter

L S AND D=Logic shaper and delay
ADC=Analog-to-digital converter



PLATE IT
AMP PRE| _[PARTICLE Ge (Ll PRE AMP
AMP| [IDETECTOR DETECTOR AMP
CLIPPING CABLE § L A
ax ' L CLIPPING
' |
a4x 4% L.
AMP AMP )
|
ax
DisC M?P
ADDITIONAL
DELAY ax
AMP
STOP TAC START |DISC
SCA STROBE
SLOW COINCIDENCE
DELAY
PARTICLE
SCALER SCA SCA
2 3
PARTICLES
IN WINDOW
TREE RANDOM
RANDOM
SCALER SCALER ¥ PULSE
L S AND Di{ GATE ADC

14



signal was in the background of the TAC spectrum and ran the
length of the spectrum including the region under the peak. Vhen
a particle came into the particle detector it was also amplified
and then analyzed by the single channel analyzer (SCA 1). If the
particle was within the window of the analyzer, which was set on
the fifth and sixth states, the particle scalgr was incremented
and a signal was sent to the strobe input of the TAC., This was
the slow coincidence part of the circuit which triggered the fast
coincidence circuit if the pulse actually was from either the
fifth or sixth state., SCA 2 was tuned to the peak of the TAC
spectrum and SCA 3 was tuned to an equal voltage range of back-
ground in the spectrum so the scalers connected to these analyzers
counted true plus random coincidences and random coincldences
respectively, The true plus random pulses gated the analog-to-
digital converter (ADC) of the 4096 channel multichannel analyzer
which analyzed the energy of the pulses from the Ge(Li)
detector,

The experiment itself consisted first of measuring an
excitation function for energies between 6.10 MeV and 8.50 MeV
in 20 KeV intervals. There was a large fluctuation in the inten-
sities of the various states. ZFor example, the intensity of the
fifth state changed by a factor of five over this region. In
this way the energy which gave the greatest intensity of the
fifth and sixth states was selected. Five ten-hour runs were
taken with the gamma-ray detector set at angles of 300, 450, 550,

?50. and 90°, The determination of the length of each run was
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that each was to have a particle count (SCA 1) of about
20,000,000 particles, and this took about ten hours per run.
Gamma singles spectra were taken at the beginning and end of the
experiment. These were simply spectra from the Ge(Li) detector
without the coincidence requirement and were used to measure the
relative intensity of the various gamma peaks. The single
channel analyzers were checked throughout the experiment to
insure that the windows were remaining open to the portions of

the respective spectra desired.
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DATA ANALYSIS

Data from the multichannel analyzer were plotted and peaks
of known energy in the spectrum, along with single and double
escape peaks, were used to calibrate the spectra. The peaks that
were analyzed were the 3.94 MeV full energy and double escape,
3.88 MeV full energy and double escape, 1.33 MeV, and 1.15 MeV,
The width of each energy peak was kept'constant over the five
angles and a value for the background was obtained using a
straight line approximation. Since each run had a different
particle count (in the range of 20,000,000) it was necessary to
multiply the counts under each peak by an appropriate factor for
each run in order to normalize all of the runé to the same scale.

Corrections were made for the random counts which were
unavoidably observed. The correction was made by solving the
following for x:

%i%?:g (18)
where T=true counts read from the scaler, R=random counts, Cg=
total number of counts in the analyzer for a given run, and Cg=
total number of counts in the singles spectrum. The correction
for each peak was then the number of counts in that same peak in
the singles spectrum multiplied by x. This term was subtracted
from the number of counts under the peak of interest. The error
in the experiment was %/ where N was the number of counts under
any gziven peak. The error in the determination of the back-

ground was negligible as compared to I4N and therefore it was
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omitted from the data analysis.

In this analysis the attenuation factors for the Ge(Li)
detector (Qy) were set equal to one. This was done on the basis
of the results of Black and Gruhle.’* Their calculations were
performed using a cylindrical crystal so that the geometry they
encountered was the same as that for the detector used in this
experiment. The data in this article showed that as the distance
of the crystal from the source of gamma rays increased, the Qy
value (where k was even) approached one. As the energy of the
gamma ray increased Qp increased and approached one. The largest
values given for both of these parameters were smaller than the
values obtained from the detector used in this experiment; there-
fore, the increase of these parameters tended to bring the value
of Qy closer to one. From the values which had been calculated
for 9 (Q=J2/Jo or Ju/Jo), it was evident that Qusl and with
the azddition of the above mentioned effects iﬁ was assumed that
Qe=1. |

The data were analyzed by means of a least-squares fit to
a series of even order Legendre polynomials in order to obtain a
theoretical fit for the data and also to find a normalization
factor for the chi-squared analysis. The Fortran IV computer
program used for this is listed in the appendix. The computer
used for all of the calculations in this experiment was the IBM
360/50 at Kansas State University. The program was run with a
value Kpoy=4 because, as will be seen from the results of the

experiment, it was consistant with the selection rule K<2L where
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L was the spin of the inltial state. The values generated by
the least-sguares program fell well within the error bars on the
data points.

A second and important use of the least sgquares information
was that 1t determined a normalization constant which was neces-
sary in order to compare the experimental data with the theoret-
ical angular correlation., Let Y(&) equal the experimentally
determined angular correlaticon. Then

Y(e)=A +AsPo(cos ©)+ALPL(cOs &)+ (19)
Ao.was factored out of this expression so
Y(e)=4Ag [1+(A2/Ao) Pot+(Ay/Ag) Py+e - l
=Ao[}+a2P2+auP4+--~]. (20)
The expression in the brackets was of the same from as the
theoretical expression for the theoretical angular correlatiocn
W(@):1+a2P2+aq,P4+' e, (21)
Therefore the A, term as determined by the least-squares analysis
was the normalization factor used to normalize the experimental
data so it could be compared with the theoretical angular
correlation function.

The final analysis performed on the data was a chi=-
squared analysis. The general formula for this analysis is in
the appendix. There were three degrees of freedom in this exper-
iment since o =N-2 where N is the number of angles at which data

were taken.2*

This analysis method compared two sets of values
and the more nearly they agreed the lower the chi-squared value.

The method was used in this experiment to compare the normalized
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data to the theoretical angular distribution, W({©). WYhen
calculating W(©) the population parameters, P(1/2) and P(3/2),
and the mixing ratio, x, (x=<f|L+1] D /{|L|D, where L is the
lowest allowed angular momentum for the gamma ray) were varied in
an attempt to find the smallest chi-squared value possible,
Rather than take wvalues of %, arctan x was used because it was =2
slowly varying function between 90° and -90°, The lowest value
of chi-squared for one gamma ray thus determined the spin of the
initial state and the mixing ratio for the transition.

Three seperate computer runs were made using the chi-
squared program., The first run was a coarse run in which rather
large increments of x and P(1/2) were used. From these data the
possible values at which chi squared could dip were observed and
these regions were searched using a smaller increment for X and
P(1/2). From these data the number of regions where chi squared
could be a minimum was again narrowed down and a final search
was made using increments of arctan x=1° and 0.005 for P(1/2)

and P(3/2).



- RESULTS AND CONCLUSIONS

As mentioned earljer, the data from four different gamnma
rays (3.94%, 3.88, 1.33, and 1.15) were analyzed in order to try
to determine the angular momentum of the 3,88 and 3.94-leV levels.
A very weak gamma ray at 1.35 MeV was observed and data were also '
taken for this gamma ray; however, it was too weak to be ana-
lyzed., The data shown in Table 1 were corrected for accidentals
and multiplied by the proper particles ratio for each angle, The

double escape and full energy peak data were added together for

the 3.88 and 3.94-MeV data.

30° 459 1559 75° 90°

3.94 159 143 141 146 129
b} 12.6 12,0 11.0 12.1 11.4
3,88 180 171 164 157 133
E 13,4 13.1 1Z.8 12.5 11la5
1.35 0 57 8 42 52
E 745 2.8 6.5 7.2
1,373 144 136 126 124 121
i) 12.0 11.7 11.2 11,1 11.0
1.15 136 138 128 110 122
T 14,77 11.7 11.73 10.4 11,0

Table 1: Counts and error where N is the

number of counts and E is the error,

The data were plotted and a least-squares fit to Legendre
polynomials was performed. Table 2 shows the calculated coeffi-
cients for the least-squares analysis and Plate III shows the
data points and the least-squares analysis plot.

The chi-squared analysis results are shown in Table 3, This
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cf the initial state.
chi squared for

Level Branch 8. ap aly
3.88 3.88g.5. [160.215.8 | 29.9£16.6 | -14.3t22.1
3.88—>2,53 [130.6f5.2 | 22,1f14,9 5.65£19.8
3.94 3 94_+g S, 1&3.9t5.5 21.4%15,7 6.91%20.8
Table 2: Legendre polynomial coefficients.
Arctan x -80° -60° -40° .20° @O 200  40o©9 60° 80°
3.94
3/2 4018 4019 L4021 4017 L4014 L4016 4019
5/2 . 3636 . 3864
.88
5/2 . 3908
e JH743
3.88+2.53
3/2 L0609 0609 ,0608 ,0609 0609 ,0609
5/2 +0597
4,1252,82
2 0608 L0612 .0608 . 0608 .0608 .0609
5/2 .0555 20334
7/2 -0328
3.9452,82
3/2 L4360 U364 L4360 4358 (4361 L4364
5/2 L1026
7/2 L4033 042
ﬁable 3: Chi-squared values for the various transitions and spins

The table shows typical values of

various wvalues of arctan x and J for the
different transitions,
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EXPLANATION OF PLATE III

Experimental data distribution and theoretical least-sguares fit
of the data.
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EXPLANATION OF PLATE IV

Plot of chi squared versus arctan x for the 3.88-—sg.s. transition.
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EXPLANATION OF PLATE V

Plot of chi squared versus arctan x for the 3.94—g.s. transition.
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i{s the data from the final search of parameters where P(1/2) was
incremented by 0.005 and tan x by 1°. 1Initial spin statez which
had not shown minima in chl squared had been eliminated in
earlier runs, and only those areas where there was & well defined
minimum were searched using the above small increments., There-
fore the difference in chi-sguared values was quite small for the
inerementing of orie parameter, This was especially true near the
minima since the function tended to flatten out near these points;
therefore, the minimum values obtained for chi squared were very
near the actual minimum values of the function., Plates IV and V
show plots of the chi-squared analysis for the 3.88-—sg.s., and

the 3.94->g.s. transitions for various spins of the initial
state. The plots show chi squared as a function of arctan x.

The values of the population parameters were fixed at the value

which gave the lowest nminimum for each energy level.

3.88-MeV Level
The data from the 3.88-MeV to ground state transition
showed that J=3/2, 5/2, or 7/2 because all of these J values had
chi-squared values less than one. This meant that the parameters
varied in the theoretical calculation of the angular correlation
hed values which yielded theoretical results which were within
one standard deviation of the experimental data., In other words,
all three spins (3/2, 5/2, and 7/2) had very high probabilities
(zreater than 70%) of being statistically correct; thus, no one

spin was uniquely determined.



The 3.88—=-2.53 MeV transition was analyzed to determine
the initial state spin, The energy of this gamma ray was very
close to the 4.12-5»2.82 transition, and therefore these data
were analyzed for both transitions. The chi-squared analysis of
the 3.88->2.53 transition indicated that J=3/2 or 5/2 (see Table
4)., Other values for J were eliminated because they yielded
large chi-squared values,

By combining the results of these two transitions J=7/2 was
eliminated because the 3.88-—2.53 MeV transition showed that
J=7/2 was improbable; therefore, the possible values of J were
determined to be J=3/2 or 5/2 ﬁith J=5/2 being the most probable.
The mixing ratio of the 3.88-0 transition for J=5/2 was
arctan x=-2310,.5° or x=-0,424£0,01., The mixing ratio for the
3.88->2.53 transition for J=5/2 was arctan x=-14%0.5° or
¥=-0,249%0.017., The mixing ratios for J=3/2 were arctan Xx=
38%0,5° or X:O.?Blfd.OIM for the 3.88-—>»0 transition and

arctan x=-12%0.5° or x=0.2126%0,009 for the 3.88-2.53 transition.

3.94-¥eV Level
Analysis of the chi-squared data from Plate V (3.94—0)
determined that the spin of this level was not 7/2., As is
shown in the plot of chi squared for this level and alsoc Table 3
the mintma for J=3/2 and J=5/2 were very close in value and were
both less than one; therefore, 1t was impossible to uniguely
determine the spin. In an attempt to determine the sensitivity

of the correlation to changes in the data, the chi-squared
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analyslis was carried out agaln using the fine search around the
values of the parameters which yielded minima in the last set of
data. One of the data points was changed by 1/2 of the value of
the error bar. This change yielded chi-sguared values which
were somewhat lower than the previous values, but the value for
J=3/2 was lower than the value for J=5/2. Therefore it was
impossible to determine the spin of the 3.94-MeV level from the

3.94—0 transition other than to say J=3/2 or 5/2.

originaliiz new X2
J=372 0.4000 0.3218
J=5/2 0.3636 0.3303

The 3,94—2,82 transition showed a low dip in chi squared
for J=7/2 however, this was not the lowest minimum and due to
the poor correlation of this spin for the 3.94—0 transition
J=7/2 was eliminated. Ffrom the remaining data J=5/2 yielded a
lower chi-squared value than did the correlation for J=3/2;
however, the difference in chi-squared values was not a signif-
jcant difference so it was impossible to make a definite state-
ment about the spin of the 3.94 MeV level from the data other
than to say J=3/2 or 5/2.

By combining the results from the above two transiﬁions it
was impossible to uniquely determine the spin of the 3.94-leV
level, It seemed evideﬁt from the 3.94—>0 transition that J=7/2
was very unlikely; however, J=3/2 and J=5/2 both were viable
options for the spin of this level. Lopes et al determined the

spin of this level to be J=5/2 or ?/2.1' Since this experiment was



done under somewhat different conditions (therefore the popu-
lation parameters were different) and since they eliminated J=3/2
and this expveriment eliminated J=7/2, it seemed quite probable
that J=5/2 for this level. The mixing ratio for the 3.94—0
transition and J=5/2 was arctan x=-15%0.5° or z=-0.268%0.009,
The nmixing ratio for the 3.94—2.82 transition was arctan z=
3470.59 or x=0.675%0,126,

In summary, better data are required in order to be able to
make a definite statement about the spin of the 3.88 and 3.94
levels; however, by taking previous work into account, it seemed
very probable that J=5/2 for the 3.94 level. BRBecause of the
small angular correlation effect for these levels, a better
determination of the spins could be made by obtaining greater
statistics in the data, either by using higher beam currents or

by collecting data over a longer period of time.
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APPENDIX I

The Legendre Least Squares Analysis program fitted the
experimental data to a series of Legendre polynomizals. The
program was designed to do a fit to one of three sets of data
punched on the data cards. Thus NGROUP determined which set of
data was to be analyzed. N was the number of data points to be
analyzed and KMIN and KMAX were the maximum and minimum values of
K. For each data point AN(I) was the angle at which the data
were taken (in degrees), Y(I) was the number of counts, and ER(I)
was the error at that point. The program calculated a(0), a(2},
a(4),*** to a(MaX) up to KMAX=8, then it calculated the
coefficients again reducing KMAX by two, The program continued

until X¥MAX=0,



OO0

10
701
700
100
601

30

602
604

603
605

LEGENDRE LEAST SQUARES ANALYSIS
NGROUP - READ FIRST,SECOND, OR THIRD GROUP OF DATA
ON CARDS

DIMENSION AN(10),Y(10),ER(10),WT(10),P(7,10)
DIMENSION CTH(10),YY(10),A(10,10),CF(10),ECF(10)
DIMENSION AINV(10,10)

RAD=180./3.1415926

CONTINUE

READ(1,10) N,KMIN,KMAX,NGROUP

FORMAT(4I5,8A8)

IF(NGROUP) 700,701,700

NGEOUP=1

CONTINUE

K=KMAX

WRITE(3,100) '

FORMAT(1H , *POINT ANGLE YIELD ERROR ")

DO 101 I=1,N

GO TC (601,602,603),NGROUP
READ(1,30) AN(I),Y(I),ER(I)
fORMAT(3F10.5)

GO TO 2

READ(1,604) AN(I),Y(I),ER(I)
FORMAT(F10.5,20X,2F10.5)

GO TO 2

READ(1,605) AN(I),Y(I),ER(I)
FORMAT(710.5,40X,2F10.5)

2 CCNTINUE

Lo
101

103

199
106

107

WRITE(3,40) I,AN(I),Y(I),ER(
PORMAT(1H ,13,5%,P7.2,2E12.5%
CTH(I)=COS(AN(I)/RAD)
CONTINUE

R(I)
)

CALCULATE UNNORMALIZED WEIGHTS, (1.0/EN(I))SQUARED
DO 103 I=1,N

WT(I)=(1, O/ER(I)) (1.0/ER(I))

CONTINUE

DO 105 I=1,N

PEALT =10

P{2,I)=CTH(I)

NT=KMAX+1

TF{KMAX-1)7,199, 199

DO 106 J=3,NT

W=1.0/(J-1)}
P(J,T)=2%P(2,I)%P(J-1,1)=-W*P(2,I)*P(J-1,1I)

1+”*P(J 2,1)~- P(J 2,1)

JH=K/2+1
DO 107 J=1,JM
NT=2%J-1
P(J,I)=P(NT,I)



7 CONTINURE
105 CONTINUE
L CONTINUE
JM=K/2+1
BO 130 J=1,JM
YY(J)=0.0
DO 130 I=1,N
YY(JT)=YY(J)+Y(I)*P(J,I)*WT(I)
130 CONTINUE

DO 140 J=1,JM

DO 140 L=1,JM

A(J,L)=0,0

DO 140 I=1,N

A(T,L)=A(J,L)+P(J,I)*P(L,I)*WT(I)
140 CONTINUE '

CALL MATINV (JM,A,AINV)

DO 150 J=1,JM

CF(J)=0.0

DO 150 L=1,JM
CR(J)=CF(J)}+AINV(J,L)*YY(L)
150 CONTINUE

DO 160 J=1,JM
BCA(J)=SQART(AINV(J,J))
160 CONTINUE

WRITE(B,éO) K

60 FORMAT(//BBHFIT WITH MAXIMUM CRDER OF POLYNOMIAL
1=, 13/)
WRITE(3,180)

180 FORMAT(1H ,* K',8X'COEFF',B8X'ERROR* /)

DO 181 J=1,JM
KK=2%(J-1)
WRITE(3,182) KK,CF(J), ECF(J)
182 PORMAT(1H,I3,2E12.4)
181 CONTINUE
TR{K~KMIN)185,184,185
185 X=K-2
GO TO 4
184 GO TC 1
END



20

60

80

85

100
105

140

200
260

350
380

400
450
550

630

MATRIX INVERSION SUBROUTINE
SUBRQUTINE MATINV (N,AIN,A)
DIMENSION IPIVOT(10),PIVOT(10),INDEX(10,2)
DIMENSION A(10,10),AIN(10,10)
Do 1 I=1,N

DO 1 J=1,N

A(T,J)=AIN(I,J)

DETERNM=1,0

DO 20 J=1,N

IPIVOT(J)=0

DO 550 I=1,N

AMAX=0,0

DO 105 J=1,N
IDUM=IPIVOT(J)~1
IP{IDUM)60,105,60

DO 100 X=1,N
IDUM=TPIVOT(X) =1
I#(IDUM)80,100, 740
ADUM=A(J,K)

3DUN=ABS( AMAX)~ABS(ADUM)
IF(BDUM)85,100,100

IRCW=J

ICOLUM=K

AMAX=A(J,K)

CONTINUE

CONTINUE
IPIVOT{ICOLUM)=IPIVOT{ICOLUM)+1
IR(IROW-ICOLUM) 140,260,140
DETERM=-DETERM

DO 200 L=1,N

AMAX=A(IROW,L)
A(IROW,L)=A(ICOLUM,L)
A(ICOLUM,L)=AMAX
INDEX(I,1)=IROW
INDEX(I,2)=ICOLUM
PIVOT(I)=A(ICOLUM,ICOLUM)
DETERM=DETERM*PIVOT(I)
A(ICOLUM,ICOLUM)=1.0

DC 350 L=1,N
A(ICOLUM,L)=A(ICOLUM,L)/PIVOT(I)
DO 550 Li=1,N
17(L1-ICCLUM)400, 550,400
AMAX=A(L1,ICOLUM)-
4(L1,ICOLUM)=0.0

DO 450 L=1,N

ALY, LYy=A(14,L)-A{TCCL , LY*AMAX
CONTINUE

DO 710 I=1,N

L=N+1-T
IDUM=INDEX(L,1)~INDEX(L,2)
T#(IDUM) 630,710,630
IROW=INDEX(L,1)



ICOLUN=INDEX(L,2)
AMAX=A(K, IROW)
A(K,TROW)=A(K,ICOLUM)
A{¥X,ICOLUM)=AMAX

705 CONTINUE

710 CONTINUE

740 RETURN
END

LNS]

-~
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The Theoretical Analysis program gave a theoretical value
for the angular correlation. This program pgenerated values of
V(&) while varying the mixing ratio (x) ande. From the output
of this program one could get a feeling for the type of angular
dependence expected from experimental data.

The program began by reading in the tables found in Poletti
and Yarburton's article.z‘ Each line of the téble went on one
card. The tables with half spins were~the ones used. MM was
the spin of the final state. All spins were in units of 1/2 so
if the initial state had spin 3/2 then MM=3., MNDEL was the value
by which © was incremented. If NQ was one, the table of values
was printed out. In any case the specific coefficients used in
the calculation were printed.

The mixing ratio (x) was set in the program to go fron —;OO
to 100 in steps divisible by 10 and 0 was also included. The
smallest absolute value of x was x=0.01. The POLY function cal-
culated the desired Legendre polynomial values and was called for

in the main program.

Lo
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50

16
15
105

19 &
106

L2
107

108

23
24

109 F

25
110
20
113

THECRETICAL ANGULAR CORRELATICN

DIMENSION RHO(10,11,11),FLL(10,11,11),FLL1(10,11,11),
1FL1L1(10,11,11),RH(10),W(12),F(8,12)

READ IN RHO TABLE K=K, M=4A,L=ALPHA

DO 50 X=1,10

DO 50 M=1,11

DO 50 L=1,11
PLLLK, M, L)=0,
FLL1(X,M,L)=0.
FL1L1(X,M,L)=0.,
RHO(K,M,L)=0,

I=2

DO 15 K=3,11,2

DO 16 K=2,10,2

READ(1, 105) RHO(K M, 1),
1RHO(K,M,9), RHO(K,M,11)
IF(K—I)lé,lS,lS

CONTT NUE

I=1+2

RPORMAT(6F7 . 4)

READ IN FLL(K,N,M) TABLE
K=K, N=B, M=A

DO 19 M=13,11,2

DC 19 N=1,11,2

DO 19 K=2,8, 2

READ(1, 100 ) FLL(X,N,M),FLL1(X,N,M),FL1L1(K,N,M)
“UWNW1?4)

READ IN INPUT DATA IN HAL® INTEGER VALUES

READ(1,107) MM,NN,NDEL,NQ

EGRMAT(AIB)

IF(NQ)20,20,21

PRINT OUT OF TABLES

I=2

DO 24 M=3,11,2

DO 23 X=2,10,2

WwxITZ(3,108) RHO(K,M,1),RHO(XK,M,3),RBO(K,M,5),RHEO(K,NM,7),
1RHO(X,M,9),RHO(K,M,11)

TORMAT(6F10.4)

I#{X-1)23, 24, 24

CONTINUE

I=I+2

WRITE(3,109)

RORMAT( 1HO, "FLL(X,N,M) TABLE')

DO 25 M=3,11,2

DO 25 N=1,11,2

DO 25 X=2,8,2

WRITE(3,110) PLL{X,N,M),FLL1(X,N,M),FL1L1(X,N,M)

PORMAT( 3F10.4)

YRITE(3,111) MM, NN

FOR] AT(1H1 14%* ANGULAR CORRELATION FOR A SINGLE ',I2,'/2 '
1,I2,'/2 TRANSITION'//)

wRITE(3,1so) MM, MM, NN, MM, NN, MM, NN, MM

RHO(X,M,3), RHO(X,M,5), RHO(K,M,7),
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150 FORMAT(4X'K RHO(K,",I2,',1) RHO(X,',I2,',3) FLL
TR, 5, 02,%: %, 02, PRAlE: T2, %:12:) FLalAl . "alns* s s
1I2,') ")

DO 70 X=2,10,2
70 WRITE(3,151) X,RHO(K,MM,1),RHO(K,MNM,3),FLL(K,NN,MM),FLL1
1(X,NN,MM),FL1L1{K, NN, MM)
151 FORMAT(1H ,I4,5815.4)
WRITE(3,112)
112 FORMAT(1HO,57X'X')
WRITE(3,113)

113 FORMAT(3X'THETA',3X'P(1/2)*,3X*'P(3/2)"',3X*100"',7X"*10"',8X
1010 o Y AV 01, B 007, 58 ~100%, 6 =10, X =1", 5% =, 1"
1,5X%=,01%)

Pl=.5
Lo P3=(1.0-2.0%P1)/2.0
CALCULATION OF RHO OR RH
DO 27 ¥K=2,10,2
27 RH(X)=RHO{K,MM, 1)*P1+RHO(K,MM, 3)#*P3
CALCULATION OF F COEFFICIENTS
KK=1
LL=6
GO TO 202

204 KK=7
LL=12

202 DO 28 X=2,8,2
X=1000.

DO 28 J=KX,LL
X=X/10.
IF(J-6)201,201,200

200 X=-X

201 F(X,J)=(FLL(X,NN,MM)-2.0¥X*FLL1(K, NN, MM)+X*X*FL1L1(K, NN, MM)
1) /{ 1+X%X)

IF{ABS(X)-.01)28,29,28
29 X=0,
28 CONTINUE
IF(XX~-1)203,204,203

203 DO 30 I=1,91,NDEL
THETA=I-1
DO 31 J=1,11
W({J =1,

DO 32 ¥K=2,8,2
32 W(J)=W(J)+RH(K)#*"(K,J)*POLY(K,THETA)
31 CONTINUE

ROUND OFF OF THE W(J)

DO 82 J=1,11

Q=ABS(W(J))+.00005

K¥=0%*10000,

LL=W(J)*10000.

T7(KK-LL)82,82,81
81 IF(¥(J))83,84,84

83 W(J)=W(J)-.0001
GO TO 82

G4 W(J)=W(J)+.0001
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82 CONTINUE

30 WRITZ(3,120) THETA,P1,P3,W(1),W(2),W(3),W(4),Ww(5),9(6),4(7)
1,%(8),w(9),w(10),wW(11)

120 FORMAT(2XF5.1,2F9.2,11F9,4)
IF(PL1-.25)35,36,37

36 Pi=0,
WRITE(3,152)

152 FORMAT(1H1)
WRITE(3,113)
GO TO 40

37 Pl=.25
GO TO 40

35 IF(NQ)L41,42,41

&1 sTOP
END
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FUNCTION POLY(X,THETA)
RAD=180.0/3.1415926
X=COS(THETA/RAD)
KSQmX#*Y
KU=XSQ¥XSQ
HE6=XSQ* X4
XB=X4*XY
Kp=K/2+1
G0 TO {1,2,3:%4,5),KF

1 POLY=4.0
RETURN

" 2 POLY=0,5%(3.0%XSQ-1.0)
RETURN

3 POLY=0.125%(35,0%X4~30,0%XSQ+3.,0)
RETURN

L4 POLY=0.0625%(231,0%X6-315.0%X4+105,0%{SQ-5.0)
RETURN

5 POLY=0,0078125%(6435,0%X8-12012.0%X6+6930,0%X4~1260,0%X3Q
1+35.0)
RETURN
END



The Chi-Squared Analysis program compared the experimental
data with the theoretical data obtained in the laszt program by
means of a chi-squared analysis. The previous program was used
as & subprogram for this program. The analysis used in thils
program was

X 2=(1/) 5[ (Y (o) -W(e) ) 2/EF)
where oo was the number of degrees of freedom, Y(&) was the nor-
malized experimental value, and E was the error involved.

The program first read the data table discussed in the last
program, For each set of data to be analyzed the data card was
as follows: N was the ﬁumber of data points, NN was the spin of
the final state in units of 1/2, ANORM was the normalizing
factor, MM was the spin of the initial state in units of 1/2,
GAMMA was the energy of the gamma ray, KK determined whether a
new set of counts, angle, and error was to be read, Pl and PF
were the initial and final values for P{1/2) and PINC was the
increment by which P(1/2) was decreased., NANGI, NANGF, NAINC
were the initial and final angles and the increment for tan X.

For the first search of a set of parameters at a glven
energy (GAlIMA) KK=0, The program read the angle, counts, and
error data. For subseguent searches at the same energy KK=1.
The program then used the same angle, counts, and error data as
before. The angle, counts, and error data (PSI(X), CNTS(X),

ERRO0R(X)) were read after each data card for which KK=0.
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¢ CHI-SQUARED ANALYSIS
C ANOAM=0 PROGRAM DOES NOT NCRMALIZE
DIMENSICN CHISQ(12),CNT3(12),PSI(12),ERROR(12),THETA(12)
DIMENSICN RHO(10,11,11),FLL(10,12,11),FLL1(10,11,11),
iFL1L1(10,11,11),W(11),ANG(11)
COMMON RHO,FLL,FLL1,FL1L1
@ AFAD IN RHO TABLE K=K, M=A, L=ALPHA
DO 50 K=1,10
DO 50 M=1,11
DO 50 L=1,11
FLL(X,M.L)=0.
*LL1(K,M,L)=0.,
FLIL1(K,M,L)}=0.
50 RHO(X,M,L)=0.
T=2
DO 25 M=3,11,2
DO 16 K=2,10,2
READ{(1,105) RHEO(X,M™,1),RHC(X,M,3),RHO(K,M,5),RHO(K,M,7),
1RHO(X,HM,9),RHO(K,M,11)
IF(X-I1)16,25,25
16 CONTINUE

25 I=T+2
105 FORMAT(677.4)
C READ IN FLL(X,N,M) TABLE
c K=K, N=B, M=A

DO 19 ¥=3,11,2
DO 19 N=1,11,2
DO 19 K=2,8,2
19 BEAD(1,106) FLL(X,N,M),PLL1(X,N,M),PL1L1(K,N,M)

106 FCRMAT(377.4)

333 BREAD(1,114) N,NN,ANORM,MM,GAMMA,KK,P1,PF, PINC, NANGI, NANGF,
1NAINC

114 FORMAT(213,F8.1,13,F5.2,13,3F5.2,313)
NAKGI=NANGI-NAINC
DE 221 7=1,11
NANGI=NANGI+NAINC

221 ANG(I)=NANGI
DO 1 X=1,12
CHISOEK y=0,
IF(XK.EQ.1) GO TO 1
CNTS(K)=0.
THETA(K)=0,
ERROR(K)=0.

1 CONTINUE

WRITE(3,100) GAMMA

100 FORMAT(1H1,20X'CHI-SQUARED ANALYSIS FOR',F5.2,*MEV GAMMA~
TERYY )
WRITE(3,112)

112 FORMAT{1HO,57X"ARCTANGENT")
WRITE(3,113) (ANG(I), I=1,11)

113 FORMAT(4X*J/2",4X'P(1/2)°*,3X'P(3/2)",24F5.1,10F9.1)
IF(KX.EQ.1) GO TO 222
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116
334

14,5

Do 2 K=1,N

BEAD(1,115) PSI(K),CNTS(X),ERROR(K)
PORMAT(30710.4)

CNTS(K)=CNTS(K)/ANORM
ERIROR(K)=ERROR(K)/ANORM

P1=P1+PINC

P1=P1-PINC

Do 6 J=1,11

CHISQ=0.

DO 7 M=1,N

CALL WPH(J,MM,NN,P1,ANG(J),W(J),PSI(M))
I7(ERROR(M))7,37,7

ERROR(M)=1,
CHISQ(J)=CHISQ(JI)+({W(J)-CNTS(M) )**2/ERROR( M) *%*2)
CHISQ(JI)=CHISQ(JI)/(N-2)

CONTINUE

P3=(1.0-2,0%¥P1)/2.0

WRITE(3,116) MM,P1,P3,(CHISQ(J),J=1,11)
SORMAT(3XI3,1X2r9.3,11F9.4)
IF(P1-PF)333,333,936

STOP

END
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15 ¢

81
83 ¥
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SUSPOUTIW' WTH(J, MM, NN, P1, ANG, W, THETA)
DIMENSION RHO(10,11, ll),FLL(IO 11 11),PLL1(10 1,317,
lFLlLl(lo,ll 11),1( ) RH(10)
CCHMFCN RHO,FLL,FLLl,FLlLl
WAD—lao /31415926
(%Nu.EQ 90,) ANG=89.
P{ANG.EQ.-90.) ANG=-89,
WQW(AT /QAD)
3={1.0-2.0%P1) /2,
DO 95 ¥K=2,10,2
RHE(K) —“UO(K hN 1)¥P1+RHO(X, MM, 3)*P3
CALCULATION OF F COEFFICIENTS
DO 14 K=2,8,2
REE jo (ﬂLL(K NN,MM)-2. O¥X*FLL1 (K, NN, MM)+X*X*FL1L1 (X, N, ¥M))
1/(1+K“X)
W=d ,
DO 15 =08 .2
=R K)#F (K)*POLY (K, THETA)
RCUND SN OIS
=ABS(W)+.00005
ImQ”1000O
=W*10000,
FKK~-LL)B2,82,81
{ﬂ)ag 84,u4
0001
TO 82
J+,0001
URN
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PUNCTION POLY(K,THETA)
RAD=180.0/3.1415926
X=CO3(THETA/RAD)

X5Q=X*X

Xi4=UIH*XSQ

XO=XSQ*K4

X8=xh#*Xl

KP=K/2+1

GO TO (1,2,3,4,5),KP

POLY=1,0

RETURN

POLY=0.5%(3.0%XSQ-1.0)

RETURN
POLY=0.125%(35,0%X4-30.0%XSQ+3.0)
RETURN
POLY=0,0625%(231,0%X6-315,0%X4+105.0%XSQ-5.0)
RETURN

iy

POLY=0.0078125%(6435,0%%8-12012,0%X6+6930,0%X4-1260.0%X3Q

1+35.0)

RETURN
END



APPENDIX IT

If a system is in a mixed state then 1t is given by a

weighted sum of pure states[@). Each pure state h) can be

expressed in terms of a set of orthonormal states [m) such that

= Zany |m .
The expectation value of Q vecomes
<Q>f£@§n§hm'anmén'LQ'm>
and then cone defines the following:
<m|® nD=Lendhmranm

so that the expectation value of Q is:

ROEILDECH IS

(1)

(2)

(3)

(&)
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ABSTRACT

The particle-gamma angular correlation technique developed
by Litherland and Ferguson was employed in order to try and
determine the spin of the fifth and sixth excited states of 39,
The reaction used was 29XK(p,p'sr). A beam of 6.71-leV protons
was directed onto a potassium-iodide target. Protons and gamma
rays were observed in coincidence, Only protons which were back-
scattered at an angle close to 180° were observed by the annular
particle detector. GCamma rays were detected by a high resolution
Ge(Li) detector at 30°, 459, 559, 759 and 90°, and the data were
normalized teo a fixed particle count.

The data were fit to a series of even order Legendre
polynomials using a least-sguares fit method. This procedure
showed a best fit to the data and alsoc gave a normalization
Tactor so that the experimental data could be compared to the
theoretical angular correlation function. Finally a chi-squared
analysis was performed in order to compare the experimental data
to theoreticai distributicons. The population parameters, mizing
ratio, and spin were varied in an attempt to find a set of
parameters glving a significantly low chi-squared value thus
shewing those parameters to indeed vte the most likely ones.

The spin of the fifth state (3.88 MeV) was measured by
observing twe transitions: 3.88—g.s. and 3.88-s2.53. Analysis
of both of these transitions showed that the possible values of

J were 3/2 and 5/2. Prom the data obtained it was impossible to



uniquely determine the spin of this level. The spin of the
sixth state (3.94 MeV) was measured by observing the 3.94—z.s.
and the 3.94—2,82 transitions, These two transitions showed

that J=3/2 and J=5/2 were both likely, but the spin of the state

k3
w

could not be uniquely determined from the data, However, wo
done previously by Lopes et al was combined with the results of
this experiment to determine a very probable value of J=5/2 for

the spin of the 3.94 level.



