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Fluctuation Solution Theory (FST) provides an alternative view of fluid thermodynamics in terms of
pair fluctuations in the particle number and excess energy observed for an equivalent open system.
Here we extend the FST approach to provide a series of triplet and quadruplet particle and excess
energy fluctuations that can also be used to help understand the behavior of fluids. The fluctuations
for the gas, liquid, and supercritical regions of three fluids (H2O, CO2, and SF6) are then determined
from accurate equations of state. Many of the fluctuating quantities change sign on moving from the
gas to liquid phase and, therefore, we argue that the fluctuations can be used to characterize gas and
liquid behavior. Further analysis provides an approach to isolate contributions to the excess energy
fluctuations arising from just the intermolecular interactions and also indicates that the triplet and
quadruplet particle fluctuations are related to the pair particle fluctuations by a simple power law
for large regions of the phase diagram away from the critical point. Published by AIP Publishing.
[http://dx.doi.org/10.1063/1.4977040]

I. INTRODUCTION

Fluctuation Solution Theory (FST) represents a valuable
tool to help understand and rationalize the widely studied
closed system behavior of pure liquids and solution mixtures.1

The theory provides an alternative view of these systems in
terms of the fluctuations in excess energy and particle number
for an equivalent open system in the Grand Canonical Ensem-
ble (GCE). The closely related Kirkwood-Buff (KB) theory
represents a subset of FST where one is restricted to the study
of (typically) only pair particle number fluctuations.2,3 The KB
theory has proven very successful in interpreting the properties
of solution mixtures as it relates the particle number fluctua-
tions to a set of thermodynamic properties (isothermal com-
pressibility, partial molar volumes, and activity composition
derivatives). Alternatively, when the corresponding thermo-
dynamic data are available, one can invert the whole approach
and obtain the particle number fluctuations.4 This is particu-
larly useful to help test and modify the results of computer
simulation studies.5 Hence, the FST/KB theory provides a
direct link between thermodynamic properties and the corre-
sponding fluctuations for an equivalent open system. Further-
more, the particle number fluctuations can also be expressed
in terms of integrals over a set of pair correlation functions
and thereby provide a measure of the fluid structure.2 One
could argue that FST is not as powerful as the Bogolyubov-
Born-Green-Kirkwood-Yvon (BBGKY) hierarchy of distri-
bution functions.6 However, the fluctuations inherent to FST
are directly available from experimental or simulation data.
Hence, they can be used to interpret the properties of fluids
and their mixtures without invoking approximations.

a)Present address: Johns Hopkins University School of Medicine, 725 N.
Wolfe St., Baltimore, Maryland 21205, USA.

b)Present address: Energetics Research Institute, Nanyang Technological
University, Block N1-B4a-02, 50 Nanyang Avenue, Singapore 639798.

The main applications of FST have simply involved the
particle-particle, particle-excess energy, and excess energy-
excess energy pair fluctuations.1,3,7–10 These pair fluctuations
quantify the covariance of the corresponding bivariate particle-
excess energy joint probability distribution for the equivalent
open system. However, as this distribution is not Gaussian
(or symmetric) in nature, the higher central moments of the
distribution are non-trivial.11,12 Recently, we investigated the
triplet and quadruplet particle number fluctuations for pure liq-
uids and liquid mixtures.13–15 These higher order fluctuations
are related to higher derivatives of the free energy for the sys-
tem of interest and, therefore, can also be used to probe the
nature of the solution. The role of pair, triplet, and quadru-
plet correlations in osmotic pressure expansions has also been
investigated using the KB and FST approaches.2,16,17 Most
recently, FST has provided expressions for the determination
of thermodynamic properties of biomolecules by computer
simulation.5,15

In this study, we extend the theory by including bivari-
ate particle-excess energy triplet and quadruplet fluctuations
for pure fluids and then relate these quantities to common
thermodynamic derivatives. The complete set of pair, triplet,
and quadruplet fluctuations are then extracted from available
Equations of State (EOS) for three example systems. Further-
more, we provide the relationships that enable one to separate
intramolecular from intermolecular contributions to the energy
fluctuations for classical systems. Finally, we argue that a
FST analysis uncovers characteristic features of fluids that
are not apparent from the corresponding thermodynamic data
alone.

II. THEORY
A. General background

In this section, we describe and extend FST to provide
equations relating closed system thermodynamic derivatives to

0021-9606/2017/146(9)/094501/13/$30.00 146, 094501-1 Published by AIP Publishing.

http://dx.doi.org/10.1063/1.4977040
http://dx.doi.org/10.1063/1.4977040
http://crossmark.crossref.org/dialog/?doi=10.1063/1.4977040&domain=pdf&date_stamp=2017-03-01


094501-2 Ploetz, Pallewela, and Smith J. Chem. Phys. 146, 094501 (2017)

a series of pair, triplet, and quadruplet fluctuating particle num-
ber and excess energy quantities characterizing an equivalent
open system at the same temperature, pressure, and density.
Some of the relationships presented here have appeared before;
however, many are new. In particular, the working equations
that illustrate exactly how to extract the triplet and quadruplet
fluctuations from experimental data are presented. Here we
provide a complete set of useable equations and an approach
to obtain all three pair fluctuations, all four triplet fluctuations,
and all five possible quadruplet fluctuations for a pure fluid.
We also provide new FST based expressions for many addi-
tional thermodynamic quantities that may be of interest across
the phase diagram.

For simplicity, all the pressure derivatives are inferred to
be isothermal, and all the temperature derivatives are inferred
to be isobaric, unless stated otherwise. All angular brackets sig-
nify a GCE average unless stated otherwise. We have expressed
the fluctuations and thermodynamic derivatives in terms of
dimensionless quantities as far as possible, thereby reducing
the number of required unit conversions. All expressions are
considered exact unless specifically noted otherwise.

The fluctuation densities of primary interest include the
particle number (N1) and excess energy (ε) fluctuations
described by the quantities,5,13

BYZ ≡ 〈δYδZ〉 /V ,

CXYZ ≡ 〈δXδYδZ〉 /V , (1)

DWXYZ ≡

[
〈δWδXδYδZ〉 − 〈δWδX〉 〈δYδZ〉

− 〈δWδY〉 〈δXδZ〉 − 〈δWδZ〉 〈δXδY〉

]
/V ,

where δX = X � 〈X〉 denotes a fluctuation in the value of X = N1

or ε, V is the volume of the system, and the angular brackets
denote a GCE average at a fixed temperature T and chemi-
cal potential µ1 of interest giving rise to an average density
(ρ1 = 〈N1〉/V ) and pressure p. The excess energy is defined by
ε ≡ E – N1H1, where E is the instantaneous internal energy of
the system or the energy of a single member of the ensemble,
and H1 is the average molar enthalpy. The molar enthalpy can
also be written in terms of the average molar internal energy
(E1) and the molar volume (V1 = 1/ρ1) of the pure fluid, H1

= E1 + pV1. The use of this specific form of excess energy is
discussed later. The above quantities represent the cumulants
of the bivariate particle number-excess energy distribution for
the system in the GCE.

The following dimensionless fluctuating pair particle-
particle, particle-excess energy, and excess energy-excess
energy quantities will prove useful,7,13,18,19

b11 ≡ B11/ρ1,

b1ε ≡ βB1ε/ρ1,

bεε ≡ β2Bεε/ρ1,

(2)

where β = (RT )�1 and R is the Gas constant. Similar reduced
quantities can also be written for C’s and D’s—incorporating
as many β’s as there are ε terms in the expression—and will
be signified by using lower case letters. The above fluctuations
can be used to quantify the pair, triplet, and quadruplet fluctu-
ations for the equivalent open system.15 The pair fluctuations
provide information concerning the covariance of the particle-

excess energy distribution, while the triplet and quadruplet
fluctuations quantify the coskewness and (excess) cokurtosis
of the distribution in terms of the corresponding cumulants.

All the relationships described here are based upon the
fact that the differential of an ensemble average density in the
GCE can be written as5

d

[
〈X〉
V

]
=
〈δXδN1〉

V
d βµ1 −

〈δXδE〉
V

d β, (3)

X = E, N1, EN1, N1
2, etc. Hence, derivatives of the above

expression, together with the following thermodynamic rela-
tionships:20

p

(
∂ βµ1

∂p

)
T
= Z , β

(
∂ βµ1

∂ β

)
p
= βH1,

pβ

(
∂H1

∂p

)
T
= Z(1 − Tαp), β2

(
∂H1

∂ β

)
p
= −

Cp,m

R
,

(4)

where Z = βpV1 is the compressibility factor,αp is the thermal
expansion coefficient, and Cp,m is the constant pressure heat
capacity, can be used to relate higher order fluctuations in the
particle and excess energy distribution to additional thermo-
dynamic derivatives. In attempting to obtain the required tem-
perature derivatives, it is usually simpler to evaluate the corre-
sponding β derivatives and then obtain the final temperature
derivative from the fact that d ln β = � d ln T.

B. Pair fluctuations

Most of the second derivatives of any thermodynamic
potential are fluctuating quantities. In the GCE, they provide
information concerning the covariance of the particle-excess
energy probability distribution. Using X = E + pV and X = N1

in Equation (3), one finds that the pair fluctuations are related
to the experimental data according to5,7

pκT

Z
≡

p
ρ1Z

(
∂ρ1

∂p

)
T
= b11,

Tαp ≡ −
T
ρ1

(
∂ρ1

∂T

)
p
= −b1ε , (5)

Cp,m

R
≡

1
R

(
∂H1

∂T

)
p
= bεε ,

where κT is the isothermal compressibility. The first rela-
tionship is the well-known compressibility equation.19 The
thermal expansion and heat capacity relationships are also
known but their use is less common.7,21 These established
relationships provide the starting point for the derivation and
subsequent study of derivatives of the above quantities. How-
ever, before proceeding we provide a variety of thermody-
namic quantities of interest for the study of fluids that can
also be expressed in terms of the pair fluctuations. These are
obtained via standard thermodynamic transformations.

A series of quantities related to the fluid compressibility
can be expressed in terms of the pair fluctuations. The bulk
modulus (K), the isentropic/adiabatic compressibility (κS),
and the speed of sound (w) are given by20
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ZK
p
≡

Z ρ1

p

(
∂p
∂ρ1

)
T
=

1
b11

,

pκS

Z
≡

p
ρ1Z

(
∂ρ1

∂p

)
S
=

pκT

Z

CV ,m

Cp,m
= b11 −

b2
1ε

bεε
, (6)

βM1w
2 =

Z
pκS
=

bεε
bεεb11 − b2

1ε

,

where the speed of sound is in m/s when the molar mass M1 is
in kg/mol and RT is in J/mol. This can be extended to include
the isentropic/adiabatic thermal expansion (αS), the Gruneisen
parameter (γ), and the internal pressure (pint) according to20

TαS ≡ −
T
ρ1

(
∂ρ1

∂T

)
S
= −

pκT

Z

CV ,m/R

Tαp
=

bεεb11 − b2
1ε

b1ε
,

γ ≡
ZRT

p

(
∂p
∂E1

)
ρ1

=
Z

pκT

Tαp

CV ,m/R

= −
1

TαS
= −

b1ε

bεεb11 − b2
1ε

,

Z
p

pint ≡
V1

RT

(
∂E1

∂V1

)
T
= −Z


1 −

T
p

(
∂p
∂T

)
ρ1



= −
b1ε + b11Z

b11
.

(7)

A variety of properties relevant for gases are also then avail-
able. The Joule-Thomson coefficient (µJT ), the Joule coeffi-
cient (µJ ), and the isothermal throttling coefficient (δT ) are
given by20

p
ZT

µJT ≡
p

ZT

(
∂T
∂p

)
H
= −

1 − Tαp

Cp,m/R
= −

1 + b1ε

bεε
,

V1

T
µJ ≡

V1

T

(
∂T
∂V1

)
E1

=
ZR

CV ,m


1 −

T
p

(
∂p
∂T

)
ρ1



=
b1ε + b11Z

bεεb11 − b2
1ε

,

p
ZRT

δT ≡
p

ZRT

(
∂H1

∂p

)
T
= −

Cp,m

R
p

ZT
µJT = 1 + b1ε .

(8)

All twelve of these properties, together with the isochoric heat
capacity and thermal pressure coefficient given below, can
be expressed in terms of just three pair fluctuation densities
corresponding to the equivalent open system.

C. Triplet fluctuations

The triplet fluctuations are related to the third deriva-
tives of the thermodynamic potentials. In the GCE, they
provide information concerning the coskewness of the bivari-
ate particle-excess energy probability distribution. To obtain
expressions for higher thermodynamic derivatives in terms of
the triplet (and pair) fluctuations, one can first expand the far
right terms of Equation (5) to provide a series of combina-
tions, where 〈X〉 = 〈E〉, 〈N1〉, 〈EN1〉, 〈N1

2〉, and/or 〈E2〉, take
derivatives of the expanded terms using Equation (3), and then
contract back to the pair and triplet fluctuations. Doing so
provides

p2

ρ1Z2

∂2ρ1

∂p2
= c111 − b2

11,

Tp
ρ1Z

∂2ρ1

∂T∂p
= c11ε − b11(1 + b1ε),

T2

ρ1

∂2ρ1

∂T2
= c1εε − 2b1ε − b11bεε ,

T
R

∂Cp,m

∂T
= cεεε − 3bεεb1ε − 2bεε .

(9)

Some intermediate results that facilitate these transformations
are presented in Appendix A. The above relationships cor-
respond to the FST based equations for the thermodynamic
properties listed on the left hand side. Alternatively, one can
use the relationships in Equation (5) to isolate the triplet
fluctuations in terms of thermodynamic derivatives. This is
analogous to the traditional KB inversion approach for pair
fluctuations.4 We will see that some of the triplet fluctuations
take on different signs for specific regions of the phase dia-
gram and can therefore be used to help characterize the liquid
and gas behavior.

D. Quadruplet fluctuations

The quadruplet fluctuations are related to the fourth
derivatives of the thermodynamic potentials. In the GCE, they
provide information concerning the excess cokurtosis of the
bivariate particle-excess energy probability distribution. Con-
tinuing the process outlined in Sec. II C by taking derivatives
of the relationships in Equation (9), and then using Equation
(3), provides the required quadruplet fluctuations via

p3

ρ1Z3

∂3ρ1

∂p3
= d1111 − 4c111b11 + 3b3

11,

Tp2

ρ1Z2

∂3ρ1

∂T∂p2
= d111ε − 2c11εb11 + b1εb2

11

− 2(1 + b1ε)(c111 − b2
11),

T2p
ρ1Z

∂3ρ1

∂T2∂p
= d11εε + 2b11(1 + b1ε)2 − 2c11ε(2 + b1ε)

− b11(c1εε − b11bεε) − c111bεε ,

T3

ρ1

∂3ρ1

∂T3
= d1εεε − 6c1εε − 3c11εbεε − cεεεb11

+ 6b11bεε + 3b11b1εbεε + 6b1ε ,

T2

R

∂2Cp,m

∂T2
= dεεεε − 2cεεε(3 + 2b1ε) − 6c1εεbεε

+ 6bεε(1 + b1ε)(1 + 2b1ε) + 3b11b2
εε . (10)

The relationships outlined in Equations (5)–(10) provide
expressions for thermodynamic quantities in terms of fluctua-
tions in the GCE and, upon rearrangement, for the fluctuating
quantities in terms of thermodynamic derivatives.

E. Isochoric derivatives

Secs. II C and II D have focused on providing expressions
containing isothermal and/or isobaric derivatives in terms of
fluctuating quantities. In addition, there are several isochoric
derivatives that are also of common interest. To evaluate these
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quantities, we require the following standard thermodynamic
relationships:20

β

(
∂ βµ1

∂ β

)
ρ1

= βH1 − Z
Tαp

pκT
,

β2

(
∂H1

∂ β

)
ρ1

= −
CV ,m

R
− Z

Tαp

pκT
,

T
p

(
∂p
∂T

)
ρ1

=
Tαp

pκT
,

CV ,m

R
≡

1
R

(
∂Eo

1

∂T

)
ρ1

=
Cp,m

R
− Z

(Tαp)2

pκT
.

(11)

Using the above thermodynamic relationships, one finds that
the pair fluctuations provide the thermal pressure coefficient,
the isochoric molar heat capacity (CV,m), and the heat capacity
ratio according to

Z
T
p

(
∂p
∂T

)
ρ1

= −
b1ε

b11
,

CV ,m

R
= bεε −

b2
1ε

b11
, (12)

Cp,m

CV ,m
=

[
1 − b2

1ε/(bεεb11)
]−1

.

Taking derivatives of the left and right hand side of the first two
relationships in Equation (12), and then using Equations (3)
and (11), leads to expressions involving the triplet fluctuations,

Z
T2

p

(
∂2p

∂T2

)
ρ1

=
bεεb11 − b2

1ε

b11

−
1

b11

[
c1εε − 2c11ε

b1ε

b11
+ c111

(
b1ε

b11

)2 ]
,

T
R

(
∂CV ,m

∂T

)
ρ1

= −2
bεεb11 − b2

1ε

b11
+

[
cεεε − 3c1εε

(
b1ε

b11

)

+ 3c11ε

(
b1ε

b11

)2

− c111

(
b1ε

b11

)3
. (13)

These latter relationships provide an alternative route to both
c1εε and cεεε using experimental derivatives. We will not
investigate higher derivatives of these quantities.

Interestingly, the isochoric derivatives can be further
condensed by making a simple transformation such that

CV ,m

R
= [bεε]ε=εV

,

Z
T2

p

(
∂2p

∂T2

)
ρ1

= [bεε − c1εε/b11]ε=εV
,

T
R

(
∂CV ,m

∂T

)
ρ1

= [cεεε − 2bεε]ε=εV
,

(14)

where εV = E − N1(B1E/B11) = ε − N1(B1ε/B11). Here, the
square bracket notation is used to imply a fluctuating quantity,
as defined in Equation (2), but where ε is substituted by (in this
case) εV . We did attempt to find similar transformations for
the isobaric and isothermal derivatives presented previously
but were unsuccessful.

F. Distribution functions

The results presented in the main text focus on a variety of
fluctuating quantities. However, the particle number fluctua-
tions can also be expressed in terms of two, three, and four body
correlation functions and their integrals.2 The pair, triplet, and
quadruplet integrals are given by13

G11 ≡ V−1
∫ [

g(2)
11 − 1

]
dr1dr2,

G111 ≡ V−1
∫ [

g(3)
111 − 1 − 3(g(2)

11 − 1)
]

dr1dr2dr3, (15)

G1111 ≡ V−1
∫ [

g(4)
1111 − 1 − 4(g(3)

111 − 1)

− 3(g(2)
11 − 1)(g(2)

11 − 1) + 6(g(2)
11 − 1)

]
dr1dr2dr3dr4,

in terms of a series of n-body spatial (center of mass) prob-
ability distribution functions, g(n)

αβ...(r1, r2, ...), defined in the
GCE. The spatial dependencies are implied in Equation (15).
An in depth discussion of the properties of these integrals, and
a comparison to the corresponding closed system integrals, is
provided elsewhere.3,15 The particle number fluctuations can
then be expressed as2,13

b11 = 1 + ρ1G11,

c111 = 1 + 3ρ1G11 + ρ
2
1G111, (16)

d1111 = 1 + 7ρ1G11 + 6ρ2
1G111 + ρ

3
1G1111.

Hence, once one has the particle number fluctuations then the
G’s can be extracted from the experimental data using Equation
(16). The above integrals involve distribution functions defined
in the GCE.2 The corresponding integrals for a closed system
are given by ρ1G11(closed) = �1, ρ2

1G111(closed) = 2, and
ρ3

1G1111(closed) = �614 and provide zero fluctuations. Unfor-
tunately, despite some efforts in this direction,7,22 we know
of no similar general formulation for the energy fluctuations.
Furthermore, the correlations and behavior outlined later in
Section III appear to be less obvious using the above integrals.

G. Intermolecular excess energy fluctuations

The pair, triplet, and quadruplet fluctuations help to quan-
tify the behavior of the molecules and then relate this behavior
to the fluid thermodynamics. We envision that this will be
important to understand fluid properties in terms of intermolec-
ular interactions and to compare and contrast with existing
models used for simulation studies of fluids. The current
formulation has focused on the internal energy. However,
for classical systems, it is often more useful to separate the
intramolecular and kinetic contributions from the intermolec-
ular contributions to the energy terms. If we factor according
to E = Em + Eij, where Em represents the instantaneous con-
tribution from all the molecular based energy terms and Eij

corresponds to the remaining instantaneous intermolecular
interaction energy, then we can write

βεm ≡ βEm − N1 βE1,m,

βεij ≡ βEij − N1(βE1,ij + Z).
(17)

In this case, βE1,m =
n
2 is the average molecular based energy

per molecule, where n is the number of molecular degrees of



094501-5 Ploetz, Pallewela, and Smith J. Chem. Phys. 146, 094501 (2017)

freedom per molecule. If there are n1 atoms in the molecule,
then n = 6n1 � 3. Of course, this assumes all the non-
intermolecular degrees of freedom can be written as simple
harmonic terms in the momenta and some set of (normal)
coordinates, and thereby each contributes the classical equipar-
tition value.23 This may not always be true, especially for high
frequency vibrations,24 but corrections can be made to this
approximation. Alternatively, one could simply separate the
internal energy into kinetic (molecular) and potential energy
contributions and use n = 3n1.

The factorization of the energy fluctuations into molecular
and intermolecular contributions is somewhat involved. While
it is relatively simple for fluctuations that include only one
or two energy terms, the fluctuations involving three or more
energy terms are more complicated. The details are provided in
Appendix B. The final results for the pair energy fluctuations
are given by

b1ε = [b1ε]ε=εij
,

bεε =
n
2
+ [bεε]ε=εij

,
(18)

while the triplet energy fluctuations are given by

c11ε = [c11ε]ε=εij
,

c1εε =
n
2

b11 + [c1εε]ε=εij
, (19)

cεεε = 2
n
2
+ 3

n
2

[b1ε]ε=εij
+ [cεεε]ε=εij

,

and the quadruplet energy fluctuations factor according to

d111ε = [d111ε]ε=εij
,

d11εε =
n
2

c111 + [d11εε]ε=εij
,

d1εεε = 2
n
2

b11 + 3
n
2

[c11ε]ε=εij
+ [d1εεε]ε=εij

,

dεεεε= 6
n
2
+ 3

(n
2

)2
b11 + 8

n
2

[b1ε]ε=εij

+ 6
n
2

[c1εε]ε=εij
+ [dεεεε]ε=εij

.

(20)

Use of the above relationships in Equations (9), (10), and (13)
indicates (as expected) that only terms involving intermolec-
ular contributions survive as all the molecular based terms
cancel. Finally, we note that Z can often be safely dropped
from the definition in Equation (17) for liquids under ambient
conditions as it is typically quite small (≈0.01) due to the rel-
atively high densities observed for liquids. Alternatively, one
can remove the Z based terms using the relationships provided
in Appendix B.

H. Ideal gas results

The results obtained for ideal gases represent useful ref-
erence values for real systems, especially in the gas and/or
supercritical phase. Ideal gases follow the ideal gas equation
and therefore Z = 1. The particle number fluctuation densities
then follow a Poisson distribution for a unit volume of fluid.25

Corresponding values for the excess energy fluctuations can
be determined by noting that the terms in Equation (5) adopt
values of 1, 1, and 1 + CV ,m/R, respectively, for ideal gases.
Here, CV ,m/R represents the contribution to the heat capacity

from the translational kinetic energy, rotational kinetic energy,
and (active) intramolecular vibrational degrees of freedom of
the specific gas and is assumed to be independent of temper-
ature. This leads to values of 0, �1, 2, and 0, respectively, for
the quantities displayed in Equation (9), together with values
of 0, 0, 2, �6, and 0, respectively, for the derivatives in Equa-
tion (10), and finally values of 1, CV ,m/R, Cp/CV , 0, and 0,
respectively, for the isochoric derivatives displayed in Equa-
tions (12) and (13). The following values for the fluctuations
are then obtained:

b11 = −b1ε = c111 = −c11ε = d1111 = −d111ε = 1,

bεε = c1εε = −cεεε = d11εε = −d1εεε = 1 + CV ,m/R,

dεεεε = −2(1 + CV ,m/R) + 3(1 + CV ,m/R)2,

G11 = G111 = G1111 = 0.

(21)

While the intermolecular interactions are clearly zero for an
ideal gas, the fluctuations involving the intermolecular excess
energy adopted here are actually finite. They are given by

[−b1ε = −c11ε = −d111ε = bεε = c1εε = d11εε

= −cεεε = −d1εεε = dεεεε]ε=εij = 1, (22)

where βεij = –N1. The relationships provided in Equation
(22) can be used in Equations (18)–(20) and provide the same
results as described in Equation (21) with CV ,m/R = n

2 .

III. METHODS

The fluctuating quantities of interest here were obtained
from the relationships outlined in Equations (5), (9), and (10).
The equations were solved sequentially. The required deriva-
tives were obtained from the recommended EOS as imple-
mented in REFPROP v. 9.1.26 Existing EOSs for fluid water,27

carbon dioxide,28 and sulfur hexafluoride29 were used. The last
expression in Equation (9) required a thermodynamic deriva-
tive not provided by the EOSs. Hence, we have used a simple
finite difference approximation for the left hand side. This
should be reasonable for all state points except those very
close to the critical point.13 Again, the expressions in Equa-
tion (10) required thermodynamic derivatives not provided
by the EOSs. Furthermore, the last derivative in Equation
(10) required a double finite difference approach. The sin-
gle and double finite difference (temperature) derivatives were
determined according to

∂X
∂T
≈

X(T + ∆T ) − X(T − ∆T )
2∆T

,

∂2X

∂T2
≈

X(T + ∆T ) − 2X(T ) + X(T − ∆T )

(∆T )2
,

(23)

using a ∆T of 1 mK and a ∆p of 10�10 bar and employing
double precision arithmetic. Alternatively, one could use finite
difference derivatives of the actual fluctuating quantities, as
indicated in Equations (A2)–(A4) of Appendix A.

IV. RESULTS AND DISCUSSION
A. General

The particle number fluctuations (b11) and excess
energy fluctuations (bεε) have to be positive, as do the
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corresponding thermodynamic properties in the form of the
isothermal compressibility and the isobaric heat capacity. The
value of b1ε is determined by the coefficient of thermal expan-
sion and can therefore be positive, negative, or zero. It is neg-
ative over the vast majority of the liquid and gas regions of the
phase diagram of most fluids, corresponding to a positive ther-
mal expansion. From Equation (12), it is apparent that a pos-
itive isochoric heat capacity implies that b11bεε > b2

1ε always
holds. The signs associated with the triplet and higher fluc-
tuations are more complicated in nature and are discussed in
Section IV B.

A number of thermodynamic properties are related to
the particle number-excess energy cross fluctuations. These
include the presence of a density maximum with temperature,
leading to a zero thermal expansion and b1ε = 0, together
with a change in sign for the Joule and Joule-Thomson coef-
ficients, the isothermal throttling coefficient, and the inter-
nal pressure. If we expand the expression for b1ε , we find
b1ε = b1E − b11(βE1 + Z) and, according to Equation (18),
this quantity relies on just the intermolecular interactions. As
Z ≈ 0 for liquids, and b11 ≈ Z ≈ 1 for gases, we find that the
change in sign for all the above properties occurs when〈

δN1δEij

〉
≈ 〈δN1δN1〉E1,ij, (24)

which is equivalent to a perfect correlation between N1 and
the total instantaneous intermolecular energy Eij, i.e., Eij

= N1 E1,ij. This can be written as an equality in the case
of the Joule coefficient and the internal pressure, while it
represents a good approximation for the thermal expansion,
the Joule-Thomson coefficient, and the isothermal throttling
coefficient.

In our previous work, we noted that the correspond-
ing, ensemble specific, fluctuation based formulas for many
thermodynamic properties could be obtained from the FST
results via suitable transformations.10 For instance, starting
with the GCE expression for the isochoric heat capacity, a
simple transformation δE − δN1B1E/B11 → δE generates the
corresponding energy fluctuation formula for the heat capac-
ity in the Canonical ensemble. Indeed, this can be extended
to include the triplet based properties outlined in Equation
(14)—presumably because the GCE and Canonical ensem-
bles are both isochoric in nature. However, while using the
transformations δε → δH and δN1V1 → −δV in Equation
(5) generates the corresponding fluctuation based expressions
for the heat capacity, thermal expansion, and compressibil-
ity in the isothermal-isobaric (Gibbs) ensemble,18 apparently
this is not true for the relationships provided in Equations (9)
and (10).

The use of an excess energy (ε) greatly simplifies many
of the previous relationships. One can expand the relation-
ships containing the excess energy to generate multiple terms
that isolate the energy fluctuations themselves. However, while
these terms can be obtained from molecular simulation, these
quantities cannot be isolated from experimental data. The pri-
mary reason for this is that the energy fluctuations in the GCE
depend on the zero of energy. For example, if one adds a simple
constant of energy for each molecule (eo)—representing the
electronic partition function, for instance—then the resulting
pair energy fluctuation corresponding to the molecular terms

is given by the approach presented in Appendix B and leads
to

[bEE]E=Em =
n
2
+

(n
2
+ βeo

)2
b11. (25)

Hence, while the closed system result (b11 = 0) for the energy
fluctuations is independent of eo, the GCE result is not. Con-
sequently, the energy fluctuations themselves are unavail-
able. The form of the excess energy fluctuations adopted
here eliminates this problem and the quantities then become
experimentally available.

It is envisioned that isolation of the energy fluctuations
corresponding to just the intermolecular interactions may pro-
vide deeper insight into the nature of many phase diagrams
as it is the intermolecular interactions that give rise to phase
transitions, etc. It is also clear that the direct rationalization
of the energy fluctuations, or the thermodynamic derivatives
they are associated with, is complicated by the presence of
the molecular terms and, possibly, the Z factor also included
with the intermolecular term in Equation (17)—even though
it is actually molecular in nature. Unfortunately, the number
of molecular degrees of freedom that contribute to these terms
is dependent on the temperature and pressure.24 While the gas
phase results for the intermolecular based energy fluctuations
should be relatively easy to obtain given some knowledge of
the corresponding vibrational frequencies, the results for the
condensed phase will remain problematic. Hence, we have not
pursued this issue further at the present time.

B. Phase diagrams

The previous relationships allow one to express the fluid
thermodynamics in terms of fluctuating quantities or to express
the fluctuating quantities in terms of fluid thermodynamics.
Using the latter approach, one can extract the fluctuating quan-
tities from experimental data covering large parts of the phase
diagram. The full pair, triplet, and quadruplet FST analysis of
water, sulfur hexafluoride, and carbon dioxide is presented in
Figures 1–3 for the gas, liquid, and supercritical regions. As
expected, the fluctuations increase dramatically in magnitude
as one approaches the critical point. Away from the critical
point, however, there are several consistent tends in the fluc-
tuating quantities displayed by all three systems. In particular,
c111 is consistent within a phase and is negative for liquids and
positive for gases. The crossover in behavior can be directly
related to the thermodynamic derivatives leading to the triplet
particle number fluctuation. The first relationship in Equation
(9) can be written as

c111 = Z−2p2[V1∂
2ρ1/∂p2 + (V1∂ρ1/∂p)2]. (26)

The last derivative is related to the compressibility and is there-
fore positive for both liquids and gases. The first derivative
must therefore be negative for liquids. Further examination
reveals that this derivative is positive for real gases (it is zero
for ideal gases). The quadruplet particle fluctuations (d1111)
are positive for both liquids and gases and only change sign in
the supercritical region.

The observed signs for all the fluctuation densities
obtained from an analysis of the data in Figures 1–3 are
summarized in Table I. It is clear that, in most cases, the
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FIG. 1. A FST analysis of fluid water
using the IAPWS-95 EOS.27 Zero con-
tours are indicated by dashed lines.
The thick solid line indicates the phase
boundaries and the critical point is indi-
cated with a red cross. Data outside the
ranges depicted on the color bars were
removed and those state points appear
white. Data were only contoured from
the solid-liquid coexistence temperature
to 1.5T c and from 1 bar to 2pc.

sign associated with a particular fluctuation density is deter-
mined by the phase, while in the supercritical region one can
observe both possibilities. The signs of B’s and D’s are the
same in a single (subcritical) phase as long as the number
of ε’s associated with the fluctuation is the same. The sign
observed for a phase changes each time one increases the num-
ber of ε terms associated with the same order fluctuation, e.g.,
D1111 > 0, D111ε < 0, D11εε > 0, D1εεε < 0, and Dεεεε > 0 for
gases. The appearance of a single sign for the liquid region
is absent for fluctuations containing three or more ε terms.
Here, the appearance of both signs in the liquid phase may
be due to contributions from the molecular terms which com-
plicate the issue. Preliminary studies attempting to remove the
molecular terms, using the expressions in Equations (18)–(20),
suggest this may be so (data not shown), but a more thorough
analysis is required before this can be considered conclusive.
Nevertheless, the fluctuation densities appear to reveal specific

characteristics of different regions. This is one of the main rea-
sons we have argued that a thorough FST based analysis of flu-
ids is potentially very beneficial to our understanding of their
behavior.

C. Relationships between the fluctuations

Examination of the particle fluctuations reveals that the
pair, triplet, and quadruplet fluctuations appear to be related.
In particular, the particle fluctuations along an isotherm display
simple power law relationships. The behavior in the gas phase
region is relatively simple. Here, the relationships in Equation
(16) are dominated by the pair correlations (G11) and hence
the fluctuations are related according to

c111 ≈ 1 + 3ρ1G11 ≈ b3
11,

d1111 ≈ 1 + 7ρ1G11 ≈ b7
11,

(27)
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FIG. 2. A FST analysis of fluid sulfur
hexafluoride using the Guder and Wag-
ner EOS.29 Zero contours are indicated
by dashed lines. The thick solid line indi-
cates the phase boundaries and the crit-
ical point is indicated with a red cross.
Data outside the ranges depicted on the
color bars were removed and those state
points appear white. Data were only con-
toured from the solid-liquid coexistence
temperature to 1.5T c and from 1 bar to
2pc.

when the density is low. This behavior is illustrated in Figure 4
where the non-ideal, low density, approach to the ideal limiting
behavior gives rise to a slope of three and seven for the triplet
and quadruplet fluctuations, respectively.

The behavior in the liquid region is less obvious. A sim-
ple power law relationship does appear to hold for large
regions of the phase diagram, especially for higher temper-
ature isotherms. The behavior for liquid water is displayed in
Figure 5. The data can be represented by relationships of the
form

c111 = −ybm
11,

d1111 = ybm+1
11

[
mybm−2

11 + m − 1
]

,
(28)

where the second relationship was derived from the first
using the equations in Appendix A. Here, y and m are con-
stants for a particular isotherm but do vary slightly with

temperature. Unfortunately, the variation in the excess energy
fluctuations, and the behavior of the particle fluctuations
along an isobar, does not appear to be so simple (data not
shown). Using the above relationships—together with the
hierarchy of equations in (5), (A1), and (A4) that relate the
singlet-pair, pair-triplet, and triplet-quadruplet fluctuations—
it is possible that the above observations may prove use-
ful in the development of improved (isothermal) EOSs for
liquids.

D. Excess energy fluctuations

As mentioned previously, the fluctuating quantities
described here represent the cumulants of the bivariate
particle-excess energy joint probability distribution for an
equivalent GCE. The particle number density and the corre-
sponding particle number fluctuations simply correspond to
derivatives of the thermodynamic potential for the GCE for a
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FIG. 3. A FST analysis of fluid car-
bon dioxide using the Span and Wagner
EOS.28 Zero contours are indicated by
dashed lines. The thick solid line indi-
cates the phase boundaries and the crit-
ical point is indicated with a red cross.
Data outside the ranges depicted on the
color bars were removed and those state
points appear white. Data were only con-
toured from the solid-liquid coexistence
temperature to 1.5T c and from 1 bar to
2pc.

single component fluid,30

Vd βp = −Ed β + N1d βµ1,

βpV = lnΞ,
(29)

where Ξ is the GCE partition function. The derivatives,

V

(
∂n βp
∂ βµn

1

)
β

, (30)

then provide 〈N1〉, 〈δN1δN1〉, etc. The derivatives with respect
to β,

V

(
∂n βp
∂ βn

)
βµ1

, (31)

provide the average internal energy and the corresponding
energy fluctuations 〈E〉, 〈δEδE〉, etc. The cross derivatives

provide a series of particle and energy fluctuations. Unfortu-
nately, the above energy fluctuations cannot be isolated from
experimental data for the reasons outlined in Section IV A and
Appendix B. Clearly, the fluctuations in the excess energy ε
can be obtained from experiment. However, while the response
functions are directly related to the pair fluctuations, the vari-
ances and higher cumulants are not simple derivatives of the
GCE potential. Hence, we examine the meaning of the excess
energy fluctuations.

First, we note that 〈ε〉 = −pV and so it is tempting to
associate the corresponding fluctuations in ε with the fluc-
tuation in the pressure. This latter quantity is provided by
Hill,30

β 〈δpδp〉 =
〈
∂2E/∂V2

〉
. (32)

However, the pressure appearing in the excess energy expres-
sion is actually p = 〈p〉, and hence it does not contribute to the
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TABLE I. Signs of the pair, triplet, and quadruplet fluctuation densities in
different phases. As provided by the EOSs for water,27 sulfur hexafluoride,29

and carbon dioxide.28 B1ε can be positive or zero in the liquid phase of water,
but it is negative across the vast majority of the phase diagram.

Quantity Gas Liquid Supercritical I.G.

B11 + + + +
C111 + � +/� +
D1111 + + +/� +
B1ε � � � �

C11ε � + +/� �

D111ε � � +/� �

Bεε + + + +
C1εε + � +/� +
D11εε + + +/� +
Cεεε � +/� +/� �

D1εεε � +/� +/� �

Dεεεε + +/� +/� +

fluctuations. In contrast, the manipulation of the GCE partition
function is more informative. The probability that a member
of the GCE contains N1 particles and is in a microscopic state
k with energy Ek is given by30

P(N1, Ek) =
eβ(µ1N1−Ek )

Ξ
. (33)

The corresponding probability that a member of the GCE
contains N1 particles and has an energy E is given by the

FIG. 4. The correlation between the pair, triplet, and quadruplet particle num-
ber fluctuations for gaseous water along different isotherms obtained using the
IAPWS-95 EOS.27

FIG. 5. The correlation between the pair, triplet, and quadruplet particle num-
ber fluctuations for liquid water along different isotherms obtained using the
IAPWS-95 EOS.27

above equation, and the fact that the degeneracy of the energy
levels can be written as Ω= eS/R, and using µ1 =H1 − TS1

to give

ln P(N1, E) = −β(ε − 〈ε〉) + (εS − 〈εS〉)/R, (34)

where we have also used Equation (29) and defined εS ≡ S
−N1S1. Hence, it is the excess energy, in combination with the
variation in entropy, that determines the particle number and
energy distribution. The above expression can be manipulated
further using a Taylor expansion of the entropy and eventually
provides the Gaussian result31

ln P(N1, E) = −
1
2

Cp,m

CV

[
(δN1)2

pκT/Z
+ 2Tαp

δN1

pκT/Z
βδε

Cp,m/R

+
(βδε)2

Cp,m/R

]
. (35)

This clearly illustrates the relationship between the particle
and energy fluctuations and the thermodynamic quantities of
common interest. In particular, the excess energy plays an
integral role in this relationship and leads to the simplest
expressions for the thermodynamic derivatives in terms of
fluctuations in the GCE. The Gaussian result is an approxima-
tion. This can be improved using the higher thermodynamic
derivatives presented here and will be described in a separate
publication.31
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V. CONCLUSIONS

A complete FST analysis of pure fluids up to and includ-
ing quadruplet particle and excess energy fluctuations has been
outlined and performed on three fluids. The approach provides
an alternative viewpoint of fluid thermodynamics using an
equivalent GCE picture of the corresponding particle number
and (excess) energy fluctuations. Interesting features of these
fluctuating quantities are observed as a function of pressure
and temperature. The possibility to isolate contributions from
the intermolecular based energy terms is outlined and holds the
potential to reveal other additional features of the phase dia-
gram. Furthermore, simple power law relationships appear to
hold between the particle number fluctuations for large regions
of the phase diagram. We envision that this type of analysis
will help in the development of more accurate force fields
for molecular simulation, lead to the generation of improved
EOSs, and can be used to strengthen our understanding of fluid
behavior and phase equilibria.
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APPENDIX A: RELATIONSHIPS BETWEEN
DERIVATIVES OF THE GCE FLUCTUATIONS AND
HIGHER MOMENTS OF THE PARTICLE-EXCESS
ENERGY DISTRIBUTION

The relationships provided in Equations (9), (10), and
(13) were obtained from derivatives of the pair (and triplet)
fluctuations. These derivatives provide higher moments of
the particle-excess energy probability distribution. Here,
we present the derivatives required for the manipulations
described in the main text. The derivatives are obtained
from Equation (3) using values of X = N1, N1

2, E, etc.
Again, the temperature derivatives are most easily obtained
from the derivatives with respect to β followed by a simple
transformation.

The pressure derivatives of the pair fluctuation densities
are given by

p
ρ1Z

∂B11

∂p
= c111,

βp
ρ1Z

∂B1ε

∂p
= c11ε − b11(1 + b1ε),

β2p
ρ1Z

∂Bεε
∂p
= c1εε − 2b1ε(1 + b1ε),

(A1)

where we have used the derivatives in Equation (4). The quan-
tities in Equation (A1) adopt values of 1, �1, and 1 + CV ,m/R,
respectively, for ideal gases. The first two derivatives in Equa-
tion (A1) have appeared before.13 The temperature derivatives

of the pair fluctuation densities are provided by

T
ρ1

∂B11

∂T
= c11ε ,

β
T
ρ1

∂B1ε

∂T
= c1εε − b11bεε ,

β2 T
ρ1

∂Bεε
∂T

= cεεε − 2b1εbεε .

(A2)

The quantities in Equation (A2) adopt values of �1, 0, and 1
+ CV ,m/R, respectively, for ideal gases. The first derivative in
Equation (A2) has appeared before.13

The derivatives along an isochore are slightly more
involved but can be obtained by the use of the derivatives in
Equation (11) to give

T
ρ1

(
∂B11

∂T

)
ρ1

= c11ε − c111b1ε/b11,

β
T
ρ1

(
∂B1ε

∂T

)
ρ1

= c1εε − c11εb1ε/b11

+ b1ε − (bεεb11 − b2
1ε),

β2 T
ρ1

(
∂Bεε
∂T

)
ρ1

= cεεε − c1εεb1ε/b11

+ 2b2
1ε/b11 − 2(bεεb11 − b2

1ε)b1ε/b11.

(A3)

The quantities in Equation (A3) adopt values of 0, �1, and 2(1
+ CV ,m/R), respectively, for ideal gases. The first derivative
in Equation (A3) has appeared before.13 The corresponding
pressure derivatives are then provided by the use of the thermal
pressure coefficient provided in Equation (12).

Derivatives of the triplet fluctuations involve the quadru-
plet fluctuations. The pressure derivatives are given by

p
ρ1Z

∂C111

∂p
= d1111,

βp
ρ1Z

∂C11ε

∂p
= d111ε − c111(1 + b1ε),

β2p
ρ1Z

∂C1εε

∂p
= d11εε − 2c11ε(1 + b1ε),

β3p
ρ1Z

∂Cεεε
∂p

= d1εεε − 3c1εε(1 + b1ε),

(A4)

where the quantities in Equation (A4) adopt values of 1, �1,
1 + CV ,m/R, and –(1 + CV ,m/R), respectively, for ideal gases.
The first derivative in Equation (A4) has appeared before.13 In
addition, the temperature derivatives are given by

T
ρ1

∂C111

∂T
= d111ε ,

β
T
ρ1

∂C11ε

∂T
= d11εε − c111bεε ,

β2 T
ρ1

∂C1εε

∂T
= d1εεε − 2c11εbεε ,

β3 T
ρ1

∂Cεεε
∂T

= dεεεε − 3c1εεbεε ,

(A5)

and the quantities in Equation (A5) adopt values of �1, 0, 1
+ CV ,m/R, and �2(1 + CV ,m/R), respectively, for ideal gases.
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APPENDIX B: MOLECULAR BASED CONTRIBUTIONS
TO THE GCE EXCESS ENERGY FLUCTUATIONS

In this section, we provide a decomposition of the energy
fluctuations into molecular and intermolecular contributions.
The molecular contributions are then obtained analytically.
The same results are obtained by writing the classical partition
function in a form suitable for molecules, and this may (at first
sight) seem simpler.21 However, this apparent initial simplicity
is lost after performing multiple temperature derivatives. Here
we will simply factor the established relationships from the
main text.

We factor the excess energy fluctuations into two terms
ε = εm + εij using the definitions given in Equation (17).
First, we focus on the molecular based terms that contribute
to εm. We require the GCE values of the molecular energy Em

and various powers and products of Em with N1. The average
energy due to these molecular based terms in the Canonical
ensemble can be written as

β 〈Em〉NVT =

〈∑
i
ai

〉
NVT
= N 〈a〉NVT , (B1)

where ai = βp2
i /(2mi), with pi being the momentum (in one

direction) and mi being the mass of a single molecule. The sum
is over N (,N1) equivalent molecular terms. Here, we assume
a form corresponding to the molecular kinetic energies, but
this can be extended to include any contributions that provide
the equipartition values (quadratic in either the momenta or
coordinates). If we extend this to include the square of the
molecular based energy, we find

β2
〈
E2

m

〉
NVT
=

〈∑
i
ai

∑
j
aj

〉
NVT

= N
〈
a2

〉
NVT
+ N(N − 1) 〈a〉2NVT . (B2)

The factorization assumes that the molecular terms are
independent, i.e., 〈aiaj〉NVT = 〈ai〉NVT 〈aj〉NVT for i , j. In the
Canonical ensemble, the energy fluctuations are then simply
given by β2 〈

δEmδEm
〉

NVT = N[〈a2〉NVT − 〈a〉2NVT ], as the N2

terms cancel, but this will not be the case in the GCE as we
will see below. The higher powers of the energy are provided
by the fact that

β3
〈
E3

m

〉
NVT
=

〈∑
i
ai

∑
j
aj

∑
k

ak

〉
NVT

= N
〈
a3

〉
NVT
+ 3N(N − 1)

〈
a2

〉
NVT
〈a〉NVT

+N(N − 1)(N − 2) 〈a〉3NVT , (B3)

and after using the multinomial coefficients,

β4
〈
E4

m

〉
NVT
=

〈∑
i
ai

∑
j
aj

∑
k

ak

∑
l
al

〉
NVT

= N
〈
a4

〉
NVT
+ 4N(N − 1)

〈
a3

〉
NVT
〈a〉NVT

+ 3N(N − 1)
〈
a2

〉2

NVT

+ 6N(N − 1)(N − 2)
〈
a2

〉
NVT
〈a〉2NVT

+N(N − 1)(N − 2)(N − 3) 〈a〉4NVT . (B4)

This completes the set of energy terms required here.

The required ensemble averages can be evaluated using
standard integrals to provide the general result

〈
ar〉

NVT =

〈(
βp2

2m

)r〉
NVT
=

(2r)!

r!22r
, (B5)

for any power r. If n is the number of molecular based terms
(degrees of freedom) per molecule then N = nN1 and the above
averages can be written as

β 〈Em〉NVT = N1
n
2

,

β2
〈
E2

m

〉
NVT
= N1

n
2
+ N2

1

(n
2

)2
,

β3
〈
E3

m

〉
NVT
= 2N1

n
2
+ 3N2

1

(n
2

)2
+ N3

1

(n
2

)3
,

β4
〈
E4

m

〉
NVT
= 6N1

n
2
+ 11N2

1

(n
2

)2
+ 6N3

1

(n
2

)3
+ N4

1

(n
2

)4
,

(B6)

and hence, βE1,m =
n
2 . The relationships in Equation (B6) can

then be used to evaluate the GCE fluctuations originating from
the molecular based terms by noting that 〈Em〉 =

〈
〈Em〉NVT

〉
and 〈N1Em〉 =

〈
N1 〈Em〉NVT

〉
, etc., obtained by a simple manip-

ulation of the GCE partition function. The results for the pair
fluctuations are then

[b1E]E=Em =
n
2

b11,

[bEE]E=Em =
n
2
+

(n
2

)2
b11,

(B7)

while the results for the triplet fluctuations are given by

[c11E]E=Em =
n
2

c111,

[c1EE]E=Em =
n
2

b11 +

(n
2

)2
c111,

[cEEE]E=Em = 2
n
2
+ 3

(n
2

)2
b11 +

(n
2

)3
c111,

(B8)

and finally the quadruplet fluctuations provide

[d111E]E=Em =
n
2

d1111,

[d11EE]E=Em =
n
2

c111 +

(n
2

)2
d1111,

[d1EEE]E=Em = 2
n
2

b11 + 3
(n

2

)2
c111 +

(n
2

)3
d1111,

[dEEEE]E=Em = 6
n
2
+ 11

(n
2

)2
b11 + 6

(n
2

)3
c111 +

(n
2

)4
d1111.

(B9)

These can then be used to give the molecular based fluctuations
[bεε]ε=εm , etc. On doing this, many (but not all) of the terms on
the right hand side of the above equations cancel. The equiv-
alent closed system (NVT) results can be obtained by setting
b11 = c111 = d1111 = 0, and then the only finite quantities that
remain are those that involve just the energy fluctuations.

The final step is to factor the total fluctuations into
molecular and intermolecular contributions. This can be
achieved by expanding each term, applying the fact that 〈εm〉

= 0, 〈δεmδεij〉 = 0, and 〈εmε
r
ij〉 = 0, and then simplifying.

Most of the required fluctuations simply factor to give bεε
= [bεε]ε=εm + [bεε]ε=εij , etc. However, fluctuations
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containing more than two energy terms are more complicated
and result in the following relationships:

cεεε = [cεεε]ε=εm
+ 3

n
2

[b1ε]ε=εij
+ [cεεε]ε=εij

,

d1εεε = [d1εεε]ε=εm
+ 3

n
2

[c11ε]ε=εij
+ [d1εεε]ε=εij

,

dεεεε = [dεεεε]ε=εm
+ 8

n
2

[b1ε]ε=εij
+ 6

n
2

[c1εε]ε=εij

+ [dεεεε]ε=εij
.

(B10)

The combination of Equations (B7)–(B10) gives rise to the
relationships in Equations (18)–(20). They are consistent with
the results obtained for ideal gases.

Should one want to remove the Z terms from the fluc-
tuations to focus solely on the non-molecular intermolecular
energy term then these can be obtained by a simple expansion
to give

[b1ε]ε=ε′ij = [b1ε]ε=εij
+ b11Z ,

[bεε]ε=ε′ij = [bεε]ε=εij
+ 2 [b1ε]ε=εij

Z + b11Z2,
(B11)

for the pair fluctuations with

[c11ε]ε=ε′ij = [c11ε]ε=εij
+ c111Z ,

[c1εε]ε=ε′ij = [c1εε]ε=εij
+ 2 [c11ε]ε=εij

Z + c111Z2,

[cεεε]ε=ε′ij = [cεεε]ε=εij
+ 3 [c1εε]ε=εij

Z

+ 3 [c11ε]ε=εij
Z2 + c111Z3,

(B12)

for the triplet fluctuations, and

[d111ε]ε=ε′ij = [d111ε]ε=εij
+ d1111Z ,

[d11εε]ε=ε′ij = [d11εε]ε=εij
+ 2 [d111ε]ε=εij

Z + d1111Z2,

[d1εεε]ε=ε′ij = [d1εεε]ε=εij

+ 3 [d11εε]ε=εij
Z + 3 [d111ε]ε=εij

Z2 + d1111Z3,

[dεεεε]ε=ε′ij = [dεεεε]ε=εij
+4[d1εεε]ε=εij

Z +6[d11εε]ε=εij
Z2

+ 4 [d111ε]ε=εij
Z3 + d1111Z4,

(B13)

for the quadruplet fluctuations. Here, ε′ij =Eij −N1E1,ij = εij

+ N1Z .
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