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INTKODIETION

The simple a ilysis of most experimental d( -.ns depends upon their fully

balanced ai'ranficmcnt . But in experimental wo: it frequently happens that

one or more experimental units is missing from the data, or has to be

rejected because of conditions outside tiv- control of the experimenter.

It should be cautioned that observations shoui- be rejected in the analysis

of results only under extreme circumstances, when it is quite obvious that

the treatment beino studied is not responsible for the apparently anomalous

results (Anderson, 19^6)

.

One of the first papers on the subject of estimating the yield of a

missing unit in field experimental work was published by Allan and

Wishart (1930). They derived formulas and illustrated their use for a

single missing plot in a randomized block and in a latin square experiment.

These methods were extended by Yates (1933) to cover several missing units

in a given experiment

.

The formula given by Yates for estimating the yield of a single missing

unio in a randomized block experiment is

Y - (rB + tT - G)
^ - (r - l)(t - 1)

where r = the number of blocks,

t = the number of treatments,

B = the total yield of the remaining units in the block where the

missing unit appears,

T = the total of the yields of the treatments with the missing unit,

G = the grand total.

Similarly for a single missing unit in a latin sq-oare
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r(R -i- Q. r'^^ - 2G
- y ^r _ ^)^r - ^} . /, .

where r = the nmnber of rows, columns and treatments,

R ^ the ootai number of yields of the remaining units in the row

in which the missing unit appears,

C = the total number of yields of the remaining units in the column

in which the missing unit appears.

In this report the problem of calculating these missing values will be

investigated from a general point of view for the following designs:

(1) randomized block,

(2) randomized block design with replication within units,

(3) cross-over,
,

^

(U) latin squaxe,

(5) split-plot.

NOTATION

Vectors - lower ca^e letters in Clajrendon type.

Matrices - capital letters in Clarendon type.

Traiisposition of matrices and vectors is indicated by a prime.

Sunmation - two summation symbols will be used:

(1) Z X. where i = 1, 2, ..., n

(2) L/ . X X. to mean summation over some subset of the subscript values,
(1) 1

Associated observations - an observation in a design is denoted by x. ,————^—^^-^-^—^^^—

—

IjK...,

where the number of subscripts indicates the order of classification

involved. Thvis an obseirvation in a randomized block requires two sub-

scripts for its specification, and an observation in a Graeco-latin square

requires four.



If one consider two observations they may have cerliain subscripts in

coihmon. This property enables one to describe the relation between pairs

Ox observations; observations related in a specific way will be called

associates. For example, one consider two observations x„ , and x
^ ' fCh uvw

The fo^^lowinc classes of associates can be recognized:

(1) iiero-order associates: f/u, gyV, h/w;

(2) Ist-order associates: (i) i associates f=u, g^v, h^;
(ii) j associates f^u, g=v, h^w;

(iii) k associates f^u, g^v, h=w;

(3) 2nd-order associates: (i) ij associates f=u, g=v, hyw;

(ii) ik associates f=u, gT^v, h=w;
(iii) Jk associates f/u, g=v, h=w.

Particular aissociates may or may not exist depending on the experimental

design.

A potential observation in a design will be indicated by a capital letter

X. . if this is in fact a missing observation it will be indicated in
ij • • •

,

lower case x . .

'
-

xj • . • •

GENERAL SOLUTION

Let X (i = 1, 2, ..., p) be p independent missing values. Then the error

sum of sq.uares is a qtuadratic function of these values, F(x, , x„, .... x ),
' * 1' 2 p

and the vector of the partial derivative of this function is given by

Biggers (1959), that is:

2(x'A - q')A. (1)

where x is a column vector of the p missing values,

A is a p X p symmetric matrix whose elements are determined by the
experimental design and the distribution of the missing values,

q is a column vector whose elements are calculated from the
available observations.



N is a constant determined by the experimental desifgi.

The values of the x., where x. is a rainiraum, are [',iven by the, solution

of p simultaneous eq.uations obtained by eq.uatin^ each of its partial

derivatives to zero. These are, in matrix notation:

Ax = q. (2)

Several methods may be used to solve equation (2) . Most textbooks on the

desiGii and analysis of experiments give the formula for one missine obser-

vation in randomized block, cross-over and latin-square designs and the

special formula for two or three missing observations have also been

published for the randomized bl->-k design (Baten, 1939, 1952; Federer, 1951,

1955) and the latin-sqioare design (Federer, 1955)- Usually, where more than

one missing observation exist in a design, it is recommended that the

estimates be obtained by an iterative process based on the formula for one

missing observation. None of these methods gives the explicit determination

of the simultaneous equations. In this report rules will be given which

enable equation (2) to be written down rapidly for the different experimental

designs . The main advantage of this procedure is that it enables the nature

of the equations to be examined and this leads to simplifications in several

important complex cases

.

.

The matrix method has been the subject of a paper by Thompson (195^) on

missine values in the randomized block designs. This paper, however, only

dealt with a restricted distribution of missing values, presumably because

-1 / \

the val'oes of A are written down instead of A. Wilkinson (1957) has

shown how the matrix A can be used to obtain exact variances of treatment

comparisons

.



RANDOMIZED BLOCK DESIGN

Suppose ail experiment consists of r blocks each containing t plots to

which t treatments are allotted at random. Let X. . (i = 1, 2, .... r;

j = 1, 2, ..., t) be the observation vhich is in the ith block and

receiving the jth treatment. At the end of the experiment let p of these

values be missing. It should be noted that the missing observations are

indicated by only some of the values of the subscripts.

Let the ith block and the jth treatment contain c. and d. missing

observations respectively. Then t

p=Zc.=Zd..

Missing observations in the same ith block are called i associates or block

associates and missing obseorvations receiving the same jth treatment are

called j associates or treatment associates. The missing observation x ,

gh

will have therefore (c^. - l) block associates, (d, - l) treatment associates

and p-(c +d^-l) zero associates.
g n

Let B. = total of available observations in the ith block,

T. - total of the available observations receiving the jth treatment,

G = total of all available observations

.

The error terra in the analysis of variance is given by

+ (G + Z^^^Z/^^x^
) / rt + constant. (3)

Partial differentiation of (3) with respect to a particular missing

observation, x , , and equating the derivative to zero, gives the equation

rtx - r Z/ ,vx^. - t Z, .nX., + Z/.nZ/ .sX. . = rB + tT, - G.
i^ U) SJ (i) ih (i) (j) ij g h .



This fiuiction can be rcvrrittcn ao i'ollow:

+ Z/ .vX . = rB + tT^ - G
ts h

Separation of terms correspondinti to zero, i and j associates yields

i associates j associates zero aissociates

(r - l)(t - l)x^^^ . (I - r)Z( .^x^. -. (1 - t)Z( .^x.^ .
h^)^U)\i

j^ i/g iv^g 3¥^

= rB + tT, - G. (^)
S ii

Expression {h) enables one to write down the coefficients of the x , the

B and T, , and hence the matrix A and the vector q. in (2)

.

S ^

The elements of matrix A are given by: '

(i) (r - l)(t - l) for the missing observation under consideration,

(ii) (l - r) for the block associates,

(iii) (l - t) for the treatment associates,

(iv) 1 for the zero associates.

Usually, in practical situations the matrix A will be nonsingular, and

thus the equation (2) will have a unique solution.

The general form of matrix A for the randomized block design will be

like Figure 1.

Figure 1. The general form of matrix A for randomized block design.

missing observations .

(l-r) for i associates

(l-t) for J associates

1 for zero associates

^^

(l-r) for i £Lssociates

(l-t) for j associates

1 for zero associates



Suppose there are five misGiriii observations, they are: x , x _, x
,

^^r} aaad Xg . Then one can easily find the matrix A as follows:

(

\2 ^3 "35

1

"^5 "67
,

|''l2
(r-l)(t-•1) (l-r) 1 i 1 .

1 !

1^13
'

(1-r) (r-l)(t-l) 1 1 1

"35

;

1 M (r-l)(t- 1) (1-t) . 1
.

''^5 ^
1

^-: ^-
.

(1-t) (r-l)(t-l) 1

^67
1

1 1 1 •'.1 (r-l)(t-l)

Example 1. Table 1 shows the results of a randomized block experiment

(r = 3; t. = 5). The raissinc values are calculated as follows:

(1) Construct, a table so the rows correspond to separate blocks. This

is essential to avoid confusion in determining the associates.

(2) Obtain the coefficients of the associates.

(3) Insert in the table of resiilts the letter x. . for the missing

values with subscripts determined by the position of the missing value

in the table, e.g. x^^ is the missing value in the third block receiving

the fifth treatment. Space should be left to insert the estimated

missing value.

(4) Obtain the B^, T. and G from the available observations and write

at the border of the table,

(5) Prepare a table as in Table 2. List the subscripts in a row at the

top and a column at the left-haad side of the table. By comparing the

subscripts in pairs, determine which subscripts are common. This
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determines the type oi" association, and the appropriate coefficient is

vritten doim at the intersection of the corresponding rov/ and column. At

the right of the table 2 colvums for the B., T. and G are prepared. The

i subscript in the left-hand column determines the B. total in a given

row, while the j subscript determines the T, total. Beneath the B. and

T col\mns the valxies of r and t are written down respectively, and

beneath the G column the value -1 is written.

Table 1. The wet weight in mg (x) of embryonic chick tibisie aifter

cultivation on a chemically defined medium containing five

different concentrations of glucose . Treatment numbers are

placed in parentheses. The variate analysed is log lOx (Biggers,1959)

Block Glucose concentration (mg./ml .)

B
Completed
block
totals

0.5(1)
1

1.0(2 ) 2.0(3) 4.0(4) 8.0(5)

i

I 0.88 1.15 1.33 1.39 1.57 6.32
II i.o6 1.22 1.63 1.54 1.37 « 6.82

;
III

1
0.97 1.34 (x=1.50) 1.66 (x=l.53) 3.97(B3) 7.00 1

: IV
i

1.09 1.21 l.l6 1.50 1.48 6.44
V

}
1.14 1.37 1.58 1.52 1.44 - 7.05

VI |1.13 1.33 1.65 1.57 1.47 ~ 7.15
VII 1 1.00 1.21 (x=1.44) 1.45 1.52 5.18(B„)

5.38(B^)
6.62

VIII i 1.12 1.30 1.35 (x=i.56) 1.61 6.94

1

1

1

: T
i

-

1
i •

8.70(T.) l0.63(Ti^) 10.46(T ) 48.31(G) "

Com-
pleted

;

treat- 8.39
ment
totals

;

j

1

10.13 11.64 12.19 11.99 - 5^.34

1



Table 2. Calculation of A and q

; Subscripts A
i

! <1

i

) 33 35 73 8i^ B T G

33 28 -7 -h 1 ;3.97 8.70 48 .31

1 35 -7 28 1 1 3.97 10.46 48 .31

j
73 -1+ 1 28 1 5.18 8.70 48 .31

1 Sk

' —

1 1 1 28 5.38 10.63 48 •31

i

1

r=8 t=5 •1

(6) Invert the matrix A,

(7) Write down the solution as follows;

-1

r
"^33

"35 i_

x^3

''84
1

L _( _

0.039

0.010

0.005

0.002

A

0.010

0.038

0.000

-0.002

0.005

0.000

0.037

-0.001

-0.002
I

i

i

-0.002
I

-0.001

0.036

q

26.95

35.75

36.63

47.88

q is obtained by row by row multiplication of each row of the right-hand

side of Table 2 with the bottom row. Thus, in the example, the upper entry

of q is given by "
'

8 X 3.97 + 5 X 8.70 - 48.31 = 26.95

The values of the x^^ are then obtained by standard row by column multipli-

cation. In the example x^^ = I.50; x^^ = I.53; x^3 = 1.44; Xg^^ = I.56.

(8) The values of the x^^are inserted in Table 1, and the block and

treatment totals completed. The standard analysis of variance then follows.

In this exaiaple 4 D.F. are subtracted from the error term.
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Special case: The process of calculating a""'' can be simplified if A is

a p X p matrix of the form:

a b

b a

b b

(5)

This is a circulant matrix and hence the sum of the elements of a row is

a factor of its determinant. Thus if a + b(p - l) = O the matrix is

singular, and A will not be found.

The inverse of the matrix A is given by

i a + b(p - 2)

1

"1

-1

(a-b)[a+b(p-l)]

-b

a + b(p - 2)

-b

-b

L
a + b(p -

2)J ^

i^ANDOMIZED BLOCK DESIGN WITH REPLICATION WITHIN UNITS

Suppose on has r blocks each containing t plots to which t treatments

are allot;;ed at random, and in each cell there are s independent observa-

tions
.

The analysis of variance takes the fonn shown in Table 3. At the

present time there is considerable discussion on the linear models which

are assumed in the analysis of this design (Anderson aad Bancroft, 1952j

Wilk and Kempthron, 1955). The models determine the expectations of the

mean squares in the analysis of Table 3- There are three error terms to

consider:

(l) The within-plots sum of squares (e ) (case l).
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(2) The blocks x treatments sum of sq.uares (Ep) (case 2),

(3) (E^ + E^) (case 3).

Table 3- Analysis of variance for a r x t randomized block design with s

observations per plot

Source of variation D.F. S.S.

. Between blocks (^r-l) (B-C)

Between treatments (t-l) (T-C)

Blocks X treatments interaction(Ep) (r-l)(t-l) (P-B-T+C)

Within plots (E^) rt(s-l) ( S-P)

Total . (rst-1) (S-C)

Where S - total sum of squares, C = correction for the mean, B = block
sum of squares, T = treatment sum of squares, P = plot sum of squares.

^^ ^ijk (i == 1. 2, ..., r; j = 1, 2, ..., t; k = 1, 2, ..., s) be the

kth observation on the jth treatment in the ith block, and let p be the

number of missing observations within each plot. Then the total number

of missing observations is p = Z p. .. The following associates exist:

zero, i, j and i j

.

Let P^. = to-cal values of the available observations in the ijth plot,

B^ = total values of the available observations in the ith block,

T = oo-cal values of the available observations receiving the jth
treatment,

G = total values of all available observations.

The three sets of equations for estimating the missing values when each

of the error terms are minimized, have been obtained by an analysis similar

to that applied to the randomized block design. The rules which determine

the elements of A and q for each case are shown in Table 4.
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If one orders the eleinents of A in groups corresponding to the ij

subscript, one can rewrite (2) in general:

r

11

"12

l.rt

A
12

22

2.rt

A

A

l.rt
x^^"

11
<1

2.rt
12

X ^^

• • •

*

rt

rt.rt
_

rt
X

•

L —

(6)

Where A^ (a = B) are submatrices along the main diagonal, one corresponding
to each plot. Each is a square symmetric matrix o'f* order
p . . . The superscript denotes the plot. While the'
subscript denotes the position of the submatrix,

A (a 7/ B) are rectangular submatrices,

X ^ is a vector of the p. . missing values in plot ij,

q.
"^ is a vector of the p. . elements calculated from the available
observations. "^

Table h. Coefficients of associates and elements of q for the three cases
in the randomized block design with replication within units.

Associate
Coefficient

1

i

1

1

Case

(^1

1

)

Case 2 Case 3

(E-L + E^)

Missing value

zero

(s-1)
-1

(r-l)(t-l)
(r-l)(t-l)

(1-r)
(1-t)

1

(rst-r-t+l)
(1-r-t)
(1-r)
(1-t)

1

Elements of q

Case
Case
Case

1

2

3

rB
rBj

^ tT-.- rtPfg - G
+ tT " - G
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If a plot has no missing valvies, the subraatrices of the corresponding

row3 and colur,n.s in (6) vanish. The elements of the submatrices along the

main diagonal are determined by the coefficients for the missing value and

its ij associates.

We now consider the three ca^es discussed above. '

Case 1. The matrix of (6) is of the form

11

12

rt'rt

Since the inverse of (7) is

(7)

11

A,
12

(8)

rt'rt

vhich means "Chat the estimates of the missing values in the ijth plot is

independent of the missing values in all other plots. Therefore the

missing values for the iJth plot are given by the solution of

I I

(s-1) -1

-1 (s-1) -1

(s-1)

~ — -^— —

P
ij

P. .

• ~ •

^jPiJ_ _'^J_

(9)

3. . X p.



'•I-*' }i:

Ik

The inverse of the matrix A can be written in general form:

s-(p. .
- 1)

;(s - p. .)

: s(s - p. .)

i s(s - p. .)
; 1

J

s(s - p. .)

s-(p. .
- 1)

1.1

s(s - X). .)

s-(p. .
- 1)

s(s - p. .)

^^' -
^±i^ !

!

i(s - p. .) i

s-(p. .
- 1)

1.1
^

(10)

s(s - p. .)

This has the solution p. . / (s - p. .) for all the x. ., . Thus in this case
•^ij -^ij' ijk

the missing observations are estimated by the average of the available

observations in the plot. If all the values in a plot are missing p. .
= s

and the equations have no straight -forward solution (Biggers, 1959)

•

When r = 1, one can have the case of ftilly randomized design. Thus an

estimate of a missing values, if required, is the average of the results

available on the particular treatment. i

Case 2. The submatrices, in this case, have equal elements. The

A^ {a = B) have elements equal to (r-l)(t-l) while the A (a ^ B) have
'oB

elements equal to (l-r), (l-t) or 1, according to i, j or zero associates.

Thxis, to solve (6), one may allot within each plot (p. .
- l) arbitrary

valvies and then solve for the remainder. In practice, therefore, one would

insert arbitrary values for all but one missing value in each plot, say

P,- . / (s - P-; J for s y' p. ., and then write out (6) as though one value is
•^J ij ij

missing in each plot. Since, in case 1, the missing observations within

plot are estimated by the average of the available observations in the plot.

Alternatively, if one works entirely with plot totals, one can use the
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fonnula for a randomized block design to estimate a missing plot itpioring

all the available observations on the plot.

Case 3« Here the matrix of (6) is assumed to be non-singular even if

all observations are missing from a plot, thus allowing estimates of these

values to be made

.

CROSS-OVER DESIGN

Consider an r x t design, where each of t columns is a separate replicate

of the r treatments, subject to the condition that each treatment occurs an

equal number of times (a) in each row, then t = ar

Denote each observation by X. ., (i, k = 1, 2, . . ., r; j = 1, 2, .... t).

Let p observations be missing. In this design, the following associates

exist: zero, i, j, k, ik.

Let R = total of the available observations in the ith row,

C - total of available observations on the Jth column,

T^ = total of the available observations receiving the kth treatment,

G = total of all available observations. ;•

The elements of matrix A are given by: . .

(i) (r-l)(t-2) for the missing observation under consideration,

(ii) 2(l-r) for the ik associates, r,
.

(iii) (2-r) for the i and k associates,

(iv) (2-t) for the j associates,

(v) 2 for the zero eissociates.

The element of q_ is given by '

rR^ + tC + rf?. - 2G

,

•L g h *

v;hen r = 2 the coefficient for i and k associates is zero. This leads to



'.
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independence of the equations for estimating the missing vali«;s in some

instances, thus allowinc the formula for a single mlssina value to be used

separately for each plot.

lATIK SQUARE DESIGN

The formula for a t x t latin-square design can be obtained from those

for the cross-over design by putting a = 1. Under this restriction ik

associates do not exist. ' -'

The elements of matrix A are given by:

(i) (t-i)(r-2) for the missing observation under consideration,

(ii) (2-t) for the i, j and k associates,

(iii) 2 for the zero associates.

The element of q is then

-
,

t(R^ + Cg +T^) - 2G .

SPLIT PLOT DESIGN

Whole-plot treatments arranged in randomized blocks

In field experiments an extra factor is sometimes introduced into an

experiment by dividing each plot into a number of parts.

Now, let us consider a design with r blocks containing t plots to which

t whole-plot treatments axe allotted at random. Further let s split-plot

treatments be allotted at random within each whole plot. For exaraple, if

the experiment is planned originally to test a factor A with five levels,

and divided each plot into halves permits an extra factor B at two levels.

The plan (after randomization) might appear gis shown as follows:
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^3

Bloc

^2

k 1

^0 a,
1 \ ^

Block

3.1 a
h

2

"3 ^2 ^i.

Block 3

^3 ^0 \ ^2

^0 \ \ \ \ ^0 ^0 \
^0

^0 ^ ^ ^0 ^0

^^
"o \ \ h \ \ ^0 \ ^0 ^0 \ \

The analysis of variance of this design is given in Table 5. There are

two error terms to he considered: (l) E^ corresponding to the whole-plots

(case 1), and (2) E^ corresponding to the split-plot (case 2).

Table 5. Analysis of variance for a split-plot design with whole-plot
treatments arranged in randomized blocks

Source of variation D.p. Sum of squares

Between blocks ' ^

(j..;l) (b-c)
Between whole-plot treatments (A) (t-l) (s-c)

'^^"^"^^l) (r-l)(t-l) (w-B-S-K:)

Between split -plot treatments (b) (s-i) (^-c)
AB interaction

(s-l)l^-l) (j-s-t-k:)
^^^°"^^2) t(s-l)(r-l) (Z-W-I-*^)

Total
(rst-1) (z-c)

rrjorrectioffo^th^
'^"^""'^ °^ split-plots, W = total sum of squares,L r^^^'^^^Q'^

^o^ ^iie mean, B = block sum of squares. S = whole-Slottreatment sum of scuares T - cr^n-i-h >^t ^+- + 4.

^^^^''' ^ wnoxe plot
T _ +v.= ^ T ^^'i^^ares, i - split -plot treatment sum of sauaresI - treatment combination sum of squares.

squares.

Let one denote the observation made on the kth split-plot treatment in

the ijth plot by X (i = 1, 2, ..., r; J = 1 2 f k - ^ q n



18

A'c the end of the cxpcrinicnt let p split -plots oe missing.

The followlnr, associates exist: zero^ i, ,j, k, ij, ik, jk.

Case 1. Table 5 shows that the expression for the error terra is the

sane as that in case 2 of the generalized randomized block design. The

solution in the two cases is identical. One ignores the available observa-

tions and es-oiraate new whole-plot values using the formula for a randomized

block design.
' '

,.

Case 2. Let VJ. . = total of the available observations in the ijth plot,

I ., = total of the available obsejrvations receiving the
"^ jth whole -plot treatment,

S . - total of the available observations receiving the
Jth whuLc-iDlot treabmcnt.

The elements of matrix A arc given by:
, ._ ,

(i) (r-l)(s-l) for the missing observation under consideration,

(ii) (l-s) for the jk associates, '
-

(iii) (i-r) for the ij associates,

(iv) 1 for the J associates, .

.

'

(v) for the zero, i, k and ik associates.

The element of q is given by
.

rW^ + si , - S ."g gh g

Example 2. Table 6 shows the results of a split-plot experiment where

the whole-plot treatments are arranged in randomized blocks (r = U; t = 5;

s = 2). Mssing values have been artificially chosen to provide the

exajnxple. Table 7 is prepared from the data of Table 6 in exactly the

same way as discribed in Example 1, except that the subscripts have been

ordered using the middle (j) subscript. From the matrix A it is seen that

the estimation of x^^^ and x^^g is independent of the estimation of x
^
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mid x^.,^. Thus, instead of inverting a ^ x if matrix, one may invert two

2x2 uiatrices considerably simplifyins the problem. The estimates are

given by

r-
121

i
^222

!

= 1/8
-1

1

J

I

4.74

i

4.74
J

Thus X.
121

^32

_^232

= 1.19] X,

= 1/8

3

1

1

3

[2.5^

3.76

222
= 1.19; x^^2 = 1-^3; x^^^ = 1.73.

Table 6. The wet weight in mg(x) of embryonic chick titiae after cultiva-
tion on a chemically defined medium containing different concen-
trations of glucose or mannose. Treatment nijmbers are placed in
parentheses. The variate analysed is log lOx (Biggers, 1959).

Block
Split-plot
treatment

1

T

i

!

VJhole-plot treatment
Hexose concentration (mg. /ml.)

:0.5(1) 1.0(2) 2.0(3) 4.0(4) 8.0(5)

I Glucose (1) 0.88 {^^^^=1.19) 1.33 1.39 1-57

2^1annose(2) 0.78 1.15 (x^32=l-^3) 1.42 1.51

^^ Glucose (1) 1.06 1.22 '• 1.63 1.54 1.37

!

1

(

Mannose (2) 1.09 (X222=l-19) (x232=1.73) 1.47 1.44

I III
!

Glucose (1) :
0.97 1.34 1.44 1.66 1.59 j

1 Mannose (2) 0.90 1.16 1.44 1.48 1.59 1

1

IV Glucose(l) 1.09 1.21 1.16 1.50 1.48
j

Mannose (2) 1.07 1.32 1.36 1.41 1.41

1



Table 7- Calculation of A and q
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Subscripts
i

A q

1121 222 132 232 w.

.

1.1 ^ik

1

S.
1

1

121 i 3
j

1
, 1.15 3.77 7.^

2?? 1 3 1.22 3.63 l.ko

132 3 -1 1.33 2.8o 8.36

232

i

-1 3 i 1.63 2.80 8.36

1

r=4 s=2 -1
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DISCUSSION

In general , the missing observations in experimental data are estimated

by niininizing the Error Sun of sq.\iares (Biggers, 1959) • When a value is

missing, one can use the formula derived by Yates in 1933. V/hen more than

one observations are missing, one can use the eq.uation of the form Ax = q.

Since the Error Sum function, F(x , x , ..., x ), is a quadratic form,

then when the partial derivatives are set equal to zero, the following

equation is obtained:

Ax = q .

If A is non-singular, then x is given directly by

X = A q. .

'

When several values are missing, the A matrix becomes quite large bub

with the aid of high-speed computers the inverse can easily be found.

Kendall (19^6) has pointed out that using the estimated values obtained

by this general method for the analysis of variance test does not affect

the test of significance to any serious degree.

Yates (1933) has shown that the estimates of treatment and block effects

are exactly the same as those obtained by the correct least squares

procedure, and the Error Sum of squares is exactly the same as given by

the correct procedure. „ ••

: :;. . ^
•:
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In experimental work it frequently happens that one or more experimental

\mits is :nissing from the data. One of the first papers on the subject of

estimating a raissinc unit in field experimental work was published by

Allan and Wishart (1930), and had been extended by Yates (1933) to cover

several missing units in a given experiment. The values which were inserted

to minimize the error sum of squares.

The missing values were calculated for the following designs:

(1) randomized block,

(2) randomized block design with replication within units,

(3) cross-over, -, .

{k) latin square, .'.%•'

(5) split-plot. »

Two observations may have certain subscripts in common. This property

enables one to describe the relation between them. Observations related

in a specific way will be called associates.

The error sum of squares of the p missing values is a quadratic function,

say, F(x , X , ..., x ) which is given by

2(x'A - q') /N.

The values of x. are obtained by equating each of p partial derivatives

to zero. These are, in matrix notation

Ax = q.

In a randomized block design, the error term in the analysis of variance

is given by .

+ (G -f Z^/ .sZ/ .\X. .) /rt + constant.
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Taking the partial differential of the above equation with respect to a

oarticular missing observation, x , and eq.uating the derivative to zero,
gn

gives the equation

i associates j associates zero associates

(r-l)(t-l)x^^ . (1-r) Z(.)X^. -. (1-t) Z(. jx.^ -. Z(.)Z( .jx. . = rB^ -. tT^

This equation can be represented in matrix form as

Ax = q , .

'

The elements of matrix A are given by: •{'. "-..,

(i) (r-l)(t-l) for the missing observations \ander consideration,

(ii) (l-r) for the block associates,

(iii) (l-t) for the treatment associates,

(iv) 1 for the zero associates.

One can use the same method, which is described above to get the matrix

form Ax = q in other experimental designs.


