/i SYSTEM OF AUTOMATED TOOLS
TO SUPPORT CONTROL OF SOFTWARE DEVELOPMENT
THROUGH SOFTWARE CONFIGURATION MANAGEMEN?/

by

MARTHA GEIGER HALSH

B. 3., Muhlenberg College, 1969

A MASTER'S REPORT

submitted in partial fulfillment of the

requirements for the degree

MASTER OF SCIENCE
Department of Computer Science

KANSAS STATE UNIVERSITY
Manhattan, Kansas

1985

Approved by:

(bl

Major Professor

266t

.ﬁ; o

1985 ACKNOWLEDGMENTS AL1L202 9bL492b
W 347

Coe 2

I would like to thank several people who made my sojourn at Kansas State

University both rewarding and enjoyable: Dr. William J. Hankley and
Dr. Virgil E. Wallentine for their review of my Master's Report and
their comments; Mick and Mary Beth Cole for their help and support in
all areas of the AT&T program; and especially Dr. David A. Gustafson
and Mrs. Karen Gustafson. I want to express my appreciation to
Dr. Gustafson for his encouragement, pertinent suggestions and generous
giving of time, even while on vacation, which was certainly above and
beyond the call of duty; and to Mrs. Gustafson for supporting her
husband .during the demands of our project and for always being gracious

to us.,

TABLE OF CONTENTS

CHAPTER 1. OVERVIEWOOIHIIIl'l.l....IIl...‘....ll.l.l..l.l‘l....ll..

1.1

142

1.3

1.4

Introduetionl.C.C.l.....Ill.I...'...l-l-l-'......ltill..l.l.l..

Literature RevieW.ssssereseaarencnsescsssancscscncncncasssnnnsns
1.2.1 Software Development and the Fifth GeneratioN.cissvessss
1.2.2 Software Development and Software Configuration
Management.esieeessossstoncnssscosssssasnsosssnnnvasssosona
1.2.3 Software Development and Control...ccessscvacccsocssncns

The SCM Control Project in Relation to the Literature...c.ececs.

sumary...I.l.l-.I..'lI.l'.l.l‘.l.“l‘lll.l.......ll-l...l.l.‘.

CHAPTER 2, REQUIREMENTS OF THE SCM CONTROL SYSTEMuseveovasscscccaes

2.1
2.2
2.3
2.4

2.5

Scope of Implementation..cceiesecencscssnocsasssnncconcssssnsnas
General RequirementsS...cssecscscscnscscnsscsasscnsncsasasssoncnas
Specific RequirementS...eccccesessevsescsssenssssatnccanssasnsnse
Functional RequirementS.,..cccocceesassscscsssssssscscsossssssses

Design Decisions Based on the RequirementS...esssssscoccscacnss

CHAPTER 3. DESIGN OF THE SCM CONTROL SYSTEMee.csssesscccsssscscnene

3.1
3.2

3.3

3.4

Overview-..'.l.'-‘.Il.l...lll.l.ll.......l.l.....l-'ll'il..l...

Primar? ShEI.l Specifications-lll.l.i....'.‘-l...l...ll....'.-l-

Mzin Pr‘ogl‘ams...---.-..........-...-........u........-.-......
3.3.1 Submit a Modification RequesSt..csissevesccssscsanonaneanas
Update a Modification Request..iececevocstecssconssconas
Select Modification RequesStS.eceereccncssctensaoreensases
List a Modification Request.vececsnesosncassscsnssnsanes
Validate Modification RequestS..cscssccscscsscscnccnccans

. o
mww%u
.
Ul Ewn

ograms..l.i..!ll.ll.l..l.!.lCl......C.C.I.ll...‘.l..'.l.l.
Check Modification RequestS.ceesceercssnccscasronsaneans
Authorize Update of a Configuration Item.siccscoconcanas
Get a Modification Request Record..scecscscasssrencasass
Setup Path of CI FileS.eececncorsnsssssnansoscasnsncsenae
Call an SCCS FunctioN..seseresccasanssscassasssssnsnansne
Open a File in the MR SystemM...cicossecovcsasansosssnasa
Close a File in the MR SysteMeccicresensssacnonsssnearasens
Setup Path of MR Administrator...cccsccesscsscacscssocens

WWWwWWwWwwiw i wWwwww
-1 EWN = b

17
19
21
21
21
23
23
25
26
26
32
32
32
33
35
35
36

37
37

38
39
4o
40
41
41

3.5 MR System Directory and File Structuresicerecscscscssscsssnasss
3.6 Modification Request RecOrdeescecscscacascscsssscsscsossnssscsnsncana
CHAPTER 4. IMPLEMENTATION OF THE SCM CONTROL SYSTEM...cosvesscccass
CHAPTER 5, CONCLUSIONS....oeeusscesssscescansvessssessssnossnsssnsas
5.1 Evaluation of the ImplementatioN.sececsscscscscosasossssccannss
5.2 Possible ExtensSionS..cecceccecaseracnsssstscsactansnccssssnncans
REFEREBCES.: s i s saeins s s nsidioine § ¢ eaiamad s anaosd 48 0viiid a nassid § sp@amns ok
APPENDIX A, MODIFICATION REQUEST SYSTEM INSTALLATION GUIDE.sevesoss
APPENDIX B. MODIFICATION REQUEST SYSTEM USERS' GUIDE...sesevsonacns

APPENDIX C. CONFIGURATION ITEM/BASELINE IDENTIFICATION SYSTEM

INTERFACE.I.C.I‘....CI..l.l..‘..'lI.I.I.......l....l.l.ﬂ.l---I.lil.l

APPENDIX D. SOURCE CODE...ssssesossesssnccncscscsssasnssssssssconsse

- ii -

42
44
47
51
51
52
54
58
65

T4
T2

Figure 1.
Figure 2,

Figure 3.

Figure 4.

Figure 5.

Figure 6a.
Figure 6b.
Figure 7.

Figure 8.

Figure 9,
Figure 10a.

Figure 10b.

Figure 11.
Figure 12.

Figure 13.

Figure 14.

LIST OF FIGURES

Relationship of SCM to KSU Prototype ToOlS.seescoccones
Data Flow Diagram of MR System (Submit and Update).....

Data Flow Diagram of MR System (Select, List and

validate)II.-I.I...l.l...l...l..'I..'I..I.I.l..ll......
Hierarchy Diagram of Modification Request System.......

Directory/File Structure of Modification Request

SYBLeMuenivess & ¢ CRewe o b UEE0s § SERVERE » BTN § LS00 § 8 W
Contents of a Modification Request Record..cieescescacsee
Contents of a Modification Request Record (cont.)eeees.
Directory Structure for MR System InstallationN..seeesese

Code Directory Structure for MR System
InStallationl.ll'..'......'.....Ol....-.---lclIll.lll.l

MR System Pr"imal‘"y FUHCtion MeNU.sssacossossesnsencescssnas
Keywords Used to Identify MR Fields to be Updated......

Keywords Used to Identify MR Fields to be Updated

(cont.)l.lUl...l.!.l'...cl-.I.--I.I.l.l.l.l.....l...l..
MR Status Types Available for SelectioN.ccscacsvesscsns
Codes Used For Listing Modification RequestS..sesvveass

Project Oriented Structure for MR System/CI System

Interface.l...'..l'.‘".l.I.I..‘ll‘l.l..'.'...'....I.l.

SCM Oriented Structure for MR System/CI System

Interfacel.ll.loI--.c.;..........ct-cl--c----------u.!l

- iii -

22

29

30
31

43
45

46

61
66
69

70
71
72

78

CHAPTER 1. OVERVIEW

1.1 Introduction

For most software development efforts to be considered successful,
certain requirements must be met, These product and project criteria
include wuser satisfaction with product integrity and management
objectives to produce the product on time and within budget. In order
to meet these requirements, software must be developed in a controlled
environment. The discipline called Software Configuration Management

can be applied to support controlled development of software,

This report documents a project whose objective was to define,
design, implement and document a system of automated tools that would
support the control of software development through the application of
certain principles of Software Configuration Management, specifically
Configuration Control and Configuration Status Accounting. This system
is part of a larger research project being conducted at Kansas State
University. The objective of the larger project is to develop a
prototype of a software development environment that is adaptable for
use with a group of computer systems called Fifth Generation systems.
The implementation addressed in this paper can provide a method of
controlling and tracking the components of the prototype as they are

developed.

In order to provide some continuity between the overall prcject and
the system that is the subject of this report, this chapter provides

references to some areas of the Fifth Generation projects that are

applicable to software development environments. The chapter continues
with a discussion of Software Configuration Management as it relates to
software development. Following that topiec, the subject of this

project, control of software development, is described.

The remainder of the report describes the development of the
control system. Chapter 2 identifies the requirements for the system
and is followed by a description of its design in Chapter 3. The
implementation and testing of the software are documented in Chapter Y,
Lastly, Chapter 5 presents some conclusions and possible extensions to

the project.

1.2 Literature Review

1.2.1 Software Development and the Fifth Generation

The phrase "Fifth Generation computer systems" generally refers to
a group of projects currently under development which are intended to
revolutionize the computer industry. One of the best known projects is
sponsored by the Japanese government. The aim of the Japanese is to
develop by 1990 a prototype system combining the concepts of knowledge=-
based systems, very-high-level programming languages, decentralized

computing, and very large scale integration (VLSI) technology [Tr821].

Emphasis is placed in the first phase of the Fifth Generation
project on the development of sets of tools to be used in the later
phases [Ki83]. Supporting these objectives are research and development

in the areas of development support systems and intelligent programming

systems [Fe83]. The "intelligence" of the software begins in these
tools through techniques which enable man to interact with machine at
the specification level, The tools allow system requirements to be
stated in machine-understandable languages. The requirements can then
be reviewed, mechanically tested for consistency and completeness, and
used for prototyping and code generation [Ro84]., Therefore, the tools

will aid in eventual production of software.

1.2.2 Software Development and Software Configuration Management

All development projects, especially those for Fifth Generation-
related systems, have the potential for ™missing the target." As
complexity of the project increases, so do the risks of having the
project fail. Projects conducted by both private industry and the
Federal Government have been considered failures for various reasons,

including not meeting the requirements of users and management.

What is needed is a way of avoiding such mishaps. The development
effort must produce a system that both fulfills user objectives for the
product and satisfies management objectives for the project.
Unfortunately, this target is often a moving one. Change, especially as
applied to software development, is inevitable so we must be prepared
for it [Br79]. It is necessary to control and manage change rather than

simply to react to change.

One method of controlling the system development effort and
accompanying changes is to employ the principles of Configuration

Management., As defined by the Institute of Eleectrical and Electronics

Engineers (IEEE), Configuration Management is "the process of

identifying and defining the configuration items in a system,
controlling the release and change of these items throughout the system
life cyele, recording and reporting the status of configuration items
and change requests, and verifying the completeness and correctness of

configuration items" [IE83b]. A configuration is an arrangement of

parts that bear some relationship to one another [Be80]. These parts or
configuration items are elements that satisfy some function and are

controlled by Configuration Management [IE83b]. A configuration item

can be any component produced during the development of a system, from
its initial concept to its phase-cut, and includes hardware and software
as well as documentation. For example, a configuration item could be a
* requirements specification document, source code, or a prototype

computer.

Configuration Management has historically been applied to hardware
and other physical configuration items of a system. The Department of
Defense was a pioneer in this field, establishing broad policy in DoD
Directives and documenting practices and procedures in Military
Standards (MIL-STD). For example, DoD Directive 5010,19, entitled
"Configuration Management," is a basis for many other Directives and
Configuration Management efforts. A different type of document, MIL-
STD-483 "Configuration Management Practices For Systems, Equipment,
Munitions, and Computer Programs," provides specific forms and

procedures to be used in Configuration Management [Br80].

However, software is becoming more dynamic than hardware, Due to
the increasing complexity of software, the costs for its development
have been increasing over hardware costs [Mc80]. In addition, it |is
becoming as necessary to control the functional configuration as it is
to control the physical configuration developed to meet the system
requirements [De80]. In the early phases of development, the system
configuration consists of functional configuration items, such as
performance requirements, output requirements and input specifications.
The physical configuration, consisting of such items as computer
terminals, graphical screens, program listings and user manuals, will be
designed and implemented based on those functional requirements and
specifications. Therefore, the control of the functional configuration

is of growing concern.

These changing factors have led to the emergence of Software
Configuration Management (SCM), which is "Configuration Management
tailored to systems, or portions of systems, that are composed
predominantly of software". Formally, Bersoff, Henderson and Siegel

have stated that Software Configuration Management is "the disecipline of

identifying the configuration of a system at discrete points in time for
purposes of systematically controlling changes to this configuration and
maintaining the integrity and traceability of this configuration

throughout the system life cycle" [Be80l.

As stated in the definition of SCM, product integrity is a major

objective in the development of systems. Product integrity can be

defined as

"the intrinsic attributes
@ which characterize a product that meets user requirements
imposed or assumed or presumed or intended during any stage in
its life cycle,

® which facilitate traceability from product conception (as an
idea) through all subsequent stages in its life cyele, and

@ which characterize a product that meets specified performance
criteria.

In addition, the integrity of a product is diminished if the cost
or delivery expectations of the buyer and user have not been
fulfilled" [Be801.
This rather complicated definition can be summarized by stating that a
product has integrity if it works as required by the user, if it can

meet evolving user needs, if it is well designed and documented, and if

it is delivered on time and within budget.

In order to attain and maintain product integrity, discipline must
be applied to the development effort. To expand this idea, it might be
said that "doing" disciplines and "support” disciplines contribute to
the integrity of the software product [Be80]. By "doing" disciplines is
meant the activities which collectively form the execution process or
phases of the software development life cycle (for example, analysis,

definition, design, implementation, testing).

The "support" disciplines constitute the planning, organizing,
controlling and evaluation activities of the development effort. Often
called "product assurance" disciplines, the support disciplines are
comprised of Configuration Management, Quality Assurance, Verification
and Validation, and Test and Evaluation. Quality Assurance 1is a

collection of techniques and tools which are used to ensure that a

product meets, at minimum, a set of standards specified before the
development of the product. Verification techniques are the methods
used to ensure that a product meets predetermined objectives or
specifications. Validation techniques are the methods used to determine
that the product satisfies user needs and is consistent with the overall
goals of the project. Test and Evaluation methods are used to exercise
the product in order toc assess its performance relative to the

attainment of its objectives [Be80, Brs82].

These product assurance disciplines are interrelated and, to a
certain extent, overlap. All are concerned with controlling the product
and ensuring that it meets specific objectives. These common concerns
are often examined and made visible through the process of auditing the
software development effort and configuration. This auditing function
comprises the intersection of Software Configurz:tion Management tasks

with the other product assurance disciplines.

Four processes or tasks are involved in the overall performance of
Software Configuration Management. These four processes are
Configuration Auditing, Configuration Identification, Configuration

Status Accounting, and Configuration Control. Configuration Auditing is

the verification that each configuration item 1is consistent with and
traceable to its predecessor and successor items, and the validation
that each designated configuration meets the objectives stated in the

requirements specifications of the system. Configuration Identification

is the identification and description of the items, both individually

and collectively, that comprise the configurations of the system at any

point in its 1life cycle. Configuration Status Accounting is the

recording and reporting of significant events which affect the
configurations, as well as the provision of information to support the
other Software Configuration Management processes.

Configuration Control is the control of changes and access to the

configuration items throughout the system life cycle [Br80].

1.2.3 Software Development and Control

A software development project involves many complex and
interrelated activities identified in the '"doing"™ and "support”
disciplines. Therefore, in order to meet project objectives, control
over the system development cycle is not only desirable but also
necessary. In fact, the very nature of the word "discipline" implies
control. Control is accomplished through the interaction of people,
tools, procedures and documentation. Each of the SCM tasks contributes
to the control of the system development effort through one or more of

these elements.

Configuration Identification aids in control through the naming,
describing, documenting and numbering of configuration items. In
addition, when items are related in a formal manner through releases,
another level of control is introduced. Releases are alsoc referred to
as "baselines." A baseline is a collection of related configuration
items that are formally described and fixed in status at a specific time
during the system development life cycle [IE83b]. Often baselines are

established for configuration items that exist at the end of a phase of

the 1life cycle. For example, a '"functional baseline" would be
established after the first phase of development and would include
definition of the product and system requirements. An TM"allocated
baseline™ would include the division of functions between hardware and
software [Be80, Du82]. Baselines aid in making configuration items

visible and are really the beginning of their control.

Configuration Auditing aids in control of the configuration by
requiring that changes to a preceding baseline be approved before
inclusion in a new Dbaseline. Because a baseline represents formal
approval of the included configuration items, any subsequent baselines

must be consistent in fulfilling the system requirements.

The Configuration Status Accounting task is responsible for
recording and reporting of events pertinent to the development effort.
These activities make the system development project and products
visible, and therefore easier to manage and control. 1In fact, this task
ties together all SCM functions by collecting, synthesizing and
documenting data from all events. The resultant reports aid in control
of the system development effort through communication of information,

especially to project management.

At the heart of system development control are the mechanisms of
Configuration Control. This SCM task is more than change control as in
the generally accepted sense., However, the products of the development
effort are constantly changing or evelving throughout the life of the

system. Therefore, Configuration Control cculd 1loosely be considered

10

change control, just as Configuration Management is sometimes called the

management of change [Du82].
1.2.3.1 Software Configuration Management Plan

Although it is not only a Configuration Control mechanism, the
Software Configuration Management Plan (SCM Plan) nevertheless
contributes to control of the software development effort. As Brooks
has written, we must plan for change [Br79]. The SCM Plan is a tool for
managing software development and, specifically, for planning for and
controlling change during development. A Software Configuration
Management Plan is a document which describes how the four tasks of
Software Configuration Management are to be accomplished for a
particular project. That is, it "documents the methods to be used for
identifying software product items, controlling and implementing
changes, and recording and reporting change implementation status”

[IE83al.

The SCM Plan must be prepared at the start of the system
development effort, before any of the "doing" discipline activities have
begun. The Plan must describe how the activities of the development
effort will be controlled. It should include a description of the
organizations involved in the development effort and specifically the
organization performing the SCM functions. The responsibilities and
functions of the Configuration Control Board would also be included 1in
the organization section. Another section of the Plan would describe

the tools and procedures to be used to accomplish the SCM tasks. For

1

example, a description of the required baselines, or project milestones,
would be documented, as well as the requirements for a Modification
Request System. In addition, as in any management plan, the resources
necessary to perform SCM must be identified in a section of the SCM
Plan. These resources include costs, personnel required and equipment

[Be80, IE83al.

The Software Configuration Management Plan is part of a set of
overall project plans. The SCM Plan and its relationship to other
project plans such as a Software Quality Assurance Plan is documented by
the IEEE. This organization has prepared a standard describing the
required and suggested contents of a Software Configuration Management
Plan. A working group of this organization is also currently preparing

a Guide to aid in the writing of SCM Plans [IE81, IE83a, Sc85].

1.2.3.2 Configuration Control Board

One of the most influential mechanisms of Configuration Control is
the Configuration (or Change) Control Board (CCB). When configuration
items have been reviewed and baselined, they are put under the
supervision of a CCB. The CCB will evaluate subsequent proposed changes
to those 1items and recommend disposition of the proposals. This
evaluation includes feasibility, consistency, impact on quality and
reliability, classification, priority, and cost and scheduling impact
[Be84b]. The CCB represents the first step of the auditing process,
which controls both the evolution of the system during the development

life cycle and the revolution or changes to the system.

12

A Configuration Control Board is usually composed of
representatives of the users, the developers and project management. As
a group, the members represent the buyers and sellers of the system. 1In
large organizations and for large projects, there may be a controlling
CCB and lower level CCBs responsible for supervision of hardware and

software as separate entities.

If Configuration Control is the heart of the 3CM process, then the
CCB is the heart of Configuration Control. Bersoff, Henderson and
Siegel [Be80] have described overall Configuration Control and
specifically the CCB az the T"engine" of Software Configuration
Management, In other words, it makes things happen. It drives

activities. It does not grind them to a halt [Be80].

1.2.3.3 SCB Databases and Development Libraries

Another Configuration Control mechanism is a formal, standardized
facility for storage of SCM-related information. Included in this
mechanism are the concepts of the software development library and the
database. A database can be used in the Configuration Status Accounting
functions of collection and reporting of information such as
configuration items, change requests, baseline contents and project
status and costs. Once this information is captured, access c¢an be
controlled. Varicus database organizations and data models could be
appropriately applied, depending on the individual application. One
such scheme is an entity-relationship-attribute model which, according

to Huff, can apply to such things as configuration items as well as

13

descriptions of control procedures [Hu81]., An entity-relationship-
attribute model is a model which contains information about things
(entities), associations between the things (relationships), and
mappings (attributes) between the things and sets of values that

describe or qualify the things (Ch76].

The SCM database is also described as an integrating and unifying
medium for the software development environment. As such, specific
tools such as a data dictionary can be used to inquire against and
update the database without direct interface (coupling) or hindrance to
other tools [Ho82]. The database tools and controls can be tailored to
individual project requirements. As Sibley states, a Software
Configuration Management Database Management System can be a "passive"
or an "active" system. A passive system stores data as in the
Configuration Status Accounting task. An active system additionally
enforces controls such as requiring online entry of appropriate approval

before a baselined configuration item can be updated [Si81].

A software development library or project directory 1is another
repository of SCM data, most frequently source and/or executable code.
As with the database, access and update privileges allow control of the
information stored in a library or directory. The Source Code Control
System (SCCS) supported by the UNIXTM Operating System is one example of
such a storage facility ([Su83]. However, this system is perhaps
inaccurately named, because it can just as readily store and control
text-type data such as user guide instructions or design specifications

[Ro75]. 1In addition to access controls SCCS allows the enforcement of

14

owner access rights, where only a certain identified user of an element
stored in the directory is allowed controlled update privileges for that

element.

In a software development library, capabilities such as version
maintenance, recording of historical change information, and ability to
recontruct previous versions also contribute to control [Be84al. Such a
library facilitates publie, visible, non=redundant storage of
information [Ta77]. For example, a well-managed and controlled library
of specifications and reusable code is essential in the_Fifth Generation

techniques [Ro84].

Seagraves and Sagan [Se81] have described a library management
system for Software Configuration Management as having the three
functions of Source Management, Configuration Management and Change
Management. Source Management includes capturing and cataloging source
items and changes to them, as well as controlling access. Configuration
Management captures and catalogs derived items, identifies product
revisions, and provides release control. Change Management captures
problem reports, change requests and test data and outputs, and tracks

changes.
1.2.3.4 Modification Request and Problem Reporting Systems

Since Configuration Control involves control of changes, a
Modification Request system enables this control by providing a tool for
documenting reports of problems or requests to change a software system,

during either development or maintenance phases. Therefore, this

15

Configuration Control mechanism alsc implements functions of the
Configuration Status Accounting task. In addition, a Modificaticn
Request system can implement access and update authorization controls,
show relationships and dependencies between configuration items and

provide project scheduling aids.

One Modification Request system, called the Modification Request
Control System (MRCS), has been described by Knudsen, Barofsky and Satz
[Kn76]. As defined in this system, a Modification Request (MR) is any
request to change the product (application) system. The request could
be a trouble report, a request to change design specifications or a
request to make an enhancement to the system. The MR system "provides
the capability to: (1) interactively create, update, and print MRs; (2)
track and record the flow of the MR through the system development
cycle; and (3) provide management with timely MR status information via
reports and on-line inquiries. MRCS supports many projects, each
project with its own MR data base and commands. It provides, via common
control 1logic, standard operations such as the creation, updating, and
printing of MRs, and the extraction of data from them." The system
allows wusers to provide feedback to developers, helps management know
who is doing what to the product system and enables developers to
determine when individual assignments are scheduled for completion. 1In
addition, through the use of 3CCS and the recording of the release to
which each MR applies, MRCS can be used in the system generation

procedure to produce an entire release of the product system.

16

Another Modification Request system has been implemented as part of
the 3B20D Processor Software Development System [Ro83]. This MR system
also uses a database to store requests and provide reports. In
addition, a separate Change Management System is used to control
approvals and control change activity through interfaces with the MR
system. For example, a developer cannot modify source until a

Modification Request is assigned.

Recording and reporting of problems and change status have also
been identified as necessary functions in a set of Project Management
tools proposed in a project called STARS [Lu83, Dr83]. This project is
part of an effort by the Department of Defense to develop more adaptable
and reliable software systems and improve productivity. This goal
requires the improvement of the environment in which software is
developed and supported. SCM Control and Status Accounting tools for

change management and reporting are part of this desired environment.

1.2.3.5 Version Control Systems

Version Control Systems, another Configuration Contr¢l mechanism,
are systems which control releases of software. They often have the
capability to generate a whole software system from specified releases
of specific programs. As described in the examples above, some
Modification Request systems alsc implement Version Control functions.
Other control tools implement primarily Version Control. One example of
this type of system is described by Tichy [Ti79]. This system controls

development by ensuring consistency of module interconnections. The

17

control is accomplished by maintaining consistency of module interfaces
when changes are made and by coordinating the selection and generation
of versions and configurations. A language called INTERCOL (module
INTERCOnnection Language) has been created to describe the interfaces in
the subject system. These descriptions aid in identification of what
modules will be affected by proposed changes, estimation of their impact

and creation of a particular version of the subject system.

The Revision Control System (RCS) is another system which controls
implementation of revisions to text and creation of new versions [Ti82].
This system is best described as it contrasts with SCCS. Whereas SCCS3S
stores changes, called deltas, to elements in a first-=to-last and merged
organization, RCS stores changes in a last-to-first and separate
organization, which Tichy calls reverse deltas. The advantage of the
latter organization is that the latest version can be accessed faster,
However, both 3CCS and RCS control access to elements and enable an item
to be "locked"™ when it is retrieved for updating purposes. RCS has been
implemented to be compatible with the UNIX tool called MAKE, which
enables automatic system regeneration from the 1latest version of its

elements.

1.3 The SCM Control Project in Relation to the Literature

As previously stated, the objective of this project was to develop
some automated tools to support control of software development. The
system developed in this project implements several of the funections

which have ©been identified in current literature as being vital to the

18

control of software development. These functions combine both the SCM

Configuration Control and Configuration Status Accounting tasks.

The subject system is a Modification Request system similar to the
Modification Request Control System described by Knudsen, Barofsky and
Satz [Kn76]. Both systems are implemented on a UNIX Operating System
and include a type of database for storage of Modification Request
information. MRCS implements this database as a regular UNIX file,
while this project uses an SCCS file system. Both systems include
software to interactively access, update and report on the information
in the database, Both systems include a field to indicate status or
current state of a Modification Request. The system documented in this

report tracks more detailed states than does MRCS.

Most Version Control Systems, such as Tichy's Revision Control
System [Ti82], enable restricted access fo a configuration item and
allow it to be locked if it is being updated. The system developed in
this project authorizes update permission to the responsible person when
a Modification Request is assigned to be implemented. The system also
includes a program to validate MRs when a controlled configuration item
is updated. This type of automated control falls within the scope of an

"active® SCM DBMS as described by Sibley [3i811].

Most Modification Request and Version Controcl Systems described 1in
the 1literature include some Configuration Status Accounting funetions.
CSA functions control the recording and reporting of events during the

project life cycle. These events include the changing of configuration

19

items. The system developed in this project implements a function to
track the states of MRs as well as list certain information contained in
Modification Requests. This function includes an option to 1list all
configuration items affected by a specified MR, which could provide
cross-reference capabilities to a configuration and baseline storage
system. These functions could aid 1in version or release control as

described by Tichy [Ti82] and by Knudsen, Barofsky and Satz [KnT76].

1.4 Summary

As a result of the increasing complexity of computer systems, it is
becoming meore difficult to develop software on time and within budget
and still meet the wuser's requirements for the product. Software
Configuration Management is a discipline that can contribute to the
control of software development in order to produce a product with

integrity.

It has been observed that, "as a management discipline, the goal of
SCM is to promote efficient software development practices by making the
results of the development processes visible." However, the SCM tasks
themselves in order to function most effectively should, by contrast,

not be visible [Sec851.

The state-of=the-art in software development is constantly and
rapidly changing, with increasing use of microcomputers, minicomputers
and Fifth Generation Systems. In order to be successful and beneficial,
the application of Software Configuration Management must also be

dynamic. But the concepts of SCM must be applied in a controlled

20

manner, sc that their mechanisms will not hinder the project objectives

and result in increased costs, schedule delays and confusion [Ra80].

Just as stated in the discussion by Bersoff, Henderson and Siegel
of the Configuration Control engine, the Contrel and Status Accounting
functions and the tocls that implement <them should not grind the
software development process to a halt. The elements of control (i.e.,
tools, procedures, people and documentation) should not get in the way
of the production and maintenance of software which satisfies both user
and management requirements. The functions of SCM and the control tools

should "make doing the right thing the easiest thing to do [BeS84bl."

21

CHAPTER 2. REQUIREMENTS OF THE SCM CONTROL SYSTEM

2.1 Scope of Implementation

The objective of this project is to develop a set of tools to aid
in the control of software development by supporting the Software
Configuration Management processes of Configuration Control and
Configuration Status Accounting. This project 1is part of the
Kansas State University software development environment prototype.
Other projects implement additional tools for this prototype, including
Configuration Identification tools. However, the implementation
described in this paper was required to be a stand-alone project having

no dependencies with any other project.

If the prototype is expanded in the future to provide interfaces
between some tools, it 1is expected that the SCM tools would be the
method by whieh the other tools (such as a Data Dictionary or a
Specification Consistency Checker) would store, retrieve, update, track
and, most importantly, ceontrol their data. This relationship between

the SCM tools and the KSU prototype is depicted in Figure 1,

2.2 General Requirements

The general requirements for the control tools include
environmental, software, and useability considerations. The tools must
be executable on the Kansas State University UNIX Operating System.
They must be suitable for inclusion in the software development

environment prototype currently being developed at

22

Data
Dictionary

Specification MR and CI Data Flow
Consistency 3CCS Diagram
Checker Files Generator

Figure 1, Relationship of SCM to KSU Prototype Tools

Kansas State University. That is, they must be modular, flexible and
easy to use to enable compatibility in a research tool environment. The
tools must be implemented in some combination of C Language programs,
Shell programs, and UNIX utility functions. In addition, the UNIX
Source Code Control System (SCCS) software package must be available.

Qutput messages, especially error messages, must be readily

23

understandable by the user. Any internal error messages must be routed
Lo a central collection point, to be dealt with by a person

knowledgeable about the system software.
2.3 Specific Requirements

A3 the literature on Software Configuration Management indicates, a
Modification Request System is required for effective control of
software development., Therefore, this project will implement such a
system. The system must be useful in any phase of system development,
from the initiation and developmental phases through maintenance.
Modification Requests are required to be applicable to any text oriented
configuration item (e.g., requirements specifications, design documents,
source code or user instructions). The capability must exist to
maintain a history of Modification Requests (i.e., prior versions). It
is necessary that the content of MRs be controlled, especially to ensure
that required information is present. Status information must be

retained on the MRs to provide tracking capabilities.
2.4 Functional Requirements

The MR System must be able to support submission of a request to
modify the configuration (i.e., a Modification Request), to update a
Modification Request, to check for valid Modification Requests, to 1list
Modification Request contents, to obtain a c¢ross-reference between
configuration items and Modification Requests (one CI may be changed by
multiple MRs and one MR may affect multiple CIs), to track Medification

Requests by status and to provide some contreol over updates to

24

configuration items, such as the ability to authorize a person to update

a configuration item. The submission, updating and control capabilities

must be restricted to a specific person or persons who are authorized to

perform those functions. The following functions must be available to

the user:

1.

Submit a Modification Request — This funection will prompt the
user for required and optional fields and create a Modification

Request. The MR will be stored in a controlled file.

Update a Modification Request == The user will be prompted for the
fields to be updated. The program will check the input for
consistency. If the wuser is wupdating information concerning
configuration items affected by the Modification Request, the

program will authorize update of those items,

Check Modification Requests == This 1is a validation function.
When wupdate 1is attempted for certain controlled configuration
items, this function can be executed to check the 1list of MRs
supplied by the configuration item update program, to ensure that
the MRs exist. In addition, this function can be executed by the

user to check for existence of MRs,

Select Modification Requests == This program will select all MRs
that meet certain criteria, specifically a particular status code,
supplied by the user. A list of all selected MRs will be created

in a file, for potential input to other functions.

25

5. List a Modification Request -= Given a Modification Request number
supplied by the user or from the 3Select MR function, this program
will list the specified contents of the MR, The user will be
prompted to identify the information to be listed, including all
information in the MR, the description field, status information,

and the configuration items affected by the MR.

2.5 Design Decisions Based on the Requirements

One of the requirements of this project is that it be implemented
on a UNIX Operating System. Therefore, it was decided to implement the
Modification Request database as an SCCS directory/file system to enable
use of existing storage, retrieval and access control and validation
capabilities, as well as the maintenance of history information in the
form of deltas. These capabilities are primitive functions of 3CCS, and
can be accessed through C language or Shell programs. In addition, SCCS

can store any text-oriented data, which would include MR data.

For ease of use, each function will be implemented as an individual
C language program. Modular design will be accomplished by developing
separate subprograms for subfunctions of the main MR System functions.
In additien, a shell will be developed to perform a superviscory function

and "call" the main function programs as specified by user request,

26

CHAPTER 3. DESIGN OF THE SCM CONTROL SYSTEM

3.1 Overview

This chapter describes the specifications developed during the
design of the tools to support the Software Configuration Management
Control System. Figures 2 and 3 show high-level Data Flow Diagrams of
the functions, people, data, and data stores which make up and interact
with the Modification Request System to be developed in this project.
An overview Hierarchy Diagram of the programs and subprograms in the

Modification Request System is displayed in Figure 4.

The Data Flow Diagrams display the functions of the MR System as
stated in the requirements, Certain functions are triggered by input
from a person described as the Modification Request Administrator (MR
Administrator). This person may be responsible for installing the MR
System software. The MR Administrator for a particular system/project
is responsible for maintaining certain controls over the contents of MRs
stored for that system. These controls are implemented by restricting
the submit and update functions to the MR Administrator. That person
will get input from the user of the application system, project
management and developers, which is used to submit and update MRs stored

in the MR System.

The other functions of select, list and validate can be performed
by any user of the MR System (e.g., a user of the application system,
the MR Administrator, Project Management and developers). In addition,

a subfunction of validate, called Check MR, c¢an be performed by a

27

special external system. This system would be any implemented
Configuration Item Identification/Storage system that uses SCCS to store
configuration items. The Check MR function would be <c¢alled by the
Configuration Item system when a request is made by someone to change an
item and that person has specified what MR(s) are associated with the

change to the item.

The Data Flow Diagrams in Figures 2 and 3 show some special data
stores used by the MR System., For control purpocses, it is necessary to
retain the numbers of the first and 1last MRs that are created.
Additional controls require that the login id of the person authorized
to create and change MRs (i.,e., the MR Administrator) be available.
Some of the SCC3S primitives accessed by the MR System require that the
contents of a Modification Request be stored in a separate area, This
data store 1is labelled hold.mrrec in Figures 2 and 3. Lastly, the
standard error (std.err) data store will contain detailed internal error

messages which might be generated by the MR functions.

As shown in the Hierarchy Diagram in Figure 4, the MR System will
contain a shell to interact with the user and to act as a supervisor to
"call in" the MR functions described in the system requirements. Each
function will be a separate, modular program. Programs which perform
primitive tasks or often used subfunctions will be written as
subprograms and will be <called by the main programs, SCCS functions
will be used as "called" primitive subfunctions of the main programs or

subprograms.

28

In this chapter, the MR System Primary Shell is described first,
followed by specifications for each main function. Then each
subfunction is documented. The remainder of the chapter contains

specifications for the major data structures used in the system.

29

ubmit Submit
System Request MR Project
/Project Schedule Schedule Manager
User Info. Info.
Submit
Change to MR Project
Completion Developer
Info.
Completion
Info.
MR
Administrator
Changed
Submit
(Create)
MR
Ident. of
Authorized

Updater

First Last Auth. Hold 3td. MR 3SCCS CI sSccCs
Mrnum Mrnum Login Mrrec Err. Files Files

Figure 2. Data Flow Diagram of MR System (Submit and Update)

MR MR MR CI MR
Numbers System Numbers System \\Eumbers
User
Match MR Match
Criteria Numbers Indicator

\ MR Match

Info. Message

MR

Numbers
Select List Validate Check
MR MR MR MR
Match
A : \ N Indicator

First Last Std. MR SCC3 MR
Mrnum Mrnum Err. Files Numbers

Figure 3. Data Flow Diagram of MR System (Select, List and Validate)

30

I —

IMR System|
| Primary |
| Shell |
f———m e
i
\ . y) I
|] 1 1]
1Submit | iUpdate | 1Select | i List | iValidate |
! MR i i MR i i MR i i MR | H MR !
+ i ' + ; ' + E ' ' i . + ? ‘
H H i i e
H H i | iCheck|
H H | i | MR |
i i i i bm—tm—t
1 [} 1 | 1
] I | 1 I
i i e + +
1 [} [}
]]]
o+ + + |
P | i
I R —— e a—.
i tAuthorize| | Get |
P i Update | i MR |
i 1 tmm———pm——— m———m—
P i i
[£ . !
i 1 ™ ™ + H
1] I 1 ¥
I I] 1]
P FU— |
N |Path | i
P I o+ i
oo p———t H
] 1 [] 1
1] 1 1
I ' ; %
]] (]]] 1]
] 1]] 1 1]
B s e S frm——— m—t——— ———t———t
| Call i {Open | * iClose| % iPath | #a#
i SCC3 i { MR | | MR | { MR |
o e e e == m—— o o tm————t

* — also called by submit, update, select, list and check
#% - also called by submit and update
#%% . a31s0 called by submit, update and select

Figure 4. Hierarchy Diagram of Modification Request System

3.2 Primary Shell Specifications

Description:

32

This shell is a supervisor routine, which executes one or more of the

main programs or exits the MR System, depending on options specified

by the user,

Input:

- An option from the user to indicate the MR function to be executed

Qutput:

- A menu of options indicating the MR System function available to the

user

3.3 Main Programs

3.3.1 S3Submit a Modification Request

Description:

This program creates Modification Requests. 1Its use is restricted

to

the MR Administrator. It prompts the MR Administrator for the

required fields of description, originator's identification

and

system/project identification. It also prompts the MR Administrator

for the optional fields of impact, priority, requested completion

date and severity. The program creates a Modification Request number

based on current date and the last mrnum file, stores the new number

in the last mrnum file, and also stores it in the first mrnum file
this is the first MR for this MR System. The program writes the

Administrator's input and program supplied information in

if

MR

an

intermediate file, sets up the parameters and arguments for an SCCS

33

"admin" function, and calls SCCS with those arguments. Appropriate

error messages are returned to the MR Administrator.

Input:

MR Administrator input from the terminal
The first mrnum file
The last mrnum file

The file containing the authorized mradmin login id

OutEut:

A Modification Request SCCS file

The first mrnum file

The last mrnum file

The MR record hold file

Appropriate error or normal termination messages to the MR
Administrator

Error messages to the mradmin standard error file

A return code indicating normal or abnormal program termination

3.3.2 Update a Modification Request

Description:

This program changes fields in a Modification Request based on
identification of particular fields. Its use is restricted to the MR
Administrator. Validation of input is performed to ensure that
required fields are not nullified and that appropriate fields are
consistent. The SCCS "get" function is performed to obtain the MR
record. If the MR is being assigned for implementation, the affected

configuration item fields are populated and the identification of the

34

implementer(s) is added to the list of persons authorized to update
the configuration item. The implementer is the person (or persons)
on the project team who will change the configuration item(s)
affected by this MR. The implementer's identification is also stored
in. the MR. If the MR is being updated to indicate implementation
complete or request is closed, the implementer(s) identification is
deleted from the list of persons authorized to wupdate the
configuration items. This method of retaining implementer
identification allows the update ability to be limited to one person
or specific people. The parameters and arguments for an SCCS "delta"

function are set up and the SCC3 programs are called.

Input:

MR Administrator input from the terminal
The file containing the authorized mradmin login id

The Modification Request SCCS file

Qutput:

The MR SCCS file

The MR record hold file

The Configuration Item SCCS file affected by the MR

Appropriate error or normal termination messages to the MR
Administrator

Error messages to the mradmin standard error file

A return code indicating normal or abnormal program termination

)

3.3.3 Select Modification Requests

Description:

The program selects all Modification Requests that meet certain
criteria, specifically certain status codes. The user is requested
to enter the desired status code., Then the program loops through all
MRs, beginning with the MR number stored in the first mrnum file
through the MR number stored on the last mrnum file. Each MR 1is
tested for the requested status., Selected MR numbers are written to
a file in the user's directory and optionally displayed on the

terminal,

Ingut:

User input from the terminal
The first mrnum file
The last mrnum file

A1l MR SCCS files

Qutput:

A file containing selected MR numbers

Optional terminal display of selected MR numbers

Appropriate error or normal termination messages to the user
Error messages to the mradmin standard error file

A return code indicating normal or abnormal program termination

3.3.4 List a Modification Request

Description:

This program lists Modification Requests depending on wuser options.

36

A 1list can consist of all fields in the MRs specified, or all
affected configuration items, status information or description. The
MR numbers can be entered as standard input from the terminal or read
from a file,
Input:
= User input from the terminal
- An optional file of MR numbers
- The specified MR SCCS files
Qutput:
= The requested contents of the specified MRs
- Appropriate error or normal termination messages to the user
- Error messages to the mradmin standard error file

- A return code indicating normal or abnormal program termination

3.3.5 Validate Modification Requests

Description:
This program validates Modification Requests by calling the Check MR

subprogram to check that the MRs -exist, The MR numbers can be
entered as standard input from the terminal or read from a file.
Input:
- User input from the terminal
- An optional file of MR numbers
- The specified MR SCCS files
Output:
- Appropriate error or normal termination messages to the user

= Error messages to the mradmin standard error file

37

- Return code indicating normal or abnormal program termination

3.4 Subprograms

3.4,1 Check Modification Requests

Description:

This subprogram checks for valid MR numbers. When passed a 1list of
MR numbers, it will try to get each MR in the list. The MR will not
actually be retrieved, only checked for existence. This subprogram
can be called by the Validate MR main program or by a program that
uses the SCCS "delta™ function to change a configuration item. The
latter program can require that MR numbers be entered when changing
an item. In that case, SCCS can be told to execute this Check MR
subprogram to check for existence of those MRs.
Input:
- A list of MR numbers separated by blanks and/or tab characters and
terminated with a new=line character
Qutput:
- Error messages to the mradmin standard error file

- A return code of 0 if all numbers were valid, -1 if any were invalid

3.4.,2 Authorize Update of a Configuration Item

Description:

This subprogram will authorize a person to update a specified
configuration item. The use of this subprogram is restricted toc the

MR Administrator. Given a specific configuration item and login id,

38

the subprogram will set up arguments and call the SCCS "admin"
primitive to add or delete the id in the list of authorized users for
the item.
Input:
- A configuration item identification code or name
- The login id of the person to be authorized or de-authorized
- A flag indicating if authorization is to be added or deleted
- The identified Configuration Item SCCS file
Output:
- The Configuration Item SCCS file
- Error messages to the mradmin standard error file
- A return code of 0 on normal termination and -1 if there were any

errers

3.4.3 Get a Modification Request Record

Description:
This subprogram reads the MR SCCS files., Given a specific MR number,

the program will retrieve the MR record as read-only or with the
ability to change and replace the record, or will suppress actual
retrieval of the record. If the record is retrieved, it will be
stored in a global structure. When the SCCS '"get" primitive is
executed, it puts the record in the user's current directory. This
Get MR subprogram will delete it from the user's directory and, if it
is to be retrieved for update, it will be written to the hold mrrec

file in the mradmin directory.

Input:

- An MR number
- The MR SCC3 files

- A flag indicating if actual retrieval is to be suppressed, if the

39

MR

is to be retrieved for subsequent update, or if it is to be retrieved

as read-only
Output:
= The MR record structure if retrieval is not suppressed
- The hold mrrec file in the mradmin directory if the MR is to
updated
- Error messages to the mradmin standard error file
- A return code of 0 on normal termination and -1 1if there were

errors

3.4.4 3Setup Path of CI Files

Description:
This subprogram sets up a variable with the full pathname of

directory wunder which the CI files for the project are stored.

be

any

the

The

default path has the CI directory under the ciadmin directory which

is under the same directory as the users' login directories. If some

other structure is used, the subprogram requests the user to enter

the correct path to the CI directory.
- User's login pathname
- Pathname of CI directory entered by user if not default structure

Qutput:
- Variable containing full pathname of CI directory

40

= A return code of 0 on normal termination, =1 if there were any

errors.

3.4,5 Call an 3CCS Function

Description:

This subprogram executes the UNIX system functions of "fork" to
create a child process, "execv" to execute the specified SCCS
primitive in the child process and "wait" to suspend execution of the
parent or calling process until the child process terminates,

Input:

- A series of parameters in the format of the arguments required for
the UNIX system "execv" function. The first argument is a pointer to
the name of the SCCS primitive to be called (e.g., "admin"). The
remaining arguments are pointers to parameters as required by the
individual SCCS primitive (e.g., "-n" is one argument passed to the
"admin®" primitive to create a new SCCS file),

Output:
= Error messages to the mradmin standard error file

= A return code of 0 on normal termination and -1 if there were any

errors

3.4.6 Open a File in the MR Systenm

Description:
This subprogram opens the specified file used by the MR System.

Input:
= The name of the file to be opened

41

- A flag indicating the mode to be used to access the file (i.,e., "r"
for read and "w" for write)
Qutput:
= Error messages to the mradmin standard error file

= A return code of 0 on normal termination, =1 if there were any errors

3.4.7 Close a File in the MR System

Description:
This subprogram closes the specified file used by the MR System.

Input:
- The FILE pointer to the file to be closed

Qutput:
- Error messages to the mradmin standard error file

— A return code of 0 on normal termination, =1 if there were any

errors,

3.4.8 Setup Path of MR Administrator

Description:
This subprogram sets up a variable with the full pathname of the MR

Administrator's mradmin directory. The default path has the mradmin
directory under the same directory as the users' 1login directories.
If some other structure is used, the subprogram requests the user to
enter the correct path to the mradmin directory.
Input:
- User's login pathname

- Pathname of mradmin directory entered by user if not default

42

structure
OQutput:
= Variable containing full pathname of mradmin login directory
- A return code of 0 on normal termination, =1 if there were any

errors.

3.5 MR System Directory and File Structure

The Modification Request System has some flexibility as well as
dependence in its directory structure. A sample structure is shown in
Figure 5. Any number of levels of directories can exist in place of the
"project™ directory. However, all directories for wusers of the MR
System for a particular project must be under the same project directory
as the directory for the MR Administrator. This implies that multiple
MR Systems can exist, depending on the number of projects which require

the systems.

The MR Administrator directory must be the "HOME" directory for the
login-id of the person who has the responsibility for that function.
Under that directory will be a subdirectory and five files, The
subdirectory (modreq) will contain an SCCS file for each Modification
Request., The SCCS file will contain some SCCS-related data and the MR
Record. The five files contain the login-id for the person who is the
MR Administrater (auth.leogin), the first MR number assigned for this MR
System (first.mrnum), the 1last MR number assigned for this MR System
(last.mrnum), a file which will be used as an intermediate location for

the MR being created or updated by the SCCS primitives (hold.mrrec), and

43

B s
iroot |
+ e o
i
o ———
iproject|
B et
i
; : i
R s e et e
iuser | imradmin | leiadmin|
e B e e —
i i
+ -‘ + + [
i i i i i i i
et ++++ e o o = etk R T e e ——— ———
imodreq | auth. first. last. hold. std.err iconfitem |
et S login mrnum mrnum mrrec +b B e L
! T bbb ++ -+ N e ma !
e i o o e +bt
S.mryyyymmss s.ci
D i e o +4++++

Figure 5. Directory/File Structure of Modification Request System

a file which will contain internal error messages which may be created

when a user executes some MR System function (std.err).

Another directory called ciadmin will exist for each project and
will be assigned to the Configuration Item Administration function.
Under this directory will be a subdirectory (confitem) which will
contain the 3CCS files where the Configuration Items are stored. This

structure is also depicted in Figure 5.

4l

3.6 Modification Request Record

A Modification Request record is a series of fields of the form

keyword :value\n
keyword:value\n

(]

keyword :value\n

where \n is a newline character.
Each MR record is stored in a unique SCCS file. All keywords shown in
the table below exist in the MR record. However, optional or
unspecified (depending on status) values will be null., Figures 6a and
6b show information about a Modification Request record. The first
column gives the keyword for each field in the record. The last column
describes the field. The center column shows a code which indicates if
a value for the field is required, optional or computed by a program.
The valid codes are:
required for new MRs
required for status of assigned for investigation
required for status of approved for implementation
required for status of rejected
required for status of deferred for later investigation
required for status of assigned for implementation
required for status of implementation complete
required for status of closed

optional
computed by program

T O O BHmOTToD 3

45

Keyword Code Description
mrnum p Modification Request number
Format is mryyyymmss, where
mr = the characters mr
yyyy = the year the MR was created
mm = the month the MR was created
Ss = a sequence number within month (01-99)
desec1 n Description of modification requested,
ineluding problem or condition which prompted request
desc2 o Continuation of description
desc3 o] Continuation of description
descl o} Continuation of description
dese5 o] Continuation of deseription
origid n Identification of originator of request
sysprojid n Name of system/project primarily affected by request
impact1 o} Impact of request, including benefits, extent of effects
on other systems/projects
impact2 o Continuation of impact
impact3 o Continuation of impact
impacti o Continuation of impact
impact5 o] Continuation of impact
prio o] Priority of request (relative rank of this request
within the group of all requests of the same severity)
rcompdt o] Requested completion date
sever o] Severity of problem or condition identified in the
request (i.e., system will not run, a major function of
the system is significantly inhibited, problem can be
circumvented with minor inconveniences, problem is not
critical and can be circumvented indefinitely, ete.)
status o] Status of MR record
Normal sequence of status:
j=>d
i
n=>i=X(oneof)i=>a=>g=>m=>c
t
|
i=>r
invid i Identification of person who is assigned to
investigate the request
invdt p Date request was assigned for investigation
appid a Identification of person who approved request
for implementation
appdt p Date request was approved

Figure 6a.

Contents of a Modification Request Record

Keyword Code Description

rejid r Identification of person who rejected request

rejdt p Date request was rejected

rejreas] r Reason request was rejected

rejreas2z o Continuation of reject reason

rejreas3 o Continuation of reject reason

rejreas4 o Continuation of reject reason

rejreas5 o Continuation of reject reason

defid d Identification of person who deferred request

defdt p Date request was deferred

defreas1 d Reason request was deferred (including time frame for
reconsideration and reinvestigation of request)

defreas2 o Continuation of defer reason

defreas3 o Continuation of defer reason

defreasd4 o Continuation of defer reason

defreas5 o Continuation of defer reason

asgntol g Identification of person who is assigned to
implement the request

asgnto2] Ident. of another person assigned to implement

asgnto3 o] Ident. of another person assigned to implement

asgntol o Ident, of another person assigned to implement

asgnto5 0 Ident. of anocther person assigned to implement

asgntob o] Ident. of another person assigned to implement

asgnto? o Ident. of another perscon assigned to implement

asgntod o] Ident. of another person assigned to implement

asgnto9 o] Ident. of another person assigned to implement

asgndt p Date request was assigned for implementation

targdt g Target date for completion of implementation

compdt p Date implementation was completed

compdesc? m Description of completed implementation

compdesc2 o© Continuation of completed implementation desec.

compdesc3 o Continuation of completed implementation desc.

compdescld o Continuation of completed implementation desc.

compdescS o Continuation of completed implementation desc.

cil m Configuration Item affected by request

ei2 o] Another configuration item affected by request

ci3 o Another configuration item affected by request

ciy o Another configuration item affected by request

eisb o] Another configuration item affected by request

cib o Another configuration item affected by request

ci7 o Another configuration item affected by request

cig o Another configuration item affected by request

cig9 o] Another configuration item affected by request

closid c Identification of person who closed request

closdt p Date request was closed

Figure 6b. Contents of a Modification Request Record (cont.)

47

CHAPTER 4, IMPLEMENTATION OF THE SCM CONTROL SYSTEM

This chapter discusses some details of the Modification Request
System implemented in this project. The implementation was completed at
Kansas State University on the Computer Science Department's Perkin-
Elmer 8/32 machine using a Berkeley revision of Version 7 of the UNIX
Operating System. The MR system consists of one shell program (mrsys),
five C 1language main programs (submitmr.c, updatemr.c, selectmr.c,
listmr.c, and valdatmr.c), five corresponding executable object modules
(submitmr.x, updatemr.x, selectmr.x, listmr.x, and valdatmr.x), eight C
language subprograms (checkmr, authupdt, getmr, pathei, callsces,
openmr, closemr and pathmr) and a file containing a collection of global

C language #define's and declarations (mr.global.defs).

Implementation of the functions was performed wusing a "sandwich"
technique. That 1is, low=level modules such as those which perform
input, open, close and call SCCS primitives were coded and tested first.
These were followed by implementation of the remainder of the modules

using a top-down technique.

The shell, programs and subprograms were written in a wmodular
fashion with a minimum of coupling between modules. Comments were
included to explain the functions performed by corresponding sections of
code, Variables were defined to contain constants that were used in
multiple programs. These definitions are contained in one file so they
will be easier to find and change if necessary. The file is included in

the main programs by using the statement

48

#ineclude "mr.global.defs”
The shell, programs, subprograms and included file contain a total of
2911 1lines of code, consisting of executable code and comments and
formating statements to aid in readability and maintenance. The source
listings for the shell, programs, subprograms and included file are

contained in Appendix D.

The shell program is used as the primary external interface between
the user and the MR System. However, each main program may be executed
independently of the shell, One use for independent execution is in the
selection of multiple Modification Requests with different selection
criteria, Each execution of the selectmr program will produce a unique
file in the user's directory containing the selected MR numbers. The
name of this file will be generated by the UNIX software and will be of
the form

mrnumXNNNNN
where mrnum is the characters mrnum, X is a letter or number and NNNNN
is a five—digit number. Several selection files can be concatenated and

used as input to an execution of the listmr program.

In addition to performing the front-end interface function, the
shell also fulfills the requirement to route internal error messages to
the MR Administrator. It does this routing by setting up access to a
file wunder the mradmin directory. Any output from any program,
subprogram or SCCS primitive which would normally be displayed on the
stderr file at the terminal is then redirected to that mradmin file.

External error messages meaningful to the user continue to be displayed

49

on the stdout file at the terminal,

The callsces subprogram is the interface between the MR System and
the SCCS primitive functions of "admin," "get" and "delta." Input to
callsccs is a series of arguments which will contain the SCCS8 function
to be accessed, as well as arguments to be.passed to that function., In
order to call the 3CCS function, a UNIX system call to "fork" is
executed to create a child process. Then a UNIX system call to "execv"
transforms the child process into a process to execute the specified
SCCs function. Finally, the parent process (i.e., the callsces
subprogram) uses the UNIX system "wait" function to wait until the child

process is terminated.

By default, the users of a Modification Request System are assumed
to have 1login directories wunder the same directory as the login
directory of the MR Administrator and the CI Administrator. Under the
Administrators' login directories are directories where the Modifiecation
Request files and the Configuration Item files are stored. If the
structure of the particular system/project is different from the default
for the MRs or the CIs or both, the subprograms pathmr and pathei and
the shell mrsys must be modified. The modifications would consist of
commenting out the code which currently executes and removing comment
characters from the supplied code which requests that the user enter the
full pathname. For example, the users of a particular system of CIs and
the MR System for theose CIs might have 1login directories under
/8ys.1/proj.1, the MR Administrator might have a login direectory under

/sys,1/mr.data, and the CIs for the same project might be stored under a

50

directory called /sys.1/ci.sys/proj.l1. Pathmr and mrsys (unmodified)
would set up a default pathname of /sys.1/proj.1/mradmin. Pathmr and
mrsys (modified) would require the user to enter /sys.1/mr.data. Pathei
{(unmodified) would set up a default pathname of
/sys.1/proj.1/ciadmin/confitem. Pathei (modified) would require the
user to enter /sys.1/ci.sys/proj.l. Requiring the user to enter the
actual pathname if the default cannot be used, rather than coding
specific pathnames in the programs, enables the MR System software to be

used by multiple projects.

Appendix A contains instructions for installation of the MR System.

A User Guide for the MR System can be found in Appendix B.

51

CHAPTER 5. CONCLUSIONS

5.1 Evaluation of the Implementation

The Software Configuration Management Control System, implemented
as a Modification Request System in this project, can be a useful tool
for control of the development of software systems, It implements
several functions of the 3Software Configuration Management tasks of

Configuration Control and Configuration Status Accounting.

The SCM Control System was required to be compatible with the
prototype software development environment ©being developed on a UNIX
Operating System at Kansas State University. The automated tools
implemented in the Control System had to be easy to use and maintain.
The requirements for the implemented functions included a Modification
Request System to create, update, select and list MRs submitted for the
purpose of requesting changes or enhancements to configuration items.
Also required was the ability to ensure authorized updating of
configuration items. These requirements have all been met by the MR

System.

The MR System facilitates control over software development by
providing control and reporting capabilities on MRs and, to a certain
degree, on configuration items. There are also controls over the use of
the MR System itself. While some functions such as selection and
listing are available to any user within the project, other functions
such as MR submission, MR update and authorization of configuration item

update are restricted to the MR Administrator.

52

5.2 Possible Extensions

The effort was made in this project to develop a thorough and
useful set of tools to support control of seoftware development. If
extensions or modifications to the SCM Control System were to be

implemented in the future, the following suggestions are offered:

@ provide additional 1links to a Configuration Item/Baseline
identification and storage system that is implemented using SCCS
files
(One method of interfacing the MR System and a Configuration
Item/Baseline Identification System developed by William H. Wilson,

IV [Wig4] is described in Appendix C.)

@ extend the MR selection function:

- to allow selection on fields other than status
- to allow user defined =selection criteria; the wuser could
define what keyword or combinations of keywords are to be used

for a particular selection

@ include additional checking by the Modification Request checker

funetion:

- ensure that certain information or approvals are recorded
before a configuration item is updated
- ensure that the affected configuration item has been recorded

in the Modification Request before the item is updated

53

@ provide additional Status Accounting reports:

- a listing of persons authorized to update configuration items

- Project Management reports for scheduling and project
tracking, such as all MRs with a requested completion date in
a certain range or all MRs assigned to project team members

- a cross-reference of all MRs applied to specified
configuration items and/or baselines; this 1listing could
currently be implemented by scanning the entire MR file, but
it would be more efficient to retrieve specified items from a
Configuration Item/Baseline identification and storage system
to obtain a list of applied Modification Requests

- identification of outstanding (retrieved with intention to
update) configuration items and whé retrieved them

- a comparison between the current baseline and the 1last or a

specified baseline

(Be80]

[Be81]

[BeB8ldal

{Be8Ub]

[Br791]

[Br8o]

{Br82]

[(Brgu]

[Ch76]

[De80]

(Dr83]

(DuB2]

54

REFERENCES

Bersoff, Edward H.; Henderson, Vilas D.; and Siegel, Stanley G.
Software Configuration Management: An Investment in Product
Integrity. ' Englewood Cliffs, NJ: Prentice-Hall, Inc., 1980.

Begley, Al. "The GTD-5 EAX Software Development Environment."
GTE Automatic Electrie Journal, 19, No.6 (November-December
1981), pp.193-198.

Bersoff, Edward H. "Elements of Software Configuration
Management."” IEEE Transactions on Software Engineering, SE-10,
No.1 (1984), pp.T79-87.

Berlack, Ron; Knirk, Dwayne; Poston, Robert; and Tice, George.
Student Guide —— IEEE Standards Seminar on Software

Configuration Management. QOakhurst, NJ: Programming
Environments, Inc., 1984,

Brooks, Frederick P., Jr. The Mythical Man-=Month. Reading,
Mass.: Addison-Wesley Publishing Company, 1979.

Bryan, William; Chadbourne, Christopher; and Siegel, Stan; eds.
Tutorial: Software Configuration Management. New York: IEEE
Computer Society Press, 1980.

Bryan, William L.; Siegel, Stanley G.; and Whiteleather, Gary L.
"Auditing Throughout the Software Life Cycle: A Primer."

Branstad, Martha, and Powell, Patricia B. "Software Engineering
Project Standards." IEEE Transactions on Software Engineering,
SE-10, Ne.1 (1984), pp.73~-T78.

Chen, Peter Pin-Shan. "The Entity-Relationship Model -- Toward
a Unified View of Data." ACM Transactions on Database Systems,
1, No.1 (1976), pp.9-36.

Dean, William A. "Why Worry About Configuration Management?" In
Tutorial: Software Configuration Management. Edited by William
Bryan, Christopher Chadbourne, and Stan Siegel. New York: IEEE
Computer Soclety Press, 1980.

Druffel, Larry E.; Redwine, Samuel T., Jr.; and Riddle, William
E. "The STARS Program: Overview and Rationale." Computer, 16,
No.11 (1983), pp.21=29.

Dunn, Robert, and Ullman, Richard. Quality Assurance for
Computer Software. New York: McGraw-Hill Book Company, 1982.

[Es84]

[Ev83]

[Fe83]

[Ho82]

[Hu81]

(IE81]

{IE83a]

[(IE83b]

[Ki83]

[KnT61]

[Lu83]

{Mc80]

55

Estublier, J.; Ghoul, S.; and Krakowiak, 3. "Preliminary
Experience with a Configuration Control System." Proceedings of
the ACM SIGSOFT/SIGPLAN Software Engineering Symposium on
Practical Software Development Environments, (April 1984).
pp. 149-156.

Evans, Michael W.; Piazza, Pamela H.; and Dolkas, James B.
Principles of Productive Software Management. New York: John
Wiley & Sons, 1983.

Feigenbaum, Edward A., and MeCorduck, Pamela. The Fifth
Generation: Artifiecial Intelligence and Japan's Computer
Challenge to the World. Reading, Mass.: Addison-Wesley
Publishing Company, 1983.

Howden, William E. "Contemporary Software Development
Environments.” Communications of the ACM, 25, No.5 (1982),

Huff, Karen E, "A Database Model for Effective Configuration
Management in the Programming Environment." Proceedings of the
Fifth International Conference on Software Engineering, (March
1981), pp.54=61.

IEEE Standard for Software Quality Assurance Plans. New York:
The Institute of Electrical and Electronics Engineers, Ine.,
1981.

IEEE Standard for Software Configuration Management Plans. New
York: The Institute of Electrical and Electronics Engineers,
Inc., 1983.

IEEE Standard Glossary of Software Engineering Terminology. New
York: The 1Institute of Electrical and Electronics Engineers,
Inc., 1983.

Kim, K. H. "A Look at Japan's Development of Software
Engineering Technology." Computer. (May 1983), pp.26-36.

Knudsen, D.B.; Barofsky, A.; and Satz, L.R. "A Modification
Request Control System." Proceedings of the Second International
Conference on Software Engineering, (October 1976), pp.187=192.

Lubbes, H.O0. "The Project Management Task Area." Computer, 16,

McCarthy, Rita. "Applying the Technique of Configuration
Management to Software."” In Tutorial: Software Configuration
Management. Edited by William Bryan, Christopher Chadbourne,
and Stan Siegel. New York: IEEE Computer Society Press, 1980.

[Pr83]

[Ra80]

[Ro75]

[Ro831]

[Ro84]

[Se851]

[Se81]

[5i81]

[Su83]

[Ta77]

{Ti79]

(Tig2]

[Tr82]

56

Prager, J.M. "The Project Automated Librarian."” IBM Systems
Journal, 22, No.3 (1983), pp.214-228.

Raveling, Jerry L. "Meeting the Evolving Micro Requirement." In
Tutorial: Software Configuration Management. Edited by William
Bryan, Christopher Chadbourne, and Stan Siegel. New York: IEEE
Computer Society Press, 1980.

Roechkind, Mare J. "The Source Code Control System." IEEE
Transactions on Software Engineering, SE-1, No.4 (December
1975), pp.364=370.

Rowland, B.R., and Welsch, R.J. "The 3B20D Processor & DMERT
Operating System: Software Development System.” The Bell System
Technical Journal, 62, No.1 (1983), pp.275=289.

Romberg, F. Arnocld, and Thomas, Alan B, "Reusable Code,
Reliable Software."™ Computerworld, (March 26, 1984), pp.ID/17=-
ID/26.

Schwartz, David P. "Summary of Fourth IEEE SCM Working Group
Meeting." ACM Software Engineering Notes, 10, No.1 (1985),
pp.58=73.

Seagraves, David A., and Sagan, John. "Configuration Management
In Large Software Products." International Switching Symposium
— ISS '81 CIC, 3, Session 31B, Paper 3 (September 1981), pp.1=-
8-

Sibley, Edgar H.; Scallan, P. Gerard; and Clemons, Eric K. "The
Software Configuration Management Database." AFIPS Conference
Proceedings —— 1981 National Computer Conference, 50 (1981),
pp.249=255,

Support Tools Guide —— UNIXZE System. n.p.: Western Electrie,
1983.

Tausworthe, Robert C, Standardized Development of Computer
Software: Part 1 - Methods. Englewood Cliffs, NJ: Prentice-
Hall, Ine., 1977.

Tichy, Walter F. "Software Development Control Based on Module
Interconnection.® Proceedings of the Fourth International
Conference on Software Engineering, (October 1979), pp.29=i41.

Tichy, Walter F. "Design, Implementation, and Evaluation of a
Revision Control System." Proceedings of the Sixth International
Conference on Software Engineering, (September 1982), pp.58=67.

Treleaven, Philip C., and Lima, Isabel Gouveia. "Japan's
Fifth-Generation Computer Systems." Computer, (August 1982),
pp.79-88.

57

[uNg2] unIx™ System User's Manual -~ Release 5.0. n.p.: Western
Electric, 1982.

[Wig4] Wilson, William H., IV. "A Configuration Item and Baseline
Identification System For Software Configuration Management."
Master's Report, Kansas State University, 1984.

58

APPENDIX A. MODIFICATION REQUEST SYSTEM INSTALLATION GUIDE

The Modification Request System must be installed on a UNIX™
Operating System having access to SCCS. For each project or system for
which a Modification Request System will be installed, a Modification
Request Administrator must be appointed. That person must be assigned a
login directory in the directory structure of the project or system.
The MR Administrator's login directory must be called mradmin. Other
users of this project's MR System will have login directories in other
branches of that project or system directory structure. Figure 7
depicts an example of this structure. The figure also shows the
ciadmin/confitem directory under which Configuration Item files are

stored.

If the users of the MR System for a particular project and system
of CIs have login directories that are not under the same directory as
the login directory of the MR Administrator for that project, then the
subprogram pathmr and the shell mrsys will have to be changed. If the
users of the MR System for a particular project and system of CIs have
login directories that are not under the same directory as the login
directory of the CI Administrator for that project, then the subprogram
pathei will have to be changed. The code in the subprogram or shell
that is currently executed must be commented out. The following code
which currently is commented out must have the comment characters
removed. This code will then require the user to enter the full
pathname of the mradmin directory in pathmr and mrsys, or the directory

under which the CI files are stored in pathei.

59

The executable programs for the MR System must be installed in a
UNIX System directory which is executable by anyone who will be using
those programs. The directory could be under a system or project
directory, a tools directory as shown in Figure 7 or a standard
distributed directory like /usr/bin., However, it is recommended that
the source code and executable code not be in a standard library in
order to facilitate maintenance. When a new standard release of the
UNIX Operating System is installed on a subject computer, it often
ineludes new releases of the standard distributed directories. When the
system generation is performed, those new directories would replace any
existing directories of the same name. Therefore, any data such as the
MR System c¢ode, which was not part of the standard release, might be
lost. An example of an installation directory for the MR System code is

shown in Figure 8.

60

e o
iroot |
B
]
I
I 1 1 1]
1 | 1]]
m———— e e o m——— e ———— O e
1sys. 1) |sys.2] { bin | | usr | itools|
+ + +——t + Fm———— F——t——t pm———pm—
i i d
i n X | " " M
u t + b t + +
]] |]]
I] i 1 1
e e = — e s e o e e, + : + } - -+
iproj.1 | iproj.2 | ! bin } imr.sys | (data.dict]
bm———— bt - + o+ + «3yS |
H i s
H
1 1 I 1 1
I 1] | I
} b + + + + 4 + + + ; + s T
iproj.mgr | juser.l | juser.2 | imradmin| teiadmini
+ + + + + - - + + o=t m——
i |
N 3 " 1
t + + + t I
[l 1 1)]] 1
1 1 | 1] I |
e e A o e e A o o o o S o I e e s
imodreq | auth. first. last. hold. std.err iconfitem |
f=——tm—=t 10gin mrnum Mrrium Mrrec +++++++ bemm—tocm——t
i e o o o S S !
i i
+ - + i o o o i
[} [} 1]
1] I |
B e A o e e i e e e +r+++ +4++++
s.mryyyymmO1 s.mryyyymm02 s.cil s.ci2
B s S o o SR TS +ebbtr b+ +++++ b+

Figure 7. Directory Structure for MR System Installation

61

bt
irocot |
R
|
e e e
| tools|
4
i
pm—m—p———t
jmr.sys |
e ——
]
]
| , i
+ + + b Spmas e o
| sSource.code| iexec.code|
+ + + Peimm—p -
i |
+ res + ey + !
i i | i
e e o +H+++++ e e b i
submitmr.c «ses Checkmr ... mr.global.defs i
o e b o b+ B A e et e o e ok SR B '
1
]
i | : P
EE T L b e B e s R el e o 2 T
submitmr.x updatemr.x selectmr.x listmr.x valdatmr.x

B L S s e T bbb+ e s e R

Figure 8. Code Directory Structure for MR System Installation

To install the MR System software, the MR Administrator must use

the following procedure:

1.

Create directories for the files that will contain the MR System
source and executable object modules {e.g.,

/tools/mr.sys/source.code and /tools/mr.sys/exec.code).

Store the source code modules as files in the source.code

directory. This directory and these files must have write

62

permission allowed for the MR Administrator only.

Change position to the exec.code directory. Compile each main
program (i.e., submitmr.c, updatemr.c, selectmr.c, listmr.c and
valdatmr.c) by executing the commands:

ce ../source,code/PPPPPPPP.c

mv a.,out PPPPPPPP.x
where PPPPPPPP is the name of one of the main programs. This
directory and these files also must have write permission allowed

for the MR Administrator only.

To 1install an MR System for a project or system, the MR

Administrator must follow these steps:

1.

Ensure that the permissions for the mradmin directory are read,
write and execute for the MR Administrator and read and execute

for everyone else.

Make a directory called modreq under the mradmin directory with
read, write and execute permissions for the MR Administrator and
read and execute for everyone else. This directory will contain

the Modification Requests stored as individual SCCS files.

Create a file called auth.login under the mradmin directory with
read and write permissions for the MR Administrator and read for
everyone else, In this file, use the UNIX editor to write one

line containing the login id of the MR Administrator.

6.

63

Create a file called first.mrnum under the mradmin directory with
read and write permissions for the MR Administrator and read for
everyone else, In this file, use the UNIX editor to write one
line containing 0000000000 (i.e., ten zeros). The first MR number

that is created will replace this line.

Create a file called last.mrnum under the mradmin directory with
read and write permissions for the MR Administrator and read for
everyone else. In this file, use the UNIX editor to write one
line containing 0000000000 (i.e., ten zeros). When any MR is

created its number will replace this line.

Create a file called hold.mrrec under the mradmin directory with
read and write permissions for the MR Administrator and read for
everyone else. This file will be a temporary storage area for use

by SCCS when creating or updating a Modification Request record.

Create a file called std.err under the mradmin directory with read
and write permissions for everyone. This file will contain

standard error messages that describe internal MR System errors.

Ensure that a directory called ciadmin has been created in the
system/project directory for administration of configuration
items. Ensure that the permissions for the ciadmin directory are
read, write and execute for the Configuration Item and MR

Administrators and read and execute for everyone else,

Ensure that a directory called confitem exists under the ciadmin

64

directory. Ensure that the confitem directory has read, write and
execute permissions for the CI and MR Administrators and read and
execute for everyone else. This permission allows use of the
authupdt subprogram by the Update MR function. The confitem
directory will contain the Configuration Items stored as

individual SCCS files,

In order to execute the MR System software, each user including the
MR Administrator must add the directory where the executable code is
stored to the PATH variable in his/her .profile, Using the structure
shown in Figure 8, the user would add the following path:

/toocls/mr.sys/exec.code

65

APPENDIX B. MODIFICATION REQUEST SYSTEM USERS' GUIDE

In order to use the Modification Request System, each user must
update the PATH variable in his/her .profile to contain the directory
where the executable code for the MR System is stored. The directory
name should be available from the UNIXTM System Administrator or the MR
System Administrator. Once the .profile is wupdated, the user can
perform functions of the MR System by entering

mrsys
This command will begin execution of the MR System Primary Shell. This
shell will display a menu of available functions, with a code that the
user must enter to select each function or to exit from the MR System.
The menu is shown in Figure 9. During execution of each selected
option, self-explanatory error and Informational messages will be

displayed on the user's terminal.

FREETRRENTRIN NI 7026969006 306 3696 3006 0036 36 96 696 06 36 30 63 3606 30 NN

Modification Request System Primary Function Menu *
ERNERRRRERRRRERR R EENE RN NN NN RNERNNE NN NERNNERNNE RN REEERREE

The following primary functions are available:

Option Function

0 Exit the Modification Request System

1 Submit a Modification Request [MR Admin. only]
2 Update a Modification Request [MR Admin. onlyl
3 Select Modification Requests

4 List Modification Requests

5 Validate Modification Requests

Enter option number for the function you wish to perform:

Figure 9. MR System Primary Function Menu

67

Submitting Modification Requests

The submit function (option 1 on the Primary Function Menu) will
create a Modification Request. This function is available only to the
MR Administrator for the projeet or system. The pregram will prompt for
required and optional information. Up to fifty characters may be
entered for each field. The required fields are description,
originator's identification and system/project identification. The
optional fields are impact, priority, requested completion date and
severity. Description and impact may optionally contain up to five
lines of text. The message

no id keywords (em7)
will be displayed when a Modification Request is cereated. This message

is created by the UNIX SCCS software and is informational only.

68

Updating Modification Requests

The update function (option 2 on the Primary Function Menu) will
change information in a Modification Request. This function is
available only to the MR Administrator for the project or system. The
user will be prompted for the number of the MR to be changed and for the
keyword of the field to be changed. A list of keywords can be displayed
during execution of the function. The list is shown in Figures 10a and
10b. Up to fifty characters may be entered for each field. Multiple
fields can be changed 1in one execution of the function, If affected
configuration item identifications are being entered, the program will
accept up to 9 items, If status is being changed along with other
information, it should be changed first. All changes entered by the
user will be stored in a hold area., The user will be given the option
to save those changes in the actual Modification Request record or abort

the update (i.e., the changes will not be written on the record)}.

69

A2 T2l 22222 X222 2R AR R LR RS2 R Rt 22 sl 2]

* MR Fields that can be changed by the user *
TR 000600 00006 0606 2 6003636 06 36 066 0 T 3006 900 30 0006 36 36 08 0000 030 360 3030 630 36 30 36 00 36 90 3030 0 36 090 96 36 6 36 98 96 30 30 3696 36 3 336 4

In the following list of MR Keywords, the value of Code indicates
when the corresponding field is required:

= MR is new

MR is assigned for investigation

MR is approved for implementation

MR is rejected

MR is deferred for later investigation

MR is assigned for implementation

implementation of MR is complete

MR is closed

optional field

initially computed by program; changed by MR Administrator

OO0 HmAa=m =g
LU LR T [T N | O T A T N T I |

Keyword Code Description

desc n Description of modification requested,
including problem or condition which prompted request

desc2 o Continuation of description

desc3 o Continuation of description

descl o Continuation of deseription

desch 0 Continuation of description

origid n Identification of originator of request

sysprojid n Name of system/project primarily affected by request

impact1 o] Impact of request, including benefits, extent of effects
on other systems/projects

impact2 0 Continuation of impact

impact3 o Continuation of impact

impactl o) Continuation of impact

impact5s o Continuation of impact

prio o] Priority of request (relative rank of this request
within the group of all requests of the same severity)

rcompdt o] Requested completion date

sever o] Severity of problem or condition identified in the
request (i.e., system will not run, a major function of
the system is significantly inhibited, problem can be
circumvented with minor inconveniences, problem is not
critical and can be circumvented indefinitely, etc.)

status p Status of MR (computed by submit, changed by update)
Normal sequence of status:

i->d

n=->1i<>(oneof)i=>a-=>xg->m-=>c
]
1

|=> r

Figure 10a. Keywords Used to Identify MR Fields to be Updated

Keyword Code Description

invid i Identification of person who is assigned to
investigate the request

appid a Identification of person who approved request
for implementation

rejid r Identification of person who rejected request

rejreas’ r Reason request was rejected

rejreas2 o Continuation of reject reason

rejreas3 o] Continuation of reject reason

rejreasd o Continuation of reject reason

rejreas5 o Continuation of reject reason

defid d Identification of person who deferred request

defreas1 d Reason request was deferred (including time frame for
reconsideration and reinvestigation of request)

defreas2 o Continuation of defer reason

defreas3 o] Continuation of defer reason

defreasi o Continuation of defer reason

defreas5 o Continuation of defer reason

asgntol g Identification of person who is assigned to
implement the request

asgnto2 o] Ident. of another person assigned to implement

asgnto3 o] Ident. of another person assigned to implement

asgntol ol Ident. of another person assigned to implement

asgntob o] Ident. of another person assigned to implement

asgntob o] Ident. of another person assigned to implement

asgnto? o Ident. of another person assigned to implement

asgnto8 o] Ident. of another person assigned to implement

asgnto9 o Ident. of another person assigned to implement

targdt g Target date for completion of implementation

compdescl m Description of completed implementation

compdesc2 © Continuation of completed implementation desc.

compdesec3 o Continuation of completed implementation desc.

compdescld o Continuation of completed implementation desc.

compdesch o© Continuation of completed implementation dese.

cil m Configuration Item affected by request

¢i2 o Another configuration item affected by request

eil o} Another configuration item affected by request

cily o] Another configuration item affected by request

¢ib o] Another configuration item affected by request

cib o Another configuration item affected by request

ci? © Another configuration item affected by request

ciB © Another configuration item affected by request

cig o Another configuration item affected by request

closid ¢ Identification of person who closed request

Figure 10b. KXeywords Used to Identify MR Fields to be Updated (cont.)

71

Selecting Modification Requests

The select function (option 3 on the Primary Funtion Menu) will
select MRs that meet <certain criteria, specifically certain status
codes, and will store their numbers in a file in the wuser's directory.
The selected numbers may optionally be displayed at the terminal. The

status types that can be selected are shown in Figure 11,

approved for implementation
closed

deferred for later consideration
assigned for implementation
assigned for investigation
implementation complete

new

rejected

S 09 H =g A0 M
LS | T O O T [O |

Figure 11. MR Status Types Available for Selection

72

Listing Modification Requests

The list funetion (option 4 on the Primary Function Menu} will
display the contents of Modification Requests. The numbers can be
entered at the terminal or read from a file. If read from a file, the
user will be prompted to enter the file name., In the file, the MR
numbers must be stored one per line, The user will also be prompted to
enter a code for the type of 1list desired. Figure 12 shows the
information listed for each code.
all fields in the Modification Request
all Configuration Items affected by the MR
the description field

the corresponding id, date and reason fields for
the current status

oo
nwuu unn

Figure 12, Codes Used For Listing Modification Requests

13

Validating Modification Requests

The validate function (option 5 on the Primary Function Menu} will
check for existence of specified Modification Requests. The MR numbers
can be entered at the terminal or read from a file, If read from a
file, the user will be prompted to enter the file name. 1In the file,
the MR numbers must be stored one per line. After the search for the
MRs is completed, a message will be displayed which indicates if all

specified MRs exist or if some (one or more) were not found.

T4

APPENDIX C. CONFIGURATION ITEM/BASELINE IDENTIFICATION SYSTEM INTERFACE

Software Configuration Management consists of the four tasks of
Configuration Identification, Configuration Contreol, Configuration
Status Accounting and Configuration Auditing. The system of tools
documented in this report supports the Control and Status Accounting
tasks. In order to provide additional support of SCM and augment the
capabilities of the Modification Request System, an automated tool for
Configuration Identification is required. Such a tool would support the
storage, retrieval and update of the Configuration Items to which the
Modification Requests apply. A system of tools for this task, called
the Configuration Item and Baseline Identification System, has been

developed by William H., Wilson, IV [WiB4].

The MR System developed in this project can be easily interfaced

with Wilson's CI System in the following manner:

1. When the MR System is installed, the CI System must also be
installed according to the instructions in Wilson's paper [Wi84].
The CI directory and files would probably replace the
ciadmin/confitem directories and s.ci files documented in this
report. However, the projid and projfile directories referenced
in Wilson's paper could be called ciadmin and confitem
respectively. In addition, the references in the Installation
Guide in this report to /sys.2 and /proj.2 could alternately be
called /filesys and /scm to correspond to the structure described

in Wilson's paper.

2,

75

A copy of the checkmr subprogram must be placed in the same
directory as the SCCS software (i.e., the executable versions of
"admin", "delta", etc.). This copy allows the CI System to check

for valid MRs when a CI is updated.

The pathei subprogram might have to be changed, in order to allow
the user to enter the pathname of the directory where the CI files
are stored. For example, as shown in the CI System documentation,

the user might have to enter /fllesys/sem/projid/projfile.

A sample directory/file structure for the interface of the MR
System with the CI System is shown in Figure 13. This structure
is project oriented. That 1is, each project has its own SCM
directory. No modifications would be required to the pathei or
pathmr subprograms for this structure. An alternate structure is
depicted in Figure 14 and is oriented toward SCM. That is, all
projects are under one scm directory. This structure would
require modification of the pathei subprogram to allow the user to
enter the pathname /filesys/scm/proj.1/cibldir. If all projects
had a similar structure, where the CI files were always stored in
a directory such as ciadmin in Figure 13 or cibldir in Figure 14,
and that directory was always located under the same directory as
both the users' login directories and the mradmin directory, then
the code of pathei could be changed to default to that structure,
This change would mean that the users would not have to enter any
pathnames, The MR System and CI System could, as a result, still

be used by multiple projects.

=

76

Some controls have been implemented in the CI System, as in the MR
System, over who can perform certain operations. Specifically,
the CIs are owned by the CI Administrator and only that person can
change the update permissions for the CIs., This means that if the
MR Administrator does not have the same 1login id as the CI
Administrator, then the authupdt subprogram in the MR System will
not be allowed by the CI System to change the CI update
permissions. If the MR and CI administrative functions are not
performed from the same login id, then only one of the following
two changes must be performed. The first change would be made to
the MR System and involves commenting out the authupdt calls in
the updatemr.c program. As a result, the CI Administrator would
have to use the updatusr function in the CI System software to
perform the function of authupdt. The second change involves both
the CI System and the MR System. This alternative requires that
the CI System software be changed to allow multiple login ids to
be stored in the /sem/adm file that is c¢reated by the install
function and checked by the updatusr function. This alternative
also involves changing the updatemr.c program in the MR System by
replacing the calls to authupdt with calls to the CI System
function of updatusr. An explanation of the methed that must be
used by a C 1language program to call the updatusr function is

given in Chapter 4 (Implementation Details) of Wilson's paper.

TF

O
iroot |
B M
H
] 1
] 1
o —— e [S ——
iproj.t | iproj.2 |
[— o e e e e
i i
G s e
I semi isem|
e o ——
1
]
1 1]
1 I 1
B s s o e e E o I
luser | imradmin| tciadmin
o e e e i e B S —
i |
ol e 1
T s s ¥ |
1 [}]
1] I
o e e e Y A e
modreq | std.err lconfitem |
B T A e
i i
(] = " n
. - T T
1 |
1]
B o S 4 e o
S.mryyyymmss s.ei Ibldiri
b e e B o e a2k Rt s
i
R ke o e o o o
blfile
b e e ot]

Figure 13. Project Oriented Structure for MR System/CI System Interface

pm————
iroot |
et m—
i
D e m—.
ifilesys)
e
i
o
| scm)
—t
1
1
| |]
et o e e s
iproj.1 | iproj.2 |
EO S e Tt
[}
1
E : i
T B e e
luser | !mradmin} feibldir!
e 4 B e i B e e &
i i
Co D i
B e Y T +++ e
imodreq | std.err el ibldir|
o e i e b+ -+ B s e
i i
G e
S.mryyyymmss blfile
D S bt

Figure 14. SCM Oriented Structure for MR System/CI System Interface

78

APPENDIX D. SOURCE CODE

authupdt ..evevresconsnssescane
€a8l1lSCCS seesvsrnnnsccnsvscens
checkmr;...
closemi ..iovvieecencannnncnnne
Bobmr aaiieinwains s e aaiiane s siase
listmr.¢ ..ssevscscencesssncua
mr.global.defs ..eeesessessean
MIr'SYS sussevsscesnsneastsssana
OPENMI' ..ccsosvsvencscanssonsas
PAENCL wcemin « » vnwom ¢ 5 saccninin v 0 2
PELhMr wiows s s » 4 Samans é § vs
5electimr.c tsevoescrcsvsoseses
SUbMItMreC v enrecensvronanae
UPdatemr.¢ secsecavevennsencne

Valdatm!".c [EEERERENENNERNENNENNES

80
82
84
86
87
91
99
100
102
103
105
107
113
125

142

79

80

JRRTR T 3030 0000000000000 000000 0000000000 0000000030 0036 0000 0 003000 360006003600 3000 00000 30000 N

/* authupdt == authorize update of a Configuration Item ®/
/**!l!*!!ilii***i!!!i*lil!ii**il!!*illliiiililliliiilliiilliillliliiii/

authupdt(loginid, ci, action)

char loginid[];
char cil];
char action[]:

Vi
Vad
/®
/®

char

char
char
char
char

loginid = login id of person to be authorized/deauthorized ®/
ci = identification of configuration item to be updated #*/
action = "a" if add, "e" if delete authorization ®/
return = 0 if successful, -1 if unsuccessful L4

*funcargs(4]1;

cidir(100];

funcarg0[200];
funcarg1[200];
funcarg2[200];

int cidirlen;
int loginidlen;

/% get path for ci directory ¥/
if (pathei(eidir) != 0)

{

fprintf(stdout, "Cannot get path for CI directory.\n");
fprintf(stdout, "Please notify MR System Administrator.\n");
return(-=1);

}

/% initialize SCCS function argument areas #/
strncpy(funcarg0, "\O", 200);
strnepy(funcargl, "™\0", 200);
strnepy(funcarg2, "\O", 200);

/% call SCCS admin function to update authorization for the CI #/
strnepy(funcargl, "admin", 6);
funcargs[0] = funcargO;
strnepy(funcargl, "=", 2);
streat(funcargl, action};

loginidlen = strlen(loginid);
strcat(funcargl, loginid, loginidlen);
strcat(funcargl, "\0");

funcargs[1] = funcargl;

cidirlen = strlen(eidir):
strnepy(funcarg2, cidir, ecidirlen);
strncat(funcarg2, "/s.", 3);

81

streat (funcarg2, ci);

strecat(funcarg2, "\0");

funcargs([2] = funcarg2;

funcargs[3] = NULL;

if (callsces(funcargs) != 0)

{
fprintf(stderr, "Update authorization not completed.\n");
return(-1);

1

return(0);

}

JEENERARERARRRERRRRRREAR RN RERRNERRRRRAFRR RN ER RN RN RRRARRRRRRRRRR RN/

/* end authupdt */
JEEERERRRERERREERRR AR RN RN R AR RN RN R RN AR AR AR RN AR R RRRNR

82

3033 3336 3% 3 33 36 30 96 36 36 06 36 36 % 36 3% 36 30 30 30 30 30 30 3 30 3k 30 30 3 3 30 30 30 30 36 38 30 30 30 96 30 30 36 36 90 36 30 3 3 36 300 30 30 360 N NX X /

/* callsces == call an SCCS function &/
/Il*!ll!*ill*l*i*lilli!lllll!!*i*iI**iliil*i!ilili*i!llii!!!!*!l!lﬁlll/

callsces(argv)

char *argv(];

/% argv[0] = sccs function to be executed */
/% argv[1] - [last] = arguments to be passed to sccs function ¥/
/% return = 0 if successful, =1 if unsuccessful */
/% this routine does a fork system call to create a child */

/% process, an execv system call to execute the requested sccs ¥/
/% funetion, and waits in the parent process until the child %/
/% process finishes. */

char funcpath[150];

int cproecid;
int wreturn;
int wstatus;

strnepy(funcpath, "/usr/bin/", 10);
streat(funcpath, argv[0]);

/* create child process ¥/
cprocid = fork();
if (eprocid == =1)
{
fprintf(stderr, "Fork failed for sccsfunc(%s)\n", argv[0]);
fprintf(stderr, "Errno = %d\n", errno);
fprintf(stderr, "Argv = (%s)\n", argv);
return{=1);

}

/* execute sces funetion in child */
if (eprocid == 0)

{
if (exeev(funepath, argv) == -1)
{
fprintf(stderr, "Execv failed for sccsfunc(%s)\n", argv(0]1);
fprintf(stderr, "Errno = %d\n", errno);
fprintf(stderr, "Argv = (%s)\n", argv);
return(=1);
}
}

/% wait until child is done ¥/
wstatus = 0;

while ({wreturn =
if (wreturn == =1}

{
fprintf(stderr,
fprintf(stderr,
fprintf(stderr,
fprintf{stderr,
fprintf(stderr,
}

return(wstatus);

}

83

wait (&wstatus)) 'z cproeid);

"SCCS function(%s) failed\n", argv([01);
"Status = %d\n", wstatus);

"Errno = %d\n", errno);

f"Return = %d\n", wreturn);

"Argv = (%s)\n", argv);

;iIl!IIillil*ii*llll*‘ilIl*l*i***i*i!li**i*liiliilillill*!il!*!ill!i*i/

/% end callsccs

&

/!l!i*Iili!l!*l*iillllill!**l**lii!*!iil*ill!ii!iliii!ii!lii*lll*li*il/

84

AT 30 036 3030 00 0k 00 00 306303 336 0 30 00 3000 0000 0000 96 0 00 00002000 3600 30000 30 9030 3636 3606 O 06 006 30 96 000 0 /

/% checkmr -- check for valid Modification Request numbers %/
/!*lllli!l!l!l!l!!ilii!lll*!l!!*i!l*iliIillll!!!llll!l*!liliil*lil!ili/

checkmr (mrnumlist)

char mrnumlist(];

/% mrnumlist = a list of MR numbers to be checked; numbers are #/
/* separated by blanks and/or tabs; the list is ®/
/ terminated with an unescaped new-line character #/
/% return 0 if all numbers valid, =1 if any invalid ®/

char mrnum[MAXVAL];

int i;
int rtnflag;
int charent;

rtnflag = 0;
charcnt = 03
strncpy(mrnum, "\QO", MAXVAL);

/% get a character from mrnumlist and determine what it is #/
/% mrnumlist terminates with a new-line character L
for (i = 0; mrnumlist[i] != "\n'; i++)

{

if (mronumlist(i] == '\0'")

/% null */
{

continue;

}

else

{
if (mrnumlist(i] == ' ' || mrnumlist([i] == '\t")

/* blank or tab ¥/

{
if (charent != 0)

/% no characters have been stored so this blank/tab #/
/* terminates mrnum */

/% get mrnum %/
{
mrnum{charent] = '\0';
if (getmr(mrnum, "g") == -1)
{
rtnflag = =1;

85

}
charent = 0;
strnepy(mrnum, "\O", MAXVAL);
}
}

el se

/* store character %/

{
mrnum(charcnt] = mrnumlist[i];
charcnt++;
}
}

}
if (charent !'= Q)

/% at end of list, and characters have been stored for ¥/
/% the last mrnum ®/

/* get mrnum */

{
charcnt++;
mrnum(charcent] = '\0';
if (getmr(mrnum, "g") == =1)
{

rtnflag = =1;

}

}

return(rtnflag);

}

JEREREARRRERERRRERERRRFARRRRRARRRRERRRAR R RRARRNR AR RF R AR AR R RRRRERRRR /

/% end checknmr */
JEREREERERERRRRRERERRR AR R R AR AR R NR R ERER R NR R RN RN RR RN RIARE

86

JERRAEREERRRERRRARERERRRARR DR ERRRRRRARA RN R RAAR RN RE R RS RN N ERRRRERE

/* olosemr — close a file associated with the *®/

/® Modification Request system */
JEERRREARRRRRRRRR BRI AR RN FRRRERRRRA DB R AT RN RRRR RN R BRI NN RS/

closemr (mrfp)
/% mrfp = filepointer to file to be closed */
/% return = 0 if successful, =1 if unsuccessful %/
{
if ((fclose(mrfp)) == EOF)
{
fprintf(stderr, "Can't close file\n");
return(=1);
}
else
{
return(0);
}
}

JEERERERERRERERRRRRA RN ERRRAERRRRARR AR REARANFRFERRRRRARARFR AR R A RRR RN RN RS /

/% end closemr »/
JERRRERAFRBERRERBEERRRPRD AR ARFARNNRA AR FARRRERRER R NRRFRRRRRERNRRN RN/

87

JERRERERRRERERERREARRR AR ER R RRANRRARARBRRSRRR R AR AR AR RRB RN RR A RRRRRRER /

/% getmr -—— get a specified Modification Request record */
JEEERREBEEERRRRRRRBREERRRRRRRRRRRNRRRRRRNRRRERERBRRNRR RN RN R RRER

getmr (mrnum, getflag)

char mrnum{];
char getflagl];

/% mronum = number of the Modification Request to be */
/% retrieved ®/
/* pgetflag = g to suppress actual retrieval of MR, ®/
/¥ e if MR is to be retrieved and changed, %/
/¥ otherwise MR will be retrieved as read-only ®/
/% return = 0 if successful, -1 if unsuccessful */

FILE *mrnumfp;
FILE *hmrrecfp;

char *funcargs[5];

char funcarg0[200];
char funcarg1[200];
char funcarg2[200];
char funcarg3[2001];
char mradmindir[100];
char rmemd[100];

char chmodemd{100];
char mrfld[MAXFIELD];
char hmrrec_file[1501];

int 1
int j:
int mrdirlen;
int eofflag;

/* get path for mradmin directory ¥/

if (pathmr(mradmindir) !z 0)

{
fprintf(stdout, "Cannot get path for mradmin directory.\n"):
fprintf(stdout, "Please notify MR System Administrator.\n"):
return(=1);

}

/% initialize SCCS function argument areas #/
strnepy(funcarg0d, "\0", 200);
strnepy(funcargi, "\O", 200);
strnepy(funcarg2, "\O", 200);
strncpy(funcarg3, "\O", 200);

/% call SCCS get function to access this MR #/
strnepy(funcarg0, "get", U4):
funcargs[0] = funcarg(;
strnepy(funcargl, "-s", 3);
funcargs[1] = funcargl;
mrdirlen = strlen{mradmindir);
strepy(funcarg2, mradmindir);
strneat(funcarg2, "/modreqg/s.", 10);
streat(funcarg2, mrnum);
funcargs[2] = funcarg2;
if (stremp(getflag, "g") == 0)
{
strnepy(funcarg3, "=g", 3);
funcargs(3] = funcarg3;

}
else
{
if (strcmp(getflag, "e") == 0)
{
strnepy(funcargl, "-e", 3);
funcargs(3] = funcarg3;
}
else
{
funcargs[3] = NULL;
}
}

funcargs(4] = NULL;

if (callsces(funcargs) != 0)
{

return(-1);
}

/% if suppressing retrieval, get out */
if (stremp(getflag, "g") == 0)
return(0);

/% SCCS get function puts MR record into a file in the ¥/
/* user's current working directory */

/% initialize mrrec structure */

mrrecptr = mrrec;

for (i = 0; 1 < NUMKW; i++)

{
strnepy(mrrecptr => keyword, "\0", MAXKW);
strnepy(mrrecptr -> value, "\0", MAXVAL);
mrrecptr++;

}

/* open mr file in user's current working directory */

if (openmr{(mrnum, "r") == =1)
{

return{(-1);
}

mrnumfp = mrfp;

/% copy MR record into mrrec structure ¥/
mrrecptr = mrrec;
eofflag = 0;
while (eofflag == 0)
{
if (fgets(mrfld, MAXFIELD, mrnumfp) != NULL)

{
if (strlen(mrfld) > 1)

{
i = 0;
d=0;
while {(mrfld(1i] != ':")
{
mrrecptr => keyword[j] = mrfld[i];
1++;
J++;
}
mrrecptr => keyword[j]l = '\0';
i4++3
J =03
while (mrfld(i] != '\n')
{
mrrecptr => value(j] = mrfld[i];
14+;
J++;
}
mrrecptr => valuel[j] = '\0';
mrrecptr++;
}
}
else
eofflag = 1;
}
/% if MR is to be retrieved and updated, */
/% write structure to hold.mrrec file ®/
if (strcemp(getflag, "e") == 0)
{

strepy(hmrrec_file, mradmindir);

strcat(hmrrec_file, "/hold.mrrec");

if (openmr(hmrrec_file, "w") == =1)
return(=1);

hmrrecfp = mrfp;

mrrecptr = mrrec;

for (i = 0; i < NUMKW; i++)

90

fputs(mrrecptr => keyword, hmrrecfp);
pute(':', hmrrecfp);

fputs(mrrecptr => value, hmrrecfp);
pute('\n', hmrrecfp);

mrrecpir++;
}
if (closemr(hmrrecfp) ==z -1)
{

fprintf(stderr, "Can't close hold_mrrec_file.\n");
return(-1);
}
}

/* remove MR record from user's current working directory #/

strepy(chmodemd, "chmod 666 ");

streat(chmodemd, mrnum);

if (system(chmodemd) != 0)

{
fprintf(stderr, "Change mode mrnum file in user dir. failed.\n");
return{=1);

}

strepy(rmemd, "rm ");

streat{rmemd, mrnum);

if (system(rmecmd) != 0)

{
fprintf{stderr, "Remove mrnum file from user directory failed.\n");
return(-1);

}

return(0);
}

JERRRRRRRF A AR RERRAR N RN ERRRRER TR B AR AR AR RRRERRNARRRRF AR RRRRRRRRRERR RN/

/% end getmr *®/
/lliili!i!iiiﬁ!iiliiii!iiiiilllliili!!**Iii!iliii!iiil!iiliii!i*lllili/

g1

SRR T30 333333303 30 003330 3T 3030 30 36 0036 3 300 36 3 30 30 36 30 30 36 3 30 3% 3 36 30 3 30 36 30 330 30 30 36 30 06 30 30 0 N /

/* listmr.c — list Modification Request contents %/
/*l**ili!i*i!iil'***iil!*ii!*l**ﬁiiilli*iiiill*l*i*liﬁl***iiI****iii**/

#include <stdio.h>
#include <strings.h>
#include <errno.h>
#include "mr.global.defs"
#include "openmr"
f#include "closemr"”
finclude "getmr"

#include "callsccs"
#include "pathmr"

main(argec,argv)

int arge;
char #*argv(];

{
FILE *hmrrecfp;
FILE *1istfp;

char *cptr;
char *lptr;

char listtype[MAXINOPT];
char mrnum{MAXVAL];

char list _file[501;

char stattype{MAXVAL];
char contlist[MAXINOPTI;

int c;

int i;

int s;

int eofmrnum;
int validtype;
int linecnt;

fprintf(stdout, "\n");

fprintf(stdout, "\n");

fprintf(stdout, "\n");

fprintf(stdout, "\n");

fprintf(stdout, ™\n");

fprintf(stdout, "\n");

fprintf(stdout, "\n");

fprintf(stdout, "\n");

fprintf(stdout, "\n");

fprintf(stdout, MEEEEESSEEERSRRRARERRRARRERANRRRRRRRNRRRNRER\ 01)
fprintf(stdout, "\n");

fprintf(stdout, "This routine lists Modification Requests.\n");

fprintf(stdout, "\n");

/% loop until no more lists requested ¥/

for

{

(33) /% this causes an infinite loop */

/* get list type %/
validtype = 03
while(validtype == Q)

{

}

fprintf{stdout, "\n");

fprintf(stdout, "Enter type of list as follows\n");
fprintf(stdout, " or\n");

fprintf(stdout, " carriage return to exit program.\n");
fprintf(stdout, "\n");

fprintf(stdout, "Enter: To list:\n");

fprintf(stdout, " \n");

92

fprintf(stdout, " a all info. in MR\n");

fprintf(stdout, " ¢ all affected CIs listed in MR\n");
fprintf(stdout, " d MR description\n");

fprintf(stdout, " s associated info. for current status\n");

fprintf(stdout, "\n");

fprintf({stdout, “Enter type:\n");

fgets(listtype, MAXINOPT, stdin);

if ((cptr = index(listtype, '\n')) != 0)
¥cptr = NULL;

if (strlen(listtype) == 0)

{
fprintf(stdout, "MR List program terminated by user.\n");
exit(0);

}

/% check for valid list type entry %/

if ((stremp(listtype, ™a") == 0) }|
(stremp(listtype, "e") == 0) ||
{strcmp(listtype, "d") == 0) ||
(stremp(listtype, "s") == 0))

validtype = 1;
else
fprintf(stdout, "Invalid listtype %s\n", listtype);

/% get method of entry for mrnums */

fprintf({stdout, "Do you want to enter the numbers of the MRs");
fprintf(stdout, " to be listed\n");

fprintf(stdout, " or read them in from a file?\n");
fprintf(stdout, "Enter carriage return to enter MR numbers\n");
fprintf{stdout, " or\n");

fprintf(stdout, " name of file containing MR numbers.\n");
fprintf(stdout, "\n");

fgets(list_file, MAXINOPT, stdin);

if ((eptr = index(list_file, '\n')) != Q)

*eoptr = NULL;

/% check if file name entered #*/
if (strlen(list_file) != Q)
{
/% open file %/
if (openmr(list_file, "r") == =1)
{
fprintf(stdout, "MR sys. error -- can't open'");
fprintf(stdout, " %s file.\n", list_file);
fprintf{stdout, "Please notify MR System Administrator.\n");
exit(=1);
}
}
listfp = mrfp;

/% list MRs until no more MR numbers entered #/
eofmrnum = 0;
while (eofmrnum == 0)

{
if (strlen(list_file) != 0)
{
/% get mrnum from file #/
if ((lptr = fgets(mrnum, MAXVAL, listfp}) == NULL)
{
fprintf(stderr, "%s file is empty.\n");
eofmrnum = 1;
continue;
}
/% else
{
if (lptr == EOQF)
{
eofmrnum = 1;
continue;
}
} %/
if {({ecptr = index(mrnum, '\n')) != 0)
*optr = NULL;
}
else

{
/% get mrnum from terminal ¥/
fprintf(stdout, "\n");
fprintf(stdout, "Enter number of MR to be listed\n");
fprintf(stdout, " or\n");
fprintf (stdout, " carriage return if no more MRs for"};
fprintf(stdout, " current list type.\n");
fgets(mrnum, MAXINOPT, stdin);
if {((eptr = index(mrnum, '\n')) !'= 0)
*cptr = NULL;

93

if (strlen{mrnum) == 0)
{
eofmrnum = 1;
continue;
}
}

/% get MR %/
if (getmr(mrnum, " ") == 0)
{
/% 1ist requested info. #/
fprintf(stdout, "\n");
¢ = listtypel0];
switeh(e)
{
case 'a':
/% list all info, ¥/
lineent = 03
mrrecptr = mrrec;
for (i = 03 i < NUMKW; i++)
{
fprintf(stdout, "%s:", mrrecptr -> keyword):
fprintf(stdout, "%s\n", mrrecptr => value);
mrrecptr++;
linecnt++;
if (linecnt ==z 20)
{
fprintf(stdout, "Enter carriage return to continue");
fprintf(stdout, " listing fields in this MR\n");
fgets(contlist, MAXINOPT, stdin);
lineent = 0
}
}
break;
case 'e':
/% list CIs #/
mrrecptr = mrrec;
for (i = 03 1 < NUMKW: i++)
{

if ((stremp(mrrecptr -> keyword, "mrnum") == 0) ||

(stremp(mrrecptr -> keyword, "eil1") == 0) ||
(stremp(mrrecptr => keyword, "ei2") == 0) ||
(stremp(mrreeptr -> keyword, "ei3") == 0) ||
(stremp(mrrecptr => keyword, "eciid") == 0) }|
(stremp(mrrecptr -> keyword, "ciS5") == 0) }|
(stremp(mrrecptr -> keyword, "cif") == Q) ||
(stremp(mrrecptr <> keyword, "ei7") == 0) ||
(stremp(mrrecptr => keyword, "eci8") == 0) ||
(stremp(mrrecptr => keyword, "ei9")} == 0))

{
fprintf(stdout, "%s:", mrrecptr => keyword):

fprintf(stdout, "%s\n", mrrecptr => value);
1
mrrecptr++;
}
break;
case 'd’';
/% list desc #*/
mrrecptr = mrrec;
for (i = 0; 1 < NUMKW; i++)
{

if ((stremp{mrrecptr => keyword, "mrnum") == 0)
(stremp(mrrecptr -> keyword, "deseci") == 0)
(stremp(mrrecptr => keyword, "dese2") == 0)
(stroemp(mrrecptr -> keyword, "dese3") == 0)
(stremp(mrrecptr => keyword, "descd") == 0)
(stremp(mrrecptr => keyword, "dese5") == 0))

{
fprintf(stdout, "%s:", mrrecptr -> keyword);
fprintf(stdout, "%s\n", mrrecptr -> value);
}
mrrecptir++;
}
break;
case 's':
/% list status info. ¥/
mrrecptr = mrrec;
for (i = 0; 1 < NUMKW; i++)
{
if (stremp(mrreeptr => keyword, "mrnum") == 0)
{
fprintf(stdout, "%s:", mrrecptr -> keyword);
fprintf(stdout, "%s\n", mrrecptr -> value);
}
if (stremp(mrrecptr -> keyword, "status") == 0)
{
strepy(stattype, mrrecptr => value);
fprintf(stdout, "%s:", mrrecptr => keyword);
fprintf(stdout, "%s\n", mrrecptr => value);
}
mrrecptr++;
}
mrrecptr = mrrec;
for (i = 0; 1 < NUMKW; i++)
{
/% list specific info. for each status ¥/
s = stattypel[0];
switch(s)
{
case 'i':
/% assigned for investigation */
if ({stremp(mrrecptr => keyword, "invid")

"
"

(stremp(mrrecptr => keyword, "invdt") == 0))
{
fprintf(stdout, "%s:", mrrecptr -> Kkeyword);
fprintf(stdout, "%s\n", mrrecptr =-> value);
}
break;
case 'a':
/* accepted for implementation #*/
if ((stremp{mrrecptr => keyword, "appid")
(stremp(mrrecptr -> keyword, "appdt")

0)
0))
{
fprintf(stdout, "%s:", mrrecptr -> keyword);
fprintf(stdout, "%s\n", mrrecptr => value);
}
break;
case 'r':
/% rejected ¥/

if ((stremp(mrrecptr -> keyword, "rejid") == 0) !|
(stremp(mrrecptr -> keyword, "rejdt") == Q) ||
(stremp(mrrecptr => keyword, "rejreasi") == 0)
(stremp(mrrecptr -> keyword, "rejreas2") == 0)
(stremp(mrrecptr -> keyword, "rejreas3") == 0)
(stremp(mrrecptr => keyword, "rejreasi") =z 0)
(stremp(mrrecptr => keyword, "rejreas5") == 0))
{
fprintf(stdout, "%s:", mrrecptr -> keyword);
fprintf(stdout, "%s\n", mrrecptr -> value);
}
break;
case 'd':
/% deferred #/
if ((stremp(mrrecptr -> keyword, "defid") == 0) ||
(stremp(mrreeptr -> keyword, "defdt") == 0) |}
(strcmp(mrrecptr -> keyword, "defreasi™) ==z 0)
(stremp{mrrecptr -> keyword, "defreas2") == 0)
{stremp(mrreeptr -=> keyword, "defreas3") == 0)
(stremp(mrrecptr => keyword, "defreasi") ==z 0)
(stremp(mrrecptr -> keyword, "defreas5S") == 0))
{
fprintf(stdout, "%s:", mrrecptr -> Kkeyword);
fprintf(stdout, "%s\n", mrrecptr => value);
}
break;
case 'g':
/* assigned for implementation ¥*/
if ((stremp(mrrecptr -> keyword, "asgntol") == 0) |
(stremp(mrrecptr -> keyword, "asgnto2") == 0) |
(strcmp(mrrecptr -> keyword, "asgnto3") == 0) |
(stremp(mrrecptr => keyword, "asgntod") == 0) |
(stremp(mrrecptr -> keyword, "asgntob5") == 0) |
(stremp(mrrecptr -> keyword, "asgntob™) == 0) |

96

—— - -

(stremp(mrrecptr => keyword, "asgnto7") == 0)
(stremp(mrrecptr -> keyword, "asgnto8") == Q)
(stremp(mrreeptr -> keyword, "asgnto9") == 0)
(stremp(mrrecptr -> keyword, "asgndt") == 0)
{stremp(mrrecptr =-> keyword, "targdt") == 0))

{
fprintf(stdout, "%s:", mrrecptr => keyword);
fprintf(stdout, "%s\n", mrrecptr => value);
}
break;
case 'm':
/* completed */
if ((stremp(mrrecptr => keyword, "compdt") == 0)
(stromp(mrrecptr -> keyword,
"compdesc1") == 0) }|
(stremp(mrrecptr => keyword,
"compdesc2") == Q) |
(stremp{mrrecptr => keyword,
"ecompdesc3") == Q) |
(stremp(mrrecptr => keyword,
"compdesecld") == 0) ||
(strcemp(mrreecptr -> keyword,
"ecompdese5") == 0))

{
fprintf(stdout, "%s:", mrrecptr => keyword);
fprintf(stdout, "%s\n", mrrecptr -> value);

}
break;
case 'e¢':

/% closed #*/
if ((stremp{mrrecptr => keyword, "closid")
(stremp(mrrecptr -> keyword, "closdt™)

W oH
n u
o O
e

{
fprintf(stdout, "%s:", mrrecptr => keyword);
fprintf(stdout, "%s\n", mrrecptr -> value);

}
break;
}
mrrecptr++;
}
break;
}
}
else

fprintf(stdout, "MR %s does not exist.\n", mrnum);
}
}
}

97

JEERRERERBAXRERARARF AR R AFRARRARRRRRRRARER A NN R AR R AR RN RRRRRRRRRRRR RN/
%/

/® end listmr.c

98

T 33 30 3 T 3003 330 36 3656 06 30 06 30 306 30 30 96 38 36 00 36 30 36 36 30 0 08 38 30 36 36 36 3 36 36 36 0 36 6 96 O 30 06 36 % 9 3 30 3 6 08 M % /

99

SR 02000003030 3030 3300000 00 0000 26 3000 0030 0030 3600 3630 00 30 06 00 00 3 0636 3630 30 30 36 36 36 30 36 36 36 96 36 98 96 20 36 30 36 30 06 36 00 36 6 6 % /

/* mr,

global.defs —— MR System global definitions x/

JRRERERRRRBRABRARARNFR AR RN RERRERRR R R R R RRRRRR NN RN RN RN RN NRR RN REN)

FILE *mrfp;
#define MAXKW 10 /% maximum length of a keyword, including ®/
/% terminating NULL *y
#define MAXVAL 51 /% maximum length of a value, including %/
/% terminating NULL 8y
#define MAXFIELD 63 /% maximum length of one field in MR record */
/* = MAXKW */
/% + 1 (for ":') 2/
" + MAXVAL ¥
/¥ + 1 (for newline) */
#define NUMKW 63 /% total number of valid keywords .74
#define MAXINOPT 75 /* maximum length of a user input option, */
/® {e.g., a status type entered to */
/% select MRs for tracking, or an LV
/* option type to specify contents ®/
/% of an MR to be listed ®/
/% this is the structure of a Modification Request record &/
/* a newline character is written at the end of each field *®/
/% in the MR record L
struct mrfield
{
char keyword[MAXKW];
char colon;
char value[MAXVALI;
I
struct mrfield mrrec[NUMKNW];
struct mrfield *mrrecptr;
extern int errno; /* required for system calls: fork,exec,wait */

JEEEARARRRARFRZERFAREXARSRARF R AR AT RRARRRARARERRRRER NN RR NN RE RN NRE

/* end mr.global.defs */
JRERBRRE RN 0000000 0000 0T 00000000 0000 0000 2000 0 30 3690 90 3030 20 03030 T 0000 000 0 T R

ss sy s

op
ec
ec
ec
ex

wh
do

-l S SRR RS S

" s we oa L BB EE] [. .
s e v a8 sa s L R e e I I B 8% 8 00 & & B4 NS0 S0 S SNBSS0 B SASASLsSEEsBdEE

mrsys --— Modification Request System Primary Shell

- . L R R R R R I I B B N B I] [RN
*e S0 B0 e e CE T e 8 s 00 s 44 9 528 BRSPS SRS AR BESS "4 e S8 s0 8

tion=0

h.O"

ho'l‘

ho 'Welcome to the Modification Request System.'
ec 2»>>3HOME/../mradmin/std.err

if the mradmin directory is not located under the same directory

: as the login directories of the users, the previous exec statement
¢ must be commented out and the following five statements

[echo,echo,echo,read,exec] must be made executable by removing the
comment characters
echo ' !

: echo '"Please enter the full pathname for the mradmin directory.!
: echo 'For example, /sysid/projid/mradmin’
¢! read mradmindir

exec 2>>$mradmindir/std.err

100

as ¢ e we as

e

*1

ile true
echo ' !
echo ' !
echo THRERBEREERR SRR RERE AR AR R RERR RN RN R R LRSS ERE AR EREXRE RS RRE RN
echo '# Modification Request System Primary Funetion Menu
echo "HERFEERERRBRERERFRAFERRRFRBRTRERFRFRBARRERAF RN RRRERERFRERAR
echo ' !
echo 'The following primary functions are available:!
echo ' '
echo 'Option Function'
echo !
echo ' !
echo ' 0 Exit the Modification Request System!
echo ' !
echo ' 1 Submit a Modification Request [MR Admin. only]!
echo ' !
echo ' 2 Update a Modification Request [MR Admin. only]'
echo ' !
echo ' 3 Select Modification Requests!
echo ' !
echo ' 4 List Modification Requests!
echo ' !
echo ' 5 Validate Modification Requests!
echo ' !

echo 'Enter option number for the function you wish to perform:'

read optiocn
case $option in
0) echo ' !
echo "Modification Request System terminated by user.!

as as

echo 'Bye-Bye!'!
echo ' !

exit;;

submitmr.x 2>&3;;
updatemr.x 2>&3;;
selectmr.x 2>&3;;
listmr.x 2>&3;;
valdatmr.x 2>&3;;

echo 'Invalid option entered =-- Please re-enter.';:

101

102

JRRERARRRREBFEFRARRRERARREERRDRBRARRRARA R R AR R B R RN RN R RN RN RR RN RERRRE /

/% openmr — open a file associated with the L4

/¥ Modification Request system ®/
/il!*******!*I!ili*iil****i*lllIIlili!****Ii*i!ililli!!l!ililll!li!lll/

openmr{mrfile, iomode)

char mrfile(1:
char iomode(];

/% mrfile = name of file to be opened ®/
/% iomode = "r" if read, "w" if write, */
/* return = 0 if successful, =1 if unsuccessful L7
{
if ({(mrfp = fopen(mrfile, iomode)) == NULL)
{
fprintf(stderr, "Can't open file (%s) for %s\n", mrfile, iomode);
return(=1);
}
else
{
return(0);
}
}

JEARRARRRRAARRFR AR RARA AR AR RN R ANRERER RN RN AR R B RERRRRRERAERRENRR)

/* end openmr %/
ERRERERRREREERERNRRN R R R RN RN RN R RN R RN RN RN NANRR

103

JEERERERREBERERRERER A RD AR RS RRRRRRRRRRRRRRRRRRR LR R R ERRRERERRRRRRRRRERR

/R

pathci — setup path to configuration item directory

%/

VAR a2 22222222 22 222 s R Rt Rt i s a il st iR ittt it issd Vi

pathei(eidir)

char cidir(100];

/% cidir
/% return

full pathname for configuration item directory
0 if successful, =1 if unsuccessful

char *cptr;

char #getenv(); /% a function supplied with Standard UNIX C
/% Library, which returns a char pointer
/* to the value of an environment name

strnepy(ecidir, "\O", 100);

/* The following code sets up the default path, where the

/* CI Administrator's login directory (ciadmin) is under the
/% same directory as the login directories for the users of

/% the MR System and the configuration items are stored in a
/* directory (confitem) under the ciadmin directory.

/% If the directory structure is different, the following code
/* should be bypassed and the code following the comment

/* MODIFY HERE

/* should be used.

/®* get path for CI directory in the project directory */
/% for this user %/
cptr = getenv("HOME");

strepy(eidir, cptr);

strneat(ecidir, "/../ciadmin/confitem", 20);

return(0);

/% MODIFY HERE if directory structure is different from default
/* The user will have to enter the correct path.

/* The comment characters must be removed from the following

/% lines,

/% fprintf(stdout, "Please enter path for the configuration”);
/* fprintf(stdout, " item directory for your project.\n");

/% fprintf(stdout, "The full pathname must be entered from");
/% fprintf(stdout, " the root directory down to and");

/% fprintf(stdout, "™ including the CI directory.\n");

/% fprintf(stdout, "For example,");

/% fprintf(stdout, " /sys.1/ci.data/projid.4/projfile.5\n");
/% fgets(eidir, MAXINOPT, stdin);

*/
®/
*/
L7 4
&/
i 4
%y
Ry
%

o
2/

4
»/

xy

%/
*/
*/

o4
%/
&/
%y
e
nf

104

/% if ((cptr = index(eidir, '\n'}) != 0) LV
F Soptr = NULL; 4
/% return{0); ®/
}
P Ty T T e T T R P T Y F Y
/% end pathei LV

JERRERRARERRNRERERRR RN RN R AR RN ERE RS RABRERERRR AN SRR R SRR R R RN E SRR AR RRRRER

105

JERERE 02330300 3600 0 0030 06 0000 303003000000 30 00 0 00 000 00 F 00 36 26 3 30 3% 636 96 36 036 3 36 98 38 3 308 030 00900 3 M

/% pathmr — setup path to mradmin directory ®y/
/!lilli*!*iliili!!ili*!!!*i***!‘l!llilillil'*ii!!** iiili*il!*******l‘l!!/

pathmr (mradmindir)

char mradmindir[100];

/% mradmindir = full pathname for mradmin directory %/
/% preturn = 0 if successful, =1 if unsuccessful L4
{
char ¥*cptr;
char ¥*getenv(); /® a function supplied with Standard UNIX C ®/
/% Library, which returns a char pointer */
/% to the value of an environment name */

strncpy(mradmindir, ™\O0", 100);

/* The following code sets up the default path, where the ®/
/* MR Administrator's login directory (mradmin) is under the #/
/* same directory as the login directories for the users of %/
/%* that MR System. %/
/% If the directory structure is different, the following code ¥/
/% should be bypassed and the code following the comment L7
P MODIFY HERE %/
/% should be used, %/

/* get path for mradmin directory in the project directory #*/
/% for this user .
cptr = getenv("HOME");

strepy(mradmindir, cptr);

strncat(mradmindir, "/../mradmin®, 11);

return{0);

/® MODIFY HERE if directory structure is different from default, %y

/% The user will have to enter the correct path. x/
/% The comment characters must be removed from the following L
/% lines, %/
/% fprintf(stdout, "Please enter path for the mradmin"); %/
/% fprintf(stdout, " directory for your project.\n"); ®/
/% fprintf(stdout, "The full pathname must be entered from"); ®/
/% forintf(stdout, "™ the root directory down to and"); ®/
/% fprintf(stdout, " including the mradmin directory.\n"); L7
/% fprintf(stdout, "For example, /sys.1/proj.a/mradmin\n"); ®/
/% fgets(mradmindir, MAXINOPT, stdin); &y
/% if ((eptr = index(mradmindir, '\n')) != Q) *y

/* ¥cptr = NULL; */

106

/% preturn(0); ®y
}
JERERERBRERRURRRER R ERRNBHERERF AR RN ER RN R NN RN RN AR RN BB R R RRRR RN RN/
/* end pathmr &/

JERERASRARRRERERRARRERRRERERFRRERRARERBR R RRRRAFERXRRERRRNRRRRRRRR RS/

107

/Ii!iiiillll*!i!ililil!l!l!i!iiliii!!i*!lii*iiiiilllll!lli!lliilii*i!*/
/®* selectmr.c — select all Modification Requests

VA

that meet certain criteria

wy

%/

JRERERREREANRARARARRBEFEAF RS RERRRRERER RN RR R RENR R R XA RERERRRFERER RN RS/

#include <{stdio.h>
#include <strings.h>
#include <errno.h>
#include "mr.global.defs"
#include "openmr”
#include "closemr"
#include "getmr"

#include "callsces”

#inclu

de "pathmr"

main(arge,argv)

int ar
char #

{
FILE

24
argv[];

*1lmrnumfp;

FILE *fmrnumfp;

FILE
FILE

char
char
char

char

char
¢har
c¢har
char
char
char
char
char
char
char

int
int
int
int
int
int
int

®hmrrecfp;
%3elfp;

%eptr;
¥template;
*tempptr;

*miktemp(}; /% a function, supplied with the Standard UNIX ¥/

/% C Library, which makes a unique file name

select [MAXINOPT];
mradmindir{1001];
mrnum[MAXVAL]:
lmrnum file[1501];
lmrnum[MAXVAL]:
fmrnum_file[1501];
fmrnum[MAXVAL];
dispflag[MAXINOPT];
select_file[501;
select_temp[50];

i;

mryear;
mrmonth;
mrseq;
mrdirlen;
optflag;
checkflag;

*/

int lmrnumflag;
int selectent;

fprintf(stdout,
fprintf(stdout,
fprintf(stdout,
fprintf(stdout,
fprintf(stdout,
fprintf(stdout,
fprintf(stdout,
fprintf(stdout,
fprintf(stdout,
fprintf(stdout,
fprintf(stdout,
fprintf(stdout,
fprintf(stdout,
fprintf(stdout,
fprintf(stdout,

108

"\n");

"\n");

"\nt);

"\nh);

"ty

VL

"™n");

"\n");

"\n");
MERESRERERNEERSRARARARERERERR AR RS R R ARAR AR R\)
"™n");

"This routine selects Modification Requestsin");
"that meet certain criteria and stores their\n");
"numbers in a file for later use.\n");

m\nny;

strepy(select_temp, "mroumXXXXXX");

template =
tempptr =

select_temp;
mktemp(template);

strepy(select file, tempptr);

fprintf(stdout,
fprintf(stdout,
fprintf(stdout,
fprintf{stdout,
fprintf(stdout,
fprintf(stdout,
fprintf(stdout,
fprintf(stdout,
fprintf(stdout,
fgets(dispflag,
if ((eptr =

¥cptr = NULL;

/% get path for

"The selected numbers will be stored in your\n");
"ourrent working directory in a file called ");

" %s\n", select file);

"™\n");

"Do you also want to display the selected");

" MR number{s}?\n"};

"Enter y or yes to display numbers\n");

L or\n™);

n carriage return for no.\n");

MAXINOPT, stdin);

index(dispflag, '\n')) != 0)

mradmin directory ¥/

if (pathmr(mradmindir) != 0)

{

fprintf(stdout, "Cannot get path for mradmin directory.\n");
fprintf(stdout, "Please notify MR System Administrator.\n");

exit(=1);
}

/% get last MR number assigned */
strepy(lmrnum_file, mradmindir);
strcat(lmrnum_file, "/last.mrnum");
if (openmr(lmrnum file, "r") == =1)

{

fprintf(stdout, "MR sys. error -- can't open last_mrnum file.\n");
fprintf(stdout, "Please notify MR System Administrator.\n");
exit(=1);

109

}

lmroumfp = mrfp;

if (fgets(lmrnum, MAXVAL, lmrnumfp) == NULL)

{
fprintf(stderr, "Can't get from file (%s)\n", lmrnum_file);
fprintf(stdout, "MR system error - last_mrnum file empty or");
fprintf(stdout, ™ not open.\n");
fprintf(stdout, "Please notify MR System Administrator.\n");
exit(=1);

}

if ((eptr = index(lmrnum, '\n')) != 0)
®cptr = NULL;

/* get first MR number assigned ¥/

strepy(fmrnum_file, mradmindir);

strecat(fmrnum_file, "/first.mrnum");

if (openmr{(fmrnum_file, "r") ==z =1)

{
fprintf(stdout, "MR sys. error -- can't open first_mrnum file.\n");
fprintf(stdout, "Please notify MR System Administrator.\n");
exit(=1);

}

fmrnumfp = mrfp;

if (fgets(fmrnum, MAXVAL, fmrnumfp) == NULL)

{
fprintf(stderr, "Can't get from file (%s)\n", fmrnum_file);
fprintf(stdout, "MR system error — first_mrnum_file empty or");
fprintf(stdout, " not open.\n");
fprintf(stdout, "Please notify MR System Administrator.\n")};
exit(-1);

}

if ({eptr = index(fmrnum, '\n'})) != Q)
¥cptr = NULL;

/% loop to get input criteria and display selected MRs until #*/

/% carriage return is entered to exit program: */
for (;; /® this causes an infinite loop */
{

/% get selection criteria for MRs from standard input ¥/

optflag = 0;

do

{
fprintf(stdout, "\n");
fprintf(stdout, "Enter status type to be selected as follows\n");
fprintf(stdout, " or\n");
fprintf(stdout, " carriage return to exit program.\n");
fprintf(stdout, "\n");
fprintf(stdout, "Enter: To select MRs with status of: \n"};
fprintf(stdout, " \n");
fprintf(stdout, " a approved for implementation \n");
fprintf(stdout, " ¢ closed \an);

110

fprintf(stdout, "™ d deferred for later consideration\n");
fprintf(stdout, " g assigned for implementation \n");
fprintf(stdout, " i assigned for investigation \n");
fprintf(stdout, " m implementation complete \n");
fprintf(stdout, "™ n new \n");
fprintf(stdout, " r rejected \n");

fprintf(stdout, "\n");

fprintf(stdout, "Enter type:\n");

fgets(select, MAXINOPT, stdin);

if ((eptr = index(select, '\n')) != 0)
¥coptr = NULL;

if (strlen(select) == 0)

{
fprintf(stdout, "MR Selection program terminated by user.\n");
exit(0);
}
/% check for valid entry ¥/
if ((strcmp(select, "a") == 0) ||
(strcmp(select, "e") == Q) ||
(stremp(select, "d") == 0) ||
(strcmp(select, "g") == 0) ||
(stremp(select, "i") == Q) ||
(stremp(select, "m") == 0) ||
(stremp(select, "n") == Q) ||

(stremp(select, "r") 0))
{
optflag = 1;
}
else
{
fprintf(stdout, "Selection entry invalid.\n");
fprintf(stdout, "Please re-enter.\n");
fprintf(stdout, "\n");
}
} while (optflag = 0);
fprintf(stdout, "Selecting MRs -- please wait.\n");

/* open select file for write %/

if (openmr(select_file, "w") == -1)

{
fprintf(stdout, "MR sys. error -- can't open template file.\n");
fprintf({stdout, "Please notify MR System Administrator.\n");
exit(=1);

}

selfp = mrfp;

/% get MR with first_mrnum */
strepy(mrnum, fmrnum);

/% loop through all MRs, checking and writing each */

111

/* MR number that contains requested data *®/
selectent = 0;

checkflag = 0;

fprintf(stdout, "\n");

while {(checkflag == 0)

{
if (getmr(mrnum, "™ ") == 0)
{
/% check to see if this MR meets the selection criteria #/
/% if so, put it out ®/
mrrecptr = mrrec;
for (i = 03 i < NUMKW; i++)
{
if (stremp(mrrecptr -> keyword, "status") == 0)
{
if (stremp(mrrecptr => value, select) == 0)
{
fputs(mrnum, selfp);
pute('\n', selfp);
if ((stremp(dispflag, "y") == 0) |
(stremp(dispflag, "yes") == 0))
fprintf(stdout, "%s\n", mrnum);
selectent++;
}
break;
}
else
mrrecptr++;
}
}
if (stremp(mrnum, lmrnum) != 0)
{

/* determine next mrnum %/
sscanf(mrnum, "%¥2c%4d%2d%2d4d", &mryear, &mrmonth, &mrseq);
if (mrseq == 99)
if (mrmonth == 12)
{
mryear++;
mrmonth = 13
mrseq = 1;
}
else
{
mrmonth++;
mrseq=1;
}
else
mrseq++;
sprintf(mrnum, "mr%d%02d%02d", mryear, mrmonth, mrseq):

}

112

else

{
fprintf(stdout, "\n");
fprintf(stdout, "%d MR numbers selected.\n", selectent);
checkflag = 1;

}

}
}
}

/!!*!*!iii!l‘llll*'**i!ii*il!ii!!liiliil!!*lll*l!l!li****'*ll*l*lili!i*/

/% end selectmr.c *®/
JEFERERERRRARARRERRRRR AR AR RN R RS RN R DR RRRR DR RN N RN RRRRRNR RN RN RNE)

113

JEREARERERNREERAR IR RARNAFERERERRRRRAR RN RN RN R RR R RSB ERERERRR RN RN RSN /

/% submitmr.c — submit a Modification Request L4
/IlllliIiliI!*!!Ili*ii*lil!lI!iil*!i*lll*i*l*l*!lililiiii*lll!!liiilii/

#include <stdio.h>
#include <errnoc.h>
#include <strings.h>
#include <time.h>
#include "mr.global.defs"
#include "openmr"
#include "closemr"
#include "callsccs”
#include "pathmr"

main(argc,argv)

int arge;
char *argv(];

{
FILE *lmrnumfp;
FILE *fmrnumfp;
FILE *loginfp;
FILE *hmrrecfp;

char *cptr;

char ®*cuserid(); /* a function supplied with Standard UNIX C #/
/* Library, which returns a char pointer %/
/* to the login name of the user &y

char *funcargs[7];

char c¢[2];

char mradmindir[1001];
char funcarg0[200];
char funcarg1[200];
char funcarg2[200];
char funcarg3[200];
char funcargi(2001];
char funcarg5[2001;
char keynum[MAXKW];
char mrnum[MAXVALJ;
char desc[5][MAXVAL];
char origid[MAXVAL]J;
char sysprojid[MAXVAL];
char impact[5][MAXVALI;
char prio[MAXVAL]:

char rcompdt[MAXVAL];
char sever[MAXVALI;
char lmrnum file[150];

char
¢char
char
char
char
char

int
int
int
int
int
int
int
int

long

/% i
strn
strn
strn
strn
strn
strn

fpri
fpri
fpri
fpri
fpri
feri
fpri
fpri
fpri
fpri
fpri

lmrnum[MAXVAL];
fmrnum_file[1501;
login_file[1501;
userid[L_cuserid];
authid[15];
hmrrec_file(1501];

i;
curryear;
currmo;
mryear;
mrmonth;
mrseq;
mrdirlen;
authidlen;

currtime;

nitialize SCC3S function argument areas #/
epy(funcarg0, "\O", 200);
epy(funcargil, "\0", 200);
epy(funcargz, "\O", 200);
cpy{funcarg3, "\0", 200);
cpy(funcargh, "\0", 200);
cpy{funcargb, "\0", 200);

ntf(stdout, ™\n");
ntf(stdout, "\n");
ntf{stdout, "\n"});
ntf{stdout, "\n");
ntf{stdout, "\n");
ntf(stdout, "\n");
ntf{stdout, ™\n");
ntf{stdout, "\n");
ntf(stdout, "\n");
Ntf(stdout, MEAREEESIEERRRERERERERERERRRERRERAERRNRRSRRA\ {01)

ntf(stdout, "\n");

fprintf(stdout, "This routine submits Modification Requests.\n");

fpri

/% i
strn
for
{

st
}

ntf(stdout, "\n"):

nitialize standard input areas */
cpy(mrnum, "\0"™, MAXVAL):

(i =0; 1 <5; i++)

rncpy(desc[i], ™\0", MAXVAL);

strnepy{origid, "\O", MAXVAL);

strn
for
{

cpy(sysprojid, ™\O", MAXVAL);
(1 = 03 1 < 5; ies)

strncpy{impact{i], "\O", MAXVAL);

114

115

}

strnepy{prio, "\0", MAXVAL):
strnepy(rcompdt, "\O", MAXVAL);
strnepy(sever, "\0", MAXVAL);

/% get path for mradmin directory %/

if (pathmr(mradmindir) != 0)

[
fprintf{stdout, "Cannot get path for mradmin directory.\n");
fprintf(stdout, "Please notify MR System Administrator.\n");
exit(=1);

}

/% get login id of person authorized to submit MRs #/

strepy(login_file, mradmindir);

strecat(login_file, "/auth.login");

if (openmr(login_file, "r") == =1)

{
fprintf{stdout, "MR sys. error -- can't open auth_login file.\n");
fprintf(stdout, "Please notify MR System Administrator.\n");
exit(-1);

}

loginfp = mrfp;

if {fgets{authid, 15, loginfp) == NULL)

{
fprintf(stderr, "Can't get from file (%s)\n", login_file);
fprintf(stdout, "MR system error — auth_login_file empty or");
fprintf(stdout, " not open.\n");
fprintf(stdout, "Please notify MR System Administrator.\n");
exit(=1);

}

if ((eptr = index(authid, '\n')) != 0)
¥cptr = NULL;

/% get login name of user %/

eptr = userid;

if (cuserid(eptr) == NULL)

{
fprintf(stdout, "Cannot find user's login name.\n");
fprintf(stdout, "Please notify MR System Administrator.\n");
exit(=1);

}

/* check that user is authorized to submit MRs #/

if (stremp(userid, authid) != 0)

{
fprintf(stdout, ™\n");
fprintf(stdout, "You are not authorized to submit");
fprintf(stdout, " Modification Requests.\n"):
fprintf(stdout, "This function is restricted to the™");
fprintf(stdout, " MR System Administrator.\n"):

116

exit(=1);
}

/% get last MR number assigned %/

strepy(lmrnum_file, mradmindir);

streat(lmrnum_file, "/last.mrnum");

if (openmr(lmrnum file, "r") == -1)

{
fprintf(stdout, "MR sys. error -- can't open last_mrnum file.\n"};
fprintf(stdout, "Please notify MR System Administrator.\n");
exit(=1);

}

lmrnumfp = mrfp;

if (fgets{lmrnum, MAXVAL, lmrnumfp) == NULL)

{
fprintf(stderr, "Can't get from file (%s)\n", lmrnum file);
fprintf(stdout, "MR system error — last_mrnum file empty or");
fprintf(stdout, " not open.\n");
fprintf(stdout, "Please notify MR System Administrator.\n");
exit(=1);

}

if ((eptr = index(lmrnum, '\n')) != 0)
%cptr = NULL;

/% get current date ¥/

if (time(&currtime) == =1)

{
fprintf(stderr, "Time call error -- errnc (%d)\n", errno);
fprintf(stdout, "MR system error —— can't get curr. time.\n");
fprintf(stdout, "Please notify MR System Administrator.\n"):

exit{-1);
}
curryear = gmtime(&currtime) -> tm_year;
curryear = curryear + 1900;
currmo = gmtime(&currtime) -> tm_mon;
CUrTmO++;

/* setup mrnum for this MR being submitted ¥*/
sscanf(lmrnum, "%¥2c%4d%2d%2d", &mryear, &mrmonth, &mrseq);
if (mryear == curryear)
if (mrmenth == currmo)
if (mrseq == 99)
{
fprintf(stderr, "mrseq at upper limit\n");
fprintf(stdout, "Can't create > 99 MRs/month.\n");
fprintf(stdout, "Please notify MR System administrator.\n");
exit(-1)3
}
else
mrseq++;
else

17

{
mrmonth = currmo;
mrseq = 1;
}
else
{
mryear = curryear;
mrmonth = currmo;
mrseq = 13
}

sprintf(mronum, "mr%d%02d4d%02d", mryear, mrmonth, mrseq);

/* get input values for MR fields from standard input */
fprintf(stdout, "The following information is required.\n");
fprintf{stdout, "Please keep entry to max. of S0 characters:\n");
fprintf(stdout, "\n");
fprintf(stdout, "Enter description of modification requested.\n");
fprintf(stdout, "Up to 5 lines of description can be entered.\n");
fprintf(stdout, "Enter carriage return if skipping a line:\n");
FRrintflstdouty Mesoi canenTisbitioninsBoameiss vi Jovs s swwali?)
fprintf(stdout, "ueueseoa.5\0");
fprintf(stdout, "Description line 1:\n");
fgets(desc[0], MAXVAL, stdin);
if ({cptr = index(desc[0], '\n')) != O)

®optr = NULL;
while (strlen(desc[0]) == 0)
{

fprintf(stdout, "Please enter description of modification™)

fprintf(stdout, " requested.\n");

Corintfiatdont, M, cevweies To semece s s@eerre ¢ cne e s saanses L)y

fprintf(stdout, ".eeeiesesBN0M");

fprintf({stdout, "Description line 1:\n");

fgets(desc[0], MAXVAL, stdin);

if ((eptr = index(desec[0], '\n'}) != 0)

%optr = NULL;

}

fprintf(stdout, "Description line 2:\n"};

fgets(dese[1], MAXVAL, stdin);

if ((cptr = index(dese[1], '\n')) != 0)
%¥optr = NULL;

fprintf(stdout, "Description line 3:\n"};

fgets(desc[2], MAXVAL, stdin);

if ((eptr = index(dese[2], '\n'}) != 0)
¥optr = NULL;

fprintf(stdout, "Description line H:\n");

fgets(desc[3], MAXVAL, stdin);

if ((eptr = index(desc{3], '\n')) != 0)
%cptr = NULL;

fprintf(stdout, "Description line 5:\n")};

fgets(desc[#], MAXVAL, stdin);

if ((eptr = index(desec[4], '"\n')) != 0)

118

®cptr = NULL;
fprintf(stdout, "Enter originator id.\n");
fprintf(stdout, MieeesreseloassenceelesossosasIosnsassead);
fprintf(stdout, "..eeeeee5\n");
fgets(origid, MAXVAL, stdin);
if ((eptr = index(origid, '\n")) != 0)
*cptr = NULL;
while (strlen(origid) == 0)
{
fprintf(stdout, "Please enter originator id.\n");
fprintf(stdolt; ™ideswwsss lavniissuilouissiiwnds ¢ vwvnis M)y
fprintf(stdout, ".........5\n");
fgets(origid, MAXVAL, stdin);
if ((eptr = index(origid, '\n')) !z 0)
%¥cptr = NULL;
}
fprintf(stdout, "Enter system/project id.\n");
Fprintfistdonty Moy s sawwueTs & summnss Dusmes & ve Inwes § vaeadT) 3
fprintf(stdout, ".........5\n");
fgets(sysprojid, MAXVAL, stdin);
if ((eptr = index(sysprojid, '\n')) != 0)
*cptr = NULL;
while (strlen(sysprojid) == 0)
{
fprintf(stdout, "Please enter system/project id.\n");
fpl‘intf(stdout, “o.c.ooooo1-.--.-.-.2.-.-0-lil3lu-ououooq‘“);
fprintfistdout, M.isseress5NN");
fgets(sysprojid, MAXVAL, stdin);
if ((eptr = index(sysprojid, '\n')) != 0)
*optr = NULL:
}
fprintf(stdout, "\n");
fprintf(stdout, "The following information is optiocnal.\n");
fprintf(stdout, "Please Keep entry to max. of 50 characters.\n"):
fprintf(stdout, "Enter carriage return if skipping entry:\n");
fprintf(stdout, "\n");
fprintf(stdout, "Enter impact of modification requested.\n");
fprintf(stdout, "Up to 5 lines of impact can be entered.\n")};
fprintf(stdout, "Enter carriage return if skipping a line:\n");
forintf(stdotuts "evssenminliis vnvsuiBoavnnns s s Juwwess nwl?)
fprintf(stdout, ™ieesaseenbNa™);
fprintf(stdout, "Impact line 1:\n");
fgets(impact[0], MAXVAL, stdin);
if ((eptr = index(impactiO0], "\n')) != Q)
®coptr = NULL;
fprintf(stdout, "Impact line 2:\n");
fgets(impact[1], MAXVAL, stdin);
if ((eptr = index(impact[1], '\n')) != 0)
#aptr = NULL;
fprintf(stdout, "Impact line 3:\n");
fgets(impact{2], MAXVAL, stdin);

119

if ((eptr = index(impact([2], '"\n')) 1= 0)
®aptr = NULL;
fprintf(stdout, "Impact line U4:\n");
fgets(impact(3], MAXVAL, stdin);
if ((eptr = index(impact(3], '\n')) != 0)
®cptr = NULL;
fprintf{stdout, "Impact line 5:\n");
fgets(impact[4], MAXVAL, stdin);
if ((eptr = index(impact[4], '\n')) != 0)
#cptr = NULL;
fprintf(stdout, "Enter priority of request.\n");
fordntfistdonty Mo s sawwe be o o smenas D vieie ¢ 65 Twwws s s ewpdN) §
fprintf(stdout, Meessesss.5\n");
fgets(prio, MAXVAL, stdin);
if ((eptr = index{(prio, '\n')) != 0)
%cptr = NULL;
fprintf(stdout, "Enter requested completion date of");
fprintf(stdout, "™ modification.\n");
fprintf(stdout, MeeeseeaeeleeinneeeeavveneneedovnoeaseaddM)}
fprintf(stdout, "iesseees.5\n");
fgets(recompdt, MAXVAL, stdin);
if ((eptr = index(rcompdt, '\n')) != 0)
#cptr = NULL:
fprintf(stdout, "Enter severity of modification requested.\n");
fprintf(stdout, "swesssvusTamas o smwels s vwmenon Inwwnes s sedM):
fprintf(stdout, "..ccc....5\n");
fgets(sever, MAXVAL, stdin):
if ((eptr = index(sever, '\n')) != 0)
®cptr = NULL;
fprintf(stdout, "Creating MR — please wait.\n"):

/% write keywords and input values tc mrrec structure ¥/
mrrecptr = mrrec;
strncpy(mrrecptr => keyword, "mrnum", MAXKW):
strnepy(mrrecptr -> value, mrnum, MAXVAL);
mrrecptr++;
for (i = 0; 1 < 5; i++)
{
strnepy(keynum, "\O", MAXKW);
strnepy(keynum, "desc", 4);
ef0] =1 + 1 + '0';
e[1] = "\O';
strcat(keynum, c);
strncpy(mrrecptr => keyword, keynum, MAXKW);
strncpy(mrrecptr -> value, dese[i], MAXVAL);
mrrecptr++;
}
strncpy(mrrecptr -> keyword, "origid", MAYKW):
strncpy(mrrecptr -> value, origid, MAXVAL);
mrrecptr++;
strncpy(mrrecptr -=> keyword, "sysprojid", MAXKW):;

strnepy(mrrecptr -> value, sysprojid, MAXVAL);
mrrecptr++;
for (i = 0; 1 <€ 5; 1i++)
{
strnecpy(keynum, "\0O", MAXKW);
strnepy(keynum, "impact", 6);
e[0) =41+ 1 + 0"
ef1] = "\0';
streat (keynum, ¢);
strncpy(mrrecptr -> keyword, keynum, MAXKW);

strnepy(mrrecptr => value, impact{i], MAXVAL);

mrrecptr++;
}
strncpy(mrrecptr => keyword, "prio", MAXKW):
strncpy(mrrecptr => value, prio, MAXVAL);
mrrecptr++;
strncpy(mrrecptr -> keyword, "rcompdt", MAXKW);
strnepy(mrrecptr -> value, rcompdt, MAXVAL);
mrrecptr++;
strnepy(mrrecptr => keyword, "sever", MAXKW);
strnepy(mrrecptr => value, sever, MAXVAL);
mrrecptr++;
strncpy(mrrecptr -> kKeyword, "status", MAXKW);
strnecpy(mrrecptr =-> value, "n", MAXVAL);
mrrecptr++;
strnepy(mrrecptr -=> keyword, "invid", MAXKW);
strnepy(mrrecptr «> value, "\O", MAXVAL);
mrrecptr++;
strnepy(mrrecptr -> keyword, "invdt", MAXKW);
strncpy(mrrecptr -> value, "\0O", MAXVAL);
mrrecptr++;
strnepy(mrrecptr => keyword, "appid", MAXKW);
strncpy(mrrecptr -> value, "\O", MAXVAL);
mrrecptr++;
strocpy(mrrecptr -> keyword, "appdt', MAXKW);
strnepy(mrrecptr -> value, "\O", MAXVAL);
mrrecptr++;
strnepy(mrrecptr -> keyword, "rejid", MAXKW};
strnepy(mrrecptr => value, "\O", MAXVAL);
mrrecptr++;
strncpy(mrrecptr => keyword, "rejdt", MAXKW);
strnepy(mrrecptr -> value, "\0", MAXVAL);
mrrecptr++;
for (i = 03 1 € 5; i++)
{

strnepy(keynum, "\O", MAYKW);

strncpy(keynum, "rejreas", 7);

ef[0] =1+ 1 + '0";

el1] = "\0';

strecat (keynum, c¢);

strnepy(mrrecptr -> keyword, keynum, MAXKW);

120

strnepy(mrreeptr -> value, "\0", MAXVAL);

mrrecptr++;

}
strnepy(mrrecptr
strnepy(mrrecptr
mrrecptre+;
strncpy{mrrecptr
strncpy(mrrecptr
mrrecptr++;

-2
->

-
->

keyword, "defid", MAXKW});
value, "\O", MAXVAL);

keyword, “defdt", MAXKW);
value, ™\O0", MAXVAL):

for (1 = 03 i < 55 i4+)

{

strncpy(keynum, "\O", MAXKW);
strnepy(keynum, "defreas", 7);
ef0]l =1+ 1+ 0"

el11 = "\0';

strcat(keynum, ¢);

strncpy(mrrecptr => keyword, keynum, MAXKW);
strocpy(mrrecptr => value, "\QO", MAXVAL);

mrrecptr++;

}
strnepy(mrrecptr
strnepy(mrrecptr
mrrecptr++;
strnepy(mrrecptr
strnepy(mrrecptr
mrrecptr++;
strnepy(mrrecptr
strnepy(mrrecptr
mrrecptr++;
strnepy(mrrecptr
strnepy(mrrecptr
mrrecptre+;
strnepy(mrrecptr
strncpy{mrrecptr
mrrecptr++;
strnepy(mrrecptr
strncpy(mrrecptr
mrrecptr++;
strocpy(mrrecptr
strnepy(mrrecptr
mrrecptr++;
strnepy(mrrecptr
strnepy(mrrecptr
mrrecptr++;
strncpy{mrrecptr
strncpy(mrrecptr
mrrecptr++;
strnepy(mrrecptr
strncpy(mrrecptr
mrrecptr++;
strnepy(mrrecptr

-
w3

-2
-2

-2
->

-2
->

-2
=->

-2
->

-2
-

=
->

-2
-2

->
-

-2

keyword, Masgntcl", MAXKW);
value, "\0", MAXVAL);

keyword, "asgnto2", MAXKW):
value, "\O", MAXVAL);

keyword, "asgnto3", MAXKW);
value, "\O"™, MAXVAL);

keyword, "asgntold™, MAXKW);
value, "\O", MAXVAL);

keyword, "asgntoS", MAXKW);
value, "\O", MAXVAL);

keyword, "asgntob", MAXKW):;
value, "\0", MAXVAL):

keyword, "asgnto7", MAXKW);
value, "\O", MAXVAL);

keyword, "asgnto8", MAXKW):
value, "\O", MAXVAL);

keyword, "asgnto9", MAXKW);
value, "\Q", MAXVAL);

keyword, "asgndt", MAXKW):
value, "\O", MAXVAL):;

keyword, "targdt", MAXKW);

121

122

strnepy(mrrecptr => value, "\0", MAXVAL):
mrrecptr++;
strncpy(mrrecptr -> keyword, "compdt", MAXKW);
strnepy(mrrecptr => value, "\0", MAXVAL);
mrrecptr++;
for (1 = 0; 1 € 5; i++)
{
strnepy(keynum, "\O", MAXKW);
strncpy(keynum, "compdesc", 8);
e[0] =1 + 1 + '0';
el[1] = "\O';
strcat(keynum, c¢);
strnepy(mrrecptr -> keyword, keynum, MAXKW);
strnepy{mrrecptr -> value, "\0O", MAXVAL);
mrrecpbr++;
}
for (1 = 0; 1 < 9; i++)
{
strnepy(keynum, "\O", MAXKW);
strnepy(keynum, "ei", 2);
cl0] =1 + 1 + 101
el1] = "\0"';
strecat(keynum, c¢);
strncpy(mrrecptr -> keyword, keynum, MAXKW);
strnepy(mrrecptr => value, "\0", MAXVAL):
mrrecptre+;
}
strnepy(mrreeptr => keyword, "closid", MAXKW);
strncpy(mrrecptr -> value, "\0", MAXVAL);
mrrecptr++;
strncpy(mrrecptr => keyword, "closdt", MAXKW);
strnepy(mrrecptr => value, "\O", MAXVAL):;

/* write structure to hold.mrrec file #*/

strepy(hmrrec_file, mradmindir);

strcat(hmrrec_file, "/hold.mrrec");

if (openmr(hmrrec_file, "w") == -1)

{
fprintf(stdout, "MR sys. error -- can't open hold_mrrec_file.\n");
fprintf(stdout, "Please notify MR System Administrator.\n"):
exit(=1);

}

hmrrecfp = mrfp;

mrrecptr = mrrec;

for (1 = 0; 1 < NUMKW; i++)

{
fputs(mrrecptr -> keyword, hmrrecfp);
pute(':', hmrrecfp);
fputs(mrrecptr -> value, hmrrecfp);
pute('\n', hmrrecfp);
mrrecpir++;

123

}

if (closemr(hmrrecfp} == «1)

{
fprintf(stdout, "MR sys. error -- can't close hold_mrrec_file.\n");
fprintf(stdout, "Please notify MR System Administrator.\n");
exit(-13;

}

/% call SCCS admin function to create this MR as an SCCS file #/

stroepy(funcargd, "admin", 6);

funcargs([0] = funcarg0;

strnepy(funcargl, "-n", 3);

funcargs[1] = funcargl;

strncpy(funcarg2, "-i", 2);

strcat(funcarg2, mradmindir);

strcat(funcarg2, "/hold.mrrec");

funcargs(2] = funcarg2;

strncpy(funcarg3, "-fqModification-Request", 24);

funcargs(3] = funcarg3;

strnepy(funcargt, "-a%", 2);

authidlen = strlen(authid);

strncat(funcargl, authid, authidlen);

streat(funcargh4, "\0");

funcargs(4] = funcargh;

mrdirlen = strlen(mradmindir);

strnepy(funcarg5, mradmindir, mrdirlen};

strnecat(funcarg5, "/modreq/s.", 10};

strcat(funcarg5, mrnum);

funcargs(5] = funcarg5;

funcargs[{6] = NULL;

if {(callsces(funcargs) != 0)

{
fprintf(stdout, "Modification Request not created.\n");
exit(-1);

}

/% update file containing last MR number assigned */
if (openmr(lmrnum_file, "w") == =1)

{

fprintf(stdout, "MR sys. error =="):
fprintf(stdout, " can't open last_mrnum file.\n");
fprintf(stdout, "Please notify MR System Administrator.\n");
exit(=1);

}

Imrnumfp = mrfp;

fputs(mrnum, lmrnumfp);

pute{('\n', lmrnumfp);

if (closemr(lmrnumfp) == =1)

{
fprintf(stdout, "MR sys. error —- can't close last_mrnum_file.\n"};
fprintf(stdout, "Please notify MR System Administrator.\n"):

exit(=1);
}

/% check to see if this was first MR created in mradmindir
/% if so, store mrnum in file containing first MR number assigned %/
if (strnemp(lmrnum, "0000000000", 10) == Q)

{

strepy(fmrnum_file, mradmindir);
streat(fmrnum_file, "/first.mrnum");
if (openmr(fmrnum_file, "w") == =1)

{

fprintf(stdout, "MR sys. error =-");
fprintf(stdout, " can't open first mrnum file.\n");
fprintf(stdout, "Please notify MR System Administrator.\n"});

exit(=1);
}

fmrnumfp = mrfp;
fputs(mrnum, fmrnumfp);
putc('\n', fmrnumfp);

if (closemr(fmrnumfp) == -1)

{

fprintf(stdout, "MR system error --"};
fprintf(stdout, " can't close first_mrnum_file.\n");
fprintf(stdout, "Please notify MR System Administrator.\n");

exit(=1);
}
}

fprintf(stdout,
fprintf(stdout,
fprintf(stdout,
fprintf(stdout,
fprintf({stdout,
fprintf(stdout,
fprintf(stdout,
fprintf(stdout,
fprintf(stdout,
fprintf(stdout,

axit(0);
}

"\n"};

"Submission complete.\n");

N\nﬂ):

"Modification Request number %s", mrnum);

" created.\n");

n\nn);
MERERRARRRTRRFEERERRRRRFRRRRRRRARRER AR RRRR\ D)
N\nﬂ);

ﬂ\nn);

ﬂ\nﬂ);

124

o]

SUARRRRRRRRRERNARRRAA R R RN R NE RSB R RN REARABFRERE AR FRRRRRR AR RN ERERRER)

/% end submitmr.c

i 4

VAAA LA A AR AR d bl et 2 a et Lt il it ladtali itttz asdlys]

125

A3 R0 6 3 3 0 0h 30 30 030 3026k 3000 0000 000 0000 30 00 06 3030 3006 96 6 20 3 0000 3830 36 00 30 00 30 36 30 06 36 3 36 36 003036 3 36 36 06 N NNN /

/* updatemr.c -- update Modification Requests */
JRARARARRARERFRBRRBARRRFRSERRFEERBRTRRRERRRRRRRRRERRA BB RRRRRRRERRRRR

#include
f#include
#include
#include

<{stdioc.h>

<{strings.h>

{errnc.h>
<{time.h>

#include "mr.global.defs"
#include "authupdt”
#include "openmr"
#include "closemr"
#include "getmr"

#include "callsces™
#include "patheci"
#include "pathmr®

main(arge,argv)

int arge;
char *argv([]:

{
FILE *hmrrecfp;
FILE ®*loginfp;

char ¥*cptr;

/* a function supplied with Standard UNIX C */
/% Library, which returns a char pointer ®/
/® to the login name of the user */

char %*cuserid();

char *funcargs(51;

char charj[2];

char mradmindir[100];
char mrnum{MAXVAL];
char fieldid[MAXINOPT];
char dispflag[MAXINOPT];
char funcarg®[200];
char funecarg1[200];
char funcarg2[200];
char funcarg3{200];
char hmrrec_file(1507;
char login_file[150];
char rmemd[100];

char cpemd[100];

char loginid(MAXINOPT];
char currdate[9];

char newval[MAXVAL];
char ciid{MAXINOPT];
char userid[L_cuserid];

char
c¢har
char
char

int
int
int
int
int
int
int
int
int
int
int
int
int
int

long

stat
nd
"q
"d
lld
"d
"o
"s
"i
i
ni
ny
ni
"p
r
"s
"3
"i
"a
Ty

authid([151];
asgnto[81];

cil4];
asgntoid (9 J[MAXVAL];

i;

Js

k;
endupdate;
nodisplay;
abort;
curryear;
currmo;
currday;
mrdirlen;
fldidint;
keywdid;
idend;
idstored;

currtime;

ic char keywdin[NUMKW J[MAXKW]
escl™,
esc2",
esc3",
escin,
esch”",
rigid"”,
ysprojid",
mpact 1",
mpacta2",
mpact3”,
mpacti",
mpacts",
rio",
compdt”,
ever",
tatus",
nvid",
ppid",
ejid»,

"rejreasin,
"rejreas2",
"rejreas3",
"rejreasin,
"rejreass",
"defid",

"defreasi”,
"defreas2",
"defreas3",

126

"defreasin,
"defreassn,
"asgntol",
"asgnto2",
"asgnto3",
"asgntodr,
"asgnto5",
"asgntob",
"asgnto7",
"asgnto8",
"asgntog",
"targdt",
"compdesel™,
"compdesc2",
"compdesc3”,
"compdescl"n,
"compdesch©,
"eilm,
ei2",
"013",
Teilgr,
neign,
"aibn,
"oi7m,
"018“,
naign,
"olosid"

b

/% initialize SCCS function argument areas %/
strnepy(funcarg0, "\O", 200);
strncpy(funcargl, "\O", 200);
strnepy(funcarg2, "\0", 200);
strncpy(funcarg3, "\0", 200);

fprintf(stdout,
fprintf(stdout,
fprintf(stdout,
fprintf(stdout,
fprintf(stdout,
fprintf(stdout,
fprintf(stdout,
fprintf (stdout,
fprintf(stdout,
fprintf(stdout,
fprintf(stdout,
fprintf(stdout,
fprintf(stdout,

/* get path for

"\n");
"\n");
ﬂ\nﬂ);
ﬂ\nﬂ);
N\n");
ﬂ\nﬂ);
"\n");
"\n");
"\n");
ﬂ!i!i!Iiilii!lllllllllliililliilil**l!!il!ll\nn);
™n");
"This routine updates Modification Requests.\n");
“n");

mradmin directory #/

if (pathmr(mradmindir) != 0)

127

128

{
fprintf(stdout, "Cannot get path for mradmin directory.\n");
fprintf(stdout, "Please notify MR System Administrator.\n");
exit(=1);

}

/% get login id of person authorized to submit MRs ¥/
strepy(login_file, mradmindir);

strcat(login_file, "/auth.login");

if (openmr(login_file, "r")} == <1)

{
fprintf(stdout, "MR sys. error -- can't open auth_login_file.\n");
fprintf(stdout, "Please notify MR System Administrator.\n");
exit(=1);

}

loginfp = mrfp;

if (fgets(authid, 15, loginfp) == NULL)

{
fprintf(stderr, "Can't get from file (%s)\n", login_file);
fprintf(stdout, "MR system error — auth_login_file empty or");
fprintf(stdout, " not open.\n");
fprintf(stdout, "Please notify MR System Administrator.\n");
exit(-1);

}

if ((cptr = index(authid, '\n')) != 0)
®cptr = NULL;

/* get login name of user #/

cptr = userid;

if (cuserid(eptr) == NULL)

{
fprintf(stdout, "Cannot find user's login name.\n");
fprintf(stdout, "Please notify MR System Administrator.\n");
exit(=1);

}

/®* check that user is authorized to submit MRs #*/

if (stremp(userid, authid) != 0)

{
fprintf(stdout, "\n");
fprintf(stdout, "You are not authorized to submit");
fprintf(stdout, " Modification Requests.\n");
fprintf(stdout, "This function is restricted to the");
fprintf(stdout, " MR System Administrator.\n");
exit(=1);

}

/% get current date #/
if (time(&currtime) == =1)
{

fprintf(stderr, "Time call error -- errno (%d)\n", errno);

fprintf(stdout, "MR system error -- can't get curr. time.\n");

fprintf(stdout, "Please notify MR System Administrator.\n");
exit(=1);

}

curryear = gmtime(&currtime) -> tm_year;
curryear = curryear + 1900;

currmo = gmtime(&currtime) -> tm_mon;
CUrrmo++;

currday = gmtime(&currtime) -> tm_mday;
sprintf{currdate, "%4d%02d%02d", curryear, currmo, currday);
currdate{8] = '\0';

/% loop until no more MRs to be updated #/
for (;;) /% this causes an infinite loop */

{

fprintf(stdout, "Enter number of MR to be updated,\n");

fprintf(stdout, " or\n");

fprintf(stdout, " carriage return to exit.\n");

fgets(mrnum, MAXVAL, stdin);

if {(eptr = index(mrnum, '\n')) != 0)
®cptr = NULL;

if (strlen(mrnum) == 0)

/% no input sc terminate program %/

{
fprintf(stdout, "MR Update program terminated by user.\n");
exit(0);

}

/% get MR ¥/

if (getmr(mrnum, "e") == 0)

{
/% loop until no more fields to be changed in this MR #/
endupdate = 0;
while (endupdate
{
/% loop to get id of field to be changed */
nodisplay = 03
while (nodisplay == 0)
{

= 0)

fprintf(stdout, "\n");

129

fprintf(stdout, "Enter id number of field to be changed\n");

fprintf(stdout, " (if doing multiple changes to");

fprintf(stdout, " this MR and status code is one of");

fprintf(stdout, " them,\n");

fprintf(stdout, " status code should be changed");

fprintf(stdout, " first\n");

fprintf(stdout, " or other changes might not be");

fprintf(stdout, " accepted), or\n");

fprintf(stdout, " carriage return to display list of")};
n

fprintf(stdout, " field id numbers, or\n");

fprintf(stdout, "
fprintf(stdout, " this MR, or\n");
fprintf(stdout, "
fgets(fieldid, MAXINOPT, stdin);

if ((eptr = index(fieldid, '\n')) != 0)

*cptr = NULL;

end or END to abort update of");

0 to save updated MR.\n");

if (strlen(fieldid)} == 0)

{

/% display list
fprintf(stdout,
fprintf(stdout,
fprintf{stdout,
fprintf({stdout,
fprintf(stdout,
fprintf(stdout,
fprintf(stdout,
fprintf(stdout,
fprintf(stdout,
fprintf(stdout,
fprintf(stdout,
fprintf(stdout,
fprintf(stdout,
fprintf(stdout,
fprintf(stdout,
fprintf(stdout,
fprintf(stdout,
fprintf(stdout,
fprintf(stdout,
fprintf(stdout,
fprintf(stdout,
fprintf(stdout,
fprintf(stdout,
fprintf(stdout,
fprintf(stdout,
fprintf(stdout,
fprintf(stdout,
fprintf(stdout,
fprintf(stdout,
fprintf(stdout,
fprintf(stdout,
fprintf(stdout,

fprintf(stdout, "

fprintf(stdout,
fprintf(stdout,
fprintf({stdout,
fprintf(stdout,
fprintf(stdout,
fprintf(stdout,
fprintf(stdout,
fprintf({stdout,
fprintf(stdout,

of field ids ¥/

N\n") ;
"Td Field Name ")
" Id Field Name nwys

n Id Field Name ");

" 1Id Field Name\n");

|| p—— ﬂ);

n i ny)s
" et ﬂ);
noo—- \n");
" 1 Description 1 ");

" 16 Status ")

"

31 Assign to id 1");

" U Config.item 1\n");

" 2 Description 2 ");

n 17 Investig. id ")

" 32 Assign to id 2");

" 4T Config.item 2\n");

" 3 Description 3 ™);

" 18 Approved id ");

" 33 Assign to id 37);

n U8 Config.item 3\n");

" 4 Description 4§ M);

" 19 Rejected id ");

" 34 Assign to id 4");

" 49 Config.item 4\n");

" 5 Description 5 ");

" 20 Reject reas.i");

" 35 Assign to id 5");

" 50 Config.item 5\n");

" 6 Originator id ");

" 21 Reject reas.2");

m 36 Assign to id 6M);

51 Config.item 6\n");

n 7 System/proj. id");

* 22 Reject reas.3");
37 Assign to id 7");
52 Config.,item 7\n");

8 Impact 1 ")

23 Reject reas.i");
38 Assign to id 8");
53 Config.item 8\n");

9 Impact 2 ")

2T A2 =T =2 3 =3

130

}

fprintf(stdout, "
fprintf{stdout, "

fprintf(stdout,
fprintf(stdout,

24 Reject reas.5");
39 Assign to id 9");
" 54 Config.item 9\n");
"10 Impact 3 b

fprintf(stdout, " 25 Deferred id “);
fprintf(stdout, ™ 40 Target date ");
fprintf(stdout, " 55 Closed id\n");
fprintf(stdout, "11 Impact U "),
fprintf(stdout, ™ 26 Defer.reas. 1"):
fprintf(stdout, " 41 Compl. desc. 1\n");
fprintf(stdout, "12 Impact 5)

fprintf(stdout,

fprintf(stdout, "

fprintf(stdout,

fprintf(stdout, "

fprintf(stdout,
fprintf(stdout,

fprintf(stdout, "
fprintf(stdout, "

fprintf(stdout,
fprintf(stdout,
fprintf(stdout,
continue;

* 27 Defer.reas. 2");

42 Compl. desec., 2\n");
™13 Priority nys

28 Defer.reas. 3");

" 43 Compl. desc. 3\n");
"14 Request.comp.dth);

29 Defer.reas, 4");

44 Compl. desc. 4\n");
"5 Severity ™

" 30 Defer.reas. 5");

" 45 Compl. desc. 5\n");

if ((stremp(fieldid, "end")
(stremp(fieldid, "END")
/% abort update of MR #/
{
strepy(rmemd, "rm ");
strcat(rmemd, mradmindir);
strncat(rmemd, "/modreq/p.
streat(rmemd, mrnum);
if (system(rmemd) != 0)
{
fprintf(stderr, "Remove

u n
nou
o o
[N

", 10);

p-file failed.\n");

fprintf(stdout, "MR System error during abort.\n");

fprintf(stdout, "Please

notify MR System");

fprintf(stdout, " Administrator.\n");

exit(-1);
}
endupdate = 1;
fprintf(stdout, "\n");

fprintf(stdout, "Update of MR");
fprintf(stdout, " %s aborted by user.\n", mrnum);

fprintf(stdout, "\n");
break;

}

if (stremp(fieldid, "0") ==

0)

/% write structure to hold.mrrec file #/

131

132

fprintf(stdout, "Saving MR — please wait.\n");

strepy(hmrrec_file, mradmindir);

strcat(hmrrec_file, "/hold.mrrec");

if (openmr(hmrrec_file, "w") == =1}

{
fprintf(stdout, "Please notify MR System");
fprintf(stdout, " Administrator.\n");
exit(=1);

}

hmrrecfp mrip;

mrrecptr mrrec;

for (1 = 0; 1 < NUMKW; i++)

{
fputs(mrrecptr =-> keyword, hmrrecfp);
pute(':', hmrrecfp);
fputs(mrrecptr -> value, hmrrecfp);
pute('\n', hmrrecfp);

non

mrrecptr++;
}
if (closemr(hmrreecfp) == =1)
{

fprintf(stdout, "MR sys. error —==");
fprintf(stdout, "can't close hold mrrec_file.\n");
fprintf(stdout, "Please notify MR System");
fprintf(stdout, " Administrator.\n");
exit(=1);

}

/% copy hold.mrrec to file named mrnum as required %/
/% for delta */
strepy(epemd, "ecp ");
streat(cpemd, mradmindir);
strncat(cpemd, "/hold.mrrec ", 12);
strcat(epemd, mrnum);
if (system(cpemd) != 0)
{
fprintf(stderr, "Copy hold.mrrec to mrnum failed.\n"};
fprintf(stdout, "Please notify MR System");
fprintf(stdout, " Administrator.\n");
exit(=1);
}

/% call SCCS delta function to write a delta to this #*/
/% MR SCCS file ®/
strncpy(funcargQ, "delta", 6);

funcargs(0] = funcarg0O;

strnepy(funcargl, "-s", 3);

funcargs(1] = funcargl;

strnepy(funcarg2, "-y[I", 5);

funcargs(2] = funcarg2;

133

mrdirlen = strlen(mradmindir);

strnepy(funcarg3, mradmindir, mrdirlen);

strncat(funcarg3, "/modreq/s.", 10);

streat(funcarg3, mrnum);

funcargs{3] = funcarg3;

funcargs[4] = NULL;

if (callsces(funcargs) != 0)

{
fprintf(stdout, "MR System error -=");
fprintf{stdout, " Modification Request not updated.\n");
fprintf(stdout, "Please notify MR System");
fprintf(stdout, " Administrator.\n");
exit(=1);

}

endupdate = 1;

fprintf(stdout, "\n");

fprintf(stdout, "MR Updated\n");

fprintf(stdout, "\n");

break;

}

/% field id was entered *®/
/* convert fieldid from string to integer #/
fldidint = atoi(fieldid);

/% check for valid field id ¥/
if ((fldidint >= 1) && (fldidint <= 55))
{
keywdid = fldidint - 1;
nodisplay = 1;
}
else
fprintf(stdout, "Invalid fieldid %d\n", fldidint);
}

if (endupdate == 1)
break;

/% get new value ¥#/
fprintf(stdout, "Enter new value for %s,\n", keywdin[keywdidl);

fprintf(stdout, " or\n");

fprintf(stdout, " DELETE to delete current value,\n");
fprintf(stdout, " or\a®);

fprintf(stdout, " carriage return to enter a");

fprintf(stdout, " new field id.\n");
fprintf(stdout, "Please keep entry to max. of 50 chars.\n");
forintflatdouty MiwwsssssnTavee vonnas s svias ao Josvansssadr)i
fprintf(stdout, "..veeee..5\0");
fgets(newval, MAXVAL, stdin);
if ((eptr = index(newval, '\n')) != 0)

®cptr = NULL;

134

/% check if user wants to enter new field id #/
if (strlen{newval) == 0)
continue;

/* check that required field is not being deleted */
if (stremp(newval, "DELETE") == 0)

{
if ({(fldidint == 1) }} /% descl ®/
(fldidint == 6) || /% origid ¥/
(fldidint == 7) || /% sysprojid %/
(fldidint == 16)) /% status %/
{
fprintf(stdout, "%s is required field", keywdin[keywdid]);
fprintf(stdout, " and cannot be deleted.\n");
continue;
}
}

/* check that status is not being changed to new */

if ((fldidint == 16) && (stremp(newval, ™n") == 0))

{
fprintf(stdout, "Status cannot be changed to 'new'.\n");
continue;

}

/% check if assigning for implementation #*/
/% if so, store assign-to ids in MR and ¥/
/%* authorize for update of affected CIs #/
if ((fldidint == 16)
&& (strcmp(newval, "g") == 0))
{
idend = 0;
while (idend == 0)
{
fprintf(stdout, "Enter id of person to whom MR is");
fprintf(stdout, " assigned for implementation,\n%");
fprintf(stdout, " or\n"};
fprintf(stdout, " carriage return if no more ids");
fprintf(stdout, " to be entered.\n");
fgets(loginid, MAXINOPT, stdin);
if ((eptr = index(loginid, '\n')) != Q)
#cptr = NULL;
if (strlen(loginid} == Q)
idend = 1;
else
{
/* store assign-to id in MR #/
idstored = 03
for (j = 1; j € 103 j++)
{

135

charj[0] = j + '0';
charj[1] = "\0';
strepy(asgnto, "asgnto");
strcat (asgnto, charj);
streat(asgnto, "\O");
mrrecptr = mrrec;

for (1 = 0; 1 < NUMKW; i++)

{
if (stremp(mrrecptr -> keyword, asgnto) == 0)
{
if (stremp(mrrecptr => value, "\0") == 0)
{
strnepy(mrrecptr -> value, loginid, MAXVAL);
idstored = 1;
}
break;
}
mrrecptr++;
}
if (idstored == 1)
break;
}
if (idstored == 0)
{

fprintf(stdout, "Cannot store more assign-to");
fprintf(stdout, " ids in MR.\n");
idend = 1;
}
}
}

/% store all assign-to ids in table ¥/
for (j = 13 J < 107 j++)
{
charj[0] = j + '0';
charjf1] = "\0';
strepy(asgnto, "asgnto");
strecat(asgnto, charj);
strcat(asgnto, "\O");
mrrecptr = mrrec;
for (i = 03 i < NUMKW; i++)
{
if (stremp(mrrecptr -> keyword, asgnto) == 0)
{
strepy(asgntoid[j=1], mrrecptr => value);
}
mrrecptr++;
}
}

/% get ids of CIs affected by MR and */

136

/% authorize CIs for update by assign-to ids ¥*/
idend = 03
while (idend == 0)

{

fprintf(stdout, "Enter name of CI affected by");
fprintf(stdout, " implementation of this MR,\n");
fprintf(stdout, " or\n");
fprintf(stdout, " carriage return if no more");
fprintf(stdout, ™ CIs to be entered.\n");
fgets(ciid, MAXINOPT, stdin);
if ((eptr = index(ciid, '\n')) != 0)

¥cptr = NULL;
if (strlen(eiid) == 0)

idend = 1;
else
{
idstored = 0;
for (j = 15 3 € 105 J++)
{
charjl0] = j + '0';
charjl1] = "\0';

strepy(ei, "ei");

streat(ei, charj};

strcat(ei, ™\0");

mrrecptr = mrrec;

for (i = 0; i < NUMKW; i++)

{
if (stremp(mrrecptr -> keyword, ci) == Q)
{

if (strcmp(mrrecptr => value, "\0") == 0)

{
strncpy(mrrecptr => value, ciid, MAXVAL);
idstored = 1;

/% authorize CI for update %/
for (k = 0; k < 9; k++)
{
if (stremp(asgntoid(k], ™\o0m) != 0)
{
if (authupdt(asgntoid[k], ciid, "a") == =1)
{
fprintf(stdout, "Authorization failed");
fprintf(stdout, " for assign-to");:
fprintf(stdout, " %s\n", asgntoid(k]);
fprintf(stdout, "Please notify");
fprintf(stdout, "™ MR System");
fprintf(stdout, " Administrator.\n");
}
else
{
fprintf(stdout, "Authorization completed");

137

fprintf(stdout, " for assign-to");
fprintf(stdout, ™ %s\n", asgntoid[k]);
}
}
}
}
break;
}
mrrecptr++;
}
if (idstored == 1)
break;
}
}
if (idstored == 0)
{

fprintf(stdout, "Cannot store more CI ids in MR.\n");

idend = 13
§
}

}
/* check if changing status to completed or closed #/
/* if so, remove CI update authorization L4
if ((fldidint == 16) &&

((strcmp(newval, "m") == 0) || (stremp(newval, "e") == 0)))
{

/% changing status to completed or closed ¥/

/% store assign-to ids in table %/
for (j = 1; j < 103 j++)
{
charjl0] = j + '0';
charj[1] "NO';
strepy(asgnto, "asgnto");
strcat(asgnto, charj);
strecat (asgnto, "\0");
mrrecptr = mrrec:
for (1 = 0; 1 < NUMKW;: i++)

{
if (strcmp(mrrecptr => keyword, asgnto) == 0)
i
strepy(asgntoid[j-1]1, mrrecptr -> value);
break:
}
mrrecptr++;
}

}

/% determine what affected CIs are specified in MR #/

138

/%* and remove authorization for assign=to ids */
for (j = 13 j € 105 j+=+)
{
charj[0] = j + '0';
charj[1] = '\0';
strepy(ei, "ei");
streat(ei, charj);
strecat(ci, "\O");
mrrecptr = mrrec;
for (i = 0; i < NUMKW; i++)
{
if (stremp(mrrecptr => keyword, e¢i) == 0)
{
if (strcmp(mrrecptr => value, "\0") !z 0)
{
strepy(eiid, mrrecptr => value);
for (k = 0; k < 9; k++)
{
if (stremp(asgntoid(kl, "\0o") != Q)
{
if (authupdt(asgntoid(k], eciid, "e") == =1)
{
fprintf(stdout, "De-authorization failed");
fprintf{stdout, " for assign=-to"};
fprintf(stdout, " %s", asgntoidl[kl);
fprintf{stdout, " for CI named");
fprintf(stdout, " %s\n", ciid);
fprintf(stdout, "Please notify MR System");
fprintf{stdout, " Administrator.\n");
}
else
{
fprintf(stdout, "De-authorization");
fprintf(stdout, " completed");
fprintf(stdout, " for assign-to");
fprintf(stdout, " %s", asgntoid(k]);
fprintf(stdout, " for CI named");
fprintf(stdout, Zs\n", ciid);
}
}

}
}
break;
}
mrrecptr++;
}
}
}

/%* make change to field ¥/
mrreeptr = mrrec;

139

for (1 = 0; i < NUMKW; i++)
{
if (stremp(mrrecptr => keyword, keywdin[keywdid]) == 0)
{
if (stremp(newval, "DELETE") == 0)

{
/% make field null ¥/
strncepy(mrrecptr => value, "\0O", MAXVAL);
break;
}
else
{
/% move in new value */
strnepy(mrrecptr -> value, newval, MAXVAL);
break;
}
}
mrrecptr++;

}

/% if changing status, update status date */

if ((fldidint == 16) && (stremp(newval, "i") == 0})
/* assigned for investigation #*/
{
mrrecptr = mrrec;
for (1 = 0; i < NUMKW; i++)
{
if (strcmp(mrrecptr -> keyword, "invdt") == 0)
{
strnepy(mrrecptr => value, currdate, MAXVAL);
break;
}
mrrecptr++;
}
}
if ((fldidint == 16) && (strcmp(newval, "a") == 0))
/% approved for implementation ¥/
{
mrrecptr = mrrec;
for (1 = 0; i < NUMKW; i++)
{
if (stremp(mrrecptr => keyword, "appdt") == 0)
{
strnepy(mrrecptr => value, currdate, MAXVAL):;
break;
}
mrrecptr++;
}

}

if ((fldidint == 16) && (strcmp{newval, "r") == 0))
/* rejected ¥/
{

mrrecptr = mrrec;

for (i = 03 1 < NUMKW; i++)

{
if (stremp(mrrecptr => keyword, "rejdt") == 0)
{
strnepy(mrrecptr => value, currdate, MAXVAL);
break;
}
mrrecptr++;
}

}
if ((fldidint == 16) && (stremp(newval, "d") 0))
/% deferred ¥/
{
mrrecptr = mrrec;
for (i = 03 i < NUMKW; i++)

{
if (strcmp(mrrecptr => keyword, "defdt") == 0)
{
strncpy(mrrecptr => value, currdate, MAXVAL);
break;
}
mrrecptr++;
}

}

if ((fldidint == 16) && {(strcemp(newval, "g") == 0))
/% assigned for implementation %/

{
mrrecptr = mrrec;
for (i = 03 i ¢ NUMKW; i++)
{
if (stremp(mrrecptr -> keyword, "asgndt") =z 0)
{
stronepy(mrrecptr => value, currdate, MAXVAL);
break;
}
mrrecpbire+;
}
}

if ((fldidint == 16) && (stremp(newval, "m") ==z 0))
/% implementation complete */
{

mrrecptr = mrrec;
for (1 = 05 1 < NUMKW; i++)

140

141

{
if (strcmp(mrrecptr -> keyword, "compdt") == 0)

{
strnepy(mrrecptr -> value, currdate, MAXVAL);

break;
}
mrrecptr++;
}
}
if ((fldidint == 16) && (strcmp(newval, "c") == 0))
/% closed ¥/
{
mrrecptr = mrrec;
for (i = 03 i < NUMKW; i++)

{
if (stremp(mrrecptr => keyword, "closdt") == Q)

{
strnepy(mrrecptr -> value, currdate, MAXVAL);
break;
1
mrrecptr++;
}
}
fprintf(stdout, "Change accepted.\n");
}
}
else
{
fprintf(stdout, "\n");
fprintf(stdout, "MR does not exist.\n");
fprintf(stdout, "\n");

}
}
}
/IIIII!I**!******‘*i*ilil!l**i*****Iliiiiii*iiii!ﬂil!*!*i*iil!ii*!ll*l/
/® end updatemr.c */

JERRRARRFARRRARERERR XA AR FRRERERRRR AR R AR RN AR SRR AR R AR AR R R RN RN ER

142

JERREEERERRNARERNEAREERF AR AR R R RRARERRRIRRERRRRRRRE RN RN RN RN BN RRRRNRRRE/

/% valdatmr.c — validate Modification Requests L4
JERRER AT T2 U000 0T 00000 000000000 06000 00006 0TI

#include <stdio.h>
#include <errno.h>
#include <strings.h>
#include "mr.global.defs"
#include "openmr"
#include "closemr"
#include "callsces"
#include "checkmr"
#include "getmr"

#include "pathmr"

main(arge,argv)

int argc;
char *argv([];

{
FILE #*valnumfp;

char *eptr:

char mrnum[MAXVAL];

char mrnumlist[MAXVAL];
char valnum file([50];
char fileflag[MAXINOPT];

int eofflag;

fprintf(stdout, "\n");
fprintf(stdout, "\n");
fprintf({stdout, "\n"):
fprintf(stdout, "\n");
fprintf(stdout, "\n");
fprintf(stdout, "\n");
fprintf(stdout, ™\n"):
fprintf(stdout, "\n");
fprintf(stdout, "\n");
f'pr'intf‘(stdout ’ Ni!il*!lll!Iil***i’*llii!lllllI‘l*il!!lllli!!l!i\nﬂ) :
fprintf(stdout, "This routine validates Modification Request.\n");
fprintf(stdout, "\n"};
for (;3;) /% this causes an infinite loop */
{
strnepy(mrnumlist, "\0", MAXVAL);
fprintf(stdout, "Do you want to read MR numbers from a file?\n");
fprintf(stdout, "Enter y or yes to read numbers from a file,\n");
fprintf(stdout, " or\n");
fprintf(stdout, " n or no to enter numbers from the");

143

fprintf(stdout, " terminal,\n");

fprintf(stdout, " or\n");

fprintf(stdout, " carriage return to exit");
fprintf(stdout, " from validate function.\n");

fprintf(stdout, "\n");

fgets(fileflag, MAXINOPT, stdin);

if ((eptr = index(fileflag, "\n'}) != 0)
®aptr = NULL;

if (strlen(fileflag) == 0)

{
fprintf(stdout, "Validate function terminated by user.\n");
exit(0);

}

if ((stremp(fileflag, "y") == 0) }|

{stremp(fileflag, "yes") == 0))
{

fprintf(stdout, "Enter filename of file containing");
fprintf(stdout, " MR numbers,\n");

fprintf(stdout, " or\n");

fprintf(stdout, " carriage return to restart validate");
fprintf(stdout, "™ function.\n");

fgets(valnum file, MAXINOPT, stdin);

if ((eptr = index(valnum file, '\n")) != 0)

®#optr = NULL;

/% check if valnum file was entered #*/
if (strlen(valnum file) != 0)
{

/* open valnum file */

if (openmr(valnum file, "r") == =1)

{
fprintf(stdout, "Can't open %s file.\n", valnum file);
fprintf(stdout, "Check to be sure it exists.\n");
continue;

}

valnumfp = mrfp;

/% read numbers from file */
eofflag = 03
while (eofflag == Q)
{
if (fgets(mrnum, MAXFIELD, valnumfp) != NULL)
{
if ((eptr = index{mrnum, '\n')) != Q)
®cptr = NULL;
fprintf(stdout, "File contains mrnum %s\n", mrnum);
strcat(mrnumlist, mrnum);
strcat(mrnumlist, " ");
}
else

}
}

144

eofflag = 1;
}
}
else
continue;
}
else
{

}

/% read numbers from terminal #*/
fprintf(stdout, "Enter mrnum or carriage return.\n");
fgets(mrnum, MAXFIELD, stdin);
if ((eptr = index{mrnum, '\n')) != Q)
*cptr = NULL;
while (strlen(mrnum) != 0)
{
streat(mrnumlist, mroum):;
strecat(mrnumlist, ™ ");
fprintf(stdout, "Enter another mrnum or carriage return.\n");
fgets(mrnum, MAXFIELD, stdin);
if ((eptr = index(mrnum, '\n'})) != Q)
®cptr = NULL;
}

strecat{(mrnumlist, "\n");

/% call checkmr to check if numbers exist ¥/
if {(checkmr(mrnumlist) == -1)

fprintf(stdout, "Modification Request(s) not found.\n");

else

fprintf(stdout, "All Modification Requests exist.\n");

/!*i!ill!*i!i!ii!!!I*i!lil!llll!lill!l*!!ii!llll!i*!*illiiil**l*liliil/

end valdatmr.c L4
/Ilillil*!liiliiiii*iiil!liii!!*iliIl!!!*i*!*il!****l*i!l*l*!**llii!l*[

Vi

A SYSTEM OF AUTOMATED TOOLS
TC SUPPORT CONTROL OF SOFTWARE DEVELOPMENT
THROUGH SOFTWARE CONFIGURATION MANAGEMENT

by

MARTHA GEIGER WALSH

B. S., Muhlenberg College, 1969

AN ABSTRACT OF A MASTER'S REPORT

submitted in partial fulfillment of the

requirements for the degree

MASTER OF SCIENCE

Department of Computer Science

KANSAS STATE UNIVERSITY
Manhattan, Kansas

1985

For most software development efforts to be considered successful,
certain requirements must be met, These product and project criteria
include wuser satisfaction with product integrity and mahagement
objectives to produce the product on time and within budget. In order
to meet these requirements, software must be developed in a controlled
environment. The discipline called Software Configuration Management

can be applied to support controlled development of software.

This report documents a project whose objective was to define,
design, implement and document a system of automated tools that would
support the control of software development through the application of
certaln principles of Software Configuration Management, specifically
Configuration Control and Configuration Status Accounting. The report
includes a review of current literature on Software Configuration
Management, specifically relating to control of software development,
and a discussion of the requirements, design and implementation of the

system of automated tools developed in the project.

The documented automated tools together form a Modification Request
System. The functions available include creation of Modification
Requests (MRs), update of MRs, selection of certain MRs based on user
supplied criteria, 1listing of MRs, checking for valid MR numbers and
authorization to update specific configuration items. Functions are
executed by selection from a menu displayed by a supervisor program,

which presents a simple interface for the user.

