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Abstract 

Sweet sorghum (Sorghum bicolor L. Moench) is an important bioenergy crop. There is a 

wide array of genetic diversity in sweet sorghum germplasm collections. However, information 

on traits associated with sugar yield, optimum harvesting time for maximum sugar yield, effects 

of abiotic stresses on sugar yield is scarce. The objectives of the present study were: to identify 

traits that are associated with sugar yield, to determine the optimum harvesting time for 

maximum sugar yield and to understand the physiological responses of different sweet sorghum 

genotypes to drought and high temperature. In order to meet these objectives, five independent 

field and greenhouse studies were conducted. Field experiments were conducted using 280 sweet 

sorghum germplasm and were evaluated for 2 years. From this study, 30 genotypes representing 

high and low sugar yielders were selected for the subsequent experiment. We observed a 

significant variation in physiological, morphological and sugar yield traits associated with 

biofuel production. In the selection experiment, investigations on the morphological, 

physiological attributes helped to identify those characters which influence or limit sugar yield in 

the sweet sorghum. Another field study was conducted to optimize the harvesting time for 

obtaining highest sugar and juice yields in sweet sorghum. Sweet sorghum variety M81E was 

harvested at ten growth stages. Our results suggest that the optimum time for harvesting of sweet 

sorghum cultivar M81E is between milk and hard dough stages when highest sugar yield was 

observed. Studies on different levels of water stress were studied under greenhouse conditions. 

Four sweet sorghum genotypes (Awanlek, Smith, Tracy and Wray) were subjected to three water 

stress treatments (100% pot capacity (PC); 70% PC and 30% PC) for 20 days at early seed filling 

(Milk) stage. The results showed that genotypes differed significantly for all growth and yield, 



  

biochemical and physiological traits. Severe water stress significantly decreased juice and sugar 

yields by decreasing net photosynthetic rate, transpiration rate, stomatal conductance and sucrose 

content in the stem juice. Genotypes Tracy and Wray produced significantly highest brix, stem 

fresh weight, juice and sugar yield under both irrigated and water stress conditions. In another 

greenhouse study, we quantified the effects of drought, high temperature, and their combinations 

on growth, physiology and yield of sweet sorghum genotypes. The same four genotypes above 

were subjected to four treatments, T1 - control, T2 - drought stress, T3 - high temperature stress 

and T4 - combination of drought and high temperature for 16 days after anthesis. The result 

showed that significant difference was observed for growth and yield traits, physiological traits 

and non-reducing and total sugar content in juice for genotypes and treatments. Among the 

genotypes Tracy recorded higher juice and sugar yield. Among the various treatments, 

combination of drought and high temperature was found to be more deleterious in reducing most 

of the biofuel traits followed by drought and high temperature stress. The above studies gave 

significant findings with regards to the identification of superior sweet sorghum germplasm, their 

tolerance capacity to different abiotic stresses, which allows better selection for the use of 

bioenergy production. 
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Abstract 

Sweet sorghum (Sorghum bicolor L. Moench) is an important bioenergy crop. There is a 

wide array of genetic diversity in sweet sorghum germplasm collections. However, information 

on traits associated with sugar yield, optimum harvesting time for maximum sugar yield, effects 

of abiotic stresses on sugar yield is scarce. The objectives of the present study were: to identify 

traits that are associated with sugar yield, to determine the optimum harvesting time for 

maximum sugar yield and to understand the physiological responses of different sweet sorghum 

genotypes to drought and high temperature. In order to meet these objectives, five independent 

field and greenhouse studies were conducted. Field experiments were conducted using 280 sweet 

sorghum germplasm and were evaluated for 2 years. From this study, 30 genotypes representing 

high and low sugar yielders were selected for the subsequent experiment. We observed a 

significant variation in physiological, morphological and sugar yield traits associated with 

biofuel production. In the selection experiment, investigations on the morphological, 

physiological attributes helped to identify those characters which influence or limit sugar yield in 

the sweet sorghum. Another field study was conducted to optimize the harvesting time for 

obtaining highest sugar and juice yields in sweet sorghum. Sweet sorghum variety M81E was 

harvested at ten growth stages. Our results suggest that the optimum time for harvesting of sweet 

sorghum cultivar M81E is between milk and hard dough stages when highest sugar yield was 

observed. Studies on different levels of water stress were studied under greenhouse conditions. 

Four sweet sorghum genotypes (Awanlek, Smith, Tracy and Wray) were subjected to three water 

stress treatments (100% pot capacity (PC); 70% PC and 30% PC) for 20 days at early seed filling 

(Milk) stage. The results showed that genotypes differed significantly for all growth and yield, 



  

biochemical and physiological traits. Severe water stress significantly decreased juice and sugar 

yields by decreasing net photosynthetic rate, transpiration rate, stomatal conductance and sucrose 

content in the stem juice. Genotypes Tracy and Wray produced significantly highest brix, stem 

fresh weight, juice and sugar yield under both irrigated and water stress conditions. In another 

greenhouse study, we quantified the effects of drought, high temperature, and their combinations 

on growth, physiology and yield of sweet sorghum genotypes. The same four genotypes above 

were subjected to four treatments, T1 - control, T2 - drought stress, T3 - high temperature stress, 

and T4 - combination of drought and high temperature, for 16 days after anthesis. The result 

showed that significant difference was observed for growth and yield traits, physiological traits 

and non-reducing and total sugar content in juice for genotypes and treatments. Among the 

genotypes Tracy recorded higher juice and sugar yield. Among the various treatments, 

combination of drought and high temperature was found to be more deleterious in reducing most 

of the biofuel traits followed by drought and high temperature stress. The above studies gave 

significant findings with regards to the identification of superior sweet sorghum germplasm, their 

tolerance capacity to different abiotic stresses, which allows better selection for the use of 

bioenergy production. 
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Chapter 1 - Review of literature 

 General Introduction 

The production of biofuels (largely ethanol) in the world grew by 13.8% in 2010, and 

accounted for 0.5% of global primary energy consumption. Today, biofuels represent 3% of the 

global road transport fuel supply and are expected to account for as much as 9% by 2050 

(Calvino and Messing, 2011). Currently, Brazil and the United States are the world leaders in 

ethanol production (Mussatto et al., 2010). In Brazil, ethanol is fermented from sucrose that 

accumulates in the stems of sugarcane (Saccharum officinarum L.), whereas in the US it is 

produced from Maize (Zea mays L.), which accumulates about 85% starch in its seeds. Although 

the price of oil could play a significant role in influencing the expansion of biofuels, their 

production costs will also depend on input costs. Thus, reductions in costs are closely tied to the 

prices of feedstock commodities. Indeed, for conventional biofuels today (first-generation 

biofuels), feedstock account for 45–70% of total production costs (Calvino and Messing, 2011). 

This is especially important for sugarcane-based and corn-based ethanol, where both crops are 

cultivated under high input conditions requiring significant amounts of water and fertilizers.  

Sweet Sorghum (Sorghum bicolor (L.) Moench) is considered as an important energy crop 

for the production of bioethanol due to high biomass, drought tolerance, relatively low input 

requirements and ability to grow under a wide range of environmental conditions (Steduto et al., 

1997; Mastrorilli et al., 1999). Furthermore, in contrast to maize, sweet sorghum accumulate 

large amount of fermentable sugars in stems (Gnansounou et al., 2005; Vries et al., 2010) which 

can be easily fermented for ethanol production (House et al., 2000). Despite all the agronomic 

advantages of sweet sorghum as a bioenergy crop, little scientific effort has been directed in the 

past toward the elucidation of sweet sorghum traits relevant to biofuel production. 
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There are many cultivars of sweet sorghum distributed throughout the world, providing a 

diverse genetic base from which to develop regionally specific, highly productive cultivars 

(Audilakshmi et al., 2010). Traits like plant height, stem diameter, green biomass, stem sugar 

content, and stem juice extractability are the major contributors for sweet sorghum‟s economic 

importance (Almodares et al., 2006; Almodares et al., 2008). However, these traits are 

quantitative and polygenic inheritance in nature and are complex to be manipulated directly in 

breeding procedure (Zou et al., 2011). Therefore, to successfully improve these complex traits, 

they need to be dissected into smaller morphological, physiological and yield components, which 

could be easily analyzed and evaluated. Previous studies have suggested that much variability 

exists in juice quality, sugar content, and juice yield among the U.S sweet sorghum collections 

(Ali et al., 2008; Murray et al., 2008a; Murray et al., 2009; Makanda et al., 2009). However, 

information on the extent of variation in growth (plant height and stem diameter), physiology 

(chlorophyll content and Fv/Fm) and components of stem sugar ( brix, juice yield and stem fresh 

weight) among sweet sorghum germplasm are limited. Furthermore, correlations between the 

traits are of great importance in selection process for successful breeding programs. There are no 

studies that showed direct correlation between physiological traits and sugar yield. 

Also, the relationships between morpho-physiological and stem sugar yield traits are not 

clearly understood. Sugar yield is a quantitative trait, which is the resultant of various traits 

contributing together during the crop growth, which are interdependent in their development. 

The inter-relationship between traits can be studied by principal component analysis (PCA), a 

powerful statistical tool by which the complex traits can be analyzed. 

 Sweet sorghum harvest plays a significant role in determining juice and sugar yield. The 

juice sugar yield depends on the plant age of development (Sipos et al., 2009). Sucrose starts to 
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accumulate in the stem during inflorescence and at later stages competition occurs for 

carbohydrates between stem and developing grain. At maturity the carbohydrates mobilized from 

stem and leaves to grains. Sucrose content and grain yield are indicators of how assimilates are 

partitioned between two sinks (grain and stem). Hence, it is important to determine and optimize 

the stage of development that provides maximum yield potential for juice and sugar production. 

  Sorghum is mostly grown under rainfed conditions. Although sorghum is relatively 

tolerant to individual effects of drought and high temperature, the stress response depends upon 

the intensity, rate and duration of exposure and the crop growth stages. The physiology, growth, 

and development of sweet sorghum are different from grain sorghum due to greater need for 

carbohydrate accumulation in the stem versus the grain sorghum with seeds. The potentiality of 

sweet sorghum to produce juice for sugar has been exploited to little extent during sensitive 

stages of crop. Since sweet sorghum exhibits drought resistant C4 metabolism, emerging studies 

reveal inability of the crop to tolerate the dual effect of drought and increased temperatures. The 

impact of water stress (drought), high temperature, and its combination during reproductive 

stages of crop development are not clearly understood and needs investigation. 

The objectives of the present study were to (1) quantify genetic variability for plant height, 

stem fresh weight, brix, juice yield and sugar yield in sweet sorghum germplasm; and to 

identify potential drought tolerant sweet sorghum genotypes, (2) determine the optimum harvest 

time for obtaining maximum juice yield, (3) obtain information on the various growth and 

physiological traits influencing sugar yield, (4) quantify effects of water stress on brix, juice and 

sugar yield, and (5) quantify effects of drought, high temperature and its combination on juice 

and sugar yield characteristics. 
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 Why sweet sorghum? 

The use of sweet sorghum to provide liquid fuels for the transport sector is not a new concept 

(Rothman et al., 1983). However, the economics of liquid biofuel production are still hotly 

debated (Bauen, 2000), despite 25 years of large-scale experience in Brazil and USA. According 

to Sen (1989), Saccharomyces cerevisia will convert 1.00 g glucose into 0.51 g ethanol and   

0.49 g CO2 following about a dozen enzymatic steps of the Embden-Meyerhof-Parnas pathway. 

However, under commercial conditions, the „loss‟ of carbon to biomass production is estimated 

at 5% of the sugar mass and a further 7.5% is estimated to be lost as a result of the production of 

other chemicals (fuel oils, glycerine, acetic acid, esters, etc.). In addition, 1.5% is lost during 

distillation (Energy Authority of NSW, 1986), and a further 3% is lost during the juice extraction 

process, either in the bagasse or in the filter mud. Finally 48.9% is lost as CO2. Therefore, the 

total amount of sugar that ends up as ethanol on a mass basis is [100-(48.9+3+1.5+7.5+5%)] = 

34.1%. The specific gravity of ethanol is 0.789; therefore, 1 g of sugar in sweet sorghum stems 

will produce 0.432 cc ethanol (0.341/0.789), if used directly for ethanol production. Given that 

sweet sorghum may be expected to produce 12% sugars (stem fresh weight basis) and a yield of 

60 t stems ha
-1

, an ethanol yield of (60*0.12*0.341 = 2.46 t EtOH) = 3100 litres (819 gallons)  

ha
-1

 will be produced. Sweet sorghum derived ethanol would be competitive and cheaper than 

the imported cost of gasoline and the ethanol has a greater value on the world markets. It was 

expected that the market for biologically derived ethanol to expand from today‟s level of 

production as discussed below. In 1998, a total of 8.6 billion gallons of ethanol were produced 

globally, of which 60% (5 billion gallons) was derived from sugar crops i.e. sugarcane and sugar 

beet. A further 33% (2.8 billion gallons) was produced from grain crops, and the remaining 7% 

(0.6 billion gallons) from synthetic sources, primarily natural gas. In the U.S., corn is suggested 
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as a prime candidate for biofuel production, but more ethanol can be produced from an acre of 

sweet sorghum than an acre of corn. The total ethanol production in 2006 was estimated at about 

5.4 billion gallons which is equivalent to 3% of the total U.S. gasoline consumption; to raise 

ethanol use to 10% in gasoline nationwide would require almost the nation‟s entire corn crop. 

Hence there is a great scope for biofuel industry to produce ethanol in near future; at that time, 

technology for maximizing sweet sorghum stem growth would be of immense use.  

 Sweet Sorghum is a valuable source of biofuel 

 

The greatest features to use of sorghum for fuel is the presence of two different traits: sweet 

sorghum is an attractive bioenergy crop that would allow significant increases in the sugar 

accumulation in the stems and brown midrib (bmr) which results in reduced lignin levels for 

biofuel production.  

Sweet sorghum is one of the many types of cultivated sorghum and is highly adaptable 

cereal crop, which when coupled with its large genetic variability, contributes to its ability to 

rapidly provide efficient biofuel production from grains, sugar-based and biomass feedstock. The 

sweet sorghum stalk contains approximately equal quantities of soluble (glucose, fructose and 

sucrose) and insoluble carbohydrates (cellulose and hemicellulose) (Jasberg et al., 1983). Their 

juice contains a great quantity of 13-20 per cent total fermentable sugars that can be easily 

fermented and thus provides a better source of carbohydrates for the production of fuel ethanol 

(Woods, 2001). Sweet sorghum provides high biomass yields, which is essential for good 

economic and energy returns. However, unless key biomass “quality” thresholds are attained, 

sweet sorghum may be too difficult to process without major modifications. These key “quality” 

parameters are polarity, brix, sucrose purity and preparation index. Under good conditions, sweet 
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sorghum can outperform corn in terms of total biomass production over short periods. Sweet 

sorghum‟s rapid growth and ability to reach maturity in 3 to 5 months, with photo-insensitive 

character are favorable for its production. High-yielding varieties have now been developed that 

are capable of producing well over 60 tonnes per ha (fresh weight of above-ground biomass) in 5 

months under good agronomic conditions. It is among the most efficient crops requiring less 

fertilizer, among the crops most tolerant of drought (Mastrorilli et al., 1999), and can be 

successfully grown in semi-arid regions, making it an efficient user of water (310 kg of water/kg 

of dry matter) under those circumstances. It has a strong root system and the epidermis of the 

root is covered by a layer of heavy disilicic till the root grows to ripening and thus makes it still 

has an enough mechanical intensity during the drought period to prevent the root system to 

collapse (Li Dajue, 1997). It was observed that although photosynthesis was slightly affected by 

drought, sweet sorghum juice quality was not affected (Massaci et al., 1996). 

Sweet sorghum is a kind of crop with two sinks. Stalk and panicle grew together from the 

stem elongation in sweet sorghum. Stalk was the main centre of growth but panicle was the 

secondary one from the elongation to the heading. The panicle became the main centre of growth 

but stalk was the secondary one after heading. The two kinds of growth matched side by side 

from the elongation to the maturity at which time the amount of the accumulation of dry matter 

in stalk and panicle rose to the maximum value simultaneously. Therefore, sweet sorghum was in 

the state of simultaneous growth of the vegetative and reproductive organs, which lasted above 

80 days that accounted for 60% of whole duration of development. Because of the longer time of 

the growth of stalk, the higher rate of distribution of dry matter to stalk, the final ratio of dry 

matter among the different organs was stalk> panicle > leaf> sheath (Djanaguiraman, et al., 

2005).  
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Source leaves are the primary site of photoassimilate production, but the plant faces a 

dilemma with respect to allocation choices for photoassimilate. Many tightly regulated metabolic 

steps control the accessibility of photosynthetically fixed carbon to the phloem transport system. 

Control at the source end is governed largely by rates of photosynthetic incorporation of CO2. A 

typical higher plant has a myriad of sink tissues that depend on the source leaves for 

photoassimilates. Recent studies indicated that reproductive sinks represent only a small 

proportion of potential sinks on a plant (Ma Hongtu and Hua Xiuying, 1986). Hence, there is a 

scope to improve the vegetative sink (stalk in sweet sorghum). The vegetative sinks, have the 

unique property of being able to act both as sinks for assimilates and as sources of assimilates for 

phloem transport, depending on the carbon needs of the plant at a particular growth phase, unlike 

the terminal sinks (seed) act as sinks only for assimilates. Carbon partitioned to terminal sinks is 

unavailable for remobilization out of those sinks. Studies indicate that assimilates in the stems 

start accumulating during their development of the inflorescence. During this period there is no 

competition between grain development and sugar accumulation. Before anthesis, stem becomes 

the preferential sink, accumulates more sugar at the expense of growth of apical internodes 

(Djanaguiraman et al., 2005) and foliar spray of nutrients and PGRs during peak vegetative stage 

and after anthesis enhanced the source activity enabling the elongation of stem and sugar yield. 

The economic value of sweet sorghum is in the stem and not in the grain as in the grain 

sorghum. Hence, if photosynthates used in grain formation and development could be diverted 

into the stems, stem yield and juice quality may be improved. Sweet sorghum stores starch as the 

principle nonstructural carbohydrate in grain, but primarily stores sucrose in the stems (Miller 

and Creelman, 1980). It is speculated that the smaller grain yield in sweet sorghum may be due 

to competition between elongating stems and preanthesis head development (Willey and 
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Basiime, 1973). In sweet sorghum, the sugar mainly sucrose, is accumulated in large amounts in 

the stem during the development of the inflorescence, when the panicle has formed and is 

emerging from the boot. During this period there is no competition between grain development 

and sugar accumulation (Lingle, 1987). Sucrose in the stem may increase or remain constant 

between the soft dough and the ripe stage of the grain, depending on variety. However, 

distribution of sugars, starch and acid is not uniform throughout the sweet sorghum stalks 

(Broadhead, 1972). The four top internodes representing about 18% of the stalk weight are 

higher in starch, titrable acidity and sucrose than the remainder of the stalk. Internodes near the 

ground level are higher in invertable sugars (Coleman and Stokes, 1964). 

Broadhead (1973) and Ferraris (1981) observed that deheading sweet sorghum increased 

brix, sucrose and starch, but stems contained less juice than normal plants. In addition, Ferraris 

(1981) also observed that leaves of deheaded plants remained green for longer and the stems 

were less prone to lodging. Tillering in sweet sorghum could be profitable if all the tillers 

produced by crown buds developed to maturity. This would mean an increase in the number of 

stems and prolonged harvesting period, since, the main shoot matures earlier than tillers. 

Tillering is also useful in that the roots that develop from the basal nodes lend physical support 

to the plant and reduce root lodging. However, not all the tillers develop up to marketable size. 

At high population densities some tillers grow tall and thin and others die due to competition, 

constituting a loss in economic yield (Ferraris, 1988). 

 Genetic diversity in sweet sorghum 

Sorghum (Sorghum bicolor (L.) Moench) is one of the crop species that can survive the harsh 

climatic conditions of the arid environments (Ritter et al., 2007). Sorghum bicolor contains both 
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cultivated and wild races and possess a significant amount of genetic diversity for traits of 

agronomic importance (Hart et al., 2001).  It is used as a source of grain food, syrup fuel, and 

feed for livestock. Sweet sorghum, a type of sorghum accumulate high levels of sucrose in the 

parenchyma of their juicy stems (Murray et al., 2009; Vietor and Miller, 1990), and has recently 

received attention as a source of biofuel (Rooney et al., 2007). In the US, sweet sorghum has 

been researched for biofuel for more than 30 years (Lipinsky, 1977), with primary research, 

development and breeding starting in the late 1970s (Murray et al., 2009) because of the high oil 

costs and need for alternative energy sources. Under favorable conditions, sweet sorghum is 

capable of producing up to 13.2 metric tons per hectare of total sugars, which is equivalent to 

7682 liters of ethanol per hectare (Murray et al., 2009). Sweet sorghum gene pool creation had 

not received much attention mainly because it was not considered to be among important crops 

in the US, and the pedigree information is scarce and incomplete. Most sweet sorghums released 

in the US were developed by public breeding programs in the 1900s and are mainly open 

pollinated cultivars (Swanson and Laude, 1934). The improvement was done mainly on syrup, 

sugar concentration and biomass, with lines primarily selected for improved disease resistance 

(Murray et al., 2009). Sweet sorghums were introduced to the US as landraces from Africa and 

China in the 1850s (Murray et al., 2009), and other cultivars were developed later, some with 

unknown origin. Genetic diversity or knowledge on patterns of diversity of genetic resources, is 

of great importance (Warburton et al., 2008), and is a key component in crop improvement and 

plant breeding. The Meridian, Mississippi Station tried curating what may be the world sweet 

sorghum collection, and when it closed, materials were transferred to the USDA sorghum 

collection in Griffin, GA (Freeman, 1979). Thus many diversity studies have concentrated on 

cultivars/lines that are common and known, leaving the vast majority of the collection (genetic 
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sources) unexploited. In this study we tried to incorporate both the commonly used lines together 

with rarely used lines, and accessions from other sorghum collections. 

Evaluation and characterization of germplasm are the pre-requisite for the utilization of 

the available diversity in the crop improvement programme. In sweet sorghum, the most useful 

traits for selection are plant height, stem diameter, brix and juice yield (Ali et al., 2008; Murray 

et al., 2009). However, these traits are quantitative and polygenic inheritance in nature and are 

complex to be manipulated directly in breeding procedure (Zou et al., 2011). Therefore, to 

successfully improve these complex traits, they need to be dissected into smaller morphological, 

physiological and yield components.  It was previously reported that significant difference in 

brix was observed in the U.S sweet sorghum germplasm (Ali et al., 2008). Genotypic differences 

for brix and plant height have also been reported in a panel of 125 sweet sorghum collections 

(Murray et al., 2009). Studies also show much variability exists in sugar content and juice yield 

among the U.S sweet sorghum collections (Murray et al., 2008a; Makanda et al., 2009). However 

variation in growth (plant height and stem diameter), physiology (chlorophyll content and 

Fv/Fm) and components of stem sugar ( brix, juice yield and stem fresh weight) among sweet 

sorghum germplasm is less investigated than other aspects. Furthermore, correlations between 

the traits are of great importance in selection process for successful breeding programs. 

In sweet sorghum, stalk yield has significant positive correlations with plant height, stem 

diameter and juice yield (Audilakshmi et al., 2010) and also a strong association of sugar yield 

with brix was noticed (Pfeiffer et al., 2010). Therefore, selection for stalk yield should be 

focused on plant height, stem diameter, brix and juice yield. Studies have shown that there was 

significant negative correlation between grain yields and stem biomass which might eventually 

lead to reduced sugar yield (Makanda et al., 2009). However, there are no studies that showed 
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direct correlation between physiological traits and sugar yield. The relationships between 

morpho-physiological and stem sugar yield traits are important. Sugar yield is a quantitative trait, 

which is the resultant of various traits contributing together during the crop growth, which are 

interdependent in their development.  It is, desirable to study the association between yield and 

yield attributing traits since this would facilitate effective selection for simultaneous 

improvement of one or more yield influencing components. 

 Timing of harvest in sweet sorghum 

The time of harvesting and determination of maturity of sweet sorghum are very crucial in 

obtaining sweet sorghum with high sugar content and juice yield. Since ethanol can be obtained 

from juice sugar content, therefore identifying the best stage of harvesting and determining 

maturity could be beneficial in obtaining high ethanol yield.  

The maturity of sweet sorghum can be classified as early-flowering, flowering, late-flowering, 

early-milk, late-milk, soft-dough, hard-dough, and ripe (Bitzer and Fox, 2000). Sucrose is 

accumulated in large amounts in the stem during inflorescence development (McBee and Miller, 

1982). Hence, there may be a competition for carbohydrates between stem and developing seed. 

At maturity the sugars (reducing and non-reducing sugars) were mobilized from stem and leaves 

to grains. The amount of assimilates allocated for sucrose biosynthesis in the stem and grain 

depends on partitioning. Much of the work regarding carbohydrate production from early stages 

of growth to maturity has been reviewed by many researchers (Mcbee and Miller, 1982; Ghatode 

et al., 1991; Hoffman-Thoma et al., 1996). The results showed that the total sugar content varied 

as the crop approaches maturity. The different stages of maturity also affect the sugar content of 

sweet sorghum‟s stem juice. The juice sugar content depended on the plant stage of 

development, because at the early development stage, fructose is more abundant, whereas 
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sucrose is dominant after heading (Sipos et al., 2009). At maturity, the sweet sorghum juice 

sugar content ranged from 10 to 25° Brix (Reddy et al., 2007a). Many studies have already 

reported that sugar accumulation in the sweet sorghum stalk juice starts from booting stage. 

Webster et al. (1948) showed a minimal change in total sugar content up to heading, while 

Hermann (1942) reported that the sugar content increased until head formation. McBee and 

Miller (1982) found that sucrose increased from the preboot to anthesis. Lingle (1987) reported 

that sucrose concentration in the stalks increased 7 folds between boot and mid-grain filling 

stages. Ghatode et al. (1991) noticed that the brix, reducing sugar and non-reducing sugar in the 

juice decreased when plants were harvested at maturity or ripe stage.  

Hills (1990) suggested that the sugar content in the sweet sorghum stalk increases between 

the milk stages and dough stages for most cultivars. It then starts to decline towards the 

physiological maturity. Sugar in sweet sorghum begins to accumulate during the early stage of 

plant development. At the beginning of the harvest, the sugar concentration in sweet sorghum‟s 

stem juice is approximately 12.5° Brix and as sweet sorghum reaches maturity the sugar 

concentration increases up to 17° Brix (Prasad et al., 2007). 

Almodares et al. (2007) has reported that during flowering, the sugar content is lowest. 

This is mainly because of the presence of high acid invertase enzyme during the flowering stage. 

Hills (1990) reported that for most cultivars, sugar concentration in sweet sorghum‟s stalk juice 

starts to increase during the milk stage to the soft dough stage of the seed and then decreases as 

the seeds become more mature. Hunter and Anderson (1997) cited that sugar content of sweet 

sorghum‟s stalk juice is almost double between the dough stage and physiological maturity 

compared to the sugar content between the milk and dough stages. There was no investigation on 
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ideal harvesting time of sweet sorghum var M81E for higher sugar and juice yield. Hence, it is 

important to determine the optimum harvesting time of the sweet sorghum stalk. 

 Effect of water stress (Drought) in sweet sorghum 

Drought stress, one of the multiple environmental stresses, affecting crop productivity and 

accounting for more than a 50% reduction in yields worldwide (Boyer, 1982). The Great Plains 

within the United States, including Kansas are suitable for the cultivation of sweet sorghum, but 

the weather in this region has changed substantially over the last 30 years, which indicates that 

appropriate agronomic practices need to be identified and recommended for economically 

productive cultivation of the crop. Although there has been a reduction in rainfall frequency due 

to uneven precipitation being experienced in the region, the change in weather suggests that 

extreme conditions like heavy rainfall, heat waves and drought can be expected, particularly in 

these areas. Water resources are already stressed in the region and the weather projections for the 

next 7-8 decades indicate that drought will be the major factor affecting most facets of 

agriculture in these regions. 

Generally, sweet sorghum is grown in the semi-arid regions of the world. In these regions, 

optimum irrigation is vital for maximizing crop yield‟s because decreasing water supply causes a 

significant reduction in sorghum biomass and sugar yield (Habyarimana et al., 2004; 

Vasilakoglou et al., 2010). Ability to produce consistent fermentable sugars under variable 

environmental factors is necessary to harness sweet sorghum as a potential source of biofuel. The 

sucrose content in the crop is highly dependent on the environmental conditions, especially 

during the reproductive, ripening stage as this is the prime factor which determines the actual 

levels of sugar recovery upon harvest as well as the potential for its exploitation for industrial 

alcohol production. Also, little is known about the photosynthetic characteristics in sweet 
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sorghum under drought stress. Mastrorilli et al. (1999) found that temporary soil water stress in 

sweet sorghum significantly reduced water use efficiency at the early stage, but it had no 

significant effect on water use efficiency at the late stage. Severe drought stress caused 

photoinhibition of sweet sorghum and decreased water use efficiency and stem biomass 

(Tingting et al., 2010). 

 Drought stress affects various physiological processes such as leaf temperature, leaf 

chlorophyll, chlorophyll a fluorescence (Fv/Fm), stomatal conductance, transpiration and 

photosynthesis in various crops (Silva et al., 2007). In studies on sugarcane (Saccharum 

officinarum L.), stem diameter (Da Silva and Da Costa, 2004), and stalk height and cane yield 

(Inman-Bamber and Smith, 2005) were severely affected by drought conditions. Drought also 

resulted in morphological changes in sugarcane, which included reduced leaf area, thicker 

leaves, less responsive stomata and increased ratio of roots to shoots (Hussain et al., 2004). 

Sugarcane yield decreases by 29.2% and 18.1% respectively in severe and moderate drought 

stress conditions (Hussain et al. 2004). Drought stress experiments on sugar beet (Beta vulgaris 

L.) have shown adverse effects on both leaf photosynthesis as well as sucrose yields in the 

mature plants (Monti et al., 2006). They also reported that drought stress in the early growth 

period was negatively associated with the sucrose content at maturity. Tognetti et al. (2002) 

observed that optimum irrigation is the key to have higher sugar yields for sugar beet cultivation 

in semi-arid Mediterranean terrains. 

In sweet sorghum, plant height, stem diameter, stem fresh weight, juice yield, brix and stem 

sugar contents are the most important characteristics for biofuel production (Murray et al., 2008, 

Pfeiffer et al., 2010). The above established characteristics were obtainable only under optimal 

irrigation conditions (Vasilakoglou et al., 2010). There are no systematic studies describing 



15 

 

sensitivity of reproductive stage of sweet sorghum to drought stress. Further improvement of 

drought tolerance in sweet sorghum is still a need for improved biofuel production efficiency. 

Identification of the most suitable genotypes which are unaffected by drought during the 

reproductive stages as far as their juice and sugar yields are concerned, as it is this crucial stage 

for the exploitation of this crop as a potential biofuel source.  

 Effect of combination of stresses (Drought and High temperature) in sweet 

sorghum 

Drought and high temperature, often occur simultaneously, are important environmental 

factors restricting plant physiological processes and thereby plant growth (Shah and Paulsen, 

2003). Global climate change for instance contains to bring a new reality of environmental 

effects, presumably increases in global temperature, uneven precipitation, and severe drought in 

arid and semi-arid areas, on crop productivity (Wigley and Raper, 2001; Chaves et al., 2003). 

Most studies thus far have focused on crop response to drought and high temperature singly, and 

few studies have focused on combination of these two stresses. For example, drought and high 

temperature caused detrimental effects on wheat (Triticum aestivum L.), sorghum, barley 

(Hordeum vulgare L.) and various grasses (Savin and Nicolas, 1996; Machado and Paulsen, 

2001; Shah and Paulsen, 2003; Xu and Zhou, 2006). However, studies on the effect of these two 

environmental stresses either singly or in combination is scarce in sweet sorghum. 

Drought stress caused significant impact on various sugar yielding crops affecting their yield 

potentialities. In sugarcane (Saccharum officinarum L.), cane yield was decreased by 29.2% and 

18.1% respectively in severe and moderate drought stress conditions and led to morphological 

changes such as reduced leaf area, thicker leaves, less responsive stomata and increased ratio of 

roots to shoots (Hussain et al., 2004). Drought experiments on sugar beet (Beta vulgaris L.) have 
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shown adverse effects on leaf photosynthetic activities and sucrose yields in mature plants 

(Monti et al., 2006). Drought stress resulted in reduced root dry weight, leaf water potential and 

photochemical efficiency in many grass species (Aronson et al., 1987; Carrow, 1996; Perdomo et 

al., 1996; Huang et al., 1998a). 

High temperatures have negative effects on most crops in various ways (Schaffert and 

Gourley, 1982). Most crops grow well at optimum temperatures which mainly correspond with 

the optimum photosynthesis levels. High temperatures affect photosynthetic processes (Al-

Khatib and Paulsen, 1984) with increased sensitivity of photo-system (PS) II (Xu and Zhou, 

2006). High temperature stress causes thylakoid membrane damage and further down regulates 

PS II photochemistry which led to increased proportion of closed PS II reaction centers (Grove et 

al., 1986). In addition, leaf chlorophyll degradation is highly correlated with high temperature 

(Prasad et al., 2009). High temperature stress also causes leaf temperature to rise above air 

temperature by decreasing transpirational cooling and thus, make the plant more susceptible to 

photoinhibition (Falk et al., 1996). 

Recent studies revealed that plant response to a combination of drought and high temperature 

is uniquely differently from the effect of individual stress conditions (Rizhsky et al., 2004). 

While drought remains the single known environmental factor that directly affects plants water 

status, the severity of drought and high temperature combination is enormously dependant on the 

prevailing temperatures. Ludlow et al. (1990) reported that combined stresses of drought and 

high temperature significantly reduced grain yield in sorghum. In addition, combined effects of 

drought and high temperature strongly affected water relations of both wheat and sorghum 

(Machado and Paulsen, 2001). As the combined effect of these two stresses are distinct in reality 

to independent stress effects in other crops, the relationship between drought, high temperature 
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and their combinations against sugar accumulation in sweet sorghum needs thorough 

understanding. 

In sweet sorghum, the most important traits for biofuel production are plant height, stem 

diameter, stem fresh weight, juice yield, brix and stem sugar contents (Murray et al., 2008; 

Pfeiffer et al., 2010) and are determined by the efficient physiological behavior of the plant 

under different environmental conditions. Previous studies showed that plant height is highly 

correlated to juice yield and stem fresh weight (Murray et al., 2008). There is also a significant 

linear correlation between brix and total sugar content of the juice (Audilakshmi et al., 2010). 

However, optimal growing conditions ensure better plant growth without affecting physiological 

functions to produce sustainable juice and sugar yield in sweet sorghum (Vasilakoglou et al., 

2010). 

Sweet sorghum varieties differ in their ability to produce and store sugar in stem (Ali et al., 

2008). Mostly, sugar accumulation in stems takes place during inflorescence development 

(McBee and Miller, 1982) and is accelerated after post anthesis (Prasad et al., 2007; Almodares 

et al., 2008). Environmental factors such as temperature and water level may greatly determine 

juice quality and amount. Even though sorghum can withstand moderate high temperatures and 

drought, occurrence of either drought or high temperature or their combination during early grain 

filling (milk) stage were not thoroughly studied for their effects on growth, physiology and yield. 

It is important to understand these effects to predict bioenergy components and selection of 

genotypes suitable for cultivation under varying stress environments. 
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Chapter 2 - Characterization of sweet sorghum (Sorghum bicolor L. 

Moench) germplasm for growth, physiological and bioenergy traits 

under irrigated and rain-fed conditions  

 2.0 Abstract  

Sweet sorghum (Sorghum bicolor L. Moench) is emerging as an important bioenergy 

crop. The value of the crop as biofuel feedstock is affected by a number of inherent 

morphological and physiological traits. The objective of this research was to characterize sweet 

sorghum genotypes and determine genetic variability in traits associated with biofuel production 

under rain fed and irrigated conditions over two years. Chlorophyll content, photosystem (PS) II 

photochemical efficiency, (Fv/Fm) at flowering and biomass, juice yield and sugar content at 

maturity were measured. Rain-fed performance was assessed based on the relative sugar yield 

reduction in each genotype compared to its performance under irrigated condition. Genotypes 

showed a large and significant variation for juice, brix and sugar yield and physiological traits 

(leaf chlorophyll content and Fv/Fm). Mean brix ranged between 6.2 and 20.7%, juice yield 

between 124.7 and 914.2 (g plant
-1

); while sugar yield ranged from 17.0 to 118.3 (g plant
-1

). 

Compared with irrigated condition, mean values for these traits under rain-fed trials were 

reduced by 31.7, 34.5 and 62.3%, respectively. The top 27 entries had sugar yield higher than the 

Mean+2SE. There was positive and significant correlation between sugar yield and plant height, 

stem diameter, PS II photochemical efficiency (Fv/Fm), juice yield, stem fresh weight and stem 

dry weight. Overall, genotypic variability was measured in brix and sugar yield can be utilized 

for the development of sweet sorghum hybrids. 
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 2.1 Introduction 

 Dwindling fossil fuel reserves and growing demand for energy have resulted in increasing 

fuel prices, and a search for alternative energy sources such as biofuels. The ideal source for 

biofuel would be biomass based substances that does not compete with food production. Sweet 

sorghum (Sorghum bicolor L. Moench) is a biomass crop grown in the tropical and sub-tropical 

regions of the world. Sweet sorghum has high sugar content in the parenchyma of stems, which 

can be fermented for ethanol production (Vietor and Miller, 1990; House et al., 2000). Ethanol 

can also be produced from dry biomass (cellulose and hemicelluloses) and the grain of sweet 

sorghum (Habyarimana et al., 2004). Hence, sweet sorghum is becoming a popular energy crop 

throughout the world (Mastrorilli et al., 1999; Rooney et al., 2007; Vermerris et al., 2007). 

Collection and characterization of germplasm is the foremost step in building a gene pool for 

crop improvement. Development of suitable genotypes is primarily based on the breadth of this 

pool and the ability to identify sources with the desired traits (Natoli et al., 2002; Ritter et al., 

2008; Makanda et al., 2009). In sweet sorghum, the most useful traits for selection are plant 

height, stem diameter, brix and juice yield (Ali et al., 2008; Murray et al., 2009). It was 

previously reported that differences in brix were observed in the U.S sweet sorghum germplasm 

(Ali et al., 2008). Genotypic differences for brix and plant height have also been reported in a 

panel of 125 sweet sorghum collections (Murray et al., 2009). Earlier studies have indicated that 

high ethanol production from sweet sorghum could be achieved through increased sugar yield, 

which has a strong association with stem fresh weight, brix and juice yield (Ravi et al., 1996; 

Pfeiffer et al., 2010). Recent studies have indicated that sweet sorghum genotypes with taller 

height and wider stem diameter may have higher sugar yield (Pfeiffer et al., 2010). Despite these 

and the growing role of sweet sorghum as biofuel feedstock, information on the extent of 

variation in growth (plant height and stem diameter), physiology (chlorophyll content and 
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Fv/Fm) and components of stem sugar (brix, juice yield and stem fresh weight) among sweet 

sorghum germplasm are limited. 

Sorghum is a C4 plant, which has higher water-use efficiency than other grain or sugar crops 

under both irrigated and drought conditions (Steduto et al., 1997; Gnansounou et al., 2005) and 

requires relatively low inputs (water and nitrogen) (Mastrorilli et al., 1999). Reports on sugar 

yielding crops indicated that drought stress decreased stem height, stem diameter, stem biomass 

and sugar yield in sugarcane (Saccharum officinarum) (Da Silva and Da Costa, 2004; Silva et al., 

2008) and decreased the leaf and root growth and sugar accumulation in sugar beet (Beta 

vulgaris) (Bloch and Hoffmann, 2005; Hoffmann, 2010). In sorghum drought stress had no 

influence on total stem sugar accumulation despite decreases in photosynthetic rate (Massacci et 

al., 1996). However, the impact of drought stress on juice yield is not well documented in sweet 

sorghums. Thus, identification of suitable genotypes that are capable of accumulating higher 

juice and sugar yield under drought stress is important task for achieving greater bioethanol 

production. 

We hypothesize that genetic variability exists among sweet sorghum genotypes for brix and 

juice yield and drought stress decreases both traits. The objectives of this research were (i) to 

quantify genetic variability for plant height, stem fresh weight, brix, juice yield and sugar yield 

in sweet sorghum germplasm and (ii) to identify potential drought tolerant sweet sorghum 

genotypes. 

 2.2 Materials and Methods 

 2.2.1 Plant materials 

A total of 280 sweet sorghum genotypes were obtained from Plant Genetic Resources 

Conservation Unit (PGRCU), Griffin, Georgia. These genotypes were originally collected from 
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diversified origins including Africa, Asia, Australia, Europe, South America and North America 

and were part of the US historic sweet sorghum collection (Wang et al., 2009). Their identifiers 

and place of origins are shown in Table 2.1 

 2.2.2 Experimental site and environmental conditions 

All 280 germplasm were evaluated in three environments during 2007 (irrigated) and 2008 

(irrigated and rain-fed) at Ashland Bottoms Research Farm near Manhattan, Kansas (Irrigated - 

39°08´35.3˝N, - 96°37´39.2˝W, Altitude: 308 m; Rain-fed - 39°06´54.2˝N, - 96°38´10.0˝W, 

Altitude: 323 m). Experiments were conducted on a chase silty clay loam soil (clay 12%, silt 

60% and sand 28%; and pH 6.8). The weather parameters during the test seasons are presented in 

Fig. 2.1. 

 2.2.3 Crop husbandry 

The experimental plots were chisel plowed and planted on 18 May, 2007 and 21 May 2008. In 

both years plots were fertilized with 90 kg N ha
-1

 as urea. For weed control, the plots were sprayed 

with Bicep Lite II Magnum (a.i. 0.82 kg atrazine ha-1 and 1.03 kg S -metolachlor ha-1) prior to 

planting. The fields were kept weed free by hand weeding as necessary. In 2007, the experiment 

was conducted under irrigated condition. Each genotype was evaluated in single row plots of 3 m 

length with a row spacing of 0.75 m. In 2008, the same 280 sweet sorghum genotypes were 

planted under two growing conditions (irrigated and rain-fed) with a single row of 3 m length 

and 0.75 m row spacing. Due to large number of genotypes being evaluated, multiple 

replications within each environment were not used. 

 2.2.4 Data collection 

Prior to flowering, two random plants for each genotype were tagged using colored tape. All data 

were collected from these tagged plants. Physiological traits were recorded on attached fully 
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expanded flag leaves every 15 d beginning at flowering stage. All measurements were taken at 

midday (between 10:00 and 14:00 h). Leaf chlorophyll content was measured using a self-

calibrating chlorophyll meter [Soil Plant Analytical Device (SPAD), Model 502, Spectrum 

Technologies, Plainfield, IL, USA]. Chlorophyll a fluorescence parameters were measured using 

pulse-modulated fluorometer (OS5p, Optisciences, Hudson, NH, USA). The photochemical 

efficiency of photosystem II (PSII) (Fv/Fm) was measured in 30-min dark-adapted leaves 

(Prasad et al., 2008). 

At maturity, growth and yield parameters were measured on tagged plants of each genotype. 

Plant height was measured as the length of the plant from base of the stem to the tip of the 

panicle; stem diameter was measured from three regions of the stem bottom (3rd internode), 

middle (6th internode), and the top (9th internode) using vernier caliper after stripping the leaves 

and removing leaf sheaths. Data on stem diameter were averaged across regions. The juice from 

the stalks was extracted and used for recording brix percentage by using digital hand-held 

refractometer (Digital hand-held pocket refractometer PAL-1, Atago, Bellevue, WA, US). The 

fresh weight of stems of each sample was recorded and then oven-dried at 60°C for 7 d and dry 

weight was recorded. The juice yield was obtained by subtracting stem dry weight from stem 

fresh weight and expressed as g plant
-1

. The sugar yield was calculated as a product of brix (%) 

and juice yield. 

 2.2.5 Data analyses 

The experimental design was randomized complete block design. Two plants for each genotype 

were selected randomly during flowering for recording physiological and yield traits. Growth 

and physiological traits were recorded in 280 genotypes and means were presented with standard 

deviation for mean comparison. Among the 280 genotypes, 78 genotypes consistently obtained 

Deheading Treatment in Keller 



33 

 

juice at harvest in all three environments. Hence, brix and sugar yield were measured and 

compared in 78 genotypes. The various observations recorded in 78 genotypes from each 

experiment were analyzed using the Proc GLM procedure of Statistical Analysis Systems, 9.1 

(SAS Institute, 2003) using environments and years as replications. To assess the impact of 

drought stress on various traits including relative sugar yield reduction (RSYR) the mean of 

irrigated experiment (2008) were used and compared with rain-fed (2008) and expressed as 

percentage. Genotypes were ranked based on values of RSYR. Pearson‟s phenotypic correlation 

coefficients between traits measured were computed using PROC CORR procedure in SAS. 

 2.3 Results 

 2.3.1 Genotypic variation 

 2.3.1.1 Physiological traits 

There were differences among genotypes for many of the traits measured (Table 2.2). Leaf 

chlorophyll content and Fv/Fm ranged from 37 to 63 and 0.413 to 0.810, respectively (Table 

2.2). The mean chlorophyll content and Fv/Fm value among the entries were 52 and 0.748, 

respectively. There was marked variation for both traits that the values ranged from 37 to 63 for 

leaf chlorophyll content and from 0.413 to 0.810 for Fv/Fm. The highest score for chlorophyll 

content was recorded in genotype Sugar drip_2 followed by Brawley, Inyagentombi, Mbalwe, 

Rahmetalla gallabat and IS 12900. While, the lowest chlorophyll content was recorded in MN 

2063, followed by MN 1540, Co 1, Opemba nonpha, MN 2109 and MN 2762 (Table 2.3). Thirty 

two genotypes had mean leaf chlorophyll content values higher than the overall mean plus two 

standard errors (Mean+2SE). The genotypes, Awanlek, MN 2762, Theis, MN 4564, Saccaline, 

MN 2363 and Smith had the highest Fv/Fm values (0.79 to 0.78), while genotypes, IS 2131, 
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Wenabu, Manyoble, Atlas, Masuda Black Seed and No. 8 Gambela had the lowest (0.66 to 0.72) 

(Table 2.3). Thirty two genotypes had higher than mean+2SE value for Fv/Fm. 

 2.3.1.2 Growth traits 

Significant differences were observed among the genotypes for all the growth traits (Table 2.3). 

The plant height ranged from 93 to 440 cm and stem diameter ranged from 8 to 27 mm (Table 

2.2). The mean plant height and stem diameter was 278 cm and 17 mm, respectively. Plant 

height, stem diameter, stem fresh weight and stem dry weight differed among the genotypes that 

consistently produced juice across three environments (Table 2.3). Among the 78 genotypes, the 

plant height ranged from 153 to 395 cm with a mean of 290. Genotypes, IS 2109, MN 4553, MN 

4564, Caxa, Isidomba_2 and Dale_1 were among the tallest. Whereas, Nagad el Mur, HC 41-13, 

Ames amber, Darso 28, Bargowi and Atlas were some of the shortest plants (Table 2.3). About 

34 and 31 sweet sorghum genotypes were found to have a value greater than Mean+2SE and 

Mean-2SE, respectively. 

Stem diameter ranged between 27 and 11 mm with an overall mean of 18 mm (Table 2.3). 

Genotypes MN 2238, MN 2063, MN 4564, MN 2386, Co 1, MN 4553 and Opemba nonpha had 

the highest stem diameters. The genotypes HC 41-13, Ames amber, Mbalwe, N 111, Red amber, 

MN 2894 and Collier had recorded the lowest stem diameter. Twenty nine genotypes had stem 

diameter greater than Mean+2SE. 

Stem fresh weight (g plant
-1

) varied from 174 to 1190 with a mean of 606 (Table 2.3). The 

genotype MN 4564 recorded the highest stem fresh weight followed by MN 4566, MN 4553, 

Wray, Co 1 and MN 2109 (Table 2.3). The lowest stem fresh weight was recorded in Ames 

amber and followed by Darso 28 and HC 41-13, MN 2894 and Luel. The stem dry weight (g 

plant
-1

) ranged from 49 to 334 with a mean of 170 (Table 2.3). Genotypes Caxa, Wray, MN 
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4564, MN 4553 and MN 4566 recorded the highest stem dry weight and Ames amber, Darso 28, 

Mbalwe, and Luel recorded the lowest stem dry weight (Table 2.3). 

 2.3.1.3 Sugar quality and yield traits 

Significant differences among genotypes were found for sugar quality and yield traits (Table 

2.3). Across 78 genotypes, brix ranged from 6 to 21 with a mean of 13 (Table 2.3). High brix 

greater than Mean+SE and greater than Mean+2SE was observed in 1 and 45 genotypes, 

respectively. The genotypes Dura huria, Masuda black seed, Smith, Leoti-Peltier, Tracy_2 and 

Top 76-6 had high brix (18 to 21) and Sairwa, Iswa, MN 1540, MN 2386, MN 2238 and MN 

2363 had low brix (6 to 7) (Table 2.3). 

The juice yield (g plant
-1

) varied from 125 to 914 with a mean of 436 (Table 2.3). Juice yield 

of greater than Mean+2SE was recorded in thirty genotypes. Genotypes, MN 4566, MN 4564, 

MN 2109, Co 1, MN 4553, MN 2238, Wray and Sanyagie were among the highest juice yielders. 

Whereas, Ames amber, HC 4113, MN 2894, Luel, N 111 and Darso 28 were the lowest juice 

yielders (Table 2.3). 

The mean sugar yield (g plant
-1

) was 56 ranged from 17 to 118 (Table 2.3). Four and 27 

genotypes had sugar yields higher than the Mean+SE and Mean+2SE, respectively. Genotype 

Wray gave the highest sugar yield followed by MN 4564, Caxa, IS 2131, Top 76-6, MN 4553 

and Smith (Table 2.3). Whereas, genotype Ames amber had the lowest sugar yield followed by 

IS 2352, Luel, MN 2894 and HC 41-13 (Table 2.3). 

 2.3.2 Impact of drought stress 

 2.3.2.1 Growth, physiology and yield traits 

Drought stress appeared to have marked effect on the performance of genotypes as indicated by 

difference in mean values of various traits measured under rain-fed and irrigated conditions. 
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Traits such as plant height, stem diameter, chlorophyll content and Fv/Fm were not affected by 

water supplies as indicated by the minor differences between irrigated and rain-fed conditions 

(Table 2.4). However, under rain-fed condition brix (37.0%), stem fresh weight (33.7%), stem 

dry weight (32.9%), juice yield (34.1%) and sugar yield (65.3%) were all reduced compared with 

irrigated condition (Table 2.4). 

 2.3.3 Relative sugar yield reduction (RSYR) 

The RSYR (%) ranged from 22 to 98 with a mean of 76±16 (Table 2.3). The lowest RSYR was 

observed in Sanyagie followed by MN 818, Dale_1, Smith, Wray and Caxa (Table 2.3). 

Genotypes, MN 2386, Ames amber, Luel, MN 2238, Atlas and Iswa had the highest RSYR 

(>93%) (Table 2.3). There were 23 genotypes that recorded low RSYR (<72%) (Mean-2SE). 

 2.3.4 Correlation analyses 

A positive and significant phenotypic correlation was observed between sugar yield and plant 

height (Fig. 2.2a), stem diameter (Fig. 2.2b), and PS II photochemical efficiency (Fv/Fm) (Fig. 

2.3a). Likewise, various sugar yield traits like juice yield (Fig. 2.3b), stem fresh weight (Fig. 

2.3c) and stem dry weight (Fig. 2.3d) were also positively and significantly correlated with sugar 

yield. 

 2.4. Discussion 

Sweet sorghum genotypes were studied for their sugar yields in irrigated (2007 and 2008) and 

rain-fed (2008) conditions. There were large variations for plant height, stem diameter, 

chlorophyll content, Fv/Fm, stem fresh weight, stem dry weight, brix, juice yield and sugar yield 

among the sweet sorghum genotypes (Table 2.3). Significant genotypic variability for plant 

height and juice brix among sweet sorghum germplasm was also reported by Almodares et al. 

(1997), Ali et al. (2008), Murray et al. (2008a), Wang et al. (2009) and Murray et al. (2009). 
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Plants with greater plant height, stem diameter, Fv/Fm, stem fresh weight and juice yield also 

produced greater sugar yields (Fig. 2.2 and Fig. 2.3). Similarly, Audilakshmi et al. (2010) 

reported stem fresh weight to be correlated to plant height, stem diameter and juice yield. Murray 

et al. (2008) found that plant height was highly correlated with juice yield and stem fresh weight. 

Pfeiffer et al. (2010) reported that male-sterile sweet sorghum hybrids produced greater stem 

yield due to taller plants with greater stem diameter. There was significant positive association 

between stem biomass and plant height and stem diameter of sweet sorghum (Makanda et al., 

2009). 

Genotypes with higher stem fresh weight produced higher amount of juice that can be 

immediately fermented to bioethanol. Among the sweet sorghum genotypes studied, Wray had 

the highest sugar yield which was attributed to increased juice and moderate brix. This genotype 

also showed minimum reduction in sugar yield when grown under rain-fed condition. This 

indicates that Wray, besides its desirable biofuel potential, also has greater drought resilience 

compared with other genotypes. Even though genotype MN 4566 had highest juice yield, its 

sugar yield was low because of lower brix. Genotypes with moderate brix and high juice yield 

produced high sugar yields (Table 2.3). 

The sugar quality and yield traits in sweet sorghum are the outcome of interaction between 

genotypes and environmental factors. The rain-fed condition did not have substantial impact on 

growth (plant height and stem diameter) but physiological traits (chlorophyll content and Fv/Fm) 

tended to decrease slightly under rain-fed condition (Table 2.4). Vasilakoglou et al. (2011) 

observed no variation in sugar concentration among six sweet sorghum genotypes under reduced 

irrigation. Similar situations were also observed by Miller and Ottman (2010). However, the 

present study found that rain-fed condition decreased brix, stem fresh and dry weights, juice and 
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sugar yields compared to irrigated condition and this indicated a wide genotype response to 

drought stress (Table 2.4). Similar results were also observed by Silva et al. (2008) in sugarcane 

indicating that drought stress had severe impact on plant height, stem diameter, stem weight on 

the susceptible genotypes than the tolerant genotypes. Reduction in sugar levels (brix) under 

rain-fed condition might be due to reduced nutrient uptake efficiency at one growth stage or the 

other. 

Correlation analyses indicated that juice yield has greater contribution to higher sugar than 

the brix suggesting that selection for high sugar yielding genotypes should focus more on juice 

yield. Given the same brix value, genotypes with greater juice yield produced higher sugar yields 

(Table 2.3). Makanda et al. (2009) suggested genotypes with higher juice yield and lower brix 

were considered better stem sugar yielder than those genotypes with lower juice yield and higher 

brix. The highest performing genotypes also confirmed in the present study that the juice yield is 

an important trait for selection for higher sugar yield. Murray et al. (2008a,b) reported a 

significant correlation between brix values and stem juiciness. The juice yield could also be 

directly related to stem fresh weight. There was a significant and positive correlation between 

sugar yield and juice yield and stem fresh weight from the present study (Fig. 2.3). 

 2.5. Conclusions 

We found wide genetic variability among 78 sweet sorghum cultivars for plant height, stem 

diameter, stem fresh weight, brix, juice yield and sugar yield. There were significant, positive 

correlation between sugar yield and growth (plant height and stem weight), physiological 

(photochemical efficiency) and bio-energy traits (juice yield). Growth and physiological traits 

were not affected by the rain-fed condition; however, there were significant reductions in brix, 

stem fresh weight, juice yield and sugar yield. Among the 78 genotypes, Wray, MN 4564 and 
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Caxa had higher sugar yield (≥mean+2SE). Genotypes Sanyagie, MN 818 and Dale_1 had lower 

RSYR indicating their drought tolerant potential with sustainable sugar yield. Sweet sorghum 

genotype with improved sugar yield can be utilized for genetic improvement. 
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 2.6. Tables and Figures 

 

Figure 2.1  Monthly maximum and minimum mean air temperature and total rainfall during the 

two years of cropping season (2007 and 2008). 
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Figure 2.2  Correlation between sugar yield and (a) plant height and (b) stem diameter. 
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Figure 2.3  Correlation between sugar yield and (a) Photochemical efficiency (Fv/Fm) (b) juice 

yield (c) stem fresh weight and (d) stem dry weight. 
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Table 2.1 List of sweet sorghum genotype, designation number and place of origin used in this study. 

Genotype  Designation no.  Place of origin 

7392 PI173112 Turkey, Artvin 

8371 PI173118 Turkey 

8493 PI173120 Turkey 

Akdari_1 PI182303 Turkey 

Akdari_2 PI167352 Turkey 

Akdari_3 PI179504 Turkey, Urfa 

Akdari_4 PI167047 Turkey 

Akdari_5 PI177553 Turkey 

Akdari_6 PI170783 Turkey 

Aleppo No. 41 PI181899 Syria 

Ames Amber PI641806 * 

Andiwo III 57 PI157030 Kenya 

Ankolib tequil PI152596 Sudan 

AS-475 PI255348 Sri Lanka 

Atlas PI641807 * 

Awanlek PI152971 Sudan 

Ayuak PI152966 Sudan 

B. 35 PI147224 India 

Balaka PI221560 Nigeria 

Bangu manguisusu PI88007 Korea 

Bargowi PI217770 Sudan 

Bilichigan PI152898 India 

Brawley BRAWLEY * 

Bwalimbo PI155889 Tanzania 

Caxa PI255239 Mexico, Sonora 

Chedomba PI156268 Malawi 

Chifungo PI155924 Zambia 

Chikkori PI152953 Sudan, Kordofan 

Chinese amber_1 PI248298 India 

Chinese amber_2 PI22913 China 

Co. 1 PI266927 India 

Co. 4 PI185672 India, Delhi 

Collier PI641862 * 

Colman PI641810 * 

Dale_1 Dale USA 

Dale_2 DALE USA 

Darso 28 PI260210 Guadeloupe, Basse-Terre 

Della PI566819 United States, Virginia 

DEPAR PI181077 India 

Dhurra No. 7 PI155149 Yemen 

Dobbs PI156463 Tanzania 

Dova-benko PI196600 Taiwan 

Dura hegari PI156884 Zaire 
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Genotype  name Designation  no. Place of origin 

Dura huria PI156890 Zaire 

Duro El jack PI152923 Sudan, Kordofan 

Dwarf ashburn PI641893 * 

Early folger PI641815 * 

Early sumac PI641817 * 

Feterita abdel magid PI152872 Sudan 

Feterita abu derega PI157804 Sudan 

Feterita fayoumi D.S. 10 PI152630 Sudan 

Feterita fayoumi D.S. 13 PI152633 Sudan 

Feterita fayoumi D.S. 8 PI152629 Sudan 

Feterita fulli PI152650 Sudan 

Feterita geshaish PI152651 Sudan 

Feterita gezira PI152646 Sudan 

Feterita la estenzuela PI201723 Nigeria 

Gilgil PI173808 Turkey 

Gishish PI152671 Sudan 

Gonbo PI155793 Malawi 

Grassal PI154844 Uganda 

Gumbilu PI152998 Eritrea 

H.C. 41-13 PI641904 * 

Hasesa PI155543 Zambia 

Heger Taie PI152675 Sudan 

Hegiri 1 PI152676 Sudan 

Hemaisi red shendi shersher PI152683 Sudan 

Honey No. 6 PI562716 United States 

Honey sorghum PI181080 India 

Honey_drip PI641821 * 

Ifube No. 18 PI157033 Kenya 

Inyangentombi PI144134 South Africa, Natal 

IS 12807 PI170802 Turkey 

IS 12810 PI170805 Turkey 

IS 12833 PI175919 Turkey 

IS 12849 PI177547 Turkey 

IS 12900 PI183086 India 

IS 2109 PI193613 Ethiopia 

IS 2131 PI196049 Ethiopia 

IS 2352 PI218112 Pakistan 

IS 2462 PI149830 Somalia 

IS 2464 PI149832 Somalia 

IS 3986 PI643464 * 

IS 81 PI167093 Egypt 

Isidomba_1 PI145619 South Africa 

Isidomba_2 PI144331 South Africa, Natal 
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Genotype  name Designation  no. Place of origin 

Iswa PI156423 Tanzania 

Italian PI196597 Taiwan 

J56 akouangok PI154929 Uganda 

Jawar_1 PI180004 India 

Jawar_2 PI179747 India 

Jawar_3 PI173971 India 

Jawar_4 PI180005 India 

Jerima PI273465 Nigeria 

Jiba PI145622 South Africa 

Juar_1 PI183149 India 

Juar_2 PI165532 India 

Juar_3 PI180487 India 

Juar_4 PI180348 India 

Juar_5 PI180489 India 

Juar_6 PI180008 India 

Juar_7 PI180349 India 

Juar_8 PI179749 India 

Kabiri PI154846 Uganda 

Kafir pink PI152692 United States 

Kamandri PI181083 India 

Kaoliang PI195754 China 

Karadari PI174381 Turkey 

Keller KELLER USA 

L28 lawere PI154943 Uganda 

L31 emiroit PI154944 Uganda 

Leoti-peltier PI642999 * 

Longwe PI155571 Zambia 

Luel PI152714 Sudan 

Lwel fadiang PI152880 Sudan 

M_81E M_81E USA 

Magohe PI156496 Tanzania 

Mahananga PI152909 Somalia 

Maila_1 PI155485 Zambia 

Maila_2 PI155556 Zambia 

Maila_3 PI156136 Zambia 

Malnal PI152961 Sudan 

Malwal aweil PI152725 Sudan 

Malwal tonj PI152727 Kenya 

Manyoble PI145626 South Africa 

MAPIeRA PI155609 Zambia 

MAPIRA PI155805 Malawi 

Masaka PI155516 Zambia 

Masuda black seed PI193073 Japan 

Mbagobago PI156877 Zaire 
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Genotype  name Designation  no. Place of origin 

Mbalwe PI155756 Malawi 

Merasi PI152860 Sudan 

Merissa (BARI) PI152733 Sudan 

Misali PI155517 Zambia 

MN 12 PI287627 Zimbabwe 

MN 1344 PI154787 Uganda 

MN 1540 PI155230 Sudan 

MN 1615 PI156018 Zaire 

MN 1644 PI155885 Tanzania 

MN 1921 PI155710 Malawi 

MN 1983 PI155767 Malawi 

MN 2014 PI156178 Malawi 

MN 2030 PI155804 Malawi 

MN 2063 PI155899 Malawi 

MN 2077 PI155845 Malawi 

MN 2089 PI156203 Malawi 

MN 2103 PI155902 Malawi 

MN 2109 PI156217 Malawi 

MN 2161 PI155912 Malawi 

MN 2238 PI156352 Zambia 

MN 2248 PI156363 Zambia 

MN 2277 PI156393 Tanzania 

MN 2282 PI156399 Tanzania 

MN 2363 PI156487 Tanzania 

MN 2386 PI156510 Tanzania 

MN 2387 PI156511 Tanzania 

MN 2398 PI156525 Tanzania 

MN 2418 PI156696 Kenya 

MN 2553 PI161586 Liberia 

MN 2578 PI162806 Liberia 

MN 2635 PI166210 Sierra Leone 

MN 2680 PI52606 South Africa, Transvaal 

MN 2740 PI92270 China, Beijing 

MN 2742 PI177156 Turkey 

MN 2751 PI643008 * 

MN 2756 PI643013 * 

MN 2761 PI643016 * 

MN 2762 PI643017 * 

MN 2826 PI170787 Turkey 

MN 2827 PI170788 Turkey 

MN 2838 PI170799 Turkey 

MN 2857 PI173121 Turkey 

MN 2873 PI176766 Turkey 

MN 2894 PI177554 Syria 
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Genotype  name Designation  no. Place of origin 

MN 2939 PI181971 Syria 

MN 2972 PI189114 Nigeria 

MN 3080 PI196583 Taiwan 

MN 3081 PI196584 Taiwan 

MN 3089 PI196592 Taiwan 

MN 3095 PI196598 Taiwan 

MN 3370 PI211633 Afghanistan 

MN 4036 PI241566 Papua New Guinea 

MN 4052 PI247136 Yugoslavia 

MN 4118 PI250232 Pakistan, Punjab 

MN 4120 PI250234 Pakistan 

MN 4122 PI250521 India, Punjab 

MN 4124 PI250582 Egypt 

MN 4126 PI250402 Pakistan 

MN 4133 PI250897 Iran 

MN 4134 PI250898 Iran 

MN 4135 PI251672 Yugoslavia 

MN 4136 PI253795 Iraq 

MN 4137 PI253796 Iraq 

MN 4138 PI253986 Syria 

MN 4155 PI302120 Belgium 

MN 4179 PI302131 Portugal 

MN 4243 PI302198 Argentina 

MN 4252 PI302122 Portugal 

MN 4299 PI302252 China 

MN 4330 PI302264 Tanzania 

MN 4369 PI302199 Argentina 

MN 4553 PI271232 India 

MN 4564 PI273953 Ethiopia 

MN 4566 PI273955 Ethiopia 

MN 4570 PI273959 Ethiopia 

MN 4573 PI273963 Ethiopia 

MN 4578 PI273969 Ethiopia 

MN 48 PI287625 Zimbabwe 

MN 600 PI147573 French Guiana 

MN 818 PI586443 Hungary 

Mokutakususu PI88000 Korea 

Mubeya PI153871 Kenya 

Mubovi PI155328 Kenya 

Muthiikwa PI155333 Kenya 

Muyo PI155336 Kenya 

N100 PI535785 United States, Nebraska 

N107 PI535792 United States, Nebraska 

N111 PI535796 United States, Nebraska 
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Genotype  name Designation  no. Place of origin 

N98 PI535783 United States, Nebraska 

Nagad El mur PI217691 Sudan 

Nagro PI147026 Egypt 

Namuse PI155760 Malawi 

Nefee PI156252 Malawi 

Nerum boer PI303658 Sudan, Southern 

Nkolongo PI156465 Tanzania 

Nkumba PI154796 Uganda 

NO. 5 gambela PI257599 Ethiopia 

NO. 6 gambela PI257600 Ethiopia 

NO. 8 gambela PI257602 Ethiopia 

Ntiboyumba PI156899 Zaire 

Nyagwang No. 56 PI157035 Kenya 

Nytwal PI152751 Sudan 

Opemba nonpha PI156435 Tanzania 

P 127 (S.A. 5) PI154990 Swaziland 

Planter PI641834 * 

Popsorghum PI584989 United States, Texas 

Potch 4 PI152755 Sudan 

Query 3 PI152764 Sudan 

Rahmetalla gallabat PI152771 Sudan 

Ramada RAMADA * 

Red janpur PI181074 India 

Red losinga PI641909 Sudan 

Red_amber PI17548 Australia, New South Wales 

REX PI641835 * 

Rio_2 PI563295 United States, Maryland 

Rutobo PI156871 Zaire 

S. A. 1 PI154987 Swaziland 

S. A. 2 PI154988 Swaziland 

Saccaline PI48191 Australia, New South Wales 

Sairwa PI168525 Nigeria 

Sanyagie PI156405 Tanzania 

Serere PI154750 Uganda 

Smith PI511355 United States, Texas 

Sonkwe PI156356 Zambia 

Sucre drome PI197542 Algeria 

Sugar drip_2 PI146890 Zaire 

Sugar_drip_1 Grif14907 * 

Sweet saccaline PI198885 Australia 

Tegevini PI145632 South Africa 

Texas seeded ribbon PI641848 * 

Theis THEIS USA 

 

 



49 

 

Genotype  name Designation  no. Place of origin 

Thok (B) PI152963 Sudan 

Tjolotjo PI247745 Zaire 

Top 76-6 PI583832 United States, Georgia 

Tracy Tracy USA 

Tseta 27/51 PI267476 India 

Tugela ferry PI145633 South Africa 

U. g. 6. 7. PI247744 Zaire 

U.T. 23 PI152828 Zaire 

V3 nakyeru PI154962 Uganda 

W. 21 PI147200 India 

Wad aker red PI152813 Sudan 

Wad fur white PI152816 Sudan 

Waquema PI155721 Malawi 

Waxy club PI152914 United States 

Wenabu PI154800 Uganda 

Wheatland PI154980 Kenya 

Wray Wray USA 

 

*unknown. 
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Table 2.2 Mean and range for different traits of 280 sweet sorghum genotypes averaged over 

three growing conditions (2007-irrigated; 2008-irrigated and rain-fed). 

Traits Mean Range 
Standard deviation 

(SD) 

Plant height (cm) 278 93-440 64.3 

Stem diameter (mm) 17 8-27 3.8 

Leaf chlorophyll (SPAD) 52 37-63 6.2 

PS II photochemical efficiency (Fv/Fm)  0.748 0.413-0.810 0.03 
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Table 2.3 Means of growth and bioenergy traits of 78 sweet sorghum genotypes averaged across three growing conditions during 2007 

and 2008 at Manhattan, KS. 

Genotype 

Plant 

height 

(cm) 

Stem 

diameter 

(mm) 

Chlorophyll 

(SPAD) 
Fv/Fm 

Brix 

(%) 

Juice yield 

(g plant
-1

) 

Sugar yield 

(g plant
-1

) 

Stem fresh 

weight 

 (g plant
-1

) 

Stem dry 

weight  

(g plant
-1

) 

RSYR
†
 

(%) 

Ames amber 205.1 11.9 50.6 0.760 12.8 124.7 17.0 173.9 49.1 95 

Atlas 234.6 15.3 53.3 0.700 14.5 260.4 43.7 371.5 111.1 93 

Awanlek 324.0 17.6 52.1 0.790 15.8 405.3 69.9 592.5 187.1 80 

Bargowi 227.1 18.3 51.3 0.734 12.5 316.5 38.2 446.8 130.3 64 

Brawley 287.6 15.0 58.7 0.755 17.9 302.4 55.3 472.1 169.6 59 

Caxa 346.5 20.1 55.6 0.752 15.5 616.3 100.7 950.8 334.4 51 

Co. 1 238.5 23.4 44.7 0.760 9.2 858.2 82.0 1097.4 239.2 58 

Collier 328.5 13.1 56.7 0.756 17.5 196.0 35.0 307.3 111.3 74 

Colman 310.0 13.7 48.4 0.742 17.4 220.4 28.3 334.6 114.1 73 

Dale_1 340.6 17.4 51.0 0.775 18.0 477.0 88.3 739.4 262.3 37 

Darso 28 208.8 15.3 57.3 0.751 17.0 166.6 28.5 224.4 57.7 83 

Della 299.1 15.4 52.5 0.749 16.6 305.1 55.7 490.8 185.7 82 

Dura huria 272.6 14.6 52.8 0.739 20.7 266.0 57.9 398.9 132.9 74 

H.C. 41-13 199.5 11.1 55.6 0.743 15.2 137.9 22.2 225.7 87.8 88 

Honey No. 6 336.0 19.5 47.7 0.750 14.9 450.8 69.0 679.5 228.7 75 

Inyangentombi 284.8 16.0 58.6 0.762 14.1 404.6 57.0 551.3 146.7 61 

IS 12810 250.0 15.1 52.4 0.730 16.6 236.3 42.0 351.4 115.1 90 

IS 12900 291.3 14.8 57.7 0.746 13.6 349.5 47.9 508.9 159.4 65 

IS 2109 394.8 21.6 57.2 0.767 8.0 566.4 48.1 809.2 242.7 82 

IS 2131 320.1 21.3 51.5 0.657 12.6 671.1 98.9 924.1 252.9 92 

IS 2352 297.1 14.8 52.6 0.730 11.1 183.6 19.2 279.9 96.3 87 
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Genotype 

Plant 

height 

(cm) 

Stem 

diameter 

(mm) 

Chlorophyll 

(SPAD) 
Fv/Fm 

Brix 

(%) 

Juice yield 

(g plant
-1

) 

Sugar yield 

(g plant
-1

) 

Stem fresh 

weight 

 (g plant
-1

) 

Stem dry 

weight  

(g plant
-1

) 

RSYR
†
 

(%) 

Isidomba_2 342.5 18.5 55.8 0.762 16.2 319.6 55.3 449.0 129.4 85 

Iswa 239.0 20.8 51.7 0.739 6.2 473.5 30.5 625.4 151.9 93 

Jerima 305.6 18.8 52.4 0.735 9.2 570.6 40.2 813.9 243.3 90 

Leoti-peltier 246.1 13.9 52.6 0.730 18.4 2557. 48.3 358.4 102.7 64 

Luel 237.0 13.4 51.5 0.750 12.4 149.4 19.6 236.2 86.8 93 

Mahananga 338.6 17.2 50.5 0.731 14.2 433.9 66.8 611.5 177.6 83 

Manyoble 292.0 17.4 56.0 0.692 12.8 327.7 47.2 490.0 162.2 87 

Masuda black seed 322.8 15.5 54.9 0.720 18.7 283.2 56.2 417.4 134.1 82 

Mbalwe 274.3 12.5 58.1 0.737 15.1 226.2 35.6 303.6 77.43 84 

MN 1540 281.8 19.7 44.0 0.753 6.3 521.6 32.2 633.6 112.0 79 

MN 1644 301.8 22.3 52.0 0.747 8.1 638.9 55.1 826.3 187.4 79 

MN 1921 289.5 16.7 53.8 0.758 7.2 447.0 35.7 577.2 130.2 90 

MN 2063 261.6 25.5 37.0 0.741 9.0 742.5 66.0 902.5 159.9 72 

MN 2089 312.5 18.0 54.1 0.746 10.9 483.2 51.0 648.4 165.1 64 

MN 2109 278.0 22.7 45.3 0.745 8.5 876.1 79.2 1084.6 208.5 71 

MN 2161 295.8 19.0 50.2 0.756 7.3 567.1 45.2 754.7 187.6 90 

MN 2238 277.0 27.3 53.8 0.751 6.7 795 60.5 972.5 177.5 93 

MN 2363 301.3 18.0 50.6 0.779 7.2 473.3 39.4 609.0 135.6 92 

MN 2386 242.1 24.7 49.6 0.764 6.6 761.0 54.3 979.1 218.1 98 

MN 2756 251.1 18.3 55.1 0.745 12.9 428.3 52.8 568.5 140.2 69 

MN 2762 312.6 20.0 45.6 0.784 14.4 237.4 33.3 344.9 107.5 88 

MN 2894 254.6 13.1 56.8 0.737 13.9 140.9 20.8 228.0 87.1 91 

MN 4135 254.6 15.0 53.5 0.746 17.8 308.1 58.8 445.5 137.3 84 

MN 4553 352.3 23.4 51.0 0.751 10.2 834.8 93.9 1114.0 279.1 76 

MN 4564 346.6 25.0 49.8 0.781 11.0 885.1 105.0 1190.0 304.9 61 

MN 4566 312.6 22.6 51.9 0.757 8.9 914.2 88.0 1189.8 275.6 85 
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Genotype 

Plant 

height 

(cm) 

Stem 

diameter 

(mm) 

Chlorophyll 

(SPAD) 
Fv/Fm 

Brix 

(%) 

Juice yield 

(g plant
-1

) 

Sugar yield 

(g plant
-1

) 

Stem fresh 

weight 

 (g plant
-1

) 

Stem dry 

weight  

(g plant
-1

) 

RSYR
†
 

(%) 

MN 4570 313.6 18.6 52.0 0.769 8.9 441.6 37.1 568.0 126.4 64 

MN 600 319.8 19.9 49.2 0.768 15.1 506.4 79.4 711.0 204.6 89 

MN 818 316.6 17.5 54.8 0.757 14.6 520.7 76.9 712.9 192.2 28 

Mubeya 312.8 17.8 53.2 0.760 15.5 402.0 62.5 585.1 183.1 54 

N100 256.5 17.0 50.5 0.754 16.8 267.9 48.8 381.2 113.2 81 

N111 272.6 12.6 47.2 0.741 17.7 164.5 32.0 311.3 146.7 91 

Nagad El mur 153.0 18.3 50.7 0.729 15.6 258.1 41.8 386.6 128.6 79 

Nkolongo 311.0 21.1 51.0 0.748 8.3 656.2 45.0 856.9 200.7 67 

NO. 5 gambela 276.1 18.4 56.4 0.770 13.3 498.6 68.8 693.0 194.4 66 

NO. 6 gambela 314.3 18.7 47.4 0.771 15.4 512.6 85.0 744.2 231.6 72 

NO. 8 gambela 301.3 19.2 55.6 0.722 13.9 493.2 66.3 673.8 180.6 87 

Opemba 268.5 23.1 45.0 0.747 8.2 655.5 58.6 788.9 133.5 92 

Rahmetalla gallabat 285.1 16.3 57.9 0.742 17.5 397.1 73.8 572.3 175.1 78 

Red_amber 253.0 13.1 51.6 0.732 14.8 181.4 26.3 274.8 93.4 77 

Rex 296.8 17.7 50.9 0.724 15.6 232.2 39.2 411.1 178.9 89 

Rio_1 265.3 17.8 53.5 0.757 15.7 376.5 59.9 554.9 178.4 83 

Saccaline 291.0 17.6 52.9 0.780 11.8 478.4 56.4 671.0 192.6 81 

Sairwa 247.3 19.5 46.8 0.726 6.2 517.0 32.6 658.8 141.8 80 

Sanyagie 255.3 22.7 46.1 0.765 10.6 770.9 81.2 985.1 214.1 22 

Smith 335.8 19.3 52.8 0.778 18.7 470.2 89.6 735.9 265.7 39 

Sugar drip_2 334.6 13.9 60.0 0.767 15.4 260.1 41.8 422.7 162.6 88 

Tegevini 310.5 15.6 49.4 0.747 15.1 316.5 48.6 438.5 122.0 73 

Theis 339.5 17.2 52.6 0.782 14.3 497.1 76.9 717.6 220.5 74 

Top 76-6 315.1 19.5 51.1 0.764 18.1 524.8 98.1 727.5 202.6 57 

Tracy_2 334.8 17.5 57.2 0.774 18.3 367.5 69.8 558.3 190.8 76 

Tracy_1 277.7 15.9 53.5 0.749 15.3 269.8 43.6 459.9 190.1 83 
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Genotype 
Plant height 

(cm) 

Stem 

diameter 

(mm) 

Chlorophyll 

(SPAD) 
Fv/Fm Brix (%) 

Juice 

yield (g 

plant
-1

) 

Sugar yield 

(g plant
-1

) 

Stem fresh 

weight 

 (g plant
-1

) 

Stem dry 

weight  

(g plant
-1

) 

RSYR
†
 

(%) 

Wad fur white 276.8 18.9 54.3 0.745 15.6 500.2 81.1 717.1 216.9 75 

Waxy club 241.0 15.0 55.4 0.730 15.7 210.3 35.2 308.9 98.5 85 

Wenabu 292.1 13.5 52.2 0.688 14.7 368.7 55.9 479.6 110.8 54 

Wray 317.8 19.6 54.0 0.778 15.7 777.0 118.3 1102.7 324.8 40 

Mean 289.5 17.9 52.2 0.749 13.4 436.1 56.1 606.2 170.0 75.5 

Range 153-395 11-27 37-60 0.66-0.79 6.2-20.7 125-914 17-118 174-1190 49.1-334.4 22-98 

SE
*
 4.80 0.39 0.44 0.002 0.42 23.09 2.57 28.75 6.9 1.8 

p value <0.0001 <0.0001 0.02 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 - 

LSD 80.0 3.4 9.2 0.04 5.3 285.1 38.0 346.8 116.7 - 
 

†
RSYR, relative sugar yield reduction in rain-fed condition to irrigated condition and not statistically analyzed 

*Standard error 
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Table 2.4 Comparison of irrigated and rain-fed mean values of various traits among 280 sweet 

sorghum genotypes. 

Traits Irrigated Rain-fed 
%  Decrease 

from irrigated 

Plant height (cm) 291.89 278.14 4.7 

Stem diameter (mm)  16.82 15.79 6.1 

Leaf chlorophyll (SPAD) 52.59 52.24 0.7 

PS II Photochemical efficiency (Fv/Fm) 0.754 0.748 0.8 

Stem fresh weight (g plant
-1

)  525.36 348.12 33.7 

Stem dry weight (g plant
-1

)  164.53 110.40 32.9 

Brix (%)  16.06 10.11 37.0 

Juice yield (g plant
-1

) 360.84 237.72 34.1 

Sugar yield (g plant
-1

) 69.14 24.02 65.3 
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Chapter 3 - Effects of harvest time on juice yield of sweet sorghum 

 3.0 Abstract 

Sweet sorghum (Sorghum bicolor L. Moench) is an important bioenergy crop, and has 

the potential to be grown for ethanol production. In sweet sorghum, sugar content changes with 

development, so it is important to determine and optimize of stage of development that provides 

maximum sugar yield. The objective of this research was to determine optimum harvest time for 

obtaining the maximum sugar and juice yield of sweet sorghum. A field experiment was 

conducted using sweet sorghum variety M81E, and harvested at ten growth stages (flag leaf tip 

appearance, start of panicle emergence, complete panicle emergence, anthesis, post-anthesis, 

milk, soft dough, hard dough, physiological maturity and 30 d after physiological maturity). Data 

on physiological, growth and yield traits were measured at each harvest. The results revealed that 

the effect of harvest timing was significant for most traits. Sugar yield and juice yield linearly 

increased from flag leaf appearance to milk stage, thereafter remained constant until hard dough 

stage. Juice purity, total sugars, and non-reducing sugars were highest at hard dough stage. These 

results suggest that optimum harvesting time for sweet sorghum is the hard dough stage. 
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 3.1 Introduction 

Biofuels, particularly bioethanol can be a potential alternative fuel for consumption. The 

demand for alternative fuel has gained world-wide attention including the U.S and Brazil which 

together contribute to 89% of total global ethanol production (Davila-Gomez et al., 2010). Maize 

(Zea mays) and sugarcane (Saccharum officinarum) are two major crops for ethanol production 

(Mussatto et al., 2010). In the U.S., Maize is the major feedstock for grain ethanol. Continuous 

increase in energy demand necessitates more attention towards alternative feedstock for biofuel 

production (Solomon et al., 2007). The limitations of cultivating maize for ethanol include 

increased use of inputs to produce biomass in terms of nitrogen requirements and inefficient 

conversion of starch to ethanol. In addition use of maize grain for ethanol competes with food 

and feed demands. 

Sweet sorghum (Sorghum bicolor L. Moench) is an attractive feedstock for ethanol 

production (Wu et al., 2010). Sorghum requires less water and nitrogen and better adapted to 

high temperature and drought stress (Prasad et al., 2007; Almodares and Hadi, 2009). In 

addition, sweet sorghum has been reported to yield adequate biomass for increased sucrose 

accumulation in the stem. Ethanol, a high octane fuel, produced by the fermentation of 

carbohydrates such as glucose and fructose (reducing sugars) and sucrose (non-reducing sugar) 

in the stem juice (Mastrorilli et al., 1999; Barbanti et al., 2006; Rooney et al., 2007; Teetor et al., 

2011). Quality of juice (extractable juice and purity) depends upon many factors such as variety, 

stage of the crop and other management and environmental factors. 

In sweet sorghum, sucrose is accumulated in large amounts in the stem during 

inflorescence development (McBee and Miller, 1982). Hence, there may be a competition for 

carbohydrates between stem and developing seed. At maturity the sugars (reducing and non-
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reducing sugars) were mobilized from stem and leaves to grain. The amount of assimilates 

allocated for sucrose biosynthesis in the stem and grain depends on partitioning. Previous studies 

have reported that sucrose levels start to increase in the stem from preboot to anthesis (McBee 

and Miller, 1982; Hoffman-Thoma et al., 1996). Ghatode et al. (1991) observed that brix, 

reducing sugars and non-reducing sugars were found to decrease at maturity. Sucrose content 

and seed yield are indicators of how assimilates are partitioned between two sinks (grain and 

stem). Hence, to get maximum stem sucrose content, time of harvest is important. 

In sweet sorghum, traits such as plant height, stem diameter and brix can influence juice 

yield (Ali et al., 2008; Murray et al., 2009). The primary biomass component in sweet sorghum 

is stem weight, which accounts to 70% of total weight (Dalianis, 1997). Stem weight is 

correlated with height, diameter, thickness and juiciness (Audilakshmi et al., 2010; Pfeiffer et al., 

2010). Murray et al. (2008) found that plant height was highly correlated with juice yield and 

stem fresh weight. It has also been reported that there is a linear correlation between brix and 

total sugar content of the juice (Tsuchihashi and Goto, 2004; Audilakshmi et al., 2010; Davila-

Gomez et al., 2010).  

Harvesting is a critical operation in sweet sorghum. Selection of an optimal harvest date 

will require a better understanding of the biochemical changes that occur during different stages 

of plant growth and development. The cultivation of sweet sorghum variety M81E has acquired 

great commercial importance for ethanol production (Wu et al., 2010) but information on the 

effect of harvest time from start of flowering to physiological maturity on sugar yield is not 

known and needs attention. The objective of this research was to determine the optimum harvest 

time for obtaining maximum juice yield. We hypothesize that sugar yield will increase between 

milk and dough stages. 
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 3.2 Materials and Methods 

 3.2.1 Plant material 

Sweet sorghum variety M81E used in this study was developed at U.S. Sugar Crops Field 

Station, Meridian, Mississippi. The variety was selected from the F2 progeny of the cross 

„Brawley‟ x (Brawley x „Rio‟) and released in 1981 and is late maturing (140-150 days). 

 3.2.2 Experimental site and environmental conditions 

The variety M81E was grown under rain-fed condition during 2009 at Ashland Bottoms 

Research Farm near Manhattan, KS (39°06´54.2˝N-96°38´10.0˝W, Altitude: 323 m). Soil at the 

experimental site was a Harney silt loam (clay 16%, silt 64% and sand 20%; and pH 6.3). The 

daily weather conditions during the 2009 cropping season are presented in Fig. 3.1. The total 

amount of rainfall received during the cropping season (June-November) was 626 mm. The 

average maximum day and minimum night time air temperature during crop growing season 

were 23.7°C and 11.5°C, respectively. The Normal (1971-2000) daily maximum and minimum 

air temperature for the period is 26.1°C and 11.8°C. 

 3.2.3 Crop husbandry 

The experimental plot was chisel ploughed and the seeds were sown on 18 June in 2009 

at 5 cm deep. Plots were fertilized with 90 kg ha
-1

 N as urea. For weed control, the plots were 

sprayed with Bicep Lite II Magnum (a.i. 0.82 kg atrazine ha-1 and 1.03 kg S -metolachlor ha-1) prior to 

planting. The field was kept weed free by hand weeding as necessary. Plot size was of 9 m x 3 m. 

Each plot consisted of four rows of 9 m length spaced 0.75 m apart. The harvest treatments 

comprised of ten growth stages: flag leaf tip appearance (71 d after planting), start of panicle 

emergence (79 d after planting), complete panicle emergence (85 d after planting), anthesis (92 d 

after planting), post-anthesis (99 d after planting), milk stage (107 d after planting), soft dough 
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(117 d after planting), hard dough (129 d after planting), physiological maturity (140 d after 

planting) and post-physiological maturity (170 d after planting).  

 3.2.4 Data collection 

 3.2.4.1 Physiological traits  

Physiological traits were recorded on attached fully expanded flag leaves of two different 

tagged plants per plot before each harvest stage at midday (between 10:00 and 14:00 h). 

Chlorophyll content was measured using a self-calibrating chlorophyll meter [Soil Plant 

Analytical Device (SPAD), Model 502, Spectrum Technologies, Plainfield, IL, USA]. 

Chlorophyll a fluorescence parameters were measured using pulse-modulated fluorometer 

(OS5p, Optisciences, Hudson, NH, USA). Photosystem II (PSII) photochemical efficiency of 

(Fv/Fm) was measured in 30-min dark-adapted leaves (Prasad et al., 2008). The leaf and stem 

temperature was measured with a hand-held thermal imager (FLIR ThermaCAM BCAM thermal 

imaging systems, Janesville, WI, USA). For measurement of stem temperature, three regions of 

the stem (bottom 3
rd

 internode, middle 6
th

 internode, and the top 9
th

 internode) were used to 

record temperatures and the average was computed from the values of all three regions. 

 3.2.4.2 Growth traits 

Plant growth traits were recorded from the same two tagged plants, at each time of 

harvest. Plant height was measured from base of the stem to the tip of the panicle using a 

measuring tape. Stem diameter was measured from the three regions of the stem (bottom 3
rd

 

internode, middle 6
th

 internode, and the top 9
th

 internode) using vernier caliper after stripping the 

leaves and removal of leaf sheaths. Data on stem diameter was averaged across the stalk. 

Number of leaves and total number of internodes on the stem were counted. Leaf area was 

measured with a LI-COR leaf area meter (LI-3100, Li-Cor Biosciences, Lincoln, NE, USA). 
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 3.2.4.3 Yield traits 

At each harvest, yield traits were obtained from center 1.5 m of row consisting of 10 

plants from each plot, and the stems were stripped. The fresh weight of the panicles, leaves, and 

stems were recorded. From these data the total fresh biomass comprised of panicles, leaves and 

stem was calculated. The fresh leaf, panicle and crushed stem were oven-dried at 60
°
C for 7 d 

and dry weights were recorded. The total dry biomass was calculated from the oven dried 

samples. The panicles were threshed by hand to obtain grain yields. Grain harvest index was 

calculated as the ratio of grain yield to total aboveground dry biomass and expressed as a 

percentage. Sugar harvest index was calculated as the ratio of sugar yield to total dry biomass 

and expressed as a percentage. 

 3.2.4.4 Juice quality and sugar yield 

The juice from 10 plants was extracted using a motor operated three roller sugarcane 

crusher (Sukra sugarcane crusher, Coimbatore, Tamil Nadu, India). After juice extraction, juice 

volume was used to calculate juice yield. The total soluble brix of extracted juice was determined 

using a digital hand-held refractometer (Digital hand-held pocket refractometer PAL-1, Atago, 

Bellevue, WA, USA) and expressed in percentage. The sugar yield was calculated as a product 

of brix (%) and juice yield. The juice samples were frozen and stored -24°C freezer for further 

analysis. 

Total sugars and reducing sugars were estimated in the extracted stem juice. Total sugars 

and reducing sugars were estimated using procedures of Robertson et al. (1996) and expressed as 

a percentage. Non-reducing sugar was obtained from the differences of total and reducing sugars 

and expressed as a percentage. The starch content in the juice was estimated using rapid starch 

test (Ronaldson and Schoonees, 2004) and expressed as µg g
-1

 of brix. Juice pH was determined 

using pH meter (Digital pH meter DPH-1, Atago, Bellevue, WA, USA). Percentage extractable 

Deheading Treatment in Keller 
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juice was calculated from the juice yield of the sample and fresh weight of stem portion of the 

sample. Juice purity was derived from the ratio of non-reducing sugar to brix and expressed in 

percentage. 

 3.2.5 Data analyses 

The experiment was conducted using a randomized complete block design with four 

replications. The data were subjected to the analysis of variance for each trait using the general 

linear model procedures in statistical analysis software version 9.1 (SAS Institute, 2003). 

Treatment means were compared using L.S.D at 5% level of probability. 

 3. 3 Results 

 3.3.1 Physiological traits 

Leaf temperatures ranged from 30.8
°
C to 23.5

°
C during different harvest periods. The 

trend of stem temperature followed similar to that of leaf temperature and ranged from 28.4
°
C to 

20.9
°
C (Table 3.1). Photochemical efficiency (Fv/Fm) increased from flag leaf stage up to hard 

dough stage. There was no effect of harvest time on initial fluorescence (Fo). The chlorophyll 

(SPAD) steadily increased from flag leaf tip appearance until hard dough stage (Table 3.1). 

 3.3.2 Growth traits 

Plant height of this variety was 378 cm with 15 internodes at anthesis (Table 3.2). These 

values remained similar from anthesis to post-physiological maturity. Total leaf number was 14 

and leaf area was 5075 cm
2
 at post-anthesis stage. The bottom 3

rd
 internode diameter 

continuously increased and reached 19.8 mm at milk stage (Table 3.2). The 6
th

 and 9
th

 internode 

diameter also increases from flag leaf stage and reached maximum at hard dough. Similarly, 

maximum average stem diameter was observed at hard dough stage (Table 3.2). 
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 3.3.3 Yield traits 

Stem fresh weight increased from flag leaf stage until hard dough stage with highest 

percent increase from flag leaf to boot stage (Table 3.3). The subsequent increase at each 

successive stage was 9.4% (panicle emergence), 11.5% (anthesis), 6.6% (post-anthesis), 6.1% 

(milk stage) and 3.3% (soft dough). The highest stem fresh weight was obtained at hard dough 

stage followed by soft dough stage and these values were the highest compared with those 

obtained during other harvest timing. Harvesting beyond hard dough stage decreased stem fresh 

weight at physiological maturity and post- physiological maturity (170 d after planting). Stem 

dry weight markedly increased from flag leaf stage to physiological maturity and thereafter 

decreased at post- physiological maturity. The grain dry weight increased from anthesis to 

physiological maturity with a harvest index of 23.0% (Table 3.3). Sugar harvest index, while it 

decreased at physiological maturity and post-physiological maturity, was similar at milk stage, 

soft and hard dough stages, respectively (Table 3.3). 

 3.3.4 Juice quality and sugar yield 

The juice pH declined from flag leaf stage up to hard dough stage and then peaked at 

physiological maturity (Table 3.4). The starch content in the juice increased from flag leaf stage 

to soft dough stage (Table 3.4). Thereafter starch content decreased at hard dough and 

physiological maturity. However, starch increased substantially when plants senesced at post- 

physiological maturity. 

The percent extractable juice was similar from flag leaf stage to physiological maturity 

(Table 3.4). However, lowest extractable juice was obtained when plants were harvested at post-

physiological maturity. The data on juice purity percentage revealed increasing trend from flag 

leaf tip appearance up to panicle emergence, decreased steadily at milk stage, then increased at 
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soft dough stage. The juice purity was highest at hard dough stage and it declined thereafter at 

physiological maturity and post-physiological maturity. Brix had an increasing trend from flag 

leaf up to soft dough stage, then slightly decreased and remained similar between hard dough and 

physiological maturity, and then peaked at post-physiological maturity (Table 3.5). 

Reducing sugars increased from early flag leaf tip appearance stage until post- anthesis 

stage and thereafter remained similar until physiological maturity (Table 3.5). Harvesting beyond 

physiological maturity resulted in lower reducing sugars. Non-reducing sugar steadily increased 

from flag leaf tip appearance, peaked at hard dough stage and steadily decreased thereafter until 

post-physiological maturity (Table 3.5). The total sugars continuously increased as plants 

matured with lowest at flag leaf stage and the highest at hard dough stage. A decline in the 

percent total sugars was observed at physiological and post- physiological maturity (Table 3.5). 

Juice yield was highest when plants were harvested during the hard dough stage (Table 

3.5). However, juice yield was not different at soft dough stage and milk stage. The lowest juice 

yield was obtained at flag leaf stage. Harvests beyond hard dough stage, decreased juice yield at 

physiological maturity and post-physiological maturity. Sugar yield gradually increased from 

flag leaf tip appearance stage to milk stage, thereafter it was statistically similar until hard dough. 

Sugar yield decreased at physiological maturity and post-physiological maturity (Table 3.5). 

 3.4 Discussion 

In sweet sorghum, changes in the composition of juice and stem weight influences juice 

quantity and quality as the crop matures. Our results revealed that maximum sugar yield was 

observed during hard dough stage, where stem fresh weight was at a maximum (Table 3.3). 

There were no changes in juice extraction percentage until physiological maturity in spite of 

gradual increases in stem fresh weight (Table 3.3 and Table 3.4) through continuous 
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accumulation of carbohydrate in the stem. The increase in stem fresh weight was due to increase 

in average stem diameter and plant height (Table 3.2 and 3.3). The decrease in fresh weight at 

physiological maturity was due to leaf loss and dry down. Pfeiffer et al. (2010) stated that taller 

sweet sorghum hybrids with greater stem diameter produced greater stalk yields. Stem is a much 

stronger sink for sugar accumulation and fiber content (mainly cellulose and lignin) (Powell et 

al., 1991; Zhao et al., 2009). Higher Fv/Fm and chlorophyll SPAD at soft dough and hard dough 

stages indicated that the plant was also physiologically efficient, leading to greater accumulation 

of carbohydrates in stems. 

The significant increase in the sugar yield between milk and hard dough stage was due to 

increase in juice yield (Table 3.5). However, at maturity a decrease in sugar yield in the stem was 

measured with a concomitant increase in grain yield (Table 3.5 and Table 3.3). Rajendran et al. 

(2000) reported the decrease in stem weight was due to mobilization of carbohydrates from stem 

to developing grain at maturity in sweet sorghum. 

In our study, juice brix decreased at physiological maturity (Table 3.5), which indicates 

enhanced mobilization of soluble sugars to the developing grains resulted in increased grain 

yield (Table 3.3). Conversely, Almodares et al. (2007) observed highest brix in 'Rio' genotype at 

physiological maturity. The decrease in starch content in juice from soft dough stage leads to 

increase in reducing and non-reducing sugars at hard dough stage. Almodares and Hadi (2009) 

reported that decrease in starch content in juice along with an increase in reducing and non- 

reducing sugars was due to structural changes in carbohydrates namely starch to sucrose, an 

important process in sweet sorghum to obtain maximum ethanol production. 

The total sugars in the juice increased from flag leaf to hard dough stage (Table 3.5). 

Hills (1990) reported that the sugar content in sweet sorghum stems increased between milk and 
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dough stages for most cultivars. It then begins to decline towards physiological maturity. The 

reducing sugars in juice decreased from hard dough to post-physiological maturity. Almodares et 

al. (1994) observed high sucrose and total sugar content and low reducing sugar at dough stage 

in sweet sorghum cultivars, MN1500, Soave, Wray and Vespa. This was attributed to increased 

use of reducing sugars (glucose and fructose) for various metabolic functions and higher activity 

of amylase enzyme. At all the stages of harvest, the percentage of reducing sugars differed 

significantly. The non-reducing sugar percentage, as sucrose, increased from flag leaf tip 

appearance to hard dough stage and this could be attributed to decreased activity of the enzyme 

invertase. The increase in non-reducing sugar at hard dough stage was in accordance with the 

finding of Lingle (1987) and Almodares et al. (2007) in sweet sorghum. Ferraris and Charles-

Edwards (1986) also reported that sucrose and soluble solids concentration and yields in sweet 

sorghum stems were highest at or near grain maturity. 

Our present study revealed that there was a dramatic decrease in sugar yield, brix and 

juice yield with significant increase in grain yield during harvest at physiological maturity. 

Harvesting 30 d after physiological maturity decreased sugar yield, juice yield but increased brix 

(Table 3.5). The increase in brix at post-physiological maturity stage was due to concentration of 

sugar in the juice due to drying and freezing (cool temperature). The juice purity significantly 

decreased at physiological and post-physiological maturity stages because of decrease in non-

reducing sugar content and increase in brix. 

 3.5 Conclusions 

Harvesting plants at hard dough stage resulted the highest brix, total sugars, reducing 

sugars and non-reducing sugars. The highest level of sugar and juice in the stem was obtained 

from plants harvested from milk to hard dough stage. We conclude that the optimum harvest 
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time for maximum juice and sugar yields for the sweet sorghum variety M81E is between milk 

and hard dough stages. 
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 3.6 Tables and Figures 

 

Figure 3.1  Daily maximum and minimum mean air temperatures and rainfall during the 

cropping season (2009) at Manhattan, Kansas. 
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Table 3.1 Effect of different stages of harvesting on physiological traits of sweet sorghum variety M81E grown at Manhattan, Kansas. 

Stages of harvesting 
Days after 

planting 

Leaf 

temperature 

(
o
C) 

Stem 

 temperature 

(
o
C) 

Fo
+
 Fm

#
 Fv/Fm 

Chlorophyll 

(SPAD) 

Flag leaf tip appearance 71 30.8
a
 28.4

a
 259.0

a
 961.0

b
 0.730

d
 41.8

e
 

Boot (start of panicle emergence) 79 26.9
b
 26.8

ab
 247.0

a
 974.0

b
 0.746

c
 43.2

de
 

Complete panicle emergence 85 29.6
a
 27.8

ab
 258.5

a
 1055.5

b
 0.755

bc
 45.2

cd
 

Anthesis 92 26.9
b
 25.4

bc
 256.5

a
 1096.0

b
 0.766

b
 47.3

ab
 

Post-anthesis 99 25.2
c
 23.0

cd
 267.0

a
 1120.0

b
 0.762

b
 47.1

bc
 

Milk 107 24.7
cd

 23.2
cd

 252.0
a
 1089.0

b
 0.768

b
 48.5

ab
 

Soft dough 117 23.8
d
 21.4

d
 249.5

a
 1178.5

ab
 0.788

a
 49.1

ab
 

Hard dough 129 23.5
d
 20.9

d
 293.5

a
 1405.5

a
 0.792

a
 49.3

a
 

Physiological maturity 140 - - - - - - 

Post-physiological maturity 170 - - - - - - 

LSD value (P=0.05)  1.3 2.7 NS NS 0.013 2.0 

NS – Non-significant; Means within the same column with different letter are significantly different at P<0.05; - Data not recorded 

(Leaves were completely dried up at these stages of harvest). 

+
 Fo = initial fluorescence 

# 
Fm = maximum fluorescence
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Table 3.2 Effect of different stages of harvesting on growth traits of sweet sorghum variety M81E grown at Manhattan, Kansas. 

Stages of harvesting 

Days 

after 

planting 

Plant 

height 

(cm) 

No. of 

internodes 

plant
-1

 

No. of 

leaves 

plant
-1

 

Leaf area 

(cm
2
 ) 

Bottom 3
rd

 

internode 

diameter 

(mm) 

Middle 6
th 

internode 

diameter 

(mm) 

Top 9
th

 

internode 

diameter 

(mm) 

Average 

stem 

diameter 

(mm) 

Flag leaf tip appearance 71 249
d
 11.1

b
 13.5

ab
 4141.6

b
 16.8

e
 13.9

e
 12.2

d
 14.3

g
 

Boot (start of panicle 

emergence) 
79 314

c
 13.4

a
 13.5

ab
 4368.8

b
 17.5

de
 14.7

de
 12.6

d
 14.9

fg
 

Complete panicle emergence 85 352
b
 13.5

a
 13.8

a
 4540.7

ab
 18.1

cd
 14.9

d
 12.6

d
 15.2

f
 

Anthesis 92 378
a
 14.5

a
 13.8

a
 5069.2

a
 18.4

cd
 15.3

cd
 13.4

c
 15.7

ef
 

Post-anthesis 99 383
a
 14.5

a
 13.8

a
 5074.6

a
 18.7

bc
 16.2

bc
 13.6

c
 16.1

de
 

Milk 107 383
a 

14.5
a
 13.5

ab
 5036.5

a
 19.8

ab
 16.8

b
 14.0

bc
 16.8

cd
 

Soft dough 117 383
a
 14.5

a
 13.3

ab
 4017.8

b
 20.4

a
 16.9

b
 14.5

b
 17.2

bc
 

Hard dough 129 385
a
 14.5

a
 12.8

b
 - 20.5

a
 17.9

a
 15.3

a
 17.9

ab
 

Physiological maturity 140 384
a
 14.5

a
 11.3

c
 - 20.6

a
 18.4

a
 15.9

a
 18.3

a
 

Post-physiological maturity 170 385
a
 - - - - - - - 

LSD value (P=0.05)  11.5 1.3 0.76 609.4 1.13 0.96 0.75 0.80 

 

Means within the same column with different letter are significantly different at P<0.05; - Data not recorded. 
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Table 3.3 Effect of different stages of harvesting on yield traits of sweet sorghum variety M81E grown at Manhattan, Kansas. 

 

Stages of harvesting 

Days 

after 

planting 

Stem 

fresh 

weight 

 (t ha
-1

) 

Total 

fresh 

biomass 

 (t ha
-1

) 

Stem 

dry 

weight 

(t ha
-1

) 

Total dry 

biomass 

 (t ha
-1

) 

Grain 

yield 

 (t ha
-1

) 

Harvest 

index 

(grain) 

(%) 

Harvest 

index 

(sugar) 

(%) 

Flag leaf tip appearance 71 42.7
h
 52.7

g
 4.9

f
 7.2

f
 - - 16.9

d
 

Boot (start of panicle emergence) 79 53.2
g
 64.3

f
 7.6

e
 10.5

e
 - - 18.6

cd
 

Complete panicle emergence 85 58.2
f
 70.3

fe
 8.9

de
 12.1

e
 - - 22.3

bc
 

Anthesis 92 64.9
de

 79.0
dc

 10.6
cd

 16.8
d
 2.4

d
 14.3

f
 22.4

bc
 

Post-anthesis 99 69.2
dc

 89.6
ba

 11.8
bc

 18.7
cd

 2.8
d
 14.9

ef
 23.1

b
 

Milk 107 73.4
bc

 89.6
ba

 12.1
abc

 19.5
bc

 3.3
c
 16.7

de
 29.6

a
 

Soft dough 117 75.8
ba

 90.9
ba

 13.1
ab

 21.3
ab

 3.9
b
 18.3

cd
 28.5

a
 

Hard dough 129 78.8
a
 95.0

a
 13.5

ab
 22.0

a
 4.2

b
 19.1

bc
 27.9

a
 

Physiological maturity 140 67.3
d
 72.8

de
 13.6

a
 21.7

a
 5.0

a
 23.0

a
 22.3

bc
 

Post-physiological maturity 170 62.0
fe

 68.0
fe

 11.9
abc

 18.8
cd

 3.9
b
 20.5

b
 23.4

b
 

LSD value (P=0.05)  4.6 6.2 1.8 2.2 0.45 1.8 4.2 

 

Means within the same column with different letter are significantly different at P<0.05; - Data not available (No grain formation at 

these stages of growth). 
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Table 3.4 Effect of different stages of harvesting on juice quality traits of sweet sorghum variety M81E grown at Manhattan, Kansas. 

 

Stages of harvesting 
Days after 

planting 
Juice pH 

Starch 

(µg g
-1

) 

Extractable 

juice (%) 

Juice purity 

(%) 

Flag leaf tip appearance 71 5.32
cd

 7.8
f
 52.2

a
 34.4

e
 

Boot (start of panicle emergence) 79 5.30
bcd

 9.0
f
 51.8

a
 44.2

d
 

Complete panicle emergence 85 5.37
b
 10.6

ef
 54.5

a
 55.8

bc
 

Anthesis 92 5.32
bc

 16.51
de

 50.9
a
 49.3

cd
 

Post-anthesis 99 5.25
cde

 21.2
cd

 52.9
a
 46.6

cd
 

Milk 107 5.20
ef

 23.5
bc

 53.5
a
 41.9

de
 

Soft dough 117 5.15
f
 28.4

b
 52.6

a
 49.7

cd
 

Hard dough 129 5.22
def

 20.8
cd

 53.2
a
 81.3

a
 

Physiological maturity 140 5.55
a
 20.6

cd
 50.5

a
 64.5

b
 

Post-physiological maturity 170 4.57
g
 42.7

a
 41.8

b
 15.2

f
 

LSD value (P=0.05)  0.08 7.5 5.1 9.3 

 

Means within the same column with different letter are significantly different at P<0.05. 
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Table 3.5 Effect of different stages of harvesting on brix, reducing sugars, non-reducing sugars, total sugar percentage, juice and sugar 

yield of sweet sorghum variety M81E grown at Manhattan, Kansas. 

Stages of harvesting 
Days after 

planting 

Brix 

(%) 

Reducing 

sugar (%) 

Non-reducing 

sugar (%) 

Total sugar 

(%) 

Juice yield 

(L ha
-1

) 

Sugar yield 

(t ha
-1

) 

Flag leaf tip appearance 71 5.4
h
 2.8

e
 1.8

g
 4.7

f
 22333

f
 1.2

f
 

Boot (start of panicle emergence) 79 7.0
g
 5.4

d
 3.1

f
 8.5

e
 27631

e
 1.9

e
 

Complete panicle emergence 85 8.3
f
 7.1

cd
 4.6

e
 11.7

d
 31822

d
 2.6

d
 

Anthesis 92 10.1
e
 9.1b

c
 4.9

e
 14.0

c
 33067

cd
 3.7

c
 

Post-anthesis 99 11.8
d
 12.0

a
 5.4

de
 17.5

b
 36667

bc
 4.3

b
 

Milk 107 14.7
b
 11.8

a
 6.1

d
 18.0

b
 39244

ab
 5.8

a
 

Soft dough 117 15.1
b
 10.4

ab
 7.5

c
 17.9

b
 39933

ab
 6.0

a
 

Hard dough 129 14.6
bc

 11.9
a
 11.8

a
 23.7

a
 41867

a
 6.1

a
 

Physiological maturity 140 14.0
c
 9.2

bc
 9.0

b
 18.3

b
 34056

cd
 4.8

b
 

Post-physiological maturity 170 17.0
a
 2.3

e
 2.5

fg
 4.8

f
 26000

ef
 4.4

b
 

LSD value (P=0.05)  0.6 2.2 0.99 2.3 3740.2 0.46 

 

Means within the same column with different letter are significantly different at P<0.05. 
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Chapter 4 - Morpho-physiological based screening of sweet sorghum 

genotypes for high sugar yield 

 4.0 Abstract 

Field research was conducted using 30 sweet sorghum genotypes varying in sugar yield, 

to understand the morpho-physiological basis for sugar yield in sweet sorghum (Sorghum bicolor 

L. Moench) genotypes. The physiological, growth, and yield traits were measured. Correlation 

studies were undertaken to establish valid relationship between the traits studied and sugar yield. 

A principal component analysis (PCA) was performed to distinguish genotypes depending on 

their sugar yield potential as well as to identify traits contributing for high sugar yield. High 

sugar yielding group produced greater number of green leaves, tall plant stature, and high 

average stem diameter. Greater number of green leaves coupled with high leaf chlorophyll 

(SPAD) content resulted in higher quantum yield of photosystem (PS) II (Fv/Fm). As a result of 

increased photosynthetic performance due to high Fv/Fm, plants produced greater stem fresh 

weight, which constitutes one of the major determinants of sugar yield in sweet sorghum. High 

stem weight resulted in greater quantity of extractable juice. The high sugar group accumulated 

relatively higher total dry biomass than the low sugar group. However, the grain yield was found 

to be significantly higher in the low sugar yielders in contrast to the high yielders. Further, it was 

observed that late maturing rather than early maturing genotypes proved to be high sugar 

yielders. Overall, high sugar yielders had better juice quality in terms of higher brix. The PCA 

revealed that PC1 and PC2 accounted for 52.38% and 12.25% of the variance, respectively. The 

component scores indicated genotypes No. 6 gambela and No. 5 gambela were high sugar 

yielders and genotypes Rahmatella gallabat and Atlas were low yielders. The highest positively 
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contributing trait for sugar yield was stem fresh weight, whereas grain yield had high negative 

characteristic. 

 4.1 Introduction 

Sweet sorghum (Sorghum bicolor L. Moench.) can be an alternative biofuel feedstock 

because of its high biomass production and high percentage of easily fermentable sugars mainly 

sucrose in the juice (Mastrorilli et al., 1999; Barbanti et al., 2006; Rooney et al., 2007). Sweet 

sorghum is adaptable to a wide range of environmental conditions (Berenguer and Faci, 2001; 

Almodares and Hadi, 2009), and requires relatively less water and nitrogen fertilizer (Mastrorilli 

et al., 1999; Barbanti et al., 2006).  

Traits like green stalk yield, stalk sugar content, stalk juice extractability and grain yield 

are the major contributors for sweet sorghum‟s economic importance (Almodares et al., 2006; 

Almodares et al., 2008). However, these traits are quantitative and polygenic inheritance in 

nature and are complex to be manipulated directly in breeding procedure (Zou et al., 2011). 

Therefore, to successfully improve these complex traits, they need to be dissected into smaller 

morphological, physiological and genetical components, which could be easily analyzed and 

evaluated. Previous studies have suggested that much variability exists in juice quality, sugar 

content, and juice yield among the U.S sweet sorghum collections (Ali et al., 2008; Murray et al., 

2008a; Murray et al., 2009; Makanda et al., 2009). The consequences of the phenotypic variation 

depend largely on the environment. Furthermore, correlations between the traits are of great 

importance in selection process for successful breeding programs. 

Correlation studies are important for both quantitative and qualitative trait improvement 

programs. In sweet sorghum, stalk yield has significant positive correlations with plant height, 

stem diameter and juice yield (Audilakshmi et al., 2010) and also a strong association of sugar 
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yield with brix was noticed (Pfeiffer et al., 2010). Therefore, selection for stalk yield should be 

focused on plant height, stem diameter, brix and juice yield. Total sugar content could be 

calculated from the brix because of a significant linear correlation between brix and total sugar 

content of the juice (Ma et al., 1992). Studies have shown that there was significant negative 

correlation between grain yield and stem biomass which might eventually lead to reduced sugar 

yield (Makanda et al., 2009). However, there are no studies that showed direct correlation 

between physiological traits and sugar yield.  

Sugar yield is a quantitative trait, which is the resultant of various traits contributing 

together during the crop growth, which are interdependent in their development. It is, therefore, 

desirable to study the association between yield and yield attributing traits since this would 

facilitate effective selection for simultaneous improvement of one or more yield influencing 

components. However, due to multicollinearity between yield components, a simple correlation 

analysis between yield and its components would be misleading. In order to avoid 

multicollinearity between yield components and reduce the dimension of correlation, a PCA 

analysis is preferable. PCA is a powerful statistical tool by which relationship between complex 

traits can be studied. Development of suitable genotypes for sustainable production of sweet 

sorghum requires large screening of existing genotypes for quality and quantity of juice yield and 

sugar content. Scientific information on growth and development of sweet sorghum is limited 

and precludes establishing valid interrelationships for predicting its biomass production and 

sugar yield. Further, the relationships between morpho-physiological and stem sugar yield traits 

are not clearly understood. 

The present study was conducted to gain an insight into various morphological and 

physiological traits contribute to sugar yield in sweet sorghum genotypes. Objectives of this 
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study were to (1) evaluate 30 sweet sorghum genotypes for their sugar yield; and (2) obtain 

information on the various growth and physiological traits influencing sugar yield. We 

hypothesize that sweet sorghum genotypes vary for the traits responsible for sugar yield. 

 4.2 Materials and Methods 

 4.2.1 Plant materials 

A total of 30 genotypes were chosen based on sugar yield data collected from two years 

of field study using 280 sweet sorghum germplasm collections. Genotypes chosen comprised 15 

high sugar yielders and 15 low sugar yielders. Seeds were obtained from the USDA-ARS, 

PGRCU, Isabela, Puerto Rico. The genotypes and their respective countries of origin selected for 

the study are presented in Table 4.1. 

 4.2.2 Experimental site and environmental conditions 

All 30 genotypes were evaluated under rain-fed condition during 2009 at Ashland 

Bottoms Research Farm near Manhattan, Kansas (39°06´54.2˝N - 96°38´10.0˝W, Altitude: 323 

m). Soil at the experimental site was chase silty clay loam (clay 12%, silt 60% and sand 28%; 

and pH 6.8). The daily weather parameters during the cropping season 2009 are presented in Fig. 

4.1. The total amount of rainfall received during the cropping season (May-October) was 588 

mm. The average maximum day and night air temperature were 25.4°C and 13.1°C, respectively. 

The normal (1971-2000) maximum and minimum air temperature for the period is 29.2°C and 

14.8°C and normal cumulative rainfall is 497.3 mm. 

 4.2.3 Crop husbandry 

The experimental plot was chisel plowed and planted on 29 May, 2009 at 5 cm deep with 

6 m x 2 m plot size. Plots were fertilized with 90 kg N ha
-1

 as urea. For weed control, the plots 
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were sprayed with Bicep Lite II Magnum (a.i. 0.82 kg atrazine ha-1 and 1.03 kg S -metolachlor ha-1) 

prior to planting. The field was kept weed free by hand weeding as necessary. Each plot consisted 

of four rows of 6 m length spaced 0.75 m apart. 

 4.2.4 Data collection 

 4.2.4.1 Physiological traits 

Physiological traits were recorded on attached fully expanded flag leaves of two different 

tagged plants in each replicate for each genotype from flowering through maturity at 15 d 

intervals at midday (between 10:00 and 14:00 h). Leaf chlorophyll content was measured using a 

self-calibrating chlorophyll meter [Soil Plant Analytical Device (SPAD), Model 502, Spectrum 

Technologies, Plainfield, IL, USA]. The photochemical efficiency of PSII (Fv/Fm) was 

measured in 30-min dark-adapted leaves (Prasad et al., 2008) using pulse-modulated fluorometer 

(Pulse-modulated fluorometer OS 30p, OptiScience, Hudson, NH, USA). The leaf temperature 

was measured with a hand-held thermal imaging camera (FLIR ThermaCAM BCAM, Janesville, 

WI, USA). 

 4.2.4.2 Phenology and growth traits 

Days to 50% flowering were recorded when 50% plants of each genotype in a plot had 

flowered. The plant growth traits were recorded from two randomly selected plants per replicate. 

Plant height was measured from base of the stem to the tip of the panicle using a measuring tape. 

Stem diameter was measured from the three regions of the stem (bottom 3
rd

 internode, middle 6
th

 

internode, and the top 9
th

 internode) using vernier caliper after stripping the leaves and leaf 

sheaths. Data on stem diameter were averaged across the regions. Total number of green leaves 

and total internodes on the stem were counted. 
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 4.2.4.3 Juice quality and yield traits 

The yield traits were obtained from 5 plants from the interior row was harvested at 

maturity. Plants were stripped and topped and the fresh weight of the panicles, leaves, and stems 

were recorded. To extract juice, stems were crushed using a motor operated three roller 

sugarcane crusher (Sukra sugarcane crusher, Coimbatore, Tamil Nadu, India). After extraction, 

juice was weighed. The percentage of extractable juice was calculated from the juice volume of 

the sample and weight of fresh stem and expressed as a percentage. Juice yield was estimated as 

the volume of juice extracted from the stem. The total soluble solids (Brix) of extracted juice 

were determined using a brix meter (Digital hand-held pocket refractometer PAL-1, Atago, 

Bellevue, WA, USA) and expressed in percentage. Juice yield and brix were used to calculate 

sugar yield. The fresh leaf, panicle and crushed stem were oven-dried at 60
°
C for 7d and dry 

weights were recorded. The total dry biomass was calculated from the oven dried samples and 

expressed in g plant
-1

. The panicles were threshed to obtain grain yield. 

 4.2.5 Data analyses 

The experimental design was randomized complete block with three replications. The data were 

subjected to the analysis of variance for each trait using the general linear model of the statistical 

software by Statistical Analysis Systems (SAS), 9.1 (SAS Institute, 2003). Genotypic means and 

group means between high and low sugar yielders were compared by least significant differences 

(LSD) at 5% level of probability. Pearson‟s phenotypic correlation coefficients between traits 

measured were computed using PROC CORR procedure in SAS. The PCA was run using the 

PRINCOMP procedure of the SAS statistical package. The eigenvalue-one criterion was used to 

retain the principal components that contributed considerable variability. Eigenvectors generated 

by PCA were used to identify traits that best differentiate genotypes for sugar yield performance. 

Deheading Treatment in Keller 
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The first two PCA scores, PC1 and PC2 that accounted for maximum variability of the traits 

tested, were used to group the genotypes. 

 4.3 Results 

 4.3.1 Physiological traits 

Significant differences were found for leaf chlorophyll content (SPAD) and PS II 

photochemical efficiency (Fv/Fm) across the genotypes. The leaf temperature did not differ 

significantly among genotypes (Table 4.2). The genotype Isidomba had maximum chlorophyll 

content, while the genotype Colman recorded the lowest (Table 4.3). The high sugar yielding 

genotype, Tracy, registered higher Fv/Fm ratio while the low sugar yielder, IS 2352 had the 

minimum ratio (Table 4.2). Groupwise analyses showed marked difference in chlorophyll 

content and Fv/Fm (Table 4.5). The high sugar yielders as a group contained significantly more 

chlorophyll than did the low sugar yielding group (Table 4.5). The high sugar yielding group 

significantly had higher Fv/Fm value as compared to low sugar yielders (Table 4.5). 

 4.3.2 Phenology and growth traits 

There were significant differences among the genotypes for days to 50% flowering, plant 

height, number of green leaves, number of internodes and average stem diameter (Table 4.3). 

The high yielding genotypes, Honey No.6, No. 5 Gambela and No. 6 Gambela had the longest 

duration for 50% flowering and the genotypes, IS 2352 and Ames amber, a low sugar yielders, 

had shorter period (Table 4.3). The maximum plant height was recorded in a high sugar yielder, 

Honey No. 6 while the lower sugar yielder Waxy club had the minimum height (Table 4.3). 

Among the genotypes, the high sugar yielder, MN 4578, recorded maximum green leaf number 

as against the minimum found in Red amber, a low sugar yielder (Table 4.3). Genotype MN 600, 

a high sugar yielder had maximum number of internodes at maturity as against the low sugar 
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yielder, Red amber (Table 4.3). The average stem diameter of individual genotypes showed the 

high yielder Wray, maintaining a higher value compared to a low sugar yielder, IS 2352 (Table 

4.3). Significant differences were also observed between high and low sugar yielding groups 

(Table 4.5). The data indicated that high sugar yielding group reached longer period to attain 

50% flowering whereas the low sugar group had shorter period when 50% of the plants flowered 

(Table 4.5). Groupwise also, the high sugar yielders significantly differed with low sugar 

yielders and exhibited higher plant stature as against the low sugar yielders (Table 4.5). The high 

sugar yielding group had greater green leaf number when compared to the low sugar group 

(Table 4.5). The high sugar yielders as a group possessed significantly greater number of 

internodes when compared to low sugar yielders (Table 4.5). The high sugar yielders maintained 

higher values of average stem diameter compared to low sugar yielders (Table 4.5). 

 4.3.3 Juice quality and yield traits 

Significant genotypic variation was observed for brix, juice yield, sugar yield, extractable 

juice, grain yield, stem fresh weight and total dry biomass (Table 4.4). Highest brix was recorded 

in the genotype, Della, a high sugar yielder whereas the lowest percentage of brix was obtained 

in the genotype, IS 2352, a low sugar group (Table 4.4). The highest juice yield recorded in a 

high sugar yielder, Honey No. 6 whereas the lowest yield was obtained by the low sugar yielder, 

MN 2894 (Table 4.4). The high sugar yielders, Wray, Honey No. 6 and Isidomba were found 

superior as indicated by the mean sugar yield value (Table 4.4). Among low sugar yielders, IS 

2352 and Ames amber produced the lowest sugar yields. The highest extractable juice percentage 

was recorded in a low sugar yielder, IS 2352 while also the low sugar yielder, Rahmatella 

gallabat recorded the lowest percentage juice extractability (Table 4.4). The genotype belonging 

to the low sugar group, MN 2894 showed higher grain yield while the high sugar genotype, 
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Honey No. 6 recorded the lowest
 
(Table 4.4). Genotype Wray, a high yielder, produced highest 

yield of stem fresh weight (Table 4.4). The two early maturing and low yielders, IS 2352 and 

Ames amber, produced the lowest stem fresh weights (Table 4.4). Among the genotypes, 

Awanlek, the high sugar yielder, was found to be highest in respect of total dry biomass (Table 

4.4). The two low sugar yielders, Ames amber and Red amber, were recorded lowest total dry 

biomass.  

There also appeared to be marked difference between the two sugar groups for the above 

traits except extractable juice (Table 4.5). Groupwise mean values indicated significantly higher 

amount of brix value present in the high sugar group than recorded lowest brix in the low sugar 

yielders (Table 4.5). Similarly, higher content of juice was obtainable from the high sugar 

yielders than low sugar yielding genotypes (Table 4.5). The high sugar group registered 

significantly higher sugar yield than the low sugar group (Table 4.5). The low sugar yielders 

produced higher grain yield than most of the high sugar yielders (Table 4.5). The high sugar 

yielding group had significantly higher stem fresh weight as compared to low sugar group (Table 

4.5). The high sugar group produced significantly higher dry biomass than the low sugar group 

as indicated by their mean values (Table 4.5). 

 4.3.4 Correlation analyses 

Correlation studies revealed significant and positive correlation between sugar yield and 

plant height (Fig. 4.2a), number of green leaves (Fig. 4.2b), and average stem diameter (Fig. 

4.2c). Significant positive correlation was observed between sugar yield and days to 50% 

flowering (Fig. 4.3a), leaf chlorophyll (Fig. 4.3b); Fv/Fm (Fig. 4.3c) and brix (Fig. 4.3d). The 

yield traits such as stem fresh weight (Fig. 4.4a) and juice yield (Fig. 4.4b) were positively and 
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significantly correlated with sugar yield while grain yield (Fig. 4.4c) was found negatively 

associated with sugar yield. 

 4.3.5 Principal component analyses (PCA) 

The results of the PCA of the traits and genotypes are presented in Table 4.6. Considering 

the Eigenvalue-one criterion, the first three principal components explained 74.08% of the total 

variation among sweet sorghum genotypes. The first principal component (PC1) had an 

eigenvalue of 7.334 and explained 52% of the total variation present in the sweet sorghum 

genotypes. Stem fresh weight, number of green leaves, number of internode, plant height, days to 

50% flowering, stem diameter, juice yield, total dry biomass and brix had the highest positive 

loadings in PC1 while grain yield, extractable juice and leaf temperature had negative loadings 

(Table 4.6). The second principal component (PC2) had an Eigenvalue of 1.715 and accounted 

for around 12% of the total variation. The PC2 primarily had a positive loading with extractable 

juice, leaf temperature, chlorophyll SPAD and Fv/Fm. The third principal component had 

eigenvalue of 1.322 and contributed 9.44% to the total variation. Component scores for the 

genotypes evaluated are shown in Table 4.6. Genotypes such as MN 4578, Wray, MN 600, No. 6 

gambela, No. 5 gambela and Honey No. 6 had highest positive values for PC1 whereas, 

genotypes IS 2352, Ames amber, Red amber, Waxy club, Luel and Colman showed negative 

values for PC1. The group of genotypes with the positive PC2 values were Honey No. 6, IS 

2352, Tracy, IS 12900, Isidomba and MN 4135 while genotypes Atlas, MN 2894, MN 4578, 

Della, Nerum boer and Leolti-peltier had negative PC2 values (Table 4.6). The first two PCs, 

which contributed to about 65% of the total variance, were graphically presented on a two-

dimensional plot (Fig. 4.5). On an average, high sugar yielders were highly correlated to PC1 

and were placed on the right of the bi-plot and most of the low sugar yielders correlated to PC2 
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and were placed on the left of the bi-plot (Fig. 4.5). Fig. 4.6 shows the correlation between the 

traits and the principal components for the contribution of each trait to the total variance. The 

first principle component PC1 was significantly and positively associated with most of the traits 

such as stem fresh weight, number of green leaves and internodes, days to 50% flowering, plant 

height, average stem diameter, juice yield, total dry biomass, Fv/Fm, brix, and chlorophyll SPAD 

negatively with grain yield, extractable juice and leaf temperature (Fig. 4.6). PC2 had a 

significantly and positively correlated to extractable juice, leaf temperature and chlorophyll 

SPAD and negatively with grain yield (Fig. 4.6). 

 4.4 Discussion 

Recently, breeding for improving biofuel (from juice) and byproducts (from bagasse) is 

becoming an important breeding objective for sweet sorghum breeders to meet the rapidly 

increased demand for biofuel production worldwide. It is well known that progress in plant 

breeding depends on the extent of genotypic variability existed in a population. Significant 

genotypic variability for plant height, stem diameter, days to anthesis, brix and grain yield 

among sweet sorghum genotypes was previously reported (Ritter et al., 2008; Ali et al., 2008; 

Murray et al., 2008a; Wang et al., 2009; Murray et al., 2009; Makanda et al., 2009). In the 

present study, since the sweet sorghum genotypes was chosen from two diverse sugar yielding 

groups, most of the measured traits exhibited extensive variability. 

The presence of green leaf number contributes assimilates supply to the sink (stem). The 

green leaf numbers revealed that the genotypes belonging to the high sugar yielding group 

possessed greater number of leaves. The low sugar yielding genotypes contained fewer number 

of green leaves which restricted it‟s assimilate production (Table 4.5). The high sugar yielding 

genotype, MN 4578, which produced the maximum number of green leaves, also accumulated 
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the greatest amount of dry matter; while Red amber, a low sugar yielder, produced a low total 

dry biomass with the least number of leaves (Table 4.3 and Table 4.4). In general plants that 

accumulated greater biomass had higher sugar yield at maturity. The leaf number and dry matter 

accumulation in sorghum were positively associated with each other as reported by Berenguer 

and Faci (2001). 

High sugar yielders generally possessed taller stature than the low sugar yielders. 

Tallness of the plant favored production of greater amount of biomass in the stem portion and 

this was indicated by the accumulation of greater stem fresh weight in the taller genotypes like 

MN 4578, MN 600 and No. 6 Gambela (Table 4.3 and Table 4.4). Earlier studies involving 

sweet sorghum hybrids also brought out a significant role of plant height in contributing to total 

biomass (Pfeiffer et al., 2010). 

The high sugar yielders recorded the highest chlorophyll content and PS II 

photochemistry (Fv/Fm) whereas low sugar yielders had lowest chlorophyll and Fv/Fm (Table 

4.2 and Table 4.5). Evidence is also available to point towards relative chlorophyll content as a 

rate determining factor in photosynthesis (Anjum et al., 2011). High photosynthetic rate is 

positively correlated with PS II photochemistry Fv/Fm ratio (Van der Tol et al., 2009). The 

increase in PS II photochemistry might have increased photosynthetic rate in high sugar yielding 

group which favored high biomass accumulation and sugar yield. The leaf temperature did not 

vary between the two sugar yielding groups hence the influence of leaf temperature on sugar 

yield was minimum (Table 4.5).  

The high sugar yielding group produced higher stem fresh weight, juice yield and high 

brix which were the contributory factors for their high sugar yield (Table 4.4). Conversely, low 

sugar yielding group had lower stem fresh weight, juice yield and brix resulted in lower sugar 
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yields. The stem fresh weight could also be directly related to juice yield. Murray et al. (2008 a, 

b) reported a significant association between brix and juice yield. Since sugar yield is a product 

of brix and juice yield, these two traits may be considered selection criteria for identifying a 

sweet sorghum genotype with a potential for high sugar yield. 

It is also noticed that high sugar yielders are late maturing enabled the plant to maintain 

an adequate supply of photoassimilates for a longer duration than in the case of low sugar 

yielders. It suggests that earliness does not favor higher accumulation of sugar in sweet sorghum 

(Table 4.3). Stem and grain were all sinks of the photosynthates in terms of the relationship 

between source and sink in sweet sorghum. After post-flowering, stored photoassimilates from 

leaf and stem would start to mobilize to the grain development. In sweet sorghum, the 

maintenance of stem weight depends on how fast this partitioning process occurs in order to 

favor high sugar accumulation. This is observed from this study that high sugar yielders are 

known for their low grain yields, partitioning of photoassimilates was less towards grain sink 

unlike in the case of low sugar yielders where greater proportion of assimilates were diverted for 

grain as indicated by higher grain harvest index (Table 4.4). 

Knowledge of correlation is important to obtain the expected response of other traits 

when selection is applied to a particular trait of interest in a breeding programme. To determine 

the degree of association of component traits with sugar yield, the correlation coefficients were 

estimated considering sugar yield as a dependent trait. Of the various traits, plant height, stem 

diameter, juice yield and stem fresh weight were positively and highly significantly correlated 

with sugar yield. Taller plants having more stem biomass and juice could produce more sugar 

yield. Similar result was reported by Murray et al. (2008a and b). There was a significant 
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negative correlation between grain yield and sugar yield indicating that panicle acted as a 

strongest sink for carbohydrates (Fig. 4.4c). 

The PCA was performed on the basis of all measured traits (Table 4.6) and genotypes 

(Fig. 4.5) were subjected to biplot analysis for assessing the relationships among all of 

component traits. The first two principal components explained about 65% variation among 

sweet sorghum genotypes for all the traits investigated. The PC1 had higher correlation with 

stem fresh weight, number of green leaves, internode number, days to 50% flowering, plant 

height, stem diameter and juice yield (Fig. 4.6). Thus, PC1 can be named as the sugar yield 

potential and genotypes on this PC1 biplot will be high sugar yielders (Fig. 4.5). PC2 had 

positive correlation with extractable juice and leaf temperature and negatively associated with 

grain yield. The PC2 was named as low sugar yield potential which separates low sugar yielders 

from high sugar yielding genotypes. Thus selection of genotypes that has high PC1 is suitable for 

high sugar yield characteristics. 

 4.5 Conclusions 

Sugar yield in sweet sorghum is an integration of morpho-physiological traits. High sugar 

yielders had higher green leaf numbers, tall plant stature, high average stem diameter, higher 

Fv/Fm and higher stem biomass accumulation, and low grain yield. Whereas, the low sugar 

yielders had more assimilates in grain. Of the thirty sweet sorghum genotypes investigated in this 

study, five genotypes, Wray, Honey No. 6, Isidomba, MN 4135 and No. 5 Gambela were 

identified as the high sugar yielders. In addition, principal component analysis (PCA) made it 

possible to establish similar groups of genotypes, according to their sugar yielding 

characteristics, as well as to study relationships among traits associated with sugar yield. 
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 4.6 Tables and Figures 

Figure 4.1  Daily maximum and minimum mean air temperature and rainfall during the cropping 

season (2009). 
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Figure 4.2  Correlation between sugar yield and growth traits. (a) plant height (b) number of 

leaves and (c) average stem diameter. 
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Figure 4.3  Correlation between sugar yield and phenology, physiology and juice quality traits. 

(a) days to 50% flowering (b) chlorophyll SPAD (c) Fv/Fm and (d) brix. 
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Figure 4.4  Correlation between sugar yield and yield traits. (a) stem fresh weight (b) juice yield 

and (c) grain yield. 
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Figure 4.5  Biplot analysis showing 30 sweet sorghum genotypes for principle components (PC1 

and PC2). 
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Figure 4.6  Correlations between traits and principal components indicated by thick lines from 

centre point and showing the direction (angle) and magnitude (length) for maximum chlorophyll 

(SPAD), PS II photochemical efficiency (Fv/Fm), juice yield (JY), days to 50% flowering (DF), 

plant height (PH), number of internodes (NI), stem fresh weight (SFW), number of green leaves 

(NL), average stem diameter (ASG), brix, total dry biomass (TDM), extractable juice (JEX), leaf 

temperature (LT) and grain yield (GY). 
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Table 4.1 Sweet sorghum genotypes selected for the study and their respective countries of 

origin. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 *Unknown.

High sugar yielders Origin Low sugar yielders Origin 

Awanlek Sudan Ames amber * 

Dale USA Atlas * 

Della USA Collier * 

Honey No.6 * Colman * 

IS 12900 India IS 2352 Pakistan 

Isidomba South Africa Leolti-peltier * 

MN 4135 Yugoslavia Luel Sudan 

MN 4578 Ethiopia MN 2894 Syria 

MN 600 France Mubeya Kenya 

MN 818 Hungary Nerumboer Sudan 

No. 5 gambela Ethiopia Rahmetalla gallabat * 

No. 6 gambela Ethiopia Red amber Australia 

Top 76-6 USA Smith USA 

Tracy USA Wad fur white Sudan 

Wray USA Waxy club USA 
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Table 4.2 Genotypic means of various physiological traits of sweet sorghum genotypes grown at 

Manhattan, Kansas. 

Genotypes Chlorophyll 

(SPAD) 

Leaf 

temperature (°C) 

PS II 

photochemical 

efficiency (Fv/Fm) 

Ames amber 48.1 29.8 0.717 

Atlas 48.3 29.0 0.669 

Awanlek 54.2 29.0 0.739 

Collier 52.0 28.7 0.730 

Colman 44.0 29.5 0.717 

Dale 55.4 29.1 0.738 

Della 53.5 28.4 0.726 

Honey No. 6 53.2 29.4 0.735 

IS 12900 58.1 29.6 0.753 

IS 2352 53.5 29.7 0.664 

Isidomba 61.7 29.1 0.751 

Leoti-peltier 47.2 28.5 0.713 

Luel 56.9 29.2 0.698 

MN 2894 53.8 29.0 0.700 

MN 4135 58.0 29.1 0.735 

MN 4578 48.3 28.6 0.751 

MN 600 55.6 28.5 0.734 

MN 818 52.9 29.0 0.737 

Mubeya 47.3 29.1 0.740 

Nerumboer 48.1 28.8 0.715 

No. 5 gambela 54.3 29.2 0.751 

No. 6 gambela 56.5 28.7 0.734 

Rahmatella gallabat 51.6 29.6 0.691 

Red amber 46.7 28.7 0.724 

Smith 51.2 29.1 0.741 

Top 76-6 55.1 28.7 0.753 

Tracy 59.7 29.3 0.767 

Wad fur white 46.4 29.6 0.740 

Waxy club 49.0 28.9 0.725 

Wray 57.0 28.6 0.736 

LSD at 0.05 

significance level 

3.0 NS 0.04 

NS – Non-significant.
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Table 4.3 Genotypic means of phenology and growth traits of sweet sorghum genotypes grown 

at Manhattan, Kansas. 

 

Genotypes Days to 

50% 

flowering 

Plant 

height (cm) 

Number 

of green 

leaves 

plant
-1

 

Number of 

internodes 

plant
-1

 

Average 

stem 

diameter 

(mm) 

Ames amber 70 253.1 6.6 9.5 13.9 

Atlas 77 281.5 9.5 12.3 17.3 

Awanlek 90 322.5 12.8 14.3 16.5 

Collier 73 278.9 8.5 10.3 14.3 

Colman 76 279.4 8.5 10.8 15.1 

Dale 90 359.4 11.6 14.0 17.3 

Della 80 360.2 10.5 12.1 16.1 

Honey No. 6 102 388.1 11.3 13.5 16.9 

IS 12900 82 285.2 9.0 11.8 14.7 

IS 2352 70 292.0 6.8 11.1 12.9 

Isidomba 90 330.6 10.8 13.0 17.0 

Leoti-peltier 74 275.5 7.8 10.1 15.9 

Luel 71 288.2 9.1 11.6 15.1 

MN 2894 71 270.9 7.8 10.1 13.4 

MN 4135 81 353.9 11.5 13 16.7 

MN 4578 92 375.0 14.0 15.0 17.4 

MN 600 98 373.8 11.6 16.3 17.4 

MN 818 87 308.1 10.5 13.6 17.6 

Mubeya 90 340.7 10.3 13.0 15.7 

Nerumboer 93 344.1 12.8 15.3 17.7 

No. 5 gambela 102 308.1 11.5 13.6 18.3 

No. 6 gambela 102 369.9 11.8 14.5 17.8 

Rahmatella gallabat 90 303.1 12.5 15.3 14.7 

Red amber 72 270.9 5.8 8.6 14.5 

Smith 92 321.3 10.8 13.5 17.0 

Top 76-6 99 317.9 10.3 12.8 16.5 

Tracy 89 325.9 10.3 12.8 16.8 

Wad fur white 101 351.3 13.0 14.1 16.0 

Waxy club 79 239.1 7.0 10.5 16.3 

Wray 85 350.5 11.5 13.8 18.9 

LSD at 0.05 

significance level 

3.9 19.3 1.6 1.4 1.3 
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Table 4.4 Genotypic means of various juice quality and yield traits of sweet sorghum genotypes 

grown at Manhattan, Kansas. 

Genotypes Brix 

(%) 

Juice yield 

(ml plant
-1

) 

Sugar yield 

(ml plant
-1

) 

Extractable 

juice (%) 

Grain 

yield 

(g plant
-1

) 

Stem 

fresh 

weight 

(g plant
-1

) 

Total dry 

biomass 

(g plant
-1

) 

Harvest 

index 

Ames amber 12.6 170 21.4 56 30.6 303.8 132.6 0.23 

Atlas 15.8 245 38.7 42 50.8 582.3 224.2 0.23 

Awanlek 16.3 330 54.0 47 50.1 698.3 273.7 0.18 

Collier 18.9 221 42.0 44 20.7 499.2 170.0 0.12 

Colman 18.8 220 41.3 50 32.9 434.8 183.3 0.18 

Dale 18.5 266 49.4 45 18.3 590.6 204.8 0.09 

Della 20.5 270 55.2 41 17.6 659.9 212.4 0.09 

Honey No. 6 16.1 391 62.9 60 2.90 660.5 167.7 0.02 

IS 12900 16.1 295 47.6 49 17.0 596.5 190.2 0.09 

IS 2352 8.1 180 14.4 70 39.2 255.8 153.9 0.25 

Isidomba 18.1 345 62.4 53 16.6 652.3 210.2 0.08 

Leoti-peltier 16.9 235 39.6 51 33.9 457.7 164.9 0.21 

Luel 16.5 150 24.3 41 27.0 360.9 161.3 0.17 

MN 2894 17.4 145 25.1 43 53.0 335.4 165.1 0.33 

MN 4135 18.3 333 61.0 54 15.6 616.1 180.9 0.09 

MN 4578 17.4 287 50.3 38 12.4 755.9 250.4 0.05 

MN 600 17.1 310 53.1 44 11.5 698.3 238.5 0.05 

MN 818 16.3 355 58.0 50 29.6 703.8 233.7 0.13 

Mubeya 15.6 266 41.6 39 26.1 675.1 228.1 0.11 

Nerum boer 15.3 261 40.1 42 15.9 621.0 232.6 0.07 

No. 5 Gambela 17.2 342 58.9 51 15.7 662.3 228.6 0.07 

No. 6 Gambela 16.5 336 55.7 49 23.4 690.0 257.7 0.09 

Rahmatella 

Gallabat 

16.7 190 31.7 38 11.1 490.9 192.0 0.06 

Red amber 12.3 206 25.5 58 22.4 353.0 136.9 0.17 

Smith 13.6 240 32.7 42 25.4 579.0 192.9 0.14 

Top 76-6 17.4 304 52.8 46 9.1 650.4 194.4 0.05 

Tracy 19.2 295 56.6 54 19.4 550.7 188.1 0.11 

Wad fur white 13.2 303 40.0 46 10.9 661.2 201.2 0.05 

Waxy club 11.2 202 22.7 50 39.6 401.8 171.6 0.23 

Wray 16.4 385 63.2 41 12.7 940.0 220.4 0.06 

LSD at 0.05 

significance level 

1.3 39.9 7.0 8.8 6.8 72.3 19.4 0.04 
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Table 4.5 Group mean values of various traits in high and low sugar yielding sweet sorghum 

genotypes grown at Manhattan, Kansas. 

Traits High sugar yielders Low sugar yielders LSD 

Physiology 

Chlorophyll content (SPAD) 

Leaf temperature (°C) 

PS II photochemical efficiency 

(Fv/Fm) 

 

 

 

55.6
a
 

28.9
a
 

0.743
a
 

 

 

 

49.6
b
 

29.1
a
 

0.712
b
 

 

 

 

0.7 

NS 

0.01 

Phenology and growth  

Days to 50% flowering 

Plant height (cm) 

Number of green leaves plant
-1

 

Number of internodes plant
-1

 

Average stem diameter (mm) 

 

 

 

91.4
a
 

341.9
a
 

11.2
a
 

13.6
a
 

17.1
a
 

 

 

 

80.1
b
 

292.7
b
 

9.1
b
 

11.7
b
 

15.3
b
 

 

 

 

1.0 

4.9 

0.4 

0.3 

0.3 

 

Juice quality and yield  

Brix (%) 

Juice yield (ml plant
-1

) 

Sugar yield (ml plant
-1

) 

Extractable juice (%) 

Stem fresh weight (g plant
-1

) 

Total dry biomass (g plant
-1

) 

Grain yield (g plant
-1

) 

 

 

 

17.4
a
 

323.0
a
 

56.1
a
 

48.3
a
 

675.1
a
 

216.8
a
 

18.1
b
 

 

 

 

14.8
b
 

215.7
b
 

32.1
b
 

47.7
a
 

467.4
b
 

180.7
b
 

29.3
a
 

 

 

 

0.3 

10.3 

1.8 

NS 

18.6 

5.0 

1.7 

 

NS – Non-significant. 
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Table 4.6 Eigenvectors, eigenvalue, total variance, cumulative variance, and component scores 

for 30 sweet sorghum genotypes based on 14 traits. 

Traits Eigenvectors Genotypes Component scores 

 PC1 PC2 PC3  PC1 PC2 PC3 

Chlorophyll SPAD 0.133 0.297 -0.406 Awanlek 1.866 -1.030 0.724 

Leaf temperature -0.133 0.416 0.402 Dale 1.703 0.084 -0.243 

Fv/Fm 0.232 0.244 -0.337 Della 1.213 -1.471 -1.696 

Days to 50% flowering 0.314 0.169 0.242 Honey No. 6 2.056 3.031 0.557 

Plant height 0.314 0.106 0.091 IS 12900 -0.595 1.620 -0.840 

Number of leaves 0.332 -0.068 0.245 Isidomba 1.805 1.555 -1.356 

Number of internodes 0.318 -0.034 0.339 MN 4135 1.133 1.341 -1.027 

Stem diameter 0.310 -0.068 -0.016 MN 4578 3.547 -1.479 0.577 

Brix 0.186 -0.197 -0.522 MN 600 3.379 -0.407 0.111 

Juice yield 0.308 0.252 -0.091 MN 818 1.433 -0.015 0.017 

Extractable juice -0.149 0.581 0.005 No. 5 Gambela 2.363 0.983 0.082 

Stem fresh weight 0.345 -0.056 -0.035 No. 6 Gambela 3.153 0.016 0.272 

Total dry biomass 0.295 -0.273 0.173 Top 76-6 1.621 0.521 -1.035 

Grain yield -0.218 -0.334 0.076 Tracy 0.991 1.751 -1.531 

Eigenvalue 7.334 1.715 1.322 Wray 3.460 -0.354 -0.847 

Variability (%) 52.38 12.25 9.44 Ames amber -5.174 1.241 0.495 

Cumulative (%) 52.38 64.64 74.08 Atlas -1.393 -2.620 1.102 

    Collier -1.904 -0.875 -1.953 

    Colman -2.557 -0.580 0.128 

    IS 2352 -5.734 2.196 2.116 

    Leoti-peltier -2.524 -1.143 -1.148 

    Luel -2.667 -0.791 -0.564 

    MN 2894 -4.064 -1.702 -0.936 

    Mubeya 0.789 -1.031 0.823 

    Nerum boer 1.965 -1.216 1.588 

    Rahmatella Gallabat -0.201 -0.576 1.893 

    Red amber -4.329 0.613 -0.808 

    Smith 0.445 -0.240 0.877 

    Wad fur white 1.532 1.018 2.426 

    Waxy club -3.312 -0.444 0.196 
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Chapter 5 - Effect of water stress during early grain filling on 

growth, physiology and yield attributes of sweet sorghum in 

controlled environment 

 5.0 Abstract 

Sweet sorghum (Sorghum bicolor L. Moench) is an important bioenergy crop grown in 

semi-arid regions of the world. Yield and quality of sweet sorghum are severely affected by 

occurrences of drought (water stress) during reproductive periods. A greenhouse experiment was 

conducted to study the impact of water stress on physiology, growth and development of four 

sweet sorghum genotypes. Genotypes (Awanlek, Smith, Tracy and Wray) were subjected to 

three water stress treatments (100% pot capacity, fully irrigated; 70% pot capacity, mild stress; 

and 30% pot capacity, severe stress) for 20 days at the beginning of grain filling (Milk) until hard 

dough stage. During the stress period, data on physiological traits were recorded at 5 d interval. 

At grain maturity, growth, yield and bioenergy traits were measured. The results showed that 

genotypes differed significantly for all physiological, growth and yield, and bioenergy traits. 

Average stem diameter and grain yield were found non-significant among the genotypes. 

Treatments showed significant effect on yield, sucrose, and all physiological parameters. The 

interaction for genotypes and treatments was significant for juice and sugar yields, glucose, 

fructose, sucrose and all measured physiological traits. Water stressed plants significantly 

decreased chlorophyll SPAD and Fv/Fm. Severe drought significantly decreased juice and sugar 

yields by decreasing net photosynthetic rate, transpiration rate and stomatal conductance. 

Relative to the control plants, sucrose in the stem juice increased significantly under severe 

stress, whereas the water stress did not affect the levels of glucose and fructose. Genotypes Tracy 

and Wray produced significantly highest brix, stem fresh weight, juice and sugar yields under 
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both irrigated and water stress conditions. Severe water stress at milk stage has detrimental effect 

in reducing most of the bioenergy traits than mild water stress. Among the genotypes, Tracy was 

found to be relatively more drought tolerant.  



114 

 

 5.1 Introduction 

Sweet sorghum (Sorghum bicolor L. Moench) is an important feedstock for the use of 

biofuels (from juice) and by-products (from bagasse) (Vermerris et al., 2007; Rooney et al., 

2007; Vasilakoglou et al., 2010). Sweet sorghum is characterized by high sugar content primarily 

sucrose in the plant sap or juice, from which ethanol can be produced (Kamiyama et al., 2009). 

The sorghum biomass is a rich source of cellulose, hemicelluloses and lignin. 

Drought stress is the primary limiting factor of crop productivity, accounting for more than a 

50% reduction in yields worldwide (Boyer, 1982). Generally, sweet sorghum is grown in the 

semi-arid regions of the world. In these regions, optimum irrigation is vital for maximizing crop 

yield‟s because decreasing water supply causes a significant reduction in sorghum biomass and 

sugar yield. Drought stress affects various physiological processes such as leaf temperature, leaf 

chlorophyll, chlorophyll a fluorescence (Fv/Fm), stomatal conductance, transpiration and 

photosynthesis in various crops (Silva et al., 2007). In the case of sweet sorghum extensive 

research has been done on agronomic performance for sugar and ethanol yield (Teetor et al., 

2011), biomass yield and composition (Zhao et al., 2009), and juice fermentation (Wu et al., 

2010), genetic diversity (Ali et al., 2008; Wang et al., 2009), water use efficiency and other 

photosynthetic characteristics (Cornic and Massacci, 1996; Steduto et al., 1997; Mastrorilli et al., 

1999). However, little is known about the physiology, growth and yield of sweet sorghum under 

drought stress. 

In sweet sorghum, sucrose, glucose and fructose contents in stem increase after anthesis and 

reach a maximum level near post anthesis (Almodares et al., 2008). Hence, environmental 

condition during reproductive growth stage is an important factor affecting carbohydrate content 

(Almodares et al., 2007). Drought stress experiments on sugar beet (Beta vulgaris L.) have 
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shown adverse effects on both leaf photosynthesis as well as sucrose yields in the mature plants 

(Monti et al., 2006). They also reported that drought stress in the early growth period was 

negatively associated with the sucrose content at maturity. In studies on sugarcane (Saccharum 

officinarum L.), stem diameter (Da Silva and Da Costa, 2004), and stalk height and cane yield 

(Inman-Bamber and Smith, 2005) were severely affected by drought conditions. Drought also 

resulted in morphological changes in the sugarcane, which included reduced leaf area, thicker 

leaves, less responsive stomata and increased ratio of roots to shoots (Hussain et al., 2004). 

Tognetti et al. (2002) observed that optimum irrigation is the key to have higher sugar yields for 

sugar beet cultivation in semi-arid Mediterranean terrains. 

In sweet sorghum, plant height, stem diameter, stem fresh weight, juice yield, brix and stem 

sugar contents are the most important characteristics for biofuel production (Murray et al., 2008, 

Pfeiffer et al., 2010) and are determined by the efficient physiological behavior of the plant 

under different environmental conditions. Previous studies showed that plant height is highly 

correlated to juice yield and stem fresh weight (Murray et al., 2008). There is also a significant 

linear correlation between brix and total sugar content of the juice (Audilakshmi et al., 2010). 

The above established characteristics were obtainable only under optimal irrigation conditions 

(Vasilakoglou et al., 2010). There are no systematic studies describing sensitivity of reproductive 

stage of sweet sorghum to drought stress. Hence, this study aims to achieve a better 

understanding of the drought stress during early grain filling stage and the effect of changes in 

the sugar contents and composition. Further improvement of drought tolerance in sweet sorghum 

is still a need for improved biofuel production efficiency. Identification of the most suitable 

genotypes which are unaffected by drought during the ripening stages is also crucial for 

consistent juice and sugar yield. The objectives of this research were to (i) quantify effects of 
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water stress on brix, juice and sugar yield and (ii) quantify the genotypic difference for brix, 

juice and sugar yield under various drought stress levels.  

 5.2 Materials and Methods 

 5.2.1 Crop husbandry 

The experiment was conducted under controlled environment facilities (greenhouse) at the 

Kansas State University, Department of Agronomy, Manhattan, KS. Four sweet sorghum 

genotypes namely Awanlek, Smith, Tracy and Wray were grown in 15-L pots filled with soil, 

sand and vermiculite in the ratio of 2:1:1 by weight. The pots were fully soaked with water and 

left for 1 d to drain and then five seeds per pot were sown at a 5-cm depth. The soil medium was 

fertilized with slow-release fertilizer (Osmocote®, Hummert International, Topeka, KS, USA, 

14:14:14% N: P: K, respectively) at 5 g per pot before sowing. After emergence (two-leaf stage), 

a systemic insecticide (Marathon®1% G; Imidacloprid, 1-[(6-chloro-3-pyridinyl) methyl]-N-

nitro-2-imidazolidinimine) was applied to each pot at 4 g per pot. Seedlings were thinned to two 

per pot after 15 d. The plants were grown at a temperature regime of 32/22°C ±3°C day/night, 12 

h photoperiod and photosynthetic photon flux density of 800-1400 µmol m
−2

 s
−1

 provided from 

natural solar radiation and supplemental fluorescent lights. The relative humidity in the 

greenhouse was set at 80%. Air temperature, relative humidity, and light level were continuously 

monitored at 20-min intervals throughout the duration of experiment with HOBO data loggers 

(Onset Computers, Bourne, MA, USA). 

 5.2.2 Water stress treatments 

All plants were grown under fully irrigated conditions (watered daily) from sowing to 10 d 

after complete anthesis. At the beginning of the milk stage, the pots were subjected to three 

levels of water stress. These were: 100% pot capacity (fully irrigated; control), 70% pot capacity 
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(mild water stress) and 30% pot capacity (severe water stress). Water stress treatments were 

imposed from the beginning of the milk to hard dough stage. The water stress treatments and 

stage of stress were assigned because sweet sorghum accelerates sugar accumulation in juice 

during milk stage than at later stages of grain maturity (Almodares et al., 2008c). Initially, pots 

were weighed and filled with 15 kg of soil. All pots were then completely saturated with water 

and the excess water was allowed to drain for 1 d. The pot weight was determined after 

saturation of the soil (pot weight about 17 kg). Then five pots were randomly selected and soils 

in each pot were completely sun dried and dry weight of the soil was recorded (pot weight about 

13 kg each). The difference between the soil weight after drainage and soil weight after complete 

drying is 100% water holding capacity (water content about 4 kg). From this 100% water holding 

capacity value 70 and 30% pot capacity were computed. The pot capacity (100, 70 and 30%) was 

maintained by weighing pots daily and adding the required amount of water during water stress 

period. The plant weight was deducted from these pots by comparing daily weight of five 

representative pots without plants maintained separately for the purpose. The duration of water 

stress was 20 d and then plants were watered daily until final harvest at maturity. 

 5.2.3 Observations recorded 

 5.2.3.1 Physiological traits 

One uniform plant in each pot was tagged for recording the physiological traits before start of 

treatments. Measurements were taken on the tagged plants from the flag leaf. After the start of 

water stress treatments, data on physiological traits (chlorophyll content (SPAD), Spectrum 

Technologies, Plainfield, IL, USA); chlorophyll a fluorescence (Fv/Fm) (Pulse-modulated 

fluorometer OS 30p, OptiScience, Hudson, NH, USA); canopy leaf temperature (FLIR 

ThermaCAM BCAM infrared thermal imaging camera, Janesville, WI, USA) and gas exchange 
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measurements, (LI-COR 6400 portable photosynthesis system, Lincoln, NE, USA) were 

measured. Measurements were taken for 20 d on 5 d intervals. 

 5.2.3.2 Growth traits 

At maturity, plant height was measured from base of the stem to the tip of the panicle and 

was expressed in cm. Stem diameter was measured from the three regions of the stem (bottom 3
rd

 

internode, middle 6
th

 internode, and the top 9
th

 internode) using vernier caliper after stripping the 

leaves and removal of leaf sheaths. Average stem diameter was computed from the mean of the 

three regions. The number of leaves on the stem was counted. The leaf area was measured by 

leaf area meter (Model LI-3100, Li-Cor, Inc. Lincoln NE, USA). Stalks were stripped of leaves 

and topped. The fresh weight of the stem of each sample was recorded. The fresh leaf, panicle 

and crushed stem were oven-dried at 60°C for 7 d and dry weights were recorded individually. 

The total dry biomass was calculated from the oven dried samples. The panicles were threshed to 

obtain grain yield. 

 5.2.3.3 Bioenergy traits 

The stalks were chopped in to small pieces before juice was extracted. The juice from a 

single plant was extracted by using garlic press. The extracted juice was weighed for calculating 

juice yield per plant. The brix was recorded on the extracted juice using digital hand-held 

refractometer (Digital hand-held pocket refractometer PAL-1, Atago, Bellevue, WA, USA). The 

sugar yield was calculated as the product of brix (%) and juice yield. The juice samples were 

then kept frozen for carbohydrate (glucose, fructose and sucrose) analysis. Glucose, fructose and 

sucrose were estimated in the extracted stalk juice using HPLC (Shimadzu Corporation, Japan). 

The juice samples from each treatment were diluted appropriately and the diluted liquid after 

centrifugation was filtered through 0.45 micron RC membranes into the HPLC vials and placed 
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in the autosampler tray (Prominence, SIL-20AC) maintained at 4°C. Sugars were quantified by 

the binary HPLC system (Shimadzu Corporation, Japan) using the Refractive Index (RI) detector 

(RID-10A) and Phenomenex RPM monosaccharide column (300 x 7.8 mm, Phenomenex, USA). 

Deionised water was collected from the Milli Q (Direct Q, Millipore Inc, USA), degassed using 

ultrasonicator (FS 60, Fisher Scientific) and was used as mobile phase. The column oven 

(Prominence CTD-20A) was maintained at 80°C, RID at 65°C and the mobile phase was 

pumped at a flow rate of 0.6 ml/ min through the binary pump (Prominence LC-20AB). 

Standards of glucose, fructose and sucrose were also run under same conditions. The sugars in 

the samples were analyzed by comparing area under the peaks of the standards and multiplying 

with the dilution factor. 

 5.2.4 Data analyses 

The experiment was conducted in a factorial randomized block design (4x3). There were two 

factors in this experiment. Factor 1 is genotype and has four levels. Factor 2 is water stress with 

three levels. The experiment consisted of 12 treatments. Each treatment was replicated thrice. 

Three pots were used for each replication. The data were subjected to the analysis of variance for 

each trait using the general linear model of the statistical software by statistical analysis software 

9.1 (SAS, 2003). Differences among treatment means were compared by least significant 

differences (LSD) at 5% level of probability. 

 5.3 Results 

 5.3.1 Physiological traits 

Significant differences were observed among the genotypes and water stress treatments for 

all physiological traits such as Fv/Fm, chlorophyll SPAD, leaf temperature, photosynthetic rate, 

stomatal conductance, intercellular CO2 concentration (Ci) and transpiration rate (Table 5.1). The 
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interaction between genotype and water stress treatment was significant for most of the traits 

except intercellular CO2 concentration (Table 5.1). 

The genotype Tracy had maximum chlorophyll SPAD, Fv/Fm, net photosynthetic rate, 

stomatal conductance and transpiration rate and also showed lower leaf temperature (Table 5.2). 

Genotypes Wray and Awanlek were intermediate for most of the traits whereas Smith had the 

lowest values (Table 5.2). Severe water stress significantly decreased chlorophyll SPAD, Fv/Fm, 

net photosynthetic rate, stomatal conductance, and transpiration rate followed by mild water 

stress (Table 5.3). In addition, severe water stress significantly increased leaf temperature but the 

difference was only modest in comparison to mild water stress and also showed higher 

intercellular CO2 concentration compared to mild stress and control condition (Table 5.3).  

Interaction effects showed that sweet sorghum genotypes experienced a decrease in SPAD, 

Fv/Fm, net photosynthetic rate, stomatal conductance and transpiration rate under water stress 

conditions (Fig. 5.1 and Fig. 5.2). Tracy showed highest reduction of SPAD at mild and severe 

water stress conditions (17.9 and 24.5%, respectively) when compared to its control (Fig. 5.1). 

Fv/Fm decreased in genotype Smith with a highest reduction of 4.8% under mild stress followed 

by Wray (3.9%), Tracy (1.8%), and Awanlek (1.3%) (Fig. 5.1). Genotype Tracy experienced 

highest decrease by 7.0% compared to control under severe water stress. 

Net photosynthetic rate was decreased by 23.9% in Tracy and 54.3% in Wray under mild and 

severe stress respectively (Fig. 5.2). On the other hand, stomatal conductance decreased by 32% 

in Tracy and 57.8% in Wray under mild and severe stresses respectively (Fig. 5.2). Similarly, 

mild and severe water stress decreased transpiration rate by 35.1% in Tracy and 57.8% in Wray, 

respectively (Fig. 5.2).  
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 5.3.2 Growth and yield traits 

Genotypes significantly influenced growth and yield traits of sweet sorghum except average 

stem diameter and grain yield. Water stress caused a significant impact on yield traits but did not 

affect growth traits. The interaction of genotype and water stress did not significantly influence 

both growth and yield traits (Table 5.4). 

Tracy recorded the maximum plant height, followed by Wray (Table 5.5). Leaf area was 

maximum in Awanlek and Wray (Table 5.5). Similarly, Awanlek and Wray produced maximum 

number of leaves plant
-1

 (Table 5.5). Genotype Tracy had maximum stem diameter while 

minimum was found in Awanlek (Table 5.5). Tracy recorded highest stem fresh weight which 

was similar to Wray whereas genotype Smith produced lowest stem weight (Table 5.5). 

Genotype Awanlek recorded significantly highest total dry biomass followed by Tracy (Table 

5.5). The grain yield was highest in Tracy and the lowest in Wray (Table 5.5). 

Water stress treatments significantly affected stem fresh weight and control had significantly 

highest stem fresh weight followed by mild stress whereas severe stress significantly decreased 

stem fresh weight (Table 5.6). Similarly, total dry biomass was highest in control and was 

followed by mild stress. Severe water stress significantly decreased total dry biomass across the 

genotypes (Table 5.6). The grain yield was significantly reduced in severe water stress than mild 

stress and control (Table 5.6). 

 5.3.3 Bioenergy traits 

Significant differences were observed among the genotypes for brix, juice yield, sugar yield, 

glucose, fructose and sucrose contents. Water stress treatments significantly differed all 

bioenergy traits except brix, glucose and fructose content. The interactions between genotype 

and treatment were also significant for all bioenergy traits except brix (Table 5.7). 
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Among the genotypes, Wray recorded highest brix but statistically similar with Tracy (Table 

5.8). The juice yield was significantly highest in Tracy followed by Wray (Table 5.8). Tracy 

produced highest sugar yield and had higher glucose and fructose contents (Table 5.8). 

Genotypes Smith and Awanlek recorded lowest sugar yield (Table 5.8). Sucrose content was 

highest in Wray but was statistically similar with Tracy whereas the lowest sucrose was observed 

in Smith (Table 5.8). 

The fully irrigated plants had the highest juice yield and sugar yield and the lowest was 

observed under severe stress (Table 5.9). The sucrose content was found to be similar under fully 

irrigated control and mild stress, however, significantly increased under severe water stress 

(Table 5.9). 

The interaction effects indicated that the juice and sugar yields varied across the genotypes 

when they were subjected to water stress (Fig. 5.3). Under mild stress, Tracy showed an increase 

in the juice yield and had the lowest reduction in sugar yield when compared to control. The 

highest reduction in juice yield and sugar yield was observed in genotypes Smith and Wray, 

respectively (Fig. 5.3). Under severe water stress, the lowest reduction of juice and sugar yield 

was observed in Awanlek and Wray, respectively (Fig. 5.3). Whereas, Smith had the highest 

reduction in juice and sugar yield respectively. Tracy showed 35.2% and 42.9% reduction in 

juice and sugar yield respectively (Fig. 5.3). 

Wray and Smith showed greater reduction in glucose content under mild and severe stress 

respectively compared to control (Fig. 5.4a) However, genotypes Tracy and Awanlek showed an 

increase in glucose content by 4.7% and 75.9%, respectively under mild water stress (Fig. 5.4a). 

Severe water stress caused a decrease in glucose content of Wray and Tracy (Fig. 5.4a). 
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Similar trend was also observed for fructose content for all the genotypes (Fig. 5.4b). Under 

mild stress, genotype Wray had the greatest decrease by 53.1%, followed by Smith with 32.4% 

reduction. Genotypes Tracy and Awanlek again increased by 4.7 and 80.4%, respectively (Fig. 

5.4b). Severe water stress showed that Smith had highest reduction at 91.9% in fructose content. 

Genotypes Wray and Tracy showed 27.6 and 14.1% reductions, respectively (Fig. 5.4b). Under 

mild water stress, genotypes Smith and Tracy showed reduction in sucrose content as compared 

to control, whereas Wray and Awanlek had 77.2 and 31.7% increase respectively (Fig. 5.4c). 

Genotypes Tracy, Awanlek and Wray increased their sucrose content under severe water stress. 

However, genotype Smith showed reduction in sucrose under severe water stress (Fig. 5.4c). 

 5.4 Discussion 

Water stress in sweet sorghum can cause significant reduction in biomass production 

including sugar and grain yield. Stage sensitivity studies for understanding the effect of water 

stress on sweet sorghum  revealed that a temporary water stress  had severe impact in the water 

use efficiency at early stage sweet sorghum (Mastrorilli et al., 1999) however, a perennial stress 

had significant impact at the late stage (Tingting et al., 2010). In this study, water stress at early 

grain filling (milky) stage in sweet sorghum had significant effect on growth, physiological, 

biochemical and yield traits. In sweet sorghum, juice yield is a function of both stem juiciness 

(total stem water content/stem fresh weight) and stem fresh weight. In the present study, Tracy 

recorded higher juice yield and brix value and was found to have the higher stem fresh weight 

also. The increased stem fresh weight in Tracy might be due to higher stem tissue water content, 

plant height and average stem diameter as suggested by Murray et al. (2008). The sugar yield 

was also significantly higher in the same genotype. Even though, Wray had similar brix as that of 

Tracy, the sugar yield was low as a result of lower juice yield. Pfeiffer et al. (2010) reported that 
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greater juice yield and higher sugar content were observed from highest performing sweet 

sorghum hybrids than pureline varieties. Similar differences in plant height, brix, stem fresh 

weight, sugar and juice yield traits among the U.S. sweet sorghum collections were reported 

earlier by Murray et al. (2008; 2009). Grain yield was also increased in genotype Tracy. 

Simultaneous increases of both sugar and grain yield in Tracy indicated that this genotype was 

able to recover from water stress during early grain filling stage. The dual-purpose nature of this 

genotype could be utilized for bioenergy production even under changing environmental 

conditions. Glucose, fructose and sucrose contents in juice varied significantly among the 

genotypes. Similar type of genetic difference in sugar accumulation in sweet sorghum lines was 

reported by Erdei et al. (2009). 

Stem fresh weight, total dry weight, brix, juice, sugar and grain yield varied significantly 

among different water stress levels. The control and mild water stress had similar brix and juice 

yield, however, sugar yield was increased in control due to increase in stem fresh weight. A 

similar trend was also observed in grain yield. Under severe water stress, sugar yield and grain 

yield were drastically decreased when compared to mild stress and control. This was due to 

decreased photosynthetic rate, stomatal conductance and transpiration rate. water stress affects 

mainly the photochemical events by affecting photosystem 2 (PS2) both by degradation of D1 

and D2 proteins in the PS2 reaction centre leading to lowered electron transport (He et al., 1995). 

Many experiments revealed that a decrease in stomatal conductance correspond to decrease in 

photosynthetic rate (Tenhunen et al., 1987; Nilsen and Orcutt, 1996; Chaves and Oliviera, 2004). 

The stomatal closure and CO2 deficit in the chloroplasts were also the main causes of decreased 

photosynthesis under mild and moderate stresses (Flexas and Medrano, 2002). 
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In this study, the decrease in photosynthetic rate was ascribed to reduction in stomatal 

conductance, PS II photochemistry (Fv/Fm), chlorophyll content and increase in leaf 

temperature. In spite of little difference in the leaf temperature of control and water stressed 

plants, differences in SPAD and Fv/Fm among genotypes were apparent. Water stress 

significantly decreased Fv/Fm in all four genotypes and may be due to photoinhibition that 

resulted in separation of light harvesting complex II from the PS II core complex and blockage of 

the PS II reaction center, which inhibits electron flow from QA to QB (Maxwell and Johnson, 

2000). Silva et al. (2007) had also reported reduction in Fv/Fm in sugarcane under water stress 

conditions. Chlorophyll SPAD also decreased significantly in all the genotypes under different 

water stress levels. The results are in agreement with Silva et al. (2007), who described a 

significant decrease of leaf chlorophyll caused by water stress in eight sugarcane genotypes. 

Decreased or unchanged chlorophyll content during water stress has been reported in shrub 

species, depending on the duration and severity of water stress (Kpyoarissis et al., 1995). Loss of 

chlorophyll is also attributed to membrane damage (lower Fv/Fm) (Ristic et al., 2007). 

Glucose and fructose levels in juice did not change significantly over the three different 

water stress levels. However, sucrose content increased under severe stress condition. This may 

be due to the conversion of reducing sugars into non-reducing sugars resulting in higher content 

of sucrose. Terzi et al. (2009) reported increased sucrose in the stem juice could be attributed to 

the plant‟s growth sustenance during severe water stress periods.  A positive association between 

water stress and sucrose accumulation was also reported in sugarcane genotypes (Inman-Bamber 

and Smith, 2005). Further, there is also possibility for increased sucrose concentration as a result 

of decreased water content in the stem as reflected by reduced juice yield. 
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The interaction effect revealed that Tracy recorded higher juice yield under all water stress 

levels. This is due to the increased transpiration rate, stomatal conductance and photosynthetic 

rate associated with this genotype irrespective of the water stress levels (Fig. 5.2). The 

photosynthetic rate at early grain filling is very critical in maintaining sugar concentration in the 

stem. While all the genotypes had lower photosynthetic rates, genotype Tracy had maintained a 

higher photosynthetic rate that resulted in higher sugar yield to meet the sugar demand by the 

stem at grain filling stage under water stress condition. 

The increased sugar yield in the genotype Tracy across the three different stress levels was 

due to higher juice yield and/or brix value (Fig. 5.3). Increased sugar yield is the outcome of 

higher stomatal conductance which in turn led to higher photosynthetic rate. The juice brix is 

also generally an indirect measure of CO2 assimilation. It is generally regarded that decrease in 

photosynthesis under water stress conditions could be attributed either to a decrease in stomatal 

conductance and/or to non-stomatal limitations (Cornic and Massacci, 1996). The relatively 

higher stomatal conductance of the tolerant genotypes results from mechanisms maintaining a 

higher leaf water status and hence more open stomata. As a consequence, CO2 influx towards 

chloroplast may be longer, thus allowing greater photosynthetic rates under water stress 

conditions (Kumar, 2005). This was made possible in Tracy with the higher level of stomatal 

conductance (Fig. 5.2). 

Even though glucose and fructose levels were similar in severe water stress between Wray 

and Tracy, the sucrose content was highest in Wray. This result was in agreement with the 

finding of Zinselmeier et al. (1995), who showed that water stress decreased activities of both 

vacuolar and cell wall-bound acid invertases during maize kernel development with parallel 

reductions in ovary growth and concentration of hexoses. 
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Genotype Tracy maintained higher value of SPAD and Fv/Fm compared to other genotypes 

under different water stress levels which was reflected in photosynthetic rate. Similarly, stomatal 

conductance was highest in Tracy under different water stress levels resulting in higher 

photosynthetic rate. Moriana et al. (2002) observed a close correlation between stomatal 

conductance and photosynthetic rate in Olive leaves exposed to water stress. One of the 

important influences on sugar production is brix, juice yield and leaf net photosynthetic rate. We 

found that the genotype Tracy had higher brix, juice yield and leaf net photosynthetic rate 

compared to other genotypes under different water stress levels. As a result, Tracy can be 

cultivated under water stress environment for higher sugar yield to achieve sustainable bioenergy 

production. 

 5.5 Conclusions 

Our results showed significant differences among the genotypes for all growth, physiology 

and bioenergy traits. Overall, across all genotypes severe water stress significantly decreased 

brix, juice yield, sugar yield, sucrose content, total dry biomass and grain yield. Genotype Tracy 

produced significantly highest juice and sugar yields under both irrigated and water stress 

conditions compared to genotypes Wray, Awanlek and Smith. The water stress tolerance of 

Tracy could be ascertained from the present study, based on significant increase in net 

photosynthetic rate, stomatal conductance, transpiration rate and intercellular CO2 concentration. 

The relatively higher chlorophyll SPAD coupled with smaller decrease in Fv/Fm activity and 

leaf temperature also supported the tolerant nature of the genotype Tracy. The degree of 

accumulation of sugars (glucose, fructose and sucrose) varied among genotypes, and genotype 

Tracy accumulated relatively greater amounts of sugars in the juice than other genotypes. 
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 5.6 Tables and Figures 

Figure 5.1  Effect of different water stress levels on (a) chlorophyll content (SPAD) (b) leaf 

temperature and (c) Fv/Fm of four sweet sorghum genotypes. 
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Figure 5.2 Effect of different water stress levels on (a) photosynthetic rate (b) stomatal 

conductance and (c) transpiration rate of four sweet sorghum genotypes. 
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Figure 5.3 Effect of different water stress levels on (a) juice yield and (b) sugar yield of four 

sweet sorghum genotypes. The vertical bar denotes ±SE of means (n=3). 
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Figure 5.4 Effect of different water stress levels on (a) glucose (b) fructose and (c) sucrose 

contents in the juice of four sweet sorghum genotypes. The vertical bar denotes ±SE of means 

(n=3). 

 



132 

 

Table 5.1 Significance and P values of the effects of genotypes (G), water stress levels (T) and their interaction (G x T) on 

physiological traits in different sweet sorghum genotypes. 

 

Physiological traits 

Chlorophyll 

(SPAD) 

Leaf 

temperature 

(°C) 

Fv/Fm 

 

Net 

photosynthesis 

(µmol CO2 m
–2

 

s
–1

) 

Stomatal 

conductance 

(mmol H2O 

m
−2

 s
−1

) 

Transpiration 

rate 

(mmol H2O 

m
−2

 s
−1

) 

Genotype (G) <0.0001 <0.0001 <0.01 <0.0001 <0.0001 <0.0001 

Treatment (T) <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 

G*T <0.05 <0.05 <0.05 <0.01 <0.01 <0.05 
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Table 5.2 Effect of various sweet sorghum genotypes on physiological traits. 

 

Physiological traits 

Genotypes 

Awanlek Smith Tracy Wray LSD 

Chlorophyll  

(SPAD) 

41.7
bc

 39.8
c
 49.4

a
 43.3

b
 1.9 

Leaf temperature (°C) 29.7
b
 30.8

a
 28.2

c
 28.9

c
 0.7 

Fv/Fm  0.740
b
 0.739

b
 0.762

a
 0.765

a
 0.01 

Net photosynthetic rate 

(µmol CO2  m
–2

  s
–1

) 

31.7
b
 26.0

c
 37.0

a
 32.0

b
 1.3 

Stomatal conductance 

(mmol H2O m
−2

 s
−1

) 

0.170
b
 0.157

c
 0.245

a
 0.168

b
 0.009 

Transpiration rate 

(mmol H2O m
−2

 s
−1

) 

3.2
b
 2.9

c
 3.9

a
 3.6

a
 0.3 

 

Means within the same row with different letter are significantly different at P<0.05. Each data is 

the average of four independent measurements of each genotype recorded on day 5, 10, 15, and 

20. 
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Table 5.3 Effects of various water stress levels on physiological traits of sweet sorghum 

genotypes. 

Physiological traits 

Water stress levels 

Control 

(fully irrigated) 

70% pot capacity 

(mild stress) 

30% pot capacity 

(severe stress) 
LSD 

Chlorophyll (SPAD) 46.6
a
 43.3

b
 40.7

c
 1.7 

Leaf temperature (°C) 27.1
c
 30.1

b
 31.0

c
 0.6 

Fv/Fm 0.768
a
 0.758

a
 0.729

b
 0.01 

Net photosynthetic rate 

(µmol CO2  m
–2

  s
–1

) 
40.0

a
 31.8

b
 23.3

c
 1.2 

Stomatal conductance 

(mmol H2O m
−2

 s
−1

) 
0.248

a
 0.177

b
 0.130

c
 0.008 

Transpiration rate 

(mmol H2O m
−2

 s
−1

) 
4.25

a
 3.30

b
 2.66

c
 0.27 

 

Means within the same row with different letter are significantly different at P<0.05. Each data is 

the average of four independent measurements of each genotype recorded on day 5, 10, 15, and 

20. 
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Table 5.4 Significance and P values of the effects of genotypes (G), water stress levels (T) and 

their interaction (G x T) on growth and yield traits in different sweet sorghum genotypes. 

 

Growth and yield traits Genotype (G) Treatment (T) G x T 

Plant height (cm plant
-1

) <0.001 NS NS 

Leaf area (cm
2 

plant
-1

) <0.001 NS NS 

Number of leaves plant
-1

 <0.001 NS NS 

Average stem diameter (mm plant
-1

) NS NS NS 

Stem fresh weight (g plant
-1

) <0.01 <0.01 NS 

Total dry biomass (g plant
-1

) <0.01 <0.01 NS 

Grain yield (g plant
-1

) NS <0.01 NS 

 

 NS= Non-significant. 
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Table 5.5 Effect of various sweet sorghum genotypes on growth and yield traits. 

 

Growth and yield traits 

Genotypes 

Awanlek Smith Tracy Wray LSD 

Plant height (cm plant
-1

) 134.4
c
 131.3

c
 185.8

a
 152.1

b
 11.6 

Leaf area (cm
2
 plant

-1
) 3526.8

a
 2261.4

c
 3020.7

b
 3316.8

ba
 428.9 

Number of leaves plant
-1

 12.5
a
 9.6

c
 10.6

b
 11.7

a
 0.8 

Average stem diameter (mm plant
-1

) 8.6
b
 8.7

b
 10.8

a
 9.0

ab
 2.0 

Stem fresh weight (g plant
-1

) 165.0
b
 116.0

c
 200.0

a
 191.0

a
 15.0 

Total dry biomass (g plant
-1

) 392.0
a
 283.0

c
 340.0

b
 297.0

c
 42.0 

Grain yield (g plant
-1

) 29.6
ba

 27.8
b
 33.0

a
 27.5

b
 3.5 

 

Means within the same row with different letter are significantly different at P<0.05. 
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Table 5.6 Effects of various water stress levels on growth and yield traits of sweet sorghum 

genotypes. 

Growth and yield traits 

Water stress levels 

Control 

(fully 

irrigated) 

70% pot capacity 

(mild stress) 

30% pot 

capacity 

(severe stress) 

LSD 

Plant height (cm plant
-1

) 154.7
a
 152.7

a
 149.9

a
 NS 

Leaf area (cm
2
 plant

-1
) 3076.8

a
 2814.8

a
 3055.8

a
 NS 

Number of leaves plant
-1

 11.5
a
 11.0

ba
 10.3

b
 0.7 

Average stem diameter (mm plant
-1

) 9.0
a
 9.9

a
 8.8

a
 NS 

Stem fresh weight (g plant
-1

) 212.0
a
 171.0

b
 120.0

c
 15.0 

Total dry biomass (g plant
-1

) 412.0
a
 305.0

b
 267.0

c
 36.0 

Grain yield (g plant
-1

) 40.0
a
 28.9

b
 19.4

c
 3.0 

 

Means within the same row with different letter are significantly different at P<0.05. NS – Non-

significant. 
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Table 5.7 Significance and P values of the effects of genotypes (G), water stress levels (T) and 

their interaction (G x T) on bioenergy traits in different sweet sorghum genotypes. 

 

Bioenergy traits Genotype (G) Treatment (T) G x T 

Brix (%) <0.01 NS NS 

Juice yield (ml plant
-1

) <0.0001 <0.0001 <0.01 

Sugar yield (ml plant
-1

) <0.0001 <0.0001 <0.05 

Glucose (%, w/v) <0.001 NS <0.05 

Fructose (%, w/v) <0.001 NS <0.05 

Sucrose (%, w/v) <0.001 <0.01 <0.01 

 

NS= Non-significant. 
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Table 5.8 Effect of various sweet sorghum genotypes on bioenergy traits. 

 

Bioenergy traits 

Genotypes 

Awanlek Smith Tracy Wray LSD 

Brix (%) 15.3
b
 14.0

b
 17.9

a
 19.1

a
 2.25 

Juice yield (ml plant
-1

) 58.2
b
 32.3

c
 81.8

a
 63.6

b
 5.51 

Sugar yield (ml plant
-1

) 8.83
c
 4.47

d
 14.36

a
 12.16

b
 1.45 

Glucose (%, w/v) 7.58
a
 2.42

b
 8.41

a
 7.31

a
 2.0 

Fructose (%, w/v) 7.28
a
 2.24

b
 8.29

a
 7.2

a
 2.0 

Sucrose (%, w/v) 7.58
b
 4.72

c
 8.62b

a
 9.75

a
 1.59 

 

Means within the same row with different letter are significantly different at P<0.05. 
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Table 5.9 Effects of various water stress levels on bioenergy traits of sweet sorghum genotypes. 

 

Bioenergy traits 

Water stress levels 

Control 

(fully 

irrigated) 

70% pot 

capacity 

(mild stress) 

30% pot 

capacity 

(severe stress) 

LSD 

Brix (%) 15.7
a
 16.8

a
 17.4

a
 1.95 

Juice yield (ml plant
-1

) 76.1
a
 60.0

b
 47.3

c
 4.77 

Sugar yield (ml plant
-1

) 12.1
a
 10.0

b
 8.3

b
 1.26 

Glucose (%, w/v) 6.97
a
 6.57

a
 5.75

a
 NS 

Fructose (%, w/v) 6.83
a
 6.34

a
 5.58

a
 NS 

Sucrose (%, w/v) 6.51
b
 7.21

b
 10.2

a
 1.3 

 

Means within the same row with different letter are significantly different at P<0.05. NS – Non-

significant. 
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Chapter 6 -  Effect of drought, high temperature, and their 

combination during early grain filling (Milk) stage on growth, 

physiology and yield of sweet sorghum 

 6.0 Abstract 

Studies on the effect of drought (water stress) and increase in air temperature (high 

temperature stress) have independently been conducted extensively. At the individual level, these 

stresses have diverse effects on various crops. Sweet sorghum, an important bioenergy crop, is 

mostly grown under rainfed conditions. Although sweet sorghum is a relatively more drought 

and high temperature tolerant compared to other cereals, its physiology, growth and development 

is not clearly understood by occurrences of drought and high temperature stress independently 

and combined during early grain filling (milk) stage. This study was conducted to quantify the 

effects of drought, high temperature (38/28±3°C, day/night)), and their combinations on growth, 

physiology and yield of sweet sorghum genotypes. Four sweet sorghum genotypes viz. Awanlek, 

Tracy, Wray and Smith were grown in greenhouse with uniform watering at 32/22°C day/night 

prior to the stress treatment. Thereafter, each genotype was subjected to four treatments (T1 - 

control: fully irrigated/optimum temperature; T2 - drought stress: no irrigation/optimum 

temperature; T3 - high temperature stress: fully irrigated/high temperature and T4 - combination 

of drought and high temperature, no irrigation/high temperature stress). Treatment was imposed 

on 10 day after complete anthesis and was continued for 16 days. Physiological traits such as 

chlorophyll (SPAD), chlorophyll a fluorescence (Fv/Fm), leaf temperature and gas exchange 

measurements, were recorded at 4 d interval. At grain maturity, data on plant height, leaf area, 

stem diameter, fresh and dry weights of stem, leaves and panicles, and grain were measured. 

Bioenergy traits include brix, juice and sugar yield were measured. The total and reducing sugars 
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were also estimated from the extracted juice samples. The results indicated that significant 

differences were observed for growth and yield traits, physiological traits and non-reducing and 

total sugar content in juice for genotypes and treatments. The interaction of genotype and 

treatment showed significance for most of growth and yield traits except for number of leaves 

and internodes, leaf and panicle fresh weight and stem dry weight. All physiological and 

bioenergy traits were significantly influenced by genotype and treatment combination. Among 

the genotypes Tracy recorded significantly higher juice and sugar yield under all stress 

treatments. The combined drought and high temperature stresses were more deleterious in 

reducing most of the bioenergy traits than either stress alone. The more reduction in juice and 

sugar yield caused by combined stresses may be due to non-availability of water and high air 

temperature which significantly impairs photosynthetic rate and sugar accumulation in the stem. 
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 6.1 Introduction 

 Sweet sorghum (sorghum bicolor L.) has been grown in various parts of the world mostly for 

use as either grain or forage under varying environmental conditions. Global energy needs have 

driven sweet sorghum as a popular energy plant throughout the world (Barbanti et al., 2006; 

Vasilakoglou et al., 2010). Sweet sorghum provides efficient biofuel production from stem juice, 

grain and whole plant biomass. Sweet sorghum genotypes are superior when compared to other 

bioenergy crops in terms of higher green biomass, amount of fermentable sugars, fermentation 

efficiency and percentage of juice brix (Steduto et al., 1997; Rooney et al., 2007). The stem juice 

is a main source for bioethanol production due to greater quantity of fermentable sugars (Woods, 

2001; Akbulut and Ozcan, 2008). Sweet sorghum, a C4 metabolic plant, is generally grown under 

rainfed conditions, which are characterized by low water levels and high temperature. 

Drought and high temperature, often occur simultaneously, are important environmental 

factors restricting plant physiological processes and thereby plant growth (Shah and Paulsen, 

2003). Global climate change for instance contains to bring a new reality of environmental 

effects, presumably increases in global temperature, uneven precipitation, and severe drought in 

arid and semi-arid areas, on crop productivity (Wigley and Raper, 2001; Chaves et al., 2003). 

Most studies thus far have focused on crop response to drought and high temperature singly, and 

few studies have focused on combination of these two stresses. For example, drought and high 

temperature caused detrimental effects on wheat (Triticum aestivum L.), sorghum, barley 

(Hordeum vulgare L.) and various grasses (Savin and Nicolas, 1996; Machado and Paulsen, 

2001; Shah and Paulsen, 2003; Xu and Zhou, 2006). However, studies on the effect of these two 

environmental stresses either singly or in combination is scarce in sweet sorghum. 
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Drought stress caused significant impact on various sugar yielding crops affecting their yield 

potentialities. In sugarcane (Saccharum officinarum L.), cane yield was decreased by 29.2% and 

18.1% respectively in severe and moderate drought stress conditions and led to morphological 

changes such as reduced leaf area, thicker leaves, less responsive stomata and increased ratio of 

roots to shoots (Hussain et al., 2004). Drought experiments on sugar beet (Beta vulgaris L.) have 

shown adverse effects on leaf photosynthetic activities and sucrose yields in mature plants 

(Monti et al., 2006). Drought stress resulted in reduced root dry weight, leaf water potential and 

photochemical efficiency in many grass species (Aronson et al., 1987; Carrow, 1996; Perdomo et 

al., 1996; Huang et al., 1998a). 

High temperatures have negative effects on most crops in various ways (Schaffert and 

Gourley, 1982). Most crops grow well at optimum temperatures which mainly correspond with 

the optimum photosynthesis levels. High temperatures affect photosynthetic processes (Al-

Khatib and Paulsen, 1984) with increased sensitivity of photo-system (PS) II (Xu and Zhou, 

2006). High temperature stress causes thylakoid membrane damage and further down regulates 

PS II photochemistry which led to increased proportion of closed PS II reaction centers (Grove et 

al., 1986). In addition, leaf chlorophyll degradation is highly correlated with high temperature 

(Prasad et al., 2009). High temperature stress also causes leaf temperature to rise above air 

temperature by decreasing transpirational cooling and thus, make the plant more susceptible to 

photoinhibition (Falk et al., 1996). 

Recent studies revealed that plant response to a combination of drought and high temperature 

is uniquely differently from the effect of individual stress conditions (Rizhsky et al., 2004). 

While drought remains the single known environmental factor that directly affects plants water 

status, the severity of drought and high temperature combination is enormously dependant on the 
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prevailing temperatures. Ludlow et al. (1990) reported that combined stresses of drought and 

high temperature significantly reduced grain yield in sorghum. In addition, combined effects of 

drought and high temperature strongly affected water relations of both wheat and sorghum 

(Machado and Paulsen, 2001). As the combined effect of these two stresses are distinct in reality 

to independent stress effects in other crops, the relationship between drought, high temperature 

and their combinations against sugar accumulation in sweet sorghum needs thorough 

understanding. 

In sweet sorghum, the most important traits for biofuel production are plant height, stem 

diameter, stem fresh weight, juice yield, brix and stem sugar contents (Murray et al., 2008; 

Pfeiffer et al., 2010) and are determined by the efficient physiological behavior of the plant 

under different environmental conditions. Previous studies showed that plant height is highly 

correlated to juice yield and stem fresh weight (Murray et al., 2008). There is also a significant 

linear correlation between brix and total sugar content of the juice (Audilakshmi et al., 2010). 

However, optimal growing conditions ensure better plant growth without affecting physiological 

functions to produce sustainable juice and sugar yield in sweet sorghum (Vasilakoglou et al., 

2010). 

Sweet sorghum varieties differ in their ability to produce and store sugar in stem (Ali et al., 

2008). Mostly, sugar accumulation in stems takes place during inflorescence development 

(McBee and Miller, 1982) and is accelerated after post anthesis (Prasad et al., 2007; Almodares 

et al., 2008c). Environmental factors such as temperature and water level may greatly determine 

juice quality and amount. Even though sorghum can withstand moderate high temperatures and 

drought, occurrence of either drought or high temperature or their combination during early grain 

filling (milk) stage were not thoroughly studied for their effects on growth, physiology and yield. 
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It is important to understand these effects to predict bioenergy components and selection of 

genotypes suitable for cultivation under varying stress environments. 

The objectives of this research were to (i) quantify effects of treatments on juice and sugar 

yield characteristics and (ii) quantify genotypic difference for juice and sugar yield 

characteristics under various stress treatments. 

 6.2 Materials and Methods 

 6.2.1 Crop husbandry 

  This experiment was conducted under greenhouse controlled conditions at the Kansas 

State University, Department of Agronomy, Manhattan, KS during 2008-2009. Four sweet 

sorghum genotypes namely Awanlek, Smith, Tracy and Wray were grown in 15-L pots 

containing Metro-Mix 200 (Hummert International, Topeka, KS, USA) as soil medium. The pots 

were fully soaked with water and left for 1 d to drain and then five seeds per pot were sown at a 

5-cm depth. After emergence (two-leaf stage), a systemic insecticide (Marathon®1% G; 

Imidacloprid, 1-[(6-chloro-3-pyridinyl) methyl]-N-nitro-2-imidazolidinimine) was applied to 

each pot at 4 g per pot. Seedlings were thinned to two per pot after 15 d. The soil medium was 

fertilized with slow-release fertilizer (Osmocote®, Hummert International, Topeka, KS, USA, 

14:14:14% N: P: K, respectively) at 5 g per pot before sowing. The plants were grown at a 

temperature regime of 32/22°C ±3°C day/night, 12 h photoperiod and photosynthetic photon flux 

density of 800-1400 µmol m
−2

 s
−1

 provided from natural solar radiation and supplemental 

fluorescent lights. The relative humidity in the greenhouse was set at 80%. Air temperature, 

relative humidity, and light level were continuously monitored at 20-min intervals throughout the 

duration of experiment with HOBO data loggers (Onset Computers, Bourne, MA, USA). 
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 6.2.2 Treatment application 

All plants were grown under fully irrigated conditions (watered daily) from sowing to 10 d 

after complete anthesis (milking). Thereafter, each genotype was subjected to four treatments 

(control: fully irrigated/optimum temperature; drought stress: no irrigation/optimum temperature; 

high temperature stress: fully irrigated/high temperature 38/28°C and the combination of drought 

and high temperature, no irrigation/high temperature stress 38/28°C). Plants were randomly 

given for the stress treatments. The plants were held in a separate greenhouse condition for high 

temperature stress and combination of drought and high temperature whereas the other two 

treatments (control and drought stress) were given in another controlled greenhouse conditions. 

Temperature treatments were maintained at 38/28°C but varied ±3°C during 12-h day and 

±2.5°C during 12-h night until completion of stress period. Relative humidity ranged from 40% 

to 60% under high temperature condition. The drought treatment was imposed by withholding 

irrigation continuously throughout the stress period. The duration of stress treatments was 16 d 

and then plants were brought to normal growth conditions. The plants were then rewatered until 

final harvest at maturity. 

 6.2.3 Observations recorded 

 6.2.3.1 Physiological traits  

One uniform plant in each pot was tagged for recording physiological traits. Measurements 

were taken on the tagged plants from the flag leaf. After the start of various stress treatments, 

data on physiological traits (leaf chlorophyll content (SPAD), Spectrum Technologies, 

Plainfield, IL, USA); chlorophyll a fluorescence (Fv/Fm, which indicates photochemical 

efficiency) (Pulse-modulated fluorometer OS 30p, OptiScience, Hudson, NH, USA); canopy leaf 

temperature (FLIR ThermaCAM BCAM infrared thermal imaging camera, Janesville, WI, USA) 
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and gas exchange traits, (LI-COR 6400 portable photosynthesis system, Lincoln, NE, USA) were 

measured. Measurements were taken for 16 d on 4 d intervals. 

 6.2.3.2 Growth and yield traits 

  At maturity, plant growth and yield traits were recorded on each plant in each treatment 

of all replications. Plant height was measured from base of the stem to the tip of the panicle and 

was expressed in cm. Stem diameter was measured from the three regions of the stem (bottom 3
rd

 

internode, middle 6
th

 internode, and the top 9
th

 internode) using vernier caliper after stripping the 

leaves and removal of leaf sheaths. Average stem diameter was computed from the mean of the 

three regions. Number of leaves and internodes on the stem were counted. Leaf area was 

measured by leaf area meter (Model LI-3100, Li-Cor, Inc. Lincoln, NE, USA). 

Stalks were stripped of leaves and topped. The fresh weight of the panicle, leaf, and stem of 

each plant were recorded. From this, total fresh biomass comprised of panicles, leaves and stem 

was calculated. The fresh leaf, panicle and crushed stem were oven-dried at 60°C for 7 d and dry 

weights were recorded individually. The total dry biomass was calculated from the oven dried 

samples. The panicles were threshed to obtain grain yields. 

 6.2.3.3 Bioenergy traits 

 The juice from a single plant was extracted by a motor operated three roller sugarcane 

crusher (Sukra sugarcane crusher, Coimbatore, Tamil Nadu, India). The extracted juice was 

weighed for calculating juice yield. The brix was recorded on the extracted juice using digital 

hand-held refractometer (Digital hand-held pocket refractometer PAL-1, Atago, Bellevue, WA, 

USA). Sugar yield was calculated as the product of brix (%) and juice yield. The juice samples 

were then kept frozen for carbohydrate (Reducing and Total sugars) analysis. The method 

described by Balnaco et al. (1995) was employed to estimate reducing and total sugars and it was 
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expressed as percentage. Non-reducing sugar was obtained from the differences of total and 

reducing sugars and expressed as percentage. 

 6.2.4 Data analyses 

 The experiment was conducted in a factorial completely randomized design (4x4). There 

were two factors in this experiment. Factor 1 is genotype and has four levels. Factor 2 is stress 

treatments with four levels. The experiment consisted of 16 treatments. Each treatment was 

replicated thrice. Three pots were used for each replication. The data were subjected to the 

analysis of variance for each trait using the general linear model of the statistical software by 

statistical analysis software 9.1 (SAS, 2003). Differences among treatment means were 

compared by least significant differences (LSD) at 5% level of probability. 

 6.3 Results 

 6.3.1 Physiological traits 

  There was a significant effect of genotype on all physiological traits leaf chlorophyll 

content (SPAD), leaf temperature, Fv/Fm, net photosynthesis, stomatal conductance and 

transpiration rate except intercellular CO2 concentration (Ci). Treatments showed significant 

effect for all physiological traits, while the interaction effects revealed significant effects for 

most of the physiological traits except Ci and transpiration rate (Table 6.1). 

Among the genotypes, Tracy recorded significantly highest chlorophyll content and was 

followed by Wray (Table 6.2). Leaf temperature was significantly higher in Smith and Tracy 

(Table 6.2). Fv/Fm was significantly higher in Tracy, Wray and Awanlek (Table 6.2). Net 

photosynthetic rate was significantly highest in Tracy, whereas significantly lowest was recorded 

in Smith (Table 6.2). Stomatal conductance was similar in Tracy and Wray but was significantly 
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greater than Awanlek and Smith (Table 6.2). Transpiration rate was significantly higher in Wray 

and Tracy (Table 6.2). 

Among various treatments, drought stress combined with high temperature significantly 

decreased leaf chlorophyll and Fv/Fm and increased leaf temperature (Table 6.3). Net 

photosynthetic rate was significantly lower in combination of drought and high temperature, 

followed by drought stress (Table 6.3). Stomatal conductance was significantly decreased in 

combination treatment (Table 6.3). Ci was significantly increased under combination of drought 

and high temperature followed by drought stress (Table 6.3). The transpiration rate was 

significantly lowest in drought and high temperature combination followed by drought stress 

(Table 6.3). 

The interaction effects revealed genotype Tracy recorded lowest reduction of chlorophyll 

content under combination of drought and high temperature, drought and high temperature by 

10.6, 7.7 and 3.0%, respectively when compared to control (Fig. 6.1). Drought stress increased 

leaf temperature by 15.9, 14.4, 16.5 and 15.0% in genotypes Awanlek, Smith, Tracy, and Wray 

respectively. Whereas, high temperature stress slightly decreased leaf temperature of Awanlek, 

Smith, Tracy and Wray by 10.0, 12.4, 13.4 and 14.1%, respectively. The increase in leaf 

temperature was highest in Smith in response to combination of drought and high temperature 

(Fig. 6.2a). Drought stress reduced Fv/Fm in Awanlek, Smith, Tracy and Wray by 8.3, 11.3, 7.7 

and 8.3% respectively, whereas, drought combined with high temperature stress drastically 

reduced Fv/Fm in all genotypes with the lowest reduction in Tracy (Fig. 6.2b). Stomatal 

conductance was greatly decreased in Awanlek, Smith and Wray, by 44.8, 51.7, and 55.1%, 

respectively when compared to control, while Tracy (3.4%) showed the lowest reduction (Fig. 

6.2c). 
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High temperature stress did not affect photosynthetic rate of Tracy as compared to control, 

but decreased in Smith, Awanlek and Wray by 13.7, 9.2 and 4.6% respectively (Fig. 6.2d). 

Drought stress decreased photosynthetic rate in Smith, Awanlek, Wray, and Tracy genotypes by 

52.4, 44.5, 44.5 and 38.7% respectively. Whereas, combination of drought and high temperature 

greatly decreased photosynthetic rate in Smith, Wray, Awanlek and Tracy by 64.3, 53.7, 46.2, 

and 43.9% respectively as compared to control (Fig. 6.2d). 

 6.3.2 Growth and yield traits 

  Genotypes and treatments significantly influenced all the growth and yield traits, while 

interaction effects were significant only for plant height, leaf area, average stem diameter, stem 

fresh weight, total fresh biomass, leaf dry weight, panicle dry weight, total dry biomass and grain 

yield (Table 6.4). 

Among the genotypes, Tracy showed significantly maximum plant height (Table 6.5). 

Genotype Wray recorded significantly highest leaf area, number of leaves per plant and number 

of internodes (Table 6.5). Average stem diameter was significantly higher in Wray, followed by 

Tracy (Table 6.5). Leaf fresh weight was significantly higher in Tracy, followed by Wray (Table 

6.5). Among the genotypes, Tracy recorded significantly highest stem fresh weight and total 

fresh biomass (Table 6.5). Wray was found to record significantly highest panicle fresh weight, 

leaf dry weight, panicle dry weight, total dry biomass and grain yield (Table 6.5). However, stem 

dry weight was significantly higher in Wray and Tracy when compared to other genotypes 

(Table 6.5). 

Among the treatments, combination of drought and high temperature significantly decreased 

plant height, leaf area, panicle fresh weight, total fresh biomass, leaf dry weight, panicle dry 

weight, total dry biomass and grain yield (Table 6.6). Also, combination of drought and high 
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temperature significantly decreased number of leaves, number of internodes, average stem 

diameter, leaf fresh weight, stem fresh weight and stem dry weight and was followed by drought 

stress alone (Table 6.6). 

Interaction effects revealed combination of drought and high temperature caused highest 

reduction in average stem diameter in genotype Wray (23.5%), whereas Smith recorded the 

lowest reduction (6.5%) when compared to their control (Fig. 6.3a). Drought stress decreased 

average stem diameter by 22.3% in Wray compared with control (Fig. 6.3a). Tracy showed 

lowest reduction in stem fresh weight (45%) on exposure to combination of drought and high 

temperature (Fig 6.3b). 

 6.3.3 Bioenergy traits 

 Significant differences were observed among the genotypes for brix, juice yield, sugar yield, 

total sugars and non-reducing sugar contents (Table 6.7). Treatments showed highly significant 

effects on all bioenergy traits, whereas interaction effects were found significant for all 

bioenergy traits except brix (Table 6.7). 

Genotype Tracy recorded highest brix and was similar with Awanlek and Wray (Table 6.8). 

Whereas lowest brix was recorded in Smith (Table 6.8). Significantly highest juice and sugar 

yield was recorded in Tracy, while genotype Smith recorded significantly lowest juice and sugar 

yield (Table 6.8). Genotype Wray had significantly highest amount of total sugars and was 

followed by Tracy and Awanlek, while the lowest was observed in Smith (Table 6.8). Amount of 

reducing sugars was higher in Wray than other genotypes. Significantly highest amount of non-

reducing sugar was observed in Tracy and Wray (Table 6.8). 

The lowest brix was observed in genotypes exposed to combination of drought and high 

temperature and drought stress alone (Table 6.9). The combination of drought and high 
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temperature significantly decreased juice yield, sugar yield, total sugars, reducing sugars and 

non-reducing sugar contents (Table 6.9). 

The interaction effects showed combination of drought and high temperature had decreased 

juice yield by 70.3, 69.5, 68.1 and 49.1% in genotypes Smith, Awanlek, Wray and Tracy, 

respectively, as compared to control (Fig. 6.3c). In the case of drought stress, a decrease in juice 

yield by 55.5, 51.1, 45.1 and 39.8% was observed in Wray, Awanlek, Smith and Tracy, 

respectively, as compared to control (Fig. 6.3c), whereas, high temperature caused a reduction in 

juice yield by 26.3, 21.5, 18.3 and 18.2% in Tracy, Awanlek, Wray and Smith, respectively (Fig. 

6.3c). 

Compared to control sugar yield was greatly decreased by 85.5, 82.3, 81.5 and 79.2% in 

genotypes Smith, Wray, Awanlek and Tracy, respectively, when exposed to combination of 

drought and high temperature (Fig. 6.3d). Drought stress had decreased sugar yield by 72.7, 71.3, 

70.2 and 68.5% in Wray, Awanlek, Smith and Tracy, respectively, while high temperature stress 

decreased sugar yield in Smith, Awanlek, Tracy and Wray by 30.6, 28.1, 27.5 and 22.4%, 

respectively (Fig. 6.3d). 

Drought stress decreased reducing sugars in genotypes Wray, Awanlek, Tracy and Smith by 

71.9, 64.6, 38.6 and 37.5%, respectively, which was greater than the reductions under high 

temperature, which decreased by 53.3, 43.2, 41.7 and 25.0% in Awanlek, Smith, Wray and 

Tracy, respectively, as compared to control (Fig. 6.4a). Under combination of drought and high 

temperature stress, reducing sugar content of Awanlek, Wray, Smith and Tracy was reduced by 

83.4, 79.1, 78.8 and 57.9%, respectively, compared with control (Fig. 6.4a). 

Combination of drought and high temperature reduced total sugars by 76.0, 74.8, 61.8, 60.0% 

in genotypes Wray, Smith, Awanlek and Tracy, respectively, as compared to control (Fig. 6.4b). 
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Whereas, genotypes Wray, Awanlek, Tracy and Smith exposed to drought stress decreased total 

sugars by 60.0, 50.0, 41.4 and 35.5%, respectively (Fig. 6.4b). High temperature decreased total 

sugars in genotypes Wray, Awanlek, Smith and Tracy by 34.9 32.1, 29.4 and 27.3%, respectively 

compared with control (Fig. 6.4b). 

 6.4 Discussion 

Our study demonstrates that sweet sorghum at early grain filling (milk) stage is sensitive to 

drought, high temperature and their combinations as reflected by significant changes in growth, 

physiology and yield attributes of different sweet sorghum genotypes. In sweet sorghum, juice 

and sugar yield are the most important traits for achieving higher biofuel production. We found 

that drought and high temperature combination caused severe reduction in juice and sugar yield. 

Genotype Tracy outperformed all other genotypes in terms of juice and sugar yield under 

different stress treatments indicating its tolerance capacity (Fig. 6.3c and Fig. 6.3d). This has 

indicated that Tracy possesses unique physiological and growth attributes to mitigate the impact 

of various stress condition to produce sustainable yield. This genotype showed maximum plant 

height and it appears that tallness of the plant favored production of greater amount of total 

biomass, as was reflected by accumulation of greater fresh biomass in the same genotype. Earlier 

studies involving sorghum cultivars also brought out a significant role of plant height in 

contributing to total dry matter (Valdes and Miller, 1982). Leaf area reflects the source size of 

photosynthetic system, which is also associated with leaf number and genotype Wray followed 

by Tracy recorded highest number of leaves and the largest leaf area. Greater leaf area provided 

higher assimilatory surface. Similarly, Tracy produced the highest amount of stem fresh weight 

and is therefore a significant factor in contributing higher juice and sugar yield. Genotype Wray, 

a better performer for most of the growth and yield traits as that of Tracy, recorded the highest 
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grain yield, total dry biomass, stem-, leaf-, and panicle-dry weight but yielded low sugar. The 

lower sugar yield in Wray was because of more grain production rather than sugar production. 

Thus, it is inferred that Tracy had the potential to increase stem fresh weight and therefore, 

increased sugar accumulation in stem whereas Wray mobilized carbohydrates from leaf and stem 

to grain. The high sugar yielding performance of Tracy was due to its greater physiological 

functions related to leaf chlorophyll SPAD, Fv/Fm, stomatal conductance and net photosynthetic 

rate under normal and different stress conditions (Fig. 6.1, Fig. 6.2b, Fig 6.2c and Fig. 6.2d). 

Genetic differences for growth attributes, juice and sugar yield were reported earlier in sweet 

sorghum (Blummel et al., 2009; Bhoyar and Thakare, 2009), but under normal growing 

conditions. Our study showed genotypes behaved distinctly under different environmental 

stresses for sugar yield and selection of suitable genotypes with inherent capabilities of stress 

tolerance coupled with high sugar yield would pave way for developing an effective sweet 

sorghum breeding program for arid and semi-arid regions. 

Sweet sorghum is known to tolerate moderate environmental stresses including drought and 

high temperature through morphological, physiological and biochemical adjustments. Stress at 

reproductive growth stage had direct influence on growth, photosynthesis, dry matter 

accumulation and yield on sugarcane and sorghum (Ramesh, 2000; Hemaprabha et al., 2004; Su 

et al., 2007; Prasad et al., 2008; Prasad et al., 2009). The present results demonstrate that drought 

combined with high temperature greatly exacerbates the independent effect of drought and high 

temperature. High temperature, on the other hand, showed minimal adverse effects on growth, 

physiology and yield traits than drought stress alone.  

The reduction in sugar yield in all stress treatments might be due to decreased chlorophyll 

content, net photosynthetic rate, stomatal conductance and PS II photochemistry and increased 
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leaf temperature (Table 6.3). Drought and high temperature caused a marked decrease in 

chlorophyll content and Fv/Fm and is in agreement with earlier studies (Shah and Paulsen, 2003; 

Wang and Huang, 2004;  Ristic et al., 2007; Balla et al., 2006; Su et al., 2007). It was evident 

that photosynthetic rate was reduced under drought (Loreto et al., 1995; Shah and Paulsen, 

2003), high temperature (Prasad et al., 2009), and combination of drought and high temperature 

(Shah and Paulsen, 2003) in sorghum and wheat. Combination of drought and high temperature 

decreased photosynthetic rate to a maximum extent compared to other stresses, and is in 

agreement with previous study in Kentucky blue grass, (Poa pratensis L.) (Wang and Huang, 

2004). It might be due to photo-inhibition of PS II (Weis and Berry, 1988) and/or rapid leaf 

desiccation and permanent damage to PS II machinary (Jiang and Huang, 2000). Drought stress 

completely damaged the photosynthetic rate as evidenced by lower Fv/Fm. Similar trends were 

demonstrated in wheat by Balla et al. (2006). In addition, reduced photosynthetic rate was also 

due to reduced chlorophyll content under stress Decreasing concentration of chlorophyll due to 

increases in chloroplast degradation was attributed for the limitation of photosynthesis under 

moderate or severe drought conditions (Xiao et al., 2006). High temperature, on the other hand, 

did not noticeably change photosynthetic rate as compared to control. The capacity of 

photosynthetic process is an outcome through acclimation of high temperature rather than 

drought stress alone (Brigg et al., 1986; Nobel et al., 1978; Smolander and Lappi, 1984). 

Moreover, the increase in leaf tissue temperature under stress treatments has resulted in higher 

water loss which might have resulted in reduced stem juice yield. 

Drought stress had decreased sugar yield and grain yield compared to high temperature 

stress. Results from Miller and Ottman (2010) indicated that applying drought stress did not 

increase sugar concentration in sweet sorghum. Drought had decreased leaf area, photosynthetic 



162 

 

rate and stomatal conductance (Paulsen, 1994) and inhibited sucrose accumulation in stem and 

also deteriorated juice quality (Ishaq and Olaoye, 2009). 

The interaction effect revealed that Tracy recorded higher juice and sugar yield under all 

stress levels (Fig. 6.3c and Fig. 6.3d). This might be due to increased chlorophyll SPAD, Fv/Fm, 

stomatal conductance, Ci and photosynthetic rate associated with this genotype under various 

stress treatments (Fig. 6.1, Fig. 6.2b, Fig. 6.2c and Fig. 6.2d). The increases in stomatal 

conductance along with photosynthetic rate indicated that the sugars formed during 

photosynthesis were acted as an osmoticum in the stem and not in the leaf, which had resulted in 

higher juice yield and transpiration. This physiological adaptation in Tracy therefore, might help 

in maintaining higher photosynthetic rate even under independent and combined stresses. 

It is generally regarded that decrease in photosynthesis under drought, high temperature and 

combined stress conditions could be attributed either to a decrease in stomatal conductance 

and/or to non-stomatal limitations (Ort et al., 1994; Shangguan et al., 1999). The relatively 

higher stomatal conductance of the tolerant genotypes results from mechanisms maintaining a 

higher leaf water status and hence more open stomata. As a consequence, CO2 influx towards 

chloroplast may be longer, thus allowing greater photosynthetic rates under drought, high 

temperature and combined stress conditions (Hassan, 2006). 

 6.5 Conclusions 

The effect of various stress treatments (high temperature, drought and combination of 

drought and high temperature) imposed for 16 d from the 10 d after complete anthesis were 

studied on the growth, physiology and yield components of four sweet sorghum genotypes. 

Genotype Tracy was found to exhibit tolerance towards combination of drought and high 

temperature stress, and also individual stresses by maintaining higher net photosynthetic rate, 
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chlorophyll SPAD and Fv/Fm compared to other genotypes. The increased photosynthetic rate 

has resulted in higher accumulation of sugars in juice, which is due to higher brix and juice yield. 

Among the various stresses, combination of drought and high temperature was found to decrease 

sugar and juice yield compared to drought and high temperature alone. Between individual stress 

effects, drought stress had higher decrease in sugar yield compared to high temperature. 

Significant differences were found among sweet sorghum genotypes with regards to their 

tolerance capacity to different abiotic stresses, which allows better selection for use of bioenergy 

production. 
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 6.6 Tables and Figures 

Figure 6.1  Effect of drought, high temperature and its combination on leaf chlorophyll content 

(SPAD) of four sweet sorghum genotypes. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



165 

 

Figure 6.2  Effect of drought, high temperature and its combination on (a) leaf temperature (b) 

Fv/Fm (c) stomatal conductance and (d) photosynthetic rate of four sweet sorghum genotypes. 
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Figure 6.3  Effect of drought, high temperature and its combination on (a) stem diameter (b) stem 

fresh weight (c) juice yield and (d) sugar yield of four sweet sorghum genotypes. The vertical bar 

denotes ±SE of means (n=12). 
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Figure 6.4  Effect of drought, high temperature and its combination on (a) reducing sugar content 

and (b) total sugar content of four sweet sorghum genotypes. The vertical bar denotes ±SE of 

means (n=12). 
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Table 6.1 Significance and P values of the effects of genotypes (G), treatments (T) and their interaction (G x T) on physiological traits 

in different sweet sorghum genotypes. 

Physiological traits 

Chlorophyll 

(SPAD) 

Leaf 

temperature 

(°C) 

Fv/Fm 

 

Net 

photosynthesis 

(µmol CO2  

m
–2

  s
–1

) 

Stomatal 

conductance 

(mmol H2O 

m
−2

 s
−1

) 

Intercellular 

CO2 

concentration 

(Ci) (ppm) 

Transpiration 

rate 

(mmol H2O 

m
−2

 s
−1

) 

Genotype (G) <0.001 <0.01 <0.001 <0.001 <0.001 NS <0.001 

Treatment (T) <0.001 <0.001 <0.001 <0.001 <0.001 <0.05 <0.001 

Day (D) <0.001 <0.001 <0.001 <0.001 <0.001 NS <0.001 

G*T <0.001 <0.05 <0.05 <0.001 <0.05 NS NS 

G*D NS <0.05 NS <0.001 NS NS <0.05 

T*D NS <0.01 <0.001 <0.001 NS <0.05 NS 

G*T*D NS <0.001 NS <0.05 NS <0.05 NS 

 

NS= Non-significant.
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Table 6.2 Effect of various sweet sorghum genotypes on physiological traits. 

 

Physiological traits 

Genotypes 

Awanlek Smith Tracy Wray LSD 

Chlorophyll (SPAD) 43.0
c
 40.5

d
 49.1

a
 45.9

b
 0.9 

Leaf temperature (°C) 35.5
b
 36.3

a
 35.9b

a
 35.6

b
 0.46 

Fv/Fm  0.724
a
 0.702

b
 0.734

a
 0.724

a
 0.01 

Net photosynthetic rate 

(µmol CO2  m
–2

  s
–1

) 

31.0
c
 26.1

d
 36.9

a
 33.9

b
 0.83 

Stomatal conductance 

(mmol H2O m
−2

 s
−1

) 

0.186
b
 0.160

c
 0.231

a
 0.216

a
 0.01 

Intercellular CO2 

concentration (Ci) (ppm) 

81.9
b
 87.1

ba
 98.2

a
 89.3

ba
 14.5 

Transpiration rate 

(mmol H2O m
−2

 s
−1

) 

5.3
b
 4.1

c
 5.8

ba
 6.2

a
 0.6 

 

Means within the same row with different letter are significantly different at P<0.05. Each data is 

the average of four independent measurements of each genotype recorded on day 4, 8, 12, and 

16.



170 

 

Table 6.3 Effect of various treatments on physiological traits of sweet sorghum genotypes. 

Physiological traits 

Genotypes 

Control Drought High 

temperature 

Drought + High 

temperature 

LSD 

Chlorophyll (SPAD) 48.3
a
 42.5

c
 46.8

b
 41.0

d
 0.9 

Leaf temperature (°C) 32.0
d
 37.1

b
 35.9

c
 38.3

a
 0.46 

Fv/Fm  0.767
a
 0.699

c
 0.732

b
 0.651

d
 0.01 

Net photosynthetic rate 

(µmol CO2  m
–2

  s
–1

) 

43.0
a
 23.7

d
 40.3

b
 20.8

d
 0.83 

Stomatal conductance 

(mmol H2O m
−2

 s
−1

) 

0.270
a
 0.156

c
 0.240

b
 0.128

d
 0.01 

Intercellular CO2 concentration 

(Ci) (ppm) 

77.0
b
 96.8

a
 81.7

b
 101.1

a
 14.5 

Transpiration rate 

(mmol H2O m
−2

 s
−1

) 

6.8
a
 4.0

b
 6.9

a
 3.7

b
 0.6 

 

Means within the same row with different letter are significantly different at P<0.05. Each data is 

the average of four independent measurements of each genotype recorded on day 4, 8, 12, and 

16.
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Table 6.4 Significance and P values of the effects of genotypes (G), treatments (T) and their 

interaction (G x T) on growth and yield traits in different sweet sorghum genotypes. 

Growth and yield traits Genotype (G) Treatment (T) G x T 

Plant height (cm plant
-1

) <0.001 <0.001 <0.01 

Leaf area (cm
2
 plant

-1
) <0.001 <0.001 <0.05 

Number of leaves plant
-1

 <0.001 <0.001 NS 

Number of internodes plant
-1

 <0.01 <0.05 NS 

Average stem diameter (mm plant
-1

) <0.001 <0.001 <0.01 

Leaf fresh weight (g plant
-1

) <0.01 <0.001 NS 

Stem fresh weight (g plant
-1

) <0.001 <0.001 <0.01 

Panicle fresh weight (g plant
-1

) <0.001 <0.001 NS 

Total fresh biomass (g plant
-1

) <0.001 <0.001 <0.01 

Leaf dry weight (g plant
-1

) <0.001 <0.05 <0.01 

Stem dry weight (g plant
-1

) <0.001 <0.001 NS 

Panicle dry weight (g plant
-1

) <0.001 <0.001 <0.05 

Total dry biomass (g plant
-1

) <0.001 <0.001 <0.05 

Grain yield (g plant
-1

) <0.001 <0.001 <0.001 

 

NS= Non-significant. 
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Table 6.5 Effect of various sweet sorghum genotypes on growth and yield traits. 

Growth and yield traits 

Genotypes 

Awanlek Smith Tracy Wray LSD 

Plant height (cm plant
-1

) 284.0
b
 286.0

b
 299.0

a
 256.0

c
 6.7 

Leaf area (cm
2
 plant

-1
) 1849.0

c
 1834.0

c
 2330.0

b
 3522.0

a
 241.1 

Number of leaves plant
-1

 9.2
c
 9.6

c
 10.3

b
 11.0

a
 0.64 

Number of internodes plant
-1

 10.1
b
 10.0

b
 10.5

b
 11.5

a
 0.72 

Average stem diameter (mm plant
-1

) 12.9
b
 13.1

b
 14.0

a
 14.7

a
 0.76 

Leaf fresh weight (g plant
-1

) 54.6
bc

 50.6
c
 67.4

a
 64.4

ba
 8.4 

Stem fresh weight (g plant
-1

) 349.7
b
 255.5

c
 383.9

a
 349.7

b
 30.5 

Panicle fresh weight (g plant
-1

) 32.3
b
 31.2

b
 28.3

b
 48.6

a
 5.7 

Total fresh biomass (g plant
-1

) 427.6
b
 312.1

c
 479.7

a
 435.4

b
 35.4 

Leaf dry weight (g plant
-1

) 41.4
c
 41.3

c
 45.3

b
 54.8

a
 3.7 

Stem dry weight (g plant
-1

) 109.1
a
 92.0

b
 111.2

a
 117.7

a
 8.6 

Panicle dry weight (g plant
-1

) 26.9
b
 27.8

b
 24.1

b
 39.3

a
 4.3 

Total dry biomass (g plant
-1

) 177.5
b
 161.2

c
 180.7

b
 211.9

a
 10.5 

Grain yield (g plant
-1

) 10.7
b
 11.4

b
 11.2

b
 22.9

a
 1.7 

 

Means within the same row with different letter are significantly different at P<0.05. 
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Table 6.6 Effect of various treatments on growth and yield traits of sweet sorghum genotypes. 

Growth and yield traits 

Genotypes 

Control Drought High 

temperature 

Drought + High 

temperature 

LSD 

Plant height (cm plant
-1

) 300.0
a
 277.0

c
 286.0

b
 262.0

d
 6.7 

Leaf area (cm
2

 plant
-1

) 3320.0
a
 1866.0

c
 2850.0

b
 1501.0

d
 241.1 

Number of leaves plant
-1

 11.0
a
 9.7

b
 10.4

a
 9.1

b
 0.64 

Number of internodes plant
-1

 11.1
a
 10.4

b
 10.6b

a
 10.0

b
 0.72 

Average stem diameter (mm plant
-1

) 15.0
a
 12.9

b
 14.6

a
 12.3

b
 0.76 

Leaf fresh weight (g plant
-1

) 73.7
a
 49.1

cb
 60.2

b
 46.0

c
 7.8 

Stem fresh weight (g plant
-1

) 474.8
a
 287.0

c
 349.9

b
 274.8

c
 30.5 

Panicle fresh weight (g plant
-1

) 43.6
a
 33.0

b
 38.8

a
 25.0

c
 5.7 

Total fresh biomass (g plant
-1

) 592.2
a
 340.6

c
 449.0

b
 273.1

d
 35.4 

Leaf dry weight (g plant
-1

) 49.3
a
 46.5

ba
 45.5

b
 41.6

c
 3.7 

Stem dry weight (g plant
-1

) 134.8
a
 95.6

c
 109.6

b
 90.1

c
 8.6 

Panicle dry weight (g plant
-1

) 37.1
a
 28.4

b
 31.1

b
 21.5

c
 4.3 

Total dry biomass (g plant
-1

) 221.2
a
 170.6

c
 186.3

b
 153.3

d
 10.5 

Grain yield (g plant
-1

) 18.5
a
 13.7

c
 15.6

b
 8.3

d
 1.7 

 

Means within the same row with different letter are significantly different at P<0.05; NS= Non-

significant. 
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Table 6.7 Significance and P values of the effects of genotypes (G), treatments (T) and their 

interaction (G x T) on bioenergy traits in different sweet sorghum genotypes. 

Bioenergy traits Genotype (G) Treatment (T) G x T 

Brix (%) <0.001 <0.001 NS 

Juice yield (ml plant
-1

) <0.001 <0.001 <0.01 

Sugar yield (ml plant
-1

) <0.001 <0.001 <0.001 

Total sugars (%, w/v) <0.001 <0.001 <0.001 

Reducing sugars (%, w/v) NS <0.001 <0.001 

Non-reducing sugars (%, w/v) <0.001 <0.001 <0.001 

 

NS= Non-significant. 
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Table 6.8 Effect of various sweet sorghum genotypes on bioenergy traits. 

Bioenergy traits 

Genotypes 

Awanlek Smith Tracy Wray LSD 

Brix (%) 16.9
a
 14.5

b
 17.1

a
 16.8

a
 1.2 

Juice yield (ml plant
-1

) 113.4
c
 77.6

d
 163.6

a
 125.5

b
 10.6 

Sugar yield (ml plant
-1

) 21.0
c
 12.6

d
 29.7

a
 23.3

b
 2.2 

Total sugars (%, w/v) 12.9
b
 10.6

c
 13.9

ba
 14.6

a
 1.0 

Reducing sugars (%, w/v) 6.6
ba

 6.2
b
 6.1

b
 7.2

a
 0.8 

Non-reducing sugars (%, w/v) 6.2
b
 4.3

c
 7.7

a
 7.3

a
 0.7 

 

Means within the same row with different letter are significantly different at P<0.05.
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Table 6.9 Effect of various treatments on bioenergy traits of sweet sorghum genotypes. 

Bioenergy traits 

Genotypes 

Control Drought High 

temperature 

Drought + High 

temperature 

LSD 

Brix (%) 21.3
a
 12.6

c
 19.6

b
 11.7

c
 1.2 

Juice yield (ml plant
-1

) 179.3
a
 93.7

c
 140.4

b
 66.8

d
 10.6 

Sugar yield (ml plant
-1

) 38.5
a
 12.1

c
 27.9

b
 8.0

d
 2.2 

Total sugars (%, w/v) 20.6
a
 10.7

c
 14.2

b
 6.5

d
 1.0 

Reducing sugars (%, w/v) 11.6
a
 5.1

c
 6.7

b
 2.8

d
 0.8 

Non-reducing sugars (%, w/v) 9.0
a
 5.5

c
 7.4

b
 3.7

d
 0.7 

 

Means within the same row with different letter are significantly different at P<0.05; NS= Non-

significant.
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 General Summary 

The objectives of this study were to (1) quantify genetic variability for plant height, stem 

fresh weight, brix, juice yield and sugar yield in sweet sorghum germplasm; and to identify 

potential drought tolerant sweet sorghum genotypes, (2) determine the optimum harvest time for 

obtaining maximum juice yield, (3) obtain information on the various growth and physiological 

traits influencing sugar yield of various sweet sorghum genotypes, (4) quantify effects of water 

stress on brix, juice and sugar yield, and (5) quantify effects of drought, high temperature and its 

combination on juice and sugar yield characteristics. 

The study found that there was a wide genetic variability among the sweet sorghum 

germplasm for plant height, stem diameter, stem fresh weight, brix, juice yield and sugar yield. 

There were significant positive correlation between sugar yield and growth (plant height and 

stem weight), physiological (photochemical efficiency) and bio-energy traits (juice yield). 

Growth and physiological traits were not affected by the rain-fed condition; however, there were 

significant decreases on traits such as brix, stem fresh weight, juice yield and sugar yield. 

Among the 78 genotypes, Wray, MN 4564 and Caxa had higher sugar yield. Genotypes 

Sanyagie, MN 818 and Dale_1 had lower relative sugar yield reduction (RSYR) indicating their 

drought tolerant potential with sustainable sugar yield. 

In an effort to identify optimum stage of harvest, the study found that harvesting plants at 

hard dough stage gave the highest brix, total sugars, reducing sugars and non-reducing sugars in 

stem juice. The highest level of sugar and juice in stem was obtained from plants harvested from 

milky stage to hard dough stage. Hence, the optimum harvest time for maximum juice and sugar 

yields for the sweet sorghum variety M81E is between milk and hard dough stage. 
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To understand the morpho-physiological factors for sugar yield, the study observed high 

sugar yielders possessed higher green leaf numbers, tall plant stature, high average stem 

diameter, higher Fv/Fm and higher stem biomass accumulation, and low grain yield. Whereas, 

the low sugar yielders had more assimilates in grain. Of the thirty sweet sorghum genotypes, 

genotypes, Wray, Honey No. 6, Isidomba, MN 4135 and No. 5 Gambela were identified as the 

high sugar yielders. In addition, principal component analysis (PCA) established similar groups 

of genotypes, according to their sugar yielding characteristics, as well as identified stem fresh 

weight a major trait contributing for sugar yield. 

The water stress experiment found significant differences among the genotypes for all 

growth, physiology and bioenergy traits. Overall, across all genotypes severe water stress 

significantly decreased brix, juice yield, sugar yield, sucrose content, total dry biomass and grain 

yield. Genotype Tracy produced significantly highest juice and sugar yields under both irrigated 

and water stress conditions compared to genotypes Wray, Awanlek and Smith. The water stress 

tolerance of Tracy could be ascertained based on significant increase in chlorophyll SPAD, net 

photosynthetic rate, stomatal conductance, and transpiration rate. Also, genotype Tracy 

accumulated relatively greater amounts of sugars (glucose, fructose and sucrose) in the juice than 

other genotypes. 

The effect of various stress treatments (high temperature, drought and combination of 

drought and high temperature) revealed genotype Tracy was found to exhibit tolerance towards 

combination of drought and high temperature stress, and also individual stresses by maintaining 

higher net photosynthetic rate, chlorophyll SPAD and Fv/Fm compared to other genotypes. The 

increased photosynthetic rate has resulted in higher accumulation of sugars in juice, which is due 

to higher brix and juice yield. Among the various stresses, combination of drought and high 
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temperature was found to decrease sugar and juice yield compared to drought and high 

temperature alone. Between individual stress effects, drought stress had higher decrease in sugar 

yield compared to high temperature. Significant differences were found among sweet sorghum 

genotypes with regards to their tolerance capacity to different abiotic stresses, which allows 

better selection for use of bioenergy production. 
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 Future Directions 

 

1. We found wide genetic variability among 78 sweet sorghum cultivars for plant 

height, stem diameter, stem fresh weight, brix, juice yield and sugar yield. However, 

it is based on two years and in one location data. Hence, the study has to be 

conducted in multi locations, to confirm the genetic variability and identification of 

diverse parental lines. 

 

2. Harvesting plants at hard dough stage have resulted in highest brix, total sugars, 

reducing sugars and non-reducing sugars. However, ethanol was not quantified in the 

present study, to optimize the stage of harvest ethanol yield is important. Hence, the 

above study has to be repeated in multi-location site with ethanol quantification to 

confirm the present result. 

 

3. Identification of morpho-physiological traits for high sugar yield was done for one 

year; the traits have to be validated in multi locations along with ethanol 

quantification. In the present study there were some medium sugar yielders; in future 

high sugar yielder and low sugar yielder alone should be used for validating the traits. 

 

4. The drought study was conducted in pot culture experiment; however it has to be 

verified in field conditions. The juice content was not extracted using press mill in the 

present study, in future; press mill has to be used. Ethanol has to be quantified for 

understanding the drought stress effect. 
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5. The abiotic stress (drought, high temperature and combination) study was conducted 

in pot culture experiment; however it has to be verified in field conditions. Ethanol 

has to be quantified for understanding the effects of drought, high temperature and 

combination of both. 
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