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CHAPTER 1

INTRODUCTION

The production of a large percentage of commercial and industrial
materials is accomplished by complex reactions in which catalysts play an
indispensable role. 1In 1962, 18% of the total dollar wvalue of manufactured
goods was produced by catalytic technology and this percentage has been
increasing steadily. Clearly, monetary as well as academic incentives pro-
vide the basis for growing-research interest in the diversified field of
catalysis.

Less than two decades ago the majority of investigators in catalysis
were still of the opinion that even though a catalyst might consist of more
than one component it was still monofunctional in nature. Consequently, if
it were known that to produce a certain market;ble chemical two separate
catalytic steps were needed, a series of two reactors was designed; the first
containing the pure catalyst for the iﬁitial reaction and the second contain-
ing the pure catalyst for the second reaction. The basic fact that two
separate reactions zoneé were required was never questioned in the reactor
design and the only characteristics of the catalysts which were considered
were such things as pellet size, geometric shape, porosity, temperature and
handling attrition resistances, etc.

Then at the beginning of the 1950's, Haensel [1] and Clapetta [2]
obtained evidence that certain catalysts composed of more than one material
were promoting more than one reaction simultaneously. This discovery opened
_up an entirely new field in catalytic research; the study of polyfunctional
catalysts. A substantial volume of experiments followed which disclosed that

a number of heterogeneous catalytic reactions, which proceed by several



distinct reactions steps, could be handled quite easily with these polyfunc-
tional catalysts. Examples of these reactions, most of which are of
commercial importance, are:

(a) Dehydrogenation of cyclohexane to aromatics.

(b) Isomerization of n-paraffins to branched paraffins.

(¢} Isomerization of alkyl-cyclopentane to cyclohexanes.

(d) Dehydroisomerization of alkylcyclopentanes to aromatics.

(e) Dehydrocyclization of paraffins to aromatics.

(f) Hydrocracking to low molecular welght paraffins.

Before further discussion omn polyfunctionai éatalysis a physical
description of a polyfunctional catalyst particle is in order. TFor the sake
of generality consider a particle of arbitrary geometric shape but porous in
nature. Now consider the walls of the pores and the external particle sur-
face to be made up of a uniform mixture of several distinct types of active
sites, each of which perform separate catalytic functions, i.e. hydrogenation,
dehydrogenation, isomerization, cracking, etc. Therefore each type of active
site will catalyze a particular step of a polystep reaction.

Several of the polystep reaction examples given above may be represented

schematically by

El ’E£/;7 C(s) (poison or deleterious side product)
X
A(g) . B(®)

k k R(g) (product)
2 3 .

X

(X and Y are distinct and different catalyst types).
Three salient features of this type of reactlon should be noted: First,

it is indicative of the complex heterogeneous reactions which may be catalyzed
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by polyfunctional catalysts. Second, prior to the previous decade, concerns
wishing to produce R for market would have carried out the reaction in two
separate fixed bed reaction zones; zone 1 being filled only with catalyst X
and zone 2 filled only with catalyst Y (see Fig, 1-1 (a)). Even though this
method is still widely used, it has been shown theoretically by a number of
investigators that the formulations shown in Fig. 1-1 (b) and (c) are much
superior to the former method on the basis of maximum product yield, reactor
size or a combination of both. This is especially true when the initial step
is reversibie with a small equilibrium constant. Finally, it is the same
complex reactions which, as a result of simultaneous parallel or consecutive
side reactions, may produce a detrimental organic conglomerate called coke (C)
or similar compound, which physically deposits on the active sites. This
fouling process occurs continuously, reducing the activity of that particular
catalyst type until it is economically infeasible to continue the operation
without regeneration or replacement of the catalyst.

Therefore, it was deemed necessary, because of the ultimate importance
of catalysis and especially this relatively new polyfunctional aspect, to make
a theoretical study of the effects which poison buildup have on reactor

performance for the various catalyst formulations previously discussed.



CHAPTER 2

LITERATURE SURVEY

At this time, to the author's knowledge,-there exists no data or solu-
tions with which this work can be compared. However, there are a number of
papers which are pertinent. These may be divided into discussions of the
performance of unfouled polyfunctionai catalysts and discussions of fouling
in monofunctional catalysts. Use of these works to provide insight for the

present work, which combines ideas from both areas, seems logical.
STUDIES OF DUAL-FUNCTIONAL CATALYSTS

Haensel [3] and Ciapetta [4] were probably the two investigators most
responsible for the discovery and successful application of polyfunctional
cétalysts to complex polystep reactions in the petroleum industry. For some
time after industrial inception most results on the performance of polyfunc-—
tional catalysts were experimental. Tﬁeoretical work on the mass transfer
and mechanistic properties of these catalysts was lacking. However, in the
early 1960's Weisz [5}; examined theoretically the mass transport properties
of polyfunctional catalysts using his ”nontriviai polystep reaction.'" He
demonstrated that, when the initial steps are restricted by thermodynamic
equilibrium, a single zone system with the distinct catalyst types in intimate
contact, i.e. on the same particle, is much more advantageous than a multi-
zone system with pure catalyst in each zone. He also demonstrated experi-
mentally that for a two step reaction the yield of product, for a mechanical
_ compaction of minute particles of both types, tended to increase with

decreasing particle size until the component particles reached a size of



approximately 5 microns. The yields obtained with these compacted particles
was comparable to that obtained with a porous carrier of one catalyst type
impregnated with the other. This illustrates that intraparticle diffusion is
negligible for the 5 micron particles making up the catalyst pellet.

Gunn and Thomas [6] published a theoretical work considering several
different reaction schemes and two types of catalyst formulations. One type
of formulation consisted of a homogeneous wixture of the pure catalyst parti-
cles in a single reaction zone (discrete formulation), while the other was the
dual functional catalyst, i.e. both catalyst types uniformly dispersed in a
single particle (composite formulation). Their analysis considered only
diffusion inside the particle and surface reaction as rate controlling and
comparisons were made between the two formulations for the different reaction
schemes, In all cases the dual-functional catalysts provided better product
yields with all other variables being equivalent. It.was also illustrated
that there is an optimum uniform catalyst fraction for both types and the
existence of an axially dependent optimum catalyst fraction was discussed.

In all cases the optimum catalyst fraction for the composite catalyst was
considerably less than the fraction for the discrete formulation. In essence
their analysis was a comparison of two modes of diffusional résistance and
the physical "intimateness'" of the two types of catalyst sites. In the
discrete formulation the initial reactant diffused into the pure porous
catalyst and formed an intermediate which consequently had to diffuse out of
the particle, be carried by bulk flow to the proximity of a particle of the
other catalyst type and diffuse into it and react to form product. The
 composite formulation, which allows both catalyst sites to be physically as

close as possible, eliminates the bulk flow step as well as the diffusion of



intermediate out of a particle of one type and into a particle of the other
type, and hence increases the efficiency with which the intermediate can be
converted to product. Since this work was intended to be an elementary com-
parison between the formulations, fouling and nonisothermal effects were not

considered.
FOULING OF MONOFUNCTIONAL CATALYSTS

There are three main classifications of poisoning. The first is called
reversible poisoning and 1s caﬁsed by the adsorption of an unwanted specie
onto an active site. If the adsorptive forces are not sufficiently strong
this specie may desorb and leave the active site completely unaltered. The
second class is designated semi-reversible poisoning and is characterized by
either a very strong adsorption or the physical deposition of a solid, such
as coke or a tarlike substance on the active site. In order for the activity
to be restored the catalyst must be regenerated in some way to remove these
harmful deposits. Full activity can usually be restored in these cases. The
third class is irreversible poisoning and is usually caused by thermal sinter-
ing where the catalyst is exposed to an extremely high temperature which
alters the structure of the catalyst irreversibly and in consequence also the
activity. The former and latter classes have received relatively little
theoretical attention since through design modifications in reactors these may
be somewhat alleviated. However, the second class, which is probably the most
important in industrial significance, has received a substantial amount of
both theoretical and experimental treatment.

Considering only gaseous reactions in a fixed bed reactor, there are

three ways that poisoning may occur. The first is by the entrance of



impurities in the feed which may then be strongly adsorbed by an active site
or sites and consequently lower the relative activity. Another way is by
parallel or consecutive reactions of the reactants and intermediate species.
An unsaturated conglomerate such as coke can be formed which physically
deposits on the active site thereby reducing its activity. Reactor products
can undergo unwanted side reactions which prdduce the same effects. All of
these have been studied in some detail and the following discussion will
attempt to elucidate the results and conclusions of each analysis.

Maxted et al. [7], performed experiments on the poisoning of platinum and
nickel catalysts and found an initial linear decrease in the relative actilvity
of the catalyst with poison concentration. This linear decay became nonlinear,
after a certain amount of poison had been added, approaching asymptotically a
limiting activity with increasing poison concentration. This type of behavior
has been noted in a number of cases (Eley and Rideal [8], Maxted [9]), and an
explanation of the inflection point based on random adsorption on a model
lattice has been attempted by Herington and Rideal [10]. They assume that the
poisoning atom or molecule is large enough to encompass more than one active
site at a time, so that initially the poison finds ample open area avallable
to situate. However, after sufficient amounts of poison have been deposited
there remains only patches of active sites available and the poison will not
be able to deposit quite as freely. Maxted proposed relating the rate con-

stant decay to the poison concentration by an egquation of the form
k=% (1~ ac),
)
" where ko was the unpoisoned rate constant, ¢ the poison concentration and o

the slope of the plot of k/ko versus c. This expression is quite reasonable

for the initial linear decay which is almost always observed in poisoning



reactions and could represent the entire poisoning curve if the correspondence
of poison molecule to active site were one to one,

Wheeler [1l1] considered diffusion and surface reaction in single
cylindrical pores and postulated several different ﬁodels by which the rela-
tive activity decayed with surface area coverage by poison. In the case of
nonselective poisoning and slow reaction (i.e. low Thiele modulus) the rela-
tive activity decayed linearly with surface coverage. For nonselective
poisoning and rapid reaction (i.e. high Thiele modulus) the relative activity
drops according to the relation, F = /If:j;, where o is the fraction of sur-
face coverage. For a number of reduced metél catalysts he noted that the
poison might be preferentially adsorbed at the pore mouth and continue
progressively along the pore length. In these instances a small amount of
surface coverage resulted in large decrease in activity. The relationship is
hyperbolic, F = (1 + aho)“l, where h_ is the unpoisoned Thiele modulus. For
a fast reaction (large ho), the activity could be reduced greatly for a very
small surface coverage.

It suffices to say that even though Wheeler considered only poisoning of
a single pore the relationships derived by him provide at least a valid
starting point when looking at models of fouling in a particle.

Anderson and Whitehouse [12] have applied Wheeler's relationships to
stationary reactor beds. Empirical models relating poison concentration to
bed length were chosen and then these models were related, using other
empirical models, to the decay of relative activity with poison concentra-
tion. Their results for their ﬁode of poisoning, seem to be quite inclusive
of what would happen industrially. However, it is evident from this author's

readings that their assumption that most poisons enter with the feed 1Is not
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strictly true. Because of recent filter technology and feed pretreatment a
majority of the poisons which used to appear in feedstocks have been elimi-
nated. The main sources of poison now are more deleterious side reactions
involving reactants, intermediates or products in the reactor.

Froment and Bischoff [13] were probably the first to make a theoretical
study of the dynamics of poison formation by an unwanted side reaction in a
fixed bed reactor. Their analysis considered the reaction rate coefficient,
which they related directly to the poison content of the catalyst, as a
measure of catalytic actiwvity. Previously, the poison content of a catalyst,
and hence activity, had been related to process time (Voorhies et al. [14]),
and as one could imagine this was not in any way general and any conclusions
arrived at were applicable only to the particular reacting system under
investigation. In the study of Froment and Bischoff the rate constant was
related to the poison concentration by both exponential and hyperbolic models.
Both models were mainly empirical in nature but the hyperbolic model has some
theoretical backing from Langmuir-Hinshelwood adsorption concepts. Their
system dealt with poison formation by both parallel and consecutive reactions
in an isothermal fixed bed reactor with negligible diffusion effects. The

.;eal importance of this paper was in the method of relating activity to
poison concentration when the poison was actually being formed inside the
reactor.

Smith et al. [15] studied the transient effects of fouling on catalyst
pellets in which diffusion resistance was important. Their analysis considered
surface reaction and intraparticle diffusion rates as being important and

" utilized a linear rate constant decay with poison concentratlon. Several

mechanisms of fouling were studied: self-fouling; either by a parallel or
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series reaction path and, reaction by an impurity in the feed, all of which
produced a substance which deposited on and completely fouled the active
site until regeneration. Slow fouling was assumed which allowed a pseudo-
steady state solution to be obtained for the intraparticle diffusion equa-
tions. This is logical since the gaseous concentration profiles would
develop much more rapidly in the particle than a significant change in
catalyst activity (i.e. the time required for the development of gaseous
concentration profiles into a pseudo-steady form would be much less than the
time required for a change in the catalyst activity). The same type of argu-
ment was applied in neglecting the accumulation terms in the concentration
balances on the bed. Therefore, since the boundar§ layer resistance around
the particles was assumed negligible, pseudo-steady profiles of the surface
concentrations of the gaseous species for very small times could be calcu-
lated. They were able to generate effectiveness factors, based on zero time
and surface conditions, which varied mainly with process time and a Thiele
modulus derived from the rate constant and diffusivity of the main reactant.
Considering first-order isothermal reactions, the following was con-
cluded about the three types of fouling processes. For a series form of self
fouling, a catalyst with the lowest intraparticle diffusion resistance gives
the maximum activity for any process time. In contrast, for parallel self-
fouling a catalyst with an intermediate diffusion resistance is iess easily
deactivated and can give a higher conversion to the desired product. Results
for the independent fouling type showed that least deactivation will occur in
a catalyst for which there 1s a minimum diffusion resistance for the main
reactant and maximum diffusion resistance for the impurity into the particle.

One minor discrepancy which came to this author's attention in the mathematical



12

development was the choice of a dimensionless B concentration. It appears
that from the definition used by Smith this analysis would be useless when a
pure feed is introduced to the reactor.

Murakami et al. [16], made both an experimental and theoretical analysis
of intraparticle diffusion effects on catalyst fouling which was slanted
primarily toward differential reactor studies. Several new points were
introduced by these authors. First they considered fast fouling so that the
transient terms on the gaseous species were Included and alsc they considered
boundary layer gas film resistance as being important. Parallel and con-
secutive poisoning schemes, which are known to occur industrially were
analyzed theoretically. The disproportionation of toluene was a representa-
tive parallel scheme while dehydrogenation of primary alcohols was chosen to
represent the series case. The bulk of their fouling studies were presented
in the form of effectiveness factors which were defined as the ratio of the
actual rate of reaction over the zero time reaction rate at bulk stream con-
ditions. These are mainly functions of Biot number, process time and Thiele
modulus.

Their results can be summarized as follows: for the parallel reaction
scheme, poison laydown is fairly uniform for low values of Thiele modulus but
becomes almost shell progressive in nature at high values of Thiele modulus.
The series mechanism doesn't approximate the shell nature nearly as well for
the same parameter values.

For the parallel scheme increasing diffusional resistance increases the
rate of approach to complete fouling. This trend was alsc evident for the
 series reaction.' The effect of selectivity, defined as poison rate constant

divided by main reaction rate constant, for the series reaction scheme was to
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decrease the effectiveness factor much more rapidly with increasing wvalue of
selectivity. Increasing the Biot number brought about consistent decreases
in effectiveness factors with dimensionless time.

In their experimental work they found for the parallel case that for
low diffusion resistance coke deposits nearly uniformly throughout the pellet
while at high diffusion resistance the shell-progressive model was quite
evident (a very easily discernible boundary between coked and uncoked parts).
In the series case coke tended to deposit from the inner part of the particle
for low Thiele modulus but for-high Thiele modulus there was more deposition
at the outer part of the particle. This, they say, may be a result of the
fast fouling consideration since for slow fouling Smith has shown that the
coke may still be deposited from inside out even with high Thiele modulus.

This work along with that of Ozawa and Bischoff [17] were the first to
obtain experimental verification of their theoretical analysis,

This survey has outlined the analysis and conclusions of the main papers
in all areas affecting the proposed research. Although work has not been
forthcoming integrating the concepts of intraparticle fouling and polyfunc-
tional catalysts it is reasonable to proceed by logical extension from the

works done in simpler cases.
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CHAPTER 3

THEORETICAL DEVELOPMENT

ORGANIZATION

The purpose of this thesis is to investigate the effects of catalyst
poisoning on the discrete and compounded types of catalyst formulations.
Therefore in each case transient mass Ealances have been written for the
gingle particle and these balances incorporated into the mass balances for
the stationary bed. The first and second sections consider the particle and
bed balances for the discrete case. The third and fourth sections, respec-
tively, treat the particle and bed balances for the compounded case. In the
fifth section bed balances are formulated for the case where no intraparticle
diffusion resistance is assumed. This final case should provide an upper
limit on product yield and should aid in some valuable comparisons. The
sixth section discusses the choice of a particular fouling model and section
seven summarizes the pertinent equationé for all cases considered.

Throughout this work a single polystep reaction scheme of the form

K C(s) (fouling compound)

X Y R(g) (product desired)

has been considered. The reasons for this type of scheme are manifold:

1) Weisz's criterion [5] for a nmon-trivial polystep reaction is satisfied if
the ratio kzjkl is large enough, 2), the catalysts X and Y are physically
.distinct and cataiyze separate reaction steps, and 3), the fouling compound

C is actually formed as a product of the reaction taking place inside the
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particle.

Inspection of the above reaction scheme shows that catalyst X is the
only catalyst promoting the fouling compound formation. Of course there are
several choices available here as to which catalyst or both (possibly) causes
the fouling compound formation. Assuming that steric effects are not impor-
tant, then Haensel [18] has shown that site-selective poisoning is indeed a
reality.

The main reason for choosing only the X catalyst is that in a large
number of petro-chemical reactions the first reaction step is usually an
intermediate forming hydrogenation of dehydrogenation step which is catalyzed
by metals such as Pt, Pd, Ni, etc. It is these partially or unsaturated
intermediates which tend to become an agglomeration capable of doing the
poisoning. The mathematics would have been no more tedious if Y had also

been considered a catalytic agent for poison formation.
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3-1. MASS BALANCES ON SINGLE PARTICLES~-DISCRETE PARTICLE CASE

In a quantitative study of the effects of poisoning on mass transport in
the two types of catalyst formulation, analysis must begin at the most basic
level and several simplifying assumptions have been applied in the following
analysis. These are:

(1) Due to the types of catalyst being treated transport is accomplished

mainly by Knudsen diffusion.

(2) Isothermal pellets and overall system.

(3) Each catalyst pellet ﬁas a2 homogeneous deposition of catalyst on
the pore Sﬁrfaces (i.e. no segregation of catalyst and no large
dead spots on pore walls).

(4) Catalyst particles are spherical.

(5) Gas density remains constant.

(6) Pore diffusion and surface reaction are controlling.

(7) Each carrier is as consistently alike as possible in physical
properties such as pore volume, pore size distribution, density,
etc.

{8) The rate of poison deposition is quite‘slow compared with other
reaction rates.

(9) Catalyst particles and bed are homogenepus mediums.

Recalling the basic reaction scheme, the following transient mass

balances for the discrete formulation must be made.
(i) Balance on A in X particle.
{ii) Balance on B in X particle.
(iii) Balance on B in Y particle.

(iv) Balance on R in Y particle.



Fig. 3-1.

Schematic representation of X catalyst particle.
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(v) Balance on C in X particle.
Therefore, considering the spherical shell of thickness Ar in Fig. 3~1 we

have

Specie A:
rate of ac~-

molar flux molar flux out rate of production _ .
{in @r = r } {@r =1t + Ar b+ {by chemical reaction} h {gzm:iiizzz ;
2
(4nr NA Y- (4ﬂr2NA ) + 4ﬂr26rp RA = E%’(4WI2AI e CA) (3-1.1)
T |Tr T |rtAr ¢

RA is the rate of production of A per unit weight of catalyst X. Assuming

first order kinetics RA may be expressed as

C (3-1.2)

Ry=kyCy -~k C

A (x)

Incorporation of (3-1.1) inte (3-1.2) and proceeding through limiting forms

we obtain

(3-1.3)

! 2
-T2 Ve (N, ) o (kyCy = kyCp)

r (X)

From Fick's first law of diffusion, the molar flux of a specie at any
point r can be related to the concentration gradient of that specie at the

same point by

N, =-D, * Vr c (3-1.4)

where DA is the effective diffusivity of specie A in particle X. Physically,

NA will be negative meaning that A is decreasing and hence diffusing from the

outer surface to its center. Assuming D, 1s constant Eq. (3-1.4) may be

A
incorporated into Eq. (3-1.3) to yield
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Ay 2
e =T "= DA Vr CA + pc(k2 CB - kl CA) (3-1.5)
(X)
Specie B in X particle:
5% (4nr26reCB ) = (4wr2NB ylo- (4ﬂr2NB ) + 4nr2ArpcRB
(X) r |r r |r+Ar (xX)
(3-1.6)
where
= k,C, - k,C - k,C (3~1.7)
17A 2B 4
B Rl B

By assuming that the poison formation rate is quite small compared with

the other rates, the right hand side of Eq. (3-1.6) simplifies to

aC
B
x) _ 2
e * =D vee +p (k,C, - k,C ) (3-1.8)
at B(X) x B(K) c 17A - T2 B(X)

Specie C in X particle:

Since the poison C is a solid, there will only be two terms in the mass

balance. Presupposing no solid-solid diffusion,

{rate of accumulation of} - {rate of production }
solid C on pore walls by chemical reaction

5 2 ) 2
a7 [(4rr Arpc)cc] = pck4 CB (4ﬂriﬁr) _ (3-1.9)

(x)

In this balance it has been supposed that once B strikes an X site and
forms C, that site is irreversibly poisoned until bed regeneration procedures

are initiated. Equation (3-1.9) may be simplified to give

aC

C
—= = k,C (3-1.10)
ot 4 B(x)
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It may be noted that the units for specie C are gram-moles of C per gram
of catalyst which is different from the gram-mole per cubic centimeter dimen-
sion ofrthe other constituents. These units for the solid poison facilitate
much easier analysis of catalyst poison content and provide a sharply defined
boundary upon which to base regeneration procedures.

Mass balances for species in the Y particle will be made in the same

way, but noting that RY may not necessarily equal RX'

Specie B in Y particle:

ol (4ﬂr2AreC ) = {Aﬁer ) - (4wr2N ) + AﬂrZArp RB
ot B(Y) Br Br c (¥)
r r+Ar
(3_1111)
where RB may be expressed as
(Y)
= - k,C (3-1.12)
' 3
) ies)
Incorporation of (3-1.12) into (3~1.11) and simplification gives
8C,
() 2
er———"= =D v C - p k,C (3-1.13)
3 B 3
‘ ORI ¢ SN ¢ o
Specie R in Y particle:
BCR 2 _
e3¢ = DRVrCR + pck3CB(Y> (3-1.14)

The accumulation terms for the gaseous species may be discarded by using
Smith's [15] argument that the gaseous concentration profiles attain pseudo-
_steady form much faster than a change in catalyst activity. Therefore

(3-1.5, 8, 13 and 14) become
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2
DAV cC, +p (k2 B( - - leA) =0 {3-1.15)
2
D Ve +p (k,C, - k,C ) =10 (3-1.16)
B(X) r B(X) ¢ 1A 2 B(X)
2
D voC -p k.C =0 (3-1.17)
B(Y) r B(Y) c 3 B(Y)
2
D V C +p k3 B =0 (3-1.18)
(Y)

In order to incorporate the effects of catalyst poisoning into the above
mass balances, it will be assumed that the reactlon rate constants decay

according to some predefined function of poison concentration

k, = ki¢.. (3-1.19)

The kg are rate constants at zero poison deposition and ¢i are dimensionless
functions of poison concentration.

Substitution of (3-1.19) into (3-1.10, 15, 16, 17 and 18) yields

2 0 0 _ )
DVLC, + o (kyb,Cp k14,C,) = 0 (3-1.20)
(X)
2 0 0
D vie., - +p (kid.C, - k. ¢,C ) =0 (3-1.21)
1717A
B(X) r B(X) c 272 B(X)
2 o
b VG -p ko9,C =0 (3-1.22)
3 .
B(Y) T B(Y) c 3 B(Y)
D v2c +p k%.c. =0 - (3-1.23)
Rr R c 3'3°B
(Y)
BCC 0
ot - 4%4Cp | (3-1.24)

(x)
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Boundary and Initial Conditions:

B.C.1 ¢C,=¢C

A “A
s
}er-= RX
g . =G
(x) s
for t > 0 (3-1.25a)
C = C
} @r= RY
Cp = G
8

B. C. 2 Either all gaseous concentrations are finite at r = 0 or

-Vrci = 0 which implies symmetry about the particle
r=0
center (3-1.25b)
I.C. 1 CC =00 @t=0for0c<r i-RX (3—1.26)

Equations (3-1.20) through (3-1.23) may bé solved analytically, if use
is made of the slow polsoning assumption, to obtain the pseudo-steady pro-
files within the particles. This slow poisoning assumption allows one to
neglect Eq. (3-1.24) completely and by extrapolation to near zero time from
the positive side the ¢i's may be set equal to unity.

Before proceeding further it is convenient to put Egs. (3-1.20) through

(3-1.24) into dimensionless form by means of the following variables. Let

= 0 3y =C 3 Y =C
s, P Pore,  Poy P,
0 0

IA

(3-1.27)
¥z # CR/C i Cc/C } E = r/RX and 8 = t/td,
0 Cf

where CA is the inlet feed concentration of specie A, Cc is the
0 f
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concentration of poison which is needed to cause complete deactivation and td
will be determined from constants and parameters in Eq. (3-1.24). Substitut-
ing the quantities of Eq. (3-1.27) into (3-1.20-24), assuming all diffusivi-

ties are equal and simplifying yields

2 - e
Vela T Yolp¥p T Y189, = 0 (3128,
(X)
2
Yoy + Y0¥, = Vb, =0 (3-1.29)
1717 A 272 :
Py Bx)
2 2
Vy -m Yy, 0,y =0 (3-1.30)
B
2
Voyp  mY g6y, =0 (3-1.31)
E°R 373 1)
ayc .
a8 4 B(X)
where
0.2 0.2 0.2
_ ) ; pcklRX . - pck2RX . - pck3RY (3-1.33)
"RX/RY’Tl p T2 D T3 D *

B.C.1 y,=y% Yo . =V
A A By) B, .
leg=1 }eg = (3-1.34a)
y =y ¥ = ¥
B B R ‘R
0 S s for & > 0.
B. C. 2 V.y =V, y =V, y =Vyi =0
FhAlso YBwyle=0 © ch)l£=o SRle=0
for 8 > 0 (3-1.34b)

I.C.1 y =0 @&8=0 forO0=<g=<1 (3-1.35)
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The analytical, pseudo-steady solutions may be obtained quite easily

using an operator method presented in Mickley, Sherwood and Reed [19]. These

solutions are,

Yz Yl Sinh(klg)

By #
Ay vyt Y, vyt v, sinh(dy)

-Yz Yz Sinh(llg)

+
Y1 + Yy Y4 + Y2 sinh(Al)

3

Ly

Yy Yoy sinh(lla) .

y =y -{ + . -
B BS 0 + Yo Y1 + 0 51nh(11)

Yy Yy sinh(}, &)

8

sinh(kzg) 1
Yp = yBs ) m-sinh(lzlm) .‘E

sinh(A.&)
+ v {1 2 l&

By m sinh(lzlm) £

y -{ 4 .
Al vyt Y, Y + Y, Sinh(ll)

1
g}

vy |
Nt

o
—

(3~1.36)

(3-1.37)

(3-1.38)

(3-1.39)

These pseudo-steady solutions will provide boundary conditions for the

numerical treatment of the mass balance equations when the ¢i's become

designated functions of poison concentratien.

JrThe complete solutions are available in Appendix (A-1).
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3.2 MASS BALANCES ON STATIONARY BED VOLUME ELEMENT--DISCRETE PARTICLE CASE.

Once balances have been obtained for the single particles it is logical
to enlarge our study by considering balances over a differential element of
the stationary bed. It 1s the solutions of these equations which will pro-
vide the basis for most of the comparisons of the two catalyst formulations.
Several simplifying assumptions which will aid in conducting the analysis
are:

(1). Isothermal conditions.
(2) Plug flow.
(3) Regardless of axial position, there is a constant weight
fraction of X over any cross section.
Utilizing Fig. 3-2, transient balances may be made on all gaseous species.

Balance on A in bed:

rate of accumulation .rate in by rate out by rate of production
{ } =1 - { } 4+ {
in AV convection®  “convection by chemical reaction
2 r®Aze.C. ) = UnR C - unR’c + ¥ - mR%z (3-2.1)
ot BTA A A
s s|z s|zthz

where EA is the rate of production of A per unit reactor volume.

Paralleling both Thomas' [6] and Smith's [15] work use will be made of
the diffusion rate of the component in at the pafticle surface as a measure

of the rate of reaction of that component. Therefore,

rate of production 2 2 aCA
= = = - il -2.2
of A per particle  "A 4"RXNAr D (3-2.2)

r=RX r=RX

Since we have two different types of catalyst particles in the bed we need to

have an expression relating the number of X and Y catalyst particles per unit
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reactor volume to physically measurable properties such as bed and catalyst
density, particle size and weight fraction of catalyst per unit reactor
volume. The general expression for the total number of particles per umit

reactor volume is

app (1-a)p, g
N = Ny o N wp—5— + 3 (3-2.3)
3P 4 E& .
3“ 3 pc
m
or

3p

T BB - Y
47 3p
RX c where m = RX/RY' (3-2.4)

It may be noted that for m = 1.0 the result agrees with that obtalned by
Smith [15]. Equation (3-2.3) is important in that the numbers of the respec-

tive particles have been separated for use in the mass balances.

apy (l-a)mSpB

N, =7—2— ; N, =
L 3 T T4 3
3. 3P

- (3-2.5(a) , (b))
Combining the rate of production per particle with the number of particles

n
per unit reactor volume, an expression for RA may be obtained.

e
n
=
)
]
1
o~
5
=

e

A
. ¢ il (3-2.6)
A Rch ar

+Complete derivation given in Appendix A-2.
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Incorporation of Eq. (3-2.6) into Eq. (3-2.1) and simplification yields

2Ch >y 3apD 3G,
+ U + . = { (3-2.7)
B 3t dz pcRX ar

oy

Balance on B in bed:

We know that specie B reacts in both types of particles so the only
difference in the mass balances from that of specie A will be the expression

for ﬁB' Whereas ﬁA contained.only one term, ﬁB will contain two terms §B
(X

)
and ﬁn , defined by
(Y)
" 2
=N, *r = N, * 41 * N (3-2.8)
RB(X) X B(X) X RX BX
r=RX
and
L
ﬁB =N, r, =N,ochn—5 N (3-2.9)
(Y) (Y) m Y
r=RX/m
Therefore, the total production of B per unit reactor wvolume is
1
n ny n - BPBD B(X)
Rp=Rg *Ry =, clemm
® P e TR,
BCB
o "’5532‘ } (3-2.10)

r=RX/m

and the overall balance becomes
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L 9C,
€ St [ o By s » i S
B 3t 9z Rch ar

3CB
# 1) -5§Zl Yom B | (3-2.11)
r=RX/m

Balance on Specie R:

Since R is produced only in the Y particle the only new term in the mass

balance will be the expression for ﬁR'

m - L] 2 a — L ]
RR = NY 4WRY NR NY 4

r=RY r=RX/m

- 3(1-—-a)mDpB BCR

X, = o o) (3-2.12)
r=RX/m

The overall mass balance then becomes

BCRS ?CRé 3m(1-a)Dp,  3C,
€5 THT + U ™ + Rxp . = =0 (3-2.13)
= r=RX/m

Utilizing the slow fouling assumption as was done previously for the
single particle, one may argue that ﬁhe accumulation terms be dropped in the
above equations on the basis that the bed profiles will assume a pseudo-
steady form much more rapidly than a measurable change in catalytic activity.

Following this line of reasoning, Egqs. (3-2.7, 11 and 13) become

BCAS 3p4aD  3C,
. =0 (3-2.14)

4
az Rch or ?=RX

U
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aC 3c 3C
B 3p.D B; B
v azs + =2 . {a arX) + m(1-a) B(Y) }=0 (3=2.15)
Rxpc r=RX k r=Rx/m
aC

Rs Bm(l—a)DpB aC
U + . =0 (3-2.16

az p or
Refe i

The boundary conditions on these equations may be stated quite simply:

Feed pure A to the reactor (i.e., C, =C, @z =0.0and C, =C_, =20
' Ag A Bs Ry

@ z = 0.0).

The above equations may be solved for very small times by using the
analytical expressions for the derivatives obtained from the single particle
solutions. Before obtaining these solutions it 1s convenient to introduce

dimensionless wvariables.

z CAS CBs CRS '
WM TR VT, N
0 ' (0] 0

z=

Substitution of these expressions into Egqs. (3-2.14, 15 and 16) and simpli-

fication yields,

+3 s = z
—_— a'-sg 0; YA =1.0@ z = 0.0 (3-2.18)
9 £=1 s
g g g
_S + 3{a ——Eigl + m(1l-a) aéY) } = 0;
oz 5 _ _ 1
E=l £= =
yg = 0@ z = 0.0 (3-2.19)
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24 3y

s
s o Smiled) ==
z g

=05y, =0¢@ z = 0.0 (3-2.20)
s

2|~

Analytical solutions of these equations at small times may be obtained
quite easily by substitution of the gradients obtained from Eqs. (3-1.36, 37,

38 and 39) and direct integration. These solutions are+

yAS = ?E;%EIT {(m2 + Wl) exp(mlz) - (ml+wl) exp(mzz)} (3-2.21)
Wy _ _
yg = ey {exp(mzz) - exp(mlz)} (3-2.22)
S 2 71
yRS =1 ~ ?a;%aziv{mz exp(mlz) - mlexp(mzz)} (3~2.?3)

Inspection of these pseudo-steady or no—fouling solutions shows that the
product R is a complex function of a, the weight fraction of catalyst X per
unit volume of reactor. Making judiciéus choices for the rate constants,
effective diffusivity, and other physical properties, an optimal weight
fraction, which maximiées the product concentration at the reactor exit can
be obtained. This can either be done by classical calculus or by a one-
dimensional search technique, of which there are many [20]. Table 3-1 and
Fig. 3-3 show the optimal fractions for various choices of parameters.

These solutions will also provide additional necessary conditions needed
for the numerical solution as fouling becomes important. This concludes the

development for the discrete formulation with the exception of choosing a

+Detailed solutions may be found in Appendix A-3.
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fouling model, ¢, for the particle equations. This will be accomplished in a
later section after the composite particle and negligible diffusion resis-

tance developments are made.



Dimensionless product concentration @ reactor exit

1.0

0.9

0.8

1 %0
1
2 k0
1
3 kP
1

]

|

DISCRETE FORMULATION

2; k9 =2.0; k9 = 0.2; a= 0.30; y_= 0.6266
0.2; k9 =2.0; k§ = 0.2; a = 0.30; y xo 2
0.1; kK9 =1.0; kK0 = 0.2; a = 0.34; y_ = 0.5738

2 3 AX
0.2; k9 =4.0; K0 = 0.2; a=0.26; y = 0.4343
8 3 Ryax
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0.1

Fig, 3-3.
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Weight fraction of catalyst X, a

Optimum catalyst fractions for
various choices of rate constants.
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TABLE 3-1,

#

10

11

various choices of rate constants.

0
k1

(ce/sec-gr.cat) (cc/sec-gr.cat) (cc/sec-gr.cat)

0.2
0.2
0.1
0.2
0.1
0.1
0.2
0.2
0.5
0.5

1.0

' DISCRETE PARTICLES

0

‘k

2

4.0
2.0
1.0
1.0

2.0

1.0

4.0
4.0
4.0
4.0

4.0

0
3

k
0.2
0.2
0.1
D.L
0.2
0.2
0.1
0.4
0.1
0.2

0.1

0.26
0.30
0.28
0.28
0.30
0.34
0.20
0.32
0.20
0.24

0.18

34

Optimum catalyst fractions and maximum product mole fraction for

YRS
(max.)
0.4343
0.6266
0.4208
0.6441
0.3978
0.5738
0.2943
0.5804
0.5630
0.7431

0.7834
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3-3. MASS BALANCES ON SINGLE PARTICLES--COMPOSITE PARTICLE CASE.

In generating the transient mass balances for the composite particles
there is one distinct and most important difference between ﬁhe composite and
discrete formulations. The composite particle has sites of both the X cata~
lyst and Y catalyst mechanically compacted or chemically impregnated into one
particle. Therefcore, in the following treatment it will be assumed that each
particle has a constant weight fraction of catalyst X regardless of position
in the bed. With this and Fhe assumptions previously stated for the discrete
case in mind, analysis of the composite particle may begin. Consider again

the schematic particle of Fig. 3-1.

Specie A:
rate of . rate of rate of
{?ccumulatlon = {diffusion } - {diffusion} + {product%on
in spherical Snerrs Bl out of by chemical
shell shell reaction
E% (4vr2AreCA) = AwerA - AwrZNA + 4wr26rpceRA {3-3.1)
b T
T thr

Where RA is the molar rate of production of A per unit weight of catalyst,

and £ is the weight fraction of catalyst X per particle. Assuming first

order kinetics R, may be expressed as

R, = k k.C (3-3.2)

S Sl B
and using Fick's first law as before, Eq. (3-3.1) can be simplified to

2
VrCA + pcs(kzc - k

GCA
e e - Da g = k1Cp)

(3-3.3)
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Specie B:
3C, .
e = = D7,Cy + pckleCA = (ke + k3(1-s))chB - pk,eCy (3-3.4)

Since poison formation is quite slow the last term in Eq. (3-3.4) may be
neglected, being much smaller in magnitude than the other terms. Thus Eq.

{3-3.4) becomes

aC
B 2
e ¢ = DgV.Cp * p kyeC, - (kye + ky(l-e))p Cp (3-3.5)
Specie R:
BCR 2
e 7y = DRVI_CR + k3(l—s)chB {3-3.6)
Specie C:
{rate of accumulation} - {rate of production
on solid by chemical reaction
2
8 (4mr &rpccc) 2
ot = k4aCB(4ﬁr Ar)pC
which reduces to
BCC
e ® k4€CB (3-3.7)

As done previously for the discrete particles, the accumulation terms on
gaseous species will be neglected and fouling models incorporated into the

rate constants. Performing these steps, Eqs. (3-3.3, 5, 6 and 7) become

2 0 0 _ _
. D,VC, + p e(kyb,Cp = ki3,C,) = 0 (3-3.8)
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o2 0 0
DV Cp ¥ klr;bl = (kyd,e + ky¢4(1-€))p Cp = 0 (3-3.9)
D vzc i B gy = B
34’3 e Cp = (3-3.10)
ac, "
T A (3-3.11)

The boundary and initial conditions are similar to those for the discrete

case.

B. C.1 C, =¢C

A A
S
Oy = CBs } @r=R,, 20 (3-3.12a)
CR = CR
S
B. C. 2 V.C, =Y 0y =¥ G, =0 t >0 (3-3.12b)
r=0 r=0 r=0
T: € C,=0 @t=0,02<r<Ry (3-3.13)

Utilizing the same dimensionless variables as before and assuming that

all diffusivities are equal the following dimensionless equations are

obtained.
2 _ »
VEYA + ey2¢2yB - syl¢lyA =0 (3-3.14)
2 ‘
VEyB + EYl¢lyA - €T2¢2yB - (l_€)¢3Y3yB =0 (3"3'15)
Yoy, + (L=e)y.$.y. = O (3-3.16)
R 3"3’B )

£
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Byc
_EE.= E¢4yB (3-3.17)
where
0 .2
pc ki RX
Yi = — 3 > i=1, 2, 3, 4 (3-3.18)

The dimensionless boundary and initial conditions are

B. C. 1 y, =y,
° 8

Yp = Vp_ bog=1,820 (3-3.19a)
Yp = YR
8

B. C. 2 VEYA = VEyB = VEYR =0, & >0 (3-3.19b)

£=0 E:O E=0
I. C. y,=0 @ ¢ =0, 0<gz<1l (3-3.20)

Now, with all equations and conditions in dimensionless form, analytical
solutions may be obtained at small times by neglecting Eq. (3-3.17) and
assuming that all ¢i = 1. Both of these are physically logical due to the

slow fouling assumption. The pseudo-steady solutions aref

Y &
} AS {(m2 = B sinh (mlz) 1 (m2 ey sinh (m3E) . l}
YA (m§ B “‘i) 37 F1 7 sioh (m) £ 17" " Sinh (my) &
y
t BS 7. By Sinz Eml;:) - g - 8y :in: Eme) g s
(my = ml) sinh tmy 2 nih g 2

TThese solutions may be found in detail in Appendix A-4.
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) " 9 sinh (mIE) 1 9 sinh (m3£) 1
b4 ; g “‘i) 16y - ™) * i I By -my) * oo (my) "
YA B, - ) (as - B.)  simh (@ E) sinh (m,E)
£1 2 « g 1 13 1. [ i1 37, ;ﬂ}
(mg _ mi) 82 sinh (ml) £ sinh (m3) E
(3-3.22)
and
y 2
T s amep
R Rs (mi _ mi) mi sinh (ml) E
B.(8, - m2) inh (m,£)
= _§._....l_.._...rfl_§._. . [1 - S_n._.._.ri3i . .]_']}
m2 sinh (m3) £
3
y _ 2 Z
A 83(81 ml)(m3 Bl) 1 sinh (mlE) 1
i ey e w4 2 < =5a - e o 2]
(m3 - ml) 2 my Biaa N5y £
1 sinh (m3£) 1
- {;E‘(l - ;EEE—?EET— ¥ Eﬂl}} (3-3.23)
3 .

These solutions will be of considerable use; first as initial conditions
in the numerical solution of (3-3.14-17) once the ¢i's have a definite form,

and second, in the solution of the bed equations for small values of time.
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3-4. MASS BALANCES ON STATIONARY BED VOLUME ELEMENT--COMPOSITE PARTICLE CASE.

Proceeding from the analysis of the single particle to the bed analysis
will be accomplished in the same way as for the discrete formulation. Use

will be made of the schematic reactor in Fig. 3-2 to write the balances.
Specie A:

rate of pro-
{duction by }
chemical reaction

{rate of accumulation} convective} _ {convective}
in AV rate in rate out

A A A

3%- (nR%Az €5 G, ) = umr?c. | - umRC + %« R%np (3-4.1)
8 S
z z+Az

ny A"
where RA is the molar rate of production of A per unit reactor volume. RA

may be represented by the product of two terms; the rate of reaction per
particle, which will be assumed equivalent to the rate of diffusion into
the particle, and the number of composite particles per unit reactor volume.
This latter term is just

8:

3 »

A
3T By

N (3-4.2)

since the compounded particle sizes are identical. Therefore, the expression

for ﬁA is
-3p.D 3C
n, _ B~ "TA .
R.A = N t, TR T B _ (3-4.3)
X c
r=RX
S0 the balance for A becomes
BCAS acAS 3D 3C,
. = 3-4.4
eg 3¢ T U 5z t Rpo_ ot 0 ( )
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Specie B:
Since both catalytic species are now located in the same particle there
is only one reaction term, which is analogous to that for specie A. The

final form for the transient balance is

oC aC
eg ais + U azs + i:;D ‘ 8:3 = 0 (3-4.5)
c =RX
Specie R:
aC aC
%s + U %s + g . “r =0 (3-4.6)
€8 Tat dz Rch or :

r=ty

Following the same reasoning employed in the discrete case the accumula-

tion terms may be dropped as being negligible -compared to the other terms.

The mass balances then become

aCAS 3D 3C,
oz RxpC ar -
aCBS 3D 3G,
U 5 + ’ > =0 (3-4.8)
& Rch r=RX
BCRS 3,0 30,
U+ - =0 (3-4.9)
Rch r=RX

Designation of the feed as pure A provides the necessary boundary conditions

for Egs. (3-4.7, 8 and 9), i.e.
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CA (z=0) = CA
s 0

CB (z=0) =0 (3-4.10)
s .

CR (z=0) = 0
s

Equations (3-4.7-10) may be put into dimensionless form using those
variables previously defined for the discrete case. In dimensionless form

then, (3-4.7, 8, 9 and 10) become

BYA.s ByA _
— + 3 5t = Ya (z=0) = 1 (3-4.11)
8z E=1 s

3

yBS 3yB _
~= ok 3 5E =0 g (z=0) = 0 (3-4.12)
oz £=1 s

ayRS 3y _
s o § 3E =0 Yp (z=0) =0 (3-4.13)
oz E=1 s

Analytical solutions may be obtained for these equations for small
values of time. Using analytic expressions for the gradients at the particle

surface, obtained from the particle expressions, the solutions are found to

be%
1 - - ;
YAS = zz;«:-;;j-{(xl+£l) exp(zzz) - (x1+£2) exp(ilz)} (3-4.14)
(x+2,.) (x,4+2.)
1 72 171 - -
Yp_ T Taglagony | rexpliy®) - exp(iyz)) (3-4.15)

+Complete solutions may be found in Appendix A-5.
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X, 1
Yp = {g, + &, + &, & = [2 (R +%,) exp(l z)
RS 1122 1 2 1 (El 22) 1
(2,+x.) (2,+x.)
= o e | 271 1
+x,) exp(2,2)]} + 1L, Tty
[21 exp(EZZ) - 22 exp(klz)] - 1} (3-4.16)

Careful examination of these solutions yield the fact that the product,
YR ¢ is a function of the weight fraction €, and that an optimal fraction of
catalyst X exists for a given set of physical properties and reaction para-
meters which will maximize the product at the reactor exit. This optimiza-
tion may be carried out as previously mentioned in Section 3-2, Table 3-2
and Fié. 3-4 illustrate the optimum fractions for various values of para-
meters for the composite case. TFigure 3-5 is merely a comparison of the two
formulations which indicates that, holding all particle sizes identical and
using the same rate constants and other physical properties, the composite
case always produces a better yield of desired product, in addition to using
a smaller weight fraction of catalyst X.

The above solutions will also be quite useful in the numerical solution

of the unsteady state bed and particle equations as fouling becomes important.
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1 kfl‘ = 0.1; K9 = 1.0; k) = 0.2; €= 0.30; yp; 0.6706
AX

2 k0 =0.1; K9 = 2.0; k9 = 0.2; £= 0.24; y_ = 0.4980
1 2 3 Ryax

3 k9 =0.2; K9 = 4.0; K09 = 0.2; £=0.18; y = 0.5490
1 2 3 | Ruax

1.0

COMPOSITE FORMULATION

0.9 |

0.8 L

0 . L A 1 ] g i 1 i (] i

0 0.1 0.2 0.3 0.4 0.5 . 0.6 0.7 0.8 0.9 1.0

Weight fraction of catélyst X, €

Fig, 3-4. Optimum catalyst fractions for
various choices of rate constants,



Dimensionless product concentration @ reactor exit

'0«7'—

1 COMPOSITE FORMULATION
2 DISCRETE FORMULATION

0: - 0_—-: a 0: & = . = =
1.0 k9 =0.2; k= 4.0; K = 0.2; D = 0.005; R, = R, = 0.25

0.6L

0 ] L ! 1 1 S 1 ) i
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 l.0
Weight fraction of catalyst X, a or €
Fig., 3~5., Comparison of maximum yields and optimum

catalyst fractions for the two formulations.
All other properties are equivalent,
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TABLE 3-2.

#

10

11
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Optimum catalyst fractions and maximum product mole fraction for

various choices of rate constants.
COMPOSITE PARTICLES
RX = 0.25 cm
0 0 0
kl k2 k3
ce ce ce
{sec—gr.cat) (sec—gr.cat) (sec—gr.cat
0.1 1.0 0.2
0.2 1.0 0.1
4 2.0 0.2
0.2 2.0 0.2
0.1 1.0 0.1
0.2 4.0 0.2
0.2 4.0 0.1
0.2 4.0 0.4
0.5 4.0 0.1
0.5 4.0 0.2
1.0 4.0 0.1

)

0.005 cmzlsec

£ yR
S(max.)
0.30 0.6706
0.22 0.7137
0.24 0.4980
0.24 0.7367
0.24 | 0.4842
0.18 0.5490
0.14 0.3574
0.24 0.7485
0.13 0.6482
0.18 0.8480
0.12 0.8526
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3.5. MASS BALANCES ON A FIXED BED REACTOR ASSUMING NO DIFFUSIONAL RESISTANCE.

Limiting cases, whether in experimental or theoretical work, are always
beneficial for comparison's sake. The following treatment considers a packed
bed in which diffusion resistance, both inter- and intraparticle is negligi-
ble, i.e., all surface area of the catalyst is immediately available for
reaction. Since the only effective means of differentiating between the two
types of formulation is with regard to diffusional considerations, there
should be no distinction bctween the discrete or composite formulations in
this case. All assumptions peftaining to the bed mentioned heretofore will
be applicable and use will again be made of the packed bed schematic of Fig.
3-2.

Specie A:

rate of pro-
} + {duction by }
chemical reaction

{convective} _ {convective

{rate of accumulation}
rate in rate out

in AV

3, 2 2
5t (R AzeBCAS) = UrR CAS

2
- UmR CA
s

2 ,
+ RA « TR Az Py (3-5.1)
z+Az

2z

whetre RA = rate of production of A per unit weight of catalyst.

R, = k (3-5.2)

A = KpZCy - kyTCy
S =]

and ¢ = weight fraction of catalyst X per particle.

Substitution of (3-5.2) into (3-5.1) and simplification results in

3, ac,
5 s _ ”
B 3¢ T VUTsz T kalCCAS kaz‘:CBs =0 (3-5.3)

E
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Specie B:

The rate of production term is

RB = kl;GAS - kzchS - k3(1—g)CBS - k4gCBS (3-5.4)

and the fourth term of the right hand side may be neglected due to the slow

fouling assumption. The final balance for B is

BCB BCB
s ]
€8 3T + U oy +_(k2§ + k3 (l—z;))pBCBS - kalgcAs = 0 {3-5.5)
Specie R:
BCRS SCRS
€8 ot + U = ka3(1—c)CBS =0 (3-5.6)
Specie C:
{rate of accumulation} _ {rate of production}
in AV ' by reactionm
a 2 — - 2 | L] —
Cy (TR AzpBCc) = Rc TR Az Py (3-5.7)
and
Rc = k4CCB = the rate of production of poison in gram-moles (3-5.8)

s per gram catalyst
Equation (3-5.7) reduces to

8C,
—_— = I

at AEC

B (3-5.9)

As was done in the two previous sections on the bed, the accumulation

terms will be neglected in accord with the pseudo-steady gaseous profile
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attainment and the slow fouling assumption. Therefore, the mass balance

equations reduce to

BCA
s
Ut egkyity - ogkyiCy = O (3-5.10)
3CBS
3] oy + (kzc + kB(I*G))pBCBs - kalccAs = (3-5.11)
aCRS -
U T k3(1‘C)DBCBS =0 (3-5.12)
3CC
TR - (5.1

The boundary conditions for these bed balances will be identical to the

conditions imposéd previously, i.e.

AS A0

C; =0 } @z=0 t>0 (3-5.14)
s

Cg =0
s

c,=0 @t=0 z >0 | (3-5.15)

Reduction of the above equations to dimensionless form is quite easily
accomplished using previously defined dimensionless variables. Here, however,
éince there is no diffusional resistance z', the dimensionless axial distance

will be of a different form. The equations obtained are

ay
As | PE*1%g _ PpRaZg
52" U gYAS U

<]



ByB

s  Ppka%y . pgks(1-2)zy

52" T "o W U

s
ay
Rs  PE3%
oz’ u
and

k,ZC. t
ayc } 4 AO d

oY C

Cf

Incorporation of the fouling model, ¢i,

previously done, and judicious choices of 24

equations,

3yA
i 2 + = 0;
azl C¢2yBs C¢lyAS ]

ayB

8 & %
"'"a"é'i" + (K chz + Kl(1—§)¢3)yBS -

ay
s K (1-7) = 0;
PHEES RS TR

where z' =

. (1-c)yB =0
s

and td

=" '
Y 1.0 @ z
s

I
o
o
>
N—

Yp
8

i
=)
o
@
N—

[

0.0

0.0

0.0
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(3-5.17)

(3-5.18)

{3-5.19)

into the rate constant as was

result in the following

(3-5.20)

(3-5.21)

(3-5.22)

(3-5.23)

(3-5.24)
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1.0

0.9

0.8

0.7

0.6

1 K0
1

o 0
2 kl

n

RX = 0.25

K9 = 0,2; &= 0.18; y_ = 0.550
0.2; k0 = 4.0; k0 = 0.1; &= 0.14; y_ = 0.360

2 3 RMAX

0.2; kK0 =

H
g
<o

L L I L i i i i

Fif;o 3"60

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Weight fraction of céfalyst 5 g

Optimum catalyst fractions for various choices of
rate constants, No diffusion resistance case,
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It can easily be shown that z and z' are related by

.
D s gt oW 2 (3-5.25)

zZ = ——
2 .0 Y
Rchkl L

and once representative physical properties, diffusivities, etc. are chosen
for study, the difference will be just a numerical factor which may be
accounted for in the actual bed length z.

Pseudo-steady solutions may be obtained, as in previous sections, which
provide not only unfouled bed profiles for the case, but also a starting
point in the numerical analysis of the nonlinear equations once fouling

becomes important. These solutions are,

S
Gy - 1y

{( + W) expOh,z') = (hy + W) exp(hyz')) (3-5.26)

: (12 + W)+ wl) ‘ ,
BB T TW,Gp - A * {exp(A,z") - exp(r;z")} (3-5.27)

_ Wy, + W)W +2)) . {l_ el 1 e (r2)
W0 = 3,) Ay 2 A 1

ARy

} (3-5.28)

As in previous cases, Vg is again a complex function of the weight
s
fraction of catalyst X, r, and there does exist an optimum ¢ which maximizes
YR for a given choice of parameters. TFigure 3-6 shows various optimal g

s
for choices of rate constants, particle radius, etc.

.Complete solutions are available in Appendix A-6.
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3-6. DISCUSSION OF FOULING MODELS,

Heretofore, almost no mention has been made of a fouling model which
incorporates the effect of active site destruction into the mass balances,
save for the defining symbol ¢. Deposition of solids on active sites can be
described mainly as a composite of the following two regimes: uniform and
non-uniform poison laydown. Uniform deposition occurs when the intraparticle
diffusion resistance is low enough to ailow the poison forming reaction to
occur at any point within the catalyst and, assuming no steric or size
effects the amount of poison debosited over any cross section is constant.
Non-uniform deposition is characterized by either 1) a large intraparticle
diffusion resistance or an extremely high poisoning reaction rate constant,
which causes a bulldup of poisoq in the outer shell, or 2) severe steric
effects caused by the size of the poilson molecule which may best be exempli-
fied in pore-mouth blockage. What is probably the actual case lies somewhere
between the two limits, i.e. slight steric effect plus some diffusional
resistance. Maxted [21], Kwan [22] and Rideal [10], etc., have shown experi-
mental evidence of the above conclusion. Plotting relative activity of the
catalyst versus welght of polson present in the particle, Maxted [21] has
shown an iInitial linear decay followed by a point of inflection and fiﬁally
asymptotic behavior toward the poison axis. Unifprm poisoning may be repre-
sented ideally by 1), a one to one relationship existing between the number
of active sites occupied and the number of poison molecules and 2), the rela-
tive activity being solely a function of the number of active sites available.
A plot of relative activity versus the amount of poison in the particle

"should be linear. Non-uniform poisoning may exhibit a linear relationship

during the initial deposition period but neither of two conditions above 1s
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satisfied over the entire deposition period.

Much work, both theoretical and experimental, has been done in an attempt
to relate relative activity to poilson concentration in such a way that poison
laydown within a particle might be described by a concise formula. Thus far
only empirical models attempting to fit experimental findings on poisoning
have been utilized, due mainly to the fact that very little basic knowledge
is available about actual catalytic action, let alone the poisoning of these
catalysts. The three most important of the empirical models are: Linear,
exponential and hyperbolic. Froment and Bischoff dealt rather extensively
with the two latter models [13], but the linear model seems to have had the
majority of exposure in the literature.

It was the author's decision to utilize the linear model in this work on
the basls of several factors:

(1) The linear model represents, at least partially, a large number
of experimental findings,

(ii) For the study being undertaken no new trends would be indicated
by the more complex models, and

(ii1) Use of the linear model allows the definition of a complete
deactivation concentration of poison which, in some cases has
been measured experimentally.

Thus, in all reactions involving the X catalyst, the fouling model, ¢,

will take the following form,
6 =1- . (3-6.1)
while there will be no fouling of the Y sites, or

$ = 1.0 (3-6.2)



3-7. TABULATION OF TRANSIENT MASS BALANCES AFTER INCORPORATION OF FQULING

MODEL.

This section presents a concise statement of the systems of equations
be solved in the following chapter.

Particle Equations—--Discrete Case

2 —

Veyp t vt - yc)yB(X) -7 @ -yJdy,=0 (3-7.
2

v,y + v, (L =-y)dy, =v,(1 -y)y =0 (3-7
3 B(X) 1 ) c’’A 2 c B(X)
2 2

v,y -~ m Y.,y =0 (3-7.
&8 (y) ¥ By
2 2

Voy, +m v,y = 0 (3-7.
247 3B vy

Ve ( ) (3-7

g = A -y)y -7.
06 c B(X)

with boundary conditions

AT | yB(Y) " 7B,
} @ £ =1 and }e@g=1/m; 8 >0 (3-7.
YB(X) R TR T TR
and
A o = VEYB(X) o VEYB(y) o V?YR(E=O =0;8>0 (3-7.
and initial condition:
y,=008€8=0 O<E =1 (3=

55

to

1)

.2)

3)

4)

5)

6)

7)

.8)
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Bed Equations—--Discrete Case

ayAS ayA _
— o 3§ T: = 0; ¥ = 1.0@ z = 0.0 (3-7.9)
oz E=1 s
3y 3y ay
Bs B(x) B
=+ 3[a - + m(l-a) —7—= ] =0;
37 =1 & le=1/m
yg =0.0¢@ z = 0.0 (3-7.10)
S
3
yRS dyp : _
— + 3m(1l-a) 3 = 0; Yo = 0.0 @z =0.0 (3-7.11)
oz g=1/m s

Particle Equations-~-Composite Particle Case

2 i
Veyy *+ eYy (1=y Jyg = ev;(1-y )y, = O (3-7.12)
2 V —
VEYB toey, (I=y )y, - ;Yz(l-yc)yB - (1-§)Y3YB =0 (3-7.13)
v2y_ + (l1-e)y.y. = O (3-7.14)
£'R 3B :
ayc
—a-é- - E(l—‘yc)yB (3"‘7-15)

with boundary conditions
A

yg=vp } @&=1;02>0 (3-7.16)



and

and the initial condition

Bed Equations——Composite Particle Case

VEYA‘

£=0

= 0.

E=D

0;

Bed Equations——Negligible Diffusion Resistance

ByR

13

=Vny = O
.,
0<g=<1

Yo = l1.0@

8
yg = 0.0 @

s
g = 0.0 @

BYA

ByB

2 { + K
T (K C(lﬂyc) 1 (l-E))yBS

YA

]

Y

s %
a7 ~ K C(l"yc)yBs + €(1—YC)YAS

il

1.0 @

0.0 @

e >0
z=00; 82>0
z=0.0; 6>0
z=0.0; 8 >0
Case
03
z' = 0.0; 6>0
t(l-y )y, =0;

s
z' = 0.0; 6>0
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(3-7.17)

(3-7.18)

(3-7.19)

(3-7.20)

(3-7.21)

(3-7.22)

{3~7.23)
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T ( .—E) = H

ayc

S0 = ¢ (l-yc)yBs;

58

(3-7.24)

(3-7.25)
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CHAPTER 4

NUMERICAL SOLUTION OF PARTICLE AND BED EQUATIONS

4-~1, QUALITATIVE DISCUSSION.

Inspection of the particle equations in Section 3-7 reveals the fact
that all concentrations are functions of three independent variables; two
spatial and a time variable. The radial dependence is quite evident; the
axial dependence enters because of the surface boundary conditions and the
implicit time dependence, for the gaseous species, enters by way of the
assumed éctivity-poison concentration relationship. It may also be noted
that the bulk or surface concentrations are also functions of these same
three variables. Even though one variable is explicit in each case, use has
been made of partial differentiation as a reminder of the implicit dependence
on the remaining Iindependent variables.

Solution schemes for the particle and bed equations will be generated
following some comments on the generalAproperties of the equations. All the
systems of equations are nonlinear, nonhomogeneous, simultaneous, ordinary
differential equationsrand the obstacle which prevents rapid, easy and accu-
rate solution is the time dependence. The pseudo-steady solutions in all
cases, as well as the boundary and initial conditions provide starting points
but, once the finite difference nets are constructed there is no simple way
of calculating the particle and bed concentrations for advanced time. There-
fore, an iterative method was developed which proved to be quite acceptable
both from the standpoint of accuracy and of computer time consumﬁtion.

Since the schemes for the composite and discrete formulations are
similar, only the sequence for the discrete will be described completely. A

different iterative scheme was used for the case of negligible diffusional



resistance and will be presented separately.
Accuracy studies were accomplished by empirical means, i.e., changing
step sizes and comparison of results at identical net points. Further com-

ments will be made after the development of the schemes.

60
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4.2, DEVELOPMENT OF FINITE DIFFERENCE SCHEMES--DISCRETE PARTICLE AND BED.

Equations (3-7.1) through (3-7.8) may be put into the following short-

hand notation.

2
vy, = B4R ¥y s ¥ (4-2.1)
A 1 B
13 A (X) c
Véyé =50, v5 2 Y (4-2.2)
x) (X)
iy, =ty ) (4-2.3)
B 3B i
¢ s (1)
Uy = £,05 )  (4-2.8)
(2 '
Ze g ) (
= f }1 ’ 'y 4_2-5)
26 5 B(X) c
Bypu
B.C.1. —_ = = : -9,
C Y; g5 0 L= A, B(X)’ B(Y)’ R; 6>0 (4-2.6)
B.C.2. Yo = Yye } @& =1.0 for £ = A and B(X}; 8 >0 (4-2.7)
@ Em 1/m for & = B(Y) and R
and
I.c.l. y =0 @6 =0 0<e<l (4-2.8)
Subscripts denoting radial position and axial position are: k = KAE,
and j = jﬁz or jAz'. Time will be carried as a superscript; n = nA6. There-

fore, when a concentration term appears In the form, YZ(j K)? it means the A
2

concentration n time steps advanced, j increments into the bed and k incre-

ments into the particle.

Forward difference formulas were used to approximate all derivatives.
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Consequently,
3 32 9
T =__:tL_“_a_(E:zyz)= Vs 2%
ey, g2 9% 3E N AN
n n Tl ) n Il
Shaaen a0 TG 2 e T g,
(ag)° L s
and
nt+l n
Mo L Teduw T Yeq,n (4-2.10)
26 A0

Usually, because of the set formulas for finite difference approximation
of derivatives no difficulty 1s encountered in theilr representation; accuracy
and convenience being the factors most heavily weighed in making a choice.
However, when functions of the variables appear, as in Eqs. (4-2.1-5), it is
difficult to say exactly where these should be evaluated. This author felt
that since forward difference approximations were being used, the functions
should be averaged over the unknown value (whether axial, radial or time) and
the previous calculated value. Figure 4-1 shows this procedure. If we wish
to know YA at radial position kt+l, with axial position j and time n, themn the
right hand side of Eq. (4-2.1) is evaluated at the average of the kth and
(k.+1)St net points. Since the (k+l)St point is to be calculated, the above
scheme seems to be as exact as any and it is not overly tedious to work with.
It may easily be seen, however, that the averaging procedure introduces some
unknowns initially in Eq. (4-2.5) which can only be estimated. Improvement

is made by iteration. The finite difference representation of Egs. (4-2.1-5)

is as follows (beginning with Eq. (4-2.5)).
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Yn+1 _ Yn
e(j,k) c(i,k) _ 1 {fn+1 + }
AB 2 75(3,k) 5(],k)
= 2 (vt & = Yz.z:_'] o) *+ T SR SPMNY (4-2.11)
(X)(3,k) 4 (X) (3,k) ¢ ¥
and rearrangement ylelds
i1 -~ 55 ¥ Mo + 5 SN H
o+l - (X) (1.k) ’ X,k (X) (3,Kk)
C(j,k) ' {1 + _é% YIBH"]- }
(X) (3,k)
(4-2.12)
Assuming that n = 1 is our pseudo-steady starting point then YE+1
(X) (3,k)
is unknown forn > 1 and j > 1. Therefore, a value such as Y is
b B i
(X) (3,k)

assumed initially and iteration is performed to improve accuracy. The

boundary condition on the above equation is

1 i=12, ...,
Yc(j,k) = 0.0 . (4-2.13)

it
=
%]
=

Once the above concentrations have been calculated utilizing the guess

n+l

of YB then YA, YB § YB and YR may be calculated by a somewhat
X3,k x) (Y) |
more sophisticated scheme. The difference representation of Eq. (4-2.1) is
n+l nt+l n+l n+l n+l
Y, .. - 2Y + ¥ Y -Y
A(iLkt1) A(l,k) A(j,k-1) 2 A(,ktl) A3Lk)
2 * fag A% ’
(4g)
_ 1 ontl n+l P

and rearrangement yields
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o+l sy . 49" o+l n+l
"y YR P 0o Y0t Yag,w
e’y
- {kgz T2 - a- Y:?; K1)} th§ k+1)
2
= ié%l“ v, (1 - Y:t;,k+1)) Ynt;)(j,k+l) gk = Yg?; k)’ Yn:i)(j k)}
(4-2.15)

Several points may be noted about the above equation. First, it is
written in implicit form (i.e. at an advanced time). Therefore, solution of
a set of simultaneous algebraic equations must be accomplished, quickly and

accurately. Secondly, since the time advanced B( concentration is not

X)

known, iteration must be employed again. Boundary conditions for this

equation
g =Ly 2, s J
n n :
Y =Y (4-2.16)
Al lda2) n=1,2, ...
: 3YA
which is equivalent to —/ = = 0,
o0&
g=0
and
. . J=1,2, «0.,d
Y =Y (4-2.17)
A(jSK) As(j) n = 1’ 2,
It is worth while to recall that
Y = 1.000 n=1, 2
A(1,K) ) > b
o = yn = 0.0 n=1, 2, . ..

e,  Boaw



n
YR(J_’K) = 0-0 n = l, 2, . LI

L Yl § Yl and.Yl

and that ¥ s
ALK By,e By (LK) R(3,K)

k from the analytic pseudo-steady solutions obtained in Section 3-1.

Equation (4-2.2) in difference form becomes

n+l 2k+2 Yn+1

Y - ( )
B (4,k-1) TRy 3,k

k+2..n+l
+ (/)Y
k7B gy (4,k+1)

2
_ (ap) n+l n+l
> G T hg,n’

and in final form becomes

2
(AE) Y,
2

n+l o {2k+2

n+l 3} Y n+1
B(x) (4,k+1) 5

)+
(1R Bigy (3,1

-Y (1~Y

2
Cgez 89

_ - Yn+1 y} Yn+1
. 2 QD™ By (4,kh)
2
) n+l nt+l ol ontl
= O ey Ve T G0 aG 0

The boundary conditions are

i Y
g, Ema, J=1,2, 0.,
and
- n=1, 2, .
Y =
By(i,0) 3@ J 21,2, 00,3

plus the pseudo-steady solutions and the bed entrance condition.

For specie B in the Y particle the difference equation is

66

(4-2.18)

are known for all j and

(4~2.19)

(4-2.20)

(4-2.21)

(4-2.22)
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2
Yg—f-l _ (ZkZZ)Y;+l _ !A%) {Y3(Yg+l
(Y) (,k-1) (Y) (3,k) (Y) (3 ,k+1)
+ Y§+l )} : . (4—2.23)
(Y) (3,k)
which rearranges to
ag%y
+1 2k+2 3 n+1
=95 SR "
(Y) (3,k-1) (Y) (3,k)
| ag’y
e =0 (4-2.24)
(¥) (3,kt1)
with
gy 25 5 5 % 5
YI]; = Yg (4-2.25)
(Y)(jsl) (Y) (j:z) n=2, 3’
and
§=1,2, ...,
" = Y; (4-2.26)
Bwa.o s Gow By By 5 5

For specie R in the Y particle, the final form of the difference equa-

tion is
n+l 2k+2, .+l k+2, o+l
“aen Y ERT RGO TR TR,
2
- 88 13 fytd + Y§+1 } (4-2.27)
2 By (3,141) (%) (3,k)
with

e
]
-
e
]
-
-
N

n JU 4-2.28
Y3,1) = YRG5, 2) ( )

o
I
B
W

ot
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and

n

R (4-2.29)
s(3) n=1, 2,

bl
g = ¥

Since the surface concentrations at the front of the bed are known, the
above equations may be solved for advanced time at j = 1, i.e. the particle
concentration just inside the bed entrance. The Thomas method of solving
large sets of tridiagonal simultaneous algebraic equations [23] was employed
to get the time advanced concentrations of A, B and R. Iteration to improve

accuracy was accomplished by substituting the calculated Yn+1 for the

B
assumed Y and repeating all calculations. It will be shown later
B
(X){3,k)

that two concentration checks were used to insure the convergence of the
iterative scheme.

Once values were obtained for the particle concentrations at j = 1 it
was time to advance one step into the bed. This involved the numerical

solution of the bed equations presented in Section 3-7. Forward difference

approximations were used for the axial derivatives, i.e.

. . 2 =A, B, R
3y Y =X
s . zs(j+l)H 2s(j) j=1, 2, (4-2.30)
9z Az
n= 2, 3, PR S

The expressions for the particle concentration gradients at the surfaces were
somewhat difficult to formulate. The gradient at the surface is not known
for the (j+l)St position, hence the gradient at the jth position was used

and the finite difference approximations to (3-7.9-11) become

Yn+l _ Yn+l -3

A+ As@)

a n+l n+l }
Ag

A(3,K) YA(j,K-l) (4-2.31)

{Y
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n+1

Y = Y - 3 — {a(¥ - Y )
Bt B Y B B GLr-D
+ m2(1—a)(Y§+l - Y;+1 )1} (4-2.32)
¢l oyl g2 (Q-a)az eondl ¢+l ) (4-2.33)
Rs (4+1) RS(j) AE R(j,K) R(J V,K—l)
with
1.0 for = A
YE = { (4-2.34)
S 0.0 for =B, R
plus the pseudo-steady solutiocns, i.e. Yis s =1, 2, . . . , J are all
(3)

known.

Once the surface concentrations were calculated for a step down the bed

the particle concentrations could be calculated for the position. This kind

of stepping procedure was utilized until the bed exit was reached.

Then the

time increment, n, was advanced and the entire procedure was begun again at

the bed entrance. This entire cycle was repeated until the dimensionless

polson concentration approached unity or the B concentration approached

zero; indicative of complete fouling.

Figure 4-2 presents the flow chart of

calculations for both the discrete and composite cases.
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DEVELOPMENT OF FINITE DIFFERENCE SCHEMES~-NEGLIGIBLE DIFFUSION

RESISTANCE CASE.
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The numerical solution of the equations describing this case was con-

siderably simplified owing to the fact that no particle concentrations needed

to be calculated.

However, since the fouling model and hence the poison con-

centration, appears explicitly in the bed equations, it was concluded that an

iterative scheme was necessary to achleve accuracy for the gaseous concentra-

tions.

and

ByA

8
azl fi(YA » YB 3 yc); YA
s 8

ayB
s

1 .
az| fz(YAS’ YBS’ YC): yB

I

aYRs
= 1 .
527 - f3(vp )s IR
S .
ayc
= e .

[}

Equations (3-7.22-25) may be represented in short form by

1.0 @ 2" = 0.0
0.0 @‘z' = 0.0
0.0 @ z' = 0.0
0.0 @ 8 = 0.0

(4-3.1)

(4~3.2)

(4-3.3)

(4-3.4)

Forward difference equations were used to approximate the derivatives so

3y YE - YE
. 8 (4+1) (1)
bz! oz
Yn+1 _ Yn
et @)
20 AB

Here, as before, YE

e

L = A, B, R

(4-3.5)

(4-3.6)

will specify the concentration of the Eth specie
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at the jth location down the bed and at the n~ time increment.
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The right

hand sides of Eqs. (4-3.1-3) were averaged over the jth and (j+l)St axial

steps while the right hand side of Eq. (4-3.4) was averaged over the n

and (n+1)St time steps. Equations (4-3.1-4) become

t
YE+1 - YE+1 i A%m {fin+l ” fin+l}
S (5+1) 5 (§) ) (1)
ntl _ yntl Az'! o+l yn+l
¥y =Y+ 5 {f) +f2.}
S+ %W Gl e
1
Ygfl - YE+1 ” ég_ {fén+l + f:;n-i-l}
8 (3+1) S(j) (3+1) (i)
D SR R £ T
(3 (3 (1) &)
with the boundary and initial conditions
0 1.0, o = A
YL = { > n=1, 2,
5(1) 0.0, £ =B, R
Yi = 0.0; j=1, 2, .
(&)

th

(4-3.7)
(4-3.8)
(4-3.9)

(4-3.10)

(4-3.11)

(4-3.12)

The pseudo-steady solutions obtained in Section 3-5 also provide a starting

point. In final form Egqs. (4-3.7-10) are
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Az'W
[1 - —2 1 -y 3
2 c
Y‘n'l"l - (1) Yn+]_
As Az'Wl n+l As
GHD) 1+ ——= - Yc( ))1 (3)
3
n+1 n+l n+1 n+l
. [@ - YC( ) Y +@-Y ) Yp ]
i) 8 (3+1) S,
+ 2 (3) (i+1) (4-3.13)
2 Az'W :
1+ —2a-v oy
(3+L)
Az! | n+l
[1-=-1{W,Q-%Y ) + W, 1]
¢t _ 2k 6)) . . ¢l
B Az’ _ ol B
s(j+1) [1+ 5 {w2(1 Yc(j+]_)) + w3}] s(j)
n+l n+1l o+l n+l
" [(@-Y ")y, +(1-Yq )Yy ]
2 "Wy (i) 5(1) (3+1) 5 (4+1)
+ . 1 (4-3.14)
2 L+ ya-vt g
2 1 e
(3+1)
W Az'
Y‘;'l Y;+l‘ +"3T“ [YI];+1 + YgH' ] (4-3.15)
®(3+1) &) 6D ®(3+1)
ABW |
[Y‘c‘ +——§1-[(1—Yn ) Y: +Yg+l 1]
ot @ S C) M C)!
c AOW
&P [1 + _-..--21 Y:-l-l ] (4-3.16)
6]
where
’ * %
Wl = 7 W2 =Ktr and W3 = Kl(l—c) (4-3.17)
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It may easily be seen both in Egqs. (4-3.13) and (4-3.16) that Yg+l
5 (3+1)
is not known and initially a wvalue will have to be assumed. Iteration

nt+l

Bs (3+1)
Fipure 4-3 shows the calculational sequence and illustrates the use of

will improve the accuracy of ¥ and hence the other concentrations.

accuracy checks in the iteration procedure.
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4.4. ERROR ANALYSIS OF FINITE DIFFERENCE FORMULATIONS.

Accuracy studies have been made by considering step size variations and
their effect on the values calculated for the concentrations at identical
lattice points. TFor instance, if the efféct_of axial step size was to be
studied, the radial and time increment sizes would be held constant and only
the axial step size would be varied. The values obtained for each concentra-
tion could then be compared at identical axial positions. This same type of
procedure is applicable in ascertaining the effects of the other step sizes
on the accuracy of calculations.

It was felt that since the same calculational procedures were utilized
in both the discrete and composite cases, and in order to avoid excessive use
of computer time, only one of the cases would be studied for accuracy in
detail. By chance it was decided to use the composite case although later
developments indicated that the discrete case was much more sensitive. It
was found that the size of the time increment and the radius ratio, m, had
marked effects on the convergence of the iterative scheme‘in the discrete
case while very little effect was noted in the composite case. No particular
cause could be found for the difference in effects, but it was found that
small time increments (A8 < 20) and low values of m (i.e., m < 5) were neces-
sary to insure relatively rapid convergence.

The composite case was studied rather extensively for increment effects
on accuracy. Tables 4-1 and 4-2 along with Figs. 4-4 and 4-5 show the effect
of varying axial and time step sizes on the accuracy of the concentration of
the intermediate B, which is the least prevalant specie and the one most
) subject to variance. It can be seen in Fig. 4-4 that increasing the axial

increment made a large difference near the entrance of the reactor. This is
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TABLE 4-1. Axial step size effect on reaction intermediate concentration at

several axial positions.

(Radial Steﬁ size is constant, AZ = 0.04)

(Overall dimensionless time is constant, © = 20)

YBS @z=0.4|@Zz=0.8|@2z=1.6|@Z=4.0]€z-=10.0
Az

0.08 0.03669 | 0.03635 | 0.03421 | 0.02845 | 0.01783
0.10 0.03709 | 0.03636 | 0.03421 | 0.02844 | 0.01782
0.20 0.03310 | 0.03593 | 0.03418 | 0.02840 | 0.01775
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TABLE 4~2. Effect of time step size on reaction intermediate concentration
at selected values of axial distance.

(Axial step size is constant Az = 0.10)
(Radial step size is constant AE = 0.04)

Y
6 (total) B @z=0.4] @z=0.8|@z=25.0|@3z=10.0
AB
20 10 0.03669 0.03635 e o
20 0.03709 0.03636 | 0.02632 0.01782
20 0.03249 0.03245 0.02519 0.01800
100 50 0.03252 | 0.03240 0.02518 | 0.01801
100 0.03250 | 0.03219 0.02516 0.01804
20 0.02691 | 0.02707 0.02325 0.01810
200 50 0.02689 0.02697 0.02323 | 0.01812
100 0.02669 0.02656 0.02317 0.01787
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expected since Y_ rapidly attains a maximum somewhere in the range

B
0 <z < 1.5, and then slowly falls with increasing z. Therefore smaller
axial step sizes are required near the entrance to insure accuracy while
larger increments give nearly the same accuracy beyond the maximum.

For identical axial and radial increment sizes there was very little
effect on accuracy with increasing time step. The only noticeable variance
came for small overall values of & and short distances into the bed; but is
explainable on the basis of statements made in the previous paragraph.
Increasing time increments alsb increased the average number of iteratioms
required for predefined convergence limits to be satisfied.

Tables 4-3 and 4~4 as well as Figs. 4-6 and 4-7 illustrate the effects
of varying axial and time step sizes on the reaction intermediate concentra-
tion at selected locations within the reactor for the case of no diffusional
resistance. Equivalent conclusions can be drawn for this case as was done
for the composite analysis. Large axial step sizes result in a fairly large

inaccuracy near the front of the bed but all step sizes studied gave good

results once the axial position corresponding to the maximum YB concentra-~
s

tion had been passed. TFor the same axial increment there is little variation
with changing time increments. The area of most concern lay between the

reactor entrance and the point where Y, exhibits its maximum value. Here

B
8

there were minor discrepancies which increased with increasing time step.
The average number of iterations.increased with increasing A8 also.

In conclusion, judging from Figs. 4-4, 4-5, 4-6 and 4-7, the numerical
analysis of these cases is quite accurate and is not inordinately time con-

suming on the digital computer.
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TABLE 4-3. Effect of axial step size on reaction intermediate concentration
at selected values of axial distance. No diffusion resistance.
(time step size is held constant, A8 = 20)
OVERALL 8 = 40
YB
s @z'=20.5 @z'=1.0 @z'"=5.0 @ z' = 25.0
Az'
.10 0.03269 0.03590 0.03250 0.01780
.125 0.03280 0.03592 0.03250 0.01780
.250 0.03384 0.03612 0.03249 0.01779
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TABLE 4-4. Effect of time step size on reaction intermediate concentration
at selected values of axial distance. No diffusion resistance.

al step size is held constant, Az' = 0.
(Axial ize is held Az' 0.25)

Y &
8 (total) By @z'=0.5/@z' =1.0/@z" =5.0]|@z" = 25.0
A8

10 0.03382 0.03612 0.03239 0.01779

40
20 0.03384 0.03612 0.03249 0.01779
10 0.03328 0.03556 0.03214 0.01787

50
50 0.03332 0.03555 0.03212 0.01782
20 0.03073 0.03272 0.03027 0.01793

100
50 0.03073 0.03267 0.03023 0.01793
20 0.02657 0.02733 0.02606 0.01802

200
50 0.02655 0.02724 0.02598 0.01804
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CHAPTER 5

RESULTS AND DISCUSSION

Prior to investigating poison buildup effects on intraparticle mass
transfer in the two catalyst formulations the possibility of increasing
yields by using unequal particle sizes in the discrete formulation was
considered.

A parameter m was employed to specify the radius ratio of the X particle
to the Y particle. Various values of m (holding RX at 0.25cm.) were used
indicative of the relative magnitudes of diffusion resistance associated with
each particle. Figutre 5-1 shows that using larger Y particles and hence
larger diffusion resistance (m < 1.0) results in a lower maximum yield of
product with an attendant drop in the optimal weight fraction of catalyst X.
Increasing m above unity, which is equivalent éo reducing the Y particle
size, reduces the diffusional resistance and enhances the maximum yield
obtainable. It may be seen though, fof m > 5, that the importance of diffu-
sional resistance becomes negligible in determining the maximum yield of R.
The broken curve shows fhe maximum product concentration and optimal weight
fraction of X for the composite case (using particles of radius RX). Two
points are evident: 1), under equivalent circumstances the composite parti-
cles provide better yields than any value of g_fdr the discrete, and at a
lower optimal weight fraction of X, and 2), better yields are obtainable in
the discrete case for m values greater than unity, but these larger particle
ratios may be subject to mechanical limitations.

Employing the numerical integration procedures previously described, bed
and particle concentration profiles for each formulation were computed and

conclugions, based on the physical and chemical properties and reactor
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dimensions given in Table 5-1 were drawn. Comparisons were also made with
negligible diffusion resistance results. Once this phase was completed
parameter studies were conducted on the following:

(1) The effect of varying the equilibrium constant K = kg/kg on the

fouling rates of the two formulations, and

(2) Effect of varying the product forming rate constant kg on the

fouling rates of the two formulatioms.

Figure 5-2 clearly indicates the superiority of the composite formulation
over the discrete formulation with a much higher initial exit product concen-
tration and a slower decay rate with time. Curve 1 of this figure utilizes
those values given in Table 5~1 for the comparison of the formulations.
Curves 2 and 3 show the effect of warying the product forming rate constant.
Increasing kg gives an attendant increase in the initial exit concentration
of R but also causes an Increase in the decay rate for both formulations.

The curves for the case of negligible diffusion resistance were nearly super-
imposeable on the}composite case curves and hence were not plotted.

Figure 5-3 was utilized to illustrate the effect the product forming
rate constant had on the rates of product concentration decay with time. The
difference of the exit concentrations was plotted versus dimensionless time

and as can be seen the effect of increasing ko is to increase the difference

3
in decay rates with time until a maximum difference is obtained. This is
followed by a gradual decline in the decay rate difference. This latter
trend is easily evidenced by the rapid levelling off of the discrete formula-
tion curves with time in Fig. 5-2.

The magnitude of the equilibrium constant will have an important effect

on the fouling rates of both formulations. Both Figs. 5-4, which illustrates
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Table 5-1. Chemical and physical properties and reactor dimensions for
catalyst formulation comparison.

Discrete Composite No Diffusion

Formulation Formulation Resistance
p (gr./ce.) | 1.0 1.0 1.0
pB(gr./cc.) 0.8 0.8 0.8
Rx(cm.) 0.25 0.25 0.25
RY(cm.) 0.25 0.25 0.25
z(cm.) 156.25 - 156.25 156.25
kg(cc./sec.—gr.catalyst) 0.2 0.2 0.2
kg(cc./sec.—gr.catalyst) 4,0 4.0 4.0
kg(cc./sec.—gr.catalyst) 0.2 0.2 0.2
optimum catalyst

weight fraction a=0.26 e = 0.18 t = 0.18

R(cm.) 3.5 xR 38
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difference of the two formulations.
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the effect on the composite case, and 5-3, which is the equivalent plot for
the discrete case, show increased initial values of exit YR with increased K
but also more rapld decay rates, especially for the discrete case, which
would be expected.

Examination of polson precursor and poison profiles within individual
particles yielded some important results. Figures 5-6 and 5-7, which are
plots of the precursor concentration versus radial distance (with time and
axial position as parameters), show a definite diffusional driving force for
B out of the discrete particle‘while the B concentration in the composite
particle is nearly that which would be expected for negligible diffusion
resistance. This is explainable since Y sites are available on the same
particle to catalyze the product forming reaction. Evident also in the much
more rapid depletion of B in the discrete case, indicative of more severe
poisoning. This can be rationalized as follows. Assuming Knudsen diffusion
and no strong surface adsorption effects, for an equivalent number of wall
collisions specie B has a finite probability of striking a Y site in the
composite particle and converting to product which will not cause poisoning.
However, in the discrete case, B, in its journey out of the X particle can
strike only X sites and will poison some of them. The poisoned sites will
then, by their eliminatlon, reduce the concentration of B possible from the X
particle. This is not to say there won't be poisoning in the composite
particle but, that by the nature of Knudsen diffusion and the physical
presence of Y sites some conversion of B to product instead of poison will
occur. The peison buildup in the two formulations represented in Figs. 5-8
and 5-9 supports‘the above conclusion.

Thus the composite catalyst formulation is superior to the discrete not
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only because it results in higher conversions but also because it is less
susceptible to poisoning. There 1s then no doubt that when considering a new
faciliﬁy the composite formulation is desired unless factors such as cost of
manufacture, which has not been considered in this work, offsets the»obviOus
advantages. In existing facilities it is hoped that the techniques and

results offered in this thesis will be helpful for either formulation.
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A, B, R
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NOMENCLATURE

welght fraction of catalyst X in unit reactor volume, dimensionless.
gaseous species participating in chemical reaction.

solid fouling compound formed by chemical reaction.

particle concentration of component i, gr. mole/cc.

concentration of poison on catalyst particle, gr. mole/gr. cat.
particle surface concentration of specie i, gr. moles/cc.

complete deactivation concentration of poison on catalyst,
gr. moles/gr. cat.

concentration of specie i entering reactor, gr. moles/cc.
, . . ; 2
effective diffusivity of specie i, em”/sec.
void fraction of catalyst particle.
th \
i reaction velocity constant, cc./sec.-gr. cat.

ith reaction velocity constant at zero poison deposition,

cc./sec.—gr. cat.
rate constant ratios, dimensionless.

radius ratio /R, & parameter measuring diffusional resistance,
g

dimensionless.
molar flux of specie i, gr. moles/sec.-cmz.

total number of catalyst particles per unit reactor volume,
dimensionless.

total number of X and Y catalyst particles per unit reactor volume,
dimensionless.

radial distance as measured from center of catalyst particle, cm.
radii of X and Y particles, respectively, cm.

radius of fixed bed reactor, cm.



e

N

103

molar rate of production of specie i per unit reactor volume,

gr. mole

Sec.—-CcC.

er. mole
sec.,-particle

molar rate of production of specie i per particle,

molar rate of production of specie i per unit weight of particular
catalyst, gr. mole/sec.-gr. cat.

process time, sec.

superficial gas velocity based on cross sectional area available
for flow in reactor, cm./sec.

designations for distinct catalytic agents.

dimensionless conc. of specie i, Ci/CA
0

dimensionless surface conc. of specie i, Cy /CA .
s 0

finite difference approximation for y; at spatial points jAz, (jAz')
and kAE and time coordinate nd8.

D , Doy

2 .0 2% T2
Rchkl RchU

dimensionless axial coordinate, z' = z/z'd for negligible diffusion

0
Pgky
resistance case z' = —= + gz

U

dimensionless axial coordinate, z = z'/Yl = .z,

axial coordinate in reactor, cm.
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GREEK AND MATHEMATICAL SYMBOLS

catalyst particle density, gr. cat./cc. cat.
catalyst bed density, gr. cat./cc. bed.
catalyst bed void volume, dimensionless.

weight fraction of catalyst X per particle, dimensionless.

- (] — . ] 0
dimensionless time, 6 = t/td, by = Ccf/k4CA0

dimensionless radial distance, r/RX.

parameters somewhat similar to Thiele Modulus, dimensionless.

0
p k 2

—Eﬁi-- either Ri or RY’

welght fraction of catalyst X per particle for negligible diffusion
resistance case, dimensionless.

activity-poison concentration relationship, dimensionless.

small unit or increment of distance in a specified direction.



SUBSCRIPTS
A, B, C, R
£

Jrk

SUPERSCRIPTS

n
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pertaining to those chemical species.
in or pertaining to the £-direction.

specifies axial and radial position in finite difference
formulas.

in or pertaining to the r-direction.

pertaining to that particular catalyst type.

specifies position in time in finite difference work.
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A-1. STEADY-STATE SOLUTIONS TQ PARTICLE MASS BALANCES. DISCRETE CASE.

Solve:
vy, + - =0 (A-1.1)
YA T Y27 ® Y17 .
]
sz + ¥ ¥, — Vo¥ =0 (A-1.2)
E B(X) 1'A 2 B(X)
szB - szBYB =0 (A-1.3)
(Y) (Y)
sz + mzy y =0 (A-1.4)
E'R 3 B(Y)
subject to:
1. y, =v% 2. All concentrations are finite
A A
s @g=0.
-} @g=1
y =V
B(X) By
y =Y
B(Y) Bs g
} ek = =
YR T r
s
Solution:

Assume solutions of the form

£ £,(£) £4(6) £,(6)

Yo = — 7 3 ¥ = 3 Y
A 3 B(X) 3 B

£1(8)
€

2
then ngi transforms to

Equations (A-1.1-4) become
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"

fl(E) + Yzfz - Ylfl =0 (A-1.5)

11

f2(€) + Ylfl - Y2f2 = ( (A-1.6)

1] 2

f3(§) - m Y3f3 =0 (A-1.7)

113 2

f4(5) +m 73f3 =0 (A-1.8)

Placing in D-form we have

0" - ¢ 9E # g8, = 0 (A-1.9)
.7 ThEy T Hale ™ T

(0% = 4.3, # §.8 =0 (A-1.10)
L :

Now, multiply (A-1.9) by Y1 and (A-1.10) by (D2 - Tl) and subtract to get

" - (r + vI001E; = [0 = (v + v,)0%1E, = O (a-1.11)
(A-1.11) may be factored to give
{DZ{DZ - (v, +y,)1}. ,f, =0 (A-1.12)
1 2 1’72
and the solution of this equation is

fl(E) =C + CyE + Casinh(hlg) + c4cosh(;\lg) (4-1.13)

fz(E) C. + C6£ +C sinh(kli) + C cosh(hlg) (A-1.14)

5 7 8

where Al = fyl + Yo

By performing the indicated operations on (A-1.13-14) and substitution into

(A-1.9 or 10) the following relations may be obtained.

2 2
Cpog. Qi — GG -~
Y2 Ty Tg

(A-1.15)
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Therefore
fl(E) Cl sinh(AlE) cosh(AlE)
, i fZ(E) i I;.. El.+ Il.c e sinh(klg) e cosh(kli) T
B (%) £ s £ Y, 2 73 £ 4 £

Applying boundary condition 2 to (A-1.16 and 17) it is easily seen that for

a and y to remain finite C., and C, must be zero.
B(X) 1 4
Therefore
sinh(A, &)
y, = C, + € — (A-1.18)
A 2 3 E )
1 sinh(llg)
Vg = — 02 - C3 ~—~—Eﬂ——* (A-1.19)
(X) 2
Applying B. C. 1 we have
¥y ™ C2 + C3 sinh(kl)
8
Tl )
y, =—0C, = C, sinh(}
_Bs Yy 2 3 1
solution of these two equations gives C2 and C3.
2 } ( )
C. = vy, +v A-1,20
2 vptyy TAy T
Y ¥
1 2 1
C = {——_ . y - ————— y } S v (A—'l.Zl)
3 Y1+ ¥y A, Yyt B, sinh(Al)
Hence, our final solutions are
; Yy Yy sinh(lla) 1}
y = y . + . @ e—
A A vyt Yo Y + D) sinh(ll) £
Y Y sinh(},£)
= - P a9 (A-1.22)

- y . {_ + . .
B Y1 Py, vyt sinh(};) g



Y1 Yo sinh(lléz) 1
y = y . { -|- . . —
B(X) BS Yy + Yo Y + Yy sinh(kl) E

L N Y1 sinh(},8) 1
YL +Y, Yyt sinh(hl) £

. {-
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(A-1.23)

Equations (A-1.7 and 8) are not coupled so they may be solved separately.

(D2 - 73)f3 = 0
f3(E)_= A sinh(kzﬁ) + B cosh(lzg)

where

Therefore

A sinh(lzg) B cosh(lzi)

Yy = +

Application of boundary condition 2 gives

B=20
and boundary condition 1 gives
YBS
A= Az
m-sinh(—ai
Therefore,
sinh (Azg) 1
y =¥ T/ 5 ' 7F
B B A A
() S n sinh(*%)

_ Equation (A~1.8) may be solved similarly to give

sinh(kzg)

Yo = Vo Fy, 1=z —F5 .2
R Rs Bs m A E

(A-1.24)

(A-1.25)

(A-1.26)

(A~1.27)

(A-1.28)
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A-2. DERIVATION OF GENERAL EXPRESSION FOR TOTAL NUMBER OF X AND Y CATALYST
PARTICLES PER UNIT REACTOR VOLUME.

Consider the discrete particle case where the X particle has radius RX

and Y particle has radius RY'

The weight of catalyst particle X = %ﬂR; ‘e, (A-2.1)
4 _3
The weight of catalyst particle ¥ = 37 P, (A-2.2)
Let m = ;f » then the weight of catalyst pérticle Y becomes
3
4 Bx 1 ’
373" P. "3 (weight of X particle) (A-2.3)
m m

By definition, the total weight of catalyst in unit reactor volume is Pgs

therefore
the total number weight of catalyst X weight of catalyst Y
{of particles per] _ per unit reactor volume per unit reactor volume
unit reactor welght per particle of ¥  weight per particle of ¥
volume
(A-2.4)
Since a has been defined as the weight fraction of catalyst X per unit
reactor volume, then (neglecting weight of gases in bed),
ap (1-a)p '
N=——4 £ (a-2.5)
4rr’ R
3R e 4 X,
373 Pe
m
Equation (A-2.5) may be simplified to
g 3
N=—————(a+mn(l-3)). (A-2.6)

) éngpc
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This is the general expression for the discrete case.

When the particle radii are equivalent, as is true for the composite

case, m = 1 and

3p
N=_—DB

3 (A-2.7)
4ﬂRxpc

Note: Since the catalyst fractions are defined differently for the two cases

it would be useful to see how they are related.

a5 weight fraction of X

unit reactor volume (for DPC) (A-2.8)
. weight fraction of X )
© per particle (for CPC) (A-2.9)

To get the weight fraction of X per unit reactor volume for the CPC we
have from (A-2.7)

weight of catalyst X
unit reactor volume

total weight of catalyst (A—Z.lO)
unit reactor volume

el = e*N -
ge*N + (1~e)N

which reduces to

e' = ¢, s

(A-2.11)

so € is also the weight fraction of catalyst X per unit reactor volume.



STEADY-STATE SOLUTIONS FOR BED MASS BALANCES--DISCRETE CASE.

A-3.
Solve:
0y 3y
5 4 3a -3% =0; y, =10@z=0
9z E=1 5
g g 24
_S + 3 {a —~§é§l + m(l-a) »—SSZA- } = 0;
3% g=1 2 1
E=E
Yp = 0.0@z=20
's
3y ,
Rs ayR
— + 3m(l-a) 3t = 0 Yy ™ 0.0@z=20
dz - 1 8
m
Solution:
oy
A
wes B ¥ B,y
3|y A, T F2B
. Yy
where Bl = ;If;ﬁ;; . (Alcoth(hl) - 1)
Y2
82 = ;;f;";; (llcoth(ll) - 1)
3y
B
(X)
- e =By, - B.¥
B |pay 2By UM
ayB
(Y) =B
ot 378
=1 s
g m

116

(A-3.1)

(A-3.2)

(A-3.3)

(A-3.4)

(A-3.5)

(A-3.6)
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where

83 = m((AZ/m)coth(Az/m) - 1)

Ty -8 : (A-3.7)

pE(, 1~ F4'B :
£E= g 8

By = = B4

Therefore (A~3.1, 2, 3) become

ByA
s - -
oz 8 ]
8yB
==+ 3[a(B,y, - By, ) + m(1-a)Byy, ) = O (a-3.9)
9z s s 8
ByR
_S + 3m(l‘a)8473 =0 (A-3.10)
9z s )
Now let
wy = 3aBl
w, = 3aB2 {(A-3.11)

then (A-3.8, 9, 10) simplify to

ayA
s 3 -_ -
== W ¥, - Wo¥g 0 ; Yo = 1.0@ z = 0.0 (A-3.12)
Z s 8 s
9
ayBS i
et o (W2 + WB)YB Wy, = 0 ey = 0.0 @ z = 0.0 (A-3.13)
dz 8 s s



ayR

= T V3¥p
az s s

Utilizing the operator D-form we may solve the simultaneous equations

(D + wl)yA - Wyyp = o (A-3.
s s
(D + (w2 + w3))yB - WY, =0 (A-3.
s 5
Multiply (A-3.15) by vy and (A-3.16) by (D + wl) and add to get
2
D™ + (wl +w, + w3)D + w1w3] yAS, yBS =0 (A-3.
Solving the quadratic equation we have
- (wy, +w +w)+V(w + w +w)2—4ww
_ 1 2 3 p 2- 3 13
m = (A-'3|
1 2
- (w, +w +w)-'\/(w + w +'w)2-4ww
1 2 3 1 2 3 1°3 '
m, = - (A-3.
2 2
Therefore
yAs = A exp{mlz} + B expim,z} (A-3.
g~ C exp{mlz} + D exp{mzz} (a-3.

Performing the indicated operations on (A-3.20, 21) and substitution into

(A-3.15 or 16) gives

= 0-0 @ zZ = 0.0 (A—3u

ity A, (A-3.
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14)

15)

16)

17)

18)

19)

20)

21)

22)
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—)B (A-3.23)

Applying the boundary conditions A and B may be found to equal

m, + w (m, + w,)
I R (rdit)
2 1 2 1

The solutions for ¥ and yg are then
8 s

“m, - m {(my + w;) explmz} - (m) + w;) explm,z}} (A-3.25)

. {exp{mzz} - exp(mlz}} (Ar3.26)

4

=)
1]

=

s 2~ M

Equation (A-3.14), after substitution of (A-3.26) can be integrated in a

straightforward manner to give

1

=1—(m2-ml)

. {mzexp{mlz} - mlexp{ng}} (A-3.27)
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A~4, STEADY-STATE SOLUTIONS TO PARTICLE MASS BALANCE. COMPOSITE CASE.

Solve:
V2 + - =0 (A-4.1)
EYA EYo¥p T By '
2
VEYB +eyyy, = ley, + (I-e)yyly, = 0 (A-4.2)
sz + (1-e)y,y, =0 (A-4.3)
E'R 3B
Subject to:
1. yA = ¥y
8
Yg = ¥p } @ £=1.0
8
Y T Yxr
s
2. Yus Yo Yy finite @ £ = 0.0
Solution:
£.(8) £,(8) £,(8)
1 _ 2 3
Assune yy =g i ¥yt g e gt Ty

then (A-4.1, 2, 3) become

f1(s> + ey, £, - ey £, = 0 , (A-4.4)
fz(a) + ey f; - (ay2 + (l—s)YB)fz =0 (A-4.5)
f3(£) + (1-e)vgf, = 0 (A-4.6)

Letting ey, = Ei; €Y, = By and (l-e)y3 = 83, and putting Eqs. (A-4.4, 5, 6}

into operator form, we have,



2
(0 - B, + Byf) = 0
(% - (B, + B))E, + B.E, =0
2 ¥ B3))t, + Bt =
2

D f3 + BBfZ =0

. Multiply (A-4.7) by Bl and (A-4.8) by (D2 —'Bl) and subtract

4 2
D" = (B) + By + BD” + 81831, ) = 0

' 2
(31 + 62 + 53) * 'stl + 52 + 33) - 48183

D=+ 5
Let
; 2
ey ey 8y Veo, # 8, + 8% - 48,8,
m, = +
1 2
b B |
' 2
m, = +
3 2
m, = - mg

In general, the solutions f1 and f2 are

fl(g) A cosh(mlg) + B sinh(mlﬁ) + C cosh(m3£) + D sinh(m3£)

fzcg) = E_gosh(mlg) + F sinh(mlg) + G cosh(mBg) + H Sinh(mBE)
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(A-4.7)

(A-4.8)

(A-4.9)

(A-4.10)

(A-4.11)

(A=4.12)

(A-4.13)

(A-4.14)

(A-4.15)

(A~4.16)

(A-4.17)

Performing the indicated operations on (A-4.16, 17) and substitution into

either (A-4.7) or (A-4.8) gives,
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2 2
m, — B m, - B
E=-113 1m,F=—[1B 11p
2 2
2 ,
m, - R m, - B
¢=- 2 = - =4
2 2

Therefore,

_ fl(g) A ccsh(mla) B sinh(mlg) c cosh(m3£) D sinh(m3£)

VAT TE T . £ * ; ¥ £
£, (&) m2 - B, A cosh(m,E) mz - R B sinh(m,&)
g =20 LT 1> L 1
B g 82 E Bz 13
2 B, Ccoshlmg) m S5k (5,23
) [m3 31] cos (msg ) [m3 - Bl] D sin (m3£
32 E 82 £
Applying B. C. 2 we find that
A, C =0, (A-4.18)

and B. C. 1 may be used to evaluate B and D

A 1 2
= s £a -
B = Sinh(m) 7 2 (Byyp + (my = 87Dy, )
i (nS - m>)sinh(m,) s s
‘ 1 3 1
B,y 2 _
. 2B, . bmj =Byl 4 y
T, 2 ol 2 2 sinh(m,) A
(ml m3)51nh(m3) (m1 m3) | 3 s

and the final solutions are
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YAS (? ) sinh(m,€) o2 sinh(m,£) 1
y - S e e m - B T —————— L 2 — m - B ) e ———————rear——. L ] —
A (mg _ mi) 3 1 sinh(ml) £ 1 1 sinh(m3) £
yBS 82 sinh(mlg) sinh(m3g)
+ ———— e {— - 1} (A-4.19)
(mg _ mi) 3 51nh(ml) sinh(m3)
yBS v 2 ) sinh(mlg) 1 ; 2 sinh(mBE) 1}
¥y =~ d (i ~ B e P li, >~ B e 4 2
B (mi _ mg) 1 "1 ‘sinh(ml) E 3 1 sinh(ma) E
yAS {(mi - Bl)(mg - Bl) {sinh(mlg) 1 sinh(mBE) l}]
+ - U e o  ———— 8 —
(mi _ mg) 62 sinh(ml) 3 sinh(mB) E

(A-4.20)

The solution for Yg May be obtained by substitution of (A-4.20) into (A-4.6)

and direct integration

2
.. oo T P ou.d i
YR =Yg T Vg 2. %D sinh(m,) £
.8 s _ms(m3 - ml) 3
B ~ 8.3 st £) 8. (m> ~ 8,)(m> — B8,)
e sior B LI 1L, S A B i T
2t - o) sinh(m;) € YAS 5 a2 (2 - m2
q Wy =1y gMgilMy = My
2 2 '
sinh(m3E) 1 53(m1 - Bl)(mS - Bl) sinh(mlg) 1
U -y B 53 2 - agmey B
3 Szml(m3 - ml) 1

(A-4.21)



A-5. STEADY-STATE SOLUTIONS TO BED MASS BALANCES.

COMPOSITE CASE.

[SLN )

o

[}

M1

N
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(A-5.1)

(A-5.2)

(A-5.3)

(A-5.4)

(n? - 8,) (mycoth(my) - 1)}

(A-5.5)

; {(m§ - 8,) (mycoth(ng) - 1) - (mi - 8,) (m coth(m) - 1)}

Solve:
Solution:
where
a =
2
1 fa
u =
2 (m
where
a =
3 {
a, =
4 (m

- m

l)

o

By

ayAs BByA
~— Y RE =0; y, =10¢@
3z E=1 8
ayBs 3y,
—+t—F] =03 yg =0.0¢€
3z E=1 8
ayRs BByR
S 3E =0 ; Yjp = 0.0 @
9z E=1 s
ay
A
e = o,y, + o,y
9E|pay LA 2_38
« [l = B.) Gy eoblitn] = 1) =
2 3 1 1 1 ‘
- ml)
~—5 5 {Bz(mlcoth(ml) - m3coth(m3)}r
- ml)
3yB
% g=1 3 Bs é A
- ml)
2 2

(m3c0th(m3) - mlcoth(ml))}
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and
ByR
S acy., + o,y (A-5.6)
(e 5B YA
where
2 2
R TR i Tl LA L Sl LA
5 (m2 _ 2) 2 3 3
37 ™ M3 ™
(1 = mycoth(m;))}
2 2
By(m, = B,)(m, - B,)
_ 371 1 3 . oL _ - 1 _
O = : (m2 3 mz) {mz (1 m3coth(m3)) mz (1 mlcoth(ml))}
23 1 3 1
Therefore (A-5.1, 2, 3) becomes
ByAS
—+ 3,7, + 30y, =0 (A-5.7)
oz [ _ s
ByBs
—> + 3agy, + 3u,y, =0 (A-5.8)
9z s s
ByRS
— + BGSYB + SaGyA =0 (A-5.9)
oz s 5

Letting x, = 3ui; i=1, . . . , 6 and solving (A-5.7 and 8) by the operator

method as done in A-3 we obtain

1 i -
yAS = ?E;f:fizy {(El - xl)exp{Lzz} - (22 + xl)exp{klz}} (A-5.10)

(21 & xl)(ﬂ,2 + xl)

B, T T x, (8 - L) + {{exple,2} - exp{s,z}) (A-5.11)
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where

- (xl + x3) + T/txl + x3)2 - 4(x1x3 - x2x4)
1 2

and

‘ 3
= by +=g) - 1/(x1 +x5)" = AQxyxg - XpX,)
7

The solution for ygp can be obtained by direct integration of (A-5.9) after
s ;

substitution of (A-5.10, 11).

xs(ﬂ,l + xl)(£2 + xl)

1 - 1 =
y, = - + {— exp{t,z} - — exp{f,z}}
RS xz(El 22) 22 2 21 1
x (L, + x,) (L, +x.)
6 2 1 - 71 =
# { + exp{l,z} - ———— ¢ exp{f,z}}
i 3 *2 2
x x (2, + x )R, + x,)
6 571 1 2 1
+om (g + hy %)) - — (A-5.12)

172 27172
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A-6., STEADY-STATE SOLUTIONS TO BED MASS BALANCES. NEGLIGIBLE DIFFUSION
RESISTANCE CASE.

Seolve:
ayAs . _
. -~ Kuoyy +ty, =03 y, =L0@z' =0 (A-6.1)
8 s 8
ay
% 4 @'+ €' =0 =0.0@z' =0
s s s
(A-6.2)
BYRS .
"'-B-ET - Kl(l = C)YB =0 ; }TR =0,0@z'=20 {A-6.3)
s 8
Solution:
= - d = K*(l )
Let Wy = g3 W, = K¢ and Wy = K} - 0.
Then (A-6.1, 2 and 3) may be written
ayA
52T~ Vo¥p Wy, =0 (4-6.4)
s s
ByB
—r t Wy + W)y, - Wy, =0 (A-6.5)
s s
9y .
=7 =Wy, =0 (A-6.6)
s
Putting the equations in operator form and solving we obtain
v, = A exp{Alz'} + B exp{lzz'} (A-6.7)
s ‘
yg =€ exp{llz'} + D exp{léz'} (A-6.8)
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where

2
= (Wl + W2 + W3) + $/(W1 + W2 + Ws) - 4W1W3
Ay = 3 (A-6.9)

and

- (W, +W, +W,) - -
Ay = L2 3 1/ : (A=6.10)

Relations between C and A and D and B may be determined as in Section A-3.

These are
(A, + W,)A
o (A-6.11)
W
2
(A, + W.)B ’
D b i X (A-6.12)
W
2
Therefore
= ' 1 -
yAS = A exp{Alz }+8 exp{lzz } (A-6.13)
(kl + Wl) (Az + Wl)
y. =——-"—24; exp{i,z'} + B exp{i, z'} (A-6.14)
B W 1 W 2
s 2 2
Applying the boundary conditions
A, +W
B = _.____kl . Al (A-6.15)
1 2
and
(O, + W)
Awl-Bw-—2—2 (A-6.16)

Ay = Ay
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The final solutions for Ya and yy are
s s

1

(o, + WD), + W)
_ Vg 1/Y1 1’ o . i
B, T T W00, - &) {exp{i,z'} ~ exp{p,z'} (A-6.18)

The solution for yp Day be found by substitution of (A-6.18) into (A-6.6)
s
and direct integration.
) WB(lz + Wl)(wl + Al) 1

1
y, = - {—= exp{),z'} -~ == exp{),z'}
Rs Wz(ll lz) 12 2 Al 1

(ll - 12)}
Aira

(A-6.19)
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A-7. COMPUTER PROGRAMS USED IN THE THEORETICAL ANALYSIS OF THE THREE
POLYFUNCTIONAL CATALYST FORMULATIONS.



131

A-7.1, CALCULATION OF INTRAPARTICLE AND BULK CONCENTRATIONS ONCE FOULING HAS
BEGUN--DISCRETE CASE.



ILLEGIBLE
DOCUMENT

THE FOLLOWING
DOCUMENT(S) IS OF
POOR LEGIBILITY IN

THE ORIGINAL

THIS IS THE BEST
- COPY AVAILABLE



OO0

DIMCNSTON

L YAOD (26, 126) ,YBOX(264,126) 4YBUY(20,126) s YROIZ26,126),YCDH
1264 120) yYANTZ264 12060 g YBANTZ264 1261, YBYNI26,126) 3 YRH[26,126), YONI26,
Z120)yYRSOCL26) ) YASOLL26) 3 YRSOL126) ¢ YUSNLIZ26) 3 YRSNELZ6) 3 YASNILZ0 ),

3ALE0) W BIOC) +CLLG) o DIOC)y WIEC) CL60),GH00 ), YCNLI26,120),YB1(26,10)

LUSTHG Y
FORMAT(IH
FORMAYLLHD

FORMAT{IHT

Y24, 40HA
113%,3120)

IECXQJ‘I’II\J:

LINEAR FGULING MOOCL

FORMBATALIHO, LOX,TF12.8)
FORMAT(IHOy1CXy4F16.8)

NETYY

FORMAT(LHO,1UX, [10,4F14.8)

P Cats

EPS = 0.00001
_IMAX = 100

JMAX = 101

KMAX = 26

CYRN(KJ)

D0 8 J=1.JMAX
CO B8 K=1,KFMAKX

YAQ(K,y J)
YRO(CKJ)
YCO(KyJ)
YAN(K,J)

[ T | I A

YBOX (Ee)
YOOY {K4J)
YBXN (K, J)

CNBYN (&4 D)

CYRSOLY)

YCN1 LKy )
YBLUK, )
YCH K, J)
00 9 J=1
YBSO(J)

o o

oo

YASO(J)
YBSK(J)
YRSN(J)

[ | A [}

C INITIALIZE STORAGE ARRAYS.

L FORMATUEHY 10X, Y3HCALCLLATION GF PARTICLE AND DED CONCENTRATIUNS

9 YASN(J)

START OF
NEELED TE

F =
(N
Dy
RO
Le o=
CDELZ =
T10 =
120
130 =
U =
IETA =
CELET

1.
G
C.

iton

"

0.

o n
loNoleNeRe ol

il

CALCULATICNS

INITIATL

0.26

[

8
25
oL

PROBLEVN.

10./FLOATEJIMAX=1)

(a2
4.0
0.7
1.0

l‘{.]

1.0/FLOAT (KMAX=1)

TCALCULATIGN OF STEADY-STATE VALUES
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Gl = DC#TLC*XC*RC/0D
G2 = DC#T20%KGXRC/DD
G3 = DC*T 3CERCHRCG/DD '
CGAM1 = Gl T )
GAM2 = G2
CAMY = 63
Dl = 3. )
DEL! = D1
It = §.,0
AN = lo-F “a T
Bl = (GI+402)%%0.5
H2 = (63 ¥=).5 o
84 = GL/LGL+G2)
BS = G2/(51+L2)
B6 = H1%1 .0/VANHIH1)-1.0
Bl = B4%bo o
Rz = BS*B6
B3 = ((H2/AM)¥LJ/TANH(F2/7AM) -1 ) %4
k1l = F¥D1~B1
hE = F201%D2
K3 = AAYDITEIXAM
he = WltW24W3 ooy
WS = [(WATLA-4.¥W1H3)*%0,.5
Al = ~{Wa=nd3}/2. N
A2 = —(Wa+twn) /2.
BT = 1./0AM2=AM])
B8 = AM2+W1 B
BY = AM] + &l
Jd =1 i} e
K = KMAX

LL = KMAX-1

B8 CCl1 = AM1%7bE
CCz = nF2%18
FFICC2+40.0)6146)463

61 YASO(J)Y = BI*BB=LXPICCL)
YESO(J) = =B7+w]l=eXP(CCY1)
YRSO(I) = 1. -BIxAMZ%TXFICCL)
GO 1L N~
63 YASD(JY = AT (Rax:ZAP(ANMISIB)-39% AP [AM2HLE))
YRASO(J) = DI=al=eXD({aN2:B)-cXPAYLI®Ld) )
YRSO(J) = 1e-BTH(AM2¥CXP(ANML®2BI=4VLI*LAP(AN22IF]))
64 ALL = HI
AL2 = H2
Gh = B
GO = 5
F1L = ALI/ZSTNCALLY
F2 = AL2/STinilALZ)
F3 = l.-F2

IF(ZETAIAG 45,30

40 YAO[LL4d) = YASQUJI=(Go+CAtFL)-YBS0(J)*(=CO+Gh*F1)
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OO0

SO0 00

sEulgl

CYBOX (1, 0)
YSOY (14J) = YBSO(J)#F?2 -
YRO(1,J) = YRSO[J)+YBSC(J) *F3

CIFCJ=JMAX )10, 11,11

Won

10 J = J+1 o
IB = 706+DELZ
IETA = 1.0
1ET = JETAZAM T o
K = KMAX
~ GO TU 88 R G
30 L = 0
33 G = SINM{ALL%*ZETA}/SINHIALL)
GT = SINH(ALZ*ZET)/(AMISTAH{ALZ/AM))
G8& = 1.0-G7/.CT - -

YAOD(K-LsJ) =
YROX(K-L,J) =
YOOY(K=-L,J) =
YRO(K-Lsd) =
TETA =

YOSO(GJYSCT/ZET
YRSC(J)+YESO(J)I*GB
ZETA-UELET

2ET = JET=-CELeT/AM
L = L+1
o IF(L-LL)33,40,440C
11 CONTENUE
GO 22 J=1,JMAX, 10
CWRITE(3,6)4
DO 22 ¥=1,KEAX,5

YUSOJII# (644G L) =YASO ) F(=GA+CA%F L)

YASOD L) #(C5+G4%GE/ZETA)=YBSULI)*(~G5+ 65436/ ZETA]
YBSU(J)*(G4+G5+G6/TETAI-YASU(J)#(=GA+0A%GE/ZETA) |

22 WRITE(34TIKyYAC(IK s J) + YBOX(K s I) o YEOY (K J) yYROUKJ)

THE FAITIAL CONCENTRATIONS NEEDED FOR
PRCGRAM FAVE BEEN CALCULATED.

WRITEL{ 3,1}

WRITLC(3,2)

I =1
g3 J =1 o S OO o
YASU(J) = 1.0
YRASO{J) = C.¢
YRSO(J) = 0.C ) I
TYASHLJ) = YASO(J)
YBESNLJ) = YesSO(d)
YRSNI(J) = ¥R500J)

54 [TND = G

T T R E R R R E S T T TS T2 S Tt

3

RRard

CALCULATION OF CARBDN GAOACEATRATICH FCR ADVANCED TIMD.

THE THITIAL GUESS UF THE NEh B CONCENTRATIONW wILL BE THF
CLC B CUNCENTRATIUN, e
L R e R

[O €84 K=1KMAX
CYELI(KR,J) = YBUKIK, )
YAXMIK,J) = YBUX(ded)
L0 12 K=LlekMNAX
12 YONUKE, ) =
T4YBOX (K eIV /L oA DELTEC 5%YBAN(Kyd) )

B84

L= DL T30, 9%YBUAIK, J) T EYCOUK, J)HUELT#C, 95 IYLXHIK,yJ)

NOW SOLVE TUR PARTICLE CONCENTRATIONS USING THOMAS METHOD .

6C DO UG N=1KMNAX

ot e e e e S b R e AL e N L A g
PR R R R R R e ]
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Crmtdd i d ki e ROk ARtk ghd e a bk f o ok g b skt b I et dof e &

OO0

OO0

TO CALCULATE YAN'S. THUMAS METHOD.

ALY = 0.0
B{Y) = 0. o o i i
Ciyy = -1,
80 C(N) = O,
R e i}
AlN=1) = 2 +DELET#DELET*0.54GAMLI#[1a=YCN{N,J)}
CiN-1) = ¢,
B(N=1) = =(2.-0FLET*CCLET#*0.5¥GAMT ¥ (L.=YCN(NeL,J)))
ClN=1) = DELETH#DELETHUa545ANM2 & ({1a=YCNIN+1yJ) IRYBXNIN+L ,J)4(1.—YCN

L0, ) 3YBXH{N,J))
MeAX = KMAX -
KH = NMAX-2
N4 = NYAX-1
CU 81 N=3,nNP

All = N
AEN=1) = (2.#AN+2. ) /ANYOELETHBELET40.5#5AML*(1.-YC 1N, D)
BIN=-1) = = ((AN+2 ) /AN-CELETHGELET#04 5%GAMIF(1a=YCN{N+1,J)]))

Bl r(4-1) NELET*DELETFO5%GAMZ ¥ {1a—YONIN+L,J) ) *YueAni{N+l,J)+(1e-YTN
1) IYBXRN(neJ))
N = M o
Al = N .
ALN-1) = (2.%AN+2.)/AN+DELET#DELET#3.54GAMI* (1. =YCN(,J) )
B{N-1) 0. ' '
YANIKMAX, J) = YASWN(J) -
ClH=1) = ((Ar+2.) FAN-DELET*NELET*).AH%CAMIF (1a=YCHNIN+],Jd) ) 2YANN({N+]
Lo dV+DCLET ¥ RELET 0.9 F0AN2Z % (1a=YONIN4T 3 J) ) EYBAN(N4T 4 J)I+ ({1 ~YCN{N, D)
2)VEYLENINGJ)) . ’

|

bk dor g

SHCULD HAVE ALL COEFFICICANTS ANU QUANTITIES MEEUED

B e L L T T T I T T T e
w1} = Aty e E B
Cll) = Bli)Y/w(l)
Gil1)Y = OL1Y/WiL)
AMM = NM-1
LD B4 N=2,N%M . - ) .
Wi = ALY =CIN)*G(N=1)
GINY = (DENI-CUMIHGIN—L) ) /WINY
84 CtN1) = BUAY/WIN)

No= IMAX
YAN(N=1,J) = G(N-2)
L0 B85 K=2,hkvM
B YAININ=-Kyd) = GUII=(K+1})=CIN-(K+1))*YANIN-K+1,d)
YA”(LvJJ = Y“N{ZfJ]
R L T T E  E  E R L L L L T T i RO

THE YAN'S HAVE WCw DEEN CALCULATEDR.
CALC., THE YHXN.,

FETA G AE RS ANt AR SRR RO RGN R G ARG R T A E B SIS S S AR IR A SRR AL BTGy

h= 2
AN = N .

2 AUCLFTYLELET=C e 5%0CAM2H [ 1o -YONIN,J))

HiM-1) “ (2 =DLELETHDELET 0.0 ¥CAMZF(1a=YCNIN$L,U)))

CIN=-1) DELETADELETY0 o H%GAMI T (1 1a=YONIN4®L yJ ) EYANINAIL o d)4 (1 =YL

AN-1) =
lh,J’)*YAN(ﬂ'J’) o, T ECERE A i R
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aNeRaNaN el

OO0

" JHE YRXM'S HAVE NCOW BEEN CALCULATEU. =

CO BéE N=3,NP

A = N
AlH=11 = (2oFAN+2 V/ANADELET=DELET#0, 530AM24{ L, =¥YCONL, I}
) BlN~1) == {(AN+2 )/ AN-DELET*DELET*C (5%0CAM2¥ (L a=YCnlN+Ll,J) 1))
86 CIN~1) = DELET*CCLET*O.5%GAMLI#({1-YONINALyJ))FYATIN+Ld)+{1.-YONI
INgJ I IEYANIN,J))
N = MNH
AL S W A S B S A A B R S R BN G55
AM=1) = (2.%AN+2 . /ANADELETHCELET 0. 54GANMZ23H (L. ~YON(N,J))
BAN-1) = C.

YEXN(KMAX ) = YBSN{JY

ClM-1) = ([AN+2,)/AN-DELET*DELET#0.5%GAMZ% (L =YCNIN+],J) }) YL XMING

11, J)+BELET#OELET#C. 5*uﬁMl*{(;.—YCN[Ni1,JJl*YﬁNIN+1 JIALLo-YONEN, Y
'?)nvna(m.Jl)

W(1) = ALL)
S = B A
GI1) = DIL)/w(l)

CO B7 N=2,NMM

WINY = ALNI-CINI%CIN=-1) L - - )
GULY) = (DA =CINYSGIN=-11)/ZniN) )

B7 CUM) = BINY/w(n)
N o= NMAX

YBXN(N-1,J} = G(N=2)
D0 §9.K=2 H¥K

B9 YBXU(H-KyJ) = GUN—(K+1))=QEN- (K1) VEYBXN(N=-K+1yd)

YEXN{L4Jd) = YDXN(2.Jd) :
R L L T N T L I3 I LT TR T T P L e R S

NOw SINCE A TIMD LAGSING BX CONC. WAS USED WE HAVE TOQ
[TERATE TO THPRLVE ACCURACY.
NG ITERATION IS REQUIRED CN THE YBYN'S,

CO 46 K=1,KMAX

46 YCHL{Ksd) = ((Le—DELT#Co5%YBOK(K )1 EYCOUKsJI4DELTH0. 5% (YEX UL 4

LYBOX (K, 9) 11/ (1o #DELT 0. S3YBAN (K J))
B0 43 K = 1,KMAX )
PECARSIYSNT (kyJY=YCNIK, UV I=EPSIT1D,110,44
110 IREABSIVOXN{K JI=YBLIKyJYI=LPSY 43,43,44
GG TO 101
44 O 222 K=13KMAX
Yhl1{Ksd) = YoxXNIK,J)
222 YON(K,J) = YCNL(K,J)
IT™NG = 1TTNO + 1
GO 7O 60
1CY COMTIIUE

R R P T R UL R R S S R A SR R R S P L L e
NOWw CALCULATE YBYN AND YRA USING T. M,
AR N R KRR AR A AR SRS AN R R B O S F KA AF SRR IF LA AL AT IS EEL
No= 2 ‘
AN = N
P{M-1) = 2.,40CLETHDELET#0AMIRC.S
BEN-1) = ={2.=DELETHNEILETHGAM 35CL5 )
l('\l”lh - Oo

DO T0 W=3,NP
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[ aExNalel

OO0

Ui T i e I

AN = N
AlH~-11)
Bto=1)
7C C(N=-1)
"N = NH
AN = N
A{N-11
B(v-
YLYO (¥
C(tl-1)

EREE RO R

START OF

hil)
ety
G(1)

o

(2. 5AN+2. ) /ANADELETHCELETHGANM3E(C, S
~{(AN+24 ) /AN-CRLET+CELET#CAMI®G.3)
0.

oo

iH

(2.5AN+2 ., ]'//\N*_DELET*EELET*GAI‘"}*U-‘S’

Je

FAX s J) =
= ((AN+2

ek kg kA
HEFAEFAN

i

YN(N+1,J)

THE T. M. SOLUTICH.
AlLl)
BlL)/w(l)

= DMLY/ wll)

0O 71 N=2,NMM

R
G(v)
LN
N = NHMA
YlYV[L
co 72

won u

71

T2
YYD,

TEAI AR AR

NG CALC.

FAxsdFwkE
N = 2
AM = N
AlN-1)
BIN-1}
Cir=11
cCo 73
Aty = N
AlN=1)
B{N-1)
C{N~-1)
N = NM
AN = N
Alil-1)
BlN=-11
YRNIRM
Cl9=11)

1+yYRyYn{

PRI TR

73

STavt Or

Wil
g1
Gl
Cu 74
WiN) =
GIN) =

[E

YOYH{N-KyJ) =

ALNYI=CINIEQIM=1) o
(DIN)=CLM)*GIN=1))/WIN)
B(N!/h(Nl

1 J) = G(N=2)

K=2 g HitM
GIN={K+1})=0QIN=(K+1} Y 2YRYN(H-
J) = YeYn(2,J)

SRR LR RS R T S

Kelyd)

FATFFFTNAER LR RAR AR R K Ak

YRNTS BY THE SANE METHCD.

iy gy eyl d s $**¢ “1" ‘#*#*1‘1-1«' R R TR S
= ? . m s wmw mmrrme e e bm Sme s e e r o med 8 e bwire e A e PP R S T PSP P UL S T
= =2,
= NELETHDELET#*#045%GAM3FIYBYN{N+L, J)+YBYN(N;J!,

HN=73 , NP

{2.%ANY24 ) FAN
={AN+2.) /AN
DELET*LELET*05*GAMI*(YEY

[}

NCH4 T I +YBYNIN.JY)

(Z2.%ANV2.Y /AN
0.

ANy d) = YRSN(J) _
= (LAN+Z2. ) ZAN) RYRNINH] g JY+0ELETHDELET#5AM 350,
Med))
R 2

SFEIYLYNIN+]L 0]

e T TR e L R R e L L T R P TR R S

THE Te Me SCLAN

AlL)

BOI)/a(1)

LEYY/wll)
=P HYM

ACNI-CINI=QIN=-1)
(DIN)I=CIN)*GIN=-1) /W)

i
R T T
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oOCOoOO

OO0 O0

55 IBAR = IBAR+1L.*[CELZ

T4 CINY = BLNYTZWIN)
N = NMAX
YRNIH-14d) = GIN=2)
£O 75 K=2 Nt o N o N S
75 YRUAN=Fyd) = GIN=(K+1))-0(N=(K+1)PHYRNIN-K+1,4J) ' '
YRN(1,J) = YRNIZ2,J)
S I L I P LT R P R F P e PR T T P S Sy T S R e s 1

NCW ALL PARTICLE CONCENTRATIUNS HAVE BEEN CALCULATEDR

FGR X AND Y PARTICLES. P o L

NOw CALC MNEW BED CONCENTRATICNS CNE STEP LUaN THE BED.
K = KMAX

J o= J+l
YASHEJ) = YASN(J=1)-DELZ#NELI*F*(YAN{KyJ=1)-YANIK=1,J~1})/DELET
YBSNIJY = YOSN(J=1)-0CL2#0ELLI¥(FR{YAXNIK J=1)=YHXUtK~14J-11}

P40 =T )R AMEANEIYBYN{K ) J=1) =YBYNL{K=1,J=1))) /DELET o
YRSN(J) = YRSNI{J=L)=DELZ#0ELL*(1.-F)*alxAm® (YRN(IK s J=LI=YRN(K-1,d-1
1)) /0ELET :
¥p o= J-1
CREITE(3,3) TG, I MP
2ETA = 0.0
2ET = o, -
EO 76 K=1,KMAX,5
AK = K
RRITE(3)4)ZETA,YCHLIK  MP o YANIK NP Y p YBAN (K MP)  ZET, YBYN (K, MP) g Y2
YK, NP ) -
ZET = ZET+5,%0ELET/ANM
76 20TA = ZETA4S,.%0FLET
MNB = JMAXSL
IF(J-MMBIS0:51,51
5C GO TO 54
51 ZBEAR = 0.0
JJ!

Ay = J

WRITE(3,5)IBARSYASNIJ) »YBSNIJ)YRSN(J)
RO 993 J=21,4%A%,10 Tt T
WRITE(3:5) Z0ARYASH(J) 4 YBSHIJYYRSN(J)

933 ZeAR = IDAR+IC.¥DELZ

T e T L I T T T eI

HAVE H0« CALCULATED ONCE THIU THE BEN ART
RECOCKDEN THE RESULTS. NCW INCREMENT TIME
ANL G0 THRU AGAIN.

I = [+1

1F(I-IMAX)99,99,98
99 WRITE(3I,11}

WRITC(3,2)

o 82 J=1,J4aX

L0 82 K=1,4K"4X

YCO{RyJ) = YUNIK,J)
B2 YullX{KJ) = YuXilh,d)

G 10 33
9 CuHTINUE
si6P

cun
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A-7.2. CALCULATION OF PARTICLE AND BULK CONCENTRATION ONCE FOULING HAS
BEGUN--COMPOSITE PARTICLE CASE.



oo

OO0

140

DIMENSTON YAU(26,126),YB0(264,126),YRO(264,126Y4YASD(126),YB50(126),
LYRSOU126) o YASNILZ26) s YBSNI126] s YRSNI126) 4 YAN(264126)4YBN{264126),
2YR’1{2C1125!|YLN(21“|12())yYCU{2b11261|AibO)|Bt601 pC(bC,1Dif)0} tHléO]'
3006004650, YCLI2641206)YBL11264126),YA1{26,126)

1 FORMAT(LAL410X%X:53HCALCULATION OF PARTICLE AND BED COMNCENTRATIONS
1USING) : :

FDRMAT(140,13X,3120) o T

FORMAT(LY 210X, 7F14.8)

FOWMATIIH 10X44F1l6.8)

FORMAT(I4=-420XK,4H0=  413,//)

FURMAT(1HO, 10X+ 1104 3F14.8)

NN

EPS = 0.000001

IMAX = 1D )
JMAX = 126
KMAX = 25

INITIALIZE ARRAYS. 7

Do 8 J=1,JMAX
D0 8 K=1,KMAX
YCO{K,J)
YBO(K;J)
YRO(K,J)
YAOQ{KsJ}¥
YEN(KyJ)
YBL(K:J)
YAN(K:J)
YRN[K.J)
YCLUKd)
B YCON(K,J)
o0 9 J=1
YasSotiJ)
YRSO(J)
YASN(J)
YBESMIJ)
YASNL D)
9 YRSN{J)

POOCCODOOCTOO
- ® & & - 2 @
COOoOOO0COoO OO0

COOODOoOOCTC-es = =

[ T O I

OO QOO0 X

2 & & ® @& @

START OF CALCULATIUNS, CALCULATION OF STEADY STATE VALUES NEEBED
TO INITIATE PRUSBLEM.

L T e e Ty e A T e

E = 0.1¢0

0C = 1.0

DB = 0.8

RO = 0.25

nn = 0.005%

DEL? = 10./FLOAT(IMAX-1)
T10 = 0.2

120 = 4.0

T30 = 0.2

U= 1.0

JCTA = 1.00
DELEY = 1.0/FLOATIKMAX=1])
DELT = 10



" RS

G4

DCET10*RO*RO/ 0D

AMI/ZSTHHEANL)

Gl =
G2 = DCHT20%R0O%R0O/DD
" G3 = DC%*T30*RO*R0O/DD
GAMI = 61
GAM2 = G2
GAM3 = (3
01 = 3.
CEL1 = D1
I8 = 0.0
EE = 1.0-E
Bl = E*GI
B2 = E*G2 o
B3 = EE*G3
B84 = B1L+B2+83
BS = (B&*B4-4.¥B1*¥B3)*%0Q,5
AMI = [(B4+BS)/2.)%%0.5 ’
AM3I= [[(B4-BS)/2.)1%¥0,5
B = AMI¥1.0/TANBIAMLI)I-1.0
B7 = AM3%1.0/TANH{AM3)-1.0
B8 = B6-B7
B9 = -B8
"Cl = AM3ITAM3-[31 ;
C2 = AMI®*AM]1-Bl
C3 = 1,0/ (AM3IFAMI-AMIKXAM])
Pl = (Clepo-C2x7)%C3
P2 = B2+L3%88
P3 = C3¥(C)*aT7~-C2*B86)
P4 = Cl=C2%C3+B3/P2
P5 =
P6 =
X1 = DL1*pP1
X2 = Dixp2
X3 = DLI%P3
X4 = DI%*P4y
X9 = D1%pP5
X6 = D1*P6
KT = X14X3
X8 = [XT7eXT=4,¥(X3+X1-X2%X4))%%0.5
ALYT = =(XT-Xt8l/2.
AL? = —IX7+X8)/2.
Al = 1.0/{ALL=-AL2)
A2 = X1+aLl
A3 = X1 ¢+ AL?2
A4 = XO®1L.0/(ALIEALZ)
A5 = X5EAZ2¥AZ/(ALLNAL2%X2)
A6 = AIEA2EAL/XZ
R3 = AMITAM3-BI
R4 = AMI#AML-B1
= 1 /{AMIFAMI-AML =AML
Ré6 = —R3
RT = -R#4
Ry = RILI3/882
FT = BART*R3I/0B2

(CAMIRAM3*BI*C 20 6- AMI*AMl*BB*CI*BT)/!AMI*AMI*AM3*AM3])*Cl
B3#C3FC24CL+(B6/ LAML*AMLI-BT/ (AM3¥AM3) ) /B2
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laNaNelel

88

6l

63

142

G5 = AM3/SINH{AM3)

K = KMAX
LL = KMAX-1 - ) o
J =1
CCl = AL1%1B
CC2 = ALZ%IB T - B
JF{CC2+40,161,61,63
YASULJ) = —AL®A3XEXP(CCY)
YBSO(J) = AGFEXP(CCL) B : T
YRSO(J) = AG*(ALL+AL2+#X14A1%(AL2Z¥AZXEXPICCLY}I~ASE(ALRXAL2EEXP(CCL)
1+1.) :
S _ o oo e e b S Aot AT
YASO(JY = AL#{AZ2*EXP{AL2%*ZB)1-A3%EXP(AL1%ZB))
YBSDI(J} = AG#(EXP{ALI#®ZB)=CXP{AL2%28))
CYRSOUJ) = A4H(ALL+AL2+X14AL*{ALR*AZ*EXPIALL*ZBY-ALL1*#A2*EXP(AL2%ZB)

64
40

10

30
33

11

101+ ASH(AL#(ALLI*EXPIAL2%ZB)-AL2¥EXP{ALL1*ZB))-1.0)

TF{ZETAY40440,30

YAD(1e¢d) = YASO(J)HEREF(RILCEL-RG¥GS)+YBSO{J ) EREE(B2%G4-B2%05)
YBO(14J) = YBSOUJ)*RS&{RT+CG4-ROFGSI+YASO(J)HROX[RB*(64~G5) )
YRO(1,J). = YRSO(JI+YBSO(J)*REF(B3*RT4{1.-G4) /IAMI*AML}-B3%R6%{] .-G
151/ (AM3IXAMB Y Y +YASOIJ)#RE:(FT*((1.~-G4)}/(AML*AM]1)—(1+—-G5V/(AM3I*AMIL})
2) = Ve o w v s : il
[F{J=-JMAX ) 10:11,11

J = J+l
I8 = 1B+DELZ - B TR TR T o
2ETA = 1.0

K = KMAX

GO TO 88 B B T - )

L =20

Rl = SINA(AMI*ZETA)/SINH{AML}

R2 = SINA(AMI®ZIETA)/SINH{AME)

FL = R3%RL/ZETA-R4*R2/ZETA

F2 = B25R1/7ETA-DZER2/ZETA

F3 = R7¥RL/ZETA-R6X¥RZ2/ZETA B - -

F4 = RTH#R3&{R1-R2)}/(B2%LETA)

FS = B3®RTH(1.-RL/ZETA}Y/ (AML¥AM])

F6 = BAEREF( L., ~R2/ZETAY/(AM3FAMS) -

F8 = (l.-R1/ZETA)/(AML*AML)

F9 = (1.=R2/ZLTA)/[AMIXAMI)

YAOLK=L,J) = YASO{J}=FLI¥RS+YBSO(J)FF2%R5

YEO(K~Led! = YBSOUJ)#FIERG+YASOIJ) ¥F4ERE

YRO{K=LeJ) = YRSO{J)+YBSO(J)YR(FS-FOIERH+YASO(JI*FT¥LFB-FI)*R5

2CTA = ZETA-DELET

L = L+!

IF(L-LL133,40,40
CONTINUE

DO 22 J=1,JMAX, 10
WRITEI3,5)d

DO 22 K=l KMAX,5

22 WRIVE (32T K YAUIK ¢J) o ¥YBOIK ¢ d) o YRO{K 4 J)
B T T s e R R L A T TE LE.

THE INIFTIAL CONCENTRATIONS KEEDED FOR PROGRAM
HAVL BOELN CALCULATED.
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WRTTE(3,41)
~ WRITEL3,2)

SPECIFICATION OF BOUNDARY CONDITIONS ON PART[CLE AND

BED.
I =1
83 J =1 ) ’ S )
YASD(J) = 1.0
YB50(J4) = 0.0
"YRSOU(J) = 0.0 B
YASNLJ) = YASO(J)
YBSN(J) = YBSO{J)
© YRSNA{J)Y = YRSO(J} B ST ) T .

54 [TNO = 0

CALCULATION OF CARBON CONCENTRATION FOR ADVANCED TIME.
THE IMITIAL GUESS OF NEW B CONCENTRATION WILL
BE THE OLD 8 CONCENTRATION.

DO 100 K=1,KMAX
YBLIK,J) = YBULK:J)
100 YBNIK,J) = YBO(K.J)

DO 12 K=1,KHAX
12 YCHEKJ) = ((Le=DELT20,5%E*YBO(KyJ)II*YCO(K,J)+DELT#0.5%EX{YBNI(K,J)
L+YBD(K,J) P/ 0L #DELTH 0-5#E*YBN(K-J})

NOW WEISH TO SOLVE FOR YAN, YBN, YRN BY THOMAS METHOD.
YAN'S FIRST.

S e T T R T e e L T e R T e T
60 DD 92 N=l,KMAX

Af{N) = 0.0
B{N} = 0.0
CIN) = -1.0
92 LN} = 0.0 - . )
N = 2
A{N~1) = 2.+DELETH*DELET*0.5*%E*GAML={1.=YCN(N,J))
C(N-1) = 0.0 :
DIN=1) = (EXCAMZE(La~YONINEL, JY)EYBNIN+LyJ)I+ERCAM2E(1a-YOCNIN,J} )=

IVBNINs I Y €0 H¢DELET#DELEY

BIN=1) == (2.-DELET#*DELET*0«5¥E*GANIF(1.=YON{N+1,4J}))
NMAX = KMAX

NP = NMAX-2

NM = NMAX-1

00 31 N=3,NP

AN = N ;

AIN=-1) = (2.%AN+2 )/ AN+DELET#DFLET 0. S%E¢GAMLI*(1a~-YCNIN,J)} )

BIN=-1) = ={{AN42. ) /AN~CELETHDELET*0.5%E4#0AMI ¥ (L a~YCN{N+LJ} 1))
31 DIN=-1) = (EXGAM2{L o ~YCNIN+Ly J) P *YONINtLyJI+EXOCAM2E (1o ~YCNINJ})YY

1BN(HN:JV)COELET*DELET#0.5

N = HM

AN = N .

AIN-1Y = (2.8AN42 ) /ANADELCT#DELET#0 S¥EXCGAMLI® (L. -YCNINy J) )

BiN-1) = 0.0

CYAN(KMAXsJ) = YASN(J}



aEsN el eRelal

OO0

laEaNaRalelel

DIN=-1) ={{AN+2, }/AN-DELEY*DELETX0AMI20.9%E[1.~YOCNIN+L, 4) ) ) EYAN N+
11y JY+DELET*DELET+0. S {EXCAMZH (1o ~YCNIN+L ¢ J) ) FYBNINET  J}+EXGCGAM2% (1.
Z-YCRINg JYPEYDBNIN, I}

SHOULD HAVE ALL COEFFICIENTS AND QUANTITIES NEEGDED
TO CALCULATE YAN'S BY THOMAS METHOO.

START OF THE THOMAS METHUC SOLUTION.

Wil) = A(l)

Gty = BOLY/WLL) ) B
G(l) = D1 /W)

NMM = NM-]

DO 84 N=2  NMM e e e e e e e

WM = A{N}-=CUIN}*QIN~1}

GIN) = (DUIN)-C{N)I%GIN-1}}/W{N)
B4 QIN} = BINY/WIN) ' '

N = NMAX

YAN(N=14J) = GIN-2)
DO BS5 K=2,NMM

85 YANIN-K3d) = GIN-(K+1))=-Q(N-{K+11)&YAN(N-K+1,4J)}
YAN(l,J)= YAN(2,J)

T T T T T T R P R T e R E g T T T2 2T

THE YAN'S HAVC BEEN CALCULATED.

NOw SDLVE FOR THE YBN'S, YRN'S ETC. BY THE SAMEC METHOD.
THE ¥YBN'S FIRST.

T T g g S s T e e T I 1 I I S IITT T

N =2

A(N=1) = 2.+DELET#*0ELET*0. 5% {S40AM2%(1=YONIN,J})+EEXGAM3)

BIN-1) = —{2.~DELET*DELET=0.5%(E*GAM2%( 1. ~YCN{N+L,J) I +EEXGAMI) )
OIN=-1) = (EXGAMIH(1e~YORIN+L1 I IEYANIN®L s J) ¢EXGAML#(Lo~YCNINyJ ) I®Y

IANIN JIISOELET*DRELET*0.5
D0 45 N=3,NP

AN = N

A(N=1) = (2.%AN+2.)/AN+DELET*DELET*0.5*{E*CAM2%¥{1.~YCN(N,J ) )+EE*GA
143) :

BIN~L1) = ~{(AN+2.)/AN-CELETADELET#0 5% (E¥CAMZ%(1a-YONIN+L1,J))+EE%G
1AM3)})

45 DIN-1) = [(E*CARIF (L. =-YONINFL J)IRYANINSL y J) +E¥GAMLE{L - YON Ny J) ) *Y
LANIN, J) I ¥DELET#DELET*0.5
N = NM
AN = N
AfN=-1}
1M3)
B{N-1) = 0.0
YONIKMAX J) = YBSN(J)
BIN-1) = U{AN42,}/AN-DELET*DELET*0. 5% (EXCGAMZ*(Lo—=YCNIN+1,J})+EE*GA
LMIP) #YONINSL g JI+CELETHLELET#*0 S (CHGAMIH (L o= YONIN+ L, JY PEYANINSL, J)
ZAERCAMI ML o= YORNIM,  J) P EYANIN, Y )

L}

{2 %AN+2. ) /AN+DELET#DELET*0.S¥ (E¥GAM2# (L. ~YCN(N,J} ) +EE*CA

NOW CALCULATE THE YBN'S.

START UF THIMAS METHUD TO CALCULATE THE YBHN'S,

Al L)
BOLY/W(L}

Wil)
QL)

nou
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o o

Gii} = DULLY/WI(L)
DO 91 HN=2,NMM

WIN) = ALY -CIN)#QIN=-1)
GIN] = (DUIN)-CIN)*GIN-L) ] /HIN)

91 QUN} = BIN)I/WIN) .
N = NMAX

YBM{N~14J) = G(N-2}
DO 93 K=2 ,NHH

93 YOMIN=-K,J) = GIN~(K+1})-Q(N=-{K+1))I*=YBNIN-K+1,4J)
YBN{l,J)= YBH(2,J)

R e e B e e o g e o o AR e ok e R e e Rt R b R R ke AR et R R R R A e e ke kR kL

THE NEW PARTICLE CONCENTRATIONS HAVE BEEN
CALCULATED USING A TIME LAGGING B CONCENTRATION, o
NOW MUST ITERATE TO OBTAIN BETTER ACCURACY.

BT5 DO 46 K=1,KHAX ' R :

46 YOL(KeJl ={{1.~DELT#®05%E#Y30(K,J)I¥YCOIK,4J)+DELT#*0,5%F=(YBN{K,J)}
1+YBOIKyJ) PP/ (Lo +DELT*0S*E*YENIK,J))
0O &3 K=1,KMAX ' co
IFLABSIYCNIK, JI=YCLIK,J))=EPS) 110,110,44

110 IF(ABSIYRY(KJY=-YBLI(KsJ))=EPS) 43,43,44

43 COMNTINUE o '
GO TO 101

464 DO 222 K=l KMAX

TOYCNIK.J)Y = YOLIK,J) TR T LT T o

222 YBELIK Jd) = YBNIK,J)
[TND = ITNO+)

w o0 TD 60 e

101 CONTINUE

THE YBN®*S ARE SATISFACTORY,y NOAd CALCULATE
THE YRN'S AND PROCEED ON.

Ao e e oo e g e feiefe el dife e ek R R Ak A a ko k kg ek Rk ek ok ok ok T ki kRk

N = 2
A(N-1) = 2. 7
BIN-1) = =2, S R
NIN-1) = DELETHDCLET*0, 5 (LEXCAMBRYBN(N®L, JI+ECECAMIFYBN(NGJI))
DD 36 N=3,NP
AN = N
AlN-1) = [2%AN+2. /AN
BIM=-1}) = —{AntZ2.) /AN

36 C(N-1) = DELCY*DELET¥0.5%(LEHCAMIXYBNIN+ Ly J)+EEXCAMIEYBNIN,J) )
N = MM
AN = N
A(N=1) = (2.3AN+2.)/AN

B{N-11 = Q.0

YRN(EMAX,JY = YRSH{J)

DIN=1Y =( (AN 2. /AN EYRNIN+ L, J)+OFLETHDELET*0 5% [ECXGAMASYBN(NS 1, J
IYAEETGCAN3AYRN (N J))

START 0OF THIMAS MLTHUD CALCULATION OF YRN'S.

Wil) = Atl)

COLY = BlL1Y/W(L}
Gtl) = DEYd/wdl)
N 87 N=2,NMH
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o000 0n

o000

WIN) = AINI-CIN)+Q(N-1)

GINY = (DIN)=CINIZGIN=L) /W {N)
87 O(N} = BIN)/W(N

N = HNMAX

YRN(N=-14J) = GIN-2)
N0 89 K=2,NMH

B9 YRN(N-K,J) = G(N-[K+l})~Q(N—IK+l)l*YRNiN K+l J)
YRNEL1,Jd)= YRN{Z,J} '

N I i R T T T T I T ITIIIITTY

THE YRN'S HAVE NOW BEEN CALCULATED.

NOW CALCULATE THE NCGW BED CDNCEJTRATIONS USING VEHLY CALCULATED

CAND PREVIODUS VALUES,

K = KMAX
J = J+l S

YASN(J) = YASN(J-1)=-DELZ*DELL*{YAN(K,J=-1)-YAN(K=1,J-1))/DELET
YBSN(J) = YBSNLJ-1)~DELZ*DELY*(YBN(KyJ~1)-YBN(K=-1,4J=-1))}/DELET
YREN(J) = YRSN(J-1)}-DELZ*DELL*{YRN{KyJ=1)-YRN{K-1,J-1))/CELET
MNP = U= ‘ ) ’ ’ 3 '
WRITE(343)ITHNO, I ,MP

2ETA = 0.0

DO 62 K=14KMAX,5 )

AK = K

WRITE(3 4 ZETAZYCLIK,MP) , YANIK, HP) YBN(K MP] YRN{K MP)
62 FTETA = FTETA+S5.%DELET
rR o= JMAX+]
17 (J=-MMEY50,51,51
50 GO T0O 54
51 IBAR = 0.0
JJI = 20
RO 55 J=
Ad = J
WRITE{3,5)7ZBAR,YASNIJ),YBSN(J)},YRSNI{J)
55 IBAR = ZBAR+1.¥DELZ o
DO 993 J=214JMAX,10
WRITE(3,5) ZBARZYASN{J)},¥YBSN{J), YRSVIJ)
993 ZBAR = ZBAR+10.%¥DCLZ

LedJdIol

NOW HAVE CALCULATED ONCE THRU THE BED AND HAVE RECQORDED THEH.
NOw INCREMENT TIME AND GO THRU THE BED AGAIN.

I = I+)
IF{I-1MAX)99,99,98
99 LRITE(3,1}
WRITE(3,2)
DO 82 J=14JMAX
DO £2 K=1,KMAX
YCO(K,J) = YCN(K,.J)
82 YBI(K,J) = YBN(K,J)
GO TO 83
98 CUNTINUEC
STOp
END
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A-7.3. CALCULATION OF CONCENTRATION PROFILES IN REACTOR BED WITH FOULING
INCLUDED. NO DIFFUSION RESISTANCE CASE.



OO0

oo

T O

DIMENSICH
1YpPSH{2)2)
200)

YCOU3G23) ,YCh
s YASNI3DT

STATS

Py YRSN{2COY . YONZ( 30

SRLUTTONS

NE3D0) L, YRSTI3CDY . YASN{3S O YRSO(3NT ),
TYeYASII302),¥ES1(3CU ), Y251 (3

AREL/)

yIOXe TP 20X PYASY s 10Ky PYES 310X YRS )

RZSISTANCE C
DY  SULLTIOMS
PTITNO =%, 16)

ONSIDE
ARZY/)

RED

NEGLIGIBLZ'/)

F1 M O TP Q0K VE L, LW, VASY L DGR, S YT, L3N, Wake)

P OFO2MATOINL 204, THZ  STZADY
2 FORMATULLH
3 FOAMATILH J6Y3FTe3,3F14.8)
4 FORYATI(LH L,10X,'DIFFUSTON
S FORBATUIIL, 204, 9 THE  UNSTEA
6 FORMATULE G120kt =20 ,16,2X
T FOR“AT(1H

TR OFORYATILIN 46X, F7,3,4F14,8)

CSPECIFICATIONN

DF CONSTAMTS AMD

PHYSICAL PPOPIRTIES,

Bk R S A

€k sk ok

ET = £,14
JEND = 131
NEND = 127
£ = 25,/FLOAT{JIND=1)
DR = 0,8) ' ' o
Tl = 2.2
T2 = 4,0
Tik = 3,2 N
U = 119
DT = 520,
EPS = 0,000501
gk e AR R R b Rk Sk
CO 9 J=lyJdziD
YON(S) = 0,0
YCMZ2{JY = 2,0
YCOUJ) = &0
YESO(d) = 0,0
YASGLJY = mpr
YRSO(JY = O
YASHIJ) = ,0
YESHIJY = N,
9OYRSM(S) = L0

CAL\ULAT!@W

kg v udod do sl kel M ok
?P = C‘mO
o B
J =1 )
EET = 1,-ET7
W1 = FT

""" W2 = CTET20/T1C
W2 o= EETETEN/TIO
W4 = Wl4wWZen32
W6 = Ch=d IR
ALY = (—.f+(vr]**-
ALZ = ({=va-(wal®4d,
Al = 1:./70A0L1=-4L2)
A2 = ALY+W]
A2 = AL?24W)
Ao o= {R2TAMERE) /W2
L6 = [A2EARSUSEAL YWD
!\(J - lof":l.?

e LR L L e T

N STEADY STATE

ook d o Rk

COMNCZHNTRATIONS SECTIANE,

Aok A ok R ek

,.%l/2e
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In situ poisoning effects on two dual functional catalyst formulations,

both capable of promoting polystep reactions of the type

X C (solid poison)

g

A(g) == B(g)

k k
X2 TR Corodoee

in a single zone fixed bed system, have been investigated.

A relatively slow change in catalyst activity with poison deposition was
accounted for by relating fate coefficients directly to the poison content of
the catalyst. A linear relationship was employed in the particle mass
balances and numerical solutions were obtained. The investigation considered
both bed and particles at constant temperature.

The effects of several factors on product yield and catalyst fouling
rate were considered. These were:

(L) TUnequal particle sizes in the discrete formulation,

(2) The magnitude of the equilibrium restriction, kg/kg, and

(3) Varying the product forming rate constant.

Comparisons made between the two formulations indicate that the composite
formulation is more efficient; both with respect to product yield and

catalyst fouling rate.





