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INTRODUCTION i

Bayesian inferences or Bayesian Statistics involve an approach to

Statistical inference based on the theory of subjective probability. The

term 'Bayesian' arises from an eleraentry theorem of probability theory,

named after the Rev. Thomas Bayes, who first enunciated it and proposed its

use in inference. Since 1950, many statisticians have taken an active

interest in this subject. Hence the term "neo-Bayesian" is sometimes used

instead of 'Bayesian'.

BAYESIAN INFERENCES

Bayesian inference involves £ priori and £ posteriori probability

distribution. A distribution which is assessed prior to sample evidence is

known as a priori distribution. The term 'posterior' means after the sample

evidence.

Suppose before an experiment begins, it can be assumed that
p^^

is the

probability that F is the true distribution of X. If an experiment consists

of observations on Xj^, . . . , X^, the a posteriori probability that F is

equal to F. can be computed after the sample x - (Xj^ x^) ,
has been

drawn if the &_ priori probability distribution is known or can be assumed.

The a posteriori probability, denoted by p^^^, is the conditional probability

that F. given the observed values x^^, . . . , x^,. If P is discrete, the

^ posteriori probability function is given by

^"^ Zp,(xlF )



and for the continuous case

^^^ Pix "

I
p^f(x|F^)dp

Q

For any element F of U, f(x|F) in the above equations, denotes the prob-

ability density function of X. The expression for p^^ is also known as

Bayes' formula.

Consider the problem of making inferences about a Bernoulli process

With parameter 'p*. Suppose that no direct sample evidence from the process

has been obtained. Based on experience with similar processes, general

knowledge etc; one may be willing to translate judgments about the process

into probabilistic terms. As such the probability distribution for p
('*'

indicates that parameter p is considered a random variable) may be considered

to be "subjective". Suppose the a priori distribution of p is uniform in the

interval (0, 1). The probability that p lies in a subinterval is that sub-

intervals length, no matter where the subinterval is located between and 1.

The probability of observing a sample such as head, head, and tail on three

tosses of a coin, given that the probability of observing a head is p, is

p^(l-p). This function is known as a likelihood function. Through use of

Bayes' theorem one can obtain the a posteriori distribution of p using the

A

likelihood function and the a_ priori distribution of p. In terms of in-

ferences about p, Bayes' theorem is written as

.n-r

(3) f(;|r,n) -
'^l^

P ^^-P>

q! f(p) P (I-P) dp



where f (p) = a^ priori density of p.

p'^(l-p)"~'^ = likelihood if r heads are observed in n trials.

f(p|r,n) " a posteriori density of p given the sample evidence.

The integral in the denominator can be regarded as a normalizing factor so

A

that f(p|r,n) will be a density function. It is also the probability, in the

light of the a priori distribution, of obtaining the sample actually observed.

In the above example ••''

f(p) - 1; (0 IP ^ 1),

r " 2, n 3, and

^ A A„ * T^ *• ^ 1 ^0 A A

^r f(p)P (I-P) dp -q/V(1-p) dp = 1/12

so f(p|r = 2, n » 3) = 12p^(l-p) ^ p ^ 1

= elsewhere

The best Bayesian point estimate can be shovm to be the mean of the

a posteriori distribution. In this given example, this would be

Q/h2p.p^(l-p) dp = 3/5 = .6

It may be noticed that the _a posteriori probability that the coin is

"biased" in favor of heads is 2/3.

THE LIKELIHOOD PRINCIPLE

The only input needed for a Bayesian analysis are the likelihood function

and the a^ priori distribution. Thus the import of the sample evidence is

fully reflected in the likelihood function; a principle that is known as the

likelihood principle. If one wants to perform his oxm Bayesian analysis, he



^f'^n

needs the likelihood function. He need not be content with the distribution

based on someone else's a priori , nor traditional analysis such as a signif-

icance tests, from which it may be difficult or impossible to recover the

likelihood function.

PROBABILISTIC PREDICTION

The idea of calculating the probability of a sample in the light of

different prior distributions has important consequences. For example, the

denominator in the right hand side of the Bayes' formula (3) for Bernoulli

sampling can be interpreted as the probability of obtaining the particular

sample actually observed, given the a^ priori distribution of p. While a

person's subjective probability distribution of p cannot be said to be "right"

or "vrrong", there are better and worse subjective distributions, and the

decision criterion might be predictive accuracy. Thus if A and B each has a

distribution for p and a new sample is then observed, one can calculate the

probability of the sample in the light of each _a priori distribution. The

ratio of these probabilities, technically a marginal likelihood ratio,

measures the extent to which the data favors A over B or vice-versa.

MULTIVARIATE INFERENCE AND NUISANCE PARAMETERS

Consider inferences about the mean y of a normal distribution with

unknown variance o^. In this case, begin with a joint prior distribution

A A

for ]i and o^. The likelihood function is now a function of two variables \i

A

and o^. If interest centers only on y, then o^ is said to be a nuisance

parameter. In principle, it is easy to deal with a nuisance parameter.

Simply integrate it out of the _a posteriori distribution. This means that



one must find the marginal distribution of y from the joint a posteriori

distribution of y and o^. Multivariate problems and nuisance parameters

can be dealt with by such an approach,

DESIGN OF EXPERIMENTS AND SURVEYS

In the above discussion, attention centered on the analysis of samples,

without concern about the kind and magnitude of sample evidence, that should

be obtained. This problem is called the design problem. The Bayesian

solution of a design problem requires that one looks beyond the _a priori

distribution to the ultimate decisions that will be made in the light of this

distribution. The question of best design depends on the purposes to be served

by collecting the data. Given the specific purpose and the principle of max-

imization of expected utility, it is possible to calculate the expected util-

ity of the best act for any particular sample outcome. This experiment is

repeated for each possible sample outcome for a given sample design. Next,

one can weigh all these utilities by the probability of that outcome in the

light of the _a priori distribution. This gives an overall expected utility

for any proposed design. Finally, one picks the sample design with the highest

expected utility. Take the case of two-action problems, for example, deciding

whether a new medical treatment is better or worse than a standard treatment.

This procedure is in no conflict with the traditional approach of selecting

designs by comparing operating characteristics, although it formalizes certain

things - prior probabilities and utilities - that often are treated intuitively

in the traditional approach.



DERIVATION OF THE t-TEST VIA BAYES' THEOREM

As has been noted, according to the Bayesian argument there exists

a priori distributions for the mean y and variance a^. Assume that the local

a priori distribution of the parameter y and o^ are independent. Also assume

that the a priori distribution of y is locally uniform. Now the Savage (1960)

principle of precise measurement says

. . . that we do not need to know exactly what the a, priori distri-

bution of y is if we can say only that in the region in which the

likelihood is appreciable it does not change very much, and at no other

point is it of sufficiently great magnitude as to become appreciable

when multiplied by the likelihood. This principle would be applicable

in situations where the likelihood dominates but is not applicable in

situations where the a priori probability density dominates.

The importance of this principle lies in the fact that in actual practice

most of the experiments are conducted only when it is expected that the

likelihood will exert a much stronger influence in the final result than the

a priori distribution. Otherwise, there is little point in doing the exper-

iment. For example, suppose that the value of the gravitational constant in

suitable units had been estimated as 32.2 + 0.1 then there would be little

justification for making further measurements with a method whose accuracy

was, say, + 0.2, but considerable justification for conducting further exper-

iments using a method whose accuracy was + 0.02,

The argument that if y is taken as locally uniform, then log y, - etc;

will not be, loses its force if it is remembered that unless the range of

values of y over which the likelihood is appreciable is large compared with

the average magnitude of y over the same range, then such transformations

will make little practical difference in the range considered. In the example

considered above, for instance, if the a priori distribution of y were assumed

uniform from, say, y - 32.0 to y - 32. A, then to a close approximation, the



a priori distribution of, for example, log \i and — would be approximately

uniform over corresponding ranges, '.
-

Assume" also that either o or its logarithm or some power of a has a

distribution which is locally uniform. Then

(4) p, (vi)w"^k, ^-MCO °_. if distribution of o assumed uniform
/ o" if distribution of log o assumed uniform

where k is a constant and '^" means "proportional to".

Let i(vi,a|Y) denote the likelihood function given the sample Y,

then the a posteriori distribution for p and a would be

(5) p(w,a|Y) - k Ji(li,olY)p^(p) p^Co)

where k"'^ - //l(ji,o|Y). p (y) . p (o) dydo

R

(6) Now p(ii,0|Y) - p(y|a,y). p(o|s)

1

where p(u|o»y) = jn/ (lita^) ( exp i-C-j n/o^) (y-y) ^

and p(a|s) - 2 jr[|(v-q)| j
"^

(| .^sV^^'^^K'^-
^'^'^^

exp |- | vs^/o^j.

(v " n-1, and q<v)

On integrating out a one obtains

P(^ 1^) " P
fv-q] (^°^ ^ ^^^° ^^^^^^ ^

where p It __ 1 is the t-distribution with v-q degrees of freedom, ^

In particular, if log a is assumed to be locally uniform, then the ^

a posteriori distribution of p is a t-distribution with v =» n-1 d.f. If a is

assumed locally uniformly distributed, then the a posteriori distribution will



be a t-distribution with (n-2) d.f. and if o^ is locally uniform then one

obtains the t-distribution with (n-3) degrees of freedom.

SELECTION OF THE PARENT DISTRIBUTION

Assume that the parent distribution is a member of a class of symmetric

distributions which includes, in particular, the normal, together with other

distributions on the one hand more leptokurtic, and on the other hand more

platykurtic than the normal, A convenient choice is the class of power

distributions employed by Diananda (19A9), Box (1953), and Turner (1960), •

where

2/(1+6)

(7) p(y|y,a,e) - w exp
2 I

'

w = r [1 +y (i+e) 2

(- 00 <y < 00^ < 0<~, - "> < li< <», - 1 < 8 < 1)

where 6 denotes a non-normality parameter. In particular, when 6=0, one has

the normal distribution; when 6 is 1, it turns out to be the double exponen-

tial; and when 6 —> -1, the distribution tends to the uniform distribution.

I'Jhen two samples are dra\<7n from possibly different members of this class,

the joint probability density will depend upon six unkno\m parameters i.e; a

set (6, ,vi, ,0 ) associated with the first sample and a set (& fXi^fO ) with the

others. It will be assumed throughout the remaining discussion that the

"I
parents have the same parameter B , and the ratio — of the scale parameters

is the variance ratio.
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DERIVATION OF THE POSTERIOR DISTRIBUTION OF y

FOR A SPECIFIC SYI2ETRIC PARENT

Suppose one selects a parent distribution as given above with S assumed

to have a fixed value g . By doing so, he will adopt the same assumptions

_a priori as are necessary

be zero. One has.

to derive the t-distribution when & is assumed to

(8) ji(u,o|Y.3^) - r {l+ -^(1 4- 3^)} 2

{l + |(1 -*-
3,)]

-n

exp Ul^ 2/(1+8^)

, p^CyXk , P2(o)c?<a

-1

So that

(9) p(y,a|Y,3j - ko
-(n+1)

exp
/
- 2" I

y^-

w

2/(1+3 )

assuming at least two of the observations are not equal, where

2/(1+3)
-1 rr -(n+1)

k = //o ^ exp '-I 11^
R I i

dydo

By Integrating out o, one obtains for the a posteriori distribution of y for

any fixed 3 = in the permissible range the simple expression

(10) p(y|Y,3^) - k [M(y)J

where

M(y) - I ly^-vil

2/(1+ 3^)



10

and M(y)/n is the absolute moment of order 2/(1+3^) of the

observations about y . The integral

- } n (1+e^)

jj-1 = / fhCy) 1 dy is merely a normalizing

factor which ensures that the total area under the distribution is unity.

Usually it is difficult to express it as a simple function but it can be

computed easily by use of computers. >.

Since p(y|Y,3 ) is a monotonic function of M(y) ,
then

(i) p(w|y,3 ) is continuous, differentiable and unimodal, although not

necessarily symmetric, the mode being attained in the interval

fv V 1 where y and y^ are respectively the largest and the smallest of

the observations.

(ii) h-hen 8^ = 0, M(y) - ICy^-y)^ = (n-l)s^ + nC^-y)^ and making

the necessary substitution in (10). one obtains for the a posteriori

distribution of y

P ^^ 1^'^^ " P^Vl^ ""' obtained earlier.

1 (3,-1)

(iii) VThen e —>-l, lim [M(y) ] - (h + |m - y]) and

e^—>-l . .

making the necessary substitutions

(11) lim p(y|Y,3^) - k[h + |m - y|]

3 —>- 1
o

-n

1

where ^ ' ^ iVj^ ' V^^ and m = 7 [y^^ + y^]

k"^ - r (h + |m -yl)"" dy
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so that lim p/fek- l^.e^^ - P(F2, 2(n-l))

^o
-^ -'

Thus notice that when the parent is normal (B^ = 0) the expression (10)

yields the t-distribution, and when the parent distribution approaches the

uniform (B —> -1), the expression (10) gives the double F-distribution
o

with 2 and 2(n-l) d.f. In each of these cases, the a posteriori distri-

bution can be expressed in terms of simple functions of the observations

which provide the minimal sufficient statistics for y and a. (Box and

Tiao (1962))

(iv) In certain other cases, it is possible to express the a posteriori

distribution of y in terms of a fixed number of functions of the obser-

vations. For instance, when

6 - (l-q)/q (q - 1, 2, 3, . . .), one has

(12) p(..olY,B^)<o-<"^^> exp|- | a'^^ J, (-l)'^
C^.j^^'^q-r

j

and

(13) p(wlY.B^)C<r I^
(-1)'' (2qj/s2q.^

J

-n/2q

where S = ^ yT (Box and Tiao (1962))
r ^ 1

and it is seen that the set of 2q functions, S^, S^, . . . S^^

of the observations are jointly sufficient for y and a.



12

In general, however, the a posteriori distribution cannot be expressed

in terms of a few functions of the observations and the minimal sufficient

statistics are the observations themselves,

CHOICE OF PRIOR DISTRIBUTIONS FOR \i^, ^2* '^i*
^2 ^^ ^

As mentioned earlier in (4) , assume that the location parameters and

the logarithms of the scale parameters are locally uniformly distributed

a^ priori i.e;

(U) p^(y^)<?Ck^

(15) P2(log o^)o{k2 or P2(o^K7; ,
i = 1, 2

This assumption is appropriate, so long as it is assvuned that any point

in a region in which the likelihood for y^, y^, log 0^ and log o^ was ap-

preciable would have been as acceptable a priori as any other. (Assumption

used in Savage Principle of Precise Measurement)

Suppose g is a measure of non normality. Choose a. priori distribution

for 8 with modal value at 8= and containing an adjustable parameter which

controls the degree of concentration about this mode. A convenient choice

(Box and Tiao (1962)) is

(16) p(e) Pj-zt (1 - B^)

^
- 1 < e < 1

[Fa]^ 2^^ ^
a >. 1

l^en a = 1, this distribution is uniform. This parameter "a" can be

adjusted to allow for any desired strength of central limit effect. The case

a - 1 giving a uniform distribution for p(6) corresponds to no central limit
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effect, \fnen 'a' tends to infinity, p(3) becomes a delta function and

represents an over\i7helming strong central effect. This corresponds to the

assumption of exact normality for the parent distribution.

DERIVATION OF THE POSTERIOR DISTRIBUTION OF THE

VARIANCE RATIO -7 FOR FIXED VALUES OF y. , y„

AND S. °1

From (7), the joint likelihood function of the two samples

^l " ^^ll'^U' • • • • ^In^^ ^"^ ^2 "^ ^^21' ^22' ' ' * y2n2^
^'

~"l
(17) i(Oj^,02,lij^.Vi2,3lxj^,X2) - k o^^ o^

-n, -n.

'' - - '-
.g

)

exp |- I l^ n^s. (3,y) /o.

j
n.
1

2/1+B

r

2/1+3

where 8^(3,y) - -i-
I /y^. -

wJ . „ ^^
^ j=l

and k-ff^+-ii2j

(l+iiS)-^ -1-2'

Here U-, . y are assumed to be known.
1 2

The joint posterior distribution of a , o„ and 3 is then

(18) p(o^,a^,&\]^,M^,2.i»I.2^

- v(^Wi»\i2*^V^2^ P(«'l.cr2'^'^l'^2'-^1'^2^

- kp(a^)p(a2)p(S) i^(Oj^,cr2'^'^l»^2'^l'-^2^
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The conditional posterior distribution of o^ and a^ for given value of B is

(19) p(c>i^,a2iS,Uj^,Vi2»ii.X2) " ih P(°il^'^i»^^

, , , -(n+1) '

where p(Oj^
I
StUj^.i^) =

\°i^ ®^Pi

and k. = n.
1 1

^n.s^(6,p)
n^(l+e)/2

-
J n^s^(3,y) /

l2/l+B)

1 +
n^(l+3)

which seems to be the product of two inverted gamma distributions. The

pos
2

teriori distribution of -= is obtained by making the transformation
«2

V " -=
, W " o , and integrating out W,

9 1

Thus,

n.

(20) p(v|6,yj^,y2.I.i.X2)

- 1

kv
nTS,(3,y)

n2S (B,y)

1/1+6

-Cn^+n^)—

n.

l+8i

where k =i
/_L.\ '•[("i->"2)"r]

nj^s^CB.u)

n2S2(3,y)

Y- (1+2)

(Box and Tiao (1963))

Sj^(B,y)

Now consider the quantity ^"TTTT ^

1/1+3

where V = —^ is a random

variable and sAQ.m) I 82(6, y) is a constant calculated from the observations,
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After an appropriate transformation

1/1+

S

an F-distribution with n^^d+S) and n^Cl+B) d.f.

""l
.2

In particular, when S = 0, the quantxty V j^ ^

2

is distributed as F with n^ and n, d.f.

Further, when the value of 3 —>- 1 (the parent distributions tend to the

rectangular form), the quantity

2

has the distribution,

"l"2
(22) "H™ n^ul 8-u. .u.-v. .V.) " rr-, : r u for u < 1Itm p(v|8,M^,y2.Xi.Z2) - 2(n +n )

"

e —> -1

^-1
2

n n
-i-^-—7 u for u > 1
2(n +n )

(Box and Tiao (1963))

Thus, for given S not close to - 1, probability levels of V can be obtained

from the F-table. In particular, the probability a posteriori that the
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variance ratio V exceeds unity is

(23) Pr[v >l|3.yi,y2.Xi.X2]=' ^H^V^"*"^^' ^2 ^
^"^ ^^ ^ "iTsTiJ

J

RELATIONSHIP BETWEEN TllE POSTERIOR DISTRIBUTION

p(v|a,yj^,Vi2.Xi.X2) AND CLASSICAL PROCEDURES

From (17), it can be shown that the two power sums nj^Sj^(e,y) and

n s (e,y) when regarded as functions of the random variables ^^ and ^2

have their joint moment generating functions,

-n^(l+6)

where Y = (nj^Sj^(S,y) , n^s^CS.y))

X 2/1+6 2/l+3^

, letting y' = /n^s^(B,y)/ o^ , n^s^CS.u) /o^ IThus

one obtains

-n.(l+3)/2
2

^

(25) My (t^.t^) =
iSi

(l-2t.)

(Box and Tiao (1963))

This is a product of the moment generating functions of the independently

distributed X^ distribution with nj^(l+3) and n2(l+3) degrees of freedom

respectively. Therefore, Sj^(6,u)/s2(3,y) on the hypothesis that a^a^ = 1

is distributed as F with nj^(l+3) and n2(l+3) degrees of freedom and in fact

provides a uniformly most powerful similar test for this hypothesis against
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1, 2
the alternative that oJo^ >1. Tlie significance level associated with the

observed Sj^($,y) / 82(3, p) is

(26)
1 s^(3,v) )

Pr^^Fn^(l-.3),n2(l+3)j>^j(-^ V

and is numerically equal to the probability for V > 1 given in equation (23).

A general test derived by Neyman and Pearson and later modified by

Bartlett (1937) for comparing k variances for normal populations using the

likelihood ratio method is given as follows (This result is due to Bartlett

1937) Let n.
1

(27) A(0)
k

i«»l

N s^(0,y)

\ n.s (0,y)
i-1 ^ ^

N = ^ n
'
^

i=l "i '

the quantity - 2 log X(0) / g (0) is distributed approximately as x^ with k

degrees of freedom where

(28) ;(S) - 1 + [3k(l+3)]"[|,n;' -N-^]

In general, the likelihood ratio X(3) is given by
n.

(29) X(3)
^ rN s^(3,y)

-\ (1+3)

1=1 n s (3,y)ri

The quantity - 2 log X(3)/ g (3) is approximately distributed as x^ with k

degrees of freedom.

THE POSTERIOR DISTRIBUTION OF V raEN 3 IS
REGARDED AS A VARIABLE PARAMETER

The joint posterior distribution of V and 3can be written
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(30) p(V,B|p^,y2.I.i.i2^ = P(3|yj^,y2'^l'^2^ P(V| 3,W^,y2.ii.X2^

where ]?(V\S>,M^»V2»Zi*1.2> ^^ Sivcn by equation (20).

The marginal distribution of 3 can be written as the product

(31) p(e| y^,p2»Xi.Z2) = P(3)^(3| V^,U2*Li»1.2>

where p(B) is given by equation (16) and

-(n^+n^)

rn^s^(3,y)j

1+3
-^12

which is the integrated likelihood for 6 . Thus p(s| Pj_f y2'il»X2^

contains information of two kinds i.e; the knowledge a priori about 6 is

characterized by p(8) and the information coming from the sample concerning

3 is represented by ^(3|m2_,V2»Zi»Z,2^
'

•.

The posterior distribution of V is obtained by integrating out g from

equation (30) giving

+1

(32) p(V| M^,V2»I.i»L2> =
/i P(3|yi,y2'^l'^2^ p(Vi3,y;^,y2.V3^.Z2^ ^^

In particular, the probability a posteriori that the variance ratio V

exceeds imity is

(33) Pr ^V > 1 \v^»V2*^V^2^ " Pr
[^

V > 1 1 3 ,yi.y2.Vj^.X2j •

P(3|yi.y2»^l':il2^ ^^

where the first factor in the integrand is given in (23).
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POSTERIOR DISTRIBUTION OF V WHEN \i^ AND y^ ARE

REGARDED AS VARIABLE PARAI'lETERS'

As usual suppose \x^ and p. ^^^ locally uniformly distributed ± priori

as in (14). Upon integrating out these two parameters from the joint

posterior distribution of the set iM^tV'^*'^*^) » one can write the a posteriori

distribution of 3 and V as

(34) p(V,6lxi.X2) - P(v|B,Xi.X2) '^('^\l.i'L2>

The conditional ^ posteriori distribution of V for fixed value of 3

is given by
.

.
'

~2 "•^ ^^^ 1+B "-)—2
^'"*"^^

(35) p(V|3,Xi.i2^ = l^V ^ fnn2S2(3,y) + V ''n^s^(3,y) dp^dy^

where

"i
- -j(l+3)

k"^ = (1+g)

r
-cn,+n,)cw)i A' [;ia-«]r[„^3,(6.w)
Kn^-m^Mi+e;

1

dy,

and s.(3,u) , i = li 2 are given in (17).

When the parents are normal (3 = 0), the quantity

Kyn-yJ^/Cn.-i)
F = V

''-' ^-

'2i ^2' ' "2I(yo,-yo) /(n,-i)

has an F-distribution with (n--l) and (n„-l) degrees of freedom. \\?hen the

parents tend to the rectangular form (3 —> -1) the quantity
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„ ^ v/— \ . where h, and h. are respectively the ranges of the first and the

second sample, has the following limiting distribution

n -1 1

(36) lim p(wl6,Xi,i2) = 1^" ^ [(^1^2^ "
('^I'^a"^^

^, ^
}

for w ^ I

B—>- 1

'l'"2

n n^ (n^-1) (^2*1)

for w > 1

with k = ^(n^+n^) (n^+n^"^) (n^+n^"^)

COMPUTATIONAL PROCEDURES FOR TlIE POSTERIOR

DISTRIBUTION ?(^\&»Zi»Z2^

To avoid complexities in evaluating the double integral in (35), the

following procedure is adopted. The general expression for the moments of V

is obtained in the form

(37) E(v''l3,ij_,X2) ' ^ •

p^ - i (n.+2r) (1+3) pr- j J (n -2r) (1+6)

_i [n^s^(6,y)J ^^ dy^ i K^2^^'^^J ^
"^1

,,.o^ r"r- l-^ (1+S)

r[vx<3..)r
""^^ "tva<-">]

^

with k = r r-|- (nj_+2r)(l+8)'j . rjj (n2-2r) (I+3)] /.i^ F
[^

-^^"2 /
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This expression involves only a simple evaluation of one dimensional '••

integrals.
'

'

;•.

The more simpler method can be employed as

In the integrand, the moments of the conditional a posteriori distribution

of V for fixed choices of y, and y„ are given by

r(l+3)

(38) E(v''|B,yj:.y2.Zi.i2^ =

r
[7("i+2r)(l+S)] .r[|(n2-2r)(l+B)]

ill '[^ <^-^^>]

and the joint a posteriori distribution of y^ and y- ^^

-- n (1+B)/ f« -1
rjn.d+B)

(39) p(y^,y2|0,Zi,Z2) =
ill f Vi^^'^^1 ^ / iln,s, (B,y) i

dy

As shown in the paper by Box and Tiao (1962) that for fixed 3, the function

n

(40) f(y) = ns(6,y) = I
i=l

.2/1+3

Vi -^1

has continuous first derivative and a unique minimum at some point in the.

3
interval [y„,y, ]. \fnen 3 = or -. -3 < -1/3, it can be shown that f (y)

exists and is continuous, Thus, for these values of 3, one can employ

Taylor's theorem to expand f(y) into f(y)/~^f(y) + 1/2 f (y) (y-y)

where y is the point at which f (y) attains a minimum. This approximation

will be satisfactory when 3 is not close to - 1. From this result, one

finds that the moments of V in equation (37) is approximately
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(41) E(v''ie,^^,^2>

. r(l+B)

J)lr(n,+2r)(l+B) -11 fCn -2r) (1+3) -1 1 ^
n s (3,y)

This implies that, to this degree of approximation, the moments of

/^

TTa
n.^s^(e,;)/fn^(i+3) -i

]
(^2) C(V) = V ^

: n^s^i.J)
/

[n^a^^) -I
]

are the same as those of an F variable with n,(l+3) -1 and n2(l+6) - 1

degrees of freedom, and hence that the a posteriori distribution of C(V)

can be closely approximated using ordinary F-tables. In this approximation,

the nuisance parameters y and y in the _a posteriori distribution of V are

eliminated by the very simple process of replacing them by their maximum

likelihood values and reducing the degrees of freedom by one unit.

The justification supplied above for this simple approximation is,

unfortunately, only valid when 3= and 3< 1/3 but not close to - 1. But

in actual practice, the approximation has a much wider usefulness.

BAYE3IM ANALYSIS OF THE REGRESSION MODEL ,:'''

(i) The regression model with the coefficient vector 3= (g ,3 , . . . ,3 )

can be written as

(43) y = X3+ e
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where y is a Txl vector of observations, X is a I'xp matrix of fixed elements

with rank p, and e is a Txl vecotr of random disturbances. Assume that the

c's are NID(0,a^). Under these assumptions the likelihood function is

-' i
-

rp

(44) /(e.a|y) =/-^^ exp f ^^ (y-XB) (y-X3)

]

I^o/Ttt / L 2a2 J

Denote the quadratic form in variables 3 centered at r\ and with matrix

A by Q(3,n,A) = (g-n) A(e-ri)

Then the likelihood function can be re-written as

T

(45) /(3,a|y) =/-:r-) ^""^ [^ j
vs^ + Q(3,B,Z)

j J

where Z = X'X, 3= z'^^^X Y, v = T-p and s^ = ^ (y-X3) (y-X3)

Using Bayes' theorem, the joint posterior distribution can be written as

(46) p(3,a|y) = kp(3,o) ^(3.a|y)

where k"= { p(3,a) /(3,a|y) d3da

and p(3,o) is the prior distribution of the parameters 3 snd a

Vfnen there is nothing known about 3 and a , then the _a priori

distribution of 3 and log a could be talcen as locally uniform and independent,

i.e.

(47) p(3)o< kj^; p(log a)oC k^ orp(o)<i

Combining (45) and (47) in (46), the joint posterior distribution of

3 and o is
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(48) pCe.oly) - const o"^^"^^^ expi^ ^vs^ + Q( 0, 8,Z)] V

The marginal posterior distribution of is obtained by integrating the

joint posterior density function over o which gives

(49) p(6|y) = const \l +
^^^-^^f^']

(Savage (1962))

L vs

This distribution is in the form of a multivariate t-distribution.

In particular, the marginal distribution of a single element 3 can

be expressed in terms of a univariate t-distribution with T-p degrees of

freedom.

(ii) According to Raiffa and Schlaifer, consider 03^/02 "^ ^ where k

is known. Suppose k = 1, so that 0^ = a^ = a . For this case, they show

that

-(T^+T^+l)
f 1 V 2 ^ 2

(50) p(B,aIyj^,y2) = const a exp ^- —^
^v^^s^ "*" ^2

+ Q(0,B,Z)J (

where Z = Z^+ Z^, g = Z (Zj^S]_ + ^232) ^'^^ ^^^ quantities

(v .s .3 .Z.) i = 1, 2 are defined in connection with (45).
^ i* i * 1* 1

On integrating out a, the posterior distribution of 6 is

(51) P(3lyi.y2) - const [l + ^^^^
L vs

Si
2 J

- I (v+p)
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with V = T^+T^-P and s^ = -^ (^1^1^+ ^2^2^^ ^^^^^ ""^ ^" ^^^ ^^^ ^°™ ^^ ^^^^

(iii) Theil (1963) considered the case x^hen o^^ and o^ are different

and a is knovm. He proceeded within the sampling theory framework to

construct the following estimator for 8 which incorporates inforraation from

both samples, /

-f-^ VT ^2) f-h vi^i "2^(52) s =/7r- VT h ~ Vi^~ ^2^2
I 1 "2 M ''i '2

The _a posteriori distribution of g is given by

Vo+?

(53) p(B|y ,y ) = const exp ) 5- Q(B,B ,Z )

12 1
20^

1

1 +

2

Q(S,32,Z2^"

2
^2^2

where a^ is known and 6 and log a^ are locally uniform a. priori . The

expression (53) is the product of two factors, the first is a multivariate

normal form and the other a multivariate t-foim.

(iv) Suppose a and o are independent and unknown. In such cases,

with locally uniform a nriori distribution for S, log a^ and log 02

»

one finds that the a_ posteriori distribution of 3 based upon two samples

is given by
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v^+P

-1
I

^^(g 'gj'^p
(54) p(B|yi.y2) = '^ p-

^

Vi

V2+P

Q(3.3o.Zo)
1 +

2' 2'

^2^2

with k /
R

Vi+P

1 +
Q(3,6^,2^)

^1^ [
1 +

0(B, 62.22^

^2^2

V2+P

n 2"

d3

This distribution is the product of tvro nultivariate 't' distributions

v/hich is known as nultivariate "double-t" distribution. The normalizing

factor k, here is a p dimensional integral.

The result obtained in (54) is applicable to the problem of making

inferences about a population mean when samples are drawn from two normal

populations with common mean and unequal variances.

In this case expression (54) reduces to
.

..•^' •.,

v^+1 v^+l

(55) p(3|y^,y2) = k
-1

1 +
(v^+i)(e-yp^

Vi

- 2

1 +
(v2+l)(3-y2)^

"2^2

V +1

where k = 1 +
(v^+l)(3- yp^

Vi

v^+l

1 +
(v2+l)(B-y2)^

^2^2

d6

- - 2 2
and the quantities y^.y-.s^ and s^ are respectively, the sample means and
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the saiT.ple variances for the two sets of experiments.

Generalizing the above discussion, suppose that the likelihood function

for the ith sanple is in the fonn of (44) with paraneters (0,a.) ai.d data

,

X T ) . i = 1, 2 k. Then by taking the o^'s as independent

^i' i' i
*

scale parair.eters, one obtains the following posterior distribution of

v,+p
1

(56) p(ely) = w
^2j^

\ 1 +
Q(B,3..Z.)

vTs?
L L

V.+O
1

*

where w
R i=l

Q(g.B..Z.)

2
v.s

.

1 1

dg (Tiao and Zellner (1963))

This distribution is the product of k factors each of which can be

expressed as a multivariate 't' distribution.

ASYMPTOTIC EXPRESSION FOR THE LOILTIVARIArE

"DOUBLE-t" POSTERIOR DISTRIBUTION.

In the previous section, the problera of p dimensional integration

is rather laborious and difficult. This can be simplified, by expanding the

a posteriori distribution into an asymptotic series in powers of v^ and

V "•^, and one can reduce the problem of integration to a problem of evaluating

the mixed moments of ' two quadratic forms.

Let V^ = 4 h' 'h
= h h' ^^ Q(^'^i''-^l>

^^ ^2 " ^(^'^2'^^^

^1 ^2

The expression (54) then becomes
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v^+p "^2^

1 2

(57) P(e|yi,y2)
=

-1
1 +

1'
1 +

•2

Vj^+P Vo+P

with k /
R

1 + -^ 1 +
"•2'

dB

v^+P

The expression

.^^^J
can be written as

v^+p

•A " exp 4^1 exp

v.+p

i "1-4- i°sa*^)

Expand the second factor on the right in powers of v^
-1

v^+p

(58)
^1

1 + -^ ext) fOx
i=0

Vl
-1

where p = 1
o

Pi =
4

P2 = 96

Qj_
- 2p Q^

3Q^^ -4 (3p+4) Q^^ + 12p(p+2) Q^^
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V2-rp

(59)
^2

exp
1 ^"2 ^2

J i=0
^i ^2

-1

where = 1

<li
=

lo
=

96

<2 - 2P ^2

3q^^ - 4(3p+4) Q,^ + 12p(p+2) Q

Substitute (58) and (59) into (57) and after simplifying obtain

1/2

(60) p(e|y;,.y2) =^ -jf^ ^^P 7 Q(3,3. D)

CO 00

-1,
where D = Kj_ + M^, B = ^ (M^g^+M232) and

exp

00 00

-|Q(6. B,D) dg

(2Tr)'

(Tiao & Zellner (1963))

This integral can be integrated term by term. It appears from the

expression (58) and (59), that each term is, in fact, a bivariate

polynomial in the mixed moments of the quadratic forms Q = Q(6,6j^,Mj^) and

Q o Q(e,e M ) where the variables 6 have a multivariate normal
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distribution with raean 8 and covariance matrix D

Another simpler method for obtaining mixed moments is first to find the

mixed ciimulants.

The cumulating generating function of
Qj^

and Q^ is

1/9

(62) UCt^.t^) =log / -^^^ exp [t,Q^+t2Q2-|Q(3.B.D)j dg

= -
Y log

1 1
'

'

I - 2D (t^^+t^Vi^) + t^T)^ Mj^nj^+t2n2 M2n2

+ 2(t^M^n^+t2l-l2n2)' (D-2t^K^-2t2H2)"^t^M^n^+t2M2n2)

where n^ = 3 - 3, and n^ = 3 -32

Upon differentiating (62), one can find the various cumulants. The

general form of which is given below

(63) k = r+s-1 (r+s-2)

!

rs 2

-1 .rs
(r+s-1) tr. D G + (rn^+sri2)'

g" (rn^+sn2) - rn/ g" n^-sn2' g" r,2j r+s > 2

where g" = D(d'Hi^'' (d'Hi^)^ (Tiao and Zellner (1963))

Employing the bivariate moment-cumulant formula as given by Cook (1951),

the integral in (61) can be written as
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CO 03

(64) W = I I
b v^

i=o j=o -J

"' v.-J

vrhere b^^ = 1

10 i[^20 ""
''lO ' ^P^IO

'01 4 f02 + ^01 2pk
01

Substituting the results in (64) into (60), one obtains

,1/2

(65) P(3lyi.y2) " ' '

p/2
^""P

(2tt)'

-i -J

_
^ Ji=0 j=0 -^

wnere ^00 = ^

^10 = Pi " ^10

^01 = ^1 " ^01

'^u
'' ^Pi ^o^^^r^oi^ *"^o ^Ol'^l

^^20= P2-^20"'Pl^O + ^
10

02 ^12 - ^02 - ^1 ^01 " ^
01

The posterior distribution is expressed in the form of a multivariate normal

-1 A „ "1
distribution multiplied by a power series in v^ and v^

vnien V and —^> "
, all terms of the power series except the leading

one vani sh so that, in the limit, the posterior distribution is multivariate

-1
normal with mean 6 and covariance matrix D . For finite values of m^

and V-, the terms in the power series can be regarded as "corrections in

a normal approximation to the multivariate "double-t" distribution.
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THE MARGINAL POSTERIOR DISTRIBUTION

vnien interest centers on a subset of the elements of B, say
g^^^

=

(3^ . . . ,B^), an asymptotic expression for the corresponding marginal

posterior distribution can be obtained by integrating out the remaining

elements,

g = (g^"*"^
g ^) from the joint distribution in (65).

(m)

l.|l/2

(66) One obtains P(S/^ 17^^.72)
°

(2tt)
p/2

R
exp -

Y Q (g, g , D)

00 00

-1
.

-j
y yd.. V, V J dg

J iio j=o ^' ^
2ij i / (m)

Denoting g = (g.^v I g, v) and partitioning the matrices D and D
-1

into

i 't 1

u I Lm

D . ' D
mv[

I

mm

-1

p-^
V^ V.

|m

ml I mm

One can write the marginal posterior distribution as

1/2

(67) p(e(^)lyi»y2)
=

\l
-1

(2TI)
i/2 exp -2 Q<2(0»^(0'''^^'^^ f(3(£)|yi.y2)

where ^ (2(£) lyi»y2)

ram

(2Tr)

1/2

/.

v-i)/2 R

exp - T Q (3, v,e,3 )
2 ^ (m) ' * mm

OS oo

iio j=o ^J ^
"^2"'

'^^m)

-1
with 6= g. . - D D , (g,.v - g,/,.

(m) urn m£. (£) (^)
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From the expression for d^ . given in (65), each tern in the integral

f(3 \ ly »yo) is a bivariate polynomial in the quadratic forms

Q(e,e ,M ) and 0(3,62,^2) "^^^^^^
^(C)^^

considered fixed and
Q^^^

has a nultivariate normal distribution with mean 6 and covariance matrix

D
~^

. Adopting the sane procedure as done in the previous section
mm

^1= ^hiO : ^l(m))' V ^k(l) : ^2(n0^

M

2

I

1

.
P -^

hi
1

1
\.

~ t ~

\i
1

•

B
mm

.
1

• ,

M.
-1

i p -£

% I ^^n

I

E ' E
mt I

mni

I

I

M„

Cgg I

m2

P -l

Sm

mm

K,
-1

'2

-e p -^

€m

mi mm

The general form for the nixed cumulants of Q(3,3j^,Kj^) and Q(3,32»^'2^

is given below

r+s-1
(68) W = 2^^ ^
^ rs

(r+s-2) ! (r+s-1) tr D "'• h" + (rY.+SY,) h"

' rs rs
(rYj^+SY2) - TYj^ E Yi - SY, H y.

V7here H = D

1 "'2

r

mm 1 mm mm
J

mm tm
"^1 = e- 3w V + B "•'• B „ [^fn. - 3w;xl

l(m) mn mfi [ (£) 1(<^)J
Y« -^ :^ . „ -1

r + s >_ 2

s

2(m) mm mg
[_ (^) 2(c)

J

B
E

c
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Using the result in (68), the marginal posterior distribution of 3(0

can be expressed as

\m\
-1

(69) pCs^^^jy^.y^ =-^—71 ^''P

where 6^^ = 1

"^01 = ^01 " \l'

20 S20"^20''Si0^0'"^10

1 . -1

"2 ^^^(i)»^£)'^" )

^10= %0 " ^10

. i=0 j=0'

hi" 2ir^r8io^orsoi^io"'^'''oi'''io

'02 S02"^02"S0l''^0l''"%l

Tlie quantities g. . are functions of the mixed cumulants W. . with functional

relationships exactly the same as those betv/een b.. and k. . shown in (63).

It should be noted that when 3,^^ consist of one variable, the quantity 6..

in (67) are simply polynomials in that variable. Employing the well known

expression for the moments of a normal variable one can easily derive an

asymptotic expression for moments.

This finishes our discussion on application of Bayes' Theorem in

Regression Analysis. For an illustrative example, the reader may refer to

the paper on'Bayes' Theorem and the use of Prior Knov/ledge in Regression

Analysis' by George C. Tiao and Arnold Zellner, University of Wisconsin.

SUl'iiARY

The use of Bayes' Theorem in Statistical inferences has recently been

reconsidered in the works of Jeffreys, Savage, Box and Tiao and others. One

advantage of a Bayesian approach is that prior knowledge about parameters of
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interest can be combined in a well-defined mathematical way with information

obtained from experiments. Such prior knowledge may cone either from some

general theoretical considerations or from the results of previous experience.

Through the use of Bayes' theorem one can obtain the posterior distri-

bution of a certain parameter on the basis of a likelihood function and the

prior distribution of that parameter. It has been shown that the best

Bayesian point estimate is the mean of the posterior distribution. The

Bayesian solution of a design problem requires that one looks beyond the

prior distribution to the ultimate decisions that will be made in the light

of this distribution.

After assuming the form of our parent distribution, which is not neces-

sarily considered to be normal, but only a member of a class of symmetric

distributions which includes normal, one can derive a criterion which is

appropriate on this assumption. For example, on the assumption of normality,

for the comparison of tv/o means one would derive the t-statistic. It seems

natural to justify the use of such a normal theory criterion in the practical

circumstances in v/hich normality cannot be guaranteed. These situations lead

one to adopt Bayes' method for solution of such problems x^here normality

Ceinnot be assumed. ^ / .
•'

. ,
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The Rayesian approach emphasizes the fact that p.iven the likelihood

function and the prior distribution of a certain parameter one can find

the posterior distribution of that parameter by using the Bayes' theorem.

One of the advantages is that the condition of normality need not be assumed

V7hile deriving certain distributions. By use of Bayes' theorem, it has been

shovm how prior knov/ledge can be utilized in conjunction with saraple in-

formation in maliing inferences about the parameters of the regression model,

Tlie 't' distribution v/as derived given the likelihood function and

prior distributions for parameters p and a • It was also shown that in

sampling from a parent distribution which is a member of a class of sym-

metric distributions, one can find the posterior distribution of the mean

y by integrating out o from p(y,a|y,3 ), for any fixed g .

A tv70-sanple problem was considered v/here the two samples are dravm

from specified populations with location parameters y, and y_ and scale par-

aneters o, and a. and a common non-normality parameter S. Assume that y^12 „, 1

and V« are known. Let the ratio V = —7 and 3 correspond to the nuisance

parameter in our general formulation. One can then study p( —^
I
3-,^ , the

conditional posterior distribution of the squared scale parameter ratio, for

any chosen degree of non-normality together with the associated p(3|j^ vmich

indicates the plausibility of that value. Tne posterior density p(3|;,^ can

be written as the product £i^\^ p(3) whose elements are associated with (i)

the infoisiation concerning non-normality coming from the data and (ii) that

injected a priori .

Further, if one removes the assumption that y^ and V are kno\-7n, then

the problem involves two laborious integrations. But a close approximation



to the integrand can be obtained by replacing the unknovm p^ and y„ by their

maximun likelihood cstinators in the integrand and chanj7;ing the degrees of

freedora by one tinit.

In the case of a regression model, attention has been directed at devel-

oping procedures for using information from one sample as prior knowledge in

the analysis of a subsequent sample. It is assumed that the two sai;iples

drawn fron the population have unequal variances. Given a regression model

with specified coefficient vector S, one can write the likelihood function

x^hich can again be utilized for use of Bayes' theorem in the development of

a posteriori distribution of 3. Suppose that the likelihood function for

the ith sample is in the forra

T
£(e,cr|y) =1 \ exp ^^ (y-X0)' (y-X3)

2a2

with parameters (3,0.) and data (y.,X. ,T.), i = 1 k. By taking

0, 's as a independent scale parameters, one can find the posterior di§tri-
V. •

bution of 3 as a product of k factors which can be expressed as a multivar-

iate 't' distribution. '••'

In the above case, the problem of p dimensional integration is labo-

rious and difficult. This can be remedied by expanding the posterior dis-

tribution into an asymptotic series, and thus reducing the problem of in-

tegration into a problem of evaluating the mixed moments of two quadratic

forms.


