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Abstract 

Opportunities for alternative biofuel feedstocks are widespread for a number of reasons:  

increased environmental and economic concerns over corn production and processing, limitations in the 

use of corn-based ethanol to 57 billion L (15 billion gal) by the Energy Independence and Security Act 

(US Congress, 2007), and target requirements of 136 billion L (36 billion gal) of renewable fuel 

production by 2022.  The objective of this study was to select the most promising among currently 

available crop models that have the potential to model sweet sorghum biomass production in the 

central US, specifically Kansas, Oklahoma, and Texas, and to develop and test sweet sorghum crop 

parameters for this model. 

Five crop models were selected (CropSyst, CERE-Sorghum, APSIM, ALMANAC, and SORKAM), 

and the models were compared based on ease of use, model support, and availability of inputs and 

outputs from sweet sorghum biomass data and literature.  After reviewing the five models, ALMANAC 

was selected as the best suited for the development and testing of sweet sorghum crop parameters.  

The results of the model comparison show that more data are needed about sweet sorghum 

physiological development stages and specific growth/development factors before the other models 

reviewed in this study can be readily used for sweet sorghum crop modeling. 

This study used a unique method to calibrate the sweet sorghum crop parameter development 

site.  Ten years of crop performance data (Corn and Grain Sorghum) for Kansas Counties (Riley and Ellis) 

were used to select an optimum soil water (SW) estimation method (Saxton and Rawls, Ritchie et al., 

and a method that added 0.01 m m-1 to the minimum SW value given in the SSURGO soil database) and 

evapotranspiration (ET) method (Penman-Montieth, Priestley-Taylor, and Hargraeves and Samani) 

combination for use in the sweet sorghum parameter development. ALMANAC general parameters for 

corn and grain sorghum were used for the calibration/selection of the SW/ET combination. Variations in 

the harvest indexes were used to simulate variations in geo-climate region grain yield. A step through 



 

 

comparison method was utilized to select the appropriate SW/ET combination. Once the SW/ET 

combination was selected the combination was used to develop the sweet sorghum crop parameters.  

Two main conclusions can be drawn from the sweet sorghum crop parameter development 

study.  First, the combination of Saxton and Rawls (2006) and Priestley-Taylor (1972) (SR-PT) methods 

has the potential for wide applicability in the US Central Plains for simulating grain yields using 

ALMANAC.  Secondly, from the development of the sweet sorghum crop model parameters, ALMANAC 

modeled biomass yields with reasonable accuracy; differences from observed biomass values ranged 

from 0.89 to 1.76 Mg ha -1 (2.8 to 9.8%) in Kansas (Riley County), Oklahoma (Texas County), and Texas 

(Hale County).  Future research for sweet sorghum physiology, Radiation Use Efficiency/Vapor Pressure 

Deficit relationships, and weather data integration would be useful in improving sweet sorghum 

biomass modeling. 
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Chapter 1- Literature Review 

Ethanol Production in the US 

High fuel prices in recent years have increased the need for alternative fuels (i.e., ethanol and 

biodiesel) to reduce the dependence on foreign oil supplies.  Currently in the United States (US), ethanol 

production is dominated by first-generation (conventional) biofuels, specifically corn-based ethanol.  In 

the US, 12.45 billion bushels of corn were produced in 2010, with production up 2.94 billion bushels 

from 2001 and 4.97 billion bushels from 1991 (USDA, 2010); with 4.7 billion bushels of corn used for 

ethanol production in 2010 (Abbot et al., 2011).  The main area of corn production in the US is centered 

in the Corn Belt (Nebraska, South Dakota, Indiana, Illinois, Iowa, and Ohio), which accounts for > 80 

percent of the corn produced in the US (Dhuyvetter, 2005).  Figure 1.1 shows the corn production 

(bushels) and acres planted over the last twenty years in the US.   
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Figure 1.1 - Corn acres planted/harvested and bushels harvested. (Data Source: USDA, Economic 
Research Service Feed Grains Database, www.ers.usda.gov/data/feedgrains) 

The main benefit for using corn grain as an ethanol feedstock is the existing production capacity 

and infrastructure (BRDI, 2008b).  With this benefit there are many social, economic, and environmental 

problems that accompany the wide use of corn as a feedstock (Simpson et al., 2008; Shapouri et al., 

2006; Rendleman and Shapouri, 2007).  Some of the greatest economic and environmental problems 

with using corn occur during production and processing; coupled with these issues, a conflict over corn 

for fuel and food becomes apparent as a larger percent of the crop harvested is being used for ethanol 

production (Simpson et al., 2008; Wescott, 2007; Leibtag, 2008). 

Economic and environmental problems increase with the need for the larger quantity of inputs. 

For example, nitrogen application rates increase per bushel of corn produced, depending on 

management, soil texture and expected yields, applied pounds of nitrogen per acre, and can range from 

18 to 136 kg (40 to 300 lb) (KSU-AESCES, 2007), with closer to 136 kg (300 lb) in areas with higher 

yielding environments.  The increase in the cost of fertilizer along with the increase in the cost of fuel 

has increased the overall production cost of corn and the price per bushel (Hoffman and Baker, 2009). 

The increased management intensity, by putting more acres into continuous corn, provides a higher 

probability for surface runoff, which can carry nutrients and pesticides into nearby water resources.   

Increasing surface runoff contributes to eutrophication/pollution of rivers, lakes, and oceans, 

contributing to the overall environmental concerns associated with high levels of corn production 

(Simpson et al., 2008; Malcolm and Aillery, 2009; Malcolm et al., 2009).  

In addition to the field production costs, corn grain processing for ethanol is fairly energy 

intensive, though the energy ratio (ratio of the total energy in the fuel [output] to the total energy used 

to produce the fuel [input]) of the production process has increased from 1.34 to 2.29 with better 

processing techniques (Shapouri et al., 2002; Shapouri et al., 2010).  The energy ratio for ethanol 

produced from corn starch is still well below that of projected ethanol yield from biofeedstocks, such as 
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cellulosic (varies with feedstock type) and sugar cane (8.0) (Vries et al., 2010). The low energy yield 

along with the low carbon credit for growing corn as a feedstock and the US cap on ethanol production 

from corn of 57 billion L (15 billion gal) (US Congress, 2007), are likely to discourage use of corn as an 

ethanol feedstock in the long term, opening up opportunities for alternative fuel development (Tyren, 

2008).   

Supplemental to the economic and social concerns in using corn for ethanol production, there 

are concerns over having a single feedstock, since there is a potential of price shocks due to 

unpredictable environmental factors (BRDI, 2008b). Opportunities for alternative biofeedstocks are 

widespread for a number of reasons: increased environmental and economic concerns over corn 

production and processing, limitations in the use of corn based ethanol to 57 billion L (15 billion gal) by 

the Energy Independence and Security Act (US Congress, 2007) and target requirements of 136 billion L 

(36 billion gal) of renewable fuel production by 2022 (US Congress, 2007; EPA, 2010) from a variety of 

biomass feedstocks, such as switchgrass, oilseeds, and short-rotation woody crops. Biofeedstocks such 

as sugar cane, agricultural residue, perennial grasses (specifically switchgrass), woody biomass, and 

sweet sorghum are being investigated for economic feasibility (BRDI, 2008a; BDRI, 2008b) and use on a 

commercial scale. In the following sections benefits and problems with each feedstock are presented.    

Alternative Feedstocks 

There are a variety of biofeedstocks available for ethanol production: sugar cane, agricultural 

residue, perennial grasses, woody residue, and sweet sorghum.  In the following sections, a brief 

description of the alternative biofuels will be provided along with summarized overview of the benefits 

and problems of using these biofeedstocks for ethanol production in the US.  
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Sugar Cane 

Sugar cane is a tropical perennial grass grown to produce raw sugar (Shapouri, 2006). Sugar 

cane is an effective crop at producing adequate amounts of feedstock substrate to be used in the 

production of ethanol to support the needs of a nation; this can be noted in the ethanol production 

from sugar cane in Brazil.  Sugar cane can produce up to 49.28-73.25 Mg ha -1 (22.0-32.7 tons acre -1) in 

the US, which can yield approximately 81.4 L Mg-1 (19.5 gal ton-1) of sugar cane (Shapouri et al., 2006).  

Though sugar cane has a high gallon per acre return for ethanol, the main problem with growing 

this crop in the US is the limited climate, which limits sugar canes production to the Gulf Coast, Florida, 

and Hawaii (Shapouri et al., 2006). The shorter growing season in northern states along with quick 

deterioration of the fermentable carbohydrates make it difficult to use this tropical perennial grass as a 

year round feedstock in the US, limiting its production for ethanol to the regions which it is well 

adapted. 

Agricultural Residue 

Agricultural residues are abundant and readily available.  The top eight US crops produce 

approximately 450 tons of biomass per year (BRDIa, 2008; Perlack et al., 2005).  Though these residues 

are available for cellulosic ethanol production, limitations due to economic and environmental concerns 

are preventing it from being widely used.  Major economic concerns are logistics and processing costs 

(BRDIa, 2008; BRDIb, 2008).   

Logistical concerns arise due to the limited infrastructure for the harvest and transport of the 

bulky substrate to a production facility.  Pricing of corn residue has been estimated between 40 to 45 

dollars per dry ton to make it feasible to use residue as a feedstock for ethanol production (Perlack et 

al., 2005; Malcom et al., 2009).  Even with material coming into a facility, storing large quantities of 

biomass remains costly.   Even with the probable price, cellulosic ethanol production facilities are not 

currently economically competitive with corn based ethanol production, and no commercial facilities 
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currently exist (Wescott, 2009), though a few companies have suggested within the next five years an 

economically competitive facility may be built and operational (Guzman, 2010). 

Environmental concerns for residue feedstock focus specifically on soil health, nutrient loss, and 

soil erosion. Acceptable levels of residue removal are highly site-specific (Nelson et al., 2004), and 

removing too much crop residue for ethanol production increases the potential for erosion, nutrient 

loading in surface runoff, and inputs due to nutrients lost from the residue removal (Malcom et al., 

2009; Simpson et al., 2008).  Graham et al. (2007) studied the removal rates for corn stover and 

estimated that, under current conditions, with proper management only 30 percent of the total corn 

stover per year would be available for ethanol production, suggesting also more studies associated with 

residue removal need to be done to understand the impacts of biomass removal over the long term. 

Perennial Grasses  

Perennial grasses, specifically switchgrass, have gained interest in the field of biofuels.  The 

interest comes from switchgrass’s high biomass accumulation, low management requirements, and 

adaption to drier climates in the central US (BRDI, 2008a).  These factors make switchgrass a probable 

feedstock for cellulosic ethanol production, especially on marginal lands not good for producing other 

crops, and its deep roots and low inputs, producing a high carbon credit, are making switchgrass even 

more appealing (BRDI, 2008a). Studies have estimated approximately 302.8 to 340.7 liters (80 to 90 

gallons) of ethanol can be produced from 0.907 Mg (1 ton) of switchgrass biomass (Bain, 2007; Aden et 

al., 2002), allowing switchgrass to be a competitive feedstock for ethanol production in regions less 

adequate for corn production.  

The main concern with switchgrass as a feedstock involves it not being completely domesticated 

and still has high levels of seed dormancy, which makes its emergence unpredictable (BRDI, 2008a; 

BRDI, 2008b).  Switchgrass also takes time to establish, between 2 and 3 years, before is productive 

enough to be economical, and when established, will produce biomass for 10 years (BRDI, 2008a; BRDI, 
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2008b).  These factors make it difficult to convince farmers to use as a dedicated energy crop.  Though 

currently established Conservation Reserve Program (CRP) sites might provide existing opportunities for 

switchgrass, additional studies are needed to show how the increased management for feedstock may 

affect the CRP for its current function.  The Biomass Research and Development Board (2008a) 

suggested larger test areas need to be established to test the viability of switchgrass as a bioenergy 

crop, and more research needs to be done to understand the effects of intense management on 

switchgrass as a dedicated energy crop.  Lastly the logistics and commercialization of cellulosic ethanol 

production are still a major concern (Malcom et al., 2009; BRDI, 2008a; BRDI, 2008b). 

Woody Biomass 

Woody residue has the potential to be a great source of biofeedstock, with a relative abundance 

and variety of feedstock sources.  These feedstock sources include : logging residue, thinning from 

timberland/other forest land, primary mill residue, urban wood waste, conventionally sources wood, 

short duration woody crops (willow and poplar), biorefining sugars, and spent pulping liquors (black 

liquors) (BDRI, 2008a).    

The concerns with some of these feedstocks are that they may interfer with well-established 

infrastructure in the logging and paper industry, limiting the actual availability of some of these 

feedstocks, specifically primary mill residue, conventionally sourced wood, short duration woody crops 

(willow and poplar), and spent pulping liquors (BDRI, 2008a).  The most promising source from woody 

biomass is the urban wood waste, which is not currently utilized in a captured market (BDRI, 2008a).  As 

discussed before, the major limitation to utilizing cellulosic feedstocks are logistics and preprocessing, 

which are still in in the early stages of development (BDRI, 2008a).   

Sweet Sorghum 

Sweet sorghum, as an alternative to sugar cane and cellulosic biomass, is gaining attention as a 

potentially viable feedstock for the production of ethanol in the US.  Sweet sorghum is similar to sugar 
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cane in that it produces a sugary juice in the stalk. This sugary juice can be harvested using current sugar 

cane processing methods and the extracted juice can then be immediately fermented into ethanol, 

which reduces the overall cost of processing feedstock for ethanol production.  The high biomass 

potential, low management requirements (Smith and Buxton, 1993) and drought tolerance (Steduto et 

al., 1997; Dercas and Liakatas, 2006) make this crop attractive and inexpensive to grow in regions with 

climate limitations.   

As with many other high biomass crops, concerns exist over logistics with growing this crop 

(BDRI, 2008a; Shapouri et al., 2006).  Another factor, shared with sugar cane which differs from other 

biomass crops, is that the sugary juice tends to spoil quickly (Ferraris, 1981; Ekhauf et al., 1985; Schmidt 

et al., 1997) which may limit the use of this feedstock to the crop’s growing season in many parts of the 

US.   

As the renewable fuel standard states that the contribution of cellulosic ethanol production in 

the US need be around 56.8 billion liters (15 billion gallons) by 2015 (US Congress, 2007), research 

dollars are certainly available for the establishment of cellulosic ethanol in the next decade (Shapouri et 

al., 2006, BDRI, 2008a).  As the development of cellulosic processing is being developed for commercial 

implementation, it is necessary to find a supplement to current corn ethanol production methods.  

Sweet sorghum could offer that supplement and a possible transition into cellulosic ethanol production.  

In comparison to the current conventional and cellulosic feedstocks, sweet sorghum’s juice gives 

it an advantage in that it can be incorporated into current ethanol production technology with less 

preprocessing than starch crops and cellulosic feedstocks. Additionally remaining biomass from juice 

extraction can possibly be burned for power at a processing facility or incorporated in the cellulosic 

processing as it becomes more economical.  Also, as an advantage over switchgrass, which makes sweet 

sorghum more attractive as a feedstock, sweet sorghum has no significant issues related to seed 

dormancy, and stands can be established annually with no establishment period, with similar inputs or 
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fewer inputs.  Also, sweet sorghum has a shorter maturity time than sugar cane and is adapted to a 

wider range of climates, adding to its viability. It is difficult to suggest the feasibility of sweet sorghum as 

a feedstock due to the limited published field data available on this feedstock and its production in the 

US (Belmer and Hunke, 2007).  In recent years, research test plots have been planted in Kansas, 

Oklahoma, and Texas (Propheter, 2009, Belmer and Hunke, 2007; Belmer and Hunke, 2008; Belmer and 

Hunke, 2009; Corn, 2009).  These test plots, along with sweet sorghum literature and preliminary 

economic reports (Morris, 2008; Bele, 2007; Bennet and Anex, 2008), offer opportunities to examine the 

feasibility of sweet sorghum as a feedstock which could be used to supplement the current ethanol 

production in the US.  Modeling sweet sorghum biomass accumulation in a variety of environments can 

assist in economic and environmental decisions in determining the long and short term feasibility of 

sweet sorghum as a feedstock.  

Objectives 

The overall goal of this thesis was to develop the capacity to simulate sweet sorghum biomass 

yields.  The objective of the first part of this study (Chapter 2) was to select, from among several crop 

models, the one with greatest potential to model sweet sorghum biomass production effectively in the 

central US, specifically Kansas, Oklahoma, and Texas.  Selected crop models were compared based on 

ease of use, model support, and availability of inputs and outputs from sweet sorghum biomass data 

and literature. In the second part of this study (Chapter 3), the best suited crop model was applied to 

develop/calibrate a set of sweet sorghum crop parameters developed from available physiological 

literature. These calibrated sweet sorghum parameters were further validated across a variety of geo-

climate regions.    
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Chapter 2 – Model Review 

Introduction 

Modeling is an important part of research used to replicate real-time events normally too 

difficult and expensive to replicate on a large scale or multiple times.  Models use empirically, physically, 

or theoretically based equations to estimate one or more outcomes of an event or multiple outcomes of 

the same event with variable input scenarios.    

In agricultural applications, crop models can be used to make decisions that will affect the long 

term health, financial, and/or physical function of a farming operation.  For example, MacCarthy (2009) 

applied the Agriculture Production Systems Simulator (APSIM) to understand the impacts of different 

nutrient and residue management practices on corn yields in Ghana.  Models are also useful in 

estimating long term economic trends, such as quantity supply and demand as Mazraati and Shelbi 

(2011) did in a published report projecting the effect of alternative fuels and advanced technology 

vehicles on oil quantity demanded by the United States up to 2030. Finally, models can be useful in 

making environmental design decisions.  An example is designing a sedimentation pond for a waste 

water treatment facility.  Modeling interactions between factors such as particle size, particle density, 

fluid density, fluid velocity, and fluid shear stress play an important role in designing the necessary size 

and total volume of the sedimentation pond (Guetter and Jain, 1991).  The application of modeling in 

these situations and many others opens up the opportunity for it to be used in a variety of other 

situations, including the development and impact assessment of alternative biofuel feedstocks. 

The Energy Independence and Security Act (EISA) requires production of 36 billion gallons of 

renewable fuel by 2022 (EPA, 2010; US Congress, 2007) from a wide variety of biomass feedstocks such 

as switchgrass, oilseeds, and short-rotation woody crops.  Crop models can assist with the search for 

regionally appropriate biofuel feedstocks, such as sweet sorghum (Sorghum bicolor (L.) Moench), which 

has good yield potential and may potentially qualify under the Renewable Fuel Standard-2 (RFS-2) (US 
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Congress, 2007).  However, few crop models have incorporated specific crop parameters associated 

with estimating biomass production of sweet sorghum.   

Shih et al. (1981) developed a model that utilized leaf area and leaf dry biomass to estimate 

sweet sorghum total fresh biomass produced during different plant growth stages.  No other papers 

were found in continuation of this research.  Ferraris and Vanderlip (1986) compared SORKF/SORK5 

models in predicting sweet sorghum biomass and concluded more detailed physiology of sweet 

sorghum varieties are needed to improve the accuracy of these models.  No literature was found that 

followed up the implementation of SORGF or SORG5 to model sweet sorghum.  

The Biosystems and Agricultural Engineering (BAE) Department at Oklahoma State University 

(OSU) published a report predicting sweet sorghum yields by soil and climate regions using Soil Water 

Assessment Tool (SWAT) (BAE-OSU, 2006).  Due to the limited availability of actual field scale sweet 

sorghum biomass data, the report recommended more sweet sorghum data is needed from known soils, 

either irrigated or dryland, in order to accurately predict sweet sorghum yields and to calibrate/validate 

current model parameters used for this study (BAE-OSU, 2006).  This report did not have crop 

parameters specifically developed for sweet sorghum either through research or literature review; 

instead, parameters from corn, sorghum hay, and sugar cane were combined to make a sweet sorghum 

crop parameter set, which may not be representative of actual sweet sorghum physiology.   

Morris (2008), in an economic study of sweet sorghum as a biofeedstock in Texas, used a Multi-

Variate Empirical (MVE) probability distribution to estimate the annual stochastic yields from sweet 

sorghum.  Sweet sorghum crop parameters did not appear to be used to estimate the MVE parameters; 

instead sweet sorghum yield data from Texas AgriLife Research field trials were used with MVE model 

parameters derived from corn, grain sorghum, and cotton yields, modeled from 47 years of weather 

data using output from CroPMan crop model (Morris, 2008).  This economic feasibility study concluded 

that a facility in Texas designated specifically for sweet sorghum would not be economically viable in 
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regions with a short growing season. The author suggested that sweet sorghum could be a supplement 

to the industry during part of the year in all the counties.  Modeling was not described in detail in this 

study, and it appeared biomass yields from sweet sorghum were not directly estimated with the 

CroPMan model.  No published literature was found describing CroPMan parameters or models being 

used to estimate the biomass accumulation of sweet sorghum.   

In the modeling studies described above, a designated model and set of parameters developed 

from sweet sorghum literature were non-existent or not described in detail.  The lack of specific 

literature-based modeling parameters and available biomass comparison data show a need for further 

sweet sorghum model development and viable field trials for model comparison.  The versatility of 

models such as APSIM and SWAT show current models may be available to estimate sweet sorghum 

biomass by utilizing current crop models.   

The objective of this chapter is to review and compare the inputs available related to published 

literature physiology data for a selected group of crop models.  From the comparison, the model that 

best fits selected criteria will be chosen for detailed sweet sorghum crop parameter development and 

calibration.   

Materials and Methods 

The five models reviewed in this study were selected based a report published by Hydrological 

Systems Research (HSR) providing suggestions for sorghum crop modeling in Kansas (HSR, 2008). The 

top five models reviewed in the HSR report were Agricultural Land Management Alternatives with 

Numerical Assessment Criteria (ALMANAC), Agricultural Production Systems sIMulator (APSIM), Crop 

Environment Resource Synthesis Sorghum (CERE-Sorghum), Cropping Systems Simulation Model 

(CropSyst) and SORKAM.  Each of the five models was downloaded or purchased and licensing, if 

needed, acquired.  Websites that provide access for downloading/purchasing each model are located in 



 

15 

 

appendix A. ALMANAC was downloaded from the United States Department of Agriculture-Agricultural 

Research Service ALMANAC Simulation Model website.  The CropSyst model was downloadable after 

completing and submitting a simple registration form.  In order to download or attain the APSIM model, 

a registration and non-commercial licensing form had to be completed.  The CERES model set was 

ordered from the International Consortium for Agricultural Systems Applications (ICASA) website under 

the Decision Support System for Agrotechnology Transfer (DSSAT) software link.  SORKAM was the only 

model not available for direct download.  A copy of the software and documentation for SORKAM was 

provided by Dr. Scott Staggenborg from Kansas State University Department of Agronomy.  It should be 

noted that all of these systems have not been made compatible with the Windows 7 system, and should 

be run on either Windows XP or Windows Vista.  Also, both Command Prompt based model’s 

(ALMANAC and SORKAM) require an eight bit command prompt interface to operate, limiting their use 

to a Windows XP 32-bit operating system. Model Descriptions are as follows. 

ALMANAC simulates daily biomass growth using a light interception model based on maximum 

intercepted biomass use efficiency (calculated from the Radiation Use Efficiency). Physiological growth 

stages are smoothed using S-shaped plant population and leaf area development curves, whose shapes 

are determined by two user input point values. Plant maturity is reached when total heat unit 

accumulation during the growing season attains the maximum heat unit value input by the user.  

Maximum leaf area and senescence initiation are also set by user-input fractions of the growing season.  

ALMANAC utilizes subroutines that inhibit growth when water, nitrogen, or phosphorus stresses occur.  

SORKAM is a radiation interception crop growth model that partitions biomass and leaf area 

based on plant development stage. Development stages are set based on accumulation of heat units 

throughout the growing season. SORKAM assumes adequate nutrient concentrations for all simulated 

sorghum plants. SORKAM utilizes subroutines to calculate seed number and seed weight during seven 

days after growth differentiation and ten days after anthesis. Water stress during the plant development 
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before growth differentiation and anthesis has limited effect on overall grain yield, while water stresses 

during seed number determination have a greater effect on yields (Rosenthal et al., 1989). 

CropSyst is a daily time step model that utilizes a transpiration-dependent biomass 

accumulation model except at low Vapor Pressure Deficits, for which biomass accumulation is simulated 

using a light interception model.  Plant leaf area development and biomass accumulation within the 

model is dependent on plant physiological stage. Each of the physiological growth stages are reached 

based on the accumulation of thermal heat units during the growing season. CropSyst incorporates 

subroutines that govern leaf area development and limit biomass accumulation during nitrogen and 

water stress. CropSyst yields are determined by a Harvest Index (HI – harvested biomass to total above 

ground biomass) (Stockle and Nelson, 2004).   

APSIM is a biomass model that utilizes a radiation interception efficiency to determine daily 

biomass accumulation. The leaf area development and daily accumulated biomass partitioning rates are 

dependent on plant growth development stage. Physiological development stages are achieved based 

on thermal time (degree days). Biomass accumulation is reduced if stresses associated with nitrogen, 

water, and vapor pressure deficit are present. The sorghum model in APSIM utilized a harvest index 

method to calculate the yields from the biomass accumulation. In an unstressed environment the 

harvest index increases throughout the growing seasons until it reaches a maximum (Hammer et al., 

2011) 

Ceres-Sorghum is a biomass model that utilizes a radiation interception efficiency to determine 

daily biomass accumulation. The leaf area development and daily accumulated biomass partitioning 

rates are dependent on plant growth development stage. Physiological development stages are 

achieved based on accumulation of growing degree days. Biomass accumulation is reduced if stresses 

associated with nitrogen, water, and vapor pressure deficit are present. Ceres-Sorghum utilizes a mass 

rate accumulation method for grain development (Hoogenboom et al., 2003; Jones et al., 2003). 
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After each model was acquired, a prescreening of the model’s available documentation was 

done to determine the implementation time and model run requirements for model run development 

to ascertain if model run development fell beyond the scope of this study.  If it was determined the 

model required a significant amount of background in programming and/or a modular development, the 

model was eliminated. If during the prescreening process a model was eliminated, further comparison 

was not needed, and a generalized description of the input parameters was produced.  

Models that passed the prescreening were evaluated by using a process that reviewed each 

model based on a standard three-step method.  Each model had to pass certain criteria in each step in 

order to move on to the next step.  To assist with the review process, a generalized description of 

necessary model parameters was developed for CropSyst (Table 2.1), CERE-Sorghum (Table 2.2), 

ALMANAC (2.3), SORKAM (Table 2.4), and APSIM (Table 2.5).  The generalized descriptions include crop 

parameters, weather variables, soil variables, evapotranspiration (ET) equations, and runoff estimation 

method.  The review process had three main steps for comparison: input, output, and output yield 

comparison (Figure 2.1).  The input section of the process was broken into two subsections: weather and 

crop parameters.  A baseline set of available parameters was developed for both weather and the sweet 

sorghum crop to compare to parameters needed to run each model (Table 2.6).  Available weather 

variables were taken from KSU Research Extension weather data library for Riley County, Kansas 

(Manhattan) weather station (KSRE, 2011).  Soil parameters were not used as a comparison since most 

parameters were estimated, and no specific soil texture values were known for any sites with crop data. 

Required weather variables were compared first to available weather data.  Then crop 

parameters from each model were compared to the available sweet sorghum parameters.  During the 

comparison, if two or more models shared a crop parameter, that variable was not counted toward total 

model variables needed for the crop model.  This was done to magnify the differences and make it 

easier to define a cutoff value used to allow a model to move through the first step of the selection 
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process. A ratio of variables not available in literature to total variables needed to run was used to select 

the models that would pass the input step.  If a model required more than fifty percent of crop 

parameters estimated by using model parameters from grain or forage sorghum (if available), the model 

was eliminated.  Also, if less than two model variables were found in the literature, the model was 

eliminated. 
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Table 2.1- Generalized list of parameters for CropSyst after reviewing the model (Stockle et al., 2009) and 
documentation (Stockle and Nelson, 2009). 

CropSyst  

Crop Growth Uptake 
Above Ground Biomass-Transpiration Coefficient Maximum Uptake During Rapid Linear Growth 
Unstressed Light Above Ground Biomass Conversion (RUE) Residual N Not Available for Uptake 
Optimum Mean Daily Temperature for Growth Soil N Concentration at Which N Uptake Decreases 

LAI Plant Available Water at Which N Uptake Starts 
Decreasing. Initial Green Leaf Area Index 

Maximum Expected Leaf Area Weather 
Specific Leaf Area at Optimal Temperature Precipitation 
Fraction of Maximum Leaf Area at Physiological Maturity Maximum Temperature 
Stem Leaf Partition Coefficients Minimum temperature 
Root Solar radiation 
Maximum Rooting Depth Maximum Relative Humidity 
Root Length per Unit Root Mass Minimum Relative Humidity 
Maximum Surface Root Density at Full Rooting Depth Maximum Dew Point Temperature 
Curvature of Root Density Distribution Minimum Dew Point Temperature 
Transpiration Average Dew Point Temperature 
Extinction Coefficient Average Wind Speed 
Evaporation Crop Coefficient at Full Crop Canopy Soil   
Maximum Water Uptake Thickness 
Leaf Water Potential at Onset of Stomatal Closure Sand % 
Wilting Leaf Potential Silt %  
Phenology (Growing Degree Days) Clay% 
Emergence Permanent Wilting Point 
Maximum Rooting Depth Field Capacity 
Begin Flowering Bulk Density 
Begin Filling Saturated Hydraulic Conductivity 
Physiological Maturity Air Entry Potential 
Adjustment factor for Phenological Response to Stress Saturation 
Crop Harvest Cation Exchange Capacity 
Unstressed Harvest Index pH 
Flowering Stress Sensitivity Albedo 
Grain Filling Stress Sensitivity Steepness 
Nitrogen Demand Slope Length 
Maximum N Concentration of Chaff and Stubble ET

1
 

Standard Root N Concentration Penman-Monteith  
 Priestley-Taylor 
 Runoff 
 SCS Curve Number 
1 – ET equation based on Penman-Monteith (Monteith, 1965) and Priestley and Taylor (1972). 
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Table 2.2- Generalized list of parameters for CERES-Sorghum after reviewing the model and documentation (Jones 
et al, 2003, Hoogenboom et al, 2003). 

CERES-Sorghum   

Species Coefficients Weather  
 Emergence Rain  
 End of Juvenile Relative Humidity 
 Floral Induction Solar Radiation 
 75% flowering Dew Point Temperature 
 Maturity Maximum Temperature 
 Harvest Minimum Temperature 
FSLFW Daily Fraction of Leaf Area Senesced Under 100% Water Stress Wind Speed 
FSLFN Daily Fraction of Leaf Area Senesced Under 100 % Nitrogen 

Stress 
Soil  

SDSZ Maximum Potential Seed Size Slope  
RSGR Relative Seed Growth Rate Below Which Plants May Mature 

Early Due to Water or Nitrogen Stress or Cool Temperature 
Drainage  

Runoff Potential 
RSGRT Number of Consecutive Days Relative Seed Growth Rate is 

Below RSGR Before Early Maturity Occurs 
Depth 

Clay Percent 
DSGT Maximum Days From Sowing to Germination Before Seed Dies Silt Percent  

DGET Growing Degree Days Between Germination and Emergence 
After Which Seed Dies Due to Drought 

Organic Carbon Percent 
pH 

SWCG Minimum Available Water for Seed Germination Cation Exchange Capacity 
STMWTE Stem Weight at Emergence Total Nitrogen 
RTWTE Root Weight at Emergence Phosphorus Isotherm I 
LFWTE Leaf Weight at Emergence Phosphorus Isotherm II 
SEEDRVE Carbohydrate Reserve in Seed at Emergence Calcium Carbonate Content 
LEAFNOE Leaf Number at Emergence Potassium Exchangeable 
TMNCE Plant Top Minimum Nitrogen Nitrate Absorption Factor 
TANCE Nitrogen in Above Ground Biomass at Emergence Lower Limit (Wilting Point) 
RCNP  Root Critical Nitrogen Concentration Drained Upper Limit 
RANCE Root N Content at Emergence Saturation 
PORM Minimum Volume Require for Supplying Oxygen to Roots for 

Optimal Growth 
Bulk Density 

Saturated Hydraulic Conductivity 
RWMX Maximum Root Water Uptake Per Unit Length of Root Root Growth Factors 
RLWR Root Length to Weight Ratio ET

1
 

RWUEP1 Threshold Soil Water Content for Reducing Leaf Expansion Penman-Montieth  
Ecotype File Penman FAO 
Tbase Base Temperature Below Which No Development Occurs Priestley-Taylor 
Topt Temperature at Which Maximum Development Rate Occurs 

During Vegetative Growth Stages 
Runoff Estimation Method  

SCS Curve Number 
ROPT Temperature at Which Maximum Development Rate Occurs for 

Reproductive Development Stages 
 

DJTI Minimum Days From End of Juvenile Stage to Panicle Initiation 
if The Cultivar is Not Photoperiod Sensitive 

  

GDDE Growing Degree Days Per Centimeter Depth Required for 
Emergence 

 

DSGFT GDD From Flowering to Effective Grain Filling Period  
RUE Radiation Use Efficiency  
KCAN Extinction Coefficienct 
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1 – ET equations from Montieth (1985), Doorenbos and Pruit, (1977), and Priestley and Taylor (1972). 
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Table 2.3 - Generalized list of parameters for ALMANAC after reviewing the model and documentation (USDA-
ARS, 2010).  

ALMANAC  

Plant Growth Parameters Soil 

WA Biomass Energy Ratio (calculated from RUE) 
Depth from the Surface to the Bottom of the Soil 
Layer 

HI Harvest Index Bulk Density of the Soil Layer 
TB Optimal Temperature for Plant Growth Field Capacity 
TG Minimum Temperature for Plant Growth Wilting Point 
DMLA Maximum Potential Leaf Area Index Sand Content 
DLAI Fraction of the Growing Season when Leaf 

Area Starts to Decline 
Silt Content 
Organic Content 

DLAP 1 Leaf Area Development Curve First Point Soil pH 
DLAP 2 Leaf Area Development Curve Second Point Sum of Bases 
RLAD Leaf Area Decline Rate Parameter Calcium Carbonate 
RBMD Biomass-Energy Decline Rate Parameter Cation Exchange Capacity 
CAF Critical Aeration Factor Coarse Fragments 
HMX Maximum Crop Height Nitrate Concentration 
RDMX Maximum Rooting Depth Organic N Concentration 
CNY Fraction of Nitrogen in Yield Labile P Concentration 
CNP Fraction of Phosphorus in Yield ET

1
 

BN1 N fraction of Plant at Emergence Penman-Montieth 
BN2 N fraction of Plant at 0.5 Maturity Penman 
BN3 N fraction of Plant at Maturity Priestley-Taylor  
BP1 P fraction of Plant at Emergence Hargreaves and Samani 
BP2 P fraction of Plant at 0.5 Maturity Baier-Robertson 
BP3 P fraction of Plant at Maturity Runoff Estimation 
EXTINC Extinction Coefficient SCS Curve Number 
Weather   
   
Solar Radiation   
Precipitation  
Maximum Temperature 
Minimum Temperature 
Average Relative Humidity 
Average Wind Speed 
1 – Kiniry (2012, personal communication) provided the references for the ET equations:  Montieth (1977), Penman (1948), Priestley and 

Taylor (1972), Hargreaves and Samani (1985), Baier and Robertson (1965). 
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Table 2.4 - Generalized list of parameters for SORKAM after reviewing the model and documentation 
(Rosenthal et al, 1989).  

SORKAM  

Plant Parameters Soil Information 
Leaf Number (Not Easily Editable) Soil Type  
Tiller Coefficients Depth  
Slope  Soil Albedo 
Intercept  Field Slope 
Seed Number Coefficients Soil Water Evaporation Coefficients 
Slope   - Stage 1  
Seed Weight Coefficients  - Stage 2  
Intercept  Thickness 
Slope  Fraction Available Water 
Duration of Grain Fill Initial Fraction Available 
Weather  Bulk Density 
Rainfall  ET

1
  

Maximum Temperature Priestley-Taylor  
Minimum Temperature Modified Penman  
Maximum Relative Humidity Runoff  
Minimum Relative Humidity SCS Curve Number 
Irradiance (Solar Radiation)   
Average Wind Speed  
Average Vapor Pressure  
1 – ET equations used in the model were Priestley and Taylor (1972), and Doorenbos and Pruitt (1977). 
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Table 2.5 - Generalized list of parameters for APSIM after reviewing the model and documentation 
(APSIM, 2011). 

APSIM  

Crop Factors Soil 
Radiation Use Efficiency Soil Saturated Flow 
Biomass Partitioning (Root, Shoot, Leaves, and Grain) Bulk Density 
Germination to Emergence Air Dry Water Content 
Emergence to End of Juvenile Stage Lower Limit Water Content 
End of Juvenile Stage to Floral Initiation Drained Upper Limit 
Floral Initiation to Appearance of Flag Leaf Saturation Water Content 
Appearance of Flag Leaf to Start of Grain Filling Plant Lower Limit Water Content 
Start of Grain Filling to End of Grain Filling Plant KL  
End of Grain Filling to Physiological Maturity Organic Content 
Physiological Maturity to Harvest Ripening. - Fraction Biomass 
Maximum LAI - Fraction Inert 
Maximum Tillering Rate Rocks  
Root Extension Parameters Electrical Conductivity 
Crop Lower Limit for Water Extraction (Each Soil Layer) pH 
Grain Filling Parameters Chlorine Concentration 
Nitrogen target concentration Boron Concentration 
Root  Cation Exchange Capacity 
Flower Calcium Concentration 
Stem Nitrogen target Manganese Concentration 
Emergence  Aluminum Concentration 
Flowering Sand 
Grain Fill Demand Silt 
Biomass growing degree days Clay 
Germination to Emergence Nitrate Concentration 
Emergence to End of Juvenile Stage Ammonium Concentration 
End of Juvenile Stage to Floral Initiation ET 
Floral Initiation to Appearance of Flag Leaf Priestley-Taylor (1972) 
Appearance of Flag Leaf to Start of Grain Filling Runoff 
Start of Grain Filling to End of Grain Filling SCS Curve Number 
End of Grain Filling to Physiological Maturity  
Physiological Maturity to Harvest Ripening. 
Leaf Area  Development Parameters 
Leaf Appearance Rate for Different Phenological Stages 
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Figure 2.1 –Flow chart of the comparison process, which occurs in stages beginning with input comparisons, followed by output comparisons, 

and finishing with the Model output statistical comparisons.  

 

1. Inputs: 

 - Weather 

 - Crop Parameters 

 2. Output Comparison 

3. Model Output 
Comparison 

Model 1 
Output 

Model 2 
Output 
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Table 2.6 – Available variables for sweet sorghum crop parameter development. Including the units for the weather variables and 
the literature which values for sweet sorghum crop parameters are found.  

Weather Variables1 Units 
Solar Radiation (MJ m

-1
) 

Total Precipitation (mm) 
Minimum  Air Temperature (

o
C) 

Maximum Air Temperature (
o
C) 

Average Wind Speed (m s
-1

) 
Average Relative Humidity (%) 
Maximum Relative Humidity (%) 
Minimum Relative Humidity (%) 
Maximum Wind Speed (m s

-1
) 

Sweet Sorghum Parameters (Inputs) Literature 
Radiation Use Efficiency (Mastrorilli, 1999;  Mastrorilli, 1994; Dercas and Liakatas, 2006; Curt et al., 1998) 
Water Use Efficiency (Mastrorilli, 1999;  Mastrorilli, 1994; Dercas and Liakatas, 2006; Steduto et al., 1997) 
Maximum Plant Height (Ferraris, 1981; Propheter, 2009) 
N/P Concentration at Harvest (Han et al., 2010; Propheter, 2009) 
N/P Concentration at Anthesis (Han et al., 2010) 
Maximum Leaf Area Index (Ferraris, 1981) 
Extinction Coefficient (Curt et al., 1998) 
Days to  
Emergence (Ferraris and Edwards, 1986) 
Three Leaf (Ferraris and Edwards, 1986) 
Panicle Initiation (Ferraris and Edwards, 1986) 
Anthesis (Ferraris and Edwards, 1986) 
Milk Dough (Ferraris, 1981) 
Maturity (Ferraris and Edwards, 1986) 
Potential at Onset of Stomatal Closure (Mastrorilli, 1999; Steduto et al., 1997) 
Leaf Area Index Development (Ferraris and Edwards, 1986; Dercas and Liakatas, 2006) 
Carbon Partitioning  (Fernandez et al., 2003) 
Sweet Sorghum Parameters (Outputs)  
Biomass Yield (Propheter, 2009; Corn, 2009; Bellmer and Huhnke, 2007; Bellmer and Huhnke, 2008) 
Grain Yield (Riley county, Kansas only) (Propheter, 2009) 
Juice Content (Propheter, 2009; Corn, 2009; Bellmer and Huhnke, 2007; Bellmer and Huhnke, 2008) 
Brix Value (Propheter, 2009; Corn, 2009; Bellmer and Huhnke, 2007; Bellmer and Huhnke, 2008) 
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1 – Available weather variables were taken from the Manhattan weather station in Riley County, Kansas located on the Kansas State University North Agronomy 
Farm (KSRE, 2010). 
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The models that passed input comparison moved onto output review. The available output 

comparisons for sweet sorghum are listed in Table 2.6.  If greater than three outputs related to biomass 

and grain yield were not available in literature and or available collected data, the model was 

eliminated. If more than one model passed the output review step, those models proceeded to the 

output yield comparison step.   

The models that passed the output comparison step were used to estimate grain sorghum and 

corn yields, in Mg ha-1, for a ten year period from yield data available from the KSU North Agronomy 

Farm located in Riley County and KSU experimental fields located in Ellis County.  Each model used the 

same standardized crop rotation for the comparison; the results from each model were analyzed with 

two statistical methods: Pearson’s Correlation Coefficient-squared (R2) and a concordance correlation 

coefficient (Pc) (Lin, 1989).  The model with the best overall statistical values was chosen as the best fit 

model.  

Results 

As a result of the prescreening process, the APSIM model was eliminated.  CropSyst, CERES-

Sorghum, SORKAM, and ALMANAC passed the prescreening process and moved into the step-through 

comparison process.  The only model that passed input comparisons was ALMANAC, which had a 

calculated ratio of 0.21 (Table 2.7) of variables not available in literature over total variables needed for 

crop modeling.  SORKAM and CERES-Sorghum both had a ratio of 1.0 (Table 2.8 and 2.9). CropSyst had a 

ratio of 0.67 (Table 2.10).  Since ALMANAC was the only model to pass the input selection process, no 

further comparison was necessary, and ALMANAC was chosen as the best model for the task of 

development and testing of the sweet sorghum crop parameters. 
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Table 2.7 - Comparison of available literature values and variables needed for crop modeling parameters.  
Column A is the parameters needed to run the model with all sweet sorghum parameters, Column B is the 
available in literature. Zero values in column A are duplicate values shared by one or more models. Zero values in 
column B are either values shared by one or more models or values found in literature. 

ALMANAC 

A B Plant Growth Parameters 
0 0 WA Biomass Energy Ratio (Calculated from RUE) 
0 0 HI Harvest Index 
0 0 TB Optimal Temperature for Plant Growth 
0 0 TG Minimum Temperature for Plant Growth 
0 0 DMLA Maximum Potential Leaf Area Index 
1 0 DLAI Fraction of the Growing Season When Leaf Area Starts to 

Decline 
1 0 DLAP 1 Leaf Area Development Curve First Point 
1 0 DLAP 2 Leaf Area Development Curve Second Point 
1 0 RLAD Leaf Area Decline Rate Parameter 
1 1 RBMD Biomass-Energy Decline Rate Parameter 
1 1 CAF Critical Aeration Factor 
1 0 HMX Maximum Crop Height 
0 0 RDMX Maximum Rooting Depth 
1 0 CNY Fraction of Nitrogen in Yield 
1 0 CNP Fraction of Phosphorus in Yield 
0 0 BN1 N Fraction of Plant at Emergence 
1 0 BN2 N Fraction of Plant at 0.5 Maturity 
1 0 BN3 N Fraction of Plant at Maturity 
1 1 BP1 P Fraction of Plant at Emergence 
1 0 BP2 P Fraction of Plant at 0.5 Maturity 
1 0 BP3 P Fraction of Plant at Maturity 
0 0 EXTINC Extinction Coefficient 

14 3   
 0.21 Ratio of Values Not Available in Literature to Total Variables needed

1
 

1 – Ratio is B/A. Each ratio excluded common variables from 2 or more models. (i.e., RUE, etc.) 
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Table 2.8 - Comparison of available literature values and variables needed for crop modeling.  Column A is the 

parameters needed to run the model with all sweet sorghum parameters, Column B is the available in literature. 
Zero values in column A are duplicate values shared by one or more models. Zero values in column B are either 
values shared by one or more models or values found in literature. 
SORKAM 

A B Plant Parameters 
1 1 Leaf Number (Not Easily Editable) 
  Tiller Coefficients 

1 1 Slope 
1 1 Intercept 
  Seed Number Coefficients 

1 1 Slope 
  Seed Weight Coefficients 

1 1 Intercept 
1 1 Slope 
1 1 Duration of Grain Fill 

7 7  
 1.0 Ratio of Values Not Available in Literature to Total Variables needed

1
 

1 – Ratio is B/A. Each ratio excluded common variables from 2 or more models. (i.e., RUE, etc.) 
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Table 2.9 - Comparison of available literature values and variables needed for crop modeling.  Column A is the parameters needed to 
run the model with all sweet sorghum parameters, Column B is the available in literature. Zero values in column A are duplicate values  
shared by one or more models. Zero values in column B are either values shared by one or more models or values found in literature. 

CERES-Sorghum 

A B Species Coefficients 1 1 Carbohydrate Reserve in Seed at Emergence 
0 0 Emergence 1 1 Leaf Number at Emergence 
0 0 End of Juvenile 1 1 Plant Top Minimum Nitrogen 
0 0 Floral Induction 0 0 Nitrogen in Above Ground Biomass at Emergence 
0 0 75% Flowering 1 1 Root Critical Nitrogen Concentration 
0 0 Maturity 1 1 Root N Content at Emergence 
0 0 Harvest 1 1 Minimum Volume Required for Supplying  
1 1 Daily Fraction of Leaf Area Senesced     Oxygen to Roots for Optimal Growth 
  Under 100% Water Stress 1 1 Maximum Root Water Uptake Per Unit Length of Root 

1 1 Daily Fraction of Leaf Area Senesced 1 1 Root Length to Weight Ratio 
  Under 100% Nitrogen Stress 1 1 Threshold Soil Water Content for Reducing Leaf Expansion 

1 1 Maximum Potential Seed Size 0 0 Base Temperature Below Which No Development Occurs 
1 1 Relative Seed Growth Rate Below Which Plants 

May Mature Early Due to Water or Nitrogen 
0 0 Temperature at Which Maximum Development Rate Occurs During 

Vegetative Growth Stages 
  Stress or Cool Temperature 1 1 Temperature at Which Maximum Development Rate Occurs for 

1 1 Number of consecutive days relative seed Growth   Development Stages 
  Rate Below RSGR Before Early Maturity Occurs 0 0 Minimum Days from End of Juvenile Stage to Panicle Initiation if 

1 1 Maximum Days From Sowing to    the Cultivar is Not Photoperiod Sensitive 
  Germination Before Seed Dies 1 1 Growing Degree Days Per Centimeter Depth Required for Emergence 

1 1 Growing Degree Days Between Germination and         
  Emergence After Which Seed Dies Due to Drought 0 0 GDD from Flowering to Effective Grain Filling Period 

1 1 Minimum Available Water for Seed Germination 0 0 Radiation Use Efficiency, g Plant Dry Matter/MJ PAR 

1 1 Stem Weight at Emergence 0 0 Canopy Light Extinction Coefficient 

1 1 Root Weight at Emergence 23 23       
1 1 Leaf Weight at Emergence  1 Ratio of Values Not Available in Literature to Total Variables needed 

1 – Ratio is B/A. Each ratio excluded common variables from 2 or more models. (i.e., RUE, etc.) 

 



 

31 

 

Table 2.10 – Comparison of available literature values and variables needed for crop modeling.  Column A is the parameters needed to run the model with all 
sweet sorghum parameters, Column B is the available in literature. Zero values in column A are duplicate values shared by one or more models. Zero values in 
column B are either values shared by one or more models or values found in literature. 

CropSyst 

A B Crop Growth A B Phenology (Growing Degree Days) 
1 1 Above Ground Biomass-Transpiration Coefficient 0 0 Emergence 
0 0 Unstressed Light Above Ground Biomass Conversion (RUE) 0 0 Maximum Rooting Depth 
0 0 Optimum Mean Daily Temperature For Growth 0 0 Begin Flowering 
  LAI 0 0 Begin Filling 
1 1 Initial Green Leaf Area Index 0 0 Physiological Maturity 
0 0 Maximum Expected Leaf Area 1 1 Adjustment Factor for Phenological Response to Stress 
1 1 Specific Leaf Area at Optimal Temp   Crop Harvest 
1 0 Fraction of Max Leaf Area at Physiological Maturity 0 0 Unstressed Harvest Index 
1 0 Stem/Leaf Partition Coefficients 0 0 Flowering Stress Sensitivity 
  Root 1 1 Grain Filling Stress Sensitivity 
0 0 Maximum Rooting Depth   Nitrogen Demand 
0 0 Root Length Per Unit Root Mass 1 0 Max N Concentration of Chaff and Stubble 
0 0 Maximum Surface Root Density at Full Rooting Depth 1 1 Standard Root n Concentration 
0 0 Curvature of Root Density Distribution   Uptake 
  Transpiration 1 1 Maximum Uptake During Rapid Linear Growth 
1 0 Extinction Coefficient 1 1 Residual N Not Available for Uptake 
1 1 Evaporation Crop Coefficient at Full Crop Canopy 1 1 Soil N Concentration at Which N Uptake Decreases 
1 1 Maximum Water Uptake 1 1 Plant Available Water at Which N Uptake Starts Decreasing. 

1 0 Leaf Water Potential at Onset of Stomatal Closure 18 12  
1 0 Wilting Leaf Potential  0.67 Ratio of Values Not Available in Literature to Total Variables needed

1
 

1 – Ratio is B/A. Each ratio excluded common variables from 2 or more models. (i.e., RUE, optimal temperature, etc.) 
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Discussion 

The prescreening process eliminated the APSIM model since it required a modular XML format, 

along with an understanding of in C++, .NET, or FORTRAN programming languages, setting it outside the 

scope of this project. The remaining model comparison results were straight forward, partly because 

shared factors among the models were not used to calculate the ratios. Since all the input weather 

variables for most of models required similar, if not exactly the same, weather variables, the climate 

variables were not used to calculate the final ratios.  Determining similar variables was difficult since 

most of the models did not word the variables in the same way. An example: the Biomass Energy Ratio 

(WA) for the ALMANAC model is determined from the Radiation Use Efficiency (RUE) given in literature, 

and the units for WA factor are (Mg ha-1 MJ-1); the units for RUE are (g m-2 MJ-1), which made a 

conversion necessary in order to create the WA value, which is essentially the RUE value. 

Though the results focus specifically on somewhat minute differences between the models, it 

does appear to be fair in the selection, by making differences more apparent and allowing the reviewer 

to determine what areas of research would improve the suitability of each individual model. The results 

indicate that with more detailed understanding of sweet sorghum physiology, CropSyst would qualify 

with this method for sweet sorghum modeling development.  It may be important to point out that 

three of the five models used in this review had functions that focused specifically on development of 

grain coupled with biomass production, which is why some of them did not pass the initial input step.   

The later portion of this study was focused specifically on biomass development and not on seed 

development, for which data is limited for sweet sorghum.  HSR (2008) listed the crop models in order of 

suitability: CERES-Sorghum, SORKAM, ALMANAC, CropSyst, and APSIM. As a result of this study for 

sweet sorghum modeling, the models were in this order:  ALMANAC, CropSyst, CERES-Sorghum, 

SORKAM, and APSIM, with SORKAM and CERES-Sorghum models tied with a ratio of 1.0 (Table 2.8 and 
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2.9).  The CropSyst ratio was 0.67 (Table 2.10) which was four variables away from reaching the 0.50 

ratio cut-off.  

Using borrowed values from another crop, such as grain sorghum, was deemed not appropriate 

since there are distinct differences in physiology that give sweet sorghum certain advantages, including 

but not limited to high biomass accumulation (Han et al., 2010; Propheter, 2009; Curt et al., 1998), high 

RUE (Mastrorilli et al., 1999; Mastrorilli et al., 1994; Dercas and Liakatas, 2006; Curt et al., 1998), high 

Water Use Efficiency (WUE) (Mastrorilli et al., 1999;  Mastrorilli et al., 1994; Dercas and Liakatas, 2006; 

Steduto et al., 1997), and lower nitrogen requirement (Smith and Buxton, 1993). Therefore, a better 

understanding of sweet sorghum physiology is needed to make the other models in the review able to 

meet the criteria needed to be suited to model sweet sorghum under this screening process.  The 

research needs to focus mainly on what stresses affect biomass accumulation/grain fill and how the 

sweet sorghum uptakes and partitions plant nitrogen and phosphorus throughout the development of 

the plant.   
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Appendix A 

ALMANAC - http://www.ars.usda.gov/Main/docs.htm?docid=16601 

APSIM - http://www.apsim.info/ProductRegistration/Registration.aspx 

CropSyst - http://www.bsyse.wsu.edu/cs_suite/CropSyst/index.html 

CERES-Sorghum - http://dssat.net/ 

SORKAM – Not Available Online 
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Chapter 3- Sweet Sorghum Parameter Development 

Introduction 

High fuel prices in recent years have increased the need for alternative fuels (i.e., ethanol and 

biodiesel) to reduce the dependence on foreign oil supplies (Shapouri et al., 2006).  Currently in the 

United States, ethanol production is dominated by first-generation (conventional) biofuels, specifically 

corn-based ethanol.  In 1995, corn ethanol made up 97% of the 3.9 billion gallons of ethanol produced 

for fuel in the United States (Shapouri et al., 2006) with one bushel of corn producing between 2.60 to 

2.75 gallons of ethanol (Dhuyvetter et al., 2005).  The current dominant alternative biofuel feedstock, 

corn, has both environmental and sociological problems associated with its increased production and 

use as a biofuel (Simpson et al., 2008; Shapouri et al., 2006; Rendleman and Shapouri, 2007).  These 

concerns, along with requirements imposed by the Energy Independence and Security Act (EISA), which 

requires the production of 36 billion gallons of renewable fuel by 2022 (EPA, 2008), show a growing 

need for the development and implementation of alternatives to corn grain ethanol.  Crop models can 

be an effective tool for screening regionally appropriate biofuel feedstocks and evaluating their agro-

ecological and socio-economic impacts.  Sweet sorghum (Sorghum bicolor (L.) Moench), with its low 

management and input requirements, is one crop with biofuel feedstock potential in the Midwest.   

Sweet sorghum has potential as an alternative/supplement biofuel feedstock to corn since it has 

a high biomass accumulation (Propheter, 2009: 32.2 Mg ha-1; Mastrorilli et al., 1995: 32 Mg ha-1 ), 

radiation use efficiency (RUE) (Curt et al., 1998: 4.96 g MJ-1; Dercas and Liakatas, 2006: 3.55 g MJ; 

Mastrorilli et al., 1995: 3.71 g MJ-1), and water use efficiency (WUE) (Dercas and Liakatas, 2006; 

Mastrorilli et al., 1999; Steduto et al., 1997) along with a low nitrogen requirement (Smith and Buxton, 

1993).  

Though all of these factors are impressive, a study by Morris (2009) concluded sweet sorghum 

alone might not be economically viable to support a stand-alone ethanol production facility in Texas, or 
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at higher latitudes, due to the limited growing season and difficulty in storage and logistics, but that it 

could serve to supplement other crops in the production of ethanol during the year.  Bele (2007) 

concluded that in Oklahoma, with the development of effective harvesting machinery, on-farm 

production of ethanol using sweet sorghum could be economically viable and recommended further 

large scale field trials or modeling of sweet sorghum biomass to improve feasibility studies.  These 

studies were based on assumptions of available feedstock or utilized statistical methods to determine 

available feedstock for the economic aspects of the studies, and no specific modeling parameters or 

real-time yield results were discussed in detail or found in companion publications. In addition to these 

studies, modeling can be employed to examine in more detail costs associated with sweet sorghum 

production as a biomass feedstock, allowing the feasibility to be determined with lower monetary input.  

Only a few studies have addressed modeling of sweet sorghum biomass.  Shih et al. (1986) 

developed a model that related overall moist biomass based on fractions of leaf area and leaf dry mass 

accumulation; no further literature was found to follow up on this study.  Ferraris and Vanderlip (1986) 

compared SorgF and Sorg5, which were used to model sweet sorghum biomass accumulation, and 

concluded that more detail of the sweet sorghum physiology and growth stages would make the model 

more accurate in modeling sweet sorghum biomass; no further studies were found to follow up the 

research done with SorgF and Sorg5.  In 2006, the Biosystems and Agricultural Engineering (BAE) 

Department at Oklahoma State University (OSU) utilized crop growth factors from corn, sorghum hay, 

and sugar cane to model sweet sorghum biomass potentials across a variety of climate regions using the 

Soil Water Assessment Tool (SWAT) (BAE-OSU, 2006).  Limited biomass data prevented validation of the 

parameters and any formal conclusions from being made.  Morris (2009) used a multi-variate empirical 

(MVE) probability distribution to estimate average yields for sweet sorghum in four counties in Texas.  

With the exception of the BAE-OSU publication in 2006, which used a combination of crop parameters 
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from corn, sorghum hay, and sugar cane, no parameter sets that are model specific have been 

developed specifically for sweet sorghum.   

A need for model parameter development for sweet sorghum is apparent in the non-existence 

of specific crop parameters. Morris (2009) and Bele (2007) expressed how vital accurate sweet sorghum 

yield data are in order to substantiate the conclusions in their feasibility studies; Bele (2007) also 

suggested that accurate sweet sorghum yields were needed for better feasibility analysis.  Therefore 

having viable sweet sorghum crop parameters to use for modeling would allow for reliable economic 

feasibility studies to be done in areas where real-world yield data are absent.  The availability of a 

variety of crop models opens up opportunities for sweet sorghum model parameter development from 

either research or literature review.  Developing a set of model parameters would enable researchers to 

better understand the dynamics of sweet sorghum in a variety of environments, and yield results from 

modeling with sweet sorghum crop parameters can show the impact of different management factors 

along with the climate and soil conditions on biomass accumulation, which will help determine the 

overall feasibility of sweet sorghum as a biofuel crop.  Results from crop modeling would help with more 

accurate estimations of sweet sorghum biomass and management on both state and local scales, 

improving economic analyses.  Along with biomass estimates improving accuracy in economic viability, 

an energy analysis from the production of sweet sorghum could be compared to other crops, and 

further validate or discount the potential of the sweet sorghum crop as a supplemental feedstock 

through an environmental impact analysis. 

The objective of this study was to develop sweet sorghum crop parameters from literature, and 

to use a crop model to calibrate and validate model results for a variety of geo-climatic regions across 

three states.  From a previous analysis (Chapter 2), ALMANAC was chosen as the model best suited for 

this task.  ALMANAC will be used to develop the parameter set, and the parameters will be calibrated 
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and validated with sweet sorghum data available from select geographic locations in Texas, Oklahoma, 

and Kansas.   

 

Materials and Methods 

This study used data from five counties (Hale County, Texas; Texas and Caddo Counties, 

Oklahoma; and Riley and Ellis Counties, Kansas) to develop and test crop parameters for the ALMANAC 

model (Figure 3.1).  Four counties (Riley, Texas, Caddo, and Hale; Figure 3.1) had sweet sorghum data 

available to help calibrate and validate the sweet sorghum model parameters. Riley County was used to 

develop/calibrate the sweet sorghum parameters, while Texas, Caddo, and Hale Counties were used to 

validate the parameters.  The corn and grain sorghum grain data from Riley and Ellis Counties in Kansas 

were used to select the most appropriate combination of soil water (SW) and evapotranspiration (ET) 

equations.  The selection was further affirmed using corn (grain and silage) and grain sorghum (grain) 

yield data from Texas County, Oklahoma.   

Site Data Input Preparation 

The five locations were chosen for this study because of the quality of the available data and 

proximity to marginal cropping areas, which might show potential for future expanded sweet sorghum 

production.  Though Ellis did not have sweet sorghum crop data, it was used because of the available 

corn and grain sorghum grain yield data, which was useful in determining the SW and ET equations used 

in the development of the sweet sorghum parameters. To determine the baseline conditions for SW and 

which ET equation would be best suited for the development of the sweet sorghum parameters, 10 

years (1999-2008) of corn and grain sorghum grain yield data from Ellis and Riley County Kansas were 

used (Table 3.1). Of the sites with corn and grain sorghum grain data, Riley County was the only one 

with readily accessible detailed records of tillage and fertilizer application data (specifically tillage and 

fertilizer application dates).  Management scenarios for Riley County were developed from these tillage 
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and fertilizer records.  In Ellis County, management scenarios were developed by utilizing planting dates, 

plant population rates, fertilizer amounts and previous crops found in crop performance reports for corn 

and grain sorghum (KSU-AESCES, 1999-2008a; KSU-AESCES, 1999-2008b).  Since Ellis County did not 

have tillage practices nor dates of fertilizer application readily available, tillage practices were assumed 

to be in no-till management for the 10 years used in this study.  Any other crop data collection sites with 

no available tillage information were assumed to use no-till management. 
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Figure 3.1 – The states and counties used in the crop parameter development.  1A – Riley 

County, 1B – Ellis County, 1C – Texas County, 1D – Caddo County, 1E – Hale County.  1A, 1B, and 1C had 
corn and grain sorghum grain yield data available to help with the soil water and ET determination. 1A, 
1C, 1D, and 1E had sweet sorghum biomass data available for development, calibration and validation. 
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Figure 3.1A – The location of the Riley County, Kansas field research site is boxed in. No specific 
locations were given on where within the site the corn and grain sorghum crops were grown.  Weather 
stations are as follows A: Manhattan Agronomy Farm, B: Manhattan (COOP ID 144972), C: Centralia 
(WID 17327) 
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Figure 3.1B – The location of the Ellis County, Kansas field research site is boxed in. No specific locations 
were given on where within the site the corn and grain sorghum crops were grown.  Weather stations 
are as follows A: Hays, B: Hays 1S (COOP ID 143527; WID 17333). 
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Figure 3.1C – The location of the Texas County, Oklahoma field research site is boxed in. No specific 
locations were given on where within the site the corn and grain sorghum crops were grown.  The 
weather stations are as follows A: Guymon (COOP ID 343835), B: GOODWELL 
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Figure 3.1D – The location of the Caddo County, Oklahoma field research site is boxed in. No specific 
locations were given on where within the site the corn and grain sorghum crops were grown. Weather 
stations are as follows A: FT. COBB, B: Andarko (COOP ID 340224), C: LAWTON (WID 17747) 
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Figure 3.1E – The location of the Hale County, Texas field research site is boxed in. No specific locations 
were given on where within the site the corn and grain sorghum crops were grown.  Weather Stations 
are as follows A: Plainview (COOP ID 417079), B: Lubbock 9N (COOP ID 415410), C: LUBBOCK WB AP 
(WID 17895) 
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1Table 3.1 - Shows the crop type, years that crop yield and ancillary data were available, source, and heat units used. 

State County Crop 
Best Years 
Available 

  Source  
2
Heat Units 

3
Kansas         

 Riley        
  CO 1999 - 2008 KSU Agron. Crop Performance Reports 2000 - 2400 
  GS 1999 - 2008 KSU Agron. Crop Performance Reports 1900 - 2300 
  SS 2007 - 2008 Propheter, 2009   2300 
 Ellis        
  CO 1999 - 2008 KSU Agron. Crop Performance Reports 2000 - 2400 
  GS 1999 - 2008 KSU Agron. Crop Performance Reports 1900 - 2300 

4
Oklahoma       2300 

 Caddo        
  

5
SS 2006 - 2007 SS Trials Oklahoma  2300 

 Texas        
  CO 2006 - 2008 OSU Agron. Crop Performance Reports 2000 - 2400 
  CS 2006 - 2008 OSU Agron. Crop Performance Reports 2000 - 2400 
  GS (Limited Irrigation) 2006 - 2008 OSU Agron. Crop Performance Reports 1900 - 2300 
  GS (Dry) 2006 - 2008 OSU Agron. Crop Performance Reports 1900 - 2300 
  SS 2006 - 2007 SS Trials Oklahoma  2300 

Texas         
 Hale        
  SS 2007 - 2008 Corn, 2009   2300 

1 – CO - Corn; CS – Corn Silage; GS - Grain Sorghum; SS - Sweet Sorghum; Agron. – Agronomy 
2 – Range of heat units were modeling GS, CS, CO to capture the variety differences of early, mid, and late maturing crops.  
2 - Kansas crop performance data is available at: http://www.ksre.ksu.edu/library/p.aspx?tabid=16&topic=Crops  
3 - Oklahoma crop performance data available at :http://croptrials.okstate.edu/ 
4 - Data was provided by Danielle Bellmer. She can be contacted at danielle.bellmer@okstate.edu.  All other crop performance data, if not cited by a specific source, is 
available online. 
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For consistency, and because of the difficulty getting the ALMANAC model to run appropriately 

when two fertilizer application dates were added in the same season, all fertilizer applications were 

done at the beginning of the growing season in the top centimeter of soil.    

NRCS curve number tables were used to select curve numbers for each study area based on site 

soil drainage class with fields planted as row crops with residue and good field condition (Table 3.2) 

(USDA-NRCS, 1999).  The surface roughness factor (Manning’s n) was set to 0.090 for all sites in the 

study.  The Manning’s n value was taken from Engman (1983) and chosen to maintain consistency across 

all modeling areas.  The Manning’s n value falls within the roughness value ranges for conventional 

tillage and no-till management practices with approximately one ton per acre of residue, given in 

Engman (1983).   

Monthly weather statistics for each modeling site were taken from the nearest station for these 

values available in the AutoALMANAC (USDA-ARS, 2010) initial processing tool (Table 3.3). All values for 

wind erosion factors were set to zero to eliminate wind erosions for this study, since no wind erosion 

data were available for comparison.  Corn and grain sorghum crop factors were those from the original 

ALMANAC 2009 model; the only crop growth factor that varied within the corn and grain sorghum crop 

parameters, which varied with location, was the Harvest Index (HI) (Table 3.4). 

Table 3.2 – Soil Name, Map Symbol, Drainage Class, and Curve Number used in the development and 
testing of the sweet sorghum parameters. 

State County Soil Name 
1
Map Symbol Drainage Class 

2
Curve Number 

Kansas Ellis Harney Clay Loam 2613 B 75 
      
 Riley Ivan-Kennebec 4050 B 75 
      
  Reading Silt Loam 7170 B 75 
      

Oklahoma Caddo Pond Creek PcB B 75 
      
 Texas Gruver Rc C 82 
      

Texas Hale Pullman PuA B 75 
1 – Soil Name, Map Symbol, Drainage Class were taken from the SSURGO dataset (USDA-NRCS, 2005)  
2 – Curve Number was determined from the SCS curve number tables (USDA-NRCS,1999) 
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Table 3.3 - This figure lists the stations used to fill missing dates from those stations from table 3.5 and the stations that were 
used to filled the average weather variables inside the ALMANAC main input file.  The distance from the modeling site, and 
location latitude and longitude are listed.  

State  Station Name Station ID
1
 Station Type 

Distance From 
Modeling Site

2
 

Station Location 

Kansas     km LAT. LONG.  
 Riley  COOP ID     
  Manhattan 144972 Fill Station < 2.0 39.2 96.58 
   WID     
  CENTRALIA 17327 Mon.  Statistics < 72.0 39.72 96.13 
 Ellis  COOP ID     
  Hays 1 S 143527 Fill Station < 2.0 38.87 99.33 
   WID     
  HAYS 1 S 17333 Mon.  Statistics <2.0 38.87 99.33 

Oklahoma        
 Caddo  COOP ID     
  Andarko 340224 Fill Station < 28 35.67 98.2 
   WID     
  LAWTON 17747 Mon.  Statistics < 36 34.6 98.4 
 Texas  COOP ID     
  Guymon 343835 Fill Station < 17.0 36.7 101.48 
   WID     
  GOODWELL 17745 Mon.  Statistics < 2.0 36.6 101.62 

Texas        
 Hale  COOP ID     
  Lubbock 9 N 415410 Fill Station < 56.0 33.68 101.82 
   WID     
  LUBBOCK WB AP 17895 Mon.  Statistics < 60.0 33.65 101.83 

1 – The Coop ID is given by the Nation Climate Data Center (NCDC, 2011).  The WID is the identification number given by the AutoALMANAC model (USDA-ARS, 
2011). 
2 – Distance was approximated using the lat. and Long. coordinates. Actual values were difficult to determine due to conflicts between the geographic coordinate 
systems of the map layers used in the creating the figures and not knowing the exact location of the field used for all crop trials. Less than implies that the 
estimated distances were all rounded up.  
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Table 3.4 – Harvest Index
1
 (HI) used in the development of the 

sweet sorghum parameters. 

State County Crop
2
 HI Range 

Kansas Ellis    

  CO 0.30 - 0.50 

  GS 0.45 - 0.50 

 Riley   

  CO 0.30 - 0.52 

  GS
3
 0.30 - 0.50 

  SS
4
 0.98 

Oklahoma    

 Caddo   

  SS 0.98 

 Texas   

  CO
5 

0.45 - 0.52 

  CS 0.45 - 0.52 

  GS 0.45 - 0.50 

  SS 0.98 

Texas    

 Hale   

  SS 0.98 
1 - Harvest index is a ratio of the harvested biomass to the total above ground 
biomass produced during the growing season. 
2 - CO – Corn; GS – Grain Sorghum; SS – Sweet sorghum; CS – Corn Silage. 
3 - Grain sorghum HI’s range was widened in Riley County to account for higher 
precipitation amounts and higher biomass accumulation.  
4 - SS HI was 0.98 in all study areas, since values crop was hand harvested, and 
yields given as total above ground biomass. 
5 - Irrigated Corn/Silage had a Higher HI than dryland Corn to account for 
competent irrigation methods.  

 

To utilize the entire 10-year rotation for model output, for both Ellis and Riley Counties, the 

initial soil water values were estimated using hand calculations to determine the SW contributions from 

just after the harvest of the previous crop and the end of the previous year (calculations not shown).  To 

maintain consistency, this was done for all of the sites used in the study, even if the rotations were two 

or three years.  Each sweet sorghum data collection site had some form of management information 

available. Caddo County, Oklahoma sweet sorghum trials had irrigation and fertilizer application 

amounts for the 1996 trials (Bellmer and Huhnke, 2007), while in the 1997 trials no irrigation amounts 

were given and 112 kg ha-1 of nitrogen fertilizer was applied (Bellmer, 2011, personal communication).  

The Texas County, Oklahoma sweet sorghum trials in Goodwell had irrigation (whole season) and 

fertilizer application amounts given for the 1996 trials, while in the 2007 trials no irrigation or fertilizer 
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application information was given (Bellmer and Huhnke, 2007-2008).  Irrigation details for Goodwell and 

Ft. Cobb are discussed in detail later.  Missing fertilizer application information for Goodwell was taken 

from the previous year’s value given in the sweet sorghum performance reports.  No specific tillage 

practices, soil data, or irrigation application dates were available for any other sites in Oklahoma, or 

Texas (Bellmer and Huhnke, 2007-2008; Corn, 2009).  The most complete sweet sorghum management 

information was in Riley County (Propheter, 2009), which was selected as the sweet sorghum crop 

parameter development (calibration) site. 

Climate data for each of the counties were downloaded from the National Climate Data Center 

(NCDC) (NCDC, 2011), Kansas State University (KSU) weather data library (KSRE-WDL, 2011), or 

Oklahoma Mesonet Website (Mesonet, 2011). The weather station from each county was selected 

based on its proximity to the crop data collection sites (Table 3.3 and 3.5). Table 3.5 lists the 

approximate latitude and longitude of the crop data sites and closest weather stations, and lists 

available weather variables from each weather station with the distance from the data collection site. 

Weather data were easily accessible online for all three states, and each data site had unique challenges 

in dealing with missing data. 

 



 

 55 

Table 3.5 – Crop data and weather station locations and available weather data types.    

State County 
5
Crop Data 
Location 

Weather Station Station Location Elevation 
(m) 

Available Data 
6
Distance From 
Modeling Site 

1
Kansas  Lat. Long.  Lat. Long.   km 

 Riley          

  39.20  -96.583 Manhattan 39.20 -96.583 336.8 
Rain, Temp, Radiation, 

Windspeed, Relative Humidity 
< 1.0 

 Ellis          

  38.87 -99.333 Hays 38.87 -99.333 612.65 
Rain, Temp, Radiation, 

Windspeed, Relative Humidity 
< 1.0 

2,3
Oklahoma           

 Caddo          

  35.08 -98.27 FTCB - Fort Cobb 35.08 -98.27 421.84 
Rain, Temp, Radiation, 

Windspeed, Relative Humidity 
< 1.0 

 Texas          

  36.60 -101.37 GOOD - Goodwell 36.60 -101.37 1008.6 
Rain, Temp, Radiation, 

Windspeed, Relative Humidity 
< 7.0 

3,4
Texas           

 Hale          
  34.19 -101.95 NCDC ST.# 417079 34.20 -101.7 1027.2 Rain, Temp < 23.0 
           

1 - Kansas State Research and Extensions weather data available at : http://wdl.agron.ksu.edu/  
2 - Oklahoma Mesonet weather data available at : http://www.mesonet.org/index.php/weather/daily_data_retrieval   
3- Crop Data locations were not given with the data, and were assumed to be near weather station sties.  Halfway, Texas was described in 
Corn (2009), no location information was given, and so regional value was given by http://texas.hometownlocator.com/tx/hale/halfway.cfm.  
4 - Hale County data available at : http://www.ncdc.noaa.gov/oa/climate/stationlocator.html 
6 - Locations are approximated; specific coordinate locations are not given in any of the publications. 
5 - Distance was approximated using the Lat. and Long. coordinates. Actual values were difficult to determine due to conflicts between the geographic coordinate systems of the map layers used in 
the creating the figures and not knowing the exact location of the field used for all crop trials. Less than implies that the estimated distances were all rounded up. 
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To ensure weather data fidelity to the actual sites data sites, total monthly rainfall and average 

temperature, if available (OSU-CES, 2006-2008a; OSU-CES, 2006-2008b; KSU-AESCES, 1999-2008a; KSU-

AESCES, 1999-2008b; Corn, 2009), were compared to downloaded weather data for each site used for 

modeling in this study (Table 3.5).  If the monthly rainfall data from the crop data collection site did not 

equal the summed monthly (+/- 50 mm) values for the downloaded weather data used for the 

ALMANAC model, and had no missing data values, adjustments were made by adding irrigation or 

leaving irrigation out to represent field conditions more closely. Irrigation, if needed, would be added 

after one week with no rainfall.  If variations in the average monthly temperature were greater than 0.5 

C then another weather station’s temperature data were compared to the monthly average 

temperature from the research site. To remain consistent to real time events, any additional irrigation, 

aside from the necessary modifications previously describe, used in this study to simulate crop growth 

had to come from actual irrigation data amounts from the region of modeling and had to occur in the 

same year.   

None of the sites in the study had differences in the monthly average temperature to warrant 

modifications or removal from the study (calculations not shown).  Since no sites in Kansas and 

Oklahoma deviated from the monthly rainfall values given by the data collection sites, no irrigation 

modifications were needed to equate the downloaded weather rainfall monthly sums to that of the 

given monthly rainfall (OSU-CES, 2006-2008a; OSU-CES, 2006-2008b; KSU-AESCES, 1999-2008a; KSU-

AESCES, 1999-2008b; Corn, 2009).  In Hale County, Texas the sum of the monthly downloaded rainfall 

values (May-September) exceeded those given by Corn (2009). Corn (2009) showed rainfall for the study 

site (May-September) was 340.4 mm (13.40 inches) in 2007 and 262.6 mm (10.34 inches) in 2008. The 

excess rainfall calculated from the downloaded rainfall was 69.8 mm (2.75 inches) in 2007 and 94.3 mm 

(3.73 inches) in 2008. Therefore, the amount of addition rainfall given from the calculations using the 
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downloaded weather data would be subtracted from the total irrigation requirements in Hale, County 

Texas. 

Irrigation added for modeling sweet sorghum in Caddo County, Oklahoma in 2006 was 25.4 mm 

(1 inch) per week of irrigation during the growing season, while the 2007 irrigated sweet sorghum was 

not modeled due to lack of irrigation information, and no alternative crop irrigation (i.e., irrigation for 

grain sorghum) values  were available.  In Texas County, Oklahoma 76.2 mm (3 inches) of irrigation was 

added during the growing season in 2006 (Bellmer and Huhnke, 2007), since the irrigation value for 2007 

was not available (Bellmer and Huhnke, 2008) the irrigation value of 177.8 mm (7 inches) was taken 

from the limited irrigation grain sorghum trials and used (OSU-CES, 2007b).  The irrigation amount 

added to the Hale County, Texas sweet sorghum modeling scenarios was the absolute value of the 

difference of the downloaded weather data monthly sums (May-September) and the total sum of the 

rainfall and irrigation amounts given in Corn (2009). The total sums of the rainfall and irrigation given by 

Corn (2009) were 459.9 mm (17.87 inches) in 2007 and 529.3 mm (20.84 inches) in 2008. The absolute 

values of the difference were 43.8 mm (1.72 Inches) in 2006 and 172.0 mm (6.77 inches) in 2007. The 

differences were rounded up to 50.8 mm (2 inches) of irrigation in 2007, and 177.8 mm (7 inches) of 

irrigation in 2008.   

Missing weather data from each weather station were filled in using several methods (Table 

3.6).  Rainfall and temperature data gaps greater than three days per month were filled in using weather 

data from nearby stations. Stations missing three non-consecutive days (or less) of rainfall and 

temperature data per month were filled by averaging the previous and next day values. Though 

averaging the previous and next day values may exclude possible precipitation events, it did not appear 

that any precipitation events occurred on the dates with missing precipitation values (data not shown).  

Missing solar radiation data were either left blank, estimated, or averaged from the previous and 

following day values.  Weather Stations that provided solar radiation data (Table 3.5) that had missing 
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solar radiation data during the non-growing season, November to March, were left blank in the weather 

file to allow for ALMANAC to estimate the solar radiation values.  Missing solar radiation data for these 

stations during the growing season were estimated using a solar radiation estimation method FAO 056 

(Allen et al., 2006). Weather stations missing solar radiation data less than three non-consecutive days 

per month were filled by averaging the previous and next day’s solar radiation data values.  For sites 

that did not provide any solar radiation data, the FAO 056 spreadsheet was used to estimate all solar 

radiation data.  If data values did not get filled by a nearby station and were not filled any other way, 

they were left blank for solar data values or set to 999 for the precipitation and temperature data, so 

they could be estimated within the ALMANAC model’s weather generator.  

Weather data for Ellis and Riley Counties had no missing weather data until 2006. The missing 

weather data, from 2006 to 2008, was intermittent with no consecutive missing dates.  A total of six 

daily data values were missing for Riley and seven for Ellis (Table 3.6). 

The weather station for the Texas County crop data site in Oklahoma had substantially more 

missing weather data values. Guymon (NCDC, 2012: Coop # 343835) (Table 3.3) was used to fill the 

missing weather values (Table 3.6) for the Goodwell weather station in Texas County. Andarko (NCDC, 

2012: Coop # 340224) (Table 3.3) was used to fill the missing values (Table3.6) for the Ft. Cobb weather 

station in Caddo County. 
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Table 3.6 – Missing weather variables with the dates.  

State  County Weather Data Type Missing Weather Dates 

Kansas            
 Riley           
  Solar Radiation 9/13/07; 12/11/07; 6/23/08; 8/15/08; 8/20/08; 11/10/08 
  Precipitation 9/13/07; 12/11/07; 6/23/08; 8/15/08; 8/20/08; 11/10/08 
  Maximum Temperature 9/13/07; 12/11/07; 6/23/08; 8/15/08; 8/20/08; 11/10/08 
  Minimum Temperature 9/13/07; 12/11/07; 6/23/08; 8/15/08; 8/20/08; 11/10/08 
 Ellis           
  Solar Radiation 8/12/06; 9/13/07; 12/11/07; 6/23/08; 8/15/08; 8/20/08;11/10/208 
  Precipitation 8/12/06; 9/13/07; 12/11/07; 6/23/08; 8/15/08; 8/20/08;11/10/208 
  Maximum Temperature 8/12/06; 9/13/07; 12/11/07; 6/23/08; 8/15/08; 8/20/08;11/10/208 
  Minimum Temperature 8/12/06; 9/13/07; 12/11/07; 6/23/08; 8/15/08; 8/20/08;11/10/208 
Oklahoma            
 Texas           
  Solar Radiation 9/12/06 
  Precipitation 9/12/06 

  
Maximum Temperature 3/20/06; 9/12/06; 12/19/06 - 12/21/06; 12/29/06 - 12/31/06; 1/1/07; 12/8/07 - 12/12/07; 2/5/08; 

12/22/08 - 12/24/08  
  Minimum Temperature 9/12/06; 12/10/07; 12/11/07 
 Caddo           
  Solar Radiation 2/3/06 
  Precipitation 1/1/00 
  Maximum Temperature 2/3/06 
  Minimum Temperature 2/3/06 
Texas            

 Hale           
  Solar Radiation 7/1/08-7/31/08 
  Precipitation 2/20/06; 7/1/08-7/31/08 
  Maximum Temperature 7/1/08-7/31/08 
  Minimum Temperature 7/1/08-7/31/08 
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The closest weather station to the crop data collection site in Hale County was located directly 

east of the Halfway research site, in Plainview, Texas (Table 3.5).  The NCDC weather station did not 

have a record of the solar radiation data for Hale County.  The Hale County, Texas weather station was 

the only station having substantial differences in the total rainfall. The differences in total rainfall were 

discussed along with the irrigation above. 

Soil composition variables (Table 3.7) for each county were collected from the Soil Survey 

Geographic (SSURGO) dataset (USDA-NRCS, 2005).  

Table 3.7 - Soil Variables imported from the SSURGO dataset into the 
ALMANAC .DAT soil section. Values that were not available where left blank 
in the file. 

1
 

SALB Soil Albedo -- 
Z Depth From the Surface to the Bottom of the 

Soil Layer 
m 

BD Bulk Density of the Soil Layer (33 kPa) Mg/m
3
 

U Wilting Point (1500 kPa for many soils) m/m 
FC Field Capacity (33 kPa for many soils) m/m 
SAN Sand Content % 
SIL Silt Content % 
WN Organic N Concentration g/Mg 
PH Soil pH -- 
SMB Sum of Bases cmol/kg 
CNB Organic Carbon % 
CAC Calcium Carbonate % 
CEC  Cation Exchange Capacity cmol/kg 
ROK Coarse Fragment Content % 
WNO3 Nitrate Content g/Mg 
AP Labile P Concentration g/t 
BDD Bulk Density (oven dry) Mg/m

3
 

PSP Phosphorus Sorption Ratio -- 
SC Saturated Conductivity mm/h 
WP Organic P Concentration g/Mg 
1- Table adapted from Tables.pdf (table 5.1 section 7) from the USDA-ARS ALMANAC Simulation 
model website:  http://www.ars.usda.gov/Main/docs.htm?docid=16601 

 

Three methods of SW estimation were tested: Saxton and Rawls (2006), Ritchie et al. (1999), 

and a method that added 0.01 mm -1 to the minimum available SW value listed in the SSURGO Dataset. 

Table 3.8 shows an example of the SW values for Reading silt loam in Riley County. To simplify importing 
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to soils for the sweet sorghum crop parameter development and testing, the import tool for 

AutoALMANAC (USDA-ARS, 2010) was used.  

Table 3.8 – Wilting Point, Field Capacity, and Soil Water (m m
-1

) totals for Reading Silt Loam.  

Reading Silt Loam     
1
Saxton and Rawls           

Layer 1 2 3 4 5 

Wilting Point 0.133 0.133 0.188 0.223 0.202 

Field Capacity 0.331 0.331 0.365 0.385 0.374 

Soil Water 0.198 0.198 0.177 0.162 0.172 
2
Ratliff      

Layer 1 2 3 4 5 

Wilting Point 0.165 0.165 0.205 0.233 0.203 

Field Capacity 0.307 0.307 0.332 0.347 0.331 

Soil Water 0.142 0.142 0.127 0.114 0.128 
3
SSURGO      

Layer 1 2 3 4 5 

Wilting Point 0.121 0.121 0.174 0.217 0.147 

Field Capacity 0.351 0.351 0.364 0.357 0.337 

Soil Water 0.230 0.230 0.190 0.140 0.190 

1 - Saxton and Rawls (2006)  
2 - Ritchie et al. (1999) 
3 - Values are the method 0.01 plus the minimum soil water value given by the physical soil properties in SSURGO. 

 

The soil water estimation method inherent in the AutoALMANAC soil processing tool was Ritchie 

et al. (1999) (Kiniry, 2011, personal communication).  The processing tool’s soil texture output was used 

to estimate the soil water contributions using equations from Saxton and Rawls (2006) to maintain a 

consistency in the soil water estimations.  Since field capacity and wilting point were not directly given in 

the SSURGO dataset, the original soil water output’s field capacity and wilting point values estimated by 

Ritchie et al. (1999) were used as the base for the SSURGO soil water field capacity and wilting point.  

The soil water values were expanded to match the minimum soil water value + 0.01 m m-1 in the 

SSURGO database by dividing the soil water value by two, and adding one half to the field capacity and 

subtracting the second half from the wilting point.  

Three methods of evapotranspiration (ET) estimation were tested within the ALMANAC model: 

Hargreaves and Samani (1985), Penman-Montieth (Montieth, 1977), and Priestley and Taylor (1972).  All 
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combinations of baseline SW conditions (Table 3.8) and ET methods were used to model 10 years of 

corn and grain sorghum rotations in Riley and Ellis Counties, Kansas.  In order to encompass the varietal 

maturity range of the average yield data from Riley and Ellis Counties, a range of heat units (in 

increments of 100) were tested for corn and grain sorghum crops (Table 3.4).   

Site Data Analysis and Sweet Sorghum Crop Parameter Development 

Before the statistical analysis of corn and grain sorghum modeled data were performed, yield 

data collected from both Ellis and Riley Counties were evaluated to see if there were any instances that 

were not able to be adequately modeled in ALMANAC, either from missing data or extreme weather 

events.  There were two years in Ellis County in which corn yields could were not comparable to 

measured data: 2002 and 2006.  In both years the crop performance reports showed that these sites 

where abandoned due to drought, and no yield or biomass data were given for this site (KSU-AESCES, 

2002a; KSU-AESCES, 2006a). These years were left out of the calculations of the final statistical values.  

In Riley County, 2001 and 2005 were excluded from the statistical calculations for the corn modeling.  In 

2001, hail damage during the growing season shredded the leaves of the corn crop, which lowered 

overall potential yields (KSU-AESCES, 2001a).  Also, two days of frost damaged the emerging corn crop by 

burning off the top three inches of the leaves in 2005, potentially lowering yields (KSU-AESCES, 2005).  

The ALMANAC frost-damage subroutine did not adequately model damage to the leaves during that 

year, and in all cases the yields were grossly overestimated (data not shown).  The grain sorghum 

modeled crop yields in Riley County 2001 were excluded due to the hail storm that damaged the crop 

during the growing season (KSU-AESCES, 2001b).  No significant events or missing data required the 

exclusion of any years from the grain sorghum in Ellis County. 

The yields were compared using a Concordance Correlation Coefficient (Cc) (Lin, 1989), 

Pearson’s Product-Moment Correlation Coefficient-squared (Pc
2), and a slope of a first-order linear 

regression of observed vs. predicted yields with the origin at (0, 0).  Both Cc and the regression slope 
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provided measures of accuracy and precision along the 1:1 (observed: predicted) line with origin at (0, 

0). To minimize bias in selection of the best combination of soil water and ET equations, a simple filter 

method was employed.  First the six highest Cc values were selected.  From the six highest Cc values, the 

three highest Pc
2 values were compared, and the slope of the regression line of the three highest Pc

2 

with the value closest to 1 (i.e., observed data perfectly matched simulated data) was selected.  If more 

than one combination was selected as the best combination (different combinations were selected for 

each scenario), the occurrence of the three selected soil water and ET combinations in the Pc
2 stage of 

the comparison were used to determine the resultant combination. This did not require the 

combination to be selected for the best fit for any of the scenarios modeled in the study.  Occurrence is 

defined in this instance as a ratio the number of times (0-4) any combination occurs to the total 

scenarios (4). The combination with the highest occurrence within all four scenarios was chosen.  The 

resultant combination was then used to validate grain sorghum and corn model results in Texas County, 

Oklahoma.  Results from grain sorghum and corn models were compared using box and whisker plots.  

Oklahoma State University Cooperative Extensions Service crop performance reports (OSU-CES) (2006-

2008) reported grain yields for grain sorghum and corn were given in Mg ha-1 with moisture contents of 

14.0% and 15.5% and Corn Silage was reported in Mg ha-1 with a moisture content of 68% percent.  

Modeled results were compared at the same moisture content. 

The selected and validated soil water estimation method and ET equations were then used to 

develop the sweet sorghum parameters using data from Riley County.  Model parameters used in the 

development are shown in Table 3.9.  The focus of the sweet sorghum crop parameter development 

was around three main parameters which were adjusted to attain optimal model performance for sweet 

sorghum; the parameters were optimized sequentially in the following order: Biomass Energy Ratio 

(WA), LAI Development Curve (DLAP1, DLAP2), and Plant Population Density Curve (PPL1, PPL2). Any 

other adjustments to the other crop parameter set were around these three main crop parameters. 
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Available literature had a range of RUE from 3.55 to 4.96 g MJ-1 (Curt et al., 1998; Dercas and 

Liakatas, 2006; Mastrorilli et al., 1995), which can be converted into the Biomass Energy Ratio (WA).  

Values of WA greater than 49.5 Mg ha-1 MJ-1 were possible based on the recommendation of Kiniry 

(2011, personal comm.), who suggested a 20% increase in RUE (with corresponding increase in WA) to 

account for root biomass in the model.  Mastrorilli et al. (1999) and Ferraris and Edwards (1986) 

provided guidance on the LAI development curve. Reviewing the data, results and conclusions from 

Propheter (2009) and Dooley (2010) provided guidance on determining PPL2 for the Maximum 

Population Density Curve.  The first point value for the Plant Population Density Curve (PPL1) was  

Table 3.9 – Final sweet sorghum crop parameters. Definitions of variables are in Table 3.12. 

Crop Parameters : sweet sorghum    

Parameter (Units) Value Citation
3
 Parameter (Units) Value Citation

3
 

WA
2    

(Mg ha 
-1

MJ
-1

) 55.0  WSYF 0.98  
HI            (kg kg

-1
) 0.98  WCY

7
     (kg kg

-1
) 0.00  

TB              (
o
C) 30.0  BN1

8
      (kg kg

-1
) 0.0180  

TG              (
o
C) 8.0  BN2

8
      (kg kg

-1
) 0.0093 Han et al. (2010) 

DMLA
3
 6.0 Ferraris et al. (1986) BN3

8
      (kg kg

-1
) 0.0057 Propheter (2009) 

DLAI 0.65  BP1
8
       (kg kg

-1
) 0.0020  

DLAP1        (%) 15.05 Ferraris and Edwards (1986); 
Mastrorilli (1999) 

BP2
8
       (kg kg

-1
) 0.0010 Han et al. (2010) 

DLAP2        (%) 42.95 BP3
8
       (kg kg

-1
) 0.0070 Propheter (2009) 

RLAD
5
 0.02 Ferraris and Edwards (1986) VPTH         (kPa) 1.0  

RBMD
5
 0.02  VPD2

9
   (kg ha

-1
 MJ

-1
) -5.4  

PPL1
6
 10.38 Propheter (2009) GSI            (m s

-1
) 0.0074  

CAF 0.85  EXTINC 0.59 Curt et al. (1998) 
HMX           (m) 3.5     
RDMX         (m) 2.0     
PPL2

6
 15.84 Propheter (2009)    

CNY        (kg kg
-1

) 0.017 Propheter (2009)    
CPY         (kg kg

-1
) 0.0046 Propheter (2009)    

1 - Values with no given units are unit-less in ALMANAC. Parameters not listed used common or default parameters for crops in ALMANAC.  More 
information on these parameters is listed in the tables section at: http://www.ars.usda.gov/Main/docs.htm?docid=16601 
2 – Biomass Energy Ratio is 20% higher than that given in literature to account for root growth in the ALMANAC model (Kiniry, 2011, personal 
com.) 
3 - This value is greater than the value from the literature to compensate for root biomass accumulation in the ALMANAC model. 
4 - Parameter values with no citation were taken from ALMANAC grain sorghum crop parameters. 
5 - Values were kept to a minimum or removed to ensure adequate biomass production throughout the growing season, and to reflect minimal 
lost to overall biomass since HI was not reflective of just grain yields.  
6 - Value was correlated to match closely with the plant populations in Propheter (2009).  
7 - Value was set to zero to give total above ground dry biomass as yield (Seed + Above ground biomass).  Harvested biomass ranges from 69 to 
83% moisture in most of the data/publications reviewed in this study. (This did not reflect the moisture content of the seed.) 
8 – Values were lower than the given literature values, this was to ensure that nitrogen stress on the plant was limited or non-existent in the 
development area as the data suggested (Propheter, 2009).  It was assumed that the reduction was necessary since the roots may contain a lower 
fraction of nutrients, lowering the overall concentration of nutrients in the plant, no literature was found to support this claim. 
9- Decision for this value was under the guidance of the results and conclusions of Steduto et al. (1997). 
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developed using Texas County, Oklahoma, sweet sorghum yield data.

Table 3.10
1
 - Variable definitions from table 3.9.   

WA Biomass Energy Ratio    
HI Harvest Index     
TB Optimal Temperature for Plant Growth   
TG Minimum Temperature for Plant Growth   
DMLA Maximum Potential Leaf Area Index   
DLAI Fraction of the Growing Season when Leaf Area Starts Declining 
DLAP1

2
 Point One on the Optimal Leaf Area Development Curve 

DLAP2
2
 Point Two on the Optimal Leaf Area Development Curve 

RLAD Leaf Area Index Decline Rate Parameter   
RBMD Biomass-Energy Ratio Decline Rate Parameter  
ALT Aluminum Tolerance Index (1=sensitive; 5=Tolerant)  
PPL1

3
 Plant Population Parameter 1    

CAF Critical Aeration Factor    
SDW Seeding Rate     
HMX Maximum Crop Height    
RDMX Maximum Rooting Depth    
PPL2

3
 Plant Population Parameter 2    

CNY Fraction of Nitrogen in Yield    
CPY Fraction of Phosphorus in Yield    
WSYF Water Stress Crop Yield Factor    
PST Pest Factor     
WCY Fraction of Water in Yield    
BN1 N Fraction in Plant at Emergence   
BN2 N Fraction in Plant at Half Maturity   
BN3 N Fraction in Plant at Maturity    
BP1 P Fraction in Plant at emergence   
BP2 P Fraction in Plant at Half Maturity   
BP3 P Fraction in Plant at Maturity    
VPTH Threshold Vapor Pressure Deficit   
VPD2 Slope of WA:VPD Relationship Above VPTH  
GSI Maximum Stomatal Conductance   
EXTINC Extinction Coefficient for Calculating Light Interception  
RTPRT1 Fraction of Weight Partition to Roots for Young Plants  
RTPRT2 Fraction of Weight Partition to Roots for Plants Near Maturity 
1--Table was adapted from the USDA-ARS tables document: www.ars.usda.gov/main/docs.htm?docid=16601 
2--Value before the decimal is the percent of the growing season, the value after the decimal is the fraction of the potential 
leaf area. 
3—Value before the decimal is the plant population in plants per m2, value after the decimal is the fraction of the maximum 
leaf area. 
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Once sweet sorghum parameters were calibrated to the data in Riley County, the parameters 

were validated in Caddo County, Oklahoma, Texas County, Oklahoma, and Hale County, Texas.  Since so 

few sweet sorghum data sites were available, results are compared in a table. 

Results 

The results from the filter method shown in Table 3.11 found the top six Cc for corn in Riley 

County, Kansas ranging from 0.477 to 0.882, and the three highest Pc
2 ranged from 0.635 to 0.849.  The 

combination selected was the method which added 0.01 m m-1 to the minimum soil water value in the 

SSURGO database and Priestly-Taylor (1972) (SS-PT), whose slope of the linear equation that was the 

closest to 1 (0.999) of the three Pc
2 values chosen.  The result from the statistical analysis of the grain 

sorghum modeled yields in Riley County found the top six values for Cc ranging from 0.189 to 0.597, the 

top three Pc
2 value ranged from 0.160 to 0.388. The slope of the three linear regression equations that 

was closest to 1 was for Ritchie et al. (1999) and Penman-Monteith (Monteith, 1977) (RT-PM) with a 

value of 0.977.  The corn results for the top six Cc values range from 0.779 to 0.876. The highest three 

values of Pc
2 ranged from 0.924 to 1.196.  The selected value with the slope closest to one was the 

Ritchie et al. (1999) and the Hargreaves and Samani (1985) (RT-HS) with a slope of 0.986.  The six highest 

values of Cc from the grain sorghum modeling scenario ranged from 0.874 to 0.905, with the three 

highest values for Pc
2 ranging from 0.836 to 0.871.  The selected combination with the slope closest to 1 

was Ritchie et al. (1999) and Priestley and Taylor (1972) (RT-PT) with a slope value of 1.057. 

Since multiple combinations resulted from the filter criteria (SS-PT, RT-PM, RT-HS, and RT-PT) 

the occurrence method was employed.  The combination of Saxton and Rawls (2005) and Priestley and 

Taylor (1972) (SR-PT) had the highest occurrence (1.0) of all the combinations that were in the Pc
2 

portion of the filter selection, and was chosen as the combination for further validation and the sweet 

sorghum crop parameter development and testing.  The actual yield and model yield results associated 

with the SW-ET combinations are shown in Figures 3.2, 3.3, 3.4, and 3.5. 
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Table 3.11 – Performance of the ALMANAC model in simulating corn (CO) and grain sorghum (GS) yields using 
crop yield data from Riley County and Ellis County, Kansas, and nine methods of estimating soil water and ET.  
Values highlighted in gray are the six highest Cc values; values highlighted in dark gray are the three values with 
highest Pc

2
 and linear regression line slope nearest to 1.0. 

Riley 
1
Method 

2
Cc 

2
Pc

2
 Slope Ellis Method 

2
Cc 

2
Pc

2
 Slope 

CO SR-PT 0.882 0.849 0.969 CO SS-HS 0.876 0.788 0.924 
 SS-PT 0.857 0.800 0.999  SR-HS 0.871 0.776 0.996 
 SR-HS 0.647 0.573 0.867  RT-HS 0.865 0.802 0.986 
 RT-PM 0.642 0.635 0.989  SS-PT 0.841 0.739 1.039 
 SS-HS 0.638 0.469 0.905  SR-PT 0.798 0.876 1.196 
 RT-PT 0.477 0.572 0.768  RT-PT 0.779 0.776 1.119 
 RT-HS 0.345 0.496 0.689  SS-PM 0.714 0.898 1.323 
 SS-PM 0.098 0.051 1.084  SR-PM 0.510 0.854 1.477 
 SR-PM 0.080 0.030 1.080  RT-PM 0.502 0.809 1.444 

GS RT-PM 0.597 0.388 0.977 GS SS-PT 0.905 0.826 1.022 
 SR-PT 0.392 0.179 0.968  SR-HS 0.903 0.824 0.958 
 SS-PT 0.364 0.151 0.991  SS-PM 0.895 0.836 1.058 
 SR-PM 0.199 0.160 1.200  RT-HS 0.890 0.821 0.939 
 SR-HS 0.198 0.131 0.786  RT-PT 0.885 0.871 1.057 
 SS-HS 0.189 0.100 0.802  SR-PT 0.874 0.841 1.083 
 SS-PM 0.141 0.135 1.232  RT-PM 0.858 0.852 1.083 
 RT-PT 0.110 0.069 0.725  SS-HS 0.848 0.796 0.894 
 RT-HS 0.045 0.228 0.594  SR-PM 0.837 0.835 1.124 

1 – Abbreviations represent combinations of three soil water methods (SR – Saxton and Rawls, RT - Ritchie, SS - SSURGO) and three ET 
equations (HS – Hargreaves and Samani (1985), PM - Penman-Montieth (Monteith, 1977), PT – Priestley and Taylor (1972)) used to run the 
ALMANAC model. 

2 – Pc
2
 is the Pearson’s Product-Moment Correlation Coefficient-Squared, Cc is the Concordance Correlation Coefficient (Lin, 1989). 

 

 
Figure 3.2 – Yield comparison results for grain sorghum SR-PT runs in Riley County, Kansas. Years  
that are circled were not used to calculate the statistical values due to conditions not modeled  
in ALMANAC at this time. Box and whisker plots (Max, Min, Median, Q1-25%, Q3-75%) are the 
field collected data while the line graph is ALMANAC modeled yields.   
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Figure 3.3 - Yield comparison results for corn SR-PT runs in Riley County, Kansas. Years that  

are circled were not used to calculate the statistical values due to conditions not modeled in  
ALMANAC at this time.  Box and whisker plots (Max, Min, Median, Q1-25%, Q3-75%) are the 
field collected data while the line graph is ALMANAC modeled yields.    
 

 

Figure 3.4 - Yield comparison results for corn SR-PT runs from Ellis County, Kansas. Years that  

are circled were not used to calculate the statistical values due to conditions not modeled in  
ALMANAC at this time.  Box and whisker plots (Max, Min, Median, Q1-25%, Q3-75%) are the 
field collected data while the line graph is ALMANAC modeled yields.   
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Figure 3.5 - Yield comparison results for grain sorghum SR-PT runs from Ellis County, Kansas. 

Years that are circled were not used to calculate the statistical values due to conditions not  
modeled in ALMANAC at this time.  Box and whisker plots (Max, Min, Median, Q1-25%,  
Q3-75%) are the field collected data while the line graph is ALMANAC modeled yields.   

 
Corn and Grain Sorghum Validation (Texas County, Oklahoma) 

Using the SR-PT method as the baseline condition in Texas County, Oklahoma, showed grain 

yields for irrigated corn in 2006 were nearly equal (<1% difference) to the average yield results from 

Texas County, while those in 2007 and 2008 were overestimated by 0.96 and 0.89 Mg ha-1 (9.3% and 

7.6%) (Table 3.12), but still within the maximum and minimum yield values given for 2007 and 2008 

measured yield data (Figure 3.6).  Irrigated corn silage in 2006 and 2008 were overestimated by 10.83 

and 10.74 Mg ha-1 (20.7% and 21.5%) when compared to the average corn silage (Table 3.12). The 

modeled silage value was higher than the maximum measured value in 2006 but within the maximum 

and minimum yield values given for 2008 (Figure 3.7).  The corn silage yields in 2007 are underestimated 

by 7.25 Mg ha-1 (11.9%), still falling within the maximum and minimum measure yield values in 2007 

(Figure 3.7). Averaged modeled yields for limited irrigation sorghum followed the trend of average yields 

closely, never deviating by more than 0.42 Mg ha-1 (5.3%), with slight overestimations in 2007 (0.18 Mg 

ha-1, 3.0%) and slight underestimations in 2006 and 2008 (0.42 and 0.33, 5.3% and 4.2%) (Figure 3.8).  
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Dryland yields for grain sorghum in Texas County for 2006 and 2007 were overestimated by 1.0 and 0.4 

Mg ha-1 (32.9% and 11.7%), and yield in 2008 was underestimated by 0.33 Mg ha-1 (7.8%) (Table 3.12) 

(Figure 3.9).  

Table 3.12 – ALMANAC model crop yield results for corn (CO), corn silage (CS), and grain 
sorghum (GS) for Texas County, Oklahoma. Modeled results are the average of crop model runs 
with a range of heat units (Table 3.4), in increments of 100. Each scenario n = 5.  

Crop
1
 Irrigated Year

2
 Modeled Average

3
 Maximum

3
 Minimum

3
 

   Mg ha
-1

 

CO Yes 2006 11.02 11.03 12.95 8.94 
  2007 11.24 10.28 11.34 9.01 
  2008 12.63 11.74 13.20 8.94 
CS Yes 2006 63.17 52.34 61.55 41.78 
  2007 53.85 61.10 76.83 49.65 
  2008 60.61 49.87 62.22 41.56 
GS  Yes 2006 7.44 7.86 9.48 5.54 
  2007 6.09 5.91 6.98 4.50 
  2008 7.49 7.82 8.77 6.37 
GS  No 2006 4.04 3.04 4.41 0.88 
  2007 3.81 3.41 4.05 2.72 
  2008 3.93 4.26 5.17 3.32 
1 – Corn silage is reported in wet Mg ha-1 with a moisture content of 65%, corn and grain sorghum grain yields were 
reported as 15.5% and 14.0% moisture. 
2- Corn and grains sorghum data for years 2009 and 2010 were not available for comparison, once published online this 
data would be invaluable to the combination validation. 
3 – Values are taken from Goodwell, KS crop performance reports (OSU-CRP, 2006-2008). The average value is an average 
of multiple crop varieties while the Minimum and Maximum values are the highest and lowest performing variety. 
 

 
Figure 3.6 –Irrigated corn (CO) dry matter yields from Texas County, Oklahoma. Values for the 
collected data are given in a box and whisker (Max, Min, Median, Q1-25%, Q3-75%) plot. 
Modeled results are shown with the line.  The sample numbers (n) for field measured yields are 
given. 

n = 17                            n = 19                           n = 16  
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Figure 3.7 –Irrigated corn silage (CS) wet matter yields from Texas County, Oklahoma. Values for 
the collected data are given in box and whisker(Max, Min, Median, Q1-25%, Q3-75%) plot. 
Modeled results are shown with the line.  The sample numbers (n) for field measured yields are 
given.  

 
Figure 3.8 –Grain sorghum (GS) yields under conditions of limited irrigation from Texas County, 
Oklahoma. Values for the collected data are given in box and whisker (Max, Min, Median, Q1-
25%, Q3-75%) plot. Modeled results are shown with the line.   The sample numbers (n) for field 
measured yields are given. 

    n = 19                            n = 17                            n = 23  

n = 23                            n = 23                           n = 32  
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Figure 3.9 – Dryland grain sorghum (GS) yields from Texas County, Oklahoma. Values for the 
collected data are given in box and whisker (Max, Min, Median, Q1-25%, Q3-75%) plot. Modeled 
results are shown with the line.   The sample numbers (n) for field measured yields are given. 
 

Sweet Sorghum 

The final sweet sorghum crop parameter set in ALMANAC had a Biomass Energy Ratio for sweet 

sorghum of 55 Mg ha-1 MJ-1; leaf area curve points (DLAP1 and DLAP2 defined in Table 3.10) for sweet 

sorghum were estimated using data from Ferraris and Edwards (1986) and Mastrorilli (1999).  The values 

were 15.05 and 42.95, and plant population curve values were 10.38 for PPL1 and 15.84 for PPL2 (Table 

3.9).  The value before the decimal for PP1 and PP2 is the number of plants per m2, and value after the 

decimal is the fraction of the leaf area at that population.  ALMANAC underestimated sweet sorghum 

actual yield by 0.90 Mg ha-1 (3.3%) in Riley County in 2007 and overestimated yield by 0.89 Mg ha-1 

(2.8%) in 2008 (Table 3.13).  In Caddo County, Oklahoma, irrigated sweet sorghum yield was under-

estimated by 1.60 Mg ha-1 (4.9%) in 2006, but remained within the range of values given by the collected 

data (Table 3.13) , while in 2007 the two dryland output yields overestimated yield by 13.66 (132.6%) 

and 12.31 Mg ha-1 (100.2%).  In Texas County, Oklahoma, yield results were underestimated in both 

2006 (1.13 Mg ha-1, 6.7%) and 2007 (1.76 Mg ha-1, 9.8%).  Finally in Hale County, Texas, 2007 yields were 

underestimated by 0.83 Mg ha-1 (4.6%), and 2008 yields where overestimated by 1.38 Mg ha-1 (7.7%). 

n = 25                            n = 18                           n = 26  
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 Table 3.13 – Results from the sweet sorghum trials development and validation. 

State County Year Irrigated Modeled Average Maximum
2
 Minimum

2
 

Kansas    Mg ha 
-1

 

 Riley 2007 No 26.70 27.60 -- -- 
  2008 No 33.09 32.20 -- -- 
Oklahoma       
 Caddo 2006 Yes 30.94 32.54 41.66 26.21 
  2007 Yes  N/A

1
 11.22 13.80 8.22 

  2007 Yes  N/A
1
 21.03 23.34 19.17 

   2007
3
 No 23.96 10.30 13.64 8.38 

   2007
3
 No 24.60 12.29 15.70 9.70 

 Texas 2006 Yes 15.83 16.96 19.32 13.03 
   2007

4
 Yes 16.24 18.00 19.47 16.39 

Texas        
 Hale 2007 Yes 18.99 18.16 25.93 14.15 
  2008 Yes 19.22 17.84 24.22 10.41 
1– Was not modeled since no accurate information was given about irrigation during this year. 
2 – Average values are an average of the sweet sorghum trials in a given study area. The maximum and minimum values are 
those of the recorded data. Maximum and Minimum values were not given with data from Riley County. 
3 – Two harvest Dates for dryland were available (9/24/07, 10/31/047), the data given are in chronological order. 
4—Values for the dry weight were estimated based on the moisture content from 2006 trials as the dry weight for this area 
was not given. 

 

Discussion 

SS-PT, RT-PM, RT-HS, and RT-PT were selected for each individual scenario (Riley County, Corn 

and Grain Sorghum; Ellis County, Corn and Grain Sorghum).  The multiple selections allowed for the 

occurrence method to be employed to determine a single appropriate SW and ET combination to use 

across all counties in the study.  Though Saxton and Rawls (2005) and Priestley and Taylor (1972) (SR-PT) 

combination was not selected statistically as the best suited SW-ET combination for any of the four 

scenarios, the SW and ET combination of SR-PT had the highest overall occurrence (1.0), which means it 

occurred in the last stage of selection of the four scenarios (Table 3.11). This suggests the SR-PT 

combination has good potential for wide applicability in the Midwest. Choosing one most appropriate 

combination was important in this study so there was consistency in modeling among sites. Using 

multiple combinations would have complicated the application of these combinations in different geo-

climate regions, by making it difficult to specify which combination should be used for crop modeling 

sweet sorghum or any other crop.  Consistent use of a single combination (SR-PT) made it possible to 
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apply calibrated parameters from one region to other regions, even though it was not the best fit for 

any of the scenarios in this study. Use of these methods and statistical analysis of the yields (greater 

than 8-10 real world yield/model output comparison points) could solidify SR-PT further as a useful 

combination for crop modeling in the geo-climate regions of the central US.  

Reasonable agreement was observed between RT-PM and SR-PT for grain sorghum in Riley 

County, even with eliminating 2001 grain yields due to hail damage.  It appeared two years, 2007 and 

2008, added difficulty in modeling grain sorghum with ALMANAC since those years provided 

substantially more rainfall in a short duration during the growing season, both in high monthly sums and 

multiple large events (data not shown).  The long term average rainfall for April through August for Riley 

County area is about 500.4 mm (19.70 inches) (KSU-AESCES, 2008a); during the 2007 and 2008 seasons, 

rainfall was approximately 721.6 mm (28.41 inches) and 727.5 mm (28.64 inches).  Much of the rainfall 

occurred early in the growing season, with 303.0 mm (11.93 inches) in May 2007 and 295.7 mm (11.64 

inches) in June 2008, which might have provided stresses that were not adequately modeled in 

ALMANAC. Nonetheless, the crop performance reports (KSU-AESCES, 2007-2008b) did not suggest that 

the additional rainfall in short duration directly affected overall yields, so these dates were not removed 

from the statistical analysis.  In this case ALMANAC may not represent growth conditions adequately, by 

overestimating average grain yields for grain sorghum during 2007 and 2008 (data not shown), and 

assuming the high amount of rainfall is providing adequate growth conditions for high biomass 

accumulation earlier in the growing season.  This may be a problem with grain sorghum’s small HI range 

(0.45–0.5) for Riley County in the original ALMANAC parameters, as biomass accumulation in Riley may 

be higher since there is adequate rainfall.  Even with the higher biomass accumulation there is still 

potential for low yields due to stresses later in the growing season (specifically during flowering and 

grain fill for grain sorghum) which may limit grain fill even with high biomass accumulation (KSU-AESCES, 

1999-2008a).  This is why a wider range HI was used for Riley County’s grain sorghum modeling (Table 
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3.4).  Grain yield over estimation was not an issue for the corn yields during modeling and was not 

investigated further, though a wider range for HI was used due to the larger annual rainfall and 

increased biomass accumulation potential in Riley County (Table 3.4). 

The variations in the validation scenarios used for the grain sorghum and corn may be due to 

inadequate information about management and planting operation details and dates.  For example, for 

the irrigated crops, no information was available when the irrigation was applied during the months of 

the growing season, only the amount that was applied (OSU-CES, 2006-2008a; OSU-CES, 2006-2008b 

Corn, 2009).  Therefore, the assumption was made that irrigation was applied in accordance with ET 

demand (one week with no precipitation), which may have differed from actual conditions.  It would be 

useful for future crop performance reports to include irrigation dates and amounts to ensure accurate 

modeling.  For the dryland grain sorghum scenario, field management for grain sorghum and previous 

crops might have helped improve results.   

Possible plant biomass efficiency values for sweet sorghum development ranged from RUE of 

3.9 to 4.95 g MJ-1 (Mastrorilli, 1999; Mastrorilli, 1994; Dercas and Liakatas, 2006; Curt et al., 1998), 

corresponding to WA of 39.0 to 49.5 Mg ha-1 MJ-1.  With the 20% increase recommended by Kiniry 

(2011, personal comm.), WA of 55 Mg ha-1 MJ-1 was possible, which with the 20% increase was near the 

theoretical estimate (4.65 g MJ -1) for the maximum RUE for C4 species calculated by Loomis and 

Williams (1963). Having no specific leaf area development values from literature for sweet sorghum, the 

leaf area development curves from Ferraris and Edwards (1986) and Mastrorilli (1999) helped provide 

the LAI estimates over the growing season (Table 3.9).  Ferraris et al (1986) reported a list of variables 

for sweet sorghum, including a maximum potential leaf area index of 6, which matched grain sorghum in 

the ALMANAC model.  Ferraris (1986) also provided harvest indices (HIs) between 0.25 and 0.6; the low 

values were attributed to a ratoon type harvest method, and were not used for this study.  Instead the 

value 0.98 was chosen for the HI to represent the above ground biomass recoverable during harvest 
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with the assumption that not all above ground biomass is recoverable, even if crop biomass was 

harvested by hand.  Data for biomass nutrient concentrations were only available for anthesis (used as 

value halfway through the growing season) (Han et al., 2010), and maturity (Han et al., 2010; Propheter, 

2009).  Values for nutrients concentrations were lowered until stresses for nitrogen and phosphorus 

where nearly zero since model results (not shown) showed stresses during development and lower 

yields, which may be due to the differences in nutrient concentrations for roots and shoots during 

development and maturity.  The extinction coefficient for the final model parameters (0.59) was based 

on an extinction coefficient (0.58) taken from Curt et al. (1998).  The value was raised slightly to 0.59 to 

account for a higher density of the plant populations, which Kiniry (1995) showed increased for corn and 

grain sorghum with higher population densities.  The vapor pressure deficit/RUE (VPD2) slope value was 

adjusted from the literature to be slightly greater than that of corn, to account for sweet sorghum’s 

optimal stomatal behavior over a wide range of VPD values (2.3 to 5.6 kPa), including well watered and 

water stressed conditions, as described by Steduto et al. (1997).  There is reasonable amount of data to 

show that VPD has an effect on RUE as VPD increases (Stockle and Kiniry 1990; Kiniry, 1999).  Further 

research to define the responsiveness of sweet sorghum growth to VPD would improve performance of 

this sweet sorghum models by confirming or providing an improved value for the VPD2 slope within the 

ALMANAC crop model parameter set.   

Model results for sweet sorghum in Riley County in 2007 (26.70 Mg ha-1) and 2008 (33.09 Mg ha-

1) come close to the actual values given by Propheter (2009) (27.60 and 32.20 Mg ha-1), though it is 

important to note that these years had elevated rainfall that made it difficult to model grain sorghum 

grain yields in Riley County.  As stated above the excess rainfall increased the biomass accumulation and 

may have skewed the grain sorghum grain yields in using a narrow HI range (0.45-0.5) for estimating 

grain yields.  Widening the maximum HI and stressed HI range improved ALMANAC modeled yields in 

the Riley County.  Since the focus of this sweet sorghum study was on total above-ground biomass 
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yields, and not specifically grain yields, it did not appear that, even with the access rainfall, development 

of the parameters were affected.    

In Texas County, Oklahoma, for example, modeled output yields were close to the harvested 

biomass (Bellmer and Huhnke, 2007) in 2006, only being underestimated by 1.13 Mg ha-1 (6.7%). While 

the larger variance in 2007 (underestimated by 1.76 Mg ha-1) may be caused by lack of management and 

yield information, since no dry weight value was given for the 2007 performance report (Bellmer and 

Huhnke, 2008), the dry weight of the biomass had to be estimated using the previous year’s average 

moisture content average.   

The deviation from the yield values in Caddo County, Oklahoma, may be due to lack of 

management and yield information.  The sweet sorghum crop performance trials in 2006 had no dryland 

sweet sorghum data, while for the irrigated crop 25.4 mm (1 inch) of irrigation was applied per week 

during the growing season (Bellmer and Huhnke, 2007), in addition to the rainfall, which brings the total 

water added to the system to around 711.2 mm (28 inches) during the growing season (personal 

calculation).  It appears with the abundant available water and the heat unit maturity value of 2300, the 

plant reached full maturity approximately 12 days before the first harvest date (on or before September 

21, 2006 (Bellmer and Huhnke, 2007)) for the 2006 ratoon crop.  The modeled value came close the 

recorded biomass value for the full biomass accumulation (32.54 Mg ha-1-actual; 30.94 Mg ha-1-

modeled) suggesting that the WA was too high.  After further investigation, it appeared that the higher 

average temperature, combined with the high WA, during May through September (data not shown) 

may be influencing the rapid heat unit accumulation and plant development, skewing the biomass 

accumulation in this region.  The skewed results for this model seemed to be reflected in the 

development of the crop parameters in a cooler temperate climate with a shorter growing season, and 

average temperatures that are lower early in the growing season (calculations not shown).  The 

variation in Caddo County, Oklahoma modeled biomass may also be in choosing the vapor pressure 
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deficit (VPD) slope value, suggesting the VPD2 value and WA relationship may need to be reviewed 

further.  Only one year of comparison for irrigated sweet sorghum biomass was available for Caddo 

County, Oklahoma since the following year (2007) no irrigation information for the sweet sorghum trials 

was given.  Dryland data were available for both years in the Caddo County comparison but were grossly 

overestimated by ALMANAC. A detailed look at the weather during this year showed an unusual rainfall 

pattern.  In a four-month period (May-August 2007) Caddo County received approximately 863.6 mm 

(34 inches) of rain, which was substantially greater than the previous year’s 254 mm (10 inches).  This 

large amount of rainfall mixed with the low average biomass yields (Table 3.12) suggests that the field 

conditions were not adequately depicted for this region, or the sweet sorghum plants may have 

undergone stresses not adequately modeled in ALMANAC at this time.  As described above this may be 

a reflection of the crop parameter development in a cooler climate region. 

In Hale County, Texas, though, values fell within the range of the gathered biomass data. The 

limited management information combined with the variability in the rainfall amounts added difficultly 

in determining which variables contributed to the yield variability modeling sweet sorghum with 

ALMANAC.  
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Chapter 4 – Conclusions and Future Work 

Conclusions 

The concept of modeling has been useful in many applications as described above, also seen 

with crop modeling in this study with development of sweet sorghum crop parameters. Various 

conclusions can be drawn from the review of the models in Chapter 2 and the implementation of the 

ALMANAC model in sweet sorghum crop parameter development in Chapter 3.  The literature review 

during this study and conclusions from Chapters 2 and 3 bring about a variety of future research ideas 

for modeling and sweet sorghum crop parameter development. In the following sections conclusions 

from Chapters 2 and 3 will be addressed. Along with needs and potentials for future research in the area 

of general model development, and sweet sorghum crop parameter development that have become 

apparent during the time of this study.  

Chapter 2 

In Chapter 2 five models were reviewed (CropSyst, CERE-Sorghum, APSIM, ALMANAC, and 

SORKAM), with ALMANAC selected as the best suited for the development and testing of sweet 

sorghum crop parameters.  The conclusion that ALAMANAC was the best suited for sweet sorghum crop 

parameter development was based on a general comparison. From this generalized comparison, based 

on current sweet sorghum literature available and physiological data, no real conclusion can be drawn 

supporting superiority of one model over another. The elimination of a model from selection does not 

discount the usefulness or applicability of the model, although the results of the model comparison did 

provide a conclusive view of what published data are needed to make the non-selected models more 

suited for widespread sweet sorghum simulation.  

From Chapter 2 results it can also be concluded that more data are needed on the physiological 

development stages of sweet sorghum and specific growth development factors for the other models to 
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be better suited for sweet sorghum crop modeling.  Further research of sweet sorghum physiology could 

also be helpful in improving modeling results for the ALMANAC model.   

Tables  2.7(ALMANAC), and 2.8(SORKAM) , 2.9 (Ceres-SORGHUM),  2.10 (CropSyst) show the 

results from the Chapter 2 comparison, with variables with a value of one in column A and zero in 

Column B would be useful in modeling sweet sorghum.  From the general comparison tables future 

research a conclusive research focus on growth temperature (maximum, minimum, and optimal 

average), root dynamics (water/nutrient uptake/concentration), Leaf area behavior (senescence, 

specific leaf area), and maturity factors (grain fill, responses to stress) would provide the needed detail 

for modeling sweet sorghum.  
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Chapter 3 

Two main conclusions can be drawn from this chapter.  First the combination of Saxton and 

Rawls (2006) and Priestley-Taylor (1972) (SR-PT) methods in ALMANAC has the potential for wide 

applicability for estimating grain yields in the Central Plains, even though this combination was not 

selected as the best fit for any of the individual scenarios. Based on the corn silage validation scenario in 

Texas County, Oklahoma, ALMANAC did not appear to model corn silage biomass consistently, since it 

overestimated or underestimated yields each year (11.9 to 21.5%); however, the modeled values fell 

within or just outside the real-world harvested values given in the panhandle crop performance reports.  

From the available real-world/model yield results (8-10 for each scenario) few statistically conclusive 

statements can be made about the most suitable ET-soil water combination. Further replicates are 

needed from multiple sites and soil types to further gauge the statistical effectiveness of each of the 

combinations over a variety of scenarios. Also during the combination testing, a single set of parameters 

was used in both Riley and Ellis County for the ET-soil water determinations. More detailed site 

calibration may improve statistical values taken from each of the scenarios in the study.  

Secondly, based on the development of the sweet sorghum crop model parameters, it can be 

concluded that ALMANAC provides reasonable accuracy in simulated biomass yields across many geo-

climate regions; simulated biomass yield deviated by 0.89 to 1.76 (2.8 to 9.8%) in Kansas (Riley), 

Oklahoma (Texas), and Texas (Hale).  As long as those regions do not provide large amounts of irrigation 

or have excessive rainfall (e.g., 508 mm (20 in) more than the previous year) for the geo-climate region. 

This occurred both years in Caddo County, Oklahoma, which allowed ALMANAC to overestimate yields 

for irrigated (13.66 Mg ha-1, 2006) and dryland (12.31 Mg ha-1, 2007) sweet sorghum.  The plants in this 

area reached maturity much faster than any of the other regions in this study (data not show). From this 

it can be concluded that parameters involving RUE/WA and RUE/VPD and subroutines in ALMANAC 

dealing with heat unit accumulation may need to be examined further to provide clearer 
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representations in areas with high irrigation and or infrequent high volume rainfall events. Additionally 

investigation of parameter development in different geo-climate regions needs to be understood, to 

understand its effect on the utilization of developed crop parameters in different climate regions. The 

limited available sweet sorghum biomass data (>3 years) for each of these sites suggests more sweet 

sorghum harvested data is needed to draw further conclusions from the ALMANAC model crop 

parameter development. 

Future Work 

This section is a reflection of the model review, sweet sorghum parameter development, and 

the available literature for sweet sorghum. All potential future work mentioned in this section reflects 

thoughts about information that may provide improved model results or increased applicability of the 

models for sweet sorghum modeling for each of the models reviewed by providing missing sweet 

sorghum physiology data. These potential future work ideas may also provide data for improving the 

sweet sorghum crop parameters developed in this study.   

Sweet Sorghum Physiology 

The Radiation use efficiency (REU) values found for sweet sorghum during the literature search 

in this study ranged from 3.6-4.95 g MJ-1 (Curt et al., 1998; Dercas and Liakatas, 2006; Mastrorilli et al., 

1995).  Understanding the cause of the wide range of variations of the RUE value could significantly help 

modeling efforts by providing means of geo-climate specific modeling parameters or providing a 

standard value for the RUE for sweet sorghum biomass accumulation while giving insight into the 

environmental effects that reduce RUE in addition to the current know reduction factors (i.e. - VPD, 

nutrient deficits, water stress… etc.).  

Revisiting older published literature may provide answers to these questions For example 

radiation use efficiency across environments was determined to not vary across environments (Dewit, 

1965; Sinclair and Horie, 1988; Hammer and Wright, 1994) but provided standardized field based RUE 
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calculations across latitudinal or geo-climate regions may provide the needed insight for the variations 

of the RUE values due to regional factors not apparent in regions with similar attributes (i.e., rainfall, 

average temperature, soil texture, incident solar radiation and or cloud cover. .. etc.). These tests may 

also uncover additional environmental factors that provide increased/decreased productivity providing 

additional information to determine the feasibility of sweet sorghum as an ethanol feedstock.  Sinclair 

and Munchow (1999) list a variety of factors that could affect the RUE value in the environment          

(i.e. water/nutrient stress, direct/diffuse radiation, VPD) in their RUE literature review. They are 

confounded by the simple relationship proposed by Kiniry et al. (1998). Sinclair and Muchow (1999a, 

1999b) suggest that such a simple relationship eliminates extensive environmental factors that affect 

the RUE throughout the growing season.  With such a staunch conflict of on the VPD/RUE relationship, it 

should be investigated further.  Kiniry (1999) did offer a response to Sinclair and Muchaw (1999b) 

offering more detail than his previously publish article.  

The optimal growth temperature for sweet sorghum is also important in modeling efforts. This is 

important since Steduto et al. (1997) measured that sweet sorghum has optimal stomatal functions 

across a wide range of vapor pressure deficits (2.3 to 5.6 kPa).  This may suggest that sweet sorghum 

may grow at wider optimal temperature range than those currently given for corn or grain sorghum.  

As described above a need for research for sweet sorghum modeling is the VPD/RUE slope 

relationship proposed by Kiniry (1998, 1999). The bases for VPD/RUE slope was not based on an actual 

measured value but on the conclusions from Steduto et al. (1997) which suggested that sweet sorghum 

stomata operate optimally over a wide VPD range (2.3 to 5.6 kPa). In the paper published by Kiniry 

(1998) the vapor pressure deficit was calculated on a daily average averaged over the growing season 

and the value is then plotted with the RUE calculated during the none reproductive growth stages. What 

would help with the correlation of VPD with RUE relationship would be a comparison that was not 

seasonal but show more resolution throughout the growing season. Perhaps a daily comparison, if 
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possible, would provide the necessary information for understanding the impact of VPD on RUE, which 

would certainly improve modeling efforts, perhaps determining if VPD has a greater effect on RUE at 

lower soil moisture contents. Resolving the disagreements between Kiniry (1999) and Sinclair and 

Munchow (1999a, 1999b) and bring a clearer understanding how VPD effects RUE and whether or not it 

is as significant, as Kiniry (1998, 1999) concludes.  

To allow for further development and validation of sweet sorghum physiological stages through 

crop modeling a better understanding of the grain fill development stages of sweet sorghum would 

allow some of the models compared in this study to be better suited for sweet sorghum modeling, with 

the review method discussed in this thesis, if this data were available.  

Other specific physiological factors would also be useful in allowing the models being review 

better suited, such as factors for the uptake of nutrients, specifically Nitrogen/Phosphorus. For example, 

for further development and understanding of nutrient accumulation in sweet sorghum biomass, 

providing nutrient concentrations at different stages of growth (i.e., emergence, flowering, during grain 

fill) would provide additional values for sweet sorghum parameters to allow for other crop models, with 

this method of review, to be better suited for modeling sweet sorghum.   

Additional biomass data provided as dry and wet biomass values and measurements with large 

scale field tests (≥1 ha (2.5 ac)) may help provide the field condition comparison for modeled data to 

further the development and validate sweet sorghum modeling, providing a means of solidifying sweet 

sorghum as a potential ethanol feedstock crop.  

General Modeling 

After reviewing models and climate data in during this study, it became evident that providing 

an alternate means for runoff estimation may provide a more accurate depiction of field conditions 

especially for the field scale crop models used in this study. This idea stemmed from an article found 

during the literature review process written by Garen and Moore (2005; Walter and Shaw, 2005), who 
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expressed concerns that the curve number method was being applied in ways which it was not originally 

designed to be implemented.  The suggestions were not meant to discredit models that have used the 

curve number method but to urge members of the scientific community to move toward the 

development of an alternative estimation method.  The misuses described in this article may contribute 

to variations in modeled field conditions that reduce modeling accuracy and precision when compared 

to real world environments.  The development of a new runoff estimation model may provide a better 

understanding of surface dynamics of the soil with residue, and nutrient/sediment loss.  

In general, after reviewing all the crop models in this study, it seems apparent that a 

modification to the radiation absorption function may be needed.  Focusing on climates that have more 

cloud cover during the growing season, and how plants absorb radiation during clouding days is 

important for future work.  Plant growth during the growing season in these areas may be 

underestimated due to a higher fraction of dispersed/direct radiant energy, which has been shown to 

increase radiation use efficiency as much as 0.4 g MJ-1.   In order to incorporate this into new models or 

existing models additional information may need to be collected, specifically daily cloud cover. 

In recent years modeling has begun to incorporate more spatially appropriate rainfall data (Gali 

et al., 2007).  Gali et al. (2007) incorporated Nexrad rainfall data into the SWAT model to improve 

modeling results.  Incorporating these types of rainfall data may reduce error by ensuring rainfall 

distribution is more accurate and not extrapolated from rain gauge sites.  Additionally, a factor 

incorporating storm intensity may help with erosion and runoff calculations.  
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