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Abstract

In this report, we introduce the minimum Hellinger distance (MHD) estimation method

and review its history. We examine the use of Hellinger distance to obtain a new efficient

and robust estimator for a class of semiparametric mixture models where one component

has known distribution while the other component and the mixing proportion are unknown.

Such semiparametric mixture models have been used in biology and the sequential clustering

algorithm. Our new estimate is based on the MHD, which has been shown to have good

efficiency and robustness properties. We use simulation studies to illustrate the finite sample

performance of the proposed estimate and compare it to some other existing approaches.

Our empirical studies demonstrate that the proposed minimum Hellinger distance estima-

tor (MHDE) works at least as well as some existing estimators for most of the examples

considered and outperforms the existing estimators when the data are under contamination.

A real data set application is also provided to illustrate the effectiveness of our proposed

methodology.
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Chapter 1

Introduction

1.1 Background

The statistical problem which motivates the minimum Hellinger distance (MHD) estimation

can be described as follows. Random variables X1, X2, ..., Xn are observed, and we postulate

that the {Xi} are independent and identically distributed (i.i.d) with density function f .

If f belongs to a specified parametric family {fθ : θ ∈ Θ ⊆ Rp} then θ may be estimated

using well-known likelihood procedures. However, we recognize that lack of information,

data contamination, and other factors beyond our control make it virtually certain that the

model is not strictly correct. Also, assuming f belongs strictly to {fθ} ignores the possibility

of departures from the parametric model.

In practice, for many parametric family of interest, the maximum likelihood estimator

(MLE) of θ has full asymptotic efficiency among regular estimators. In general, however,

it has long been known that MLE does not possess the property of stability under small

perturbations in the underlying model. As a result, robust estimator, like M -estimator has

been developed, but many of them achieve the robustness at some cost in first-order effi-

ciency. This is not true for minimum Hellinger distance estimator (MHDE), first introduced

by Beran (1977). In fact, Lindsay (1994) has shown that MLE and MHDE are members

of a large class of efficient estimators with various second-order efficiency properties, and

MHDE has been shown to have excellent robustness properties in parametric models such as

1



resistance to outliers and robustness with respect to model misspecification (Beran (1977)).

By using the minimum Hellinger distance approach, we assume that f is either in {fθ}

or close to a member of {fθ}, and the MHDE of θ is defined as the value of the parameter

that minimize the Hellinger distance between the parametric model and a nonparametric

density estimator of f . That is, if we use θ̂ to denote the MHDE, then θ̂ is defined by

θ̂ = arg min
θ∈Θ

∥∥∥f 1/2
θ − f 1/2

n

∥∥∥ , (1.1)

where ‖f1 − f2‖ = (
∫

[f1(x)− f2(x)]2 dx)1/2 denotes the L2-norm and fn is a nonparametric

density estimator of f , such as the kernel density estimator, based on the observations

X1, X2, ..., Xn.

From the definition, it is interesting to note that the MHDE θ̂ is related heuristically to

the maximum likelihood estimator of θ. When n is sufficiently large, the MLE should be

close to θ, the true parameter, and the nonparametric density estimator fn should be close

to fθ. Finding the MLE amounts to maximizing the integral
∫

log fθ(x)dFn(x) over θ ∈ Θ,

where Fn is the empirical distribution function of the data. Note that∫
fn(x) log

[
fθ(x)

fn(x)

]
dx = 2

∫
fn(x) log

[
1 +

(
f

1/2
θ (x)

f
1/2
n (x)

− 1

)]
dx

≈ 2

∫
fn(x)

(f 1/2
θ (x)

f
1/2
n (x)

− 1

)
− 1

2

(
f

1/2
θ (x)

f
1/2
n (x)

− 1

)2
 dx

= −2
∥∥∥f 1/2

θ − f 1/2
n

∥∥∥2

thus, it is not unreasonable to expect that the MHDE θ̂ is asymptotically efficient under fθ.

On the other hand, since∥∥∥f 1/2
θ − f 1/2

n

∥∥∥2

≤
∫
‖fθ(x)− fn(x)‖dx ≤ 2

∥∥∥f 1/2
θ − f 1/2

n

∥∥∥ ,
the topology induced on the space of probability measures by the Hellinger metric is the

same as that induced by the L1-norm. It is known that the L1-norm induces a robust

topology, therefore, the MHDE could be expected to be robust as well.
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1.2 Development of MinimumHellinger Distance (MHD)

estimation

1.2.1 Parametric models

Beran (1977) defined and studied the minimum Hellinger distance estimator for parametric

model, and has shown MHDE to have excellent robustness properties in parametric models

such as resistance to outliers and robustness with respect to model misspecification.

Associated with the MHDE θ̂, a functional T was defined. The continuity and differ-

entiability of functional and the conditions for the existence of MHDE was studied in the

following theorem by Beran.

Let F denote the set of all densities with respect to Lebesgue measure on the real line.

The functional T is defined on F such that for every g ∈ F ,∥∥∥f 1/2
T (g) − g

1/2
∥∥∥ = min

θ∈Θ

∥∥∥f 1/2
θ − g1/2

∥∥∥ , (1.2)

and the MHDE θ̂ is defined as T (fn).

Theorem 1.2.1. (Beran(1977)) Suppose that Θ is a compact subset of Rp, θ1 6= θ2 implies

fθ1 6= fθ2 on a set of positive Lebesgue measure, and for almost every x, fθ(x) is continuous

in θ. Then

(i) For every g ∈ F , there exists T (g) ∈ Θ satisfying (1.2).

(ii) If T (g) is unique, the functional T is continuous at g in the Hellinger topology.

(iii) T (fθ) = θ uniquely for every θ ∈ Θ.

For notational convenience, let st = f
1/2
t . With further assumptions on st, the functional

T becomes differentiable, a property that is fundamental for further developments. For

specified t ∈ Θ ⊆ Rp, we will typically assume that there exist a p × 1 vector ṡ(x) with

components in L2 and a p× p matrix s̈(x) with components in L2 such that for every p× 1

3



real vector e of unit Euclidean length and for every scalar α in a neighborhood of zeros,

st+αe(x) = st(x) + αeT ṡt(x) + αeTuα(x) (1.3)

ṡt+αe(x) = ṡt(x) + αs̈t(x)e+ αvα(x)e (1.4)

where uα(x) is p× 1, vα(x) is p× p, and the components of uα and of vα individually tend

to zero in L2 as α→ 0.

Theorem 1.2.2. (Beran(1977)) Suppose that (1.3) and (1.4) hold for every t ∈ int(Θ),

T (g) exists, is unique and lies in int(θ),
∫
s̈T (g)g

1/2(x)dx is a nonsingular matrix, and

the functional T is continuous at g in the Hellinger topology. Then for every sequence of

densities gn converging to g in the Hellinger metric,

T (gn) = T (g) +

∫
ρg(x)[g1/2

n (x)− g1/2(x)]dx

+ an

∫
ẋT (g)(x)[g1/2

n (x)− g1/2(x)dx, (1.5)

where

ρg(x) = −
ṡT (g)(x)∫

s̈T (g)(x)g1/2(x)dx

and an is a real p× p matrix which tends to zero as n→∞. In particular, for g = fθ,

ρfθ(x) = − ṡθ(x)∫
s̈θ(x)sθ(x)dx

= − ṡθ(x)∫
ṡθ(x)ṡTθ (x)dx

.

Next the large sample behavior of T (fn) is examined, where fn is a kernel density esti-

mator

fn(x) =
1

nhnSn

n∑
i=1

K

(
x−Xi

hnSn

)
, (1.6)

where K is a smooth density function, bandwidth hn are positive constants such that hn → 0

as n → ∞, and Sn = Sn(X1, ..., Xn) is a robust scale estimator. {Xi} are i.i.d random

variables with density f .

With further assumptions on the bandwidths and kernels, the consistency of the MHDE

θ̂ follows from the continuity of functionals in the Hellinger topology.
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Theorem 1.2.3. (Beran(1977)) Suppose

(i) K is absolutely continuous and has compact support; K ′ is bounded.

(ii) f is uniformly continuous.

(iii) lim
n→∞

hn = 0, lim
n→∞

n1/2hn =∞.

(iv) As n→∞, sn
p→ s, a positive finite constant depending on f .

Then
∥∥∥f 1/2

n − f 1/2
∥∥∥ p→ 0 as n → ∞. If T is a functional continuous at f in the Hellinger

metric, then T (fn)
p→ T (f)

In the next theorem, Beran showed that under stronger assumptions, T (fn) has an

asymptotically normal distribution about T (f).

Theorem 1.2.4. (Beran(1977)) Suppose

(i) K is symmetric about 0 and has compact support.

(ii) K is twice absolutely continuous; K ′′ is bounded.

(iii) T satisfy (1.5) and ρg has compact support K on which it is continuous.

(iv) f > 0 on K; f is twice absolutely continuous and f ′′ is bounded.

(v) lim
n→∞

n1/2hn =∞, lim
n→∞

n1/2h2
n = 0.

(vi) There exists a positive finite constant s depending on f such that n1/2(sn−s) is bounded

in probability.

Then
√
n [T (fn)− T (f)]

D→ N

(
0,

∫
ρf (x)ρTf (x)dx

4

)
.

In particular, if f = fθ, then

√
n [T (fn)− θ] D→ N

(
0,

1

4
∫
ṡθ(x)ṡTθ (x)dx

)
.
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To appreciate the robustness of MHDE upon a Hellinger metric model of data contami-

nation, theoretical results showed that the MHDE was minimax robust in a small Hellinger

metric neighborhood of the given family, and the local minimax robustness at fθ entailed

asymptotic efficiency at fθ, but not conversely. On the other hand, in order to examine the

behavior of T under a mixture model for gross errors, the α-influence curve was introduced.

Let δz denote the uniform density on the interval (z − ε, z + ε), where ε > 0 is very

small, and let fθ,α,z = (1 − α)fθ + αδz for θ ∈ Θ, α ∈ [0, 1), and real z. Here, the density

fθ,α,z models an experiment where independent observations distributed according to fθ are

mixed with approximately 100α% gross errors located near z. For every α ∈ (0, 1), the

difference quotient, named α-influence curve

ICt,α(z) =
T (fθ,α,z)− θ

α

is a bounded continuous function of z such that

lim
z→∞

T (fθ,α,z)− θ
α

= 0.

Hence, the functional T is robust at fθ against 100α% contamination by gross errors at

arbitrary real z, whether or not the influence function of T is irrelevant to the matter.

1.2.2 Mixture of two normals

Based on Beran (1977)’s work, Woodward et al. (1995) examined the MHDE in the case of

estimation of the mixing proportion in the mixture of two normals, discussed the practical

feasibility of employing the MHDE in this setting and examined empirically its robustness

properties. Their results indicated that the MHDE obtained full efficiency at the true model

while performing comparably with the minimum distance estimator based on Cramér-von

Mises distance under the symmetric departures from component normality considered.

Finite Mixture Model has been a hot topic during the past years. The classic paper

on mixture models is by the famous biometrician Pearson (1894), where he used a moment

based method to fit a mixture of two heteroscedastic normal components in the paper. A few
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years later, Charlier and Wicksell (1924) extended Pearson’s work to the bivariate normal

component case and Doetsch (1928) used it in the case of more than two univariate normal

components.

The mixture of two normal components has density

fθ(x) =
p√

2πσ1

exp

{
−1

2

(
x− µ1

σ1

)2
}

+
1− p√
2πσ2

exp

{
−1

2

(
x− µ2

σ2

)2
}
,

where θ = (µ1, σ1, µ2, σ2, p)
′.

At the first step, they considered the case in which fθ(x) is a mixture of known densities,

which implies that θ = p. Since the kernel density estimator is Hellinger consistent and the

Hellinger metric on the probability distributions is equivalent to the Euclidean metric on the

parameter space, implying Theorem 1.2.3, the MHDE p̂ is consistent. Similarly, by implying

Theorem 1.2.4, the MHDE p̂ has an asymptotic normal distribution and is asymptotically

fully efficient.

Next, they considered the case in which the five parameters p, µ1, σ1, µ2 and σ2 are all

unknown, meaning that θ = (p, µ1, σ1, µ2, σ2)′.

Following Beran (1977), minimizing
∥∥∥f 1/2

θ − f 1/2
n

∥∥∥ is equivalent to maximizing
∫
f

1/2
θ f

1/2
n .

However, due to convergence issue, Woodward et al. (1995) approximated this integral by

the trapezoidal rule to obtain

Î = ∆ti

k∑
i=1

ai

(
f

1/2
θ (ti)− f 1/2

n (ti)
)2

,

where a1 = ak = 1/2 and ai = 1 for i = 2, 3, ..., k − 1 for a partition t1, t2, ..., tk of [a, b], a

finite interval.

In order to examine the property of MHDE, a stimulation study was conducted to

compare MHDE and MLE, and the results were based on Bias, MSE, and the relative

7



efficiencies

B̂ias =
1

ns

ns∑
i=1

(p̂i − p)

M̂SE =
1

ns

ns∑
i=1

(p̂i − p)2

Ê =
M̂SE(MLE)

M̂SE(MHDE)
.

The study showed that the MHDE appeared to obtain full efficiency at the true model

as evidenced by Ê near one in all cases. The probability plots indicated that the normality

of the MHDE was very similar to that of the MLE. When checking the results for samples

which were simulated as mixtures of t(4) component, all of the Ê’s were greater than one

providing evidence that the MHDE was more robust to the departures from the assumption

of normal components than was the MLE. Further study with the component of t(2) showed

that the more the mixed models departed from normality, the better the MHDE was.

1.2.3 Multivariate location and covariance

Tamura and Boos (1986) extended the research of Beran (1977) from univariate to multivari-

ate estimation and added an important new robustness result. The idea of the breakdown

point of an estimator originates from Hampel (1971) and may be interpreted as the smallest

fraction of bad data that can cause an estimator to give an arbitrarily bad answer. Donoho

(1982) has proposed the following definition of the breakdown point.

Let X be a given data set of size n, and let Y be a contaminating data set of size m ≤ n.

An estimator t is said to break down if, by appropriate choice of Y1, ..., Ym, the difference

t(X ∪ Y ) − t(X) can be made as large as desired. If m∗ denotes the smallest number of

contamination points for which t breaks down, then the breakdown point ε∗(t,X) of t at X

is
m∗

n+m∗
.

Thus, if an estimator t1 has a larger breakdown point than an estimator t2, then t1 is more

8



robust than t2, since it can handle a larger fraction of bad data.

Tamura and Boos (1986) showed that the asymptotic breakdown point of the MHDE

for location and scatter was greater than or equal to 1/4 regardless of the data dimension,

meaning that, roughly speaking, at least one quarter of the data could be badly damaged

or arbitrarily changed without destroying the estimator.

In the paper, they mainly focused on parametric families within the class of elliptically

symmetric distributions with density function of the form

f(x) ∝ Ψ{(x− µ)′Σ−1(x− µ)}
|Σ|1/2

so that θ = (µ,Σ).

Choosing the nonparametric density estimator fn properly, the multivariate MHDE’s

are independent of the coordinate system, that is, µ̂ is affine equivariant and Σ̂ is affine

covariant. Applying Theorem 1.2.3, strong consistency is easily obtained. The asymptotic

normality is not so simple in multivariate case, but if the nonparametric density estimator

fn is a kernel estimator, then under some strict restrictions, the MHDE’s have asymptotic

normal distributions.

To measure the robustness of the MHDE, Beran (1977) introduced the α-influence curve.

Unfortunately, however, the result is the consequence of assuming a compact parameter s-

pace and it appears that the ICt,α(z) would have to be plotted for numerous values of α

in each situation of interest in order to see how the MHDE handles contamination. In-

stead, Tamura and Boos (1986) gave a general bound on the amount of contamination that

the MHDE could handle when estimating location and scatter, showing that the asymptotic

breakdown point of the MHDE was bounded below by 1/4. This is more favorable compared

to the M -estimator of Maronna (1976), which has a breakdown upper bound of 1/(k + 1).

Thus, for high-dimensional data, the MHDE should have better robustness properties than

the M -estimators.

9



1.2.4 Count data

Simpson (1987) studied the MHDE in the context of discrete data, where the model was

allowed to have countably infinite support. An improved breakdown bound of 1/2 was

obtained at the model.

For count data, the most commonly used fn is the empirical density function

fn(x) = Nx/n, x = 0, 1, ...,

where Nx is the frequency of x among X1, X2, ..., Xn.

Since fn > 0 and
∫
fn = 1,∥∥∥f 1/2

n − f 1/2
θ

∥∥∥2

= 2− 2

∫
f 1/2
n f

1/2
θ .

Then, by definition, the MHDE maximizes ρn,θ =
∑∞

x=0 f
1/2
n (x)f

1/2
θ (x), which yields the

standardized estimation equation

ρ−1
n,θ =

∞∑
x=0

f 1/2
n (x)f

1/2
θ (x)lθ(x) = 0,

where lθ(x) is the gradient of logfθ(x).

Beran (1977) characterized the existence and the continuity of T in the continuous case

for compact Θ. Simpson (1987) extended Beran’s existence and continuity result and showed

that the result also applied if Θ was embedded in a compact space Θ̄. After applying the

smoothness conditions on the model, the asymptotic normality for a discrete distribution

with countable support was derived under a readily verified condition on the model.

In order to appreciate the robustness, Simpson (1987) compared the breakdown proper-

ties of the MHDE and a sequential outlier screen. Finally an improved breakdown bound

of 1/2 was obtained for the MHDE.

1.2.5 Poisson mixtures

Finite Poisson mixtures are used to describe data that are overdispersed and hence can’t be

fitted by a simple Poisson distribution. Based upon Simpson (1987), Karlis and Xekalaki
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(1998) derived MHDE for finite Poisson mixtures, and proved it to be both efficient and

robust. To facilitate computation, they provided an iterative algorithm.

For k-finite Poisson mixtures, the empirical density function is still the most commonly

used fn(x), and

fθ(x) =
k∑
i=1

pi
e−λiλxi
x!

, x = 0, 1, ...,

where θ = (p1, p2, ..., pk−1, λ1, λ2, ..., λk), λi > 0, i = 1, 2, ..., k and pi ∈ (0, 1) for i = 1, 2, ..., k

with
∑k

i=1 pi = 1.

To compare MHDE and MLE, Karlis and Xekalaki (1998) studied the estimation equa-

tions for both estimates. For parameter θ, the estimating equation for MLE is

∞∑
x=0

fn(x)

fθ(x)

∂fθ(x)

∂θi
= 0,

while the estimating equation for MHDE is

∞∑
x=0

[
fn(x)

fθ(x)

]1/2
∂fθ(x)

∂θi
= 0.

If the model is well specified and the sample size is large, the square root of fn(x)/fθ(x)

should be close to itself, and thus, we would expect MHDE and MLE to behave similarly. On

the other hand, in the case of outliers, for values of x for which the ratio is large, the MHDE

gives less weight to the estimation by taking the square root, and thus, not so sensitive to

outliers.

Simulation study showed that, for contaminated models, MLE usually modeled the con-

tamination with an additional component. Since mixture models were very often not appro-

priately specified, including the case where the number of components not being assigned

prior to analysis, the MHDE was more reliable in such case.

1.2.6 Finite mixtures of Poisson regression models

Lu et al. (2003) extended the MHDE approach from the finite mixtures of Poisson distri-

butions to the finite mixtures of Poisson regressions for count data.
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Let (yi, ti,xi), i = 1, ..., n denote observations, where yi is the observation value of the ith

response variable Yi, ti is a non-negative quantity representing the time or extent of exposure,

and xi is the observed value of random covariate vector of dimension p+ 1 corresponding to

the regression part of the model. A finite mixture of poisson regression model is defined as

fθ(yi|xi) =
k∑
j=1

αjg(yi; log(λij))

g(y; γ) =
1

y!
exp[yγ − eγ], y = 0, 1, ...,

where αj denotes the proportion of the jth component with
∑k

j=1 αj = 1, k is the number

of components, g(y; γ) is the Poisson probability distribution with mean λ = eγ > 0, and

λij = tiλj(xi) with

log(λj(x,βj)) = βj0 + βj1x1 + · · ·+ βjpxp = xTβj, j = 1, ..., k.

Here, x = (1, x1, ..., xp)
T , βj = (βj0, βj1, ..., βjp)

T ∈ R1+p, βjl is the regression coefficient for

the lth covariate xl and jth component, and θ = (α1, ..., αk−1,β
T
1 , ...,β

T
k )T .

The same as before, Lu et al. (2003) used the empirical probability function as fn

fn(y) =
Ny

n
, y = 0, 1, 2, ...,

assuming that the sample size is sufficiently large, and Ny is the frequency of y among

Y1, ..., Yn. If

fθ(y) =

∫
fθ(y|x)fX(x)dx =

k∑
j=1

αj

∫
g(y;xTβj)fX(x)dx (1.7)

is known, except for parameter θ, then

θ̂ = arg min
θ

∥∥∥f 1/2

θ
− f 1/2

n

∥∥∥ .
If, however, fX(x) is unknown, or the integration in (1.7) is complex due to the high

dimension of X, then replace fθ(y) by a consistent estimator

fθ,n(y) =
1

n

n∑
i=1

fθ(y|xi) =
k∑
j=1

n∑
i=1

αj
n
g(y;xTi βj)

12



and the MHDE of θ is defined as

θ̂ = arg min
θ

∥∥∥f 1/2

θ,n
− f 1/2

n

∥∥∥ .
Evidence from Monte Carlo simulations suggested that MHDE is a viable alternative to

the maximum likelihood estimator when the mixture components were not well separated

or the model parameters were near zero.

1.2.7 Nonparametric mixture model

Assuming that data from the distributions F and G as well as the mixture distribution

λF (x)+(1−λ)G(x) are available, Karunamuni and Wu (2009) used the minimum Hellinger

distance approach to estimate the mixture proportion λ, where F and G are two unknown

distributions, and λF (x) + (1− λ)G(x) is known as a nonparametric mixture.

More specifically, they assumed that they observed three independent samples

X1, ..., Xn0

iid∼ F,

Y1, ..., Yn0

iid∼ G,

Z1, ..., Zn0

iid∼ λF + (1− λ)G,

and then, the problem was to estimate the mixture parameter λ, treating F and G as

nuisance parameters.

In order to employ the MHD technique of Beran (1987), they defined a parametric family

of densities

Mλ(x) = λf(x) + (1− λ)g(x), (1.8)

where f and g denote the density functions of F and G, respectively. Then, they defined

adaptive kernel density estimators of f ad g, based on data X1, ..., Xn0 and Y1, ..., Yn0 :

f̃(x) =
1

n0Sn0hn0

n0∑
i=1

K1

(
x−Xi

Sn0hn0

)
g̃(x) =

1

n1Sn1hn1

n1∑
i=1

K2

(
x− Yi
Sn1hn1

)
,

13



where K1 and K2 were two smooth density functions, bandwidths hn0 and hn1 were positive

constants such that hni → 0 as ni → ∞, i = 0, 1, and Sn0 = Sn0(X1, ..., Xn0) Sn1 =

Sn1(Y1, ..., Yn0) were robust scale statistics. Replace f and g from (1.8) with f̃ and g̃, a

parametric mixture model was defined as:

M̃λ(x) = λf̃(x) + (1− λ)g̃(x).

Next, a kernel density estimator based on the Zi’s was defined:

M̂(x) =
1

n2Sn2hn2

n2∑
i=1

K

(
x− Zi
Sn2hn2

)
,

where K, h and S were defined similarly. Then, the MHDE λ̂ is the minimizer of the

Hellinger distance between M̃λ and M̂ .

Similar to Beran (1987), the MHDE was proved to be consistent, asymptotic normally

distributed, and have good efficiency and robustness properties.

1.2.8 Two-sample semiparametric model

Over the past few years, semiparametric models have continued to receive increasing at-

tention from both practical and theoretical point of views, due to its wide application,

primarily in biostatics and econometrics. Wu et al. (2010) investigated the estimation

problem of parameters in a two-sample semiparametric model. Let X1, ..., Xn be a sam-

ple from a population with distribution function G and density function g, and Z1, ..., Zn

be another sample, independent of X ′is, with distribution function H and density function

h(x) = exp[α + r(x)β]g(x), where α an β are unknown parameters of interest and g is an

unknown density. Define θ = (α,βT )T , then,

X1...., Xn
iid∼ g(x),

Z1...., Zm
iid∼ hθ(x),

where hθ(x) = g(x)exp[(1, r(x))θ], r(x) = (r1(x), ..., rp(x)) is a 1 × p vector of continuous

functions of x on R, β = (β1, ..., βp)
T is a p × 1 parameter vector, and α is a normalizing

parameter that makes hθ(x) integrate to 1.
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Based on X1, ..., Xn and Z1, ..., Zm, Wu et al. (2010) first defined the kernel density

estimators of g and hθ:

gn(x) =
1

nbn

n∑
i=1

K0

(
x−Xi

bn

)
,

hm(x) =
1

mbm

m∑
j=1

K1

(
x− Zj
bm

)
,

where K0 and K1 were symmetric density functions, bandwidths bn and bm were positive

constants such that bn → 0 as n→∞ and bm → 0 as m→∞.

Applying the plug-in rule, they used the estimator gn in the place of g and constructed

a parametric model as:

ĥθ(x) = exp[(1, r(x))θ]gn(x).

Note that ĥθ is a parametric density function with the unknown parameter being θ.

Then, the MHDE θ̂ is the minimizer of the Hellinger distance between the parametric

density ĥθ and the nonparametric density estimator hm.

The approach here is in line with Beran (1987), thus it is not difficult to prove that

the MHDE is consistent, asymptotic normally distributed, and has good efficiency and

robustness properties.
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Chapter 2

MHD Estimation in a
Semiparametric Mixture Model

2.1 Introduction

The two-component mixture model considered in this report is defined by

g(x) = πf0(x; ξ) + (1− π)f(x− µ),∀x ∈ R, (2.1)

where f0(x; ξ) is a known probability density function (pdf) with possibly unknown param-

eter ξ and f is an unknown pdf with non-null location parameter µ ∈ R, and π is the

unknown mixing proportion.

Bordes et al. (2006) studied the case when ξ is assumed to be known, i.e., the first

component density is completely known, and model (2.1) becomes

g(x) = πf0(x) + (1− π)f(x− µ),∀x ∈ R. (2.2)

The model (2.2) is motivated by the problem of detection of differentially expressed genes

under two or more conditions in microarray data. We build a test statistic for each gene

and then observe the response of thousands of genes, which corresponds in practice to

thousands of observations from statistical tests. Under the null hypothesis, due to a lack

of difference in expression, the test statistic is assumed to have a known distribution, say

f0, and the samples obtained in the way mentioned earlier should come from a mixture of

two distributions: the known distribution f0, that is under null hypotheses, and the other
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distribution, f(· − µ), the unknown distribution of the test statistics under the alternative

hypothesis. The probability that a gene comes from the null component of the mixture

distribution (2.2) conditionally on the observation can be estimated if we can estimate the

parameters π, µ and f . Consequently, we can classify each gene to a component by using a

classification criterion, and therefore distinguish the genes differentially expressed from the

genes non-differentially expressed. Please see Bordes et al. (2006) for more detail about the

application of model (2.2) to Microarray data analysis.

Song et al. (2010) studied another special case of model (2.1)

g(x) = πφ(x; 0, σ) + (1− π)f(x),∀x ∈ R, (2.3)

where φ(x; 0, σ) is a normal density with mean 0 and unknown standard deviation σ and

f(x) is an unknown density. The model (2.3) was motivated by a sequential clustering

algorithm, proposed by Song and Nicolae (2009). Unlike most clustering algorithms, the

sequential clustering algorithm doesn’t require specifying the number of clusters and allows

some objects not to be assigned to any clusters. The algorithm works by finding a local

center of a cluster first, and then identifying whether a object belongs to that cluster or not

based on some penalty score. If we assume that the objects belonging to the cluster come

from a normal distribution with known mean (such as 0) and unknown variance σ2 and

that the objects not belonging to the cluster come from an unknown distribution f , then

identifying the points in the cluster can be considered as estimating the mixing proportion

in model (2.3). This estimation of the mixing proportion will be repeated whenever a new

cluster is considered.

Note that the semiparametric mixture model (2.1) is not generally identifiable. Bordes

et al. (2006) has shown that model (2.2) is not generally identifiable if we don’t put any

restriction on unknown density f(x), but identifiability can be achieved through some suf-

ficient conditions. One important condition is that f(·) is symmetric about 0. Then, they

proposed an estimation procedure based on the symmetry of the unknown component f .

Song et al. (2010) also addressed the problems of unidentifiability and noticed that model
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(2.3) was not generally identifiable. In addition, due to the additional unknown parameter σ

in the first component, Song et al. (2010) mentioned that it was hard to find the conditions

to avoid unidentifiability of model (2.3) and proposed to use simulation studies to check the

performance of the proposed estimators.

In this report, we mainly focus on the estimation part of model (2.1) and propose a new

estimator for model (2.1) based on Minimum Hellinger Distance, which has been shown to

have good efficiency and robustness properties (see, for example, Beran, 1977 and Lindsay,

1994). Please refer to Bordes et al. (2006) and Song et al. (2010) for some detailed discussions

about the identifiability of model (2.1). A simple and effective algorithm is also given

to find the proposed estimator. Using simulation studies, we illustrate the finite sample

performance of the proposed estimate and compare it to the estimators proposed by Bordes

et al. (2006) and Song et al. (2010). Our empirical studies demonstrate that the proposed

MHDE works at least as well as some existing estimators for most of the examples considered

and outperforms the existing estimators when the data are under contamination.

2.2 Review of Existing Methods

2.2.1 Estimating by symmetrization

Bordes et al. (2006) proposed an inference procedure based on the symmetry of the unknown

component of model (2.2). Let X1, ..., Xn be random variables from model (2.2) and G be

the cumulative distribution function (cdf) of model (2.2), i.e.

G(x) = πF0(x) + (1− π)F (x− µ),∀x ∈ R, (2.4)

where G, F0, and F are the corresponding cdfs of g, f0 and f . Assuming that the G is

uniquely defined in (2.4), then

F (x) =
1

1− π
((G(x+ µ)− πF0(x+ µ)),∀x ∈ R. (2.5)
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Let

H1(x; π, µ,G) =
1

1− π
G(x+ µ) + (1− 1

1− π
)F0(x+ µ),

H2(x; π, µ,G) = 1− 1

1− π
G(µ− x) + (

1

1− π
− 1)F0(µ− x).

Since f is assumed to be symmetric, F (x) = 1−F (−x), for all x ∈ R. Then, H1(·; π0, µ0, G) =

H2(·; π0, µ0, G), where π0 and µ0 are the unknown true values of π and µ. Consequent-

ly, if d is a distance measure, such as L2-norm, between two functions, then we have

d(H1(·; π0, µ0, G), H2(·; π0, µ0, G)) = 0, where

d(π, µ) = ‖H1 −H2‖2 =

(∫
|H1(x; π, µ,G)−H2(x; π, µ,G)|2dx

)1/2

.

Since G is unknown, it is estimated by

Ĝn(x) =
1

n

n∑
i=1

I(Xi ≤ x),∀x ∈ R,

where I(·) is the indicator function. Replace G by Gn, we get an empirical version dn of

d defined by dn(π, µ) = d(H1(·; π, µ,Gn), H2(·; π, µ,Gn)). Bordes et al. (2006) proposed to

estimate π and µ of model (2.2) by minimizing dn(π, µ).

2.2.2 EM-type estimator

Let

Zi =

{
1, if Xi is from the first component;
0, otherwise.

Song et al. (2010) proposed an EM-type estimator for model (2.3).

E-step In the (k + 1)th step, compute the conditional expectation of Zi given parameters

of the kth step and data, i.e.,

Z
(k+1)
i = E(Zi|π(k), σ(k), Xi) =

π(k)φσ(k)(Xi)

ĝ(Xi)
, (2.6)

where

ĝ(x) =
1

nh

n∑
i=1

K

(
x−Xi

h

)
, (2.7)

and K is a kernel function, such as Gaussian kernel, and h is the bandwidth.
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M-step The values of the parameters are updated in the M-step as follows.

π(k+1) =

∑n
i=1 Z

(k+1)
i

n
,

σ(k+1) =

√√√√∑n
i=1 Z

(k+1)
i X2

i∑
Z

(k+1)
i

.

In addition, Song et al. (2010) also recommended to use

Z
(k+1)
i =

2π(k)φσ(k)(Xi)

π(k)φσ(k)(Xi) + ĝ(Xi)

truncated to 1 when it is greater than 1, in the E step, to stabilize the Z-values.

2.2.3 Maximizing π-type estimator

Song et al. (2010) demonstrated that the EM-type estimator introduced in Section 2.2.2

is biased when two component densities overlap significantly based on their simulation s-

tudies. Therefore, they proposed an alternative estimator, by finding the maximum mixing

proportion π that satisfies the following condition:

πφσ(xi) ≤ ĝ(xi), i = 1, ..., n.

Therefore, the estimator for π is

π̂ = max
σ

min
xi

ĝ(xi)

φσ(xi)
,

where ĝ(xi) has the same definition as in (2.7), and the estimator for σ is

σ̂ = arg max min
xi

ĝ(xi)

φσ(xi)
.

Please refer to Song et al. (2010) for more detailed explanation about this method.

2.3 New Estimate Based on MHD

In this section, we propose an alternative estimator of the general semiparametric mixture

model (2.1) based on Minimum Hellinger Distance (MHD) due to its good efficiency and
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robustness properties. Note that model (2.2) considered by Bordes et al. (2006) and model

(2.3) considered by Song et al. (2010) are just the special cases of the model (2.1).

First, we introduce the general results of MHDE for semiparametric models. Let (X ,S , v)

be a measure space and H be a semiparametric model of v-densities of the form

H = {hθ,f : θ ∈ Θ, f ∈ F},

where Θ is a compact subset of Rp and F is an arbitrary set of infinite dimension. Let G be

a class of v-densities that contains H . For member a of L2(v) we denote the L2(v)-norm of

a as ‖a‖. For any members g1 and g2 of G , the Hellinger distance between them is defined

by

dH(g1, g2) =
∥∥∥g1/2

1 − g1/2
2

∥∥∥ .
The functional T is defined on G such that for every g ∈ G ,∥∥∥h1/2

T (g),f − g
1/2
∥∥∥ = inf

θ∈Θ

∥∥∥h1/2
θ,f − g

1/2
∥∥∥ , (2.8)

where T is referred to as the MHD functional and assumed to be continuous for the Hellinger

distance metric dH . Assume that H is identifiable, and therefore, T is Fisher consistent:

T (hθ,f ) = θ for any θ ∈ Θ and any f ∈ F . Let X1, X2, ..., Xn be a sample of independently

and identically distributed X random variables with density h0 = hθ0,f0 where θ0 ∈ int(Θ)

and f0 ∈ F . Then the MHDE of θ0 is defined as T (hn), where hn is a G -valued estimator

of h0 based on the sample X1, X2, ..., Xn.

Next, we apply the MHD estimation method to model (2.1). Let

H = {hθ,f (x) = πf0(x; ξ) + (1− π)f(x− µ) : θ ∈ Θ, f ∈ F},

where

Θ = {θ = (π, ξ, µ) : π ∈ (0, 1), ξ ∈ (0,∞), µ ∈ R} ,

F = {f : f ≥ 0,

∫
f(x)dx = 1}.
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Assume we have a sample of X1, X2, ..., Xn from a population with density hθ,f ∈ H ,

and a nonparametric density estimation of hθ,f to be denoted by ĝ. We define functional f̂

of t and ĝ as

f̂(θ, ĝ) = argmin
l∈F

∥∥∥h1/2
θ,l − ĝ

1/2
∥∥∥

and then the MHDE of θ is defined as

θ̂(ĝ) = argmin
θ∈Θ

∥∥∥h1/2

θ,f̂(θ,ĝ)
− ĝ1/2

∥∥∥ .
Suppose the initial estimates of θ = (π, σ, µ) and f are θ(0) = (π(0), σ(0), µ(0)) and f (0).

Then the proposed MHDE is calculated by iterating the following two steps.

Step 1 For fixed π(k), σ(k) and µ(k), find f (k+1) which minimizes

∥∥[π(k)φσ(k)(·) + (1− π(k))f (k+1)(· − µ(k))]1/2 − ĝ1/2(·)
∥∥ .

It turns out (Wu et al. 2011) that the solution is

f (k+1)(x) =

{
α

1−π(k) ĝ(x+ µ(k))− π(k)

1−π(k)φσ(k)(x+ µ(k)), if x ∈M ,

0, if x ∈MC ,
(2.9)

where M = {x : αĝ(x) ≥ π(k)φσ(k)(x)} and

α =
1∫

M
ĝ(x)dx

{
π(k)

∫
M

φσ(k)(x)dx+ (1− π(k))

}
.

If we further assume f(·) is symmetric about 0, i.e., f(x) = f(−x), then we can

symmetrize f (k+1)(x) by

f̃ (k+1)(x) =
f (k+1)(x) + f (k+1)(−x)

2
.

Step 2 For fixed f (k+1), find π(k+1), σ(k+1) and µ(k+1) which minimize

∥∥[π(k+1)φσ(k+1)(·) + (1− π(k+1))f (k+1)(· − µ(k+1))]1/2 − ĝ1/2(·)
∥∥ . (2.10)
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Chapter 3

Simulation Studies and Real Data
Application

3.1 Simulation studies

In this section, we investigate the performance of the proposed MHDE, Maximizing-π type

estimator and EM-type estimator (Song et al.(2010)), and the Symmetrized estimator (Bor-

des et al.(2006)) in the case of σ unknown and σ known.

The initial model (2.3) Song et al. (2010) considered did not have the location parameter

µ in the second component. After we have π̂ and σ̂, we can simply estimate µ by

µ̂ =

∑n
i=1 (1− Ẑi)Xi∑n
i=1 (1− Ẑi)

, (3.1)

where Ẑi is

Ẑi =
2π̂φσ̂(Xi)

π̂φσ̂(Xi) + ĝ(Xi)
.

We use both the true values and the estimates from normal mixture models to be the

initial estimates θ(0) = (π(0), σ(0), µ(0)) and choose the one that produces the smaller value

in (2.10).

3.1.1 σ unknown

In this section, we simulate 200 samples of n i.i.d. random variables from a population with

density function (2.1), where (π, σ, µ) are unknown parameters and f is an unknown density
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that is symmetric about zero. We consider the following cases:

Case I: X ∼ 0.3N(0, 1) + 0.7N(1.5, 1)⇒ (π, σ, µ) = (0.3, 1, 1.5)

Case II: X ∼ 0.3N(0, 1) + 0.7N(3, 1)⇒ (π, σ, µ) = (0.3, 1, 3)

Case III: X ∼ 0.3N(0, 1) + 0.7U(2, 4)⇒ (π, σ, µ) = (0.3, 1, 3)

Case IV: X ∼ 0.7N(0, 4) + 0.3N(3, 1)⇒ (π, σ, µ) = (0.7, 2, 3)

Case V: X ∼ 0.85N(0, 4) + 0.15N(3, 1)⇒ (π, σ, µ) = (0.85, 2, 3)

Case I, Case II and Case III are the models used by Song et al.(2010) to show the

performance of their Maximizing-π type and EM-type estimators, where Case I represents

the situation when two components are close and Case II represents the situation when two

components are apart. Case IV and Case V are suggested by Bordes et al.(2006) to show

the performance of their semiparametric EM algorithm. In addition, we also consider a set

of contaminated model by adding 2% outliers from U(10, 20) to the original set of models.

To estimate the unknown parameters (π, σ, µ), we consider the following methods: a)

The MHD estimator; b) Modified Maximizing-π type and EM-type estimator proposed by

Song et al.(2010), estimating µ after π, σ have been estimated; c) Modified Symmetrized

estimator proposed by Bordes et al.(2006) to incorporate the variance σ.

To assess the performance, we look at both the mean and the mean squared error (MSE)

of each estimate, where

mean(θ̂) =
¯̂
θ =

1

m

m∑
t=1

θ̂t,

MSE(θ̂) =
1

m

m∑
t=1

(θ̂t − θ)2.

For the five cases considered, Table 3.1 and Table 3.2 report the mean and MSE of the

parameter estimates based on the four methods when n = 250 and n = 1000. Table 3.3

and Table 3.4 report the result when models are under 2% contamination from U(10, 20).
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From the tables, we can see that Maximizing-π type estimator works better when the two

components have the same parametric distribution, and perform relatively well under a mild

contamination. The EM-type estimator performs quite well when the other component is

not normally distributed, but performs poorly when the two normal components are close.

The Symmetrized estimator outperforms the two methods suggested by Song et al. (2010) in

all cases when there’s no contamination, but is not robust under contaminations. The MHD

estimator that we proposed provides satisfactory results when there’s no contamination, but

perform much better under severe contamination. Therefore, the MHD estimator is more

robust than the rest methods.

Table 3.1: Average (MSE) of Point Estimates Over 200 Repetitions When n = 250

Case TRUE MHDE Maximizing π-type EM-type Symmetrization

I π : 0.3 0.257(0.014) 0.364(0.006) 0.602(0.093) 0.252(0.015)

σ : 1 1.058(0.021) 0.899(0.075) 1.157(0.032) 1.020(0.033)

µ : 1.5 1.436(0.051) 1.720(0.059) 1.921(0.186) 1.421(0.049)

II π : 0.3 0.295(0.001) 0.272(0.003) 0.393(0.011) 0.298(0.001)

σ : 1 1.046(0.013) 1.330(0.912) 1.377(0.191) 0.999(0.021)

µ : 3 2.995(0.010) 2.871(0.054) 3.121(0.022) 2.983(0.011)

III π : 0.3 0.263(0.002) 0.257(0.004) 0.305(0.002) 0.302(0.001)

σ : 1 0.939(0.013) 1.609(1.741) 1.163(0.100) 1.013(0.022)

µ : 3 2.994(0.001) 2.767(0.085) 2.931(0.009) 3.001(0.002)

IV π : 0.7 0.692(0.003) 0.632(0.009) 0.821(0.016) 0.686(0.007)

σ : 2 2.036(0.023) 2.023(0.035) 2.142(0.028) 2.009(0.032)

µ : 3 3.108(0.054) 2.563(0.269) 3.153(0.067) 2.930(0.140)

V π : 0.85 0.836(0.003) 0.774(0.010) 0.910(0.004) 0.774(0.028)

σ : 2 2.093(0.027) 2.069(0.035) 2.046(0.011) 2.027(0.048)

µ : 3 3.115(0.205) 2.088(1.024) 2.778(0.266) 2.427(0.981)
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Table 3.2: Average (MSE) of Point Estimates Over 200 Repetitions When n = 1000

Case TRUE MHDE Maximizing π-type EM-type Symmetrization

I π : 0.3 0.281(0.005) 0.353(0.004) 0.601(0.091) 0.280(0.005)

σ : 1 1.040(0.008) 0.853(0.028) 1.177(0.034) 1.025(0.011)

µ : 1.5 1.481(0.017) 1.736(0.059) 1.923(0.181) 1.476(0.018)

II π : 0.3 0.299(0.001) 0.263(0.002) 0.399(0.010) 0.300(0.001)

σ : 1 1.017(0.003) 0.956(0.007) 1.407(0.176) 0.998(0.005)

µ : 3 3.009(0.002) 2.958(0.005) 3.151(0.025) 3.003(0.002)

III π : 0.3 0.271(0.001) 0.253(0.003) 0.311(0.001) 0.301(0.001)

σ : 1 0.949(0.005) 0.971(0.007) 1.177(0.044) 1.005(0.004)

µ : 3 2.997(0.001) 2.878(0.017) 2.969(0.002) 2.999(0.001)

IV π : 0.7 0.692(0.001) 0.631(0.006) 0.825(0.016) 0.696(0.001)

σ : 2 2.002(0.006) 1.949(0.013) 2.172(0.032) 1.999(0.006)

µ : 3 3.058(0.017) 2.654(0.153) 3.161(0.035) 2.982(0.015)

V π : 0.85 0.847(0.001) 0.783(0.006) 0.922(0.005) 0.825(0.010)

σ : 2 2.053(0.009) 1.995(0.008) 2.087(0.010) 2.008(0.031)

µ : 3 3.099(0.042) 2.255(0.633) 3.135(0.060) 2.820(0.293)

3.1.2 σ known

Next, we consider the cases when the variance σ2 is assumed to be known:

Case I: X ∼ 0.3N(0, 1) + 0.7N(1.5, 1)⇒ (π, µ) = (0.3, 1.5)

Case II: X ∼ 0.3N(0, 1) + 0.7N(3, 1)⇒ (π, µ) = (0.3, 3)

Case III: X ∼ 0.3N(0, 1) + 0.7U(2, 4)⇒ (π, µ) = (0.3, 3)

Case IV: X ∼ 0.7N(0, 4) + 0.3N(3, 1)⇒ (π, µ) = (0.7, 3)

Case V: X ∼ 0.85N(0, 4) + 0.15N(3, 1)⇒ (π, µ) = (0.85, 3)

In order to estimate the unknown parameters (π, µ), we consider the following method-

s: a) Symmetrized estimator proposed by Bordes et al.(2006); b) Modified Maximizing-π
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Table 3.3: Average (MSE) of Point Estimates Over 200 Repetitions When n = 250 under
2% contamination from U(10, 20)

Case TRUE MHDE Maximizing π-type EM-type Symmetrization

I π : 0.3 0.192(0.024) 0.360(0.006) 0.592(0.087) 0.136(0.038)

σ : 1 1.103(0.056) 0.985(0.184) 1.155(0.031) 0.784(0.116)

µ : 1.5 1.355(0.070) 2.197(0.550) 2.585(1.277) 1.323(0.067)

II π : 0.3 0.289(0.001) 0.267(0.003) 0.387(0.009) 0.251(0.005)

σ : 1 1.056(0.014) 1.306(0.843) 1.400(0.204) 0.805(0.062)

µ : 3 2.989(0.012) 3.245(0.115) 3.525(0.316) 2.953(0.016)

III π : 0.3 0.275(0.001) 0.227(0.008) 0.277(0.002) 0.258(0.003)

σ : 1 0.943(0.012) 2.125(3.379) 1.081(0.055) 0.797(0.056)

µ : 3 2.992(0.001) 2.932(0.060) 3.207(0.073) 2.971(0.004)

IV π : 0.7 0.676(0.004) 0.611(0.012) 0.802(0.011) 0.623(0.013)

σ : 2 2.010(0.018) 2.035(0.041) 2.138(0.028) 1.787(0.078)

µ : 3 3.118(0.064) 3.406(0.435) 4.339(2.125) 2.968(0.084)

V π : 0.85 0.823(0.006) 0.752(0.014) 0.887(0.002) 0.736(0.038)

σ : 2 2.052(0.029) 2.069(0.034) 2.041(0.010) 1.807(0.099)

µ : 3 3.215(0.228) 3.715(1.406) 4.963(4.889) 2.870(0.460)

type and EM-type estimator proposed by Song et al.(2010), assuming σ to be known but

estimating µ after π have been estimated; c) the MHD estimator, but assume σ to be known.

Table 3.5 and Table 3.6 report the mean and MSE of the parameter estimates based on

the four methods when n = 250 and n = 1000. Table 3.7 and Table 3.8 report the result

when models are under 2% contamination from U(10, 20). From the tables, we can see that

the Symmetrized estimator and the MHD estimator perform better than the Maximizing-

π type and EM-type estimator in all cases, especially in Case IV and Case V which are

suggested by Bordes et al.(2006). When the sample is contaminated by outliers, the MHD

estimator and the Maximizing-π type estimator provide better estimates than the EM-type

and the Symmetrization estimator, and therefore are more robust.
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Table 3.4: Average (MSE) of Point Estimates Over 200 Repetitions When n = 1000 under
2% contamination from U(10, 20)

Case TRUE MHDE Maximizing π-type EM-type Symmetrization

I π : 0.3 0.217(0.015) 0.349(0.003) 0.591(0.085) 0.089(0.051)

σ : 1 1.099(0.026) 0.872(0.022) 1.178(0.033) 0.904(0.050)

µ : 1.5 1.384(0.039) 2.206(0.515) 2.568(1.162) 1.242(0.085)

II π : 0.3 0.288(0.001) 0.258(0.002) 0.392(0.009) 0.250(0.003)

σ : 1 1.025(0.003) 0.969(0.007) 1.422(0.189) 0.801(0.045)

µ : 3 2.992(0.002) 3.299(0.099) 3.537(0.297) 2.953(0.005)

III π : 0.3 0.279(0.001) 0.247(0.003) 0.304(0.001) 0.258(0.002)

σ : 1 0.960(0.004) 0.967(0.006) 1.185(0.050) 0.806(0.042)

µ : 3 2.996(0.001) 3.208(0.049) 3.302(0.099) 2.980(0.001)

IV π : 0.7 0.683(0.001) 0.621(0.008) 0.810(0.012) 0.641(0.004)

σ : 2 1.981(0.004) 1.955(0.013) 2.178(0.034) 1.813(0.042)

µ : 3 3.094(0.020) 3.493(0.324) 4.386(2.005) 3.024(0.012)

V π : 0.85 0.831(0.001) 0.769(0.008) 0.903(0.003) 0.780(0.008)

σ : 2 2.013(0.004) 1.992(0.007) 2.083(0.009) 1.833(0.034)

µ : 3 3.193(0.064) 3.909(1.093) 5.559(6.866) 3.038(0.068)

Figure 3.1 contains the MSE of µ in the five σ unknown cases over 200 repetitions when

the sample size is 1000, and Figure 3.2 and Figure 3.3 contain the MSE of µ and π in the five

cases σ known over 200 repetitions when the sample size is 1000 and under 2% contamination

from U(10, 20). From the plots, we can see that almost all the four estimators considered

perform well in case II and case III. The EM-type estimator performs poorly in case I, and

is the worst in case IV and V when the model is under contamination. The Symmetrized

estimator is sensitive to contamination, especially in case IV and V, no matter σ known or

not. Comparatively, the Maximizing-π type estimator is more robust, but doesn’t perform

well in case IV and V when data is not under contamination. From the plots, we can

see that the MHD estimator perform well in all cases, and is robust when data is under

28



contamination.

Table 3.5: Average (MSE) of Point Estimates Over 200 Repetitions When n = 250

Case TRUE MHDE Maximizing π-type EM-type Symmetrization

I π : 0.3 0.210(0.028) 0.328(0.005) 0.569(0.074) 0.220(0.021)

µ : 1.5 1.390(0.084) 1.662(0.041) 1.972(0.231) 1.393(0.060)

II π : 0.3 0.291(0.001) 0.242(0.005) 0.334(0.002) 0.299(0.001)

µ : 3 3.007(0.007) 2.882(0.027) 3.057(0.009) 2.996(0.009)

III π : 0.3 0.259(0.003) 0.229(0.006) 0.284(0.001) 0.299(0.001)

µ : 3 2.999(0.001) 2.812(0.043) 2.918(0.010) 2.999(0.002)

IV π : 0.7 0.691(0.003) 0.592(0.018) 0.802(0.012) 0.683(0.009)

µ : 3 3.131(0.067) 2.382(0.501) 3.063(0.069) 2.905(0.159)

V π : 0.85 0.810(0.014) 0.729(0.021) 0.902(0.003) 0.809(0.011)

µ : 3 3.217(0.444) 1.866(1.503) 2.677(0.349) 2.655(0.625)

3.2 Real Data Application

Iris data (used by Song et at. (2010)) is perhaps the best known database to be found in

the pattern recognition literature. It is first introduced by Fisher (1936), and is referenced

frequently to this day. The data set contains four attributes: sepal length (in cm), sepal

width (in cm), petal length (in cm), and petal width (in cm), and there are 3 classes of 50

instances each, where each class refers to a type of iris plant. One class is linearly separable

from the other 2 and the latter are not linearly separable from each other.

We want to find the clusters for the data. After applying the research algorithm for

centers of clusters by Song et al. (2010), observation 8 is selected as the center of the first

cluster. We adjust all observations by subtracting observation 8 from all observations. As

discussed by Song et al. (2010), the proportion of observations that belong to a cluster can

be considered as estimating the mixing proportion in the two-component mixture model.

Principal component analysis shows that the first principal component accounts for
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Table 3.6: Average (MSE) of Point Estimates Over 200 Repetitions When n = 1000

Case TRUE MHDE Maximizing π-type EM-type Symmetrization

I π : 0.3 0.291(0.005) 0.280(0.003) 0.563(0.069) 0.276(0.005)

µ : 1.5 1.503(0.016) 1.583(0.017) 1.959(0.213) 1.469(0.015)

II π : 0.3 0.294(0.001) 0.245(0.004) 0.339(0.002) 0.297(0.001)

µ : 3 3.006(0.002) 2.917(0.016) 3.093(0.010) 2.998(0.002)

III π : 0.3 0.272(0.001) 0.239(0.005) 0.296(0.001) 0.300(0.001)

µ : 3 2.997(0.001) 2.847(0.029) 2.956(0.002) 2.998(0.001)

IV π : 0.7 0.692(0.001) 0.585(0.020) 0.804(0.011) 0.693(0.001)

µ : 3 3.045(0.013) 2.446(0.400) 3.174(0.039) 2.970(0.017)

V π : 0.85 0.843(0.001) 0.749(0.016) 0.911(0.004) 0.843(0.002)

µ : 3 3.172(0.063) 2.071(1.043) 3.019(0.067) 2.934(0.104)

92.46% of the total variability, so it would seem that the iris data tend to fall within a

1-dimensional subspace of the 4-dimensional sample space. The first principal component

loading vector is (0.36,−0.08, 0.86, 0.35), which implies that petal length contains most of

the information. Therefore, we apply each of the four estimating method discussed above

to the first principal component as well as Petal Length.

Table 3.9 lists the estimators of proportion on petal length and the first principal com-

ponent. Compared to the true proportion of 1/3, the MHD estimator and the maximizing

π-type estimators performs quite well compared to the other estimators. Figure 3.4 is a

histogram of the first principal component. From the histogram, we can see that the first

cluster is separated from the rest of the data, with observation 8 ( first principal component

score equals -2.63) being the center of it.
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Table 3.7: Average (MSE) of Point Estimates Over 200 Repetitions When n = 250 under
2% contamination from U(10, 20)

Case TRUE MHDE Maximizing π-type EM-type Symmetrization

I π : 0.3 0.21(0.026) 0.332(0.006) 0.563(0.071) 0.120(0.043)

µ : 1.5 1.398(0.085) 2.113(0.434) 2.543(1.146) 1.276(0.081)

II π : 0.3 0.281(0.001) 0.235(0.006) 0.327(0.002) 0.256(0.003)

µ : 3 2.991(0.007) 3.213(0.076) 3.415(0.202) 2.956(0.012)

III π : 0.3 0.279(0.001) 0.227(0.007) 0.285(0.001) 0.272(0.002)

µ : 3 2.996(0.001) 3.119(0.043) 3.245(0.086) 2.989(0.003)

IV π : 0.7 0.680(0.005) 0.578(0.021) 0.786(0.009) 0.398(0.164)

µ : 3 3.149(0.096) 3.162(0.296) 4.149(1.594) 2.254(1.137)

V π : 0.85 0.797(0.025) 0.719(0.023) 0.884(0.002) 0.539(0.140)

µ : 3 3.220(0.513) 3.358(1.000) 4.859(4.597) 1.907(1.785)

Table 3.8: Average (MSE) of Point Estimates Over 200 Repetitions When n = 1000 under
2% contamination from U(10, 20)

Case TRUE MHDE Maximizing π-type EM-type Symmetrization

I π : 0.3 0.254(0.007) 0.276(0.003) 0.555(0.065) 0.060(0.059)

µ : 1.5 1.444(0.019) 2.009(0.284) 2.548(1.119) 1.187(0.103)

II π : 0.3 0.286(0.001) 0.243(0.004) 0.332(0.001) 0.257(0.002)

µ : 3 3.001(0.002) 3.257(0.081) 3.444(0.204) 2.966(0.005)

III π : 0.3 0.281(0.001) 0.234(0.005) 0.289(0.001) 0.265(0.002)

µ : 3 2.999(0.001) 3.179(0.044) 3.299(0.096) 2.989(0.001)

IV π : 0.7 0.681(0.001) 0.572(0.023) 0.789(0.008) 0.389(0.149)

µ : 3 3.067(0.013) 3.203(0.257) 4.252(1.628) 2.171(1.165)

V π : 0.85 0.831(0.001) 0.738(0.018) 0.895(0.002) 0.503(0.134)

µ : 3 3.177(0.067) 3.574(0.836) 5.275(5.478) 1.534(2.329)
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Figure 3.1: MSE of µ In The Five Cases Considered Over 200 Repetitions When n = 1000
(σ Unknown)

Table 3.9: Estimators of mixing proportion in Iris data

Variable MHDE Maximizing π-type EM-type Symmetrization

Petal Length 0.251 0.266 0.446 0.628

Principal Component 0.320 0.327 0.289 0.399
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Figure 3.2: MSE of µ In The Five Cases Considered Over 200 Repetitions When n = 1000
under 2% Contamination From U(10, 20) (σ Known)
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Figure 3.3: MSE of π In The Five Cases Considered Over 200 Repetitions When n = 1000
under 2% Contamination From U(10, 20) (σ Known)
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Figure 3.4: Histogram of the first principal component in Iris data
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Chapter 4

Discussion

In this report, we introduce the Minimum Hellinger Distance estimator and review its his-

tory. We introduce a new semiparametric mixture model that completes the recent semi-

parametric finite mixture models introduced by Bordes et al.(2006) and Song et al.(2010).

We briefly introduce the estimators suggested by Bordes et al.(2006) and Song et al.(2010),

and propose a minimum Hellinger distance estimator, which has been shown to have good

efficiency and robustness properties. Simulation study shows that the MHDE performs com-

parably to the other estimators when no contamination and outperforms them when data

are under contamination.

We indicate two fields of application for our model. First, microarray data analysis, which

was the initial motivation of the introduction of model (2.2) (see Bordes et al.(2006)). Sec-

ondly, sequential clustering algorithm, which was the initial motivation of the introduction

of model (2.3) (see Song et al.(2010)). A real data set application considering sequential

clustering algorithm is also provided to illustrate the effectiveness of our proposed method-

ology.

More work remains to be down on the theoretical properties of the proposed estimator,

and application of the MHDE to other models, like mixture of regression models.
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Appendix A

Matlab Code

n=250; k=2; m=200; p=0.3; mu=1.5; sigma=1; sigma2=1; mhde1prop(m)=0; mhde1sig(m)=0;

mhde1mu(m)=0; mhde2prop(m)=0; mhde2sig(m)=0; mhde2mu(m)=0; tempprop(m)=0;

tempsig(m)=0; tempmu(m)=0; symmprop(m)=0; symmsig(m)=0; symmmu(m)=0; semiem-

prop(m)=0; semiemsig(m)=0; semipiprop(m)=0;

semipisig(m)=0; semipimu(m)=0; semiemmu(m)=0; mhde=[]; sym=[];

numitersemi=[]; semiemtrueprop=[]; semiemtruesig=[]; semiemtruemu=[];

for i=1:m

n1=binornd(n,p);

x1=normrnd(0,sigma,1,n1);x2=normrnd(mu,sigma2,1,n-n1);x=[x1,x2]’;

temp=mixonekn(x);

mhdeest=mhdem1(x,temp,p,sigma,mu);

mhde1prop(i)=mhdeest.pi;

mhde1sig(i)=mhdeest.sigma;

mhde1mu(i)=mhdeest.mu;

mhde(i,:)=[mhdeest.initialtrue,mhdeest.numiter];

symmest=symm2(x,temp,p,sigma,mu);

symmprop(i)=symmest.pi;

symmsig(i)=symmest.sigma;
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symmmu(i)=symmest.mu;

sym(i,:)=[symmest.initialtrue,symmest.numiter];

semiest=semisong(x,temp,p,sigma,mu);

semiemprop(i)=semiest.emprop;

semiemsig(i)=semiest.emsig;

semiemmu(i)=semiest.emmu;

semiemtrueprop(i)=semiest.emtrueprop;

semiemtruesig(i)=semiest.emtruesig;

semiemtruemu(i)=semiest.emtruemu;

semipiprop(i)=semiest.piprop;

semipisig(i)=semiest.pisig;

semipimu(i)=semiest.pimu;

numitersemi(i,:)=[semiest.emnumiter,semiest.emtruenumiter];

end

resmhde1.prop=[mean(mhde1prop),sqrt(var(mhde1prop)),mean((mhde1prop-p).∧2)];

resmhde1.sig=[mean(mhde1sig),sqrt(var(mhde1sig)),mean((mhde1sig-sigma).∧2)];

resmhde1.mu=[mean(mhde1mu),sqrt(var(mhde1mu)),mean((mhde1mu-mu).∧2)]

ressemipi.prop=[mean(semipiprop),sqrt(var(semipiprop)),mean((semipiprop-p).∧2)];

ressemipi.sig=[mean(semipisig),sqrt(var(semipisig)),mean((semipisig-sigma).∧2)];

ressemipi.mu=[mean(semipimu),sqrt(var(semipimu)),mean((semipimu-mu).∧2)]

ressemiem.prop=[mean(semiemprop),sqrt(var(semiemprop)),mean((semiemprop-p).∧2)];

ressemiem.sig=[mean(semiemsig),sqrt(var(semiemsig)),mean((semiemsig-sigma).∧2)];

ressemiem.mu=[mean(semiemmu),sqrt(var(semiemmu)),mean((semiemmu-mu).∧2)]
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ressemiemtrue.prop=[mean(semiemtrueprop),sqrt(var(semiemtrueprop)),mean((semiemtrueprop-

p).∧2)];

ressemiemtrue.sig=[mean(semiemtruesig),sqrt(var(semiemtruesig)),mean((semiemtruesig-sigma).∧2)];

ressemiemtrue.mu=[mean(semiemtruemu),sqrt(var(semiemtruemu)),mean((semiemtruemu-mu).∧2)]

ressymm.prop=[mean(symmprop),sqrt(var(symmprop)),mean((symmprop-p).∧2)];

ressymm.sig=[mean(symmsig),sqrt(var(symmsig)),mean((symmsig-sigma).∧2)];

ressymm.mu=[mean(symmmu),sqrt(var(symmmu)),mean((symmmu-mu).∧2)]

% Function to calculate MHDE

function[out]=mhdem1(x,ini,p,sigma,mu)

%x: the observations.

%ini: the initial values for mu and prop.

%h: the bandwidth for density estimate. h=1.06*n∧(-1/5) by default.

%acc: stopping rule.

stopiter=30;

k=2;

n=length(x);

h=kdebw(x,2∧14);

true=[p,sigma,mu];

if exist(’ini’)==0

ini=mixnveq(x’,k); end

if ini.mu(2)¿ini.mu(1)

prop=ini.pi(1);mu=ini.mu(2);sigma=ini.sigma(1);

else
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prop=ini.pi(2);mu=ini.mu(1);sigma=ini.sigma(2);

end

est=[prop,sigma,mu];

out.tempprop=prop;out.tempmu=mu;out.tempsig=sigma;

xgridmin=min(x)-5*h;xgridmax=max(x)+5*h;lxgrid=100;

xgrid=linspace(xgridmin,xgridmax,lxgrid);hspace=(xgridmax-xgridmin)/lxgrid;

acc=10∧(-5)/hspace;

%nonparametric estimator

deng=@(t) mean(exp(-(repmat(x,1,length(t))-repmat(t(:)’,n,1)).∧2/2/h∧2))/h/sqrt(2*pi);

dengx=deng(xgrid).∧(1/2);

%% calculate the MHDE using temp

dif=acc+1;numiter=0;fval=10∧10;%preest=est;

%denf=@(t) normpdf(t,0,sigma);

while dif>acc && numiter<stopiter

numiter=numiter+1; pfval=fval;

denf1=@(t) normpdf(t,0,sigma);

%Find alpha and M by iteration

difa=1;step=0;a=1;

while difa> 10∧(-3) && step<20

prea=a;step=step+1;mfun=@(t) a*deng(t)>prop*denf1(t);

temp=@(t) denf1(t).*mfun(t);temp1=@(t) deng(t).*mfun(t);

a=min((prop*quadl(temp,xgridmin,xgridmax)+1-prop)/max(quadl(temp1,xgridmin,xgridmax),1-

prop),1);

difa=abs(prea-a);
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end

if a>0.99

a=1;

end

%% Given theta update f

denfmu=((max(a*deng(xgrid)-prop*denf1(xgrid),0))+(max(a*deng(2*mu-xgrid)-prop*denf1(2*mu-

xgrid),0)))/2/(1-prop);

%assume f is symmetric 0

preest=est;

%% Given f, update theta

denf=@(t) interpcut([xgrid-mu,mu-xgrid],[denfmu,denfmu],t);

obj=@(t)sum(((min(0.95,max(t(1),0.05))*normpdf(xgrid,0,min(std(x),max(0.1*std(x),t(2))))+(1-

min(0.95,max(t(1),0.05)))*denf(xgrid-min(max(x),max(0,t(3))))).∧(1/2)-dengx).∧2);

[est,fval]=fminsearch(obj,preest);

est=min([est;0.95,std(x),max(x)]); est=max([est;0.05,std(x)*0.1,0]);

dif=pfval-fval;

if dif<0

est=preest;fval=pfval;

end

prop=est(1);sigma=est(2);mu=est(3);

end

res.fval=fval; res.pi=prop; res.sigma=sigma; res.mu=mu; res.numiter=numiter;

%% calculate the MHDE using true

dif=acc+1; numiter=0; fval=10∧10; est=true; prop=true(1); sigma=true(2); mu=true(3);
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while dif>acc && numiter<stopiter

numiter=numiter+1; pfval=fval;

denf1=@(t) normpdf(t,0,sigma);

%Find alpha and M by iteration

difa=1;step=0;a=1;

while difa> 10∧(−3)&&step < 20

prea=a;step=step+1;mfun=@(t) a*deng(t)>prop*denf1(t);

temp=@(t) denf1(t).*mfun(t);temp1=@(t) deng(t).*mfun(t);

a=min((prop*quadl(temp,xgridmin,xgridmax)+1-prop)/max(quadl(temp1,xgridmin,xgridmax),1-

prop),1);

difa=abs(prea-a);

end

if a>0.99

a=1;

end

%% Given theta update f

denfmu=((max(a*deng(xgrid)-prop*denf1(xgrid),0))+(max(a*deng(2*mu-xgrid)-prop*denf1(2*mu-

xgrid),0)))/2/(1-prop);

preest=est;

%% Given f, update theta

denf=@(t) interpcut([xgrid-mu,mu-xgrid],[denfmu,denfmu],t);

obj=@(t)sum(((min(0.95,max(t(1),0.05))*normpdf(xgrid,0,min(std(x),max(0.1*std(x),t(2))))+(1-

min(0.95,max(t(1),0.05)))*

denf(xgrid-min(max(x),max(0,t(3))))).∧(1/2)-dengx).∧2);

[est,fval]=fminsearch(obj,preest);

est=min([est;0.95,std(x),max(x)]); est=max([est;0.05,std(x)*0.1,0]);
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dif=pfval-fval;

if dif<0

est=preest;fval=pfval;

end

prop=est(1);sigma=est(2);mu=est(3);

end

if res.fval<fval out.pi=res.pi; out.sigma=res.sigma; out.mu=res.mu; out.numiter=res.numiter;

out.initialtrue=0;

else

out.pi=prop;out.sigma=sigma;out.mu=mu;out.numiter=numiter;out.initialtrue=1;

end

% Function to calculate symm function[out]=symm2(x,temp,p,sig,mu) %Bordes, L. et.al,

2006. Semiparametric Estimation of a Two-component

%Assume sigma unknown

%Mixture Model where One Component is Known.

%Estimating the Euclidean parameter by symmetrization

%x: the observations.

%h: the bandwidth for density estimate. h=1.06*n∧(-1/5) by default.

%acc: stopping rule.

stopiter=30;

k=2;

n=length(x);

h=kdebw(x,2∧14);
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true=[1-p,sig,mu];

if exist(’temp’)==0

temp=mixnveq(x’,k);

end

if temp.mu(2)>temp.mu(1)

prop=temp.pi(2);mu=temp.mu(2);sigma=temp.sigma(1);

else

prop=temp.pi(1);mu=temp.mu(1);sigma=temp.sigma(2);

end

est=[prop,sigma,mu];

xgridmin=min(x)-5*h; xgridmax=max(x)+5*h; lxgrid=100;

xgrid=linspace(xgridmin,xgridmax,lxgrid); hspace=(xgridmax-xgridmin)/lxgrid;

acc=10∧(-8)/hspace;

%nonparametric estimator

denGn=@(t) 1-mean((repmat(x,1,length(t))-repmat(t(:)’,n,1))>0);

denGnx=denGn(xgrid);

%% Estimating using temp

dif=acc+1; numiter=0; fval=10∧10; exitflag=1;

while dif>acc && numiter<stopiter && exitflag

numiter=numiter+1; pfval=fval;

preest=est;

obj=@(t) sum((denGn(xgrid+min(max(x),max(0,t(3))))/min(0.95,max(t(1),0.05))+(1-1/min(0.95,

max(t(1),0.05)))*normcdf(xgrid+min(max(x),max(0,t(3))),0,min(std(x),max(0.1*std(x),t(2))))

-(1-denGn(min(max(x),max(0,t(3)))-xgrid)/min(0.95,max(t(1),0.05))+(1/min(0.95,max(t(1),0.05))

47



-1)*normcdf(min(max(x),max(0,t(3)))-xgrid,0,min(std(x),max(0.1*std(x),t(2)))))).∧2);

[est,fval,exitflag]=fminsearch(obj,preest);

dif=pfval-fval;

if dif<0

est=preest;fval=pfval;

else

est=min([est;0.95,std(x),max(x)]); est=max([est;0.05,std(x)*0.1,0]);

end

if exitflag<1

est=preest;fval=pfval;

end

end

res.fval=fval; res.pi=est(1); res.sigma=est(2); res.mu=est(3); res.numiter=numiter; res.dif=dif;

%% Estimating using true

est=true;

dif=acc+1;numiter=0;fval=10∧10;exitflag=1;

while dif>acc && numiter<stopiter && exitflag

numiter=numiter+1; pfval=fval;

preest=est;

obj=@(t) sum((denGn(xgrid+min(max(x),max(0,t(3))))/min(0.95,max(t(1),0.05))+(1-1/min(0.95,

max(t(1),0.05)))*normcdf(xgrid+min(max(x),max(0,t(3))),0,min(std(x),max(0.1*std(x),t(2))))

-(1-denGn(min(max(x),max(0,t(3)))-xgrid)/min(0.95,max(t(1),0.05))+(1/min(0.95,max(t(1),0.05))

-1)*normcdf(min(max(x),max(0,t(3)))-xgrid,0,min(std(x),max(0.1*std(x),t(2)))))).∧2);

[est,fval,exitflag]=fminsearch(obj,preest);

dif=pfval-fval;

if dif<0
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est=preest;fval=pfval;

else

est=min([est;0.95,std(x),max(x)]); est=max([est;0.05,std(x)*0.1,0]);

end

if exitflag<1

est=preest;fval=pfval;

end

end

if res.fval<fval

out.pi=1-res.pi; out.sigma=res.sigma; out.mu=res.mu; out.numiter=res.numiter; out.initialtrue=0;

out.dif=res.dif;

else

out.pi=1-est(1); out.sigma=est(2); out.mu=est(3); out.numiter=numiter; out.initialtrue=1;

out.dif=dif;

end

% Function for estimators from Song’s paper

function[out]=semisong(x,temp,p,sigma,mu)

%Song,S., et.al, 2010. Estimating the mixing proportion in a semiparametric

%mixture model.

%Initial method by authors

%Estimating the Euclidean parameter by symmetrization

%x: the observations.

%h: the bandwidth for density estimate. h=1.06*n∧(-1/5) by default.

%acc: stopping rule.

k=2;n=length(x);

h=kdebw(x,2∧14);
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true=[p,sigma];

acc=10∧(-4);stopiter=50;

if exist(’temp’)==0

temp=mixnveq(x’,k);

end

if temp.mu(2)>temp.mu(1)

prop=temp.pi(1);sigma=temp.sigma(1);

else

prop=temp.pi(2);sigma=temp.sigma(2);

end

est=[prop,sigma];

denm=@(t) mean(exp(-(repmat(x,1,length(t))-repmat(t(:)’,n,1)).∧2/2/h∧2))/h/sqrt(2*pi);

%%EM-type estimator % use EM algorithm to calculate the mle

dif=acc+1;numiter=0;fval=10∧10;%preest=est;

z(n)=0;

while dif>acc && numiter<stopiter

numiter=numiter+1;

preest=est;

%% E-step

denf0=@(t) normpdf(t,0,preest(2));

z=min(1,(2*preest(1)*denf0(x)’)./(preest(1)*denf0(x)’+denm(x)));

%% M-step

est(1)=mean(z);

est(2)=sqrt(z*(x.∧2)/(z*ones(n,1)));
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dif=max(abs(est(1)-preest(1)),abs(est(2)-preest(2)));

end

mu=(ones(1,n)-z)*x/(n-sum(z));

out.emprop=est(1); out.emsig=est(2); out.emmu=mu; out.emnumiter=numiter;

%%using true initial value

%EM-type estimator

% use EM algorithm to calculate the mle

dif=acc+1; numiter=0; fval=10∧10; z(n)=0;est=true;

while dif>acc && numiter<stopiter

numiter=numiter+1;

preest=est;

%% E-step denf0=@(t) normpdf(t,0,preest(2));

z=min(1,(2*preest(1)*denf0(x)’)./(preest(1)*denf0(x)’+denm(x)));

%% M-step

est(1)=mean(z);

est(2)=sqrt(z*(x.∧2)/(z*ones(n,1)));

dif=max(abs(est(1)-preest(1)),abs(est(2)-preest(2)));

end

mu=(ones(1,n)-z)*x/(n-sum(z));

out.emtrueprop=est(1); out.emtruesig=est(2); out.emtruemu=mu;

out.emtruenumiter=numiter;

%% maximizing pi-type estimator

m=38;zz(n)=0;
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labx=repmat(x,1,m);

sigma=0.3:0.1:4;

laby=repmat(sigma,n,1);

denmx=repmat(denm(x)’,1,m);

densig=exp(-labx.∧2./laby.∧2/2)./laby/sqrt(2*pi);

z=denmx./densig;

val=min(z);

prop=max(val);

loc=find(val==prop);

sig=0.3+(loc-1)*0.1;

denf1=@(t) normpdf(t,0,sig);

zz=(2*prop*denf1(x)’)./(prop*denf1(x)’+denm(x));

mu=(ones(1,n)-zz)*x/(n-sum(zz));

out.piprop=prop;out.pisig=sig;out.pimu=mu;
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