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CHAPTER I
INTRODUCTION

Air pollution is the direct result of growth of our modern techno-
logical society and one of its most serious problems today. One of the
oldest and most effective means of controlling air contamination by air-
borne dust is electrical precipitatidn. Specific operational requirements
have led to the development of two types: (1) industrial-type precipitators
and (2) residential-type precipitators.

Most published studies and research have been directed toward indus-
trial precipitators. The prolific writings of Gaylord W. Penney and
llarry J. White, pioneers in the field, have provided a solid foundation.

An extremely limited amount of published research has been devoted to

residential parallel-plate precipitators.

Background Information

Gas cleaning processes may be classified broadly as mechanical and
clectrical. Mechanical processes include all those which depend fundamen-
tally on the inertia, diffusion mobility, and gravitational attraction of
the aerosol being collected.

The electrical processes, usually referred to as electrostatic
precipitatibn, differ from mechanical in that the forces of separation
acting on the suspended particles are electrical in nature. Electrostatic
precipitation can be a highly efficient collection mechanism, capable of
efficiencies as high as 99.9%7 under proper conditions. F. G. Cattrell (1906)
converted this phenomenon from a laboratory curiosity to a successful

cnpglucerlng process some slxty-six years ago [ 1],
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Industrial Electrostatic Precipitators. The industrial electrostatic

precipitator is a single stage design, with the corona emitted from a fine
wire maintained at negative potential. Generally, wire-in-cylinder precip-
itators are used for small gas flows and wire-and-plate precipitators are
used for larger gas flows. Figurel illustrates the difference in the
types.

White [2 ] states that the collecting-electrode size for wire-in-
cylinder precipitators ranges from 6 in. diameter by 6 ft long to 12 in.
diameter by 15 ft long. He also noted that wire-and-plate precipitators
have collecting plates 2-8 ft wide and 6-25 ft high.

According te White, most industrial precipitators use steel or steel
alloy ionizing wire of about 100-mil diameter and ionizing current of
0.01-1 ma/ft of discharge wire. Operating voltages ranged from 30 to 100

KV.

Residential Electrostatic Precipitators. The residential electrostatic

precipitator is two-stage, with positive corona. The ionizing corona is
generated by fine smooth wires, approximately 5-10 mils in diameter [ 2 ].
This corona is uniform along the wire. Operating voltages range from 5-7
KV. The collection section consists of parallel plates alternating from
positive to negative polarities. Collecting-electrode size for wire~and-
plate precipitators is typically 24 in. high, 12 in. wide (in flow direc-
tion), and 24 in. long.

Although both kinds of precipitators employ the same basic scientific
principles, operational requirements for residential air cleaning precipi-

tators are different [rom those for single stage industrial precipitators.



Penney [ 3 ] summarizes the requirements for residential precipitators
as follows:

(1) Ozéne generation is a primary limitation, since the ozone
generated must be a very small fraction of a part per million.

(2) The dust loading is typically less than one ten-thousandth
of the typical leading in dust collection (industrial) applications.

(3) The limited space available makes a design for minimum space
imperative.

(4) In the interest of low cost, saving of space, and maintenance
by untrained personnel, the voltage should be much lower than that used
in industrial dust collecting precipitators.”

Ozone may be harmless to humans only when the concentration is on the
order of one part per 30 to 40 million. This amount. of ozone occurs
naturally in the air of many large cities. The original design for air
conditioning application limited ozone generation to one part in 200
million.

Penney [ 3] believes that for a given type of corona discharge the
generation of ozone is proportional to corona current. lHe further suggests
that the lower rate of ozone generation is possible by using positive
corona from a fine wire.

Penney [ 3] reported an approximation analysis of the collector cell
can be made which shows that the total plate area is independent of plate
spacing for a given efficiency and voltage gradient. This analysis shows
the total plate area required is directly proportional to the flow rate at
any given efficiency. Therefore, the overall volume of the plate section

13 inversely proportional to the plate spacing. Penney added that plate



spacing for residential collectors is usually between 3/16 and 3/8 in.
From this analysis one could increase the velocity by increasing the plate
length; but, in general, the length of a single plate does not exceed

12 in.

Objectives

The first objective of this study was to observe and determine the
flow characteristics through the corrugated parallel plates of the elec-
trostatic precipitator.

The second objective was to derive a theoretical stain efficiency

prediction relation fitting previously cbtained experimental data [ 4 ].



CHAPTER TII

ANATLYSIS OF PRECIPITATION

An electrical precipitator is defined as an apparatus that utilizes
electric forces to separate suspended particles from gases. In practice,
electrical precipitators are of various physical configurations, but all

are designed from the same principles.

Corpona Generation

Corona, as applied to electrostatic precipitator, is a gas discharge
phenomenon associated with the jonization of gas molecules by electron
collision in regions of high electric field strength. The process of
corona generation requires a nonuniform electric field, which is obtained
by use of a small diameter wire as cne electrode and a plate or cylinder as
the other electrode.

The two types of corona used in electrostatic precipitation are
classified as negative and positive, depending on the peolarity of the corona
wire. Positive corona is used in most residential electrostatic air cleaners.
The advantage of positive corona is that ozone generation is nil,

[n the corona process, there must be a source of electrons to initiate
and maintain the process. The electrons to initiate corona are supplied by
naturally occurring ionizing radiation. Since they are in a region of
high electric field, they accelerate to high velocities and possess enough
energy so that on impact with gas molecules in the region, they release

orbital electrons from gas molecules.



Particle Charging

There are two mechanisms responsible for the charging of particles in
an electrostatic precipitator. These mechanisms are termed field charging
and diffusion charging.

Diffusion charging is predominant for small particles with diameters
less than about 0.4 micron. The diffusion charging process depends on
the thermal energy of naturally-occurring ions, not on an electric field,
and is the result of ionic collision with particles brought about by
random Brownian motion of ions in the gas.

Field charging is more effective for large particles with diameters
greater than about 1.0 micron. In this type of charging, the particles
are charged by the attachment of ions in an electric field. Both diffusion
and field charging are important for particles in the intermediate size
range of 0.4 to 1.0 micron.

Electrical charging may occur naturally during the formation of a
particle. The magnitude of the charge will be low, unless the particle
was the recent preoduct of combustion or atomization. However, high-
voltage direct-current corona can charge particles to much higher levels.
The ionizing field is usually established between an active electrode (a
fine wire in this case), maintained at high voltage, and a plate or cylin-
drical electrode at ground potential. Under these conditions an ionizing
corona is generated in the strong electric field region near the wire
surface. Considerable numbers of positive ions are formed in this active
"elow' zone. TIn the charging process, particles passing through the
ionizing field are subjected to bombardment by these ions and become highly
charged. These charged particles then migrate toward the collecting elec~

trode.



Particle Collection

Collection of the charged particles is effected by subjecting them to
a high-voltage direct-current field maintained between electrodes., The
collecting field may be either a continuation of the corona, as in a
single-stage precipitator, or it may be purely non-ionizing electrostatic
field between nondischarging electrodes as in a twb—stage arrangement.,

In a two-stage precipitator the corona, emitted from the fine wire,
is maintained at a high positive potential. Dust particles enter the
ionizing section, become highly charged and pass into the plate section

where they are collected.

Adhesive Forces. 1In electrostatic precipitation, electrostatic forces

drive the particles to the collecting surface. But in many cases, after
the particle touches the surface, the force reverses and tends to pull the
dust off the plates. Adhesion is therefore of primary importance in
holding the deposited dust on the collecting surface,

It has been known that adhesive forces are due to the attraction
between areas of opposite polarity distributed over the surface of the
particle. Penney [4 ] shows it is possible to form highly adhering deposits
of dust without the aid of an applied electric field. He reported that the
forces in these deposits do not seem to depend on any alignment of particles,
in which each actsas an individual electric dipole.

In order to bring the former dipole hypothesis of adhesion into agree-
ment with experiment, Penney proposed a modifled hypothesis which assumes
that the surface ol particles as small as 10 microns may be covered by
numerous positive and negative areas. The adhesive forces are the result

of attraction between small areas of opposite polarity.



Penney concluded that higher humidity appears to increase the adhesive
properties of particles. However, this may be over-balanced by a looser

packing of the particles brought about by the lower resistivity.

Particle Trajectories. From the observations of Seman and Penney [ 5] on

particle trajectories, it was concluded that the mechanical impact of large
particles is a serious disturbing factor in precipitation. The magnitude of
the effect and how it wvaries wifh the particle size was to be the subject of
their further studies. However, in the present theory of electrostatic
precipitation, it is assumed that the particles are collected when they
touch the collecting surface.

Penney's photographic records [6,7] of the path of 100-micron particles
show that typically, with a clean surface, particles bounce off the surface
without losing their electric charge. When particles strike a iayer of
previously deposited particles, the larger ones not only bounce off but

knock loose some of those previously deposited.

Dust Resistivity. Penney [8 ] reported that high resistivity dusts ma
A5 hd b4 Y

result In excessive voltage gradients across the layer of collected dust
and cause reverse-ionization.. He added that reverse-ionization reduces the
efficiency of precipitation and causes excessive ozone generation and wire
vibration. Contrel of humidity and use of adhesive is an effective means

of eliminating this problem.

Collection Efficiency

The equation for the collection efficiency of an electrostatic
precipitator was discovered experimentally by Evald Anderson [9 ] in 1919.

In 1922 Deutsch developed from theory a similar equation for the efficiency
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of such precipitators. White [2] derived an identical expression based
on the probability of collection for a single particle. This derivation

led to an efficiency equation of the form

n=1 - expl(-A/Vy) ()]
where:
A = collection surface area
Vg = gas flow rate
w = particle velocity.

Penney [10] in 1969 indicated some problems in the application of
the Deutsch equation. He enumerated the assumptions that had been made
to derive that equation and indicated that they would never occur with
industrial dust. He pointed out that in the two-stage type precipitator
which is used for cleaning ventilating air, the low level of turbulence
tends to give an efficiency increasing more rapidly with plate length

than would be predicted by the Deutsch equation.

(1)



CHAPTER III
FLUID FLOW STUDY

In order to determine the flow pattern through the parallel plates

of the precipitator, it was necessary, first, to calculate the BReynolds

Number. From Knudsen [11]

2bUp
Npe = (2)

where:
b = spacing between plates
U = average velocity
p = particle density

u = gas viscosity.

The maximum Reynolds Number calculated, based on the maximum CFM through
the test duct, was 2355, using the gross entrance area. Knudsen [11]
reports experimental studies always found laminar flow at Re < 2,000.
Turbulent flow might not occur until Re > 21,200 under ideal conditions

[11], necessitating a smoke study to ascertain the exact situation for

this case.

Lquipment and Procedure

A wind tunnel, designed commercially for aerodynamic smoke studies,
was used to determine the [low pattern through the electrostatic collector's
corrugated parallel plates. The tunnel overall was 33 in., high, 19 in.
wide and 71 in. long, consisting of following sections, shown in Fig. 2 and

Fig. 3.

11
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(1) Inlet section. This section consisted of a semi-circular screen
acting as a flow straightener to insure laminar flow. A vertical, ellip-
tical smoke inlet manifold with 37 horizontal outlets was located 7.5 in.
in from the screen. Smoke was injected into the manifold from the bottom.

(2) Test section. Two 19 x 24 in. Plexiglas plates permitted obser-
vation of the flow patterns from either side.

(3) Outlet section. A screen was located between the test section and
outlet section to eliminate turbulence from the exhaust fan.

Plates were carefully cut and glued in the test section. A special
smoke was introduced to the test section through 34 horizontal pipes of
the input section. A blower was used to draw air through the section.
With variation in damper opening, the flow rate was adjusted.

Since smoke was not sufficiently concentrated, it was not possible
to discern any flow pattern. The chemical composition of the smoke was
such that it would attach te the metal of the input pipes and plug up
their openings immediately.

A long, thin glass tube was used to overcome the difficulties
encountered in the first method. Air blown over the chemical to produce
smoke helped the smoke flow through the tube and into the air stream. The
concentration of smoke was high, since only one tube was used, and it did
not plug the glass tube as rapidly. Since there was only one stream of

smoke, It was easily controlled and maintained at a certain location,

Results

From the smoke study, Fig. %4, it was observed that the smoke stream
would stay intact through the plates. The smoke did not parallel the

corrugations of the plate completely because of the change in velocity



Figure 4.

Smoke pattern through parallel
plates of Metal-Fab cell.

15
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profile. In a straight section, .the maximum velocity occurred in the
center. When the flow reached the corrugation, the maximum velocity

tended to move from the center causing the velocity profile to -shift.

A lower velocity existed under the curvature of plates. Fig. 5 illustrates

the velocity profile variation between two parallel plates.



17

-soje7d (orieaed ps3eBniaod
uSnoiyl artjoad A3TOOT2A

A3120T79A UNUTXEW

MOTT —

‘¢ 2an3 T4




CHAPTER 1V
COLLECTION EFFICIENCY ANALYSIS

Nearly fifty years ago, Deutsch [ 2 ] developed the following equation

for the efficiency of an electrostatic precipitator:

Efficiency, E, = 100(1 - e—AV/Q), % (3)

where:
A = area of collecting surface

v = the electrically induced drift velocity toward the
collecting surface

Q = volume rate of air flow through the precipitator.

The derivation of this equation requires four assumptions:

(1) A particle is collected once it touches the collecting surface;

(2) All particles are of the same size and no agglomeration occurs;

(3) Each particle behaves independently of the other particles;

(4) The particles arec uniformly distributed éver any given cfoss—

section of the precipitator.
These assumptions on which the Deutsch equation is based rarely occur with
industrial or residential dusts.

In order to better understand the electric field pattern of the ionizing
wire and parallel plates, the equal-potential lines were found by the use of
Teledeltos paper. Figures 6, 7 and 8 show the arrangements of these lines.
From these figures, it is obvious that most of the ionization is done around
and close to the wire. There, the potential gradient is the steepest and the

Field strenpth deercases less rapldly as it gets farther from the wire.
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Particle Kinetics

The motion of a charged particle under the influence of an electric
field is governed by Newton's Law of Classical Mechanics. The four
principal forces acting on a particle in a precipitator are [ 9, p. 97]:

(1) Electrical Force

F. =45
(2) Viscous Force
Fn = u/Z, Z = C/3r p¢ DP (cm)
(3) Inertia Force

Fl = mdu/dt

(4) Gravitational Force

Fg mg

where:

E = electric field (gradient) u particle velocity

q = charge on particle m = particle mass

Hg = fluid viscosity g = acceleration of gravity

Dp = particle diameter C = Cunningham coefficient
v =

fluid velocity

A free-body diagram of the above forces acting on a negatively charged

particle is shown below.

W Fiy

T
ny

air flow
i - - .@ — = I
PHX Ix electric field

|
7o
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(4)

(5)

(6)

(7)
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Summing the forces in x and y direction gi#es:

E Fx = Fix - ¥ x 0 ‘ (8)
since u, = v, = constant, thus Fix = 0, an =0
= F,  + -F_ - =
) Fy 1y FﬂY g Fey 2 (9)
Assuming laminar flow, the vertical component of air velocity, Vy s equals
zero. Substituting wvalues for the forces we get:
duy
m— =F +F -F (10)
dt B ey ny

Since gravitational force is very small by comparison to the electrical

force, it is assumed to be negligible {9, p. 99]. The form is simplified to:

d
m-—fz = Fe - Fn (11)
di Y y

Electrical force, F q(4.8 x 10-8 esu/e) (3.3 x 10_3 esuf/v/cm) E.

ey
1.6 x 10712 q E_

where:
q

particle charge, electron charges

E

o = collector field, volts/cm.

From equation (11), set qu/dt = 0 as terminal velocity is quickly attained.[9],

then Fey = Frly (12)

Substituting values for Fey and Fny into equation (12) gives:

) Uy (3TT Uf Dp (Cm))

c (13)

1.6 x 10712 4 B

C
Simplifying equation (13) to find:
1.6 x 10712 g & ¢

u, = - - (14)
3 Mg Dp {cm} :

From empirical data [11]:
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0.59 0.162 1n(4.31 E4
a =5 ) Vel B (15)
Electrical Field of Ionizing Section
In a wire-in-tube precipitator, Gottschlich [13] suggested the use
of:
c? i . Vv
By = 65 -——) , c=—— | (16)
T 211 KO K Rl
ln—
Ry
where:

¢ = constant of integration, volts

r = radial distance measured from the centerline of the
discharge electrode, meters

i = electrical current per unit length of the discharge
electrode, amp/m

K. = dielectric constant of a vacuum, 8.85434 x 10—12

Coulz/Joul—m

K = ion mobility, mzfv—sec

V = voltage difference between electrodes, volts
R, = discharge electrode radius, meters

Ry = collecting electrode radius, meters

Equation (16) can be simplified for certain special cases. For larger

values of i and r, a convenient approximation of equation (16) is:

(17)
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Gottschlich and Troost [13,14] suggested that the electrical field in a

wire-and-plate precipitator is:

2id
R (18)
i KO Kh
where:
d = spacing between the discharge and plate electrodes, meter
h = average spacing between discharge electrode, meter

The efficiency is determined as the ratio of the distance, collecting
plate to most distant particle which could be collected, to the spacing
between collecting electrodes. If y = distance from collecting plate to
most distant particle which could be collected and s = distance between

plates as shown below,

N

» : X

then:
14
efficiency = — (19)
S
¥
Maximum time to collect given particle size, t = — (20)
Yy
The horizontal distance available to collect, x = Vt (21)

where:

uy = particle velocity in vertical direction
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x = length of plate (maximum horizontal distance required
to stop)
V = air velocity

Substituting equations (20) and (21) into equation (19) gives:

X
efficiency = ——
Vs

Substituting the uy value from equation (14) into equation (22) gives:

1.6 x 10712 g B, C

3n ug Dp (cm)

)

efficiency =

Vs
Since x = 10.16 cm and s = 0.635 cm, equation (23) simplifies to:

(1.446 x 107%) C E, q
efficiency = » D is in microns

P
v Dp

Replacing q by its value from equation (15) yields the efficiency

equation of:

(1.446 x 107% ¢ B [pd+3? pQ-162 In(4.31 E1),
efficiency =

D
L P

where:
C = Cunningham coefficient
E. = electric field of collecting section, volts/cm
E, = electric field of ionizing section, volts/cm
Dp = particle diameter, micron

V = air velocity, cm/sec

(22)

(23)

(24)

(25)
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CHAPTER V
EFFICIENCY TEST FACILITIES, APPARATUS, AND PROCEDURE

This research project was carried out in the Fine Particle-Air
Pollution Laboratory, Institute for Environmental Research and the

Mechanical Engineering Department, Kansas State University.

Precipitator Cell

The cells, made by Metal-Fab, Inc. of Wichita, Kansas, were of three
types. Type YA32 contained 8 wires of 6-mil diameter. It was 8 in. high,
5 in. wide (in flow direction), and 14 in. long. Two configurations of
type YA34 were tested, one containing ten 6-mil wires and the other ten
7-mil wires. It was 10.5 in. high, 5 in. wide (in flow direction), and
14 in. long. Type YA36 contained 12 6-mil wires. It was 12 in. high, 5
in, wide (in flow direction),_and 14 in. long.

The cells were considered to be of the two-stage type, in which the
ionizing section precedes the collecting section. Figure 9 is a schematic
drawing of the Metal-Fab cell. Each positive ionizing wire was between
two parallel plates of negative polarity. Within.those two parallel
plates there were three other parallel plates, one negative and the other
two positive. Figures 10 and 11 show photographs of Metal-Fab cell.

A screen located ahead of the ionizing section acted as a pre-filter.
The screen, negative plates, and the case were grounded while the positive

plates and wires were connected and insulated from ground.
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Photographs of the side view and

Figure 10.

~Fab cell.

front view of Metal

nizing

10

Photograph of the

igure 11.

F

wire of Metal-Fab cell
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Test Duct

The experimental data was reported by Annis [ 4]. The sampling
system was according to Whitby [15]. This method and equipment
essentially meets ASHRAE Standard 52-68. Figures 12 and 13 illustrate
the size and configuration of the test duct. Figure 14 is a photograph
of the light-scattering photometer and Fig. 15 is a schematic drawing

of the same unit.
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Figure 13. Photograph of the test duct.

Figure 14. Photograph of the light-scattering
photometer.
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CHAPTER VI
RESULTS AND DISCUSSION

The experimeﬁtal efficiencies reported by Annis [ 4] were used for
comparison with theoretical calculated efficiency values. Summary of the
efficiencies reported by Annis are tabulated in Table 10.

The efficiency equation (25) was used to calculate the stain efficiency
of the precipitator. Whitby's [15] volume-weighted size distribution for
average atmospheric dust was used along with light-scattering coefficient
values from Whitby [16] to determine the stain distribution. The volume
distribution and stain distribution are shown in Fig. 16.

The stain-weighted, size distribution was found to be:

Percentile
mid points Dp - U
95 5.50
85 2.75
75 1.80
65 1.40
55 1.06
45 0.80
35 0.65
25 0.53
15 | 0.45
5 0.36

To determine the air velocity through the precipitator, several

areas were considered to be effective. These areas are:



35

SUOIDIR - I3Isdwerq ST2TIIeg

00T 0'T

rT1v 17 717 1 T

UOTIBINOTED 103 pP2322[3s sjurtod e3ieD ‘7
[ST] 493Ty: WOl UOTINGTAISIP dumfoa ‘T :930f

aAIND
UOTINGIIISIP SWNTOA

aA1nd
Butasijeds IY3STII

|| | | O L O A | \

|
N oI N
o oo

—10s

—|5 66
=18°66

*TOS049B DTIaudsowl® Jo

uo13Ingralsip Suta’aliens-3vdI] pur wmTo, g7 aIind1g

6°66

1933WeTq ueY3j II[TEUWS %



36

Al - based on the front area, not considering plate thickness
or any dead areas.

A, - based on the front area less plate thickness.

A, - based on the.front area less thickness of the folding edge.

A, - based on the front area less dead area on each side of plates.
(From observation of a dirty cell it was concluded there were
areas on each end of the plates that were not collecting dust.
Therefore, the particle velocity should be calculated realizing
these dead areas.)

Ag - based on the front area less plate thickness less dead area on
each side of plates.

Table 9 in Appendix B shows the velocity calculations for these areas.

Calculated efficiencies based on formula (25) are summarized in Table 1.

The same comparison between cfm and efficiencies is shown graphically in
Fig. 17. Comparison of calculated efficiencies by the old method and newly

derived formula along with experimental values are shown in Table 2.
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TABLE 2

SUMMARY OF STAIN EFFICIENCIES

Case E; Eq Calc. Exp. 0l1d Theory Calculation

No. v/ cm v/em Eff. % Eff. % E; E.

v/cm v/cm Eff. %

I 1763 9606 70.02 69.40 4803 9606 96.65
II 1763 9598 57.13 57.50 4799 9598 85.01
IT1I 1763 9635 47.69 47.90 4817 9635 74.25

1v 1763 9619 43.20 38.10 4809 9619 67.79
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CHAPTER VII

SUMMARY AND CONCLUSIONS

Residential parallel plate electrostatic preciplitators have never
been studied in sufficient depth. The Deutsch equation, based on turbulent
flow and used to find the efficiency of industrial precipitators, appeared
to have little application in a residential type laminar-flow precipitator.
The ionization voltage gradient formula formerly used was found to give
too high efficiency predictions for the corrugated plate Metal-Fab cell.

The visual flow pattern through the plates, along with the Reynolds
Number calculated, proved the presence of laminar flow through the cell.
Based on this criterion, an efficiency formula was derived using particle
kinetics and ionization voltage gradient for parallel plates. From this
efficiency formula it was possible to predict efficiencies that were
comparable to the experimental values. Also, it was possible to predict
efficiencies for various voltages, velocities and wire sizes.

Calculated efficiencies using the old theory were based on the
ionizing voltage gradient found using the ratlo of voltage to distance
between wire and negative plate. Using the old theory yielded efficiencies
that were much too high. The Teledeltos paper field plots showed a less
steep voltage gradient at the wire for the Metal-Fab design than was
intended for the cld theory.

The results of this study prove the existence of laminar flow in
residential electrostatic precipitators at normal air flows, and findings
provide an accurate and reliable tool to study and evaluate this type of
preclpitator. The effliclency formula developed allows one to predict the
efficlency at various voltages, flow rates, and wire sizes for a range of
particle diameters.

40
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This study determined the flow pattern and found a relationship
for efficiency prediction over a limited range of variation. Obviously,
a broader range of voltages and ionization currents should be tested.
The exact behavior of particles around the curvature of the plates should

be studied more precisely, with the derived formula being tested on

straight plate cells.
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NOMENCLATURE

area of collecting surface
1-5) = front area of cell
spacing between plates
Cunningham coefficient
constant of integration
spacing between discharge and plate electrode
particle diameter
electric field
electric field of collecting section
stain efficiency
electric field of ionizing section
electrical force
gravitational force
inertia force
viscous force
acceleration of gravity
average spacing between discharge electrodes
electrical current per unit length of the discharge electrode
ion mobility, mz/v—sec.
dielectric constant of vacuum, 8.85434 x lO_.l2 coul.ZIJoules—m
particle mass
Reynolds Number
volume rate of air flow

particle charge
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radial distance measured from the centerline of the discharge
electrode, amp/m

discharge electrode radius, meters

collecting electrode radius, meters

distance between positive and negative plates
time

time to travel 10.16 cm.

time to travel 0.635 cm.

particle velocity

particle velocity in x~direction

particle velocity in y-direction

average velocity

drift velocity

gas velocity

voltage difference between the electrodes, volts
1-5) = air velocity through Ai

maximum horizontal distance required to stop

maximum distance from the collecting plate to most distant particle

which could be collected

particle mobility

micron

fluid viscosity

particle density

gas density

efficiency



APPENDIX A

OLD THEORY STAIN EFFICIENCY CALCULATIONS
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Example Calculation (G = 512 cfm)

E, = 6118 volts
E. = 6118 volts

Charge on Particle:

0.59 | 0.162 1n(4.31 Ey)

\
E{ = 6118 volts/(0.5 in)(2.54 cm/in) = 4817 v/cm

0.59 0162 1n(4.31) (4817)

q = (4817)
3 = ik D;.&lﬁ&

Collection Mechanism:

1.6 x 10714 E.C

uy=
3mig Py

. 6118 volts/{0.25 1n}(2.54 enfin) = D635 w/lem

=
I

-12 1
1.6 x 10714149 05'6104)(9635 st G

= s D in microns
Yy 3 (1.88 x 107%) Dp(10‘4 em/ 1) B

f‘
12.96 Dg'ﬁlo’ c

c
i

Time to travel 0.635 cm, tg :

0.635 cm
t, = = 0.04900 n;0'51°4 ¢!

12.96 Dpo'f’m"’v o




Time to travel 4 in.(10.16 cm.) horizontally, tl:

% 10.16 cm
tl=_=_._._._____._.-
v 330 cm/sec
where:
x = plate length
V = particle velocity
512 ft3/min 0.5085 cm/sec
vV = 5 ( )
0.788 ft 1 ft/min
V = 330 cm/sec
0.0308 p°619% ¢
Filtration Efficiency, Eff. = t /tg = -
0.0490

0.6104

Eff. = 0.629 Dp

C (if > 1, use 1)

50
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TABLE 4

CALCULATED EFFICIENCIES BASED ON 300 CFM

Percentile* Stain Stain

mid points D,-u p0.6101 ck* Eff.)cale. Eff.)actual

95 5.50 2.833 1.03 3.123 1.000

85 2.75 1.853 1.06 2.102 1.000

75 1.80 1.432 1.09 1.670 1.000

65 1.40 1.228 112 | 1.472 1.000

55 1.06 1.036 1.15 1.275 1.000

45 0.80 0.873 1.20 1.121 1.000

35 0.65 0.769 1.25 1.028 1.000

25 0.53 0.679 1.30 0.945 0.945

15 0.45 0.614 1.36 0.894 0.894

5 0.36 0.536 1.44 0.826 0.826

Total 9.665

Efficiency 96.65%

* Stain size distribution

** Cunningham corrections from Fig. 18.



TABLE 5

CALCULATED EFFICIENCIES BASED ON 405 CFM

P?rcenFile* 0.6100 Stain ' Stain

mid points D -u D C** Eff.)calc. Eff.)actual

95 5.50 2.830 1.03 2.306 1.000

85 2.75 1.852 1.06 1.553 1.000

15 1.80 1.431 1.09 1.234 1.000

65 1.40 1.228 1.12 1.088 1.000

55 1.06 1.036 1.15 0.942 0.942

45 0. 80 0.873 1.20 0.829 0.829

35 0.65 0.769 1.25 0.760 0.760

25 0.53 0.679 1.30 0.698 0.698

15 0.45 0.614 1.36 0.661 0.661

5 0. 36 0.536 1.44 0.611 0.611

Total 8.501

* Stain size distribution.

**% Cunningham corrections from Fig. 18.

Efficiency 85.01%
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TABLE 6

CALCULATED EFFICIENCIES BASED ON 512 CFM

Percentile® ' 0.6104 Stain Stain
mid points Dp-p D Cc¥* Eff.)calc. Eff.)actual
95 5.50 2.833 1.03 1.835 1.000
85 2.75 1.853 .1.06 1.235 1.000
75 1.80 1.432 1.09 0.982 0.982
65 1.40 1.228 1.12 0.865 0.865
55 1.06 1.036 1.15 0.750 0.750
45 0.80 0.873 1.20 0.659 0.659
35 0.65 0.769 1.25 0.604 0.604
25 0.53 0.679 L. 30 0.555 0.555
15 0.45 0.614 1.36 0.525 0.525
5 0.36 0.536 1.44 0.485 0.485

Total 7.425

Efficlency 74.25%

* Stain size distribution.

%% Cunningham corrections from Fig. 18,



TABLE 7

CALCULATED EFFICIENCIES BASED ON 580 CFM

Percentile® Stain Stain
mid points Dp—u p0-6102 C*% Eff.)calc. Eff.)actual

95 5.50 2.833 1.03 1.617 1.000

85 2.75 1.853 1.06 1.088 1.000

75 1.80 1.432 1.09 0.865 0.865

65 1.40 1.228 1.12 0.762 0.762

55 1.06 1.036 1.15 0.660 0.660

45 0.80 0:873 1.20 0.580 0.580

35 0.65 0.769 1.25 0.532 0.532

25 0.53 0.679 1.30 0.489 0.489

15 0.45 0.614 1.36 0.463 0.463

5 0.36 0.536 1.44 0.428 0.428

Total 6.779

Efficiency 67.79%

* Stain size distribution.

k% Cunningham corrections from Fig., 18.



TABLE 8

SUMMARY OF EFFICIENCY CALCULATIONS BY THE OLD THEORY

Case Q ‘ Stain Stain
No. cim Ey Ec Eff. Eff. %
I 300 4803 9606 0.9665 96.65
11 405 4799 9598 0.8501 85.01
IIT 512 4817 9635 0.7425 74.25

Iv 580 4809 9619 0.6779 67.79




APPENDIX B

NEW THEORY EFFICIENCY CALCULATIONS
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Assumed Criteria

The length of plates were considered to be 13.3 in., Although only
every fourth plate was 4 in. deep, the effective collecting length was
considered 4 in. because it was the weighted average of the plate depths.
(50% 3.5-in. plates; 25% 5-in. plates; 25% 4-in. plates.)

The cumulative volume-weighted particle size of Whitby [15] along
with Davis' [16] light scattering coefficients for opaque particles were
used to determine the stain distribution curve of Fig. 1. From cbserva-
tion of precipitator cells, it was concluded that about 0.5 in. on each
side of the plates was not collecting and, therefore, it was assumed to
be ineffective in determining the velocity of charged particles. Areas

calculated under various assumptions are:

Ay = 13.3 x 10.2 = 135.66 in® = 0.942 ft?

Ay = 13.3(10.2 - 39(0.023)) = 123.73 1n? = 0.859 ft?

A, = 13.3(10.2 - 39(0.047)) = 111.28 in® = 0.773 ft?

A, = (13.3 - 2(0.5))(10.2) = 125.46 in® = 0.871 ft?

Ag = 0.942 - (0.942 - 0.859) - (0.942 - 0.871) = 0.788 ft°

where Ay, Ap, etc, are defined as in Table

10.16 cm.

H

Collecting depth = 4 in.

[}

Plate spacing = 0.25 in. 0.635 em.

Plate thickness = 0.023 in.

Thickness of folding edge = 0.047 in.

Reynolds Number Calculation:

2 b Uog

NRe =

Hg



where:

b = plate spacing

U = average velocity
= densit

pg y

Ug = gas viscosity

cross-sectional area = 0.25 in.x 14 in.= 3.5 in2 = 0.0243 ft2

580 cfm
=__ = 14.5 cfm in. each section

Qnax -
40 sections

14.5 cfm/section
U= = 596.71 ft/min = 303,13 cm/sec
0.0243 ftzlsection

using air at 75 degree F, 50Z R.H, and 29 in. of H20

1.88 x 1074 gm/cm-sec

Hg

]

P 1.15 x 1073 gm/em3

8

(2 x 0.25 in. x 2.54 em/in}(303.13 em/sec)(1.15 x lO_3 gm/cm3)

R
¢ 1.88 x 104 gm/cm-sec

2355

=4
Il

Re



TABLE 9

VELOCITY CALCULATIONS

Area Velocity 580 530 512 405 400 300
ft2 cm/sec CFM CFM CFM CFM CFM CFM
0.942 vy 313 286 276 218 216 162
0.859 v, 343 313 303 240 237 177
0.773 Vq 381 348 336 266 263 197
0.871 vy 338 309 299 236 233 175
0.788 Vs 374 342 330 261 258 193
Vi is based on front area not considering plate thickness or dead
areas.
V2 is based on front area less plate thickness.
V3 is based on front area less thickness of folding edge.
L& is based on front area less dead area on each side of plates
(0.5 inches used on each side).
VS is based on front area less plate thickness, less dead area on

each side of plates.
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Example Calculations (Case VI)

21d

ﬂKOK h

By =

where:

3

2,23 mili-amp x 10°~ amp/mili-amp

4 cells x 10 wires/cell x 13 in./wire

2.23 x 10~3 amp

520 in.

1.689 x 1074 amp/m

2 x 1.689 x 10~% x 0.5 in. x 0.0254 m/in.

Ei =
T x 8.85434 x 10712 x 1.4 x 1 in. x 0.0254 m/in.
= 2083 v/cm
voltage 6175
EC = =
* plate spacing 0.635
= 9598 v/cm
= 0.59 _0.162 In(4.31)(E
(1.446 x 107%) € E. (5" DY ) (Eg)
Eff. =
Vv Dp

Eff. =
‘ 193 Dp

Ef ficiency calculation for D, = 5.5 and C = 1.02:,

P
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Eff.

Eff.

Eff.)

(1.446 x 10™%) (1.02) (9598) (90.79) (5.5)

0.162(1.46 + 7.6)

(193) (5.5)

1.481

)calc.

actual = 1-000
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Cases I, IT,

11, Iy

&r

€11

=
1

III

c
v

Eff. =

0.40 x 107>

_ =1.21x10°% amp/m
10 x 0.33

1.603 x 103 /i = 1763 v/cm

6100

= 9606 v/em
0.635
6095

= 9598 v/cm
0.635
6118

= 9635 v/cm
0.635
6108

= 9619 v/cm
0.635

0.77

1.19 x 1072 ¢ D,

v
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Cases I, II, III, IV

Case No. I IT IIT iV
E., v/cm 9606 9598 9635 9616
V, cm/sec 193 261 330 374
D, Dg'77 1.19 x 1072 ¢ Eff. Eff. Eff. Eff.
5.5 3. 716 .02 1.21 x 1072 1,000  1.000 1.000 1.000
2.75  2.179 .07 1.29 x 1072  1.000  1.000 0.821 0.723
1.80  1.572 .10 1.31 x 1072 1,000 0.757 0.601 0.530
1.40  1.296 11 1.32 x 1072 0.851  0.629  0.499 ' 0.440
1.06  1.046 .15 1.37 x 1072 0.713  0.527 0.418 0.369
0.80  0.842 .20 1.43 x 1072 0.599  0.443 0.352  0.310
0.65  0.718 .25  1.49 x 1072 0.532  0.393 0.312 0.275
0.53  0.613 .30 1.55 x 1072 0.473  0.349 0.277 0.244
0.45  0.541 .38 1.64 x 1074 0.442  0.326 0.259 ' 0.228
0.36  0.455 45 1.73x 1072 0.392  0.289 0.230 0.202
Total 7.002  5.713  4.769  4.320
Stain Efficiency 70.02% 57.13% 47.69% 43.20%
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Case V

2.30 x 1073
i = = 1.452 x 107% amp /m
48 x 0.33
E; = 1.603 x 10° /i = 1932 v/cm
6068
B, = = 9556 v/em
0.635
v = 300 cfm = 193 cm/sec
1.26 x 1072 1, ¢ 946
Eff. =
Vv
Percentile Stain Stain
. . 0.46 0.46
mid points DP DP ¢ Dp Eff')calc. Eff')actual
95 5.50 2.191 2.235 1.394 1.000
85 2.75 1.593 1.705 1,063 1.000
75 1.80 1.310 1.441 0.899 0.899
65 1.40 1.167 1.295 0.808 0.808
55 1.06 1.027 1.181 0.737 0.737
45 0.80 0.902 1.082 0.675 0.675
35 0.65 0.820 1.025 0.639 0.639
25 0.53 0.747 0.971 0.606 0.606
15 0.45 0.693 0.956 0.597 0.597
5 0.36 0.625 0.906 0.565 0.565
Total 7.526

Efficiency 75.26%



Case VI

2.23 x 107> 5
i =___ =1,689 x 107" amp/m
40 x 0.33
E; = 1.603 x 10° /1 = 2083 v/cn
6095
Ec = = 9598 v/cm
0.635
' = 300 cfm = 193 cm/sec
1.31 x 1072 E_ ¢ Dg'4?
Eff. =
\'
Percentile Stain Stain
; ; 0.47 0.47
mid points Dy Dp C Dp Eff.) calc. Eff')actual
95 5.50 2.228 2.273 1.481 1.000
85 2.75 1.609 1.721 1.121 1.000
75 1.80 1.318 1.450 0.945 0.945
65 1.40 1.171 1.300 0.847 0.847
55 1.06 1.028 1.182 0.770 0.770
45 0.80 0.900 1.081 0.704 0.704
35 0.65 0.817 1.021 0.665 0.665
25 0.53 0.742 0.965 0.629 0.629
15 0.45 0.687 0.948 0.618 0.618
5 0.36 0.619 0.897 0.584 0.584
Total 7.762

Efficiency 77.62%



Case VII

1.95 x 1072
i = et T BAT & 1O amp/m
32 x 0.33
E{ = 1.603 x 10° /T = 2179 v/cm
6218
E = = 9792 v/cm
c 0.635
v = 300 cfm = 193 cm/sec
1.35 x 1072 5, ¢ 048
_ P
Eff. =
Vv
Percentile Stain Stain
\ . 0.48 0.48
mid points Dp Dp C Dp Eff')calc. °)aCtual
95 5.50 2.267 231 1.582 1.000
85 2.75 1.625 1.74 1.192 1.000
75 1.80 1.326 1.46 1.000 1.000
65 1.40 1.175 1.30 0.890 0.890
35 1.06 1.028 1.18 0.808 0.808
45 0.80 0.898 1.08 0.740 0.740
35 0.65 0.813 1.02 0.699 0.699
25 0.53 0.737 0.96 0.658 0.658
15 0.45 0.682 0.94 0.644 0.644
5 0. 36 0.612 0.89 0.610 0.610
Total 8.049

Efficiency 89.49%



* Case VIIL

1.86 x 1073 .
i =— = 1.409 x 107" amp/m
40 x 0.33
E, = 1.603 x 10° /i = 1903 v/cm
6250
E. = = 9843 v/cm
0.635
v = 300 cfm = 193 cm/sec
1.245 x 1072 B, C Dg.as
Eff. =
v
Percentile Stain Stain
. . 0.46 0.46
mid points Dp Dp C Dp Eff’)calc. Eff')actual
95 5.50 2.191 2,234 1.418 1.000
85 2.75 1.593 1.704 1.082 1.000
75 1.80 1.310 1.442 0.916 0.916
65 1.40 1.167 1.296 0.823 0.823
55 1.06 1:027 1.181 0.750 0.750
45 0. 80 0.902 1.083 0.688 0.688
35 0.65 0.820 1.025 0.651 0.651
25 0.53 0.747 0.971 0.616 0.616
15 0.45 0.693 0.956 0.607 0.607
5 0. 36 0.625 0.906 0.575 0. 575
Total 7.626

Efficlency 76.26Y%



Case IX
1.63 x 1073 .
i = = 2.058 x 10" amp/m
24 x 0.33
E;, = 1.603 x 10° Vi = 2300 v/cm
6263
E, = = 9863 v/em
0.635
v = 300 cfm = 193 cm/sec
1.39 x 1072 g_ ¢ p2+ %
C P
Eff. =
Vv
Percentile Stain Stain
. ; 0.49 0.49
mid points Dp Dp C Dp Eff')calc. Eff.)actual
95 5.50 2.306 2.352 1.671 1.000
85 2.75 1.642 1.757 1.248 1.000
75 1.80 1.334 1.467 1.042 1.000
65 1.40 1.179 1.309 0.930 0.930
55 1.06 1.029 1.183 0.840 0.840
45 0.80 0.896 1.076 0.764 0.764
35 0.65 0.810 1.012 0.719 0.719
25 0.53 0.733 0.952 0.676 0.676
15 0.45 0.676 0.933 0.663 0.663
5 0.36 0.606 0.879 0.624 0.624
Total 8.216

Efficiency 82.
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This study was concerned with the derivation of an efficiency
prediction theory for a residential, corrugated, parallel-plate
electrostatic precipitator. The first phase was to study air flow
characteristics in the parallel-plate section of the precipitator. The
second phase was a study of variation in ionizing field about the ionizing
wire. The final phase Involved the development of a formula that would
predict the stain efficiency for this type of precipitator.

The air flow study was performed using a wind tunnel with collector
plates placed in the test section. By using a fine smoke stream it was
possible to study the flow pattern. This test showed that the flow was
laminar through the plates.

By using Teledeltos paper, the equal-potential lines of the ionizing
field were plotted. The plots, with the field highest near the wire and
decreasing as the distance from the wire increased, allowed better under-
standing of the variations in the field and showed a lower gradient near
the wire than for usual two-stage units.

| Calculated stain efficiencies from the developed formula agreed
closely with the experimental values over a range of alr veloclities,
voltages, and lonizing currents. Efficiencies calculated using the old
theory for two-stage, residential units did not agree with the measured
values. It is the voltage gradient of the lonizing section, as a function
of the ionizing current, and its relationship to the charging mechanism

that is of prime importance.



