DESiGN AND IMPLEMENTATICN OF A GENERAL
PURPOSE MACROPRCCESSCR FOR
SCFTWARE CCNVERSION

by
David A. Schmidt
B. A., Fecrt Hays Kansas State Ccllege, Hays, Kansas, 1975
A MASTER'S REPORT
submitted in partial fulfillment of the
requirements of the degree
MASTER OF SCIENCE

Department of Computer Science

KANSAS STATE UNIVERSITY
Kanhattan, Kansas

1977

Document
LD i
2667

1377
I3
C. 2
ACKNOWLELGEMENTS

Special thanks go to Gary Anderson, Dr. Fred Maryanski,
and Rhonda Terry. This work was sponsered in part bty U,S.
Army research contract DAHC26-77-C-0003.

ILLEGIBLE
DOCUMENT

THE FOLLOWING
DOCUMENT(S) IS OF
POOR LEGIBILITY IN

THE ORIGINAL

THIS IS THE BEST
- COPY AVAILABLE

TABLE OF CONTENTS

1.0 INtroduCtioNe o« « = o o o o s a

2.0 Background, « « = o« » » & » o = w = » »
| Classification of MAcCrLOS. « « o « « o «
Tl Exarcination of Existing Software

fcr Possible US€. o« ¢« 2 2 o s o = » »
3.0 Inplementation of the Preprocessor, .
3.1 Phases of IsplementatioN. « « « « » &
4.0 Results of the Implementation
4.1 Application ¢f the Preprocessor . . « «
4,2 Examples of Text Transformation
4.3 Hardware Regquirements « « + o = s « « =
5.0 Forral Definition of the Macro Language
el Primitive TYFGS * ¢ & 2 ® & ® =3 @ s & =
5.2 SYmbols - - - - - - - - - L J - - - - - L]
€43 PatteINS. + o s« o @« o o o a = © = s = =
5.“ SetS. - - L] k] - - - - - - - - - * -
5.5 Transformatlcn ClasSeSe o ¢ ¢ o o o o
b6 Transformation EntrieS. . + o o o ¢ o« «
Ewil Classifications of Transforas and

Priority AssignmentsS. « ¢« « o « » o «
€.0 Evaluation and Conclusions. « « « « « «
6.1 Extensibility and Future Uses . . . « .

REFERENCES AND BIBLIOGRAPHY o« o« o « = =«

AEEENDICIES

Ereakdown of Construction Effort by Phases.

Freprocessor Input for Interdata
COBOL CCNVELSiONe « o o o o s = o o &«
Sample Preprocessor Cutput. « « « « = &

L1IST OF FIGURES

Translation Of KaCTOS « « » = = o = = =
A ML/1 Macro Definition -
sample Proteus Input to Define and Use

Complex NUmDEIS « ¢ o o ¢ « ¢ = o o =
sample Proteus Program Using

Arithmetic EXPresSSiONS. « o = o o o «
Exanples of Priority ENF Constructs . .
Sample Transforrmaticn Table « . . « « .

]

4+ @

. & & @

~ &=

19

28
29

33
35
36
40

4y
47
47
48
49
50
51

52
58
61

65

69

71
79

26

27
45
46

ii

—— s o ——

One of the specific problems manifest in the overall
area vaguely titled the v“software crisis® of conputer
science 1is the maintenance of existing software, This
raintenance can vary from the typical "cut and paste™®
rodifications found with any active software all the way to
a complete rewrite of a system's code. The latter is often
the case when a user must change hardvare or software
support, Ssuch conversion of existing programs from one
language to another may not be a difficult task, but it is a
time consuming one. To accomplish such a conversion
ranually usually produces a large amount of effort, cost,
and errors. Automation of this task is therefore both
desirable and challenging.

Automation of software conversion is not a new topic;

the problems of machine and compiler incompatitilities have

teen present long enough to tring forth extemnsive work
with DacLOPLOCEeSSOrsS and extensible lapguages.

Consequently, the need to convert approximately 100,000
lines of IBM ANS CCBOL to a version of ANS sulkset COBOL as
implerented for the Interdata 8/32 suggested immediately the
use of automation. Aside froz the sheer volume of code
needed to ke converted, other reasons presented themselves
as supporting points for design of an automatic conversion

devices

-- the majority of changes involved were simple tLut
time consuming, a situation which induces easy-to-nmake
Eut hard-to-lccate errors.

-- the lack of people experienced in the host and
target 1languages meant that even the simplest of
changes in the code would present formidable challenges
to the personnel involved;

~~ the probability of additional conversion in the near
future of COBOL-coded data Lase management systems made

any sort of automatic aid especially attractive,

Consequently, the decision was made to construct a
device (denoted as a preprocessor) to automatically convert
as many of the IBM to Interdata incompatibilities as
possible. Since the target language in this situation was
implemented via a minicomputer compiler, and since the area
cf pminicomputer <software is one undergoing a continual
change in product, the preprocessor was to be designed to be
as flexible as possible to meet these changes. That is, the
device may be updated easily to handle new releases of the
target language and new conversion situations as they may
Fresent theaselves, One class of devices exhibiting such
characteristics is said te be table driven, .
implemented 1is a "table" upon which the user states the
target conversions and host replacements which are needed

for the particular application, With such a wmethod, only

the table need be changed each timpe the device's application

is changed., (An example of a tatle-driven device is the so-
called *"“compiler-corpiler®, a software tool designed for
users desiring to create their owk coxputer langquage with
riniral effort.)

The automatic device to be used in the COBOL conversion
was to be a table driven preprocessor. Since nuch work had
already been accomplished in the area of programming
language c¢cnversicn, both in the situation previously
rentioned and in the extension of programming languages, the
next step in determining the design, implementation, and

evaluation of a preprocessor was a survey of existing

literature in the area.

2.0 Background

Literature in the field of programming languages
suggested the use of a device called a macroprocessor for
the COBOL conversion. A macroprocessor is "a piece of
software which 1is designed to allow the user to add new
facilities of his own design to an existing piece of
software" [1]. More generally speaking, a macroprocessor
supports the use of a software entity called a macro, which
is nothing more than a symbol or segquence of symbols which
are to be recognized and replaced with another, different
sequence cf symbols. How the macro is defined by the user
and recognized by the macroprocessor is dependent wupon the
pacroprocessor itself., Typically, macros are first defined
bty the use of a declaration mechanism similar to that used
for declaring storage for program identifiers, The
definition includes the calling format for the macro, by
which recognition of the macro is 1later made, and the
frocedure for replacement of the macro by the -expanded
source text. Macros are used with an existing base
language, and they are included in-line with program code.
The nmacrcprecessor then scans the 1input source code,
recognizes the macro calls, and effects some sort of
replacement. Macro calls typically have a parameter list,
shich is a segment of in-line source text needed to generate
the desired expanded source, The resulting output is code

now completely in the desired bkase language which can Le now

successfully processed by a translator for the language. It
chould be noted that the idiom of a "host language®
corresponds to the tase 1language with the included macro
calls, while the "target langqguage™ is the pure Lkase language

cutput, Figure 1 depicts this translation process.

FIGURE 1

TRANSLATION OF MACROCS

BOST LANGUAGE
({BEASE LANGUAGE WITH
IN-LINE MACRC CALLS)

BACROPRCCESSCR
(CONVERTS CALLS TO
EASE LANGUAGE CODE)

EXPANDED SCURCE
(TARGET LANGUAGE)

TRANSLATCOR FCR
TARGET LANGUAGE

vV

OUTPUT CBJECT
COLE

when the macroprocessor is Luilt into the target
language's translator, the result is called an extensitle
language. This is because the Lase language may be
"extended" upon the whim of the user to become useful in
whatever application is desired. At the opposite end, when
the macroprocessor is completely divorced from the target
language's translator to the extent +that the entire code
tody is first processed through the macroprocessor and then
through the translator, the device is entitled a
pLeprocessor. Macroprocessors may be either general purpose
cr special usage. A general purpose device may be tailored

to accept a wide range of host and target lanquages, while a

special usaqge device may not.

Macrcs may be classified by the means in which they are

evaluated. Cheatham [2] lists three classes of macros:

-- text macros: are evaluated by performing a lexical
analysis (scan) upon the host language text;

-- syntactic cacros: are evaluated by performing a
syntactic analysis (parse) upon the host language text;
-- copputational macros: are evaluated by performing

analysis upon an intermediate code derived from the

host language source text.

The use of coeputational macros was not considered for
the task at hand, as little use of such macros was found in
language conversicn tasks. Computational macros are more
commonly implemented within extensitle language translators,
Cf the two remaining classes, the syntactic macro is far
nore useful because it 1is capaltle of recognizing ccntext
sensitive macro calls where the text macro is not.
Typically the text macro is also set off by some special
keyword or delimiter which makes its use in applications
cther than a narrow range of language extensiblity limited,
leavenworth [3] further defines the class of syntactic
pacros by creating two types: a "procedure oriented", text
inserting macro called an SMACRC, and a "value returning"
{function) macro <called an FMACRO. The subclass of macro
called the SMACRO is the focus of the literature survey.

Of prime importance when implementing and using macro
definitions and macro calls is the inherent capabilities of
the macro as supported by 1its processor, McIlroy [4]
suggests a list for evaluating a macro's capabilities.

Eriefly stated, the "ideal" macro should support:

-- pyramided calls: the nesting of a macro call within

a macro call, 1i.,e,, the text generated by a macro can
contain additicnal macro calls which are evaluated as

if they vere present in the original source;

-- ccnditional calls: the substitution of the expanded
text can be nmade dependent upon program conditicns
previously defined or upon the paraseters passed with
the macro call.

-- creation of source text symbols: the use within the
expanded prograz source of identifiers and 1labels
generated by the macroprocessor so to completely effect
the transformation;

-- grouping of parameter values: the use of a mechanism
(such as parentheses) to allow the passing of a list of
parareters in such a fashion so to establish explicit
precedences upon the parameters' evaluation, (These
precedences can be compared to the precedences
established by the use of parentheses with arithmetic
operators in numeric expression evaluation.) This
allows the passing of variable 1length lists of
parareters (i.e., progras text symbols) which can be
correctly interpreted Ly the macroprocessor for
translation.

-- nested definition: the ability to establish a new
macrc declaration (definiticn) by including such in the
expanded source text inserted Lty the evaluator cf the
current macro, The declaraticn can then be processed
as if it was previously present in the original source
text.

-- pacro repetition (recursion): the ability of the

macrc to recall itself dependent upon the parameter

10

values of the macro call (and so the text generated).

Whether or not these macro capatilities can be realized
is a function of the way in which tbhe macroprocessor is
designed and implemented. Brown [5] gives an excellent
checklist in this regard; a summary of it follows.
Basically five items must be taken into consideration when
designing a macroprocessor: the base language (target
language) to be used, the synt5x of the macro «calls, the
reans used in macro evaluation, the macro-time facilities
available, and the methods of implementation used.

The choice of a tase language for the macroprocessor is

a major one; a general purpose device is designed so that
the user may apply the macroprocessor with any base language
desired. This generality usually produces device complexity
and limits the transformation powers. The special purpose
racroprocessor is limited in its range of applicability, but
cften its power is enhanced by the knowledge of the format
and syntax of the ocutput. The macroprocessor is designed
around the target language, Macroprocessor use has been
rost prevalent in specialized applications, although this
say be more of a function of the disposition of the
knowledgatle user to turn tc macroprocessors imn such
situations, as opposed to to the general purpose user, who
cften acquires a new translator instead.

The syntax associated with a macro call often

determines how the rmacro is capatle of being evaluated. The

11

pacro call may be recognized by the processor in a number of
ways. The use of name recognition ("keywords®" signalling
pacro evaluation, much like a FCRTRAN subroutine call) is
simple to implement but 1limited in use; it restricts
evaluation effectively at the lexical analysis level.
Syntactic evaluation of the call is usually accomplished by
some means of pattern matching, This scheme usually means
the source text must be tokenized (i.e., the varying length
character strings are converted to an internal
representation where one symbol corresponds to each string),
wvhich realizes extra overhead upon the device, Pattern
patching can be effected upon non-tokenized text, but the
task of matching a character at a time is so time consuming
that severe restrictions must bLe placed upon the calling
format. Cften formal delimiters such as '$', or end-of-line
characters, nust ke used.

Accompanying the macro call must be the macro's
parameter list, This list can range from a formal
specification of identifiers enclosed in parentheses and
seperarted by commas to a variaktle length, format-iree
listing which is indistinguishatle froam the rest of the base
language code. Again a trade-off exists between ease of
evaluation and power of usage, Ideally, the macroprocessor
should be akbtle to accept a list like the latter and treat it
with the overhead usually attrituted to the former., Another
consideraticn in fparameter list evaluation is the way in

which the macroprocessor accepts the parameters as per the

12

macro definition. Parameters may be accepted by numlter
(e.g., a list of n parameters where each entry can be
referenced by its displacerent within the list), or by napze,
where reccgnition is dependent nct upon ordering, but Ly the
Farameters' text representation.

The situations in which the @macro call may ke
recognized is also a consideration in macro syntax. The
notation independent macro can be identified irregardless of
its position in the source text, and without use of srpecial
delimiters., This allows the macrc calls to fit into the
base language naturally and promotes an ease of usage, A
good extensible language provides such a feature. This
pethod can be contrasted to the macro call which must be
located in a special position in the text and set off by
special delimiters, Further power can bLe given the macro
call if its replacement text can be conditionally generated
dependent ugon program conditions of parameter attributes,
This macro call npegation allows the wuser to selectively
activate and deactivate macro calls without rewriting the
source text. -

Text evaluation of the macro call may take on many
forms. This area relates closely to Mcllroy's checklist, as
the means of evaluation is directly related to the macro's
power. A desirable feature of macro evaluation is tﬁat it
te recursive, i.e., the expanded replacement text may
ccntain calls to the macro which instituted the replacement.

The range of the macro call also improves its generality and

13

power: a call which can extend over several 1lines (i.e., a
"pultilevel call") is particularly useful for text
recogniticn and optimization. The time at which the macro
call's parameters are evaluated 1is another consideraticn.
The parameters can be evaluated (i.e., expanded, if they
contain macro calls) immediately tefore the macro cail
itself is replaced. Such a procedure is a call by value. A
delayed evaluation until after the replacement text has been
generated is a call by name. The two different forms of
evaluation produce different results, and the call by nanme
is considered more powerful as it facilitates ascendant and
descendant macro calls [6].

A macro's scope in the source text must also be
reckoned with in terms of text evaluation. A global macro is
in force 'freom the point in which it is declared (or even
teforehand, in the case of recursive devices) until the end
cf the source text. A local macrc can be "turned on and off"
at will {(an illustration of this concept is the use of the
ACTIVATE and DEACTIVATE verbs in the PL/I preprocessor [).
Glotal macros are often preferred tecause they introduce a
consistency in evaluation which is violated by the concept
¢f locality.

Generation of the replacement text for a macro call is
a responsitility cf the macro-time facilities of the
frocessor, Two obvious considerations are the use of pacro-
time variables and created symlols. Macro-time variables

S ————— e

are value holders used by the macro procedures for

14

facilitating text replacement. They correspond directly to
the varailkle declaration found in any user program. Macro
variables may either be local or global; local varaibles are
active only when the macro evalvation routine is called,
while glotal variaktles contain values which are accessitle
ty all macro routines., Use of glolal variables allow the
zacro routines to communicate status to one another thus
encouraging the use of conditional replacenent and
pultilevel calls. In addition, global variables can tLe
established as gquite complex data structures which allow
sophisticated evaluation and replacement.

Any macro routine that 1is considered to have text
replacement power pust be capaktle of generating its own
created symbols to be inserted into the replacement text,
7his includes new labels as well as identifiers. The
problem of the identifier's declaration is often brought
atout by this feature, and so the macroprocessor must be
capable of accounting for the solution of this problesn.
Ckviously any newly created symbols may not conflict with
already existing ones; some means need be established to
guarantee completely as possible that such a redundancy not
cecuE,

The insertion of the replacement text into the source
is directly determined by macro-time statements which are a
part of the macro language. Sore definitions are in order
here for the sake of <clarification, A macro definition

uysually consists cf two parts: the macro calling syntax

15

definition (known as the "macro head") and the supplied
instructicns for creation and insertion of the replacement
text (the “"macro body%"). The replacement instructions can
te quite sieple in form (e.g., no instructions at all--
sinply replacement text) or can utilize such constructs as
arithmetic, loop control, and string manipulation statements
{SNCBCOL must be mentioned here as an example of such power
(6]« McIlroy believes that these macro-time statements
which form the macro hody should Le every bit as powerful as
those found in an algebraic 1language [9]. The designers of
the EL/I preprocessor took such advice to heart by allowing
FL/I to be the macro 1language of their preprocessor.
infortunately, macroprocessors need string manipulation
capakilities more than complex arithmetic evaluation
features, and so a close examination =sust be undertaken
whenever implementing a macro-tire language.

An extension of the use of gloktal macro-time variables
is the creation o¢f a pmpacro-time dictionary which is the
gacroprocessor egqguivalent of a coampiler's syrbol tables.
cgch a dictionary can be used to hold source text
jdentifiers and their determined attritutes. The systenz is
a tcon tc ccmplex conditional replacerent, as a wealth of
information may be extracted Ly one macro for 1later use by
another. The dicticnary can be further extended to contain
ncanned" macro routines for use as a systems library by the
FLocessor. Ease in user coding is thus promoted. The

ccncept of a macro-time dictionary extends the

16

Bacroprocessor's power to the point that it can Leconme
ultimately a full-fledged compiler.
Once the design of the m®macroprocessor has been

determined, the method of implementation is brought +to the

fore. As in all translators, a number of fundamental
decisions concerning construction sust be made. 1Is the
device to be one pass or multi-pass? & multi-pass device is
typically slow but does present the advantages of producing
a device which can fit into a smaller main memory (due to
cverlaying) and can btuild a more complete macro dictionary
{due to the extra scans obtained). A novel approach is to
construct a one-pass device which is reentrant, i.e., after
cne pass of the source text,the processor reenters itself to
rerforn additional scans. An advantage of such a device is
that only one memory load is needed; size is obviously not
reduced.

Storage of text information can ke done internally with
the use of contiguous lists, linked 1lists, or stacks.
stacks are more useful for temporary storage, contigucus
lists for premanent storage, amd linked 1lists for use of
dynamically allocated, variable length storage, A decided
advantage in list processing is the capabilities provided
towvards symbol manipulation, Special purpose devices have
the advantage of tailoring the storage mechanisms to the
language being processed (e.g., stack storage mechanisrs are
used in all ALGOL corpilers) and thus can optimize memory

sizes and execution speeds in this area. General purpose

17

devices often must estimate storage regiurements and must
allocate dynamically. Often all three methods are used in a
single device.

The factor of execution speed is most strongly
influenced ty the method of macrc recognition used. The use
cf keying words and delimiters promotes quickest evaluation
at a loss of generality and power. The designer must decide
whether the execution speed is an important enough
consideraticn to sacrifice such generality. Often execution
speeds can be 1improved when the wmacro processing is
overlapped with I/0 to backing secondary storage.

Since the ultimate objective of any macroprocessor is
to e operationable, user considerations should be given
Frime weight in the devicefs design and implementaticn,

Ideally the macropreccessor should support:

-- transformations which allow it to be used as a
powerful text editor. In this fashion, the operations
of text editing and expansion can ke combined into one.
-- pacro calls which blend in well with the base
language., The user should te able to utilize the calls
easily so as to forget that they are actually alien to
the language itself: the wmacro calls thus Leconme
transparent.

-- ease 1in coding macro definitions so that the
definition of a macro need not Le left solely in the

hands o¢f a few dedicated systers progranmmers, The

18

macro languaje should be easy to learn and use.
-- errcr detection and recovery of improperly coded
macro calls. This 1is currently a difficult problen
vith most macroprocessors as typically an improperly
coded macro call is not recogmnized at all and so passes
by the contrcl of the macroprocessor and is flagged by
the base 1language translator. At best, the macro is
improperly translated. This presents prolklems to the
user as: 1) the translator error messages do not
indicate that the macro was «coded improperly; 2) the
translator listing reflects the expanded output, and
the criginal-source macros have disappeared completely
from the text. A user who 1is unaware of the macro
translation grocess will find the reading of such
output an impossible task. The macroprocessor should
have some scort of error detection to at least mark
statements which appear to Lbe improperly coded and an
output mechanism to present the original source along
vith the error listings,

The considerations menticned here for macroprocessors
also apply to those processors implemented as part of the
tase language translator to form the foundation of an
€xtensible language. In particulr, an extensible language
is concerned with the transparency of usage of macros, and
the macros' abilities to initiate nev operators, data tyges,

and language verts. Ideally, an extensitle 1language

19

fresents a ‘"core" of data types and statements upon which
the user builds his own custos version of the 1lanquage.
Although a device to facilitate such a powerful expansion
would be difficult to implement for a wide variety of
languages, the processor in an extensitle language is a
special purpose device and sc can take advantage of the
advance knowledge such a situation entails, As with
BEaCLOPLOCESSOIS, the processor within the extensitle
lanquaget's translator may expand macro calls during the
lexical, syntactic, or code analysis phases. Since both
sacroprocessors and extensible languages deal basically with

the same proklem, the two will be treated as one group.

A survey of the requirements of the CCBCL conversion
groject versus the capabilities available in macroprocessors
produced the follcwiﬁg list of desired features for the

soon-to-be constructed device:

-~ the device should be table driven so that macro
definitions can be added, changed, and deleted easily
and without altering the macroprocessor code itself;

-- macro calls must be notation independent, as the

conversions needed for implementation may occur at any

20

positicn in the source and are not set off by any
special delimiter. The calls must be, 1in effect,
transparent, as in actuality they are ANS COEOL-coded
verbs which are not implemented by the Interdata
compiler.

—- the macro definitions @nmust ke completely divorced
from the source code for the reason specified above.
The definitions must be allocated from a serparate
source.

-- the parameter list of the macro call must be able to
handle variaktle length rarameters or have some
mechanism for %collecting™ a list of parameters into a
single entity. This feature is necessitated by the
saving and transportatation of such items as variable
length clauses and expressicns.

—-- the device can best fulfill the needs at hand if it
is syntax-driven. This allows the handling of complex,
variable length macro calls in a fashion which
encourages sukseguent text generation.

-- the ability to define and use new types (such as
"literal” and “expression®") is highly desirable.

-~ the macro-time language must facilitate conditional
replacerent and table handling facilities. The
language conversion task necessitates the building of
auxiliary "syerkol tables®™ tc be wused in the processing
of later macro calls; often text substituticn 1is

conditional upon the results of an earlier macro call.

21

These probleas are easily solved with the desired
features.

-- the macroprocessor must te implementable omn the
Interdata 8/32 within a period of three months.

-- the macroprocessor must te coded in a language which

is easy to read and modify.

The latter two points on this checklist are
particularly important as a time deadline was in effect for
implementing the device, but the result was to be general
purpose enough so that later programmers could tailor the
device to their own specific needs. In other words, the
pacroprocessor must first and foremost ke easy to implement,
easy to understand, and easy to use. To speed up the
implementation process, a survey was pmade of the existing
general purpose macroprocessors available which contained
reatures needed for the conversion task., The examination of
the field will not be reproduced here in €full; much
dccumentation already exists on these devices. Three
€xisting processcrs cet with =®=ore than casual interest;
their features will be briefly listed below.

One macroprocessor which stcod forward with a numbter of
features matching the reguiresments was P. J. Brown's ML/I
[10]), a general purpose macrofrccessor. ML/I is applicatle

to the situation Lkecause:

—-- the user can define the format of the macro calls in

22

any fashion he so desires. This allows calls 1in the
fashion of:

IF argl1 = argy2 THEN arg3 ELSE argi.

where each argi is‘ a variable 1length list of
identifiers,

-- ML/I allows conditional generation of replacenent
text as well as use of macro-time variakbtles and symtol

creaticn.

Negative points concerning ¥L/I were found to be:

-- no type checking of parameters is accomplished by
the macro call;

-- handling of variable length macro calls 1is awkward
to code and understand as it involves an iterative
mechanismn (shown in Figure 2);

-- the application of nested wmacro calls is defined in
a manner which is difficult to understand and may lead

to incorrect results.

ML/I's lack of type checking proved to be a particular
protlem in evaluating variable length calls, as the user has
to compensate by generating macro-tire code which uses
artificial "nodal points"™ in the «calling format to allow an
iteration on the rparameter list. Figure 2 depicts such an
¥LsI macro definition which decodes an arbitrary length

assignment statement into a sequence of assenmbly 1level

23

instructions,

An extensible language which was found to contain a
large number of features desired 1in the final product was
Eroteuns, a language designed and implemented by James Eell

[11]). Proteus performed macro subtstitution with the use of

gseudo-BNF rules called transformations. These

transformaticns were especially attractive in that they
resembelled Backus-Naur Form closely, used explicit priority
values tc arrange the ordering of macro evaluation, and
could be organized as a tatle and manipulated easily.
Eroteus also presented a strcng position due to the

following other points:

- macro calls are syntax-driven, notation
independent, and totally transparent;

-- the basic text replacement mechanism is inherent
within the pseudo-BNF transformpation statement;

-- additional macro-time text manipulation can te
invoked through the use of immediate evaluation
("action routines") or delayed evaluation ("semantic
routines");

-- creation and parsing of new types 1is simply
accorplished;

-- the processor has been successfully implerented
using FORTRAN II, and a source code 1listing of the

complete interpreter was availatle [12].

24

An exanple of Proteus 1in use is shown 1in Figure 3,
where a type coamplex 1is defined to represent a ccoplex
numker in terms of reals. An accompanying transformation
chows how addition of complex numlkers is interpreted. Ncte
that inmediate actions are follcwed by exclamation points;
delayed actions are followed Lty seamicolons, A priority
nunbter accorpanies each transformation. A Proteus progranm
to interpret the construct processed ty HL/I in Fiqure 2 is
shown in Figure 4.

The third available language considered for
implementaticn was SNOBOL4. Besides being a general
Furpose, powerful, pattern matching language, SNOBOL was
advantagecus in that it allowed notatior independent calls
and rudimentary type assignpent. Unfortunately, no version
cf SNOBOL was available for use on the Interdata 8/32, and
use of the language implied the added task of implementation

cf SNOBOL on the 8,32 in the allctted period of time.

FIGURE 2

A ML/1 MACRO DEFINITICN

STATEMENT FCEMAT:

LET identifier = identifier (+]|-) identifier;

EXAMELE:

LET A = B - C + D;

EFACRC DEFINITIOCN:

%L2. ALCC %AT1.

%L3. MCSET T1 = T1 + 1;
MCGO Lu;

%L5. STCRE %A1 >:

MCDEF
LET = N1 OPT + N1 OR - N1 OR ;
ALL
< LOAD %A2.
MCSET T1 = 3;
%LY4, MCGO L2 IF %DT1 - 1 = +;
MCGO L5 UNLESS %TT1 - 1 = -
SUB %AT1
¥CGO L3

W

ERODUCES: LOAD B
SuUB C
ADD D
STORE A

26

FIGURE 3

SAMPLE PERCTEUS INPUT TO DEFINE AND USE COMPLEX NUMBERS

THE TEXT:

EATTERN COMPLEXI} COMPLEX <~ "<REAL: real> + <IMAG: real> I" |

trans 30 "<X: complex> + <Y: complex>" <~ "<Z:complex>" |
Z.REAL <~ X.REAL + Y.REAL,

Z.IMAG <- X.IMAG + Y.IMAG;

ALLOWS THE USE OF:
4 + 31

6 + 2.51

AS WELL AS:

4 + 3T + 6 + 2,51

T0 PRODUCE:

10 * 5451

SAMPLE FREOTEUS FRCGRAM USING ARITHMETIC

FIGURE 4

EATTERN IC] ID <= ®<INT: int>"|

trans 40 "<A: id> + <B: id>® <- ®<(C: id)"!
CeINT <- A.INT + B.INT;

trans 40 "<A: id> - <B: id>" <- "<C: id)“!

C.INT <=
trans 30 "LET <A:
A.INT <- B.IKNT;

LET A = B - C + DJ

id>

A.INT - B.INT;

= <B: id>" <~ H“!

EXPRESSIONS

27

28

Bell's Proteus language presented the best position
from which to proceed towards a workalktle macroprocesscr,
The decision was made to extract from Bell's interpreter the
Fattern matching and text insertion mechanisms of the code
and use them as the tasis of the new device. Since the end
result was to be a preprocessor, Bell's semantic routines
were not needed and so were discarded. A problem was
encountered in preparing for modification as it was found
that Bell's FORTRAN implementaticn was difficult to read and
not clearly modularized. As a result, it was decided to
convert the extracted FORTRAN code to sequential PASCAL [13]
and streamline it to be both modular and readable, Use of
sequential PASCAL over FCRIRAN provided additional
advantages as well, With PASCAL the capalilities existed for
set handling, dynamic allocation of storage, and block
nesting, all of which would prove to le definite aids in
device ccnstructicn. In addition, PASCAL provides a
character type primitive which allows for simpler text I/0.
[isadvantages inherent in using FASCAL vwere rooted in the
current implerentation, which used an interpretive mechanisa
in an erpulation of the DEC PLE~-11. Once the Dbasic
tokenization, pattern matching, and text insertion routines
were made operaticnal, a step-bty-step modification would te
sade on the device to produce a general purpose preprocessor

geared toward COBCL to COBOL conversion.

28

3.1 Ebases of Izplementation

Complete implementation of the preprocessor can be
viewed as an evoluticn spanning four vphases. Each phase
will be examined separately in the following paragraphs. As

a trief overview, the phases are:

1. The conversion of the FORTEAN II version of the Proteus
interpreter to an equivalent PASCAL version;

Ze The addition of formatting and input-output routines
applicable fcr the COBOL conversion task;

3. The conversicn of the program into a two-pass device;
4, The creation of the macros needed for the COBOL

ccnversion.

The first phase of implementation was concerned with
carrying cver the pattern matching and text transformatiocns
cf Bell's interpreter to a working PASCAL replica.
Consideration of the macro call syntax was in order. Bell's
syntax was adhered to faithfully with the following

exceptions:

-- the left (rerplacement) and rigqht (matched) pattern
strings were clarified and redesigned tc¢ correspond
more Cclcsely to BNF notation;

-- the presence of the action routine statements

inmediately following the left and right pattern

30

strings was drcpped; the action routine statements were
moved to a position internal to the preprocessor, to te
invoked by a number supplied with the transformation
-- the use of semantic routines (used by Bell as a code

generation-interpretation device) was drogpped,

During implementation, it was found that Bell's
cechanism for tokenizing text used an inefficient tree
structure tc store the original text. This portion of ccde
was dropped and replaced by the tokenizing mechanism used in
the concurrent PASCAL compiler iemplemented by Hartmann [14].
The latter version was faster and simpler to implement and
alter.

Bell's pattern matching and text replacement routines
were converted faithfully; their simple mechanisms fproved
easy to use and understand. Almost all of the data
structures created ty Bell for the device were implemented
as given. This includes assorted text and token buffers,
the transformation table and its associated cpattern list,
and a symtol table used for holding type classifications of
tokens, Tleleted was a "memory"™ array used to sigulate
dyramic storage allocation, as actvuval allocation was
available with PASCAL.

Conversion in phase one rrogressed smoothly, although

hardware problems vwere a major factor in delays., Bell's

routines worked ccrrectly in PASCAL, and the readatility

31

factor of the new language was a decided plus.

The second phase of the fpreprocessor implementation
involved coding of procedures designed to accept the 1IBH
COROL fcrratted input and convert it for correct
tokernization (Bell's device relied on blank-sensitive,
format-free inrput). Problems were encountered in dealing
with the flexikility COBOL provides in continuing
identifiers and 1literal strings onto new 1lines. Routines
were written to correctly reassemtle such continuations.
literal strings were also extracted from the source and
replaced by special markers; conmnmnents were extracted
likewise.

One major task handled in phase two was the necessity
cf saving all formatting and spacing information inheremnt in
the original snurce so as to produce an output which is
formatted identically to the input. Since Bell's device was
a translator unconcerned with such a proklem, routines were
created from scratch to insert in-line within the tokenized
text, tokens which contained spacing information, These
formatting tokens were established in such a manner so as to
te transparent to the pattern wmatching and text insertion
Frocesses, Upon cutput, the tckerns are decoded and the
criginal formatting is restored.

Phase three of preprccessor construction was
recessitated by the realization that the code implemented to
this point had <filled availaktle <core to an unsafe state

{(considering that actual processing of text would require

32

significant amounts of data space). The device was divided
into two passes to more effectively utilize code space., The
resulting first ©pass input the transformation patterns,
tockenized the input source text, and output the results to
seccndary storage., Pass two then performed the pattern
ratching, text insertion, and output of the expanded scurce.
The two passes were monitored by a newly created driver
routine, which acted interactively with the user conscle to
frovide extended <capabilities in listing, trace, and error
ressage transmission from the device. A large number cf new
procedures had tc be coded to facilitate the major
conversion, and slowdown due to lack of knowledge concerning
FASCAL's file handling conventions presented problens.

The final phase of the preprocessor implementation
ccncerned itself with the actual construction of a user
transformation takle for COBOL to COBOL conversion and the
coding of necessary action routines. As implementation of
the transformations progressed, it became apparent that
Eell's versicn of ©pattern matching was not optimal for the
type of text transformatiofi desired. Consequently, the
semantics of his BNPF notation were expanded to 1include a
wider range of possible comtination of sysbols within
patterns, and the eLasic pattern matching mechanisa was
rewritten to accomodate this <change. Certain ambiguities
ccncerning the use of labeled nonterminals in Eell's
satching scheme were also noted and clarified. The result

is a precisely defined mechanise which is formally defined

33

for the input grammar in the following chapter.

Coding of acticn routines to aid in 1in-line text
insertion and deletion and out-of-line text generation was
rerformed near the end of this rhase. Since the macro-time
language used was PASCAL itself, unusually effective
routines could be generated tc access all the device's
glotal taktles and create data structures of their own. The
routines can easily signal one another and effect virtually
any sort of text transformation needed. The results of
these efforts are reflected in Chapter 5 and in the
Freprocessor's users manual [15].

Construction of the basic device was considered
complete at this point. Work still continues, however, as
the preprccessor is put to actual use 1in CCBOL conversion.
Thus far, no major flaws have been encountered, and
virtually all the major objectives set forth in the previous

chapter seem to have kteen met,

34

Initial use of the developed preprocessor (naned

WERECOB") has brought forth three main conclusions:

1) The device is usable at several

evels. A casual user of
the preprocessor need know nothing altout the device's
cperation if a macrc table (transformation) has been already
rrepared. All the skill needed is the submission of a one
line conmand from the wuser console giving device nare,
source and destination files, and list and trace options.
A macro deck is also input to the card reader. A user who
wishes to add new macros for the specific run can learn the
syntax of the macro calls (priority BNF) in a short amount
c¢f time and add transformations to the macro deck gquickly
and easily, A serious user of the device is provided ample
dccumentation via the device users pranual and can generate
action routines to effect powerful, comprehensive text
transformation, These different levels of use of the
rreprocessor allow it to interact with a wide range of users

with good results.

2) The device is portable and easily podifiable. The coding
c¢f the preprocessor in seguential PASCAL provides an easy to
read, well documented representaticn of the macro language

semantics. Conversion to soxe other language would present

ro rajor problems. The accorpanying user documentation

35

frovides a <conmprehensive explanation of every major module
in the device. Modification to the preprocessor is
facilitated by the wmodular treakdown of the device's
functions, Frocedures can be easily inserted and deleted,
and numercus small rodifications to the original code source

have attested to the sound layout of the program's modules,

3) The device is flexible enough to function as a general

—— o i e —— v —— o —

furrose mpacrcprocesser. During construction, the functions
of the preprocessor were kept at a base language independent
level which allows for simple =modification whenever a new
tase language is instituted. All routines added for

facilitating proper formatting and parsing of the input and
cutput were separated as completely as possitle from the
device frasework and clearly lateled as language

independent., Use of the device in some new function means

the easy reroval of mcdification of this code.

4.7 Application

As stated in the introducticn to this report, the
rotivation for construction of the preprocessor was the
necessity of converting large armounts of IBM ANS COBOL text
to a form which would compile and execute correctly on the

Interdata 8,32 wminicomputer wusing its ANS subset CCEQCL

36

compiler, The initial objective was to construct a
transformaticn takle with accompanying action routines to
avtonate a minimum of 90% of the conversions (by nuaber)
necessary for the CCBOL code. This goal has been met with a
set of transformations and routines which
-=- gstandardizes COBOL text, climinating "noise wordsw;
-- converts simple IB¥-Interdata incompatibilities
through the use of conditional and iterative text
generation;
-- ccnverts pajor IBM-Interdata COBCL incompatibilities
through the generation of out-of-line text;
-- outputs as coements any criginal source which is the
object of a major comnversion,

Fach grour is examined separately with examples.

4.2 Examples of Text Iransformation

Since many CCBOL words are optional or have multiple
sgellings, some standardization of text is needed to allow
ccnsistent matching of expected patterns. Examples of such

reductions are:

THRU <- THROUGH
{null) <- ,

1S

ARE

37

AT
ZERC <- ZEROES

ZEROS
VALUE <~ VALUES

Kote the elimination of the punctuation characters which can
re used freely thrcughout COBOL text.

Simple <conversions in the CCBOL task involve those
items which are sutject to IBE CCBCL "atbreviation" aids or
are lacking in the current 1Interdata COBOL ccmpiler. All
simple conversions produce output which is consistent with
the original source, Examples cf these conversions (with
critical portions underlined) are:

~-- elipination of recording mode in file description

clauses (not supported in Interdata COBCL)

FD AFILE RECCELING MODE FIXED

-- changing c¢f label reccrds clauses to OMITTED (not
supported in Interdata COBOIL)

FD AFILE LABEL RECORDS STANLCARL

-- elirinaticn of signed taltle indicies (implementation
dependent)

SET INDEXA TO # 1

-- elimination of variatle 1length array usage (not
suppcrted in Interdata COBCL)

01 TAELEA.
C2 ITEM OCCURS 4 TO 10 TIMES
DEPENDING CN X PIC 9.
-~ glimination of 88 level mnemonic declaration and use
(not suppcrted in Interdata COROL)

77 STUDENT PIC 9.
88 GRADUATE VALUE S,

38

IF GEALUATE GC TO FINISH.
substituted fcr the latter statement would bhe
IF STULENT = B aew

- expansicn of conditicnal expressions (IBM
abbreviation)

IF A4 = 1 0R 2 OR 3 STOP RUN.

the expansion reads

IF A= 1T0R A =2 0R A =3 ..

Major IBM-Interdata conversions involve powerful COBOL
verks which have not been implemented in the Interdata
compiler, The approach for conversion is to replace the
nonavailakle verb with a calling statement (CCBOL PERFOREK)
to an appended routine (COBOL paragraph) which simulated the
criginal text's actions. Two exaerples of major conversions

are given,

-- the expansion of SEARCH and SEARCH ALL statenments
into PERFORMs which invoke generated out-of-line text.
A sarple SEARCH ALL 1is:

SEARCH ALL TABLERA
AT ENLC GC TO PARAE
WHEN ITENMS(INDEXA) = 1
MOYE 1 TO FLAG,

this text is expanded to

SET INDEXA TO 1

MOVE 0 IC FINISHED(01)

PERFCORM SEARCHQ1 UNTIL FINISHED(O01) = 1.

the invoked rcutine SEARCHO!1 is appended at the end of
the code bedy and reads

39

SEARCHO1.

IF INDEXA > 10
MOVE 1 TO PINISHED (01)
GC TO PARAB

ELSE IF ITEMS (INDEXA) = 1
MCVE 1 TO FINISHED(01)
MOVE 1 TO FLAG

ELSE SET INDEXA UF BY 1.

The conversion of the SEARCH-SEARCH ALL requires
the gathering of information frim the source program's

DATA DIVISION concerning table size and index usage.
Automatic SEAKCH conversion is a major feat,

-~ expansion of PERFORM...VARYING statement to a
PERFCRM...UNTIL with accompanying out-of-line code,

PERFORM PARA-a VARYING I FRCHM 2
BY 1 UNTIL I = 10

becones
MCVE 2 TC T
MOVE 0 TO FINISHED (02)
PERFORM FERFORMO2 UNTIL FINISHED(02) = 1
with out-of-line text
PERFORMO2.
iF I =10
THEN MOVE 1 TO FINISHED(02)
ELSE PERFORM PARA-a
ALC 1 TO I.

Time limitations have prevented the <creation of a
transformation talkle which approaches the 1002 mark 1in
conversion. As with all porting projects, incompatibilities
exist which <can not be automated due to serious hardwvare
differences in device and file managexent, Nevertheless,
the automation of those simpler text problems free the

frcgrammer to examine those difficulties which are worthy of

his time and skill.

40

4.3 Hardware Reguirerents

One important factor in any large program written for
ginicomputer use is the demand the «code puts on main memcry
and peripheral devices., Consequently, the memory and device
reeds of the PRECOE preprocessor are stated. Before

examinaticn of the data is made, one premise must be kept in

gind: all figures are dependent upon the current
implementaticn of PASCAL on the Interdata 8,32 at KXansas

State University. This implementation 1is an emulation of
the original PASCAL system designed Lty Per Brinch Hansen for
the PDP-11/45 at the California Institue of Technology [16]
and is rpost defipitely not optimal for the Interdata
architecture,

Execution speeds for the preprocessor vary due to

several factoers:

-- the number of conversions to bLe searched for in the
text;

-- the size and compléxity of conversions that are
actually perfcrrmed;

-~ the nuaskter of text words in the input source
prograr;

-- the size of the program sentences in the input

source frograr.

Cf the points 1listed, only the last entry needs further

41

explanaticn. The fpreprocessor works best with small progran
sentences; this is due to its simple, nonoptimized
implementaticn., Since the program works on the input source
cne text sentence at a time, small sentences allow for
gquicker transformaticn and output. Tests made with
"typical™ CCBOL programs in a "typical™ environment (twelve
words per COEOL sentence; a transformation table with fifty
entries) show a processing rate of approximately 230 source
text words per minute (which equates to about sixty lines of
CCBOL source code). The slow speeds are partly due to the
device's sipplistic and exhaustive pattern matching methods
and partly due to the interpretive environment in which it
rust execute.

Core requirements for the preprocessor's okject code 1is
currently 18.5K bytes; the area wused for table building and
literal constants occupies 24K Lytes. The latter figure is
a "safe arount®™ in that table sizes vary from execution to
execution and often some of this space is 1left unused. At
rcst, the 24K bytes will allow the building of tables to
facilitate the processing of input source with approxirately
cne thousand identifiers, (It should ke noted here that a
rewer version of the preprocessor has Leen constructed which
reuses this space and additional secondary storage to allow
Frograms with up to 4500 identifiers, Unfortunately,
execution times are slower by a factor of three.)

Since all sequential PASCAL prograas must run under the

control of a concurrent PASCAL frocess, space must also te

42

allocated for the SCLO operating systenm. The version of
SOLO currently in use occupies 8.5K bytes of object code
cpace, and approximately 27K Lytes is used for shared data
space needed for reentrant ccde and kernel-interpreter
interfaces.

The kernel and interpreter are assembly level programs
which are used to interpret the PASCAL object code and
interface with the 05-32MT operating system present on the
Interdata 8/32. Together the two occupy an area of 7.5K
Iytes.

These parts are located in the 8/32 by placing the
kernel-interpreter module in the Interdata's run-time
library and the remaining parts into a partition of size 80CK
Iytes.

The preprocessor utilizes a card reader, line printer,
and disk drive during its execution. Use of secondary
storage is particularly dinteresting Lecause the PASCAL
systen utilizes a "virtual disk™ which contains all the
source and object code accessitle to the running SOLO
systex. This virtual disk is currently implezented as an
(S-32%T <contigquous disk file of 9600, 256 byte sectors,
This file is wused Ly the PASCAL system to create sub-files
which are the "files"™ of a PASCAL system. A single PASCAL
file is limited tc 129,560 bytes.

Use of the preprocessor in this environrent has
uncovered a number cf potential problers which are solvatle

with varying azounts of effort, These difficulties are:

43

-~ the sizes of the two passes are still too 1argé to
permit a large amount of growth;

-- the limited data space necessitates the storage of
some tables in secondary instead of primary memory;

-- the 1limit on the length of a PFASCAL file prevents
the current implementation from processing excessively
large sequences of source text (this problem has been

surmounted in the newer version previously mentioned).

Current work has been focused on the latter two points
as the features necessary for the COBOL conversion project
have been successfully installed in the device as it now
exists, Reduction of pass size seems to be best accomplished
ty conversicn to a four pass device; data tables can be
easily transferred to disk storage; and input and output
text can ke stored on tape. Consegquently, no major problems
are forseen for the constructed device. In addition, the
preprocessor's opticns will be expanded considerably when an

Interdata-based PASCAL system is implemented.

4y

-0 Eorreal Cefiniticn of the Macro language

To this point, little has bLteen said of the macro
language used by the preprocessor. Ample examples of its
syntax and use exist in the users manual [17], tut no formal
definition has been presented for priority BNF. 1In order to
clarify any semantic questions and establish the functions
cf the macro language in relation to the preprocessor, a
definition has been delineated (see Fiqures 5 and 6 for
examples of the grammatical constructs to be defined). This
definition encompasses the elements of priority BNF, their
relation to the input source, the semantics of priority BNF
transformaticns, and the interrelationships between the
transformations of a transformation tatle,

It is important to note that the wmacro language given
here is not the same as the notaticn utilized ty James Bell
in his Prcteus language [18]. Mcst of the basic symbols and
cperations have teen carried over, Lut the available
functions of the racro language have been expanded, and the

semantics of the operations Have teen changed.

45

FIGURE 5
EXABRPLES OF

PRIORITY BNF CCHNSTRUCTS

TERMINAL SYHMBCL:
ARE
IF
XYZ

NONTERMINAL SYMBOL:
<DELIKITER>
<EXPRESSICN>

LABELED NONTEREINAL SYMBECL:
<A:DELIK>
<Y:ANY>

PATTERN:
IF <A:DELINMITER>
88 VALUE <TELIN>
{null)

TRANSFORKATICN:
OMITTED <~ STANDARD
OCCURS <C:DELIM> <~ OCCURS <B:DELIL¥> TO <C:DELIN>
KLITERAL> <~ <LITERAL><CELIHN>

NAME

TRO
IR1
TR2
IR3
TRY

PRICRITY ACTIOCN

90
85
15
80
70

b6

FIGUKE 6

SAEKPLE TRANSFOREATICN TABLE

00
00
00
00
15

TRANSFCRH

<= '
CLITERAL-LIST> <- '<CELIM>
CLITERAL-LIST> <~ <LITERAL-LIST><TELIMN>

<LITERAL> <= <LITERAL-LIST>'
DISPLAY <A:MESSAGE> UPCN CBHT
<_.

DISPLAY <A:LITERAL> UECKN TTY

(note: a non-zero ACTION denotes additional
procedural action)

47

—— - —————

Specification of priority ENF begins with the

definition cf an erntity:

£.7.C. AD entity is a primitive which represents a sequence
cf cne or more characters in the tase 1language which is
recognizaktle by the language's grammar as a legal string.

Identification of an entity is wholly dependent cn the
tase language specifications. A sequence of entities may ke
grouped and treated as one. Such a grouping is «called an
€ntity collection:

€.1.1 An entity ccllection is a sequence of one or nore
entities which is treated as an a single entity.

5.2 Syebols

The relationship of the source text derived entities

and the ©priority BNF elements is defined with the use of

0 A symbol is a primitive obtject; each symbol has both
1 and a tyre. There exist three kinds of symktols in
the terminal syrbtcl, nontermipal symbol, and

—— —

€.2.1 A terpminal syrbol 1s a representation of a single
entity. The terminal's value is the text representation of
the specified entity; the terminal's type is undefined until
active use.

48

£.2.2 A ponterminal sycbol is a representation of an entity
collection. The nonterminal's value is the text
representation of the entity collection; the nonterminal's
type is assigned ufpon creation by the transformation process
and may change.

£.2.3 A labeled nonterminal syrkcl is a representation of an
€entity collection. The symbol can Le represented by an
crdered pair (a,t) where a is a label used to address the
specific lateled nonterminal, and b is a nonterminal symktol.

E.3 Eatterns

—_— e e

Combinations of the above symbtols can be formed, tyges

and values are initialized, and the result is a pattern:

£.3.C A pattern is a sequence of zero or mcre syebols.

Creation of a pattern implies the specification of initial
types for ncnterrinal and lateled nonterminal symbols and
the specification of values for terminal symbols.

Although the srecification of a value for a terminal
tay seem to be in error considering that the terminal
derives its value from the entity it represents, a pattern

is used for matching and so Tust re initialized. This point

is «clarified with the explanation that the source text

progranm entities are tokenized ty the preprocessor and

cenverted into tckens which are, 1in effect, teraminal

symktcls. The synkols' values correspond to the entities!
text representations, 1In addition, each token is assigned a
default type of either deliriter, integer, or literal.

— —— e am———

Fattern matching is accoaplished Ly comparing patterns to

L9

the sequences of tokens, Both the tokens' types and values
can te examined., The results of pattern matching can te the
replacement of the tokens by any of the three prigpitive
symbtols previously defined. The definition used to perform

this change is called a transforration:

5.3.1 A trapsformation (also known as a reduction) is an
crdered pair {(a,b) where a and t are both patterns. The b
entity is called the matched (or replaced) pattern, and the
a entry is the regplacement pattern. A successful pattern
patch using b causes the replacement of the matched token
string ccrresponding to b to be replaced Ly a. This
replacement is denoted by "a <- Ln,

Now that patterns and transformations have been
defined, the semantics involved in a reduction can be
explicitly stated., To do so necessitates the definition of

a few conventions to ke used in the explanations:

L wlial Let XUY denote for sets X and ¥, X union Y.

S.48.1 Let xy denote for sequences of symtols x ard VY,
their concatenaticn.

Sl 2 The closure of a set A is denoted as A* and is
defined as

A* = A[OJUA[T1]JUA[2])U...2A[n]

where each A[1]) 1is a set containing all possitle
conbinaticns of i nonunigue elements taken froa the members
cf A.

5.4.3 let T, N, and L denote sets of terminal,
nonterminal, and lateled nonterminal sy=ztols.

50

S.5 Transformation Classes

-——

The following are classes of transforms allowable in

Eriority ENF:

£.5.C. Any to Terminal: for all a and x such that a € T*,

and x € (TUSUL)*, the transformation a <- x causes the types
and values of x to te replaced Lty the types and values of a.

£.5.1 Any to Nonterripal: for all & and x such that 2 € X

cf x to ke replaced by the type of A. The value of A is
derived from the creation of an entity collection using the
values of x. The type of A is as defined in the replacenment
pattern.

5.5.2. Labelponterm to [Labelnonterm: for all A, B, v, W,
X, and y such that v, we (TUNUL)*; x, y € {(TUL)*; and &, B
€ 1 such that for A = (p,g) and B = (p,r), tke

transformaticn XAy <- vBw is defined as follows:

1. the reductions x <= v, vy <~ 4w, ¥y <- v, and x <- ¥
are as defined in 5.5.0, 5.5.1, and 5.5.2;

2. the reducticn A <~ B causes the value of B to ke
assigned to value of A, The type of A is as defined in
the replacement pattern.

3, the result of steps 1 and 2 cause the ultimate
replacement of VvEw by xAy.

£.5.3. Any to Mixed: for all A, ¥, x, and y such that A €
M, w € (TUNUL)#*, and x, vy € (TUL)* the transformation xAy <=
v is defined as fcllows:

1. the reductions ¥ <- w and y <~ w are as defined in
5.5.C 5.5.2, and 5.5.3;
2. the reduction A <~ w causes the value of A to be
conditicnally assigned:
given the relative displacement d[x] of A in xAy, the
value of A is the entity collection of the values of
the sequence of symbols w[d[x]]. . .¥[i] in w (i.e.,
beginring with the d[x)th syerktol in w). Sysbol w[i]
is:
-- the final symbol in the sequence w;
or
-- the symtcl immediately preceding symbol w[i+1]

51
such that the value of w[i+1] ejuals the value of the
first symbcl in sequence y (i.e., y[1)) and y[1] € T.

if the second alternative «can not be satisfied, the
first alternative is used tc define w[i].

3. the result of stepsl1 and 2 cause the replacement of
W by xAy.

Note in particular rule 5.5.4; what the definition
states 1is that a nonterminal symbol contained in a
replacement pattern collects all the symbtols in the matched
pattern starting with the same relative displacement until
either the string 1is exhausted or the nonterminal's
following symbol's value matches a symbol value in the right
pattern, This latter scheme works only when the following
syrtol is a terrinal. Rule 5.5.1 1is redundant when
ccnsidered in the light of 5.5.3 Lut is introduced in the

sake of clarity and continuity of the definitionms.

A transformation 1is used by the user to form a

transformation entry:

£.6.0. A transforration entry is a 5-tuple (a,b,c,d,e)
wvhere

a is a character string denoting the entity's napme,

I is an integer denoting the entry's prioritys

¢ is an integer denoting an entry's procedural action upon
ratch;

d, e are patterns fcrring the transformation 4 <- e.

- P A transformation table is a set of transforration
entries, The set ray Le null.

52

Priority values between entries are explicitly defined:

b2, For transfcrrmation entries x and vy,
x = (a[x],b[x]),c[x],d[x],e[x]) and
y = (alyl.blyleclyl.dlylsely D,

IE[x]I > Ib[y]i«

A higher priority entry will always attempt a pattern

ratch before a low priority entry.

.7 classification of Iransforms and Priority Assignments

———

Experience with transforeations has shown that their
use in language conversion tends to present patterns of
usage which can be categorized and analyzed.

Transformations can be placed into three classes:

-- sigrle transformation: a transformation which
involves a single reduction which is acheived without
the aid of any other transfcrrmation;

-- gqroup transformation: a set of transformations
which work tecgether to reduce or collect terminal

symbols (i.e. tokens) into a single nontercinal symkbol;

-- ccnrcund transfornmation: a set of simple and group

transfcrmaticres which are coordinated to reduce a

complex, variable length token string into a fixed

53

length, recognizable form which is finally reduced to

the ultimate goal.

Use cf 1isolated, simple transformations are dedicated
to such tasks as elimination of optional strings and one
step conversions cf incompatiltle strings. The results are
similar tc that acheived by using a text editor upon source
text. The simple isolated transform 1is usually (though not
recessarily) of the form terminal-to-terminal (5.5.1).

Examination of the group transformation displays a

decorpositicn into three parts:

-- initialization reduction: produces a result which

keys the building of the nonterminal by the rest of the
group;

-- ccllection reduction: collects a string of tokens
into a nonterminal symbol one token at a time;

-- terrminaticn reduction: terminates the nonterminal
collection by producing as a result a token string

which can not be matchéd by any transformation in the

group.

The group transformation is the tool which gives pover
to the macro language, The difficulty present with most
pacro larguages {dealing with variable 1length macro call
rarameter lists by bLoth text value and syntactic type) has

teen resclved by the use of the group transform. The

54

reduction of such an arbitrary lenmgth string to a single
synmkocl allows simple but powerful text manipulation and
generation,

Each of the three reduction parts of the group
transform is itself a simple transform. The initialization
reduction of a grcup transforzation is usually of the fornm
any-to-nonterminal (5.5.1) as is the collecticn reduction,
The terrination reduction is usually of the form
labelnontera-to-laltelnonterm (5.5.2).

Compcund transforrmations have intialization,
collection, and termination reductions as well. The
collection reduction for a compcund transform is a set of
zero or more group transforms; the initialization and
terminaticn reductions are typically zero or more simple
transformétions, although compound transforms may be used.
The definiticn of a collection reduction as previously given
pust be expanded when applied to the compound transferm to
allow the production of a resulting set of nonterminal
symbols, This is Lkecause a typical compound transforration
cperates upcn a corplex, variable 1length statement which
rust have its subparts each reduced to a single nonterminal
synbcl before the termination reduction can recognize the
statement and produce the ultimate result, The
ipitialization reduction 4is optional; when present, it is
vsually applied to the elimination of optional words so as
to *standardize® the statement for manipulation by other

reductions. The termination reduction, however, must always

55

te present,

Exanples of the transformation classes can be viewed in
Figure 6. 211 five entries can be termed simple
transformations as each entry performs a text transformation
vnaided. A group transform exists in the table due to
entries TR1, TR2, and TR3. TR1 is the initialization
reduction, TR2 is the collection reduction, and TR3 is the
terninaticn reduction. Together the entries reduce an
artitrary segquence of symbols tounded by gquotation marks
into a single nonterminal. This group transform in turn is
the collecticn reduction of the compound transformation TRO
through TR4, Note that TR0 serves as the initialization
reduction, and TR4 is the termination reduction. The
relative priorities between the table entries will be
€elatcrated upon in the following paragraphs.

Assignment of priorities to individual transformations
is directly dependent upon their roles in the larger schene
cf the simple, group, and compound classes previously
descrited. Use of the macro language implies a correct use,
that is, the macro writer intends that his transformsation
tatle produces the results which he desires. These results
are dependent upon the syntax, semantics, and priority
assignment in the priority BNF macro language. Syntax is
defined in the users manual; the semantics of the individual
transformaticn has been previously defined; and the
semantics of priority numzbers of any given pair of

transformaticns has been also defined (5.6.2). The

56

remaining task 1is the intelligent assignment of priorities
to transforrmations to produce predictable (and thus,
correct) results, Although such an 1issue is as nebulcus to
define as an atterpt to define how to construct a correct
rrogranm using FORTRAN, a trio of rules are presented for the
classes of trancforrations previously listed. Use of these
rules when constructing an instance of a transforration

class guarantees a predictable result which can be used by

1. In a group transforration, the termination reduction
rust have a higher priority than the collection reduction;
2. In a compound transformation, the initialization
reduction must have a higher priority than the termination
reduction;

- All cther pricrity assignzents can be determined only

within the context in which the transforms are applied.

It must Le ncted that whenever amn initialization or
termination reduction consists of more than a single
transformaticn entry, the priority of the set of entries is
taken to te the ninimum priority of the entries within that
set. A null initialization reduction 1is considered tc have
raxirum pricrity.

Rule one states that a group transformation must
terminate. This can only be accomplished by locating the

teraination string before continuing the <collection. Rule

57

two states that no corpound transforpmation can execute until
the string to be operated upon is placed into a recogmnizatle
form. Rule three implies that simple, isclated
transformations may have arbitrary values; the topic of
interacticns between transforrmation classes 1is beyond the
scope of this report and is the responsitility of the
[rogranmer.

Examples of application of these rules are given in
section VI of the users manual [19]. The users manual also
expands upon the topic of transformation classes by defining
their relaticnship to device efficiency and action routine

application.

58

€.0 Evaluaticp and Conclusions

Chapter two of this refport was concerned with the
various features and facilities of a macroprocesscr as
applied to general gpurpose use. In addition, a list of
desired objectives was presented for the soon-to-be
irplemented device. Construction and use of the
Freprocessor now allows a critical evaluation of the device
versus the standards previously rentioned.

IE one general statement atout the device's

capatilities can ke made, it must be this: the macro calls

as defined by priority BHF are a simple tut powerful set of
tools for ext translation. The mechanics of these tools
are straightforward, clear, and precisely defined. Ko

arbiguity or hidden details exist in their use. Such a set
cf calls, in turn, gives the user great potential power to
arply the device in a wide range of situvations with creditle
results,

Evaluation o¢f the macro calls and their associated
action routines versus the standards set bty McIlroy [2C] and
Brown [21] is stated following. A strong application of the
desired feature is followed &Ly n{#)m, as accertatle
applicaticn is dencted by " (0) ", and a weak application is

cshown by "(-)". McIlroy's list is presented first.

-- use cf nested calls: the preprocessor scans Source

text cne sentence at a tire, evaluating and

59

reevaluating until no possiltle wmacro <c¢all can te
applied (+);

-- use of conditional calls: the macro expansion- is
fixed in pricrity BNF; an acticn routine must te
written to override the transformation mechanism and
resutstitute the original text (-};

-- creation of source text symtols: can be done in the
pacrc call itself or can be accomplished via an action
routine which must access tokenized keywords input with
the macro deck at program's beginning ({(0);

-- grouping (precedence) of macro call parameters:
accorplished explicitly through the use of the group
transformation (+)3

-- nested macro definitions: not allowed (=)

-- recursive calls: accomplished differntly than as

normally described, but is easily used (+).

Brown's 1list is more correctly a 1listing of
racroprccesscr features rather than an evaluaticn.
Prejudicial ratings are given to denote the guality of

the features implemented.

-- calling syntax: notation independent, syntax driven;
allows for a wide variety of implenentakle macro calls
(+):

-- text evaluation: parareters maintain a delayed

evaluation, i.e., a call bty name (+); there exists an

60

extensive use of macro-tire variatles and tables by
acticn routines (+); text symbcls wmay be created btut no
check is made for their uniqueness (-);
-- macro-time statements: refer to the action routines
of this implementation; Action routines are «coded in
the 1language of the device ({PASCAL) and their
statements show a generality and power (+). Action
routines must be inserted internally into the
preprocessor tody (-);

-- irplementation: internal storage is maintained via

contiguous lists and linked 1lists and allows a high

degree of text ranipulation (0); the pattern matching
sequence is slow and involves little optimization (-);
dynaric allocation of storage is allowed (+);

-- user considerations:

1. macro definition: macro calls are somewhat difficult
to use for a user not exposed to formal 1language
notation (0); action routine coding is simple , and
the macro-time 1language 1is easy to use; action
routine coding is supplemented by built-in text
construction subroutines {+);

2. error detection: minimal syntax error detection and
no recovery (-); internal device error detection is
lirited tc table and file overflow, although
extensive tracing features are provided for dektugging

transformaticn entries.

61

The PRECCB Preprocessor seenmns strongest in its
definitiorn and use of the racro call and veakest 1in
execution speeds and internal response to abnornal
conditions. The fcrrer point is (hepefully) an indication
cf good planning and solid theory (and much of this was laid
in James Bell's work with Proteus); the latter 1is a
ranifestation of the pressures a tight project schedule
produces. No feature of the preprocessor seems so serious
as to fault the device as a whole, in fact, the groundwork
seems to have been laid for the production of a wide range
cf specific macroprocessors based on this general purpose
design.

In addition to the lists of MclIlroy and Brown, a self-
created 1list was also 1intrecduced in chapter two as a
checklist to be used when comparing the implemented device
versus specific motivational need: the conversion of IENM
CCBOL, The needs of that list seem to have Leen met in all
accounts, The constructed device is more than adequate for
the high 1level language conversion task. Initial use has
proved this point to be so; nc major problems have Leen

encountered with the device,

As rpreviously described, one of the otjectives in

62

constructing the PRECCB preprocessor was that its use would
rct be limited to CCBOL to COEOCL conversion alone, The
device was to be designed so tc provide a framework for a
wide wvariety of applications; the wultimate goal was to
produce a general pUrpose macCLOPLOCE@SSOr,. Although the
Iesults seen to have fallen short in sore areas (witness the
frevious evaluaticns), the facilities that are provided

allow application to wide areas of use. Some of these are:

-- source language conversicn: since the actual
conversion specifications are contained within the
macrc definiticn table, <conversion of any host to
target language involves only the changing of the macro
table, Formatting procedures within the device may
have to be altered as well, but this involves only the
removal of a small number of subroutines and their
replacepent bty modules compatible with the chosen host
and target languages;

-- creation of an extensible language: the device
could be incorporated into the front end of an existing
compiler to allow the creation of an extensitle
languaye.

-- ccmpiler generation: since the preprocessor contains
facilities for 1lexical and syntactic analysis, the
device could te treated as a "compiler-compiler™. The
user would specify 1legal language constructs via

priority BNF, insert his grasmar into the macro taklle,

63

and wvrite action routines which would cause code
generaticn or interpretation.

-- text generation: items that are conditicnally
generated and inserted intc existing source code (e.g.,
debug procedures, repetitive code preduction, or
library routines) could be handled by the preprocessor.
This function is best exemplified bty the preprocessor
present in PL/I.

-~ pattern recognition: the macro takle could be set up
to scan for specific cccurrences of designated
character strings. Since the device is syntax driven,
a higher deqree of complexity <could be incorporated
than found in a text weditor: strings could be assigned
types, and reccgnition of type patterns could be
achieved,

-- text editing: as mentioned before, the preprocessor

has powerful text editing capatilities,

Certainly more applications exist; these are but a few.
The device's capatility for weasy modification of existing
internal code make the possibilities for extensibility wide.
As an example, the tokenizing routines in the current
implementaticn have Leen removed to make way for a new
version that supports input containing as many as 4500
unigque character strings, The mpodification only took forty
ran~hours of time (although they were the designer's). As

changes are incorporated 1into the processor's own ltase

64

language, FASCAL, the device can grow along with its
language. 1In fact, the most severe restriction encountered
at this point has Leen the 1implementation of PASCAL in
cperation, Such difficulties are transient and will not
effect the preprocessor's successful applicaticn to a wide

range of areas.

10.

11.

12.

13.

14.

65

REFERENCES

Erown, P. J., "A Survey of Macroprocessors", Annual

Eeview of Autozatic Progragaing, Pergammon Press,
London, 1969, page 38.

Cheathar, T. E., "The Introduction of Definitional

Leavenworth, R. M., "Syntax Macros and Extended
Translation", Compunications of the ACM 6 (November
1966) 1 709-93,

McIlrcy, M. D., "Macro Instruction Extension of Compiler
Languages", Copmpunications of the ACM 3 (April 1960):

219,

Erown, fpp. 48-83,
Brown, page 63.

IBM Ccrporaticn, EL/ZI(F) Lapguage Reference Hanual,
putlication nurkter GC28-8201-4, White Plains, New York,
1970, pp. 205-213.

Griswéld, R. E., Poage, J. F., and Polonsky, I. P., The
SNOBOLY4 Proqrarring Language, Second Edition, Prentice-
Hall, Englewood Cliffs, New Jersey, 1971.

Brown, P. J., "The ML/I Macroprocessor", Communications
of the ACK 10 (Cctober 1967): 618-623.

Eell, J. R., "The Design of a Kinimal Expandable
Computer Language", doctoral dissertation, Computer
Science Department, Stanford University, Stanford,
Califcrnia, 19€E.

Erinch Hansen, P., "Sequential FASCAL Report®,
Information Science, California Institute of Technoclogy,
Fasadena, Califcrpnia, 1972.

Hartmann, Alfred, "A Concurrent PASCAL Compiler for
Minicomputers®, doctoral dissertation, Information
Science, California Institue of Technology, Pasadena,
Califcrnia, 1976, pp.17-23.

15.

1€.

66

Scheidt, David, "User Guide to the PRECOB Text
Preprccessor", technical regcrt numker CS77-16, Computer
Science Lepartment, Kansas State University, Manhattan,
Kansas, 1977.

Erinch Hansen, F., “"Concurrent EASCAL Implementaticn
Notes", Inforczaticn Science, California Institue of
Technology, Pasadena, California, 1975.

Schaidt, pp. 24-31.

Pell, pp. 1-167.

Schmidt, pp. 167-172,

McIlrcy, pp. 215-218.

Erown, "A Survey of Macroprocessors", pp. 40-76.

67
BIBLICGHAFHY

Eell, James R., "The Cesign of a Kinimal Expandable Computer
lLanguage", Doctoral dissertation, Computer Science
Cepartment, Stanfecrd University, Stanford, <California,
1968,

Eennett, Eichard K., and Neumann, David H. WExtension of
Existing Conpilers by Sophisticated Use of Macros",
Conmunications cf the ACM 7 (September 1964): 541-42.

Erinch Hansen, P. "Concurrent PASCAL Implementation Notes",
Informaticn Science, California Institute of Technolcgy,
Pasadena, California, 1975,

———_= "Seguential PASCAL Report", Information Science,
California Institute of Technclogy, EFasadena, California,
1972.

Erown, P. J. "A Survey of Hacroprocessors'.
of Automatic Programming, Pergamon Press, L

! ——— e e e e e . e e | — | —_—— o — . T —— — ——— ——— ————— i _—_— —-— ——— —

———__e "The ML/I Macroprocessor", Communications of
10 (Octcher 1967): 618-623.

Camptell-Kelly, M. An Introducticn to Macros. American
Elsevier, New York, 1973.

Cheatham, T. E. "The Introductior of Lefinitional Facilities
into Higher Level Languages". Proceedings of the AFIES,
1966, FJCC 29: 623-637.

Cole, A.J. HaCILCIILOCESSOLS. Camtridge University Press,

_——— i e . . —— ———

New York, 1976.)

Conway, M. E. "“Cesign of a Separatle Transition-Diagran
Cozpiler”. Coarunications of the ACY 6 (July 1963):

"Towards

. an Understanding of Data Structures™.
cations cf the ACH

14 (Cctcler 1971): €17-27.

Garwick, J. V, "GPL, a Truly General Furpose Lamnguage”,
Cormunications of the ACX¥ 9 (september 1968): 634-638.

Gries, David. Coarpiler Construction for Digital Ccaruters.

—— i e e e — i — — = —_——— == —— . . e

fa
John Wiley and Sons, New York, 1971, rpp. 11-43, 154-1639.

68

¢riswold, R. E., Pcage, J. F., and Polensky, I. P. Ihe
SNCBOLY Prcgramming language, Seccond Edition. Frentice-

——— e o —— ——— — ————— —— —— ———

Hall, Englewocod Cliffs, Hew Jersey, 1971.

Ealpern, M. I. "Tcward a Gensral Processor for Programning
languayes®, Conpunications of the ACK 11 (January 19648):
15-25,

Eartmann, Alfred E. "“A Concurrent PASCAL <Compiler for
Minicomputers”. Doctoral dissertation, Information
Science, California Institute of Technology, Pasadena,
California, 1976.

Interdata, incorporated, 0S32-MT EFrogram Reference Manual.

— e e —— e ——— —— ————— —

Puklicaticn numker 29-390R04, Cceanport, New Jersey, 1976.

It Corporation. EL/I(F) Language Reference Mapual.

Buklication numkter GC28-8201-4, White Plains, New VYork,
1970.

Irons, E. T. "Experience with an Extensible Language®™.
Ccprunications c¢f the ACHM 13 (January 1970): 131-140.

Knuth, Donald E. The Art o
One. Addison-hkesley Pu
Massachusetts, 1973.

ng Ccompany, Reading,

leavenworth, R. M. "Syntax Macros and Extended Translation".
Compunications cf the ACH 9 (Novemker 1966): 790-793.

PcIlroy.M. D, "Macro Extension of Compiler Languages".
Compmunications of the ACHM 3 (April 1960): 214-220.

schmidt, David. n{ser Guigde to the ERECCB Text
Preprocesscr"., Technical report numker CS77-16, Computer
Science Department, Kansas State University, Manhattan,
Kansas, 1977

Sclntseff, N., and Yezerski, A. ®"A Survey of Extensitle
Programming Languages", Annual Review in Automatic

Prograrring, Pergarmon Press, New York, 1974, 7,2.

Strachey, C. "A General Purpose Macroprocessor". Compnter
Jdournal 8 (Octobter 1965): 225-241.

Waite, W. M. "2 Language 1Independent Macroprocessor®.
Cormunications cf the ACM 10 (july 1967): 433-441.

Wilkes, M. V. "An Experiment with a Self Compiliny
Conpller». Annual Review in Autopatic Programaing,

Fergarcon Presgj—Ezgord, 1964, 4z 1-48,

APPENDIX 2
BREAKDOWN CF CONSTRUCTICN EFFCRT BY PHASES

69

PEASE

Fhase 1:
Ccnversion of basic device
to PASCAL code

Phase 2:
Implementation of formatting
routines

Phase 3:
Ccnversion to twc passes

Phase 4:
Coding cf COBOL transformations
and action routines

Phase 5:

Compostion of external
documentation and users
guide

Total

MAN-HCURS

180%

132

93

47

91

70

543 man-hours

. ——— — ———————————

* includes eighty hours of effort from

graduate student to whon I
assisterce and advice.

anm

indetted for

Gary Anderson, a

valuatle

APPENDIX E
PREPROCESSCR INFUT FCR
INTERDATA COBOL CCNVERSION

71

12

B0L0t

00902

§0C03 PATTELD DELIM ANY (M"a:”~ ~0 TAS SPACE LITERAL

Ugd{ Gy LEVEL=HO IC %7 %8 212 %20 KEY«CGRD IRT COMU

Q0gU% OR HGT AKDL ACCEPT ADL ALTER CALL CLOSE CGHPUTE LISPLAY
DIVICE EXAXILE

C0gCe EXHISIT GENILRATE GO GOBACK IF INITIATE HMOVE HAULTIpPLY O
PLl; PERFORIT KEAD

y0007 READY RELEASE RESET RETURN REWRITE SEARCH SET SOiT STa
«T STCP SUBTKACT

3003c TRANSFORM JRITE ILOEXED PIC PICTUKE VALUE Ok

00635 SPACES INTO FRO;, GIVILG BY TO UP THEWN ELSE UNTIL THRU

0w ZERQ LEVEL=88

00010 FIHISHED LEXT ~1

009011 ALL OCCURS TINES

gigetz ¢

G0pl3 TROO 00031 00000

uboly MTHRU"MMTHROUGH"®

00gls 1IR1 00052 00000

GUOIU llAlIIAu‘ll

00017 TR2 0pu92 00000

UU{}lu L L

00013 TR3 30091 ©ogooO

00020 ""‘"EJECT"

ouoglr TR7 0oue9 00p0C

0C0G2z '"RECORDING"""RECOROIiG #0DEM
guo23s TRS 00068 00000

00g2y "u~AMRECORDING <ARYSY

gou2y TR9 ‘00091 U0gQ00

60626 ~Is"
00027 TR10 00091 U00O0O

00g2s SHAREY

0029 TR1J1 00070 00007

0Go30 ~ANDEPEMGING <AKYDY
60031 TR102 00091 00QOO

00032 AraATH

t0033 TR103 U0U91 CUwdld

00034 AMSKIPLY

00935 TR104 000691 O0gOO

00036 ARSKIP3" -

00037 TR105 00065 00099

QUQ3s ™ MWASCENDING KEY <CGELIMDW

00039 TR10s 00CH5 0GOC3IS

CO0G40 ~ MDESCENDING KEY <DELIADW

00641 TR1l1 UGO7U 00000

00042 MOAITTEDY"USTanGARDY

vdg4s TR1L4 00070 UUDOGD

BUU4Y VSET <=AARNY> TO ~1 <<BiANYDUANSET K<ATANYD TU + (=Bia
.‘\}Y)"

pogus TR1as 00071 00009

00045 “OEPELDING"AMDEFELDING Onw

00047 TRIié 03670 00p9o

GOO4R "OCCURS <=CIARYI"AMQOCCURS <=8:ANYD> TO <=C:ianr>"

73

GCC49 FRe? 06u/70 UOooC

00G3C "INTCndATA “OLbtLeg=3207°0] =37C"

Jd631 TRZ1 COuUYl vuco)

Ub\}.}’d ”ZERO"AHZtﬂUEb"

JOQ35 TR22 g0CcY91 uwdeag

GuChy ~NZERGSY

GCubs TRey 00LY1l UCoOL

GUUHe ""WaLut""™MVALJESY

000%7 TR2405 GULUYY 00C0C

GUCo8 "VALJe 71 <=A740LT2"™MyvALdl + <=AiniY>"
C0en% TrZ24C5% QUUSU 00GoC

G0D&U "THRJ "1 K=ATAIYIH"AMTHRU + <=AlANYD®
DGtol TReS 00090 00U&e

OUC'IIJ# n&aunua& (IU)II

guns3d Tkéo VoUB3 00093

0006k wHANgs yALUE Jn

GO0neb5 TR27 00088 voyub?y

V0GB, "85 VALUCU"~"3E VALUE <CANY> THRU <ANY>Y
purpe?7 TRZs GOUBT LOGUEE

0ooss MAo VALJE <ARNYDM

00069 TR29 DOUTU 0QQO65

GOUTO0 "<-A:CONDI"AMCAILEVEL-88>"

euo71 TrES3 wUU05 00ge»s

00072 M"INDEXED BY (=A:I; DEX>WAYINDEXED 2Y <-AIGELIIY
Q0u73 TREF4 Uo0Ccly VOGo7

00074 "COCCURSO>ANQOCLCLRES <=~AstAlly> TIwmESH

g0075% TR293 00022 Loyls

Q00uT7s "SEARCH <=AISEARC; D" "SEARCH ALL <=AllIp>"
GOQ77 TR31 00022 00yo?2

CCuT7a "SEARCH <=AISEARCHO"AMSEARCH <=A:ID>"
ob0n7s TR32 00019 001G

06ase ANSEARCHL=ASSEARCH? VARYING <-Ula
Y)n

udGBl T34 0Cul% 00000

0008 V"IEARCH <=AIZEARCHIC=EtENODLISTO"AuSEARCHC-AISEARC {>EID
{=oialYo"

d0083 TR35 00020 U00Guy

g0cey M KEANDLISTOM & uwe NpLISTY> <Ay

00063 TRJ3& 00021 UOQo11

00046 "WHEW""U"<EnDLIST)> wHENLY

uous7 TR37 QoU18 Lopon

00usa MC=A:CUNOLISTOM"~uL qEN <=AtAllY>"

00ca9 Tr38 0Cul7 00030

0G990 Y<COCLISTouAnLL0ULIST2CANY >

gLo3i Tr39 00019 uoplz

00092 "E=BiuhbdLISTOMANC A CONOLIST>S~UsREYWCh I
90093 TrRY%1 0GUl6 GLogl2

G 3y A=Al HENLIST> <=3 iwHbEiiLIST>"
00u95 TR<O ggcls 00nog

CO0Se "<anDHLISTON ~ u HEGNLISTY> CARYDH

£3a397 TiR42 0ulle d0Q12

009y, MMM =mpiwhp NLIST O

cop99

TR43 DU01& UJdula

74

gulpy "HOVE u TO FINISHED(U+0) %12 X PERFORE SEARCH+Q+yQ UiLITl
L FINISHEO(G+0) = 1 ¢

v0103 A HSEARCH <SEaRCH> M

0013¢ Tk4y VGUBU 0VOODS

6L103% "Gl FTABLE X 212 FINISHED PIC 9 OCCURS 99 TIMES X ;& «
" ~

060104 "PROCELDUKE GIVISIgi"

CG105 TR45 Voudu 00005

C0106 ™ "LIMKAGL SECTIOQL®

CUl07 TR47 00091 U0QOL

QUibsH u(ap>uﬁﬂ:u

0010y TR&701 00¢92 000CU

00110 ~ wHOT ="

00111 TR48 00091 00QUD

00112 "CLUP>"~"AND"

00112 TR49 ouudl Uogoo

00114 AUOR"

001Lls TKS0 Uo079 0ogoo

0011 "K=AtANY>C=BUP>C-CiAlITIC=-DLOP> 420 <=A:ARY><-B:i0P><~
LeALY>L=FiLUPD" .

00117 "<=AtANY2<=BI0P><=CtAI'YD><=DLOPOK=EIALY><=F:iLOP>"
00116 TRO1 00079 00Q0D

GU119 "<=AlARYD<=BI0P><=CiAKYI<=DILOP> 220 <=ALAHYDL=Bi(P><~
ESANYD %20 <=FiKEYWORD>"

w0l °

0ulci NCa AT ANYIC=B0P>C=CiANYDP< =D LOP><=E; alYD><-F ;KEYwU
RU}H

J0122 TKbe 00060 0QOOOQ

001235 WPERFORH <PARALISTO>"AnPERFORMCDELIND THRU <DELIMDH
nul24 TRS3 00053 00GOG

ou12s AMPERFORIKDELIMDY T

(0125 TRO4 0U0%7 LO0p20

C0127 "C=AIUHNTILDC-AIPCONULISTO"ANUNTILC-AALIYDY

0012& TRSS 00050 0ugGu

00123 “KPCONDLLISTO""UCPCONDLIST><ANY D"

00130 TRHe 00052 0000

00131 "C=AIPCOLDI<=BIKEYWORDI"AIC-AIPCONILLISTOC-BKEY WAL
00132 TRS57 00045 00g2yl

0U133 “MOVEK=C:DUDDTOC=3:I05%12 PERFORA PERFUR{+0+0 <=5BiULT,
L> FINISHED(O+0) = 1" .

vb13s o~

w0135 "PEKFURAL=AIPARALISTDVARYIHLGK=DIDDFRONK=CIANYDBYCANYD
(=8 1udTIL><PCOND>"

60135 TR38 DOCG4% Upr2e

GU1%7 "“HACOVE 0 TO FILISHED(U+0) %12 MOVE <=AIDUMR> TO =B:ilo>"

gulsdsy ~
00139 "HOVE <=AipJG8> TO <=dilp>n

laqbE PRIURLITY ALTLUw TRANSFOR

TRGG 20091 V000U THRU <K== THRIUGH

rsl 30092 L00UY 1 Ce=

TR2 Q0L392 U000Y ~1 ¢-= 3

TRS GNO%9) UDOUL <e- [JECT

TR7 CiUe3 LUOUU RECORCING <-= RECORLINIG
The L0Uss D0JUU Kea RECORUIIG <CALYD

TRy JO0I1 UOOUU <K=« 18

TR1C 00C93 JOCCU <K=« LRE

TR1G1 00C70 00007 <=« EPELDINIG <CANlYD
TR1Dz 0CU9L UGJ00 <K== AT

TRiud 00091 000UU <K== 3RIP}

TR134% 00039; U0G00 <K== 3niP3

TR103 03065 L0099 <K== 4GCELCING KEY <OULIA
TRids 09053 00092 <K== UESCELLOITIL XEY <LELIID

TR11 DOUT7Y 0OUOU DAITTEZL (== 3TAIDARU

TH14 00070 U0UDU SET <=ata Y2 TO 71 <=-oiliY>

HY> TO + <=[ialNY2

TR14s 0GO71 UQ000 DEPEINICING <== DEPENDLLG Of

s

75

St.T <=iAta

1Ri6 00073 0UU9Y9 JDCLCURS K=CiAYY> <C-= OCCURS <-BiANY> TO <-

Cialiy>

TH17 00070 V000U INTERUATA MUSEL=8-32 (==

TR21 30093 V0Oul ZERy <== ZERUES
JR22 JE09y vouue ZERD == 2ERODS
TRZ24 0GU91 U000U VALUE <e- VALUES

I31-370

TR2405 00031 UJ000 VALLE ~1 <=AiANY> <K== VALUL + <=A;AHY>

THe40e 00094 00COU0 THRU ~1 <=-ATALY>» <K== THRU + <{=A1AlLY>

Thes Q00JF0 UCJYES B8 (== 8By ID>
TRz6 Joudy 00099 <K== £ VALUE 3]

TRz7 U0USR UOQJ87 88 VALUE (== 88 VALUL <alr>
RS 00087 UJ06w 38 VALUF <==- 38 VALUE <ANLY2
TRe 3 00070 00085 <=ALCo0> K=e <~AJLEVEL-858>
TR29% J000% 0030 INDEXED BY <=A:IHDEX> <K==

NELTID

THRU <AIYS

TRz9gy 0C0LY 0OO00UT7 <OCCURS?> <K== GCCURS <=AIANY> TLALS

TReS5 00022 UuUGlS SEAXCH <=AISEARCHD> <(--

TR31 Jul2z 00CO09 SEAFCH <=-AlSEARCH> (--
TRs2 J6013 U0010 SEARCH <-AiSLARCHY (==
VARYILG <=231ANY2>

TR34 d0019 UOOUU LEARCH <=niSEARCHD> <K-DBIENCLISTS

H o C=ot SEARCHY> ENL <=3:a4Y>

1R35 JuC2VU JULOU KL VULISTY> <ea <ERDOLISTY> <ANYD

TR3% G021 COC11 wrEZi <K== CENQLIST> oHED
TR37 20013 V0020 <=43CHLOLISTY> == St

C=ATAIND

TR30 J0017 UtDoCU <CCHDLIST> <K== KCONLLISTY> <anY>
Th29 J0C13 LOULls =21 wHbWLISTy K== =i iCQi.bLISTy <=dihiY 0

RG>

SEARCH (=4 1IC
SLARCH <=fsdb2kCri2

o=

INUEXEL BY <ai

SEARCH ALL <-iilul

>

SEAKC

TRE1 JOUle 00012 <=Bi iENLISTY <Ko= KeAlwHElLISTY> eni kb iL

IST>

76

THuD 00015 U0UUU <wHENLISTY K= aHhiLIST> <aliY>

Thu?2 50016 UUCLE 3 Cea K=nlwdELLIST>)

THLGS 0u0ls v00lY FOVE ¢ TO FIXNISHED (b + 0) 212 X PLiFCr
SLEAFCH + 0 + U ULLTIL FLISHEU ¢ 0 + 0) = 1 3 == Stanl:i <o
LAiCH>]

Tiegs Up0ad U0JLS Ul FTAaLE x wl2 FINISKHEL PIC 9 CCCLprs 39 O
IS X 4g X <K== PRCOCELURE LIVISIC

TRYS 20630 000U3 01 FTAslE X %12 FLLWISHED PIC 9 CGLCUKS w9 1
IHES X 48 X K== LILKAGE SECTIUY

TR47 30091 LOCOUG <CP> (K== =

TR4701 Gou9e ULGOULU <OPY» (== [;OT =

Thys 00093 UOGOUL <LOPY == A4NL

TR49 gU091 JO0LU <LOF> (== OR

TS0 00079 UUDGO <=AtAY> <=Bi0P> <=Ciaiy> <=0ILOP> 220 <=~
PALYD <=BI0P> K=EIAHYD CaFILUP? Kew £=AIAMYD> £=BiCP> <eC:hui
> <=03LOP> {=EtnivY> K=fp:LOP>

Thyl V0079 V0000 <=piaY> <=810P> <=CialY> <=UILOP> %él <=,
$AY> <=BIUP> K=LIAKY> 520 <=FiKEY®ORD> <K== <=ALAKT> <=Li0P>
KaCtAlLYY> <=DiLOP> <=E:ALY> <(=FIiKEYWGROD>

THy2 JOU6U 000UU PERFORI1 <PARALIST> <(-= PERFORP <UELILIFD> Tn

KU <LELIM>

The3 n005% UDGG0 PERFORIT <PARALISTY> <-= PERFORN <DELICD
TR5Yy VIU47 600zl <C=A;ULTILY <-atPLONULIST> <Ke= UKTIL <C=AiA

Y >

1Res 00U3U 00000 <PCOHLLISTY <K=« <PCCLULIST> <Culiv>

1Rh56 00052 0C0UU <=A;PCCUKDY K=LIKEYWUORDLY> <K== <=aiPLULLLIGH

> (=81KEYWOKD>

TR 7 COo04S 00021 HUVE (=CiO0D>» TO <=DIID> 012 PERFORN FERFD

[+ U+ 0 <=ptUNRTILD> FILISHED (0 + 0) = 1 <== PERFURI <=,
tPARALISTD VARYING <=0:10> FROI <=CiANYD> BY <ANYD> (=EiUNTIL2
<Pehi.L>

TRY8 00044 V0022 #0OVE © TO FLWISHED (

0 + U } %le FOVE <=4
LU, > TO <=5:1L> <== {OVE <=AIP00> TO <=B:i11ID>

GCu0s
vOule
dbulGz
cLaby
Ubcoy
GuvUs
JuGe7
Gouto
GOLGY
GLell
60611
aldole
plulZ
JCL1lw
0001>
Julle
GLuly
Lol
00g19
Gup2u
couetl
top2e
00ges
Ulges
oozt
QLG22
goonz?
Gogpes
gug29
Cop3o
00031
Qugae
Qug33
J

LOG3y
C0035
RNV
60037
00u3s
GLuos?
ouLE0
Jocwel
s0ghe
pOGca 2
U0C44
goupes
CiuCwe
JUGH7T
[GVEVE S
o00L+92
00G50
J0051
D0u5Z

EJECT
ICERTIFICAYTUN GlviIslor,
PRLUGRAL =10, TEST.
EnVIRuivh T wIVISLaN,
COILFIGURATION SECTIO .
SOUKCU=CLwiPLIER, 15:i=370.
ObJECT=CraplTER, I53%<370,.
LLPUT=CUTIPLT SECTION,
FILE=CUITROL »
SELECT AFILE nSSIGH TL SYS0G3-LT=2314%=-53,
EJECT
DATA GIVISICOH.
FILE SECTIutt,.
Fu AFILE
LAGEL RECORUS npRE STARUARD
RECORCIG #ODE IS FIREU
DATA ReCORD Is AREC,
01 AREC PIC X(50),
WORKIG=STCRAGE SECTIO,
77 J FIC %,
77 STuUuElT PIC 3.
868 FROSH Vabur 15 1,
&8 S0Py VALUE 2,
84 Jh vaLUE 3, 6,
88 UPPtRrR-GRAD VALUES ARE & THRU 7,
77 X PIc 4.
77 SEX PIC 9%
58 MolE VALUES 5 THEU 18,
66 FEAALES VALUES 19 ThRU 35,
77 FFF PIC A(6).
8s STARS VALUE ALL "*'.
01 TABLE-SECTION,.

17

G2 TABLEDB CCCURS 3 TO 11 TIHES DEPELOING Ci

IRGEXED BY AA.
03 ITEW1 PIC XX,
02 TAGLEC COCCURS & TIwES INUEXED bY b,
C3 NAGE PIC %(4d)s
02 TATLED OCCuR3 2 114ES INDEXED BY C,
03 UDITEM PIC A{(D5),)
02 TARLEA OCCURS 10 TIsits IivWEXED EY a,
63 B pIC 3,
PROCEDURE UIVIsIu,
IF STARS THEN DISPLAY 'kxxdéx?,
IF FrUo3H THEN HOvE 1 10 X.
IF JrR THEI NOVE *2' T0 4.
DISPLAY '&v,
SEVT & TO +2,
SEARCH TABLEA VARYING C
AT ELLD HOVE 1 TO X
kilfH R(A) = 0 GU Tu PAkA=A
WHEl, B(a)y = 1 GO TO PAKA=b,

SEARCH ALL TASLES wHEL ITEHAL (KA) > ¢ STuF

}\‘U;J.
RN
GOuby
pogode
gLoe
Guub?
2005y
300593
:0pév
tuiel

vy 2
Juin2
slues
U0064s
cbues
gUCee
olcev

78

SEWRCH abb TALBLEA whbid B (A) = 4 STUF Ui,
IF 4 =1 08 2 94 3 Thiis STOP Kuli.

IF MaALeS THEN 3ToP RUN,
SET I TO 77,
SEARCH TaolEd

AT E0 NEXT SENTEGCE

whiCle = ¢z STOP wrUlL

vHEW I = 4 GO T PARA-A,

PERFUR: PARA-A ThiU PARA=-B VARYINLG X FolUh &

UNTIL X EGQJALS 9.

PARA=As EXIT
PARA=B3. EX1To

PERFORA PARA=-A UNTIL U = 0,
STOP Ruile

APPENLCIX C
SAMPLE PREPRCCESSCR QUTEUT
{using previcus input)

79

605310
buudel
wl2U3u
Glaoygs
Juyus0
Cullxa
vboC7u
cUydnl
JbUouyy
CColovu
Gu(lly
0ugi2u
0lUulau
cdlgl
cocinc
J0C0lel
003170
pog1acd
0LulgVx
00p20U=%
cuceiu=
oLD220=%
06prs0
ougayd
viozaus
glg2elx
000270
Ouyz2sbx
vlp29u
000300x%
UUg310=%
06g3z20
vi0G330
0u3ad
000350
UCg3nl
GUoaro
CdCaal
Ubpssu
000490
o0o%lv
003420
ulg430
GUC440x
p0C4%5b0
Glgant
oUC47ux
L0Cupu
CUG49d
QOUHOUx
gugolo
oLgbes

IDENTIFICATICH pIVISION,
PROGRA.=IUue TEZST,
ELVIRCLAENT JIVISIO:H,
COLF1eURATLOY SECT10:,
SOURCE=-COUPUTER, INTERDATA #0DEL-6-32.
OuutCT=-COPUITLR, INTERLUATA mUCEL=6=32,
I14PUT=0UTPUT SECTICH,.
FILE-CUNTROL,
SELECT AFILE A3SIGHN TO SYS003-UT=2314-3,
DATA wiVISION,
FILE SECTION,
FD AFILE
LaskL RECQRLCS OIITTED
OATA nECORp AkEC.
01 AREC PIC X(80),.
JORKING=-STORAGE SECTIOH,
77 J PIC 9.
T STuotuT PIc 9.
86 FRUSH VALUE IS 1.
86 SOPH VALUE 2,
86 JK VALUE 3. 6,
88 UPPER=GRAL VALUES ARE 4 ThRu 7.
77 X PIC Y,
77 SEX PIC 99,
88 WALE VALUES 5 THRU 18,
88 FEMALES VALUES 19 THRu 35,
77 FFF PIC X(6).
- 88 STARS VaLUE aLL '=',
01 TABLE=-SECTIU,.
G2 TASLEB OGCCURS 3 TO 11 TiIHES DEPENDING Oi
INUDEXED 2Y AA,.
Je TABLE3 OCCURS 11 TIMES
INDEXEU BY AA.
03 ITE®l £IC XX
g2 TABLEC CCCURS 4 TIHES IMNDEXED BY &,
03 NAME PIC X(4),
02 TABLEU OCCUKS 2 TIRES INUEXED BY C,
03 OQOITEX FPIC X(3).
Ge TABLEA OCCuRS 10 TINMES INCEARU BY a,
05 3 PIC 9,
01 FTABLEL,
FILRISHEG PIC 9 OCCURS 399 TIMES.
PROCEDURE LiIvISIO..
IF STARS THEN UDISPLAY v"®x%kxxx?
IF FFF = ALL v#¢
ThEN LISPLAY vxs%*x',
IF FRUSA THE.; JOVE 1 TO X,
IF STUDERT = 1
THEi «OVE 1 TD X.
IF JUR THEN FOVE *2' TU X,
IF STUDENT = 3
OR STURELT = o

J

&0

Quioax0
UGSy s
VLTI
G005 i=x
JUgoT0x*
30058 0%
gi(H30=*
0Uoelo
JUsGl1l
glueel
L0Ge3sC%*
vbgssl
LOOLSU
J0Jobl
0UJe70%
ulisasnd
Vilnyl
0047460
pou710
QuiL720
00g720
20g740
000750
vUg7ed
00p770=%
00L7ux*
oup790=%
yuascus
copgélu
a0us20
ulyasu*
vOJddy0x
000630
pupssed
GuCsa7u
g0opsnd
a0Cs9d
Quu%e0
guL91d
guu320
gbegao
005240
UUg9hi
gugsesl
006970
opup93o
gog3gu
vblooe
pGi01U
001uz0
GC103u
golouC
cU10o0

ParRA=Ae
PARA=D .

THEL, ZOVE
JISPLAY *27,
SET 8 10 2,
SEAKCH TaBLEA

2 TO X,

VARYIHG C

8l

AT Eil Move 1 TO <
WhEill BLA) = 0 GO TO PARA=A
wHET 3(A) = 1 GO TO FARA=8,
HOVE 0O TO FILiISHEL (01)
SCT € To 1
PERFOiRI SEARCHOL ULHTIL FINISHED (01) = 1,
SEARCH ALL TABLER «dEN ITEAL (AR) > 2 STUP RU.
MOVE 0 TO FINISHED (02)

SET AA Tu 1
PERFORM SEAKCHOZ2 UNTIL FINISHED
SEARCH ALL TASLEA WwHEN B (A)y =

({ U2) =1,
4 STOP RuUiu,

MUVE 0 TO FIi.ISHED (03)
SET A4 TO 1
PERFOKM SEARCHO03 UNTIL FINISHED (03) = 1,
IF A = 1 0OR
A= 2 0R
A= 3

THEN STOP RUN
1F MALES TyeEn STOP RUi.
SET I TO 77,
SEARCH TARLED
AT Edg NEXT SEINTENCE
AHEN 1 = 2 STOP RUN
wHEly I = & G0 TOo PARA-A,
JOVE ¢ TO FINISHED (o4)
* PERFCR»M SEARCHUY UNRTIL FINISHEL (u4) = 1,
PERFURM PAKA=A THRU PARA=5 VARYIHG X FROM 4
UHTIL X £qUaLs 9.
MOVE 0 TO FIwlstiko (05)
HAOVE ¢ 79O X

SEARCHOL1 .

PERFORM PERFORM0S UNTIL FINISHED (05) = 1.
EXIT,
EALTs
PERFUKN PARA-A UNTIL J = 0.
STOP RUii,
IF Ao 2 10
MOVE 1 To FIWISHED { 01)
MUVE 1 TO X
ELSE IF BtA) = 0
MOVE 1 10 FINISHED (01)

GU TOo PARA=A
Btay = 1
MOVE 1 TO FIAISHED (0l)
GO TO Paita=-B
ELSE SET A& UP BY 1
SLY Cc WP Y 1,

ELSE IF

SEARCHODZ,

IF AA > J

£y

v

<

U106l MUVE 1 TO FINISHED t G2)

001u70 ELSE IF ITENL (AAy > 2

LULGED MOVE 1 TO FIHISHED (02)
pDUi0gY STOoP KU

Lbiigu ELSE SET aa UP BY 1.

Q01110 SEARCRO3,

001140 IF A > 19

G01130 MUOVE 1 TO FINISHEU (03)
001140 ELSE IF 3 (A) = 4

GU1130 MUVE 1 TO FIUISHES (03)
ulllsU STup RUN

0ul170 cLSE SET A UP BY 1.

G01la0 SEARCHO4,

gl1iz0 IF C > 2

puy200 MOVE 3 TO FINISHED (04)
tuie2lo ELSE 1r I = 2

001220 MOVE 1 TO FIHISHED (04)
£01230 STOP RUN

GUlzLu ELSE IF I = 4

Gu3250 MOVE 1 TO FINISHED (U4)
£01260 U TO PARA=A

001273 ELSE SET C up BY 1.

001206 PERFURMDS,

001290 IF X BWUALS 5

cui3gpo MOVE 1 TO FINISHED (05)
001310 ELSE PERFORM PARA=A THRU PARA=B

0u13<0 ADD 2 TO X,

DESIGY AND TXPLZIEZLIATION OO A
GENERAL PURP3SE MACRAPRIOCISEOP FOZ
SOFTwWAx: CIHVoIsIO0n

DAVID A, SCuHnIDI

B. A., Fort Hays Kausas Stata2 College, Hays, Kansas, 1975

subritted in partial fulfill=o>ant of the

rejuirerents of the dejree

KASTEAR OF

[¥7]
@]
4
E#
@]
|

Dapartaant of Coaputer Science

KANSAS STATE UH1IVERSITY
¥arhattan, Xa4ansas

1977

In orler to facilitate the convarsion of approximately
160,000 lir2s of I3¥% ANS ZOSOL to a varsiopn acceptaktl> to

tha curront COBOL corpiler of the Interdata 8/32, a

3

preprocessor will bte izplerented. This device will

3

antoraticilly reconcils aprroximately ninety percent of the
needed convarsions bty nunber; the manpower effort saved is
rredicted to be corsidzarably zore.

The device as inmplamanted is to be as conducive to
chanje in termss of host and target languajes as is possible;
this facilitates the praprocessor's latear use in
applications nonrelated to the current conversion effort and
allows th= device to chang2 as the details and probleas of
the convarsion becore clearer., The praprocessor will raxe
use of instructions which are cormonly called macros. These
racros will be storad in a tabular forasat that can b2 easily
altered to suit the needs of the user.

Accoaparnying the preprocessor will be a manual of
documentaticn describing the nmechanics, irplementation, ard
use of the device, This rwanual is to be so written that
othars may be able to wuse it as 3 kasis for further
rodification, extension, and application of the work

accosplished.

