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INTRODUCTION

The concepts of controllability and observability of linear

systems were introduced by Kalman [2], [7], [11]. These concepts

play an important role in control problems.

The central problem in the study of the concept of control-

lability of linear systems is to determine whether or not every

initial state of a linear system can be transferred to any de-

sired state in some finite interval of time by some control. As

will be shown, every initial state of a linear system can be

transferred to any desired state in some finite interval of time

by some control if the system is controllable, and conversely

there is at least one state that cannot be transferred to some

other state in a finite time interval if the system is not con-

trollable. In the study of the concept of observability of

linear systems, the central problem is to see whether or not

every initial state of a linear system can be detected at the

output of the system in some finite interval of time. As will

be shown, every initial state of a linear system can be detected

at the output of the system in some finite interval of time if

the system is strictly observable, and there will be at least

one state which cannot be detected at the output of the system

in a finite interval of time if the system is not strictly ob-

servable.

In "Controllability of Linear Dynamical Systems" [2],

Kalman, Ho and Narendra developed some theorems about the concept



of controllability of linear systems. Most of these theorems

will be interpreted in the first part of this report. Parallel

with the concept of controllability of linear systems, some

theorems about the concept of observability will be proved and

interpreted in the second part of this report.

Gilbert [8] explored the controllability and observability

of composite systems and the transfer-function matrix represen-

tation of linear systems. Gilbert considered only time-invariant

systems whose A matrices have distinct eigenvalues. The last

part of this report will deal with this work. The transfer-

function matrix representation of linear systems will be empha-

sized.



THE CONCEPT OF CONTROLLABILITY

Definitions of Controllability

Consider a linear system of the form

x(t) = A(t)x(t) + B(t)u(t) (1)

v.(t) = C(t)x(t) +D(t)u(t) (2)

where the state vector x(t), input u(t) and output jr(t) are n, p

and q-vectors belonging to n- dimensional state space X, p-

dimensional input space U and q-dimensional output space Y respec-

tively; A(t), B(t), C(t) and D(t) are matrices with suitable

order. All quantities in (l) and (2) are real. The matrices

A(t), B(t), C(t) and D(t) and the input u(t) are at least piece-

wise continuous and are defined for all - «> < t < + «.

The solution of (l) is [l],

t

x(t) = i(t,t
o
)x(t ) + *.(t,T)3(T)u(T)dT (3)

t_

where x(t ) is the initial state at t and*_(t,T) is the state

transition matrix. The output is

t

Z (t) = C(t)»(t,t )x(t ) + C(t)*(t t T)B( T )u(T)d +D(t)u(t) (^)

t.
o

as can be seen from (2) and (3).

Definition 1. Consider a system described by (1) and (2).

A state x(t ) is said to be controllable if there exists some



finite t-[_ > t
Q

such that x(t ) can be transferred to x(t,) =

by some control u(t). If every state at t is controllable, then

the system is said to be controllable at t . If the system is

controllable at every t , then the system is said to be control-

lable.

Time-variant Systems

This section is an Interpretation of Kalman, Ho and

Xarendra's work [2],

Theorem 1. A necessary and sufficient condition for a state

x(t
Q ) to be controllable is that there exists some input u(t)

such that

*<v =

it

*(t ,T)3(T)u(T)d(T) (5)

for some finite t, > t .

1 o

Proof. This theorem is an Immediate consequence of Defini-

tion 1 and ( 3) .

Example 1. Consider a system with the following state equa-

tion

x(t) -
1 1 -1

x(t) +
1

u(t)

where u(t) = [u-j_(t) u,,(t)] '. The prime means transpose.
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The state transition matrix is

1 e -1

£<t ,T) =

e^" 1

For any t

- *(t ,T)B(T)u(T)d = -

ft
l u^U) -u

2
(t)

j dx
n

(6)

t ; t I )

o o

If t, > t , then any input which satisfies the equation
\

u
x
(t) - u

2
(t)

t,-t
1

will make

fl
•

- *(t
o
,T)B(T)u(T)dT - [3 0]

'

•

J t
o

3y theorem 1, [3 ]
' is controllable at t .

Let the set of all states controllable at t be deno ted by

P(t) hereafter.

Theorem 2. The set P(t ) is a subspace of the state space

X.

This theorem can be proved using Theorem 1 and the definition

of a vector space.

Example 2. Consider the system in example 1. What is the
•

subspace P(t )?
•



By Theorem 1 and (6), it Is obvious that any state [k, kj ',

where k^ and kg are any real numbers and k
g ^ o , is not control-

lable at any t . But any state belonging to the subspace spanned

by the vector [1 0]' is controllable at any t , since any state

belonging to this subspace has the form tk 0] , where k is some

real number, and any input u(t) which satisfies the equation

U
1
(t) - U

2
(t) = -K/t

1
-t

Q

for t, > t will make
1 o

fc
l

0_(t
o
,T)B( T ) O (T)d.T = [K 0]

'

(7)

fc
o

for any tQ
. This can be proved using (6). By Theorem 1 and (7),

any state belonging to the subspace spanned by the vector 1 1 0l '

is controllable at any t .

It is concluded that at any t , P(t ) is the subspace of X

spanned by [1 ] '

.

Let {e
i

> denote a basis set for P(t ), then there exists

some finite ^(e^, t
Q

) > t
Q

, where ^(e^, t
Q

) is a function of e,

and t
Q , such that e, can be transferred to the zero state at

t
1
(e

1
, t

Q ) by some control u
j
_(t). Since P(t ) is finite dimen-

sional, there exists some t, (t ) that is the maximum of the set

of all t-^e^, t
Q

) • s.

Theorem 3. Every x^o^^^o^ can be transferred to the

origin at t = ^(t^) by some control u(t).



Proof. Since t^e^, t
Q

) <_ t
1
(t

Q
), hence e^ can be trans-

ferred to the origin at t
1
(t

Q
) by some control

u
A

(t) =
"I

u.(t) for t <_ t < t,(e. , .t )

for ^(e^, tj < t <, ^^o^
(8)

By (5)

e . = -
—l

W
it

*(t ,T)B(T)u[(T)dT (9)

where u,'(t) Is defined in (8). Equation (9) implies that for

any x(t_)eP(t )

x(t
o

) =

\
K&
rt^V

*(tof T)B( T ){j;K
i
U

;

[(T)}dT

Thus the theorem has been proved.

Example 3. Consider the system in example 1.

Let e- = [1 0] » be a basis of ?(t
Q
). By (6), any input

u(t) which satisfies the equation

-1
u, (t) - u, (t) =

for t, > t will make
1 o

*(t ,t)B(T)u(T)dT = [1 Or



This means that [1 0] ' can be transferred to the origin on any

finite closed interval of time [ t„ , t, ] , where t, > t . Hence
o J. 10

t, (t ) can be any time such that t, (t ) > t .

Any state in P(t ) has the form [k 0] ', where k is some real

number. By Theorem 1 and (6), any input u(t) which satisfies

the equation

V t} ~ U
2
(t) " t, (t J-t

1 o o

will make

W
.

*(t ,T)B(T)u( T )dT = [K 0]
"

fc
o

This implies that [k 0]' can be transferred to the origin at

tnCt^ by some control.

Consider (3): For every time t and for every initial state

x(t
o ) and for every input function u(t) defined on the interval

-oo < t < + °° there exists a motion x (t; x(t ), t ) = x(t) de-

fined for all -• < t < + » and x(t ; x(t ) , t ) « x(t )

.

Example 4. Consider a system with one dimensional state

space. Two motions defined by x (t) = x , (t; x, (t ) , t ) and

Zb^t) = ^U2^ t; ^i^o^' t ^ Pass through the same point (x,(t ) ,t )

as shown in Fig. 1.



x(t)

Fig. 1. Two motions defined by x_(t) = x , (t; x, (t_), t )
™~S "~U.J_ ~~X. o o

and x
b
(t) = x

u2
(t; x

1
(t

Q
), t

Q
)

.

Theorem k. Every motion which passes through some x, (t )e

P(t ) can be reached from every x(t )eP(t ) at or before t, (t )O — 00 1 o

Proof. Since x(t
Q

) - x^t^ belongs be P(t ), it follows

that

f

t
l
(t
o

)

*(t, (t ) ,t ) [x. (t )-x(t )] =— ± O O —1 o — o
*(t. (t ) ,t)B(t)u ( T )dx— JL O wmm —

O

(10)

For any control u, (t)

*{t. (t ) ,T)B(T)U, ( T )dT + *(t. (t ) ,t )x. (t )— 1 O — "~l — 1 O O —1 o

:i<V
(11)

't

By (10) and (11)

Sul'W^l'V'V
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*(t. (t ) ,t )x(t ) +— 1 o o — o

w
*<t, (t ) ,T)E(T) (U (t)+U, (T)]dt— 1 O — —O —

1

= X , (t, (t ) TX(t ) ,t )—uo+uL 1 o — o o

The theorem has been proved.

Example 5. Consider the system in example 1. Let some

motion be defined by

%i (ty£i<t0l>,t0l ) - %1^-t 2 or. t
ol )

This motion passes through ([2 0]', t -,) . Denote any state be-

longing to P(t
Ql ) except [2 0] ' by [k 0] ' , where k is some real

number and k ^ 2. The point of the motion x^,(t; [2 0]«, t .)

at t
1
(t

01 ) is

^l (t
l
(t
ol ); [2 0I '' W

- ±< ti<
t
oi>' ^i^ 2 0],+

t
l
(t
ol )

- (t
l
(t
ol ) '

T '! (T 'Hi' T ' dT

ol

2 +
X OJ

" [U
i:L

(T)-U
12

(T)]dT

"ol

Define another motion by

(12)

The point of the notion ^^(t; [k 0] '
, t

Ql
) at ^(t^) is
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ano^W' [K 0] ''
'ol 5

= itVW^oi 5 ^ o]' +

K

Choose

VŴ
(^(t^) ,t)B(t)[u

o
(t)+u

1
(t)>

'ol

^W
[U

ol
(T)-U

02
(T)+U

i;L
(T)-U12 (T)]dT

'Ol
'

° t
l
ltol ; r

ol

2

X
(13)

then

2Wui (t
i
(t

oi> ; -rK °!N*oi>
=

^ol*
2+ [u

i:l
(t)-u

12
(t) ]dr

'ol (14)

By (12) and (1^)

vvv^ 2 °]sW"W t
i
(t*,,D[ 0],,toi) (15)

The input u,(t) can range over U, and it is always possible

to find a corresponding u_(t) such that (15) is satisfied. Hence

any notion which passes through [2 0]'eP(t ,) can be reached

from any state in p ( t ^)«

Theorem 5. Any state in P(t ) can be transferred to any

state in P(t
2 ) , where t

?
>_ t, (t ). No motion can enter the sub-

space P(t) , if it starts from any state x(t )^P(t ).

Proof. For free motion

x(t
Q

) = *(t
o
,t)x(t) t > t (16)
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If x(t)eP(t), then x(t ) in (16) must belong to P(t ). Hence

P(t
o

) o *(t
Q
,t)P(t) t > t— o

(1?)

This implies that any x(t
2
)eP(t

2
) can be reached from some

x(t )eP(t ) through some free motion. Then, by Theorem k, the

first part of the theorem can be proved.

Assume that there is some x(t )/flP(t ) which can enter P(t)

for some t > t , then x(t ) is controllable. This is a contradic-

tion and part 2 of the theorem has been proved.

Example 6. Consider the system in example 1.

It was shown in example 3 that t, (t ) can be any real number

such that t,(t ) > t . Assume that t
2

> t
Q

, then ^(t^ can be

chosen such that t2 .> ^V > t
o'

By examPle 2
»
p ^o' and P ^ fe 2^

are the same subspace spanned by the vector [l 0]'.

By Theorem 5» any state x(t ) = [k, 0] 1 can be transferred

to any state x(t
2 ) = [k

2
0]', where K, and K

2
can be any real

numbers. Let x(t
o

) = [j^ 0]' , then by (3)

ft.

x(t
2

) = _*(t
2
,t )x(t

o
) + *(t

2
,T)B( T )u(T)dx

= [K, 01' +

u
1
(t)-u

2
(t)

dr

If u(t) is chosen such that

/i o d o
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then

This means that any state x(t ) = [k, o] ' can be transferred to

any state x(t
2

) = [k
?

0] ' .

If x(t )
= LX k2-' where k

i
and ^? can be any real numbers

but k
2
/0, then x(t

Q
)/P(t ). By (3)

x(t) = iCt,^)^ K
2 ]

f + 4.(t,T)B(T)u(T)dT

Jt

(KrK
2
)4-K

2
e

+•„+

2
C

°

t-t r U
1
(T)-U

2
(l)

dx

t-t,Since k
2

e " ^ 0, x(t) will never belong to P(t).

Let a linear transformation be defined by

i(t ,T)B(x)B'(T) 1 '(t
o , T )d Tv<w = (18)

It is a symmetrical non-negative definite matrix. The rank of

Vis bounded by n and no n- decreasing with t, .

Theorem 6. A necessary and sufficient condition for being

able to transfer x
Q
(t ) to ^(t^) is that *.(t

Q , t^x^t^ -

x (t
Q ) belongs to R(V(t

o
, t-jj], the range of V(t

Q
, t,) .

Proof. Let
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»VVx<t ) -±«W*i«-W
and

u(t) = 3'(t)*»(t ,t) 2 (t )

Then

x(t
x ) =!(tr t

o
)x

o
(t

o
) +

'1

*(t
1
,T)B(T)B«(T)*

>
«(t ,T)Z ( t )dT

= ^VVW .+ !(tr t
o ) l(t ,t)B(T)B'(T)^.(t

o
,T)

J t

•

=
*a (v '

This Implies that x (t
Q ) can be transferred to ^(t,). Thus the

sufficiency has been proved.

Suppose that x
o
(t

o
) can be transferred to x^t,), then there

is some u, (t) such that

x^) =i(tr t
o
)x

o
(t

o ) +

cv^^V -2o (V =

*(t
1
,T)B(T)u

l
(T)dT

o

ft,

I(to
,T)B(i)u

1
(T)dT (19)

If the state (t
Q , t^x^) - x

o
(t

Q
) is an initial state at t

Q ,

then



15

rt.

x(t
x

) =i(t1
,t

o )[1 (t
0t

t
1
)x

1
(t

1
)-x

o
(t )] + *(t,T)B(T)u(T)d T

By (19)

ft,

x(t
x

) •<w "i(t ,T)B(T)u
1
(T)dT+ *(t,T)B(T)u(x)dT

ft,

"»(t
1
,T)B(T)u

1
(T)dT + 0(t,T)B(x)u(T)dT

Let u(t) = -^(t), then x(t
x

) =0. This implies that

*ft ,t
1
)x,(t

1
) - x (t ) can be transferred to the origin. in the

closed time interval [t . \ ] **" * {t
o ) can be transferred to

2l
(t

l } '

Let K[V(t , t, ) ] denote the null space of the linear trans-

formation V(t
Q

, fc, ) . Since V(t , t-
L
) is symmetrical, the ortho-

gonal direct sum decomposition of the state space is £^]

X = R[V(t »t
1
)]»N[V(t ,t

1)]

Suppose that x(t )cN[i(t , t^ ] and x(t
Q

) ^ 0, then

<x(t ) V(t
o
,t

1
)x(t

o
)> =

\\
||B'( T )*.'(t , T )x(t )| pdt =

Hence

B'(t)*.'(t ,t)x(t ) h on 0^,^] (20)
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Assume that x(tQ ) can be transferred to the origin In the closed

time interval £t , t^"). Then, by (5), there is some control

u
2
(t) such that

*<v - £(t
o
,T)3( T )u

2
(T)dT

and

|| Z (t
o )||

c = <x(t )

ft.

h.

*(t ,T)B( T )u
2
(T)dT>

rt,

'[3'(T)i'(to
,T) x(t )]'U

2
(.T)dT (21)

By (20), the right hand side of (21) is equal to zero. But

1-1.2(01 ' > 0, a contradiction. Hence there is no non-zero state

in *£V(t t,)] that can be transferred to the origin in the

closed time interval ft , t, ].

Let x'(t )
m *(t ,t,)x, (tn ) - x (t ). Suppose that x (t )

can be transferred to x, (t, ) and x'(t )/R[y(t ,t, )~1. Then x'(t )—1 1 — o *- o 1 - — o

can be decomposed as

x«(t ) = x
r
'(t

o
) +xn'(t )

where x
r

, (t
o
)eR[V(t

o
,t

1
)l, x

n
' (

t

Q ) e n[y( t
Q , t

± ) ] and x
n '(t ) j£ 0.

Since xn
, (t

o
)eN[V(t

o
,t

1 )],
hence x'(t ) cannot be transferred to

the origin in the closed interval of time [t^^l. This is a

contradiction, and the theorem has been proved.



Example 7. Consider the system in example 1,

The matrix

17

v(t
o
,t
1 )

i(t.,T)B(T)B'(T)».(t ,T)dt

- 'vv
2

IP °.

It's rank is one for t, > t
Q

and R[V(t
Q
,t

1
)] is the subspace of X

spanned by the vector [1 0]'. Let x[t
Q

) - [k 0] ' and xft^) =

[k 1 0]
' , where k and k 1 are any real numbers. Then

i(to ,t
1
)x(t

1
) - x(t ) = tK'-K 03»

'

hence *( t , t.) x( t^) - x(t
Q

) belongs to RfV(t ,t
1

)] . 3y Theorem

6, any state x(t ) = [k Ol' can be transferred to any state x{\)

= [k' Ol '.

Now, let x(t
Q

) = l\ kg]' and x(t
x

) = tk^ Ol ' , where ^

,

k„ and k„ are any real numbers and kp ^ 0. Then
Z j

<c

itVV^V " - (t
o }

= [K
3

• K
l "

K
2
]t

which does not belong to the range of Vd^.t^), hence x(t
o ) can

•not be transferred to x^^)'

Corollary 6-1. The state x (t
Q

) can be transferred to

xAtj) =0 if and only if x
Q

( t
Q
)e R[ V(t

Q
, t^)] .

This can be proved by setting x^V = in Theorem 6.
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Corollary 6-2. Let t^t ) be any value of t, such that the

rank of V(t ,t.) is maximum, then P(t
Q

) = R[V(t
o
,t

1
( t

Q ) )] .

This can be proved by Corollary 6-1 and the fact that the

rank of V(t »t-) is non-decreasing with t, and bounded by n.

Corollary 6-3. A system is controllable at t if and only

if V(t
Q
,t

1
(t

o ) } is positive definite.

If V(t f t,(t )) is positive definite, then the rank of

V(t , t, (t )) is n. Hence it's range is the state space X. Thus

it follows from Corollary 6-1 that the system is controllable at

Time-invariant Systems

'For time-invariant systems described by (1) and (2), the

matrices A(t), B(t), C(t) and D(t) are constant. These matrices

will be denoted by A, B, C and D hereafter, and (l) and (2) will

be written as

jc(t) = Ax(t) + Bu(t) (22)

^(t) = Cx(t) + Du(t) (23)

If any state x^ is controllable at t , then, by (5), there

is some input u, (t) and some finite t, > t such that

,t

2l
= - l-

(t
o~

T) Bu
1
(T)dT (2^)

Jt
o

Change the variable t in (24) such that t = a - T, where T is any
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positive real number, then

3L
= "

t„+T
1

£
A[(VT)-a]3^

(a _ T)d(

t +T
o

1*2

£
A[(VT)-a]3^

(c)dc

By (5). this implies that if a state is controllable at t it will
o

be controllable for all time. This also implies that if a state

is uncontrollable at t it will be uncontrollable for all time.

Thus one only needs to investigate the controllability of a time-

invariant system at t = 0. It is obvious that a time-invariant

system controllable at t = is controllable.

The following is a criterion for controllability of a time-

invariant system described by (22) and (23) in terms of the

matrices A and B of the system.

Theorem 7 . A time- invariant system described by (22) and

(23) is controllable if and only if the column vectors of the

matrix

£c = [SAB A
2
B A

31"1
^]

span the state space X of the system.

Proof. Suppose that the column vectors of Zc
span X, but

there is some state which cannot be driven to the origin at some
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t = t-, » where t, > 0. Then by Corollary 6-1, there is some non-

zero state xn
(0)GN[V(0, t^]. And by (20)

B'0'(0,t)x
n(0)

= B'ef-^x^O) =0 V < t < t, (25)

Differentiate (25) and set t =

,k

dt
I-B'^'VO) = B'(-A')\jO) =

t=0
— ' —

n

1 (26)

where k = , 1

,

,n-l

This implies that x (0) is orthogonal to every column vector of

-c This contradicts the assumption that the column vectors of

Z span the state space X.

Nov:, suppose that the system is controllable but the column

vectors of Z do not span X, i.e. the range of Z , R(Z ), is a

subspace of X. Then, there is some x (0)eR(Z ) , the orthogonal

complement of R(Z_) , such that
c

S'^'^x^O) =

k = , 1, n - 1

By Cayley-Hamilton Theorem

B<r±
x

%(o)
n-l

V C.(t)3'(A') A
x (°>n*, = (27)

k=0

By (18) and (27)
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v(o,t
1
)x

n
(o) =

'

e
~^T

B B , e~-'
T
x
n
(0)dT

= Vt>

This implies that x
n
(0)eNtV( 0,^)1 for all t,. By Corollary 6-1,

x (0) is not controllable. This is a contradiction and the theorem

has been proved.

Corollary 7-1. The initial state x(0) is controllable if

and only if it belongs to the vector space H(Z ).mmc

The proof is similar to that of Theorem 7.

Corollary 7-2. If a time-invariant system described by

(22) and (23) is controllable, then any state can be driven to

the origin in any interval of time [O.t-^ , t-^ > 0.

Proof. Since the time t, was not restricted in the proof of

the sufficient part of Theorem 7.

Example 8. Consider the following system

x(t) =
1

-2 -3
x(t) +

1

1 -2
u(t)

The matrix Z of the system is

Z
c

= [BAB] =
11-2

U "2 -3 \

It's column vectors span the state space of the system, hence the

system is controllable.

Example 9. Consider the following system
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x(t) =
1

1

x(t) +
1 -1

u(t)

The matrix Z of the system is
—

c

Z
c

= [3 AB] =
1-10

The rank of Z is 1, hence it's columns do not span the state

space of the system and the system is not controllable. Only the

states in the subspace spaned by [1 0] ' are controllable.

Consider the special case when the matrix A has distinct

eigen values *lt i « 1, 2, n. In this case, equations

(22) and (23) can be represented in normal form

a(t) = A o(t) + 3 u(t)

v.(t) = C^U) + Du(t)

(23)

(29)

where £(t) = ^"^(t) , _A = e."
1
^^'

^

n
- p.

-1
3, C_n = Cp_andp_ is the

modal matrix.

It has been proved that a system described by (28) and (29)

is controllable if and only if there is no zero row in 3 [ 8] .

Example 10. Consider the system in Example 8. This system's

state equations in normal form are

i(t) =
-1

-2
a(t) +

1

1-1 1
u(t)
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There is no zero row in Bn . hence the system is controllable.

Example 11. Consider the system in Example 9. The normal

form state equations are

£(t) =

1
Q(t) +

fl -ll
u(t)

The second row of B is zero vector, hence the system is not

controllable.
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TEE CONCEPT OF OBSERVABILITY

Definitions of Observability

Definition 2. Consider a system described by (1) and (2).

A state, x(t ), of the system is said to be strictly observable

if every coordinate of x(t ) can be determined from a knowledge

of the zero input response of the system over some finite closed

interval of time [t »t, ]. A state, x(t ) , of the system is said

to be strictly unobservable if no coordinate of x(t ) can be

determined from a knowledge of the zero input response of the

system over some finite closed interval of time [t ,t,]. A state,

x(tQ ) t of the system is said to be partially observable if it is

neither strictly observable nor strictly unobservable. If every

state of the system at tQ
is strictly observable, then the system

is said to be strictly observable at tQ
. If every state of the

system at t is strictly unobservable, then the system is said to

.be strictly unobservable at t . If the system is neither strictly

observable nor strictly unobservable at t , then the system is

said to be partially observable at t . If the system is strictly

observable at all t , then the system is said to be strictly

observable. " If the system is strictly unobservable at all t ,

then the system is said to be strictly unobservable. If the system

is neither strictly unobservable nor strictly observable, then

the system is said to be partially observable.
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Time-variant Systems

For any input u(t), the output of the system described by

(1) and (2) is

v.(t) = c(t) I !(t,t
o
)x(t

o
) +

D(t)u(t)

C(t)«(t,t )x(t ) = £(t) - C(t)

D(t)u(t)

£(t,T)3(T)u(t )dx [ +
}

£(t, T )B(T)u(T )dt -

The forced response of the system can always be subtracted from

the output. Thus the input has no effect on determining the

coordinates of x(t_). Hence in Definition 2, the system is

assumed to be under free motion.

Consider the free motion case, the output of a system des-

cribed by (1) and (2) will be

2 (t) = C(t)*(t,t )x(t ) (30)

Let Q(5,v) be the set of initial states at 5 such that

v,(t) = C(t)*(t,5)x(e) = on [e.'ti] (3D

Obviously Q(s»u) constitutes a vector space. Suppose that

t 4 tg £ t-, then by (31)
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Q(t
Q
,t

2
) D Q(t

Q
,t

3
) (32)

Multiply both sides of (30) by *« ( t ,

t

Q
) C« (t) and integrate

the result from tQ
to some finite time t^ f then

h h
2 , (T,t

o
)C«(T)l(T)dT

O

i , (T,t
o
)C'(T)C(T)«.(T,t

o
)dT x(to )

> (33)

Now, it will be shown that (33) can be used to determine x(t
Q
).

Let the linear transformation on the right hand side of

(33) be denoted by W(t tt»).,- that is

W( to*
t
l )

= I 1
( T,t )C*(T)C(T)*(T,t )dT W

As in the case of V(t t^) of equation (18), the linear trans-

formation W(t ,t,) is symmetrical and non-negative definite matrix

whose rank is non- decreasing with tj_ and bounded by n.

Let tx
(t ) be the value of t^ such that WCt^t^) has maximum

rank, and let H[w(t ,t
1

( t
Q ) )] and N[W( t

Q
.t^ t

Q ) )] be the range

and the null space of W(t ,t
1
(t

Q
)) respectively. Then, ¥x(t

Q
)eN

[w(t ,t
1
(t

o ))]

W(t
o
,t
1
(t

o
))x(t

Q
) =

and

<x(t
Q ) W(t ,t

1
(t ))x(t )>
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rW
^o) «!(T,t )C'(T)C( T )4.(T,t )dTZ(t >

W
I

C(T)«(T
f t )x(t )|| ^dx

* t

This implies that ¥x( t
Q
)e N[VJ( t

Q
,M t

Q ) ) ]

C(t)*(t,t )x(t ) =0
.

on [t
o
,u

1
(t

o )]

Equations (31) and (35) imply that ¥x( t )e N[w(t , t± { t ) ) ]

x(t
o
)eQ(t

o
,t

1
(t

o ))

On the other hand, if x( t )4 N[W( t ,t,( t ) ) ], then

iK^.t^t^)^^) =
W

(35)

(36)

i.
, (T.t )C'(T)C(T)«_(T,t

c

.)dTXj:t ) I

J t.

5^ J

This implies that ¥x( t )^N[W( t »t,( t ) ) ]

C(t)*jt,t )x(t ) i -0 on [t ,t
1
(t

o )]

Hence ¥x(t
o
)/K[w(t

o
,t

1
(t

o ))]

x(t
o
)^Q(t

o
,t

1
(t

Q )) (37)
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Equations (36) and (3?) imply that

Q(t
o
,t

1
(t

o
)) = NQiU^d^))] (38)

Now, suppose that a > t, (t ), then by (32) and (38)

N[W(t
o
,t

1
(t

o ))]
= Q(t ,t

1
(t

o
)) D Q(t

Q
,o) = N[W(t ,o)]

Since the rank of W(t , t, ) is non-decreasing with t, and

W(t , t,(t )) has maximum rank, the rank of W(t , t, (t )) is equal

to the rank of W(t , 0). Thus

NQid^.t^))] = Q(t
o
,t

1
(t

o ))

= Q(t
o
,a) = N[W(t

o
,a)] ¥o.> t^t^ (39)

For convenience, denote Q(t, t-^t)) by Q(t) hereafter.

Theorem 8. A state x^o^ is stri °tly unobservable if and

only if it belongs to N[W( t
Q

, t-
L

( t ) ) ].

Proof. By (39), if x( t
Q ) e N[w( t

Q
, t

±
( t

Q ) ) ], then x( t
Q
)e Q( t

Q
,a )

for every a >, ^(t ). This means that

y.(t) - C(t)*(t,t
ft
)x(t ) e on [t ,a]

O —• O "™ o

where a is any value such that a ^ t, (t ). Hence for every

x(t )eN[W(t
o
,t

1
(t

o ))]

y.(t) m c(t)*(t,t )xCt
o

) =0 -Vt >_ t (40)

This implies that there is no coordinate of x(t ) that can be

determined from a knowledge of the zero input response over
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some finite interval of time [tj,.^]- Thu s x(t
Q ) is strictly

unobservable.

Now,suppose that x(t )/N[W(t
o
,t

1
(t

o )) ], then

ii(t .t
1
(t

o
))x(t

o )
=

W
£(x,t

o
)C'( T )^( T )d T ^ (41)

*o

and x^q) can De decomposed as £4].

x(t
Q

) = x
r
(t

Q
) + x

n
(t

o )

v»

where x (t ) ^ _0_ and

x
r
(t

o ) £ R[W'(t
o
,t

:L

(t
o ))]

= RQK^.^C^))]

x
n
(t

o
)cN[W'(t

o
,t

1
(t

o ))]
= N[W(t ,t

1
(t ))]

By the pseudo inverse £4] of W(t , t, (t )), ^(t ) can be deter-

mined, that is x (t ) can be determined from a knowledge of the

zero input response over some finite interval of time £t ,t,(t ) ].

Hence a strictly unobservable state at t must belong to

NCwU^t-^))].

The theorem has been proved.

Corollary 8-1. A system is strictly unobservable at t if

and only if the matrix W(t »t, (t )) of the system is zero.

Proof. If the matrix W(t
o
,t

1
(t

Q )) is zero, then the dimen-

sion of N[W(t »t
1
(t

o
) ) ] is n. By Theorem 3 , the system is strict-

ly unobservable at t~«
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Suppose that the system is strictly unobservable at t but

the matrix W(t tt,(t )) is not zero. Then the dimension of

N(W(t »t, (t ))] is less than n, hence the system is not strictly

unobservable at t . This is a contradiction.

The corollary has been proved.

Corollary 8-2. A system is strictly observable at tQ
if and

only if the rank of the matrix W(t »t^(t ) ) is n.

Proof. If the rank of W(t ,t-,(t )) is n, then the inverse of

W(t ,t,(t )) exists. By (kl) , any x(t ) can be uniquely deter-

mined. Hence the system is strictly observable at t .

Now suppose that the system is strictly observable at t

but the rank of W(t »t,(t )) is less than n. Then the dimension

of N(W(t ,t, (t ))] is at least one, hence by Theorem 8, the sys-

tem is not strictly observable at t . This is a contradiction.

The corollary has been proved.

Corollary 8-3. Let r be the rank of the matrix W(t ,t,(t ))

of a system, then the system is partially observable at t if and

only if < r < n.

Corollary 8-3 is an immediate consequence of Corollary 8-1

and Corollary 8-2.

Example 12. Consider the following system

x(t) =
1

x(t) +
1

u(t)

y.(t) = a 0]x(t)
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W( t ,t
l )

= i'( T .t
o
)C'(T)C(T)^(x ,t

o
)dt

and

h^o

det. Wft^) =
j^'
W"

This implies that for any t such that t
1

> t
Q

, W(t ,t^) is non-

singular, i.e. t-|_(t ) can be any value such that ^(t^) > t
Q
and

W(t »t,(t )) is non-singular for any t
Q

. This implies that the

system is strictly observable at any tQ
. Hence the system is

strictly observable.

Example 13. Consider the following system

>

1

c

x(t) +
1

x(t) =

jr(t) = [0 l]x(t)

u(t)

The matrix

wd^.^) = £'(T,t
o
)C'(T)C( T )£(T,t

o
)dT

o

t,-t
1 o)
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For any t » the rank of W(t
Q
,t

1
) reaches it's maximum value at

any t± > t
Q

, i.e. ^(t^ can be any value such that t. ( t ) > t

and ]£(t .-^(t^)) i S of rank one for any t . Hence the system is

partially observable at any t by Corollary 8-3, and therefore it

is partially observable.

The matrix

iLCVW) =

l Uo !
" ;

o

is of rank one for any t
Q

. Thus r£w( t , ^( t ) ) ] is spanned by

the vector [0 l]« for any tQ
and N[W( t »t, ( t ) )

] is spanned by

[l 0]' for all t « Any state belonging to the space spanned by

[l 0]' is strictly unobservable for all t and any state that

does not belong to that space is partially observable for all tQ
.

Time- invariant Systems

Consider a system described by (22) and (23). The output of

a free motion starting at t with initial state x iso —

o

Zl (t) .£«A<*-Vi—

o

(42)

If the free motion starts at any t + T with the same initial

state x , then

*2 (t) = C e
AO<VT)]x—

o

(^3)
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By changing the variable t to t = a + T, equation (4-3) becomes

Z2 (a+T) = C cr
{a ' t

o ) x
Q

(44)

By (42) and (44)

.^(o) -22
(a+T) =C e^

(a - t
o ) x

o
(45)

Equations (42) and (45) have the same form. Hence if x is

strictly observable at t , then it is strictly observable for all

time; if x is strictly unobservable at t , then it is strictly

unobservable at all time; if x is Partially observable at t
Q ,

then it is partially observable at all time. Thus one only needs

to investigate the observability aspects of a time-invariant

system at t = 0. It is obvious that a time- invariant system

strictly observable at t = is strictly observable.

As will be shown in the following theorems, the observability

characteristics of a time- invariant system are determined by the

matrices A and C of the system.

Theorem 9 . A necessary and sufficient condition for a

system described by (22) and (23) to be strictly observable is

that the column vectors of the matrix

Z = [C 1 A»C' (A')
2
C' (A')^ 1

^']

span the state space X.

Proof. Suppose that the system is strictly observable but

the column vectors of Z do not span the state space X. Then
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r, \J-

there is some x (O)eR(Z }, the orthogonal complement of R(Z ) ,

such that

[(A')
kC']'xn (0)

= CAk
xn(0)

=0

k = , 1 ..... , n-1

By the Cayley- Hamilton Theorem and in a manner similar to that

used in the proof of Theorem 7

v.(t) = Ce^x^O) = Vt

This implies that x (0) cannot be determined from the knowledge

of a zero input response of the system over any finite interval

of time. This contradicts the assumption.

Now, suppose that the column vectors of ZQ
span the state

space X but the system is not strictly observable. Then, the

system is not strictly observable at t = 0. Ey Corollary 8 -2,

the rank of the matrix W(0,t ,.(())_) is less than n, i.e. the dimen-

sion of NQj(0, t, (0)) ] is at least one, hence there is some

x
n
(0)eN[W(0,t

1(0))]. By (40) ¥t >

y.(t) = C £(t,0)x
n (0)

= Ce^x
n(0)

=0 (46)

Differentiate (46) and sett =

C(A)
k
xn (0) = [(A')

kC«]'xn(0)
=0

k = 0, 1, 2 , , n-1
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This implies that xn ( Q ) is orthogonal to every column vector of

Z^. This contradicts the assumption that the column vectors of—o

Z soan the state soace X.—

o

Theorem 10. If R(Z ) is a subspace of X, then only the com-

ponent of x(0) in ?.(Z ) can be determined from a knowledge of— —

o

the zero input response of the system over some finite interval

of time [O.t^].

Proof. For any x
n
eR (Z

Q )

[(A')
k
C']'xn

= C(A)
k
xn

=

k = 0, 1, , n-1

5y Cayley-Hamilton Theorem

y.(t) = Ce^V = J lv(t)C(A)
kx = ¥t

n k=0 K n

and

WfO.t^O))^ =

t-^O)

A't Ate- C»Ce- X dT =

This implies that for any xzR(Zn )
•n '—o'

xneN[W( 0.1^(0))]

Kence

R^^eNCwCO.^iO))] (i+?)
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N[W(0,t

1
(0))], then
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t
x
(o)

.

£' T
c»c -^^dT = o

and

st^\, °- £ on [0,t, (0)]

Since Ce- x ., ls analytic, hence

***«* o ¥t (48)

Differentiate (48) and set t = 0, then

C(A)Xl =1^') C'l^nl = £

k = 0, 1, , n-1

This implies that x -, cR(Z )

x
. Therefore for every x -e N[W

:m
-L

(0,^(0))], x^cRi^r. And

N[W(0,t
1 (0))] eR(Z

o )

1
(49)

Equations (4?) and (49) imply that

R(Z
Q )

X
= N[w(0,t

1 (0))] (50)

and hence

R (Z ) = R[w(0,t
1 (0))] (51)
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It has been shown in Theorem 8 that for any state x(0) , only

the component of the state belonging to R[W( 0,^(0) ) ] can be

determined from a knowledge of the zero input response over some

finite interval of time [0,t,]. By (51), it is obvious that only

the component of any state x(0) in R(Z ) can be determined from a

knowledge of the zero input response over some finite interval of

time [0,^].

The theorem has been proved.

The implication of this theorem is that R(Z
Q

) is the sub-

space of all the strictly unobservable states. Any state 4 R (2
Q )

is partially observable, since only the coordinates of x
r (0) can

be determined, nothing is known about Xn^ of x(0) .

Example 14. Consider the following system

x(t) =
1

>

J

x(t) +

1.

u(t)

£(t) = [1 l]x(t)

The matrix

Z = [£« A*C«] =
1 1

1

It's column vectors span the state space of the system, hence the

system is strictly observable.

Example 15. Consider the following system

x(t) =
1

x(t) +
I

u(t)



v.(t) = [0 llx(t)

The matrix

33

z = [C« A' C«] =
:

c

o

It's column vectors do not span the state space, hence the system

is partially observable. The states belonging to the subspace

.

spanned by [1 0] 1 are strictly unobservable at any tine.

When the matrix A of a system has distinct eigenvalues

X., i =1, 2, n, the equations (22) and (23) can be repre-

sented by (28) and (29).

It has been proved that a system described by (28) and (29)

is strictly observable if and only if there is no zero column in

Cn [81.

Example lo. Consider the system in example 14. The matrix

C =[1 Hi hence the system is strictly observable.

Example 17. Consider the system in example 15 . The matrix

C = [1 0], hence the system is not strictly observable.
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TRANSFER-FUNCTION MATRIX OF LINEAR SYSTEMS

Here only the time-invariant systems are to be considered

and the matrix A of any system is assumed to have distinct eigen-

values.

For this case, a system has a normal form representation

described by (28) and (29). A coordinate q.(t) is decoupled from

the input u(t) and cannot be influenced by it if the ith row of

the matrix B_
n

is a zero vector; a coordinate q,(t) is decoupled

from the output and is not detectible in the output if the ith

column of the matrix C is a zero vector. Gilbert [8] suggested

the following definitions.

Definition 3' A coordinate qi
(t) is called controllable or

uncontrollable according to whether the ith row of B._ is non-zero

or zero vector.

Definition k. A coordinate qi
(t) is called observable or

unobservable according to whether the ith column of C is non-zero—

n

or zero vector.

The following is an interpretation of Gilbert's work [81.

Decompositions of a Linear System

For the system described above, the matrix A_ is diagonal and

the system can be decomposed according to the following theorem.

Theorem 11. It is always possible to partition a system S

into four possible subsystems as shown in Fig. 2.



ko

H°(t)
sc

11 ( +) •_ s*
z*(t)

rHI w •

a# (t) +

y(t)

Fig. 2. A decomposition of a linear system

Part (1): A controllable and strictly observable subsystem

S* which has a transmission matrix D is of order n*.

Part (2): A strictly observable and uncontrollable subsystem

S° with order n°.

Part (3): A controllable and strictly unobservable subsystem

S° with order n
c

.

Part (4) : An uncontrollable and strictly unobservable sub-

system S
1 with order n .

Here S* and S have the same input u(t), i.e. u*(t) = u (t)

= u(t); the output of the system is equal to the sum of the
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outputs of S* and S° » i.e. ^(t) = £*(t) + Z°(t); and the order of

S is equal to the sum of the orders of it's subsystems, i.e.

n = n* + n° + n
c

+ n .

Proof. By a normal form representation of the system de-

scribed by (28) and (29), the coordinates of a_(t) can be parti-

tioned according to Part (1) through Part (4).

Example 18. Consider the following system

42
(t)

i
3
(t)

L
^(t)

2

3

4

'
qx

(t) '
' 1 2

'

q 2
(t)

q*(t)
+

1

. ^ (t)
,

u(t) (52)

Z(t) =
10

2

'q
x
(t)

v

q2
(t)

q
3
(t)

fl 21

+

.^(t)
,

u(t) (53)

By (52) and (53)

qx
(t) = q1

(t) + [I2]u(t)

42
(t) = 2q

2
(t)

4
3
(t) = 3q

3
(t) + [i o]u(t)

4^(t) = 4q^(t)

*!<t) -
fi

o

<1 2
V

qx
(t) + u(t)
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12 (t) = q 2
(t)

Accordingly, the four subsystems are;

S*:
^(t) =

qi
(t) + [1 2] u(t)

oK<*> +
[o 1Zl^) = u(t)

o°
q2

(t) = 2q,,(t)
S : 'a >

z2
(t) =

•

U

2 q 2
(t)

S
C

: q„(t) = 30o(t) + [l Olu(t)

S : 44
(t) = 4q^(t)

And

o c f
n = n* + n + n + n

Transfer- function Representation of a Linear System

In the four sybsystems of a decomposition of a linear system,

the subsystems S
c and S are strictly unobservable, they have no

effect on the transfer- function. All the states of S° are strict-

ly observable but uncontrollable and the definition of a transfer-

function is based on the assumption that the initial state is zero,

hence S does not affect the transfer- function. Only S* , which is

controllable and strictly observable, is characterized by the

transfer- function.
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Theorem 12. The transfer- function matrix of a system des-

cribed by (22) and (23) is

H(s) - CtlS-A)"1^ + D = C
n
(IS-A)

_1
B
n

+ D

n* K.

iii s-V £ (5^)

where the ranks of L's are one and n* and X.^'s represent the

order of S* and the eigenvalues of A* respectively.

Proof. The first expression. of (5^) is found by taking the

Laplace transform of (22) and (23) and setting all the initial

conditions to zero. The second expression of (5*0 is found in

the same way from (28) and (29).

The matrix

C (IS-A)" 1 B-n x- —
' —

n

= C.
•n n

n (S-x,)
1=1

x

adj

s-x-

s-x

S-X.n

> 5n

C—

n

1

S-X,

^— X'

s-x.

B—

n
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=

iil
S" X

i

where C , and B , represent the ith column of C and the ith row
—ni —ni —n

of B respectively. If the Ith coordinate is uncontrollable or
—

n

unobservable, then C , 3 . =0. In—ni—ni —

n C .E
x

.

V
—ni—ni

iii 3~ x
i

only those terms corresponding to the controllable and observa-

ble coordinates are retained. These retained terms correspond to

those of the transfer- function of S*. Hence H(s) has the form of

(54).

Since K« = C .E* , every column vector of K. is a multiple

of C . , hence the rank of K. is one.

Example 19. Consider the following system

o(t) =

-1

-2 -

-3
-4

-5

£(t)

1
s

1

1
J. 2

s

u(t)

Z(t) =
110
10 10 o(t)

The subsystem S* is

qi
(t>

]
_ (-

lq2
(t)j

1 \W
1

-2 q 2 ( t)/

ol
.(t)
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lit) =
1 1

l o

q1
(t)

>

,q2
(t)

The transfer-function matrix of S is

T
5 C .B .

H(8) =
I =ff^

S+l II
[1 0] +

'1'

S+2 [0 1]nl

1

St3 El 2]
|

'0"

S+4 [0 0]

s+5 [0 0]

S+l ;+2

1

= H*(s)

The first term of the second expression of H(s) is the same as

H*(s); the second, third and fourth terms of the second expression

of H(s) correspond to those of S
c

, S° and S
1 respectively.

3y Theorem 12, it is obvious that the transfer- function

matrix of a system S represents only the subsystem S* of S. The

second expression of (5^) implies that the poles of S are the

eigenvalues of A. When the system is not controllable and strict-

ly observable, then the poles which do not originate In S* are

cancelled.

\
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If one realizes a transfer- function matrix by a linear system

which is not controllable and strictly observable, then it nay

happen that the system is unstable which cannot be detected by

investigating the transfer- function matrix.

Example 20. Consider the system shown in Fig. 3.

u(t)
+ /O

1

1

.

1

+
.

K•— "00 y

.

-5
+ J ,

p+4 ^(t)

• '.

X
2 (t)

p-1

jr(t)

Fig. 3. The linear system of example 20

The state equations of the system are found to be

x
x
(t)

x
2
(t)

-4 5

1

x-^t)

x~(t)

-5

1
u(t)

Z (t) = [1 -1]
x
1
(t)

[x
2 (t)J

It's normal form representation is

o(t) =
-5

1
a(t)

-1
u(t)
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vU) = [6 o]a(t)

The eigenvalues of A are X = -5 and X = l. Since X is positive

the system is unstable [4].

The transfer- function is

(3-l)/(S+4)
H(s) = ^ , Q ;V\-I1 •*- (s-i)-1 (s-i)/(s+i+)

(s-i)
2

- (s-ims+5)

s+5

Hence the transfer- function is stable.

The coordinate corresponding to X^ is uncontrollable and

unobservable, hence it does not affect the transfer- function and

the instability cannot be detected from the transfer- function.

Multivariate Feedback Systems

The following theorems relating the controllability and ob-

servability of composite systems to the controllability and ob-

servability of their subsystems were developed by Gilbert [8].

These theorems will be needed in the discussion of the transfer-

function representation of multivariate feedback systems.

Here the matrix A of any subsystem of a composite system is

assumed to have distinct eigenvalues which are different from all

those of other subsystems of the composite system.
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Theorem 13. Let a composite system S be formed by connecting

subsystems S and S. in parallel as shown in Fig. k. Then:

(a) the order of S is equal to the sum of the orders of S„

and Sb , i.e. n = n
&

+ n
fe

;

(b) the eigenvalues of S are the totality of the eigenvalues

of Sa
and S^, i.e. X^, xn = >>

la *naa'Hb' * * ' ' ,X nbb ;

(c) the system is controllable (strictly observable) if and

only if both S and S, are controllable (strictly observable).

u(t)

aa("0

SbC*)

JU.(t)

z^)

•v(t)

Fig. k. The system of Theorem 13

Theorem 1^-. Let the composite system S be formed by con-

necting S and S, in series as shown in Fig. 5. t where S isa d a

followed by 3. . Then:

(a) the order of S is equal to the sum of the orders of S
a,

and S, , i.e. n = n^ + nv ;d a o

(b) the eigenvalues of S is the totality of the eigenvalues

of S
a

and S
b . i.e. \

± ,
X
n = X^ »

X
naa »

X
ib

X
nbb ;

(c) both S
a

and S^ must be controllable (strictly observable)

if S is to be controllable (strictly observable).
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(d) any uncontrollable (unobservable) coordinates of S must

originate in S
b
(S

a ) if S
&

and S
b

are both controllable (strictly

observable)

.

ii(t)=a»(t) y.q ( t

)

-M Sh
irb(t)^:t)

Fig. 5. The system of Theorem 14

Theorem 15, The feedback system shown in Fig. 6 is formed

by connecting S
&

and S
fe

as forward and return paths respectively.

Denote the series connections of S
& followed by s, and S, followed

by S
a

as S
c

and S
Q

respectively. And assume that

ll +
£a2t I ^ °* Then:

(a) the order of S is equal to the sum of the orders of S
a

and S
b , i.e. n = n + n,;

(b) the system S is controllable (strictly observable) if

and only if S
c
(S

Q ) is controllable (strictly observable);

(c) both S
a

and S^ must be controllable (strictly observable)

if S is to be controllable (strictly observable);

(d) when S
a

and S
b

are born controllable (strictly observa-

ble) all of the uncontrollable (unobservable) coordinates of S

originate in S
b and are uncontrollable (unobservable) coordinates

of SC
(S ).
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u(t)

Jfc<t>l

S>-0

Fig. 6. The system of Theorem 15

According -do Theorem 15, the closed-loop controllability

and observability can be investigated without examining the

closed-loop equations, the open-loop systems S and S will give
o o

all the informations about the controllability and observability

of the closed-loop system.

Theorem 13, 1^, and 15 can be applied to the composite sys-

tems consisting of many subsystems connected in parallel, series

and feedback.

Let the combination of the subsystems 3°, S° and S of a

system S be denoted by S . Then S of a' composite system con-

tains S . S, ,..., since the coordinates of S , sd,.... are un-
ci o a d

controllable or unobservable or uncontrollable and unobservable

in the composite system S. The remainning coordinates of S , S, ,
3.

.... can be investigated by applying Theorem 13, Ik and 15 to the

interconnection of the subsystems S*, St, For example, S ofa o

u u
the system of Theorem 15 consists of S. S- and the coordinates

of S? which are uncontrollable in the system S*, the system S*
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followed by S* » and unobservable in the system S*, the system St

followed by S*.
ci

Since in this section, all the composite systems and their

subsystems are assumed to have distinct eigenvalues, hence by

Theorem 12, all the transfer- function matrices have simple poles

of rank one, where the rank of a pole is defined as the rank of K,

in Theorem 12. Therefore, in what follows, all the transfer-

function matrices are assumed to have simple poles of rank one.

Let the transfer- function matrices of S and S, in Theorem

15 be represented by H and K, respectively. Then,

• U
a

= U
b

- Ib = U - K^

.

V « HA = H
fi
(I + H^^U

and

V = H (U - V. ) = H U - H KV— —a — —b' —a— —a—b—

= (I + H H. )

_1
H U— —a— d —a—

The transfer-function matrix of the system is

[ = K (I + ELH )"1 = (I tHE, )

_1
H— —a — —b=-a — —a— o' —a

The transfer- function matrix H represents only the controll-

able and strictly observable part of S, S* . It gives no informa-

tion about S„ and. S, , since they are not represented by H and H, .a d * " —a —o
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The uncontrollable coordinates of S which originate in S|> corres-

pond to the ooles of H, which are cancelled in H,H , since thev ' —

b

— D-a

transfer- function matrix of the system S
a

followed by S^ is HjJL;

the unobservable coordinates of S which originate in St corres-

pond to the poles of H. which are cancelled in HE., since the

transfer- function matrix of the system S,, followed by S„ is ELH. ;

the uncontrollable and unobservable coordinates of S which origi-

nate in St correspond to the poles of H. which are cancelled in

both H^Hg and K
a
H
b

.

Example 21. Consider the feedback system in Fig. 7.

j

(̂t) +.® * {t
l

x,(t)
10
?+^ Xo(t)

P+1 I x
1
(t)

p+2

7(t)
-

—

Fig. 7. The system of Example 21, S

The subsystem S„ is shown in Fig. 8.
a
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ua (t) 7P (t)

Fig. 8. The subsystem S
a

The state equations and transfer- function are

Kiiv -^i(*) + 2.ujt)
al

IA (t) = x ,(t) + u (t)a

-a S+l

Obviously S is controllable and strictly observable. There are

no pole cancellations in this transfer- function.

The subsystem S, is shown' in Fig. 9.

UfcU) -3
T>+2 cb1 (t)

10

P+3

— u

2o2(t)
~>Ni

Fig. 9. The subsystem S,

The state equations in normal form are



5^

£b (t)
=

-2

-3
£b (t) *

30 J

u
b
(t)

v, (t) = [10 i"kh (t)

The transfer- function is

-30
-b

=
(s+2)(s+3)

Hence S, is controllable and strictly observable. There are no

pole cancellations in this transfer- function.

Now, consider the feedback system S. The normal form state

equations are

Q(t) =

-300
-?

4-

Q(t) + _2
11

1
11

u(t)

^(t) = [0 -10 i^]a(tj •+ u(t)

The coordinate q, (t) corresponding to the eigenvalue x-, = -3 is

uncontrollable and unobservable. The transfer- function of the

system 3 is

H = H (I + H>H r 1
= (I + H HJ"1^— —a — —&-&. s— —p.— tv — n-a-D'

(s+3)/(s+i)

1 T K S+l } ^S-r2> ^S+3 ; J
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(S+3) (S+2)
" (s+3)(s+7)(s-4)

S+2
(S+?)(S-4)

The pole s = -3 is cancelled, in the transfer- function, hence the

coordinate corresponding to the eigenvalue equal to -3 is uncon-

trollable and unobservable.

For the system S . the system S^ followed by S, , the block
c a d .

diagram is shown in Fig. 10.

sAt)

"0 + 1

feiii

^c7^)

-3
p+2 X

c2
(t)

10 2o< tJ

p+3 x.,(t)
c3'

Fig. 10. The system S

The state equations of S A in normal form are
c

Lit) =

-10
0-2

0-3
ZAt) 3 u (t)—

c

x
'

v (t) = [10 15 -10]a (t)

The coordinate q ^(t) corresponding to the eigenvalue -3 is un-

controllable. The transfer- function of S is
c
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a - w » - -3 v S+3 _
,

-30,

The pole s = -3 is cancelled', hence the coordinate corresponding

to the eigenvalue -3 is uncontrollable and unobservable.

Now, consider the system S , the system S. followed by S ,

shown in Fig. 11.

1

»"

^ ] 2o (

-3 10

P+J>

Bolt) *+
• *•

p+£
2 ^T

p+1

Fig. 11. The system S

The state equations of the system in normal form are

o
o
(t) =

-10
0-3

0-2
iU<t>

r
-30^

-30

3,

J8o<*>

jr (t) = [1 10]n
o
(t)

The coordinate corresponding to the eigenvalue -3 is unobservable.

The transfer- function of S
Q

is

H_ = -3Q(s+3) -30
-o ' TS4d)(S+2) (S+3)" " (S+l)(S+2)

The pole S = -3 is cancelled, hence the coordinate corresponding

to the eigenvalue -3 is uncontrollable and unobservable.
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The above discussion is summed up as:

(a) The subsystems S and S, are both controllable and

strictly observable, and there is no pole cancellation in both

H and H. .—a —

b

(b) The system S is not controllable, the uncontrollable

coordinate corresponds to the eigenvalue -3. The transfer-

function H
c

= H^So have one pole, S = -3, cancelled which corre-

sponds to the uncontrollable coordinate. '

(c) The system S
Q

is not strictly observable. The unobser-

vable coordinate corresponds to the eigenvalue -3. The transfer-

function H
Q

= HJjL has one pole, S = -3, cancelled 'which corre-

sponds to the unobservable coordinate.

(d) The system S is not controllable and strictly observable.

The uncontrollable and unobservable coordinate corresponds to the

eigenvalue -3. This coordinate is uncontrollable (unobservable)

coordinate of S
q
(S

o
) and originates in S. . The transfer- function

K has one pole, S = -3, cancelled which corresponds to the uncon-

trollable and unobservable coordinate, and it is cancelled in both

H,H and H Hv .-b-a -a-o
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SUMMARY

If a system is controllable, then any state can be trans-

ferred to any desired state in some finite interval of time by

some control. If a system is not controllable, then only those

states controllable at initial time t can be transferred to any

state controllable at some t > t, (t ) . For time- invariant sys-
c. — J. O

terns, any initial state can be transferred to any state in any

interval of time by some control if the system is controllable;

if the system is not controllable, then the set of all the con-

trollable states at .any time will be the same and any controlla-

ble state can be transferred to any controllable state in any

interval of time. The set of all the controllable states at t

is the range of V(t »t,(t )). It depends on A(t), 3(t) and t
Q

.

For time-invariant systems, V(t , t-,(t )} depends only on A and 3

and is the same as the range of Z . It is difficult to tesr the

controllability of a linear system if the order of the system is

too large, for it is difficult to calculate the matrix V(t,t-, ( t ))

For a strictly observable system, any initial state at any

time can be detected at the output of the system in a finite in-

terval of time. If a system is partially observable, then only

the component of any initial state belonging to the range of

W(t »t,(t )) can be detected at the output of the system over

some finite interval of time. For time-invariant systems, any

initial state of the system can be detected from the output of the

system over any finite interval of time if the system is strictly

observable; if the system is partially observable, then the range
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of W(t , t, (t )) will be the same for all initial time t and the

component of any initial state belonging to this range can be de-

tected at the output of the system over any interval of time.

For time-variant systems, W(t ,t-,(t )) depends on B(t), C(t) and

t : for time-invariant systems, W(t ,t, (t )) depends only on 1

o — o i. Q —

and C, and it is same as the range of Z . As in the case of- con-

trollability of a linear system,_ it is difficult to test the

observability of a linear system if the order of the system is too

large.

The transfer- function matrix of a linear system may not com-

pletely represent the system. Neglect of the controllability and

observability characteristics of a linear system may result in an

instability which cannot be detected by investigating only the

transfer- function matrix of the system.
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This report mainly compiles some works of Kalman on the

concepts of controllability and observability of linear systems

and the work of Gilbert on the controllability and observability

of composite systems and the transfer-function matrix represen-

tation of linear systems.

It begins with the concept of controllability. Some cri-

teria for the study of the controllability characteristics of

time-variant systems and the controllability characteristics of

time-invariant systems are derived. All the criteria for the

controllability characteristics of time-invariant systems can be

derived from the time-variant case. For time-invariant systems

whose A matrices have distinct eigenvalues, an alternative cri-

terion for controllability is derived from a normal form repre-

sentation.

The next part deals with the concepts of observability.

This part parallels the discussion of the concept of controlla-

bility. Some criteria for the observability characteristics of

time-variant systems and the observability characteristics of

time-invariant systems are derived. All the criteria for the

observability of time-invariant systems can be derived from the

time-variant case. For time-invariant systems whose A matrices

have distinct eigenvalues, an alternative criterion for ob-

servability is derived from a normal form representation.

Finally, the controllability and observability of composite

systems and the transfer-function matrix are discussed. The

transfer-function matrix representation of linear systems is



emphasized. It is shown that the transfer-function matrix of a

linear system represents only that part of the system that is

controllable and strictly observable.


