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Abstract

In this dissertation, goodness-of-fit tests are proposed for checking the adequacy of para-

metric distributional forms of the regression error density functions and the error-prone

predictor density function in measurement error models, when replications of the surrogates

of the latent variables are available.

In the first project, we propose goodness-of-fit tests on the density function of the re-

gression error in the errors-in-variables model. Instead of assuming that the distribution

of the measurement error is known as is done in most relevant literature, we assume that

replications of the surrogates of the latent variables are available. The test statistic is based

upon a weighted integrated squared distance between a nonparametric estimate and a semi-

parametric estimate of the density functions of certain residuals. Under the null hypothesis,

the test statistic is shown to be asymptotically normal. Consistency and local power results

of the proposed test under fixed alternatives and local alternatives are also established. Fi-

nite sample performance of the proposed test is evaluated via simulation studies. A real data

example is also included to demonstrate the application of the proposed test.

In the second project, we propose a class of goodness-of-fit tests for checking the para-

metric distributional forms of the error-prone random variables in the classic additive mea-

surement error models. We also assume that replications of the surrogates of the error-prone

variables are available. The test statistic is based upon a weighted integrated squared dis-

tance between a nonparametric estimator and a semi-parametric estimator of the density

functions of the averaged surrogate data. Under the null hypothesis, the minimum distance

estimator of the distribution parameters and the test statistics are shown to be asymptot-

ically normal. Consistency and local power of the proposed tests under fixed alternatives

and local alternatives are also established. Finite sample performance of the proposed tests

is evaluated via simulation studies.
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Chapter 1

Introduction

The relationship between a random variable Y and a random vector X is often investigated

through a regression model. In the classic regression, both Y and X are assumed to be

observable. However, in many experiments, it is expensive or impossible to observe X.

Instead, one observes some surrogates for predictors. These models are often called errors-

in-variables models or measurement errors models.

Extensive research has been done on the estimation of the underlying parameters in

the measurement errors models. There is also an increase in research activity in recent

years emphasizing the study of lack-of-fit testing of a parametric regression model with

measurement errors in the predictors. Relatively, however, there is little published literature

aiming at checking the appropriateness of the distributional assumption on regression errors

and/or error-prone predictors. The focus of this dissertation is to make an attempt at partly

filling this void.

1.1 The Density Function of the Regression Error

Statistical inferences could be made in regression models without knowing the distributions

of the regression errors, but more efficient procedures can be developed if these distributions

are known. However, misspecified distributional forms can severely undermine the reliability
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or validity of the conclusions. Goodness-of-fit tests for checking the suitability of specified

distributions for the regression errors in the classical regression models have been extensively

studied in the literature. Ranging from simple graphical tools to complicated formal ana-

lytical tests, the existing methods include histograms and density plots of various residuals,

the minimum Hellinger distance test in Beran (1977), and tests based on empirical residual

processes in Koul (2002), Khmaladze and Koul (2004, 2009), among others.

It is often the case that in regression models, the predictor X, possibly multidimensional,

cannot be observed directly due to some uncontrollable reasons. Instead, observations on

some surrogates Z of the variables of interest are available. It is commonly assumed that the

surrogate variables Z are related to the latent variables X in an additive way Z = X + U ,

where U is called the measurement error. How to denoise the measurement error from the

surrogate data Z and correctly modeling the relationship among true variables Y and X,

is the primary objective in measurement error modeling. See the monographs of Fuller

(1987), Cheng and Van Ness (1999), Buonaccorsi (2010) for a comprehensive introduction,

and Carroll et al. (2006) for more advanced research directions on this field. Compared

to the rich statistical explorations on testing the parameters and regression functions in

measurement error models, the goodness-of-fit tests for the random components in these

models are less developed.

To be specific, in Chapter 2 of this dissertation, we consider the following linear regression

model with measurement error.

Y = α + βTX + ε, Z = X + U, (1.1)

where Y is a scalar response, X is a d-dimensional latent variable, and U is a d-dimensional

measurement error vector. X, U , and the regression error ε are assumed to be independent,

and ε has mean 0 and finite variance. Knowing the distributions of the measurement error

or other random components in the measurement error models might help us construct

more efficient estimates. For example, in the simple linear regression model (d = 1) of

Y = α + βX + ε, Z = X + U , if the variance σ2
u of U is known, and there is no further
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distributional assumptions on the latent variable X, the measurement error U , and the

regression error ε other than E(ε|X) = 0, Var(ε) <∞, then the commonly used estimate is

the bias-corrected estimator β̂n = (SZZ−σ2
u)
−1SZY , α̂n = Ȳ − β̂nZ̄, where SZZ is the sample

covariance of Z, SZY is the sample covariance of Z and Y , Ȳ and Z̄ are the sample means

of Y ’s and Z’s, respectively. This estimator is consistent and asymptotically normal even

when the actual distribution of ε is misspecified but without violating the basic assumptions

of expectation being zero and second moment being finite. However, in addition to the

normality assumptions on X,U , if we can further assume the normality on ε, and the ratio

of variances of U and ε to be 1, then simulation studies have shown that the adjusted

maximum likelihood estimator

β̃ = [SY Y − SZZ +
√

(SY Y − SZZ)2 + 4S2
ZY ]/2SZY

has smaller mean squared error than that of the bias-corrected estimator, in particular, when

the sample size is small.

Therefore, by taking the distributional information of the random variables into account,

one can construct more efficient estimators of the underlying parameters in the measurement

error models.

Throughout this dissertation, for any generic random variable or vector V , its density

function will be denoted as fV (·). In Chapter 2, we will focus on the goodness-of-fit tests for

the following hypothesis on the density function of ε.

H0 : fε(x) = fε(x, θ), θ ∈ Θ, x ∈ Rd v.s. H1 : H0 is not true. (1.2)

Rewrite the model (1.1) as

Y = α + βTZ + ξ, ξ = ε− βTU. (1.3)

Then fξ(v) =
∫
fε(v+βTu)fU(u)du. As argued in Koul and Song (2012), when fU is assumed
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to be known, the density functions of ε and ξ are uniquely determined by each other. As a

result, testing for H0 in (1.2) is equivalent to testing for

H0 : fξ(v) = fξ(v, θ), θ ∈ Θ, v ∈ Rd v.s. H1 : H0 is not true, (1.4)

where fξ(v, θ) =
∫
fε(v + βTu, θ)fU(u)du. Under the assumption that the density function

of U is known, Koul and Song (2012) proposed a class of tests for the testing (1.4) based

on kernel density estimators of fξ obtained from the residuals Yi − α̂n − β̂TnZi, where α̂n, β̂n

are some n1/2-consistent estimators of α, β under H0 based on a sample (Zi, Yi), 1 ≤ i ≤ n,

from model (1.1). According to Holzmann et al. (2007), the test developed in Koul and

Song (2012) can be labeled as a direct test, due to the fact that the test is about hypothesis

on the distribution of ξ rather than ε. Recently, Koul et al. (2017) developed an indirect

test based on the deconvolution estimate of the density function of ε. Simulation studies

show that when the variance of measurement error is small, the direct test performs better

than the indirect test based on the comparison with respect to their finite sample powers,

but the trend reverses when the variance of the measurement error becomes larger. See

Holzmann et al. (2007) and Laurent et al. (2011) for more discussion on the direct and

indirect procedures.

For the sake of model identifiability, the variance or the density function of U is often

assumed to be known in the measurement error literature. This assumption plays a critical

role in the tests developed in Koul and Song (2012), Koul et al. (2017). However, in real

applications, the distribution of U is rarely known. To our best knowledge, no test has yet

been proposed for checking the hypothesis in (1.2) or (1.4) when fU is unknown, up to now.

In Chapter 2 of this dissertation, we will try to fill out this void by assuming replications

can be made on X. Under some regularity assumptions on fU , the replications make it

possible to construct a nonparametric estimate of fŪ , the density function of the average

of the measurement errors in each replicated observations, which in turn can be used for

constructing the test. In fact, the research on estimation problems in measurement error

models using replication is abundant, see Blas et al. (2013), Dalen et al. (2009), Delaigle
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et al. (2008), Gimenez and Patat (2005), Huwang (1995), Lin and Cao (2013), and Xiao

et al. (2010) and the references therein.

1.2 The Density Function of the Latent Variable

In the second part of this dissertation, we go on to consider the classical measurement error

model. Depending on the assumption about X, measurement error models can be generally

classified into two separate types (see Carroll et al. (2006)): functional model, where the X’s

are viewed as fixed unknown constants, and structural model, where the X’s are regarded as

random variables. Much recent emphasis has been on structural models and methods (see

Huwang (1995), Huang et al. (2006), Thompson and Carter (2007), Lin and Cao (2013)),

in that by making no assumptions about the distribution of X, likelihood functions for the

functional models are either not available or can only be calculated via complex methods

generally with low efficiency. Inference based on structural modelling is generally simpler

than that in functional modelling.

When the distribution of X can be well identified, one can always construct better esti-

mates. A convincing example is given by the famous Tweedie formula. Suppose the latent

variable X follows a normal distribution, X and U are independent, even if the density func-

tion of U is unknown, Tweedie formula states that E(X|Z = z) = z+σ2
Up
′(z)/p(z), where p

denotes the density function of Z. Therefore, E(U |Z = z) = −σ2
Up
′(z)/p(z). This amazing

result can be directly used for constructing more efficient estimation and testing procedures

via the regression calibration technique.

Concerns inevitably arises, in a structural modelling approach, that the estimates and

inferences will depend upon the distribution of the X assumed. Misspecification of the

distribution for X can result in inconsistent estimators. Many parametric or nonparametric

methods are employed to identify the distribution of the latent variable X or dampen the

effect of misspecification, see, for example, deconvolution-type methods, both parametric and

nonparametric in Section 12.1 of Carroll et al. (2006), nonparametric modelling method in

Schafer (2001), flexible parametric modelling method in Carroll et al. (1999), or Richardson
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et al. (2002), and latent-model robustness in Huang et al. (2006). Parametric structural

modelling is generally much more favorable in practice because of its simplicity, potential

efficiency, as well as in terms of drawing inferences, accuracy, power, etc.

In Chapter 3, we are interested in developing a goodness-of-fit test for the density func-

tion X in the framework of Holzmann et al. (2007), in which the density function of U

is assumed to be known. The test in Holzmann et al. (2007) is based on the L2-distance

between a deconvolution density estimator of X and its expected values under the null hy-

pothesis. Three drawbacks can be easily identified in Holzmann et al. (2007)’s procedure:

(1) the measurement error is restricted to the cases of ordinary smooth, that is, the charac-

teristic function of the measurement error decays to 0 in the tail at the algebraic rate. This

excludes some important measurement errors, such as the normal error; (2) The theoretical

development of the test statistic is rather complicated due the complexity of deconvolution

technique; (3) The null hypothesis is simple. Although the theory might be able to be ex-

tended to composite cases, its derivation is not provided. We shall develop a test procedure

by dropping the assumption of the density function of U being known, also the test applies

to both ordinary and super smooth measurement errors. The test will be based on the

ordinary kernel density estimator of the averaged surrogate observations, thus avoiding the

cumbersome deconvolution arguments.

The hypothesis of the goodness-of-fit tests on the density function of X considered in the

second project is defined as follows.

H0 : fX(x) = fX(x, θ), θ ∈ Θ, x ∈ Rd v.s. H1 : H0 is not true. (1.5)

The tests are based on certain minimized L2 distances between a nonparametric density

function of Z and the convolution of fX(x, θ) and a nonparametric density function of U .

This test is labeled as a direct test from Holzmann et al. (2007). The goodness-of-fit testing

problem on the density function of X has been also studied by several authors from direct

or indirect perspective. For indirect testing, we mention Holzmann and Boysen (2006) for a

study of the asymptotic distribution of the integrated square error of a deconvolution kernel
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density estimator when the error term distribution is assumed to be supersmooth and known.

When the density of the measurement error is assumed to be known, Loubes and Marteau

(2014) compared the inverse problem procedure (i.e. indirect testing procedure) and direct

procedure on a goodness-of-fit test of whether the density of the latent variable is equal to

a benchmark density function.

1.3 Measurement Error Models with Replication

The measurement model (1.1) has the non-identifiable issue, as showed in Reiersol and

Koopmans (1950), when normality of X is assumed, unless further information about the

parameters can be found. The assumptions of variance of the regression error σ2
ε or variance of

measurement error σ2
U being known are commonly used in the measurement error literature.

However, the non-identifiability problem will not appear in the replicated measurement error

model, since the error variances can be estimated through the replicated data.

The research on estimation problems in measurement error models using replication is

abundant. We mention, for instance, White et al. (2001) for developing the regression cali-

bration approach for problems with a replication study where the covariates comprise both

continuously distributed and binary variables and the outcome is continuous. Devanarayan

and Stefanski (2002) presented a variation of the simex algorithm, which can accommodate

heteroscedastic measurement error, when the measurement error variances are unknown but

replicate measurements are available. To fit the replicated measurement error data with

more robust model, Lin and Cao (2013) assumed the replicated observations jointly follow

scale mixtures of normal distribution, and based on this assumption, the maximum likeli-

hood estimates are computed via an EM type algorithm method. Research on estimating

the density of X with replicate data available can also be found in the literature, we mention

Dalen et al. (2009) for estimating the true exposure densities in the model for a dichotomous

outcome variable Y .

To our best knowledge, no test has been proposed for checking the appropriateness of

distributional assumption on the regression error ε or the error-prone predictor X, using
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replication data. A class of goodness-of-fit tests are proposed to check the appropriateness

of a specified family of density of the regression error ε or the latent variable X. We assume

in this dissertation that for each Xi, i = 1, 2, · · · , n, we have two replications on Z having

the additive relation

Zi1 = Xi + Ui1, Zi2 = Xi + Ui2,

where U are independent and identically distributed. Moreover, we assume the density

function of the measurement error U is symmetric about 0, which plays a crucial role in our

tests construction.

8



Chapter 2

Goodness-of-Fit Tests on the Density

Function of the Regression Error

We start with a brief introduction to Koul and Song (2012)’s direct testing procedure. Denote

the true parameters of α, β, θ as α0, β0, θ0, respectively. Under H0, the density function of

ξ = ε − βT0 U has the form of fξ(u; β0, θ0) :=
∫
fε(u + βT0 v, θ0)fU(v)dv. Let K be a kernel

density function and bn be a sequence of bandwidths, which are positive numbers tending to

0 as the sample size n→∞. A kernel density estimator of fξ(·) can be defined as

f̂ξn(v; α̂n, β̂n) =
1

n

n∑
i=1

Kbn(v − ξ̂i), (2.1)

where ξ̂i = Yi − α̂n − β̂TnZi, i = 1, 2, . . . , n, α̂n and β̂n are any
√
n-consistent estimates of α0

and β0, respectively, and Kbn(·) := b−1
n K(·/bn). Denote fξbn(v; β0, θ0) = E0f̂ξn(v;α0, β0) =∫

Kbn(v− u)fξ(u; β0, θ0)du, where f̂ξn(v;α0, β0) is the same as f̂ξn(v; α̂n, β̂n) with α̂n and β̂n

being replaced by α0 and β0. The test proposed in Koul and Song (2012) is based upon the

statistic

Tn(α̂n, β̂n, θ̂n) =

∫
[f̂ξn(v; α̂n, β̂n)− fξbn(v; β̂n, θ̂n)]2dΠ(v), (2.2)

where Π is a weight function supported on a compact subset of R. To see the rationality

of using Tn to construct the test, note that T 0
n =

∫
[f̂ξn(v;α0, β0) − fξbn(v; β0, θ0)]2dΠ(v) is
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a weighted integration of the L2-distance between f̂ξn(v;α0, β0) and its expectation under

the null hypothesis, and Tn is an analogue of T 0
n with α0, β0, θ0 replaced by

√
n-consistent

estimates α̂n, β̂n and θ̂n. One might be thinking about using other distances, such as L∞

or Lp to measure the discrepancy between f̂ξn(v;α0, β0) and its expectation under the null

hypothesis, however, the theoretical derivation of the corresponding asymptotic distributions

will be much more complicated than using L2-distance.

However, often times the density function fU is unknown in real application, which ren-

ders the test procedure of Koul and Song (2012) not applicable in many cases. In the

following, we shall assume that replications can be made at each X-value, and the associ-

ated measurement errors U are independent and identically distributed. Moreover, we shall

assume that U is symmetric about 0 which plays a critical role in our test construction.

This chapter is organized as follows. The test statistic incorporating the replications is

constructed in Section 2.1; Technical assumptions and the asymptotic distribution of the test

statistic under the null hypothesis will be stated in Section 2.2; Consistency of the test under

fixed alternatives, and the power of the test under some local alternatives will be discussed

in Section 2.3; Finally, the finite sample performance of the proposed test will be examined

through some simulation studies in Section 2.4, together with an application of the proposed

test on the Framingham data set. The proofs of all theoretical results are postponed to

Section 2.5.

In the sequel, all the integrations are denoted by a single integration sign, single or

multiple integration can be understood from the context. Integration limits are understood

from −∞ to ∞ unless specified otherwise. For a vector a, ‖a‖ denotes its L2 norm, and for

a matrix A, ‖A‖ denotes its Frobenius norm, or ‖A‖ =
√

tr(ATA).

2.1 Test Statistics

Suppose for each Xi, i = 1, 2, . . . , n, we have two replications of Z from

Zi1 = Xi + Ui1, Zi2 = Xi + Ui2. (2.3)
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For two generic random variables Vi1 and Vi2, we use V̄i to denote their average, and Ṽi to

denote (Vi1 − Vi2)/2. Then from (2.3),

Z̄i = Xi + Ūi, Z̃i = Ũi.

Because of the independent and identical structure and symmetry, Ũi, Ūi have the same

distribution. Instead of considering model (1.1), we can consider the following linear errors-

in-variables regression model:

Yi = α + βTXi + εi, Z̄i = Xi + Ūi.

Following the idea in Koul and Song (2012) we can define the same entities treating Z̄i

as Zi, Ūi as Ui in (2.1), (2.2). Since Ūi and Ũi have the same distribution, so estimating the

density function of Ūi can be realized by estimating the density function of Ũi, which in turn

can be estimated through observations on Z̃i. To be specific, let L be a d-dimensional kernel

function on Rd, and wn be another sequence of bandwidths. In the sequel, we write b for bn,

w for wn for the sake of simplicity. Define

f̂Ūn(u) =
1

n

n∑
i=1

Lw(u− Z̃i), Lw(u) =
1

wd
L
( u
w

)
,

and redefine ξ̂i = Yi − α̂n − β̂Tn Z̄i,

f̃ξn(u; β̂n, θ̂n) =

∫
fε(u+ β̂Tn t, θ̂n)f̂Ūn(t)dt,

f̃ξb(v; β̂n, θ̂n) =

∫
Kb(v − u)f̃ξn(u; β̂n, θ̂n)du.

Then the proposed test in this dissertation is based upon

Tn(α̂n, β̂n, θ̂n) =

∫
[f̂ξn(v; α̂n, β̂n)− f̃ξb(v; β̂n, θ̂n)]2dΠ(v). (2.4)
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Remark 2.1: As suggested in Koul and Song (2012), one can estimate θ0 using the minimum

distance (MD) method. That is, for any preliminary estimators α̂n, β̂n of α0 and β0, we

estimate θ0 using

θ̂n = argmin
θ∈Θ

Tn(α̂n, β̂n, θ). (2.5)

The
√
n-consistency and the asymptotic normality of θ̂n can be derived using the similar

arguments in Koul and Ni (2004) and Koul and Song (2010).

Meanwhile, the preliminary estimates of α0 and β0 can be chosen as the well-known bias-

corrected estimate. If no replication on Z is available, and the covariance matrix ΣU of U

is known, then the bias-corrected estimates of α0 and β0 are given by α̂n = Ȳ − Z̄T β̂n and

β̂n = (SZZ − ΣU)−1SZY , where SZZ and SZY denote the sample covariance matrices of Z,

and of Z and Y , respectively. In our current setup, ΣU is unknown, but it can be estimated

by the data from Z̃i’s. Therefore, modified bias-corrected estimates of α0, β0 can be obtained

by replacing ΣU by the sample covariance matrix of Z̃i’s, SZZ and SZY by SZ̄Z̄ and SZ̄Y .

One can show that such α̂n, β̂n are still
√
n-consistent and asymptotically normal, even if

the regression error distribution is misspecified.

Remark 2.2: In the above development, we assume that the measurement error U1 and

U2 are identically distributed and symmetric. If the question of interest is to estimate

the distribution of X or U , then the assumption of identical distribution is not necessary.

Indeed, based on Kotlarski’s argument, see Rao (1992), the distributions of X and U can

be uniquely determined by the joint distribution of the replicated observations on X, given

that the characteristic functions of X and U are non-vanishing. However, if such estimators

are used in the proposed test statistic, then the asymptotic distribution of the resulting test

statistic might be hard to derive. For example, if Li and Vuong (1998)’s estimator is used,

how the parameter in the truncation limit will affect the convergence rate of the statistic

Tn, formula (2.4), is not clear. On the other hand, the estimators proposed in Li and Vuong

(1998) only deal with the case of univariate X and U , it is not clear what the large sample

properties look like in our current multidimensional case. The assumption of symmetry plays

an important role in our current setup. The significance of the symmetry lies in the fact that
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U1+U2 and U1−U2 will have the same distribution, and Z1−Z2 = U1−U2 simply tells us that

the distribution of U1 +U2 can be estimated using Z1−Z2, and without using characteristic

functions, or deconvolution related techniques. That said, to develop a more general test

without these strong assumptions deserves further study and will be future research.

2.2 Asymptotic Null Distributions

To define a proper test statistic from Tn in (2.4), we have to investigate the asymptotic

distribution of Tn under H0. The following is a list of technical assumptions needed to derive

such a result. Throughout, for any generic smooth function γ(x; η), γ̇η(·) and γ̈η(·) denote

the first order and the second order derivative of γ with respect to the parameter η, while

γ′(x; η) and γ′′(x; η) denote the first order and the second order derivative of γ with respect

to x, and x can be a d-dimensional vector.

The assumptions related to fε are

(f1). The density function fε and its second order derivative f̈ε(t) are continuous and

bounded,
∫
|f̈ε(t)|dt <∞.

(f2). For any
√
n-consistent estimates β̂n, θ̂n of β0, θ0, respectively,

sup
u,t
|fε(u+β̂Tn t, θ̂n)−fε(u+βT0 t, θ0)−(β̂n−β0)T ḟεβ(u+βT0 t, θ0)−(θ̂n−θ0)T ḟεθ(u+βT0 t, θ0)|

is of the order Op(n
−1).

(f3). For all v, β, θ, ḟεβ(v + βT t, θ), ḟεθ(v + βT t, θ) are Lipschitz continuous in v. That

is, there exists a B(v + βT t, θ), a continuous function of v, such that

‖ḟεβ(v + bx+ βT t, θ)− ḟεβ(v + βT t, θ)‖+ ‖ḟεθ(v + bx+ βT t, θ)− ḟεθ(v + βT t, θ)‖

≤b|x|B(v + βT t, θ),
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where ḟεβ(v + βT t, θ), ḟεθ(v + βT t, θ) and B(v + βT , θ) are integrable and square inte-

grable with respect to t.

The assumption on the weighting function Π is

(w). The weighting function Π has a compact support C in R, and its derivative π(·)

is twice continuously differentiable.

For the measurement error U and the density function of Ū , we assume that

(g1). The measurement error U is symmetric about 0.

(g2). The density function fŪ of Ū is twice continuously differentiable, supt ‖f ′′Ū(t)‖ <

∞, and
∫
‖f ′′

Ū
(t)‖dt <∞.

(g3).
∫ √

fŪ(t)dt <∞, and there exists a positive constant ε0 > 0, such that

sup
θ∈[0,1],w∈[0,ε0)

∫ ∥∥∥∥∫ L(v)vTf ′′Ū(t+ θvw)vdv

∥∥∥∥ 1
2

dt <∞.

Condition (g3) is needed for deriving an upper bound for the integrated mean squared

error of f̂Ūn. It can be replaced by the boundedness of ḟεβ(v + βT t, θ), ḟεθ(v + βT t, θ).

For the sake of simplicity, we shall use the product kernel, with identical component, to

estimate the density function of Ū . We assume that

(kl). K and L are univariate and bounded d-dimensional product kernel density func-

tions, respectively, such that
∫
R vK(v)dv = 0,

∫
Rd vL(v)dv = 0, and

∫
R v

2K(v)dv 6= 0,∫
Rd vv

TL(v)dv = µ2(L)Id×d for some positive constant µ2(L).

Here we abuse the notation µ2(L) a little bit and it is simply a positive constant. The

conditions on K are much weaker than the corresponding conditions adopted in Koul and

Song (2012).

About the bandwidths b and w, we assume that

(b1). nb→∞, nb1/2w4 → 0 as n→∞.
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(b2). nwd →∞.

The bandwidth assumptions nb→∞ and nwd →∞ are commonly used in the univariate

and multivariate kernel smoothing estimation procedures. The condition nb1/2w4 → 0 is

required to dampen the effect of estimating fŪ by the d-dimensional kernel density estimate

f̂Ūn. However, nb → ∞ and nwd → ∞ imply nb1/2wd/2 → ∞, combining this with the

assumption nb1/2w4 → 0, we must have d < 8. Therefore, one limitation of the proposed test

is that the linear regression model under consideration cannot have more than 8 predictors.

In fact, there are two kernel smoothing procedures involved in the construction of test

statistic. The kernel density estimator of fξ is a univariate smoothing, and the kernel density

estimator of fŪ is a d-dimensional multivariate smoothing. It is well known that the larger

the dimension, the more difficult to estimate the density function. The two bandwidth

sequences must be selected carefully to make sure the test statistic to have a manageable

asymptotic distribution. The limitation of d < 8 for the proposed test procedure is another

evidence of the unpleasant effect of the curse of dimensionality.

To state our main results, the following notations are needed.

Ĉn =
1

n2

n∑
i=1

∫
K2
b (v − ξ̂i)dΠ(v), Γ̂n = 2

∫
f̂ 2
ξn(x; α̂n, β̂n)π2(x)dx

∫
(K∗(u))2du,

Γ =2

∫
f 2
ξ (v; β0, θ0)π2(v)dv

∫
(K∗(u))2du, K∗(u) :=

∫
K(v)K(u+ v)dv, (2.6)

Cn =
1

n2

n∑
i=1

∫
[Kb(v − ξi)− EKb(v − ξ1)]2dΠ(v)

Theorem 2.2.1. Suppose conditions (f1)-(f3), (w), (g1)-(g3), (b1)-(b2) hold. Then under

H0, Tn := nb1/2Γ̂
−1/2
n (Tn(α̂n, β̂n, θ̂n) − Ĉn) converges to the standard normal in distribution

and denoted as Tn ⇒ N(0, 1).

Comparing with Koul and Song (2012)’s result, one can see that replacing the density

function of U with a kernel density estimate does not slow down the convergence rate of

Tn(α̂n, β̂n, θ̂n) − Ĉn. From the proof we can see that this is a consequence of requiring

nb1/2w4 → 0. Otherwise, the bias caused by replacing fŪ by its kernel density estimator f̂Ūn
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would make the test statistic Tn not tight.

According to Theorem 2.2.1, at the significance level α, the null hypothesis will be rejected

whenever |Tn| > z1−α/2, where z1−α is the upper (1 − α)100-th percentile of the standard

normal distribution.

To conclude this section, we would like to point out that when applying any tests based on

smoothing techniques, bandwidth selection is always a vexing issue. Assumptions (b1) and

(b2) are only meaningful when the sample size is sufficiently large, which is seldom true in real

applications. In general, two approaches could possibly used to select the bandwidth when

implementing such tests. The first one is the naive method, simply using an estimation-based

optimal bandwidth, such as a cross-validation bandwidth; The second one is to consider a

set of suitable values for the bandwidth and check how sensitive the test is. Some formal

discussion on this issue can be found in Gao and Gijbels (2008), and they suggest to select the

bandwidth based on the consideration of size and power functions of the tests. However, such

development in our current setup is very challenging and we shall investigate this possibility

in a future study.

2.3 Consistency and Local Power

A desirable and also a basic requirement for any reasonable test is consistency. That is, the

power of the test at any fixed alternative hypothesis should approach 1 when the sample size

goes to infinity. To be specific, the alternative hypothesis we are testing is

Ha : fε(x) = fεa(x), fεa(x) 6= fε(x; θ) for any θ, and x a.e.(λ),

where λ denotes the Lebesgue measure.

To show that the proposed test is consistent, we have to assume that under the fixed

alternative, θ̂n → θa, β̂n → βa, α̂n → αa for some θa, βa and αa. This assumption is by

no means a strict one, many estimation procedures can generate such estimates. In fact, as

we mentioned in the previous section, the bias-corrected estimate α̂n and β̂n are consistent
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and asymptotically normal even the density function of the regression error is misspecified.

Using the bias-corrected estimates, one can show that the minimum distance estimate θ̂n

defined in (2.5) converges to some constant θa and is asymptotically normal. The theoretical

justification for this consistency and asymptotic normality is similar to the classic regression

setup. See Jennrich (1969) and White (1981, 1982) for more details. In the following, we

simply assume without justifying rigorously that

(c1). Under the alternative Ha, for some αa, βa and θa,

√
n(α̂n − αa) = Op(1),

√
n(β̂n − βa) = Op(1),

√
n(θ̂n − θa) = Op(1).

Define

fξa(v; β) =

∫
fεa(v + βT t)fŪ(t)dt.

We further assume that

(c2).
∫

[fξa(v; βa)− fξ(v; βa, θa)]
2dΠ(v) > 0.

Note that if the bias-corrected estimates are used in the test statistic, then βa = β0.

The following theorem states that the proposed test is consistent.

Theorem 2.3.1. In addition to the conditions (f1),(f3), (w), (g1)-(g3), (b1)-(b2), (c1), (c2),

we further assume that (f2) holds for βa and θa. Then under Ha, |Tn| → ∞ in probability,

as n→∞.

Next, we shall show that the proposed test possesses nontrivial power for certain local

alternatives which converges to the null hypothesis at the rate of 1/
√
nb1/2. For this purpose,

let ϕ be a known continuous density on R with mean 0 and positive variance σ2
ϕ, and we

consider the following local alternative hypothesis

Hloc : fε(x) = (1− δn)fε(x, θ0) + δnϕ(x)
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with δn = 1/
√
nb1/2. Similar to the fixed alternative case, to show the local power result,

we have to assume that the preselected estimate α̂n, β̂n and θ̂n are
√
n-consistent. The

legitimacy of this assumption is guaranteed by many well-documented arguments in the

literature, such as Koul and Song (2010), hence omitted here for the sake of brevity.

Theorem 2.3.2. Assume all the conditions in Theorem 2.2.1 hold. If the density function

ϕ(·) is twice continuously differentiable and the second derivative is bounded, then under

Hloc,

Tn =⇒ N(µT , 1)

as n→∞, where µT = Γ−
1
2

∫ [∫
[fε(v + βT0 t, θ0)− ϕ(v + βT0 t)]fŪ(t)dt

]2
dΠ(v).

Similar to the discussion in Koul and Song (2012), the optimal weight function Π which

maximizes the asymptotic local power of the proposed test is the one to maximize the mean

of the asymptotic normal distribution, or

Ψ(π) := Γ−
1
2

∫ [∫
[fε(v + βT0 t, θ0)− ϕ(v + βT0 t)]fŪ(t)dt

]2

π(v)dv.

By the Cauchy-Schwarz inequality, and recalling the definition of Γ in (2.6), we have

Ψ(π) ≤ 1

(2
∫
K2
∗(v)dv)1/2

·

(∫ [∫
[fε(v + βT0 t, θ0)− ϕ(v + βT0 t)]fŪ(t)dt

]4
f 2
ξ (v; θ0, β0)

dv

)1/2

with equality if, and only if,

π(v) ∝
[∫

[fε(v + βT0 t, θ0)− ϕ(v + βT0 t)]fŪ(t)dt

]2/
f 2
ξ (v; β0, θ0)

for all v. Since the functional Ψ is scale-invariant, that is Ψ(aπ) = Ψ(π) for all positive

constant a > 0, we may simply take the optimal π(·) to be

π(v) =

(∫
[fε(v + βT0 u, θ0)− ϕ(v + βT0 u)]fŪ(u)du∫

fε(v + βT0 u, θ0)fŪ(u)du

)2

.
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Clearly the optimal weight π(·) is practically useless because β0, θ0, and the density function

fŪ are unknown. Estimators of these unknown parameters and function should be found in

order to use the optimal weight in practice.

2.4 Simulation Studies and Application

To evaluate the finite sample performance of the proposed test, we conducted some numerical

simulations in this section, together with an illustrative application of the proposed test on

the Framingham data set.

2.4.1 Simulation Study

The simulated data are generated from the simple linear regression model Y = α+ βX + ε.

The null hypothesis H0 we want to test is ε ∼ N(0, σ2
ε), so the unknown parameter θ in the

distribution of ε is σ2
ε . The latent variable X follows N(0, 1), and U ∼ N(0, σ2

U). The true

values of both α and β are chosen to be 1, σ2
ε is chosen to be 0.52, and σ2

U to be 0.52 and

0.82. At each X-value, double measurements on Z are obtained. In the simulation study,

the sample size n is chosen to be 200 and 500 and 800.

To evaluate the power of the proposed test, nine non-normal distributions will be used

to serve as the alternative hypotheses.

• Double exponential distribution with mean 0 and variance 1 (DE(0,1));

• Cauchy distribution with location parameter 0 and scale parameter 1;

• Logistic distribution with location parameter 0 and scale parameter 1;

• t-distribution with degrees of freedom 3, 5 and 10;

• Two-component normal mixture models 0.5N(c, σ2
ε) + 0.5N(−c, σ2

ε) with c = 0.5, 0.75

and 1.
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The above chosen alternative distributions deviate from the normal distributions from

different directions, some have heavier tails, such as the double exponential, Cauchy and t

distributions with small degrees of freedom (3, or 5); some have more than one modes, like

the two-component normal mixture distributions. Logistic distribution and t-distribution

with degrees of freedom 10 are closer to normal. For the sake of brevity, the two-component

normal mixture models 0.5N(c, σ2
ε) + 0.5N(−c, σ2

ε) will be denoted by 0.5N(±c, σ2
ε).

In the simulation, the weighting function Π is taken as a uniform distribution on the closed

interval [−6, 6] so that computationally the integration over this interval is nearly same as the

integration over the whole real line. The kernel functions K and L are chosen to be standard

normal density function, and the bandwidths are chosen to be b = n−1/5, w = n−1/4 based on

the assumptions (b1) and (b2). For each scenario, we repeat the test procedure 500 times,

and the empirical level and power are calculated from #{|Tn| ≥ z1−α/2}/500. Here, α̂n, β̂n

are chosen to be the bias-corrected estimates, θ̂n = σ̂2
ε = Ŝ2

ξ − β̂2
nσ̂

2
Ũ

, with Ŝ2
ξ is the sample

variance of ξ̂i = Yi − α̂n − β̂nZ̄i, where Z̄i = (Zi1 + Zi2)/2, and σ̂2
Ũ

is the sample variance of

Ũi = Z̃i = (Zi1 − Zi2)/2, i = 1, 2, · · · , n. In the simulation, the significance level α is 0.05.

Table 2.1: Simulation results of the proposed test

σ2
U = 0.52 σ2

U = 0.82

n = 200 n = 500 n = 800 n = 200 n = 500 n = 800
N(0, σ2

ε) 0.000 0.002 0.002 0.002 0.002 0.004
Logistic(0,1) 0.090 0.200 0.364 0.030 0.128 0.280
Cauchy(0,1) 0.974 0.996 1.000 0.992 0.990 0.990

DE(0,1) 0.640 0.994 1.000 0.354 0.892 0.998
t(3) 0.762 0.998 1.000 0.662 0.972 1.000
t(5) 0.236 0.634 0.884 0.096 0.390 0.678
t(10) 0.022 0.048 0.108 0.016 0.034 0.044

0.5N(±0.5, σ2
ε) 0.000 0.004 0.012 0.002 0.004 0.004

0.5N(±0.75, σ2
ε) 0.098 0.744 0.988 0.012 0.150 0.340

0.5N(±1, σ2
ε) 0.930 1.000 1.000 0.396 0.952 0.998

The simulation results in Table 2.1 show that proposed test is more conservative, even

for large sample sizes as n = 800, as evidenced by the small empirical levels and the small

powers against the close-to-normal distributions such as the Logistic, t(10) and the two-
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component normal mixtures with means ±0.5. However, for other non-normal distributions,

the empirical powers are greatly improved as n gets bigger. It is well known that tests

based on smoothing techniques are generally conservative, see Koul and Song (2012) and the

references therein for more discussion on this phenomenon. To alleviate the conservativeness,

one may resort to some possible resampling techniques. As a preliminary attempt, we have

designed the following bootstrap procedure to implement the proposed test in which the

same kernel functions and bandwidths are used.

A Bootstrap Test

1. Calculate α̂n, β̂n, σ̂
2
ε based on the full data set (Yi, Zi1, Zi2), i = 1, 2, . . . , n;

2. Calculate Z̃i = (Zi1 − Zi2)/2 and Z̄i = (Zi1 + Zi2)/2, i = 1, 2, . . . , n;

3. Generate a parametric bootstrap sample from N(0, σ̂2
ε), denoted by ε∗i , i = 1, 2, . . . , n;

4. Draw a sample of size n with replacement from Z̃i and denote them as Z̃∗i , i =

1, 2, . . . , n;

5. Draw a samples Ū∗i , i = 1, 2, . . . , n from the kernel density f̂Ū with normal kernel in

which the mean is Z̃∗i , and the standard deviation is the bandwidth w;

6. Compute Y ∗i = α̂n + β̂nZ̄i + ε∗i − β̂nŪ∗i ;

7. Use the bootstrap sample (Y ∗i , Zi1, Zi2) to calculate T ∗n = nb1/2(Γ̂
−1/2
n (Tn(α̂, β̂n, θ̂n) −

Ĉn)), and Γ̂n, Tn(α̂, β̂n, θ̂n) and Ĉn are all calculated using (Y ∗i , Zi1, Zi2);

8. Repeat (3)–(7) B times to obtain B T ∗n -values, denoted as T ∗n,j, j = 1, 2, . . . , B. Then

sort these T ∗n -values in ascending order and find T ∗n[0.025n], T ∗n[0.975n], the 2.5-th and 97.5-

th percentiles of T ∗n,j, j = 1, 2, . . . , B.

9. Reject the null hypothesis whenever Tn ≤ T ∗n[0.025n] or Tn ≥ T ∗n[0.975n], where Tn is

obtained from the original data; otherwise, accept the null hypothesis.
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The simulation results based on the above Bootstrap algorithm for n = 100, 200 are shown in

Table 2.2. Clearly, the conservativeness of the proposed test is alleviated using the Bootstrap

procedure, and the powers are improved significantly as well.

Table 2.2: Simulation results based on bootstrap

σ2
U = 0.52 σ2

U = 0.82 σ2
U = 1

n = 100 n = 200 n = 100 n = 200 n = 100 n = 200
N(0, σ2

ε) 0.010 0.012 0.018 0.050 0.016 0.044
Logistic(0,1) 0.084 0.174 0.074 0.102 0.064 0.102
Cauchy(0,1) 0.972 0.990 0.980 0.988 0.960 0.988

DE(0,1) 0.542 0.882 0.318 0.620 0.168 0.434
t(3) 0.634 0.906 0.528 0.810 0.386 0.678
t(5) 0.238 0.460 0.142 0.256 0.114 0.182
t(10) 0.098 0.102 0.044 0.086 0.054 0.048

0.5N(±0.5, σ2
ε) 0.016 0.040 0.038 0.044 0.026 0.050

0.5N(±0.75, σ2
ε) 0.120 0.426 0.058 0.116 0.044 0.074

0.5N(±1, σ2
ε) 0.774 0.988 0.294 0.658 0.166 0.354

2.4.2 A Real Data Example: Farminham Heart Study

In this subsection, we apply the proposed test procedure to a data set in the Framinham

Heart Study. The data set includes 1615 observations from men aged between 31 and 65 years

old in several health exams taken two years apart. The variables we are interested in the

study include the CHD (the indicator of the first evidence of coronary heart disease within

an 8-year period following the second exam), the age at Exam 2, systolic blood pressures

(SBP) at Exam 2 and Exam 3, smoking status, and serum cholesterol levels (SCL) at Exam

2 and Exam 3. For each individual, SBP are measured twice by independent examiners at

each exam. To check the consistency of the blood pressure measurements between the two

exams, we fit a simple linear regression model with the average of log(SBP-50) from Exam 3

being the response variable, and the log(SBP-50) from Exam 2 being the predictor. This log

transformation of the SBP is also used in Eckert et al. (1997). Since the true SBP cannot be

obtained directly, we treat the two measurements in the Exam 2 as replicates. The statistical

hypothesis is to see if the regression error follows a normal distribution with mean 0.
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To apply our proposed test, the kernel functions K and L are chosen to be standard

normal density function, and the bandwidths b and w are chosen to be n−1/5 and n−1/4,

respectively, where n = 1615 is the sample size. Calculation shows that |Tn| = 11.0395 which

far exceeds the 95-th percentile 1.96 of standard normal. So the normality of regression error

is rejected.

2.5 Proofs

This section contains all the proofs of the main theorems stated in Section 2.2 and 2.3. Since

the main idea of the proofs are similar to those in Koul and Song (2012), only differences

are presented here for the sake of brevity. In particular, we will focus the discussion on the

statistic Tn(α̂n, β̂n, θ̂n), which will be decomposed into two parts, one part can be dealt with

directly using Koul and Song (2012)’s argument, and another part involving all terms related

to the kernel density estimator f̂Ūn has to be investigated separately. The discussions on

the normalizing constants Ĉn and Γ̂n are similar to Koul and Song (2012)’s argument, hence

omitted for the sake of brevity.

The proof of Theorem 2.2.1: Note that

f̃ξb(v; β̂n, θ̂n) = fξb(v; β̂n, θ̂n) +

∫∫
Kb(v − u)fε(u+ β̂Tn t, θ̂n)(f̂Ūn(t)− fŪ(t))dudt

:= fξb(v; β̂n, θ̂n) +Rbw(v; β̂n, θ̂n),

then the statistics in (2.4) can be written as

Tn(α̂n, β̂n, θ̂n) =

∫
[f̂ξn(v; α̂n, β̂n)− fξb(v; β̂n, θ̂n)−Rbw(v; β̂n, θ̂n)]2dΠ(v)

=

∫
[f̂ξn(v; α̂n, β̂n)− fξb(v; β̂n, θ̂n)]2dΠ(v) +

∫
[Rbw(v; β̂n, θ̂n)]2dΠ(v)

− 2

∫
[f̂ξn(v; α̂n, β̂n)− fξb(v; β̂n, θ̂n)]Rbw(v; β̂n, θ̂n)dΠ(v). (2.7)

To proceed, we consider the term Rbw first. Adding and subtracting fε(u + βT0 t, θ0) from
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fε(u + β̂Tn t, θ̂n), Ef̂Ūn(t) from f̂Ūn(t), Rbw can be written as the sum of the following four

terms:

Rbw1 =

∫∫
Kb(v − u)[fε(u+ β̂Tn t, θ̂n)− fε(u+ βT0 t, θ0)][f̂Ūn(t)− Ef̂Ūn(t)]dudt,

Rbw2 =

∫∫
Kb(v − u)fε(u+ βT0 t, θ0)(f̂Ūn(t)− Ef̂Ūn(t))dudt,

Rbw3 =

∫∫
Kb(v − u)[fε(u+ β̂Tn t, θ̂n)− fε(u+ βT0 t, θ0)][Ef̂Ūn(t)− fŪ(t)]dudt,

Rbw4 =

∫∫
Kb(v − u)fε(u+ βT0 t, θ0)[Ef̂Ūn(t)− fŪ(t)]dudt.

It is well known that Ef̂Ūn(t) = fŪ(t) + w2µ2(L)tr(f ′′
Ū

(t))/2 + o(w2), then from (f1), we

can show that Rbw4 = 2−1w2µ2(L)
∫∫

Kb(v − u)fε(u + βT0 t, θ0)tr(f ′′
Ū

(t))dudt + o(w2). This,

together with (g2), one can easily show that |Rbw4(v)| = O(w2) uniformly on v, this in turn

implies that
∫
R2
bw4(v)dΠ(v) = O(w4). Hence, by assumption (b1),

nb
1
2

∫
R2
bw4(v)dΠ(v) = O(nb1/2w4) = o(1). (2.8)

Now consider Rbw3. For the sake of brevity, denote

fε(u+ β̂Tn t, θ̂n)− fε(u+ βT0 t, θ0)− (β̂n − β0)T ḟεβ(u+ βT0 t, θ0)− (θ̂n − θ0)T ḟεθ(u+ βT0 t, θ0)

by ∆fε(t, u; β̂n, θ̂n). First we can write Rbw3 as the sum of the following two terms,

Rbw31 =

∫∫
Kb(v − u)∆fε(t, u; β̂n, θ̂n)[Ef̂Ūn(t)− fŪ(t)]dudt,

and

Rbw32 =

∫∫
Kb(v − u)[(β̂n − β0)T ḟεβ(u+ βT0 t, θ0) + (θ̂n − θ0)T ḟεθ(u+ βT0 t, θ0)] ·

[Ef̂Ūn(t)− fŪ(t)]dudt.
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By (f2), Rbw31 is bounded above by

sup
u,t
|∆f(t, u; β̂n, θ̂n)| ·

[
1

2
w2µ2(L)

∫∫
Kb(v − u)|tr(f ′′Ū(t))|dudt+ o(w2)

]
= Op(w

2/n),

and Rbw32 is bounded above by

‖β̂n − β0‖ ·
∫∫

Kb(v − u)‖ḟεβ(u+ βT0 t, θ0)‖ · |Ef̂Ūn(t)− fŪ(t)|dudt

+‖θ̂n − θ0‖ ·
∫∫

Kb(v − u)‖ḟεθ(u+ βT0 t, θ0)‖ · |Ef̂Ūn(t)− fŪ(t)|dudt.

Note that
∫∫

Kb(v−u)‖ḟεβ(u+βT0 t, θ0)‖|Ef̂Ūn(t)−fŪ(t)|dudt ≤ O(w2)
∫∫

Kb(v−u)‖ḟεβ(u+

βT0 t, θ0)‖dudt+ o(w2) = O(w2), and by changing variables, u = v + bx, from (f3),

∫∫
Kb(v − u)‖ḟεβ(u+ βT0 t, θ0)‖dudt =

∫∫
K(x)‖ḟεβ(v + bx+ βT0 t, θ0)‖dxdt

≤
∫∫

K(x)‖ḟεβ(v + βT0 t, θ0)‖dxdt+ b

∫∫
|x|K(x)B(v + βT0 t, θ0)dxdt

=

∫
‖ḟεβ(v + βT0 t, θ0)‖dt+ b

∫
|x|K(x)dx ·

∫
B(v + βT0 t, θ0)dt.

The
√
n-consistency of β̂n and θ̂n, and the integrability of ḟεβ(v+βT0 t, θ0) and B(v+βT0 t, θ0)

with respect to t imply
∫
|Rbw3|2dΠ(v) = 2 [Op (n−2w4) +Op (n−1w4)] . Thus

nb1/2 ·
∫
|Rbw3|2dΠ(v) = nb1/2Op

(
w4

n2

)
+ nb1/2Op

(
w4

n

)
= op(1). (2.9)

Next, we consider Rbw1. Adding and subtracting (β̂n − β0)T ḟεβ(u + βT0 t, θ0) + (θ̂n −

θ0)T ḟεθ(u+βT0 t, θ0) from fε(u+β̂Tn t, θ̂n)−fε(u+βT0 t, θ0), we can rewrite Rbw1 as the summation
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of three terms

Rbw11 =

∫∫
Kb(v − u)[fε(u+ β̂Tn t, θ̂n)− fε(u+ βT0 t, θ0)− (β̂n − β0)T ḟεβ(u+ βT0 t, θ0)

− (θ̂n − θ0)T ḟεθ(u+ βT0 t, θ0)][f̂Ūn(t)− Ef̂Ūn(t)]dudt,

Rbw12 =(β̂n − β0)T
∫∫

Kb(v − u)ḟεβ(u+ βT0 t, θ0)[f̂Ūn(t)− Ef̂Ūn(t)]dudt,

Rbw13 =(θ̂n − θ0)T
∫∫

Kb(v − u)ḟεθ(u+ βT0 t, θ0)[f̂Ūn(t)− Ef̂Ūn(t)]dudt.

From condition (f2),

|Rbw11| ≤ sup
t,u
|fε(u+ β̂Tn t, θ̂n)− fε(u+ βT0 t, θ0)− (β̂n − β0)T ḟεβ(u+ βT0 t, θ0)

− (θ̂n − θ0)T ḟεθ(u+ βT0 t, θ0)|
∫∫

Kb(v − u)|f̂Ūn(t)− Ef̂Ūn(t)|dudt

=Op

(
n−1
) ∫

Kb(v − u)du

∫
|f̂Ūn(t)− Ef̂Ūn(t)|dt = Op(n

−1).

To consider Rbw12 and Rbw13, we need an upper bound for E
∫
|f̂Ūn(t)−Ef̂Ūn(t)|dt. By the

Cauchy-Schwarz inequality, we have E
∫
|f̂Ūn(t)−Ef̂Ūn(t)|dt ≤

∫
(E|f̂Ūn(t)−Ef̂Ūn(t)|2)

1
2dt.

Note that E[f̂Ūn(t)− Ef̂Ūn(t)]2 equals

1

n

{
fŪ(t)

wd

∫
L2(v)dv +

1

2wd−2

∫
L2(v)vTf ′′Ū(t̃1)vdv −

[
fŪ(t) +

w2

2

∫
L(v)vTf ′′Ū(t̃2)vdv

]2
}

=
fŪ(t)

nwd

∫
L2(v)dv +

1

2nwd−2

∫
L2(v)vTf ′′Ū(t̃1)vdv − 1

n
f 2
Ū(t)

− w4

4n

(∫
L(v)vTf ′′Ū(t̃2)vdv

)2

− w2fŪ(t)

n

∫
L(v)vTf ′′Ū(t̃2)vdv.

where t̃1 and t̃2 are between t and t + vw. Then by condition (g2) and (g3), we have

E
∫
|f̂Ūn(t)− Ef̂Ūn(t)|dt = O((nwd)−1/2). Hence

∫
|f̂Ūn(t)− Ef̂Ūn(t)|dt = Op

(
(nwd)−1/2

)
.
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For Rbw12, we have

∥∥∥∥∫∫ Kb(v − u)ḟεβ(u+ βT0 t, θ0)[f̂Ūn(t)− Ef̂Ūn(t)]dudt

∥∥∥∥
≤
∫∫

K(x)‖ḟεβ(v + bx+ βT0 t, θ0)‖ · |f̂Ūn(t)− Ef̂Ūn(t)|dxdt

≤
∫∫

K(x)[‖ḟεβ(v + βT0 t, θ0)‖+ b|x|B(v + βT0 t, θ0)] · |f̂Ūn(t)− Ef̂Ūn(t)|dxdt.

which has the order ofOp(1/
√
nwd) by condition (f3). This, together with the

√
n-consistency

of β̂n, implies that Rbw12(v) = Op((nw
d/2)−1) uniformly for v. Similarly, we also have

Rbw13(v) = Op((nw
d/2)−1) uniformly for v as well. Therefore,

nb1/2

∫
(Rbw1(v))2dΠ(v) = nb1/2 ·Op

(
1

n2wd

)
= Op

(
b1/2

nwd

)
= op(1) (2.10)

from assumption (b2). Next we consider Rbw2. Note that

Rbw2(v) =
1

nwd

∫∫
Kb(v − u)fε(u+ βT0 t, θ0)

[
n∑
i=1

L

(
t− Z̃i
w

)
−

n∑
i=1

EL

(
t− Z̃i
w

)]
dudt

=
1

n

n∑
i=1

∫∫
Kb(v − u)fε(u+ βT0 t, θ0)[Lw(t− Z̃i)− ELw(t− Z̃i)]dudt.

Therefore,

E(Rbw2(v))2 =
1

n
E

[∫∫
Kb(v − u)fε(u+ βT0 t, θ0)[Lw(t− Z̃)− ELw(t− Z̃)]dtdu

]2

=
1

n

∫ [∫∫
K(x)fε(v + bx+ βT0 t, θ0)

[
1

wd
L

(
t− z
w

)
− fŪ(t) +O(w2)

]
dtdx

]2

fZ̃(z)dz,

which is of the order O(n−1), implying that nb1/2
∫

(Rbw2(v))2dΠ(v) = nb1/2Op (n−1) = op(1).

Therefore, by the compact support of Π, and the Cauchy-Schwarz inequality, we eventually

show that

nb1/2

∫
[Rbw(v; β̂n, θ̂n)]2dΠ(v) = op(1). (2.11)

Now let’s consider the cross term in Tn(α̂n, β̂n, θ̂n). Using the decomposition of Rbw, we
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can see that

∫
[f̂ξn(v; α̂n, β̂n)− fξb(v; β̂n, θ̂n)]Rbw(v; β̂n, θ̂n)dΠ(v) =

4∑
j=1

Qnj, (2.12)

where Qnj =
∫

[f̂ξn(v; α̂n, β̂n) − fξb(v; β̂n, θ̂n)]Rbwj(v; β̂n, θ̂n)dΠ(v). We know from Koul and

Song (2012) that

nb
1
2

[∫
[f̂ξn(v; α̂n, β̂n)− fξb(v; β̂n, θ̂n)]2dΠ(v)− Ĉn

]
=⇒ N(0,Γ), nb

1
2 Ĉn = Op(b

−1/2),

(2.13)

where Γ is defined in (2.6). By the Cauchy-Schwarz inequality, we can see that nb1/2|Qn1| is

bounded above by

{
nb

1
2

∫
[f̂ξn(v; α̂n, β̂n)− fξb(v; β̂n, θ̂n)]2dΠ(v)

} 1
2
{
nb

1
2

∫
[Rbw1(v; β̂n, θ̂n)]2dΠ(v)

} 1
2

=

{
nb

1
2

[∫
[f̂ξn(v; α̂n, β̂n)− fξb(v; β̂n, θ̂n)]2dΠ(v)− Ĉn

]
+ nb

1
2 Ĉn

} 1
2

·
{
nb

1
2

∫
[Rbw1(v; β̂n, θ̂n)]2dΠ(v)

} 1
2

,

this, together with (2.10), implies that we can conclude

nb1/2|Qn1| = Op(b
−1/4) ·Op

(
b1/4

√
nwd

)
= op(1). (2.14)

Similarly, from (2.9), we can show that

nb1/2|Qn3| = Op(b
−1/4) ·Op

(
b1/4w2

)
= op(1). (2.15)

Now we shall show that nb1/2Qnj = op(1) holds for j = 2, 4. Recall the definitions of
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f̂ξn(v; α̂n, β̂n), fξb(v; β̂n, θ̂n), we see that nb1/2Qn2 can be written as

nb1/2Qn2 =

∫ [
1

nb

n∑
i=1

K
(v − ξ̂i

b

)
−
∫
Kb(v − u)fξ(u; β̂n, θ̂n)du

]

·
[∫∫

Kb(v − u)fε(u+ βT0 t, θ0)(f̂Ūn(t)− Ef̂Ūn(t))dudt

]
dΠ(v)

=

∫ [
1

nb

n∑
i=1

K
(v − Yi + α̂n + β̂Tn Z̄i

b

)
∓ 1

nb

n∑
i=1

K
(v − Yi + α0 + βT0 Z̄i

b

)
∓
∫
Kb(v − u)fξ(u; β0, θ0)du−

∫
Kb(v − u)fξ(u; β̂n, θ̂n)du

]
·
[ ∫∫

Kb(v − u)fε(u+ βT0 t, θ0)[f̂Ūn(t)− Ef̂Ūn(t)]dtdu

]
dΠ(v)

=

∫ [
1

nb

n∑
i=1

K
(v − Yi + α0 + βT0 Z̄i

b

)
−
∫
Kb(v − u)fξ(u; β0, θ0)du

]
[∫∫

Kb(v − u)fε(u+ βT0 t, θ0)(f̂Ūn(t)− Ef̂Ūn(t))dudt

]
dΠ(v) +Rn,

where ∓ stands for first minus then plus the term after the sign, and the remainder term Rn

converges to 0 faster than the first term. So, it is sufficient to consider the first term only.

By the definition of f̂Ūn(t), we can rewrite the first term as Sn,

Sn =
1

n2

n∑
i=1

n∑
j=1

∫ [
1

b
K
(v − ξi

b

)
− E 1

b
K
(v − ξ

b

)]

·

[∫∫
Kb(v − u)fε(u+ βT0 t, θ0)

[
1

wd
L
(t− Z̃j

w

)
− E 1

wd
L
(t− Z̃

w

)]
dudt

]
dΠ(v).

Recall the notation ξ = Y − α0 − βT0 Z̄ = ε− βT0
(
U1 + U2

)
/2, Z̃ = (U1 − U2)/2. We have

ESn =
1

n
E

∫
1

b
K
(v − ξ

b

)[∫∫
Kb(v − u)fε(u+ βT0 t, θ0)

1

wd
L
(t− Z̃

w

)
dtdu

]
dΠ(v)

− 1

n

∫
E

1

b
K
(v − ξ

b

)∫∫
Kb(v − u)fε(u+ βT0 t, θ0)E

1

wd
L
(t− Z̃

w

)
dtdudΠ(v)

29



=
1

n

∫ [∫∫∫
1

b
K
(v − ε+ βT0 (u1 + u2)/2

b

)[ ∫∫
Kb(v − u)fε(u+ βT0 t, θ0)

1

wd
L
(t− (u1 − u2)/2

w

)
dtdu

]
f(ε)fU(u1)fU(u2) dε du1 du2

]
dΠ(v)

− 1

n

∫
E

1

b
K
(v − ξ

b

)∫∫
Kb(v − u)fε(u+ βT0 t, θ0)E

1

wd
L
(t− Z̃

w

)
dtdudΠ(v)

which is of order O(n−1). We also have

ES2
n =E

[
1

n2

∑
i,j

∫ [
1

b
K
(v − ξi

b

)
− E 1

b
K
(v − ξ

b

)]
∫∫

Kb(v − u)fε(u+ βT0 t, θ0)

[
1

wd
L
(t− Z̃j

w

)
− E 1

wd
L
(t− Z̃

w

)]
dudtdΠ(v)

]2

=
1

n4

∑
i,j

E

[∫ [1

b
K
(v − ξi

b

)
− E 1

b
K
(v − ξ

b

)]
∫∫

Kb(v − u)fε(u+ βT0 t, θ0)
[ 1

wd
L
(t− Z̃j

w

)
− E 1

wd
L
(t− Z̃

w

)]
dudtdΠ(v)

]2

+
n(n− 1)

n4
E

[∫ [1

b
K
(v − ξ1

b

)
− E 1

b
K
(v − ξ

b

)] ∫∫
Kb(v − u)fε(u+ βT0 t, θ0)

[ 1

wd
L
(t− Z̃2

w

)
− E 1

wd
L
(t− Z̃

w

)]
dudtdΠ(v)

∫ [1

b
K
(v − ξ2

b

)
− E 1

b
K
(v − ξ

b

)]
∫∫

Kb(v − u)fε(u+ βT0 t, θ0)
[ 1

wd
L
(t− Z̃1

w

)
− E 1

wd
L
(t− Z̃

w

)]
dudtdΠ(v)

]
,

which is the order of O(n−2). The expectation and variance arguments imply that Sn =

Op(1/n). Hence

nb1/2Qn2 = op(1). (2.16)

Finally, we are going to prove nb
1
2Qn4 = op(1). First note that nb

1
2Qn4 can be written as the
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sum of nb1/2Snj, j = 1, 2, 3, where

nb
1
2Sn1 =

∫ [
1

nb

n∑
i=1

K
(v − Yi + α0 + βT0 Z̄i

b

)
−
∫
Kb(v − u)fξ(u; β0, θ0)du

]
[∫∫

Kb(v − u)fε(u+ βT0 t, θ0)(Ef̂Ūn(t)− fŪ(t))dudt

]
dΠ(v),

nb
1
2Sn2 =

∫ [
1

nb

n∑
i=1

K
(v − Yi + α̂n + β̂Tn Z̄i

b

)
− 1

nb

n∑
i=1

K
(v − Yi + α0 + βT0 Z̄i

b

)]
·
[ ∫∫

Kb(v − u)fε(u+ βT0 t, θ0)[Ef̂Ūn(t)− fŪ(t)]dtdu

]
dΠ(v),

nb
1
2Sn3 =

∫ [ ∫
Kb(v − u)fξ(u; β0, θ0)du−

∫
Kb(v − u)fξ(u; β̂n, θ̂n)du

]
·
[ ∫∫

Kb(v − u)fε(u+ βT0 t, θ0)[Ef̂Ūn(t)− fŪ(t)]dtdu

]
dΠ(v).

We can easily see that ESn1 = 0. From the boundedness of f ′′
Ū

(t), we further have ES2
n1 is

bounded above by

1

n
E

{∫ ∣∣∣∣1bK(v − ξ1

b

)
− E 1

b
K
(v − ξ

b

)∣∣∣∣[∫∫
Kb(v − u)fε(u+ βT0 t, θ0)

w2

2

∫
L(z)|zTf ′′Ū(t̃)z|dzdudt

]
dΠ(v)

}2

≤B
2w4

4n
E

{∫ ∣∣∣∣1bK(v − ξ1

b

)
− E 1

b
K
(v − ξ

b

)∣∣∣∣ [∫∫ Kb(v − u)fε(u+ βT0 t, θ0)dudt

]
dΠ(v)

}2

for some finite positive constant B. Note that

E

{∫ ∣∣∣∣1bK(v − ξb )
− E 1

b
K
(v − ξ

b

)∣∣∣∣
[ ∫∫

Kb(v − u)fε(u+ βT0 t, θ0)dudt

]
dΠ(v)

}2

is the order of O(1), so, we have Sn1 = Op(w
2/
√
n). Thus

nb
1
2Sn1 = Op

(√
nb

1
2w2
)

= Op(
√
nbw4) = op(1).

Using the Cauchy-Schwarz inequality and from the proof of Theorem 3.1 in Koul and Song
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(2012), we have

nb1/2|Sn2| =nb
1
2

∣∣∣∣∣
∫ [

1

n

n∑
i=1

(Kb(v − ξ̂i)−Kb(v − ξi))

]

·
[∫∫

Kb(v − u)fε(u+ βT0 t, θ0)(Ef̂Ūn(t)− fŪ(t))dudt

]
dΠ(v)

∣∣∣∣
≤

nb1/2

∫ [
1

n

n∑
i=1

(Kb(v − ξ̂i)−Kb(v − ξi))

]2

dΠ(v)


1/2

·

{
nb1/2

∫ [∫∫
Kb(v − u)fε(u+ βT0 t, θ0)(Ef̂Ūn(t)− fŪ(t))dudt

]2

dΠ(v)

}1/2

≤op(1)O(
√
nb1/2w4) = op(1),

and

nb1/2Sn3 =nb
1
2

∣∣∣ ∫ [fξb(v; β0, θ0)− fξb(v; β̂n, θ̂n)]

·
[∫∫

Kb(v − u)fε(u+ βT0 t, θ0)(Ef̂Ūn(t)− fŪ(t))dudt

]
dΠ(v)

∣∣∣
≤nb

1
2

∫
[(θ̂n − θ0)T ḟξbθ(v; β0, θ0) + (β̂n − β0)T ḟξbβ(v; β0, θ0) +Op(1/n)]

·
[∫∫

Kb(v − u)fε(u+ β0t, θ0)
w2

2

∫
L(z)|zTf ′′Ū(t̃)z|dzdudt

]
dΠ(v)

≤Op(nb
1
2w2/

√
n) = op(1).

Therefore, we have

nb1/2Qn4 = op(1). (2.17)

Note that nb1/2(Tn(α̂n, β̂n, θ̂n)− Ĉn) can be rewritten as

nb
1
2

[∫
[f̂ξn(v; α̂n, β̂n)− fξb(v; β̂n, θ̂n)]2dΠ(v)− Ĉn

]
+ nb1/2

∫
[Rbw(v; β̂n, θ̂n)]2dΠ(v)

−2nb1/2

∫
[f̂ξn(v; α̂n, β̂n)− fξb(v; β̂n, θ̂n)]Rbw(v; β̂n, θ̂n)dΠ(v).

Combining (2.11)–(2.17), we can show that Tn =⇒ N(0,Γ). This, together with Γ̂n → Γ
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in probability, which can be easily shown based on the consistency of α̂n, β̂n and the kernel

density estimator f̂ξn, completes the proof of Theorem 2.2.1.

Proof of Theorem 2.3.1: Define

f̌ξb(v; β) =

∫
Kb(v − u)f̃ξa(u; β)du, f̃ξa(u; β) =

∫
fεa(u+ βT t)f̂Ūn(t)dt,

By adding and subtracting f̌ξb(v; β̂n) from f̂ξn(v; α̂n, β̂n)− f̃ξb(v; β̂n, θ̂n), we can rewrite Tn =

T1n − 2T2n + T3n, where

T1n =

∫
[f̂ξn(v; α̂n, β̂n)− f̌ξb(v; β̂n)]2dΠ(v),

T2n =

∫
[f̂ξn(v; α̂n, β̂n)− f̌ξb(v; β̂n)][f̌ξb(v; β̂n)− f̃ξb(v; β̂n, θ̂n)]dΠ(v),

T3n =

∫
[f̌ξb(v; β̂n)− f̃ξb(v; β̂n, θ̂n)]2dΠ(v).

Therefore,

Tn = nb
1
2 Γ̂
− 1

2
n (T1n − Ĉn)− 2nb

1
2 Γ̂
− 1

2
n T2n + nb

1
2 Γ̂
− 1

2
n T3n.

One can show that nb
1
2 Γ̂
− 1

2
n (T1n−Ĉn)⇒N(0, 1). The proof is similar to that of Theorem 2.2.1.

Note that

Γ̂n → 2

∫
f 2
ξa(v; βa)π

2(v)dv

∫
K2
∗(u)du := Γ̃ > 0,

where K∗(u) =
∫
K(t)K(u+ t)dt, and

T3n =

∫ [∫∫
Kb(v − u)[fεa(u+ β̂Tn t)− fε(u+ β̂Tn t, θ̂n)]f̂Ūn(t)dtdu

]2

dΠ(v)

=

∫ [∫∫
K(x)[fεa(v + bx+ β̂Tn t)− fε(v + bx+ β̂Tn t, θ̂n)]f̂Ūn(t)dtdx

]2

dΠ(v)

→
∫ [∫

fεa(v + βTa t)fŪ(t)dt−
∫
fε(v + βTa t, θa)fŪ(t)dt

]2

dΠ(v)

=

∫
[fξa(v; βa)− fξ(v; βa, θa)]

2dΠ(v) > 0

we have nb1/2Γ̂
−1/2
n T3n = nb1/2Γ̃−1/2

∫
[fξa(v; βa)− fξ(v; βa, θa)]

2dΠ(v) + op(nb
1/2) as n→∞.
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By the Cauchy-Schwarz inequality, and using the fact Ĉn = Op(1/(nb)) from Koul and

Song (2012), nb
1
2 Γ̂
−1/2
n |T2n| is bounded above by

[nb
1
2 Γ̂−1/2

n T1n]
1
2 [nb

1
2 Γ̂−1/2

n T3n]
1
2 = [nb

1
2 Γ̂−1/2

n (T1n − Ĉn + Ĉn)]
1
2 [nb

1
2 Γ̂−1/2

n T3n]
1
2

≤[nb
1
2 Γ̂−1/2

n |T1n − Ĉn|+ nb
1
2 Γ̂−1/2

n Ĉn]
1
2Op(
√
nb1/2)

=[Op(1) +Op(b
−1/2)]

1
2Op(
√
nb1/2) = op(nb

1/2)

from nb→∞ guaranteed by the assumption (b1). Therefore, Tn = nb1/2Γ̂
−1/2
n (T1n − Ĉn) +

nb1/2Γ̃−1/2
∫

[fξa(v; βa) − fξ(v; βa, θa)]
2dΠ(v) + op(nb

1/2). Clearly, the right hand side of the

above expression tends to ∞ as n→∞, implying that the proposed test is consistent. 2

Proof of Theorem 2.3.2: Denote

f̃ loc
ξ (v; β0, θ0) =

∫ [
(1− δn)fε(v + βT0 u, θ0) + δnϕ(v + βT0 u)

]
fŪ(u)du

=

∫
fε(v + βT0 u, θ0)fŪ(u)du− δn

∫ [
fε(v + βT0 u, θ0)− ϕ(v + βT0 u)

]
fŪ(u)du.

f̃ loc
ξb (v; β̂n, θ̂n) =

∫
Kb(v − u)f̃ loc

ξ (u; β̂n, θ̂n)du.

Adding and subtracting f̃ loc
ξb (v; β̂n, θ̂n) from f̂ξn(v; α̂n, β̂n)− f̃ξb(v; β̂n, θ̂n), we can rewrite the

test statistic as

Tn(α̂n, β̂n, θ̂n) =

∫
[f̂ξn(v; α̂n, β̂n)− f̃ loc

ξb (v; β̂n, θ̂n) + f̃ loc
ξb (v; β̂n, θ̂n)− f̃ξb(v; β̂n, θ̂n)]2dΠ(v).

Note that

f̃ loc
ξb (v; β̂n, θ̂n)− f̃ξb(v; β̂n, θ̂n) =

∫
Kb(v − u)[f̃ loc

ξ (u; β̂n, θ̂n)− f̃ξ(u; β̂n, θ̂n)]du

=−
∫
Kb(v − u) · δn

∫
[fε(u+ β̂Tn t, θ̂n)− ϕ(u+ β̂Tn t)]f̂Ūn(t)dtdu

=− δn
∫∫

Kb(v − u)[fε(u+ β̂Tn t, θ̂n)− ϕ(u+ β̂Tn t)]f̂Ūn(t)dtdu := −δnDn(v; β̂n, θ̂n).
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We can rewrite Tn as the sum of the following three terms

Tn1 =

∫
[f̂ξn(v; α̂n, β̂n)− f̃ loc

ξb (v; β̂n, θ̂n)]2dΠ(v),

Tn2 =− 2δn

∫
[f̂ξn(v; α̂n, β̂n)− f̃ loc

ξb (v; β̂n, θ̂n)]Dn(v; β̂n, θ̂n)dΠ(v),

Tn3 =δ2
n

∫
D2
n(v; β̂n, θ̂n)dΠ(v).

For the sake of simplicity, denote fn(u, t) := (1− δn)fε(u+ β̂Tn t, θ̂n) + δnϕ(u+ β̂Tn t). Adding

and subtracting fŪ(t) from f̂Ūn(t), Tn1 can be further written as the sum of the following

three terms,

Tn11 =

∫ [
f̂ξn(v; α̂n, β̂n)−

∫∫
Kb(v − u)fn(u, t)fŪ(t)dtdu

]2

dΠ(v),

Tn12 =

∫ [∫∫
Kb(v − u)fn(u, t)[f̂Ūn(t)− fŪ(t)]dtdu

]2

dΠ(v),

Tn13 =

∫ [
f̂ξn(v; α̂n, β̂n)−

∫∫
Kb(v − u)fn(u, t)fŪ(t)dtdu

]
·[∫∫

Kb(v − u)fn(u, t)[f̂Ūn(t)− fŪ(t)]dtdu

]
dΠ(v).

Similar to the discussion as in Rbw(v; β̂n, θ̂n), one can show that nb
1
2Tn12 = op(1). Follow the

proof of Theorem 2.2.1 in Koul and Song (2012), we can show that nb
1
2 [Tn11− Ĉn]⇒ N(0,Γ)

and using the Cauchy-Schwarz inequality, we also have nb
1
2Tn13 = op(1). Therefore, we have

nb
1
2 [Tn1 − Ĉn] = nb

1
2 [Tn11 − Ĉn] + op(1).

By the boundedness of f ′′(t) and ϕ′′(t), then we have

nb
1
2 Γ̂
− 1

2
n Tn3 = nb

1
2 Γ̂
− 1

2
n δ2

n

∫
D2
n(v; β̂n, θ̂n)dΠ(v) = Γ̂

− 1
2

n

∫
D2
n(v, β̂n, θ̂n)dΠ(v)

=Γ̂
− 1

2
n

∫ [∫∫
Kb(v − u)[fε(u+ β̂Tn t, θ̂n)− ϕ(u+ β̂Tn t)]f̂Ūn(t)dtdu

]2

dΠ(v)

=Γ−
1
2

∫ [∫
[fε(v + βT0 t, θ0)− ϕ(v + βT0 t)]fŪ(t)dt

]2

dΠ(v) + op(1).
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Similarly, we can obtain

nb
1
2Tn2 =

√
nb

1
2

∫ [
1

nb

n∑
i=1

K

(
v − Yi + α0 + βT0 Z̄i

b

)
−
∫
Kb(v − u)f̃ loc

ξ (u; β0, θ0)du

]

·
[∫∫

Kb(v − u)[fε(u+ βT0 t, θ0)− ϕ(u+ βT0 t)]fŪ(t)dudt

]
dΠ(v) + op(1)

=Op(b
1
4 ) = op(1).

Summarizing the above results, we can conclude the proof of Theorem 2.3.2. 2
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Chapter 3

Goodness-of-Fit Test on the Density

Function of the Latent Variable

This Chapter is organized as follows. Two minimum distance estimators of the parameter

under the null hypothesis, and the statistics based on which the test being built will be defined

in Section 3.1; A list of technical assumptions needed for the main results will be given in

Section 3.2, as well as some notations used in the later sections; The large sample properties of

the minimum distance estimators of the distribution parameters will be stated in Section 3.3,

including the weak consistency and asymptotic normality; Asymptotic distributions of the

test statistic under null hypothesis will be discussed in Section 3.4, together with its power

performance under fixed and local alternatives in Section 3.5; Simulation and comparison

studies will be conducted in Section 3.6.

3.1 Minimum Distance Estimators and Test

Recall that in the measurement error model Z = X + U , the hypothesis to be tested is

H0 : fX(x) = fX(x, θ) for some θ ∈ Θ,Θ ⊂ Rq v.s. H1 : H0 is not true.
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We assume that X and U are independent one-dimensional random variables. We also as-

sume that the parameter space Θ is compact subset in Rq, q ≥ 1. Moreover, the measurement

error is assumed to be symmetric around 0. Suppose at each value of X, two measurements

of Z can be obtained. That is, we can observe

Zi1 = Xi + Ui1, Zi2 = Xi + Ui2, (3.1)

i = 1, 2, . . . , n, Ui1 and Ui2 are independent and identically distributed. By (3.1) and simple

algebra, we have

Zi1 − Zi2
2

=
Ui1 − Ui2

2
:= Ũi,

Zi1 + Zi2
2

= Xi +
Ui1 + Ui2

2
:= Xi + Ūi. (3.2)

Denote Z̃i = (Zi1 − Zi2)/2, and Z̄i = (Zi1 + Zi2)/2. Then from the second equality in

(3.2), Z̄ is the convolution of X and Ū . Therefore, fZ̄(z) =
∫
fX(z − u)fŪ(u)du, and under

H0, fZ̄(z, θ) =
∫
fX(z−u, θ)fŪ(u)du. Due to the fact that fŪ(u) is unknown, this expression

cannot be used directly. However, from the first equality in (3.2), it can be estimated by the

classic kernel estimator defined by f̂Ū(u) = n−1
∑n

i=1Kh(u− Ũi), where Kh(·) = h−1K(·/h),

K is a kernel function and h is a bandwidth depending on the sample size n. We use h,

instead of hn, for simplicity. Therefore, fZ̄(z, θ) can be estimated by

f̂Z̄(z, θ) =

∫
fX(z − u, θ)f̂Ū(u)du. (3.3)

Since Z̄i’s are available, so fZ̄(·) can also be estimated by the following kernel estimator

f̂Z̄(z) =
1

n

n∑
i=1

Lb(z − Z̄i), (3.4)

where Lb(·) = b−1L(·/b), L is a kernel function and b is a sequence of bandwidth depending

on n. In the sequel, we use b other than bn for simplicity.

Intuitively, ifH0 holds, then the semi-parametric estimator f̂Z̄(z, θ) defined in (3.3) should

38



be close to the kernel density estimator defined in (3.4). This motivates us to define the

following weighted L2-distance between these two estimators

T ∗n(θ) =

∫
[f̂Z̄(z)− f̂Z̄(z, θ)]2dΠ(z), θ ∈ Θ. (3.5)

Since θ is unknown, we can estimate θ by θ∗n = minimizer
θ

T ∗n(θ), and a potential test can be

built upon the statistic T ∗n(θ∗n).

The second potential test is based on the centralization idea from Bickle and Rosenblatt

(1973). Note that under the null hypothesis,

Ef̂Z̄(z) = ELb(z − Z̄) =

∫
Lb(z − x)

[∫
fX(x− u, θ)fŪ(u)du

]
dx,

thus Ef̂Z̄(z) can be estimated by
∫
Lb(z− x)

[∫
fX(x− u, θ)f̂Ū(u)du

]
dx by replacing fŪ(u)

with f̂Ū(u). Define

Tn(θ) =

∫ [
f̂Z̄(z)−

∫
Lb(z − x)f̂Z̄(x, θ)dx

]2

dΠ(z)

=

∫ {
f̂Z̄(z)−

∫
Lb(z − x)

[∫
fX(x− u, θ)f̂Ū(u)du

]
dx

}2

dΠ(z), θ ∈ Θ, (3.6)

which is a weighted L2-distance between f̂Z̄(z) and its estimated expectation. θ thus can be

estimated by θ̂n = minimizer
θ

Tn(θ). Then we can develop a test procedure based on Tn(θ̂n).

The main difference between T ∗n(θ) and Tn(θ) is the semiparametric part in their defi-

nitions. T ∗n(θ) uses the density estimator of Z̄ under the null hypothesis, while Tn(θ) uses

the expectation of the nonparametric estimator of Z̄ under the null hypothesis. Because of

the centralization in Tn(θ), no under smoothing is needed for the kernel density estimator

of Z̄, thus avoid the potential non-tightness of the test statistic caused by the nonnegligible

bias. A similar phenomenon can be found in the regression setup, see Koul and Ni (2004)

for detail.
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3.2 Assumptions

This section include a list of technical assumptions needed for the theoretical results which

will be presented later. Also, some notations will be also introduced here for the sake of

convenience in stating various lemmas and theorems in the following sections.

As for the density function of Z̄, we assume that

(z1) For each θ, fZ̄(z, θ) =
∫
fX(z − u, θ)fŪ(u)du is integrable, twice differentiable

in z w.r.t. Π;

(z2) fZ̄(z, θ) is identifiable. That is,
∫

[fZ̄(z, θ0)−fZ̄(z, θ)]2dΠ(z) = 0 implies θ = θ0;

(z3) For some positive continuous function l on I, with l(z) bounded, and for some

r > 0, |fZ̄(z, θ1)− fZ̄(z, θ2)| ≤ ‖θ1 − θ2‖rl(z), ∀θ1, θ2 ∈ Θ, z ∈ I;

(z4) f ′′
Z̄

(z, θ0) is bounded. That is, |f ′′
Z̄

(z, θ0)| ≤ c for some positive number c.

For the density function fX of X, we have

(x1) fX is bounded, twice continuously differentiable w.r.t. θ.

(x2) For every x, fX(x, θ) is differentiable in θ in a neighborhood of θ0 with the

vector of derivatives ḟX(x, θ) such that if θn → θ0 in probability, then

sup
x

|fX(x, θn)− fX(x, θ0)− (θn − θ0)T ḟX(x, θ0)|
‖θn − θ0‖

= op(1).

(x3) The vector function x 7→ ḟX(x, θ0) is continuous in x ∈ I and for every ε > 0,

there is an Nε <∞ such that for every 0 < k <∞,

P

(
sup

x∈I,(nbn)1/2‖θn−θ0‖≤k
b−1/2
n ‖ḟX(x, θn)− ḟX(x, θ0)‖ ≥ ε

)
< ε, ∀n > Nε.

For the weight function Π, we assume that

(π1) The weight function Π is supported on a close interval I, and its derivative π

is continuous and bounded.
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For the density function of Ū , we assume that

(u1) fŪ(u) is twice differentiable in u, and f ′′
Ū

(u) is bounded, integrable and square

integrable.

About the kernel function K and L, we shall assume

(kl) The kernel K and L are bounded, symmetric, continues density functions.

About the bandwidth b, we shall make the following assumption

(b1) b→ 0 as n→∞.

(b2) nb2 →∞ as n→∞.

(b3) nb4 → 0 as n→∞.

About the bandwidth h, we shall make the following assumption

(h1) h→ 0 as n→∞.

(h2) nh→∞ as n→∞.

(h3) nh4 → 0 as n→∞.

Assumptions b → 0, h → 0, nb2 → ∞, nh → ∞ are commonly used in univariate kernel

smoothing estimation procedures. Under the null hypothesis, the assumptions nb4 → 0 and

nh4 → 0 are both required in the proof of the asymptotic distribution of the minimum

distance estimator of the distribution parameter or the asymptotic distribution of the test

statistic based on T ∗n(θ) defined in (3.5), while only nh4 → 0 is needed for those results based

on Tn(θ) defined in (3.6).
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In addition to the assumptions listed above, the following notations are also needed.

Σ0 =

∫
ḟZ̄(z, θ0)ḟTZ̄ (z, θ0)dΠ(z),

Σ1 =

∫
fZ̄(z, θ0)[ḟZ̄(z, θ0)][ḟZ̄(z, θ0)]Tπ2(z)dz −

[∫
fZ̄(z, θ0)ḟZ̄(z, θ0)dΠ(z)

]
·
[∫

fZ̄(z, θ0)ḟZ̄(z, θ0)dΠ(z)

]T
,

Σ2 =

∫ [∫
fX(z − u, θ0)ḟZ̄(z, θ0)dΠ(z)

] [∫
fX(z − u, θ0)ḟZ̄(z, θ0)dΠ(z)

]T
fŪ(u)du

−
[∫

fZ̄(z, θ0)ḟZ̄(z, θ0)dΠ(z)

] [∫
fZ̄(z, θ0)ḟZ̄(z, θ0)dΠ(z)

]T
,

Σ3 =2

[∫
fZ̄(z, θ0)ḟZ̄(z, θ0)dΠ(z)

] [∫
fZ̄(z, θ0)ḟZ̄(z, θ0)dΠ(z)

]T
− 4

∫∫ (∫
fX(y − u, θ0)fU(z + u)fU(z − u)du

)
ḟZ̄(z, θ0)ḟTZ̄ (y, θ0)dΠ(z)dΠ(y).

Ĉn(θ) =
1

n2

n∑
i=1

∫ (
Lb(z − Z̄i)−

∫
Lb(z − x)

∫
fX(x− u, θ)f̂Ū(u)dudx

)2

dΠ(z),

Γ =2

∫
[fZ̄(y, θ0)]2π2(y)dy

∫ (∫
L(t)L(z + t)dt

)2

dz. (3.7)

3.3 Consistency and Asymptotic Normality of the MD

Estimators

This section states the large sample properties of the minimum distance estimators θ∗n and

θ̂n, including the consistency and asymptotic normality.

3.3.1 Consistency

We begin with the consistency of θ∗n, which is the minimizer of T ∗n(θ) defined in (3.5).

Theorem 3.3.1. Suppose H0, (z1)–(z4), (x1), (b1)–(b3) and (π1) hold. Then θ∗n → θ0 in

probability.

Proof. Define T ∗∗n (θ) =
∫

[f̂Z̄(z)− fZ̄(z, θ)]2dΠ(z), and θ∗∗n = minimizer
θ∈Θ

T ∗∗n (θ). According to
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Lemma 3.1 in Koul and Ni (2004), we only need to show T ∗∗n (θ0)
p→ 0 as n → ∞. In fact,

by the elementary inequality (a+ b)2 ≤ 2a2 + 2b2,

T ∗∗n (θ0) =

∫
[f̂Z̄(z)− Ef̂Z̄(z) + Ef̂Z̄(z)− fZ̄(z, θ0)]2dΠ(z)

≤2

∫
[f̂Z̄(z)− Ef̂Z̄(z)]2dΠ(z) + 2

∫
[Ef̂Z̄(z)− fZ̄(z, θ0)]2dΠ(z).

By Fubini’s Theorem and (z4),

E

∫
[f̂Z̄(z)− Ef̂Z̄(z)]2dΠ(z) =

∫
E

[
1

n

n∑
i=1

Lb(z − Z̄i)− ELb(z − Z̄)

]2

dΠ(z)

≤
∫

1

nb2
EL2

(
z − Z̄
b

)
dΠ(z) =

∫
1

nb2

∫
L2

(
z − v
b

)
fZ̄(v, θ0)dvdΠ(z)

=
1

nb

∫ [∫
L2(v)[fZ̄(z, θ0) + bvf ′Z̄(z, θ0) +

1

2
b2v2f ′′Z̄(z̃; θ0)]dv

]
dΠ(z) = O

(
1

nb

)
,

where z̃ is between z and z + bv. So

∫
[f̂Z̄(z)− Ef̂Z̄(z)]2dΠ(z) = Op

(
1

nb

)
= op(1). (3.8)

Also, it is easy to show by the well known result for the bias term in kernel density estimation

that

∫
[Ef̂Z̄(z)− fZ̄(z, θ0)]2dΠ(z) =

∫
[ELb(z − Z̄)− fZ̄(z, θ0)]2dΠ(z) = O(b4), (3.9)

which is of order o(1). From this, together with the assumptions (b2) and (b3), we have

T ∗∗n (θ0) = Op

(
1

nb

)
= op(1) (3.10)

and thus θ∗∗n → θ0 in probability by Lemma 3.1 from Koul and Ni (2004).
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Now, let’s show that θ∗n → θ0. It is sufficient to show that

sup
θ∈Θ
|T ∗n(θ)− T (θ)| = op(1), sup

θ∈Θ
|T ∗∗n (θ)− T (θ)| = op(1), (3.11)

where T (θ) =
∫

[fZ̄(z, θ0)− fZ̄(z, θ)]2dΠ(z).

In fact, (3.11) implies

sup
θ∈Θ
|T ∗n(θ)− T ∗∗n (θ)| = op(1). (3.12)

If θ∗∗n − θ∗n 9 0, then, using the fact that Θ is compact, there must be a sub-sequence {nk}

such that θ∗nk → θ1, θ
∗∗
nk
→ θ0, and θ0 6= θ1.

From (3.12), we have

T ∗n(θ∗∗nk)− T
∗∗
n (θ∗∗nk) = op(1), T ∗n(θ∗nk)− T

∗∗
n (θ∗nk) = op(1),

this immediately implies

T ∗n(θ∗∗nk)− T
∗
n(θ∗nk) = T ∗∗n (θ∗∗nk)− T

∗∗
n (θ∗nk) + op(1). (3.13)

By the definition of θ∗nk and θ∗∗nk , for every n, the left-hand side of (3.13) is nonnegative,

while the right-hand side is nonpositive. This implies T ∗n(θ∗∗nk)− T
∗
n(θ∗nk) = op(1), T ∗∗n (θ∗∗nk)−

T ∗∗n (θ∗nk) = op(1), and therefore |T (θ∗nk)− T (θ∗∗nk)| is bounded above by

|T (θ∗nk)− T
∗
n(θ∗nk)|+ |T

∗
n(θ∗nk)− T

∗
n(θ∗∗nk)|+ |T

∗
n(θ∗∗nk)− T

∗∗
n (θ∗∗nk)|+ |T

∗∗
n (θ∗∗nk)− T (θ∗∗nk)|

which is the order of op(1). By the continuity of T (θ), we have |T (θ1) − T (θ0)| = 0, which

contradicts the uniqueness of the minimizer of T (θ) as implied by the identifiability condi-

tion (z2).

First we show the second equality in (3.11). Adding and subtracting fZ̄(z, θ0) from
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f̂Z̄(z)− fZ̄(z, θ), we can rewrite T ∗∗n (θ) as the sum of T (θ) and the following two terms

An1 =

∫
[f̂Z̄(z)− fZ̄(z, θ0)]2dΠ(z),

An2 = 2

∫
[f̂Z̄(z)− fZ̄(z, θ0)][fZ̄(z, θ0)− fZ̄(z, θ)]dΠ(z).

Thus T ∗∗n (θ)− T (θ) = An1 + An2(θ), and

sup
θ∈Θ
|T ∗n(θ)− T (θ)| ≤An1 + sup

θ∈Θ
|An2(θ)| ≤ An1 + 2A

1
2
n1 sup

θ∈Θ
T

1
2 (θ).

An1 = op(1) indeed is implied by (3.10), and supθ∈Θ T (θ) <∞ can be shown by noting that

the parameter space Θ is compact, and from (z3), T (θ) ≤ ‖θ−θ0‖2r
∫
l2(z)dΠ(z). Therefore,

the second equality (3.11) holds.

Next, let’s show the first equality in (3.11). Adding and subtracting fZ̄(z, θ) from f̂Z̄(z)−

f̂Z̄(z, θ), we can rewrite T ∗n(θ) as the sum of T ∗∗n (θ) and the following two terms

Bn1(θ) =2

∫
[f̂Z̄(z)− fZ̄(z, θ)][fZ̄(z, θ)− f̂Z̄(z, θ)]dΠ(z),

Bn2(θ) =

∫
[fZ̄(z, θ)− f̂Z̄(z, θ)]2dΠ(z).

Therefore

T ∗n(θ)− T (θ) = T ∗∗n (θ)− T (θ) +Bn1(θ) +Bn2(θ).

From (x1), we have

Bn2(θ) =

∫ [∫
fX(z − u, θ)(f̂Ū(u)− fŪ(u))du

]2

dΠ(z) ≤ c

[∫
|f̂Ū(u)− fŪ(u)|du

]2

.

On the other hand, by using Scheffe’s Lemma, and the fact that

∫
f̂Ū(u)du =

∫
fŪ(u)du = 1, f̂Ū(u)→ fŪ(u),
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we have ∫
|f̂Ū(u)− fŪ(u)|du = op(1). (3.14)

So, supθ∈ΘBn2(θ) = op(1). Therefore, by using the elementary inequality
√
a+ c ≤

√
a+
√
c

for a ≥ 0, c ≥ 0, we can show that

sup
θ
|Bn1(θ)| ≤2 sup

θ
|T ∗∗n (θ)|

1
2 · sup

θ
|Bn2|

1
2 = 2 sup

θ
|T ∗∗n (θ)− T (θ) + T (θ)|

1
2 · sup

θ
|Bn2(θ)|

1
2

is the order of op(1). This completes the proof of (3.11) and hence Theorem 3.3.1.

The next theorem states the consistency of θ̂n, the minimizer of Tn(θ) defined in (3.6).

Theorem 3.3.2. Assume H0, (z1)–(z4), (b1)–(b2), (x1) and (π1) hold, then θ̂n → θ0 in

probability.

Proof. Recall that

Tn(θ) =

∫ [
f̂Z̄(z)−

∫
Lb(z − x)f̂Z̄(x, θ)dx

]2

dΠ(z), θ̂n = minimizer
θ

Tn(θ).

Define

T ∗
n (θ) =

∫ [
f̂Z̄(z)−

∫
Lb(z − x)fZ̄(x, θ)dx

]2

dΠ(z), θ̂∗n = minimizer
θ

T ∗
n (θ),

and

T (θ) =

∫ {∫
Lb(z − x)[fZ̄(x, θ)− fZ̄(x, θ0)]dx

}2

dΠ(z).

The minimizer of T (θ) is unique, as can be easily derived from the identifiable condition (z2).

By Lemma 3.1(c) in Koul and Ni (2004), and from (3.8), one can easily check that

ET ∗
n (θ0) = E

∫
[f̂Z̄(z)− Ef̂Z̄(z)]2dΠ(z) = O

(
1

nb

)
. (3.15)

Therefore,

T ∗
n (θ0) = Op

(
1

nb

)
= op(1). (3.16)
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Using Lemma 3.1 in Koul and Ni (2004), we have θ̂∗n → θ0 in probability. Next, we will show

that if

sup
θ∈Θ
|Tn(θ)−T (θ)| = op(1), sup

θ∈Θ
|T ∗

n (θ)−T (θ)| = op(1), (3.17)

then θ̂∗n − θ̂n → 0, which can be proved by contradiction.

If θ̂∗n − θ̂n 9 0, there must be a sub-sequence {nk}, such that θ̂∗nk → θ0, θ̂nk → θ1, and

θ1 6= θ0.

From (3.17), we have

sup
θ∈Θ
|Tn(θ)−T ∗

n (θ)| = op(1). (3.18)

Thus

Tn(θ̂n)−T ∗
n (θ̂n) = op(1), Tn(θ̂∗n)−T ∗

n (θ̂∗n) = op(1).

Therefore,

Tn(θ̂n)− Tn(θ̂∗n) = T ∗
n (θ̂n)−T ∗

n (θ̂∗n) + op(1).

By the definition of θ̂n and θ̂∗n, for every n, the left-hand side of the equation above is

nonpositive, while the first term on the right-hand side is nonnegative. Hence Tn(θ̂n) −

T ∗
n (θ̂∗n) = op(1). Then

|T (θ̂∗nk)−T (θ̂nk)|≤|T (θ̂∗nk)−T ∗
n (θ̂∗nk)|+|T

∗
n (θ̂∗nk)− Tn(θ̂nk)|+|Tn(θ̂nk)−T (θ̂nk)|=op(1).

However, by the continuity of T , we have T (θ̂∗nk) → T (θ0) 6= T (θ1) ← T (θ̂nk). This

contradiction implies that we must have θ̂∗n − θ̂n → 0.

Next, we are going to show the second equality in (3.17). Adding and subtracting
∫
Lb(z−

x)fZ̄(x, θ0)dx]2dΠ(z) from f̂Z̄(z)−
∫
Lb(z − x)fZ̄(x, θ)dx, T ∗

n (θ) can be written as the sum
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of T (θ) and the following two terms

Cn1 =

∫
[f̂Z̄(z)−

∫
Lb(z − x)fZ̄(x, θ0)dx]2dΠ(z)

Cn2 = 2

∫ [
f̂Z̄(z)−

∫
Lb(z − x)fZ̄(x, θ0)dx

] [∫
Lb(z − x)[fZ̄(x, θ0)− fZ̄(x, θ)]dx

]
dΠ(z).

Then T ∗
n (θ)−T (θ) = Cn1 + Cn2(θ) and

sup
θ∈Θ
|T ∗

n (θ)−T (θ)| ≤ Cn1 + sup
θ∈Θ

Cn2(θ) ≤ Cn1 + 2C
1
2
n1 sup

θ∈Θ
T

1
2 (θ).

It thus suffices to show Cn1 = op(1), which is already shown in (3.16), and supθ∈Θ T (θ) =

Op(1).

From (z3), by changing the variables, we have

T (θ) =

∫ [∫
Lb(z − x)[fZ̄(x, θ)− fZ̄(x, θ0)]dx

]2

dΠ(z)

≤
∫ [∫

Lb(z − x)‖θ − θ0‖rl(x)dx

]2

dΠ(z) = ‖θ − θ0‖2r

∫ [∫
L(u)l(z + ub)du

]2

dΠ(z)

≤c‖θ − θ0‖2r

for some positive constant c. Since Θ is compact, we obtain supθ∈Θ T (θ) < ∞. Therefore

supθ∈Θ |T ∗
n (θ)−T (θ)| ≤ op(1).

Next, let’s show the first equality in (3.17). Similarly, we add and subtract
∫
Lb(z −

x)fZ̄(x, θ) from f̂Z̄(z)−
∫
Lb(z − x)f̂Z̄(x, θ), and Tn(θ) can be written as the sum of T ∗

n (θ)

and the following two terms

Dn1 = 2

∫ [
f̂Z̄(z)−

∫
Lb(z − x)fZ̄(x, θ)dx

] [∫
Lb(z − x)(fZ̄(x, θ)− f̂Z̄(x, θ))dx

]
dΠ(z)

Dn2(θ) =

∫ [∫
Lb(z − x)(fZ̄(x, θ)− f̂Z̄(x, θ))dx

]2

dΠ(z).

Then Tn(θ)−T (θ) = T ∗
n (θ)−T (θ) +Dn1(θ) +Dn2(θ).

48



For Dn2(θ), from (x1) and (3.14),

Dn2(θ) =

∫ [∫
Lb(z − x)(fZ̄(x, θ)− f̂Z̄(x, θ))dx

]2

dΠ(z)

≤
∫ [∫

Lb(z − x)

∫
fX(x− u, θ)|fŪ(u)− f̂Ū(u)|dudx

]2

dΠ(z)

≤c
∫ [∫

Lb(z − x)dx

]2

dΠ(z)

[∫
|fŪ(u)− f̂Ū(u)|du

]2

,

which is of order op(1). Then we obtain

sup
θ∈Θ
|Dn1(θ)| ≤ sup

θ
|T ∗

n (θ)|
1
2 sup

θ
|Dn2(θ)|

1
2 = sup

θ
|T ∗

n (θ)−T (θ) + T (θ)|
1
2 sup

θ
|Dn2(θ)|

1
2

≤
[

sup
θ
|T ∗

n (θ)−T (θ)|
1
2 + sup

θ
|T (θ)|

1
2

]
sup
θ
|Dn2(θ)|

1
2 ≤ op(1).

This concludes the proof of (3.17).

Remark 3.3.1. One can replace condition (b2) with nb→∞, and Theorem 3.3.2 still holds.

3.3.2 Asymptotic Normality of the Non-Centered MD Estimator

In this section, we shall report the asymptotic normality of θ∗n. Let

U∗n(z, θ) =f̂Z̄(z)− f̂Z̄(z, θ), U∗n(z) = U∗n(z, θ0),

Z∗n(z, θ) =U∗n(z)− U∗n(z, θ) = f̂Z̄(z, θ)− f̂Z̄(z, θ0), (3.19)

dn(x, θ, θ0) =f̂Z̄(x, θ)− f̂Z̄(x, θ0)− (θ − θ0)T
˙̂
fZ̄(x, θ0).

Taking the derivative with respect to θ,

Ṫ ∗n(θ) = −2

∫
[f̂Z̄(z)− f̂Z̄(z, θ)]

˙̂
fZ̄(z, θ)dΠ(z) = −2

∫
U∗n(z, θ)

˙̂
fZ̄(z, θ)dΠ(z).

Note that θ∗n is the minimizer of T ∗n(θ) and also θ0 is an interior point of Θ, so by the

consistency, for sufficiently large n, θ∗n will be an interior point of Θ, therefore Ṫ ∗n(θ∗n) = 0.
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Thus

∫
U∗n(z, θ0)

˙̂
fZ̄(z, θ∗n)dΠ(z)−

∫
U∗n(z, θ∗n)

˙̂
fZ̄(z, θ∗n)dΠ(z) =

∫
U∗n(z, θ0)

˙̂
fZ̄(z, θ∗n)dΠ(z).

Then we obtain

∫
Z∗n(z, θ∗n)

˙̂
fZ̄(z, θ∗n)dΠ(z) =

∫
U∗n(z)

˙̂
fZ̄(z, θ∗n)dΠ(z),

which can be written as the sum of the following three terms:

Sn =

∫
U∗n(z)ḟZ̄(z, θ0)dΠ(z),

gn1 =

∫
U∗n(z)[

˙̂
fZ̄(z, θ0)− ḟZ̄(z, θ0)]dΠ(z),

gn2 =

∫
U∗n(z)[

˙̂
fZ̄(z, θ∗n)− ˙̂

fZ̄(z, θ0)]dΠ(z). (3.20)

To proceed, the following lemmas are needed.

Lemma 3.3.1. Suppose H0, (z1)–(z4), (x1), (x2), (π1) and (b1)–(b3) holds. Then

nb‖θ∗n − θ0‖2 = Op(1).

Proof. From (3.10) and (h3), one can easily verify

∫
(U∗n(z))2dΠ(z) = T ∗n(θ0) = Op

(
1

nb

)
. (3.21)

Let Dn(θ) =
∫

[Z∗n(z, θ)]2dΠ(z). We are going to show nbDn(θ∗n) = Op(1). To see this,

observe that T ∗n(θ∗n) ≤ T ∗n(θ0) = Op(
1
nb

). Thus nbT ∗n(θ∗n) = Op(1) and

nbDn(θ∗n) = nb

∫
[U∗n(z)− U∗n(z, θ∗n)]2dΠ(z) ≤ 2nb[T ∗n(θ0) + T ∗n(θ∗n)] = Op(1).

Next, we shall show Dn(θ∗n)
‖θ∗n−θ0‖2

≥ B with arbitrarily large probability, where B is an arbitrary
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positive number.

Op(1) = nbDn(θ∗n) = nb‖θ∗n − θ0‖2 Dn(θ∗n)

‖θ∗n − θ0‖2
.

Recalling the definition of dn(z, θ, θ0) and Z∗n(z, θ) from (3.19), we have

Dn(θ∗n)

‖θ∗n − θ0‖2
=

∫
[f̂Z̄(z, θ∗n)− f̂Z̄(z, θ0)]2dΠ(z)

‖θ∗n − θ0‖2

=

∫
[dn(z, θ∗n, θ0) + (θ∗n − θ0)T

˙̂
fZ̄(z, θ0)]2dΠ(z)

‖θ∗n − θ0‖2

≥
∫
d2
n(z, θ∗n, θ0)

‖θ∗n − θ0‖2
dΠ(z) +

∫ [
(θ∗n − θ0)T

˙̂
fZ̄(z, θ0)

‖θ∗n − θ0‖

]2

dΠ(z)

− 2

[∫
d2
n(z, θ∗n, θ0)

‖θ∗n − θ0‖2
dΠ(z)

] 1
2

∫ [(θ∗n − θ0)T
˙̂
fZ̄(z, θ0)

‖θ∗n − θ0‖

]2

dΠ(z)

 1
2

.

By assumption (x2) and the consistency of θ∗n, we can show that

∫
d2
n(z, θ∗n, θ0)

‖θ∗n − θ0‖2
dΠ(z)

=

∫ [∫
fX(z − u, θ∗n)− fX(z − u, θ0)− (θ∗n − θ0)T ḟX(z − u, θ0)

‖θ∗n − θ0‖
f̂Ū(u)du

]2

dΠ(z)

is of order op(1).

For the second term, we notice that
∫ [ (θ∗n−θ0)T

˙̂
fZ̄(z,θ0)

‖θ∗n−θ0‖

]2

dΠ(z) ≥ inf‖s‖=1 Σn(s), where

Σn(s) =
∫

[sT
˙̂
fZ̄(z, θ0)]2dΠ(z). By the usual calculations, one sees for each s ∈ Rq,

Σn(s) =sT
∫

˙̂
fZ̄(z, θ0)

˙̂
fTZ̄ (z, θ0)dΠ(z) s

=sT
∫

[
˙̂
fZ̄(z, θ0)− ḟZ̄(z, θ0) + ḟZ̄(z, θ0)][

˙̂
fZ̄(z, θ0)− ḟZ̄(z, θ0) + ḟZ̄(z, θ0)]TdΠ(z) s

=sT
∫

[
˙̂
fZ̄(z, θ0)− ḟZ̄(z, θ0)][

˙̂
fZ̄(z, θ0)− ḟZ̄(z, θ0)]TdΠ(z) s

+2sT
∫

[
˙̂
fZ̄(z, θ0)− ḟZ̄(z, θ0)][ḟZ̄(z, θ0)]TdΠ(z) s+ sT

∫
ḟZ̄(z, θ0)ḟTZ̄ (z, θ0)dΠ(z) s

→sT
∫
ḟZ̄(z, θ0)ḟTZ̄ (z, θ0)dΠ(z) s = sTΣ0s,
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where Σ0 is as in (3.7). Thus, by the Cauchy–Schwarz inequality, the cross term

[∫
d2
n(z, θ∗n, θ0)

‖θ∗n − θ0‖2
dΠ(z)

] 1
2

∫ ((θ∗n − θ0)T
˙̂
fZ̄(z, θ0)

‖θ∗n − θ0‖

)2

dΠ(z)

 1
2

= op(1).

For any δ > 0, and any two unit vectors s, s1 ∈ Rq, ‖s−s1‖ < δ, we have |Σn(s)−Σn(s1)| ≤

δ(δ + 2)
∫
‖ ˙̂
fZ̄(z, θ0)‖2dΠ(z). By observing

∫
‖ ˙̂
fZ̄(z, θ0)‖2dΠ(z) = Op(1) (3.22)

and the compactness of the set {s ∈ Rq; ‖s‖ = 1}, we have sup‖s‖=1 |Σn(s)− sTΣ0s| = op(1).

In sum, Dn(θ∗n)
‖θ∗n−θ0‖2

≥ inf‖s‖=1 s
TΣ0s with arbitrarily large probability.

This concludes the proof of Lemma 3.3.1.

Lemma 3.3.2. Suppose H0, (z1)–(z4), (x1)–(x3), (b1)–(b3), (h1)–(h3), (u1),(π1) and (kl)

hold. Then n
1
2Sn ⇒ Nq(0,Σ), n

1
2 gn1 = op(1), n

1
2 gn2 = op(1), where Sn, gn1, gn2 are as defined

in (3.20), Σ = Σ1 + Σ2 + Σ3 with Σi, i = 1, 2, 3 as in (3.7) .

Proof. For convenience, we shall give the proof here only for the case d = 1, i.e., when

ḟZ̄(z, θ0) is one dimensional. For multidimensional case, the result can be proved by using

linear combination of its components instead of ḟZ̄(z, θ0), and applying the same argument.

Add and subtract Ef̂Z̄(z), fZ̄(z, θ0) and Ef̂Z̄(z, θ0) inside the parenthesis of U∗n(z), then

Sn =

∫
U∗n(z)ḟZ̄(z, θ0)dΠ(z)

=

∫
[f̂Z̄(z)− Ef̂Z̄(z)]ḟZ̄(z, θ0)dΠ(z) +

∫
[Ef̂Z̄(z, θ0)− f̂Z̄(z, θ0)]ḟZ̄(z, θ0)dΠ(z)

+

∫
[Ef̂Z̄(z)− fZ̄(z, θ0)]ḟZ̄(z, θ0)dΠ(z) +

∫
[fZ̄(z, θ0)− Ef̂Z̄(z, θ0)]ḟZ̄(z, θ0)dΠ(z)

=:Sn1 + Sn2 + Sn3 + Sn4.

In order to show n
1
2Sn ⇒ Nq(0,Σ), we need only to show n

1
2 (Sn1 + Sn2) ⇒ Nq(0,Σ), and

n
1
2Sn3 = o(1), n

1
2Sn4 = o(1).

52



Consider Sn3 and Sn4 first. Since Ef̂Z̄(z) = fZ̄(z, θ0) + b2

2

∫
L(v)v2f ′′

Z̄
(z + τ1vb, θ0)dv,

where 0 < τ1 < 1, from (z4) and (b3), one can verify

n
1
2Sn3 =n

1
2
b2

2

∫∫
L(v)v2f ′′Z̄(z + τ1vb, θ0)ḟZ̄(z, θ0)dvdΠ(z)

≤ c
2
n

1
2 b2

∫
L(v)v2dv

∫
ḟZ̄(z, θ0)dΠ(z) = O(n

1
2 b2) = o(1).

Similarly, there is a 0 < τ2 < 1 such that

Ef̂Z̄(z, θ0) =

∫
fX(z − u, θ0)

[
fŪ(u) +

h2

2

∫
K(v)v2f ′′Ū(u+ τ2vh)dv

]
du

=fZ̄(z, θ0) +
h2

2

∫
fX(z − u, θ0)

[∫
K(v)v2f ′′Ū(u+ τ2vh)dv

]
du

and from (u1) and (h3), one obtains n
1
2Sn4 = O(n

1
2h2) = o(1).

Next, we consider n
1
2 (Sn1 + Sn2). Let GŨi

(z, θ0) =
∫
fX(z − u, θ0)Kh(u − Ũi)du. and

rewrite f̂Z̄(z, θ0) = 1
n

∑n
i=1 GŨi

(z, θ0). Then

n
1
2 (Sn1 + Sn2)

=n
1
2

∫
[(f̂Z̄(z)− Ef̂Z̄(z)) + (Ef̂Z̄(z, θ0)− f̂Z̄(z, θ0))]ḟZ̄(z, θ0)dΠ(z)

=n
1
2

∫
1

n

n∑
i=1

[(Lb(z − Z̄i)− ELb(z − Z̄1)) + (EGŨ1
(z, θ0)−GŨi

(z, θ0))]ḟZ̄(z, θ0)dΠ(z)

=
1√
n

n∑
i=1

[∫
(Lb(z − Z̄i)− ELb(z − Z̄1))ḟZ̄(z, θ0)dΠ(z)

+

∫
(EGŨ1

(z, θ0)−GŨi
(z, θ0))ḟZ̄(z, θ0)dΠ(z)

]

=:
1√
n

n∑
i=1

(sni1 + sni2) =:
1√
n

n∑
i=1

sni.

Note that sni, 1 ≤ i ≤ n are i.i.d centered r.v.’s for each n. By the Lindeberg-Feller
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Central Limit Theorem, it is sufficient to show that as n→∞,

Es2
ni → Σ, (3.23)

E{s2
niI(|sni| > n

1
2η)} → 0, ∀η > 0. (3.24)

By Fubini,

Es2
ni1 =E

[∫
(Lb(z − Z̄i)− ELb(z − Z̄1))ḟZ̄(z, θ0)dΠ(z)

]2

=

∫∫ [
ELb(z − Z̄1)Lb(y − Z̄1)− ELb(z − Z̄1)ELb(y − Z̄1)

]
· ḟZ̄(z, θ0)ḟZ̄(y, θ0)dΠ(z)dΠ(y),

where

ELb(z − Z̄i)Lb(y − Z̄i) =

∫
Lb(z − t)Lb(y − t)fZ̄(t, θ0)dt,

ELb(z − Z̄1) =

∫
L(s)fZ̄(z − bs, θ0)ds, ELb(y − Z̄1) =

∫
L(s)fZ̄(y − bs, θ0)ds. (3.25)

In the sequel, for the sake of brevity, we shall often write dxdydz = d(x, y, z). By the

transformation z − t = bz1 and y − t = by1 and continuity of fZ̄ and π, we obtain

Es2
ni1 =

∫
Lb(z − t)Lb(y − t)fZ̄(t, θ0)ḟZ̄(z, θ0)ḟZ̄(y, θ0)π(z)π(y) d(t, z, y)

−
∫∫ (∫

L(s)fZ̄(z − bs, θ0)ds

)(∫
L(s)fZ̄(y − bs, θ0)ds

)
ḟZ̄(z, θ0)

· ḟZ̄(y, θ0)π(z)π(y)dzdy

=

∫
L(z1)L(y1)fZ̄(t, θ0)ḟZ̄(t+ bz1, θ0)ḟZ̄(t+ by1, θ0)π(t+ bz1)

· π(t+ by1) d(t, z1, y1)−
∫∫ (∫

L(s)fZ̄(z − bs, θ0)ds

)
·
(∫

L(s)fZ̄(y − bs, θ0)ds

)
ḟZ̄(z, θ0)ḟZ̄(y, θ0)π(z)π(y)dzdy
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which converges to Σ1 as b→ 0. Next, consider Es2
ni2. By Fubini, we have

Es2
ni2 =E

[∫
(EGŨ1

(z, θ0)−GŨi
(z, θ0))ḟZ̄(z, θ0)dΠ(z)

]2

=E

∫∫ (
GŨi

(z, θ0)− EGŨ1
(z, θ0)

) (
GŨi

(y, θ0)− EGŨ1
(y, θ0)

)
· ḟZ̄(z, θ0)ḟZ̄(y, θ0)dΠ(z)dΠ(y)

=

∫∫ (
EGŨ1

(z, θ0)GŨ1
(y, θ0)− EGŨ1

(z, θ0)EGŨ1
(y, θ0)

)
· ḟZ̄(z, θ0)ḟZ̄(y, θ0)dΠ(z)dΠ(y),

where

EGŨ1
(z, θ0)GŨ1

(y, θ0) =

∫
fX(z − u, θ0)Kh(u− t)fX(y − v, θ0)Kh(v − t)fŪ(t) d(u, v, t),

EGŨ1
(z, θ0) =

∫∫
fX(z − u, θ0)K(s)fŪ(u− hs)duds,

EGŨ1
(y, θ0) =

∫∫
fX(y − u, θ0)K(s)fŪ(u− hs)duds. (3.26)

Therefore, by the transformation u − t = hu1, v − t = hv1, taking the limit, and using

the continuity of fX and fŪ , one obtains

Es2
ni2 =

∫
fX(z − u, θ0)Kh(u− t)fX(y − v, θ0)Kh(v − t)fŪ(t)ḟZ̄(z, θ0)ḟZ̄(y, θ0)

· π(z)π(y) d(u, v, t, z, y)−
∫∫ (∫∫

fX(z − u, θ0)K(s)fŪ(u− hs)duds
)

·
(∫∫

fX(y − u, θ0)K(s)fŪ(u− hs)duds
)
ḟZ̄(z, θ0)ḟZ̄(y, θ0)π(z)π(y)dzdy

h→0−→
∫
fX(z − t, θ0)K(u1)fX(y − t, θ0)K(v1)fŪ(t)ḟZ̄(z, θ0)ḟZ̄(y, θ0)

· π(z)π(y) d(u1, v1, t, z, y)−
∫∫ (∫∫

fX(z − u, θ0)K(s)fŪ(u)duds

)
·
(∫∫

fX(y − u, θ0)K(s)fŪ(u)duds

)
ḟZ̄(z, θ0)ḟZ̄(y, θ0)π(z)dΠ(z)dy

The last term is indeed Σ2 by simple algebra.
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Next, we consider Esni1sni2,

Esni1sni2 =E

∫ (
Lb(z − Z̄i)− ELb(z − Z̄1)

)
ḟZ̄(z, θ0)dΠ(z)

·
∫ (

EGŨ1
(y, θ0)−GŨi

(y, θ0)
)
ḟZ̄(y, θ0)dΠ(y)

=

∫∫ (
ELb(z − Z̄1)EGŨ1

(y, θ0)− ELb(z − Z̄1)GŨ1
(y, θ0)

)
·ḟZ̄(z, θ0)ḟZ̄(y, θ0)π(z)π(y)dzdy.

By the transformation 2(z − s)− p− q = 2bv and 2u− p+ q = 2ht, we have

ELb(z − Z̄i)GŨi
(y, θ0) = E

[
Lb(z − Z̄i)

∫
fX(y − u, θ0)Kh(u− Ũi)du

]
=E

[
Lb

(
z −Xi −

U1 + U2

2

)∫
fX(y − u, θ0)Kh

(
u− U1 − U2

2

)
du

]
=

∫
Lb

(
2(z − s)− p− q

2

)
fX(y − u, θ0)Kh

(
2u− p+ q

2

)
fX(s, θ0)fU(p)fU(q) d(u, s, p, q)

=2

∫
L(v)fX(y − u, θ0)K(t)fX(s, θ0)fU(z − s− bv + u− ht)

· fU(z − s− bv − u+ ht) d(u, s, v, t). (3.27)

Combining (3.25), (3.26) and (3.27), using the assumed continuity of fZ̄ , fX , fŪ , fU , we

obtain 2Esni1sni2 converges to

2

[∫
fZ̄(z, θ0)ḟZ̄(z, θ0)dΠ(z)

]2

− 4

∫∫ (∫∫
fX(y − u, θ0)fU(z − s+ u)

· fU(z − s− u)fX(s, θ0)dsdu

)
ḟZ̄(z, θ0)ḟZ̄(y, θ0)dΠ(z)dΠ(y) = Σ3.

Therefore, Es2
ni → Σ = Σ1 + Σ2 + Σ3. Hence (3.23) is proved.

To prove (3.24), note that by the Cr inequality, E{s2
niI(|sni| > n

1
2η)} has upper bound

η−δn−δ/2E|sni|2+δ ≤ η−δn−δ/221+δE
(
|sni1|2+δ + |sni2|2+δ

)
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By the Hölder’s inequality, E(|sni1|2+δ) is bounded above by

E

∣∣∣∣∣
[∫ (

Lb(z − Z̄i)− ELb(z − Z̄1)
) 2+δ

2 dΠ(z)

] 2
2+δ
[∫ (

ḟZ̄(z, θ0)
) 2+δ

δ
dΠ(z)

] δ
2+δ

∣∣∣∣∣
2+δ

=E

∣∣∣∣∫ (Lb(z − Z̄i)− ELb(z − Z̄1)
) 2+δ

2 dΠ(z)

∣∣∣∣2 [∫ (ḟZ̄(z, θ0)
) 2+δ

δ
dΠ(z)

]δ
= O(b−δ),

and

E
(
|sni2|2+δ

)
=E

∣∣∣∣∫ (EGŨ1
(z, θ0)−GŨi

(z, θ0)
)
ḟZ̄(z, θ0)dΠ(z)

∣∣∣∣2+δ

=E

∣∣∣∣∫ GŨi
(z, θ0)ḟZ̄(z, θ0)dΠ(z)−

∫
EGŨ1

(z, θ0)ḟZ̄(z, θ0)dΠ(z)

∣∣∣∣2+δ

=

∫ ∣∣∣ ∫∫ fX(z − u, θ0)Kh(u− s)ḟZ̄(z, θ0)dudΠ(z)

−
∫
EGŨ1

(z, θ0)ḟZ̄(z, θ0)dΠ(z)
∣∣∣2+δ

fŪ(s)ds = O(1).

Therefore, from (b2),

E
{
s2
niI(|sni| > n

1
2η)
}
≤ n−δ/2

(
O(b−δ) +O(1)

)
= o(1), ∀η > 0.

By L-F C.L.T, we have n
1
2Sn ⇒ N(0,Σ), where Σ = Σ1 + Σ2 + Σ3.

To finish proving Lemma 3.3.2, we need only to show n
1
2 gn1 = op(1) and n

1
2 gn2 = op(1).

In fact, from (b2), (h3), (u1), (kl) and (3.21), by the Cauchy-Schwarz inequality, we have

|n
1
2 gn1| =

∣∣∣∣n 1
2

∫
U∗n(z)[

˙̂
fZ̄(z, θ0)− ḟZ̄(z, θ0)]dΠ(z)

∣∣∣∣
≤n

1
2

(∫
[U∗n(z)]2dΠ(z)

) 1
2
(∫

[
˙̂
fZ̄(z, θ0)− ḟZ̄(z, θ0)]2dΠ(z)

) 1
2

=n
1
2Op

(
1√
nb

)
Op

(
1√
n

)
= Op

(
1√
nb

)
= op(1). (3.28)
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Similarly, from (x3), (3.21), and the result from Lemma 3.3.1, we obtain

|n
1
2 gn2| =

∣∣∣∣n 1
2

∫
U∗n(z)[

˙̂
fZ̄(z, θ∗n)− ˙̂

fZ̄(z, θ0)]dΠ(z)

∣∣∣∣
≤
[
n

1
2

∫
(U∗n(z))2dΠ(z)

] 1
2
[
n

1
2

∫
[

˙̂
fZ̄(z, θ∗n)− ˙̂

fZ̄(z, θ0)]2dΠ(z)

] 1
2

=Op

(
1√
n

1
2 b

)
op

(√
n

1
2 b
)
Op(1) = op(1).

This completes the proof of Lemma 3.3.2.

Lemma 3.3.3. Suppose H0, (z1)–(z4), (x1), (x2), (b1)–(b3), and (π1). Then

√
n

∫
Z∗n(z, θ∗n)

˙̂
fZ̄(z, θ∗n)dΠ(z) = Rn

√
n(θ∗n − θ0)

with Rn = Σ0 + op(1), where Z∗n(z, θ) is as defined in (3.19), and Σ0 is as in (3.7).

Proof. Recalling dn(z, θ, θ0) defined in (3.19), n
1
2

∫
Z∗n(z, θ∗n)

˙̂
fZ̄(z, θ∗n)dΠ(z) can be rewritten

as

n
1
2

∫
˙̂
fZ̄(z, θ∗n)(dn(z, θ∗n, θ0) + (ḟZ̄(z, θ0))T (θ∗n − θ0))dΠ(z)

=

∫
˙̂
fZ̄(z, θ∗n)

[
dn(z, θ∗n, θ0)

‖θ∗n − θ0‖
(θ∗n − θ0)T

‖θ∗n − θ0‖
+ (

˙̂
fZ̄(z, θ0))T

]
dΠ(z) · [n

1
2 (θ∗n − θ0)]

Therefore, we only need to show that

∥∥∥∥∫ ˙̂
fZ̄(z, θ∗n)

dn(z, θ∗n, θ0)

‖θ∗n − θ0‖
(θ∗n − θ0)T

‖θ∗n − θ0‖
dΠ(z)

∥∥∥∥ = op(1) (3.29)

and ∫
˙̂
fZ̄(z, θ∗n)[

˙̂
fZ̄(z, θ0)]TdΠ(z) = Σ0 + op(1). (3.30)

To prove (3.29), from (x2) and the consistency of θ∗n, the L.H.S. of (3.29) is bounded
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above by

sup
x

|fX(x, θ∗n)− fX(x, θ0)− (θ∗n − θ0)T ḟX(x, θ0)|
‖θ∗n − θ0‖

∫
‖ ˙̂
fZ̄(z, θ∗n)‖dΠ(z)

∫
f̂Ū(u)du

=op(1)Op(1) = op(1),

by observing the fact that
∫
‖ ˙̂
fZ̄(z, θ∗n)‖dΠ(z) is bounded above by

∫
‖ ˙̂
fZ̄(z, θ∗n)− ˙̂

fZ̄(z, θ0)‖dΠ(z) +

∫
‖ ˙̂
fZ̄(z, θ0)‖dΠ(z)

≤
∫
‖ḟX(z − u, θ∗n)− ḟX(z − u, θ0)‖f̂Ū(u)dudΠ(z) +

∫
‖ ˙̂
fZ̄(z, θ0)‖dΠ(z)

=op(b
1/2)Op(1) +Op(1) = Op(1),

from Lemma 3.3.1, (x3) and (3.22). Next, we will prove (3.30). By the Cauchy-Schwarz

inequality, from (b1) and (x3), one sees that

∥∥∥∥∫ [
˙̂
fZ̄(z, θ∗n)− ˙̂

fZ̄(z, θ0)](
˙̂
fZ̄(z, θ0))TdΠ(z)

∥∥∥∥
≤
[∫ ∥∥∥ ˙̂

fZ̄(z, θ∗n)− ˙̂
fZ̄(z, θ0)

∥∥∥2

dΠ(z)

]1/2 [∫
‖ ˙̂
fZ̄(z, θ0)‖2dΠ(z)

]1/2

≤op(b1/2)Op(1) = op(1).

Therefore, the L.H.S. of (3.30) can be written as

∫
[

˙̂
fZ̄(z, θ∗n)− ˙̂

fZ̄(z, θ0)][
˙̂
fZ̄(z, θ0)]TdΠ(z) +

∫
˙̂
fZ̄(z, θ0)[

˙̂
fZ̄(z, θ0)]TdΠ(z)

≤op(1) +

∫
˙̂
fZ̄(z, θ0)[

˙̂
fZ̄(z, θ0)]TdΠ(z) = Σ0 + op(1),

where the last step is due to the fact
∫ ˙̂
fZ̄(z, θ0)[

˙̂
fZ̄(z, θ0)]TdΠ(z) = Σ0 + op(1), which is

verified below.
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In fact,

∫
˙̂
fZ̄(z, θ0)[

˙̂
fZ̄(z, θ0)]TdΠ(z)

=

∫
[

˙̂
fZ̄(z, θ0)− ḟZ̄(z, θ0) + ḟZ̄(z, θ0)][

˙̂
fZ̄(z, θ0)− ḟZ̄(z, θ0) + ḟZ̄(z, θ0)]TdΠ(z)

=

∫
[

˙̂
fZ̄(z, θ0)− ḟZ̄(z, θ0)][

˙̂
fZ̄(z, θ0)− ḟZ̄(z, θ0)]TdΠ(z)

+ 2

∫
˙̂
fZ̄(z, θ0)[

˙̂
fZ̄(z, θ0)− ḟZ̄(z, θ0)]TdΠ(z) +

∫
ḟZ̄(z, θ0)[ḟZ̄(z, θ0)]TdΠ(z)

where
∫
‖ ˙̂
fZ̄(z, θ0) − ḟZ̄(z, θ0)‖dΠ(z) = op(1) and by using the Cauchy–Schwarz inequality,

we know ∥∥∥∥∫ ˙̂
fZ̄(z, θ0)[

˙̂
fZ̄(z, θ0)− ḟZ̄(z, θ0)]TdΠ(z)

∥∥∥∥ ≤ Op(1)op(1) = op(1).

Theorem 3.3.3. Under H0, when (x1)–(x3), (z1)–(z4), (h1)–(h3), (b1)–(b3), (π1), (kl)

and (u1) hold, we have n
1
2 (θ∗n − θ0) → Nq(0,Σ

−1
0 ΣΣ−1

0 ), where Σ = Σ1 + Σ2 + Σ3 and Σi,

i = 0, 1, 2, 3 are defined in (3.7).

Proof. Based on the discussion at the beginning of this section, it is sufficient to show that
√
n
∫
U∗n(z)

˙̂
fZ̄(z, θ∗n)dΠ(z) converges in distribution to the normal distribution N(0,Σ), while

√
n
∫
Z∗n(z, θ∗n)

˙̂
fZ̄(z, θ∗n)dΠ(z) =

√
nΣ0(θ∗n− θ0) + op(1). Then the theorem can be proved by

combining the results from Lemma 3.3.1, 3.3.2 and 3.3.3.

3.3.3 Asymptotic Normality of the Centered MD Estimator

We will derive the asymptotic normality of θ̂n, the minimizer of Tn(θ) in (3.6).

The following fact shall be used constantly in the subsequent proofs. Although the

proof is not complicated, it is reproduced here, with a short justification, for the sake of

completeness.

Suppose g(z, x) is a bivariate function such that and for each z in the support of Π,
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Eg(z,X) and Eg2(z,X) are continuous function of z. Then we have

∫
E

[
1

n

n∑
i=1

g(z,Xi)

]2

dΠ(z) =

∫
E

[
1

n2

n∑
i=1

g2(z,Xi) +
1

n2

∑
i 6=j

g(z,Xi)g(z,Xj)

]
dΠ(z)

=
1

n

∫
Eg2(z,X1)dΠ(z) +

n(n− 1)

n2

∫
[Eg(z,X1)]2dΠ(z) = Op(1). (3.31)

Since the derivation of the asymptotic normality of θ̂n is tedious, a series of lemmas will

be introduced first to help us better understand the whole process.

Define

µ̇n(z, θ) =

∫
Lb(z − x)

˙̂
fZ̄(x, θ)dx, µ̇h(z) = Eµ̇n(z, θ0),

Un(z, θ) =f̂Z̄(z)−
∫
Lb(z − x)f̂Z̄(x, θ)dx, Un(z) = Un(z, θ0),

Zn(z, θ) =Un(z)− Un(z, θ) =

∫
Lb(z − x)[f̂Z̄(x, θ)− f̂Z̄(x, θ0)]dx, (3.32)

Lemma 3.3.4. Suppose (x1), then Ln :=
∫
µ̇n(z, θ0)(µ̇n(z, θ0))TdΠ(z) = Σ0 + op(1), where

Σ0 is as in (3.7).

Proof. Recall µ̇h(z) = Eµ̇n(z, θ0). Then

∥∥∥∥Ln − ∫ µ̇h(z)(µ̇h(z))TdΠ(z)

∥∥∥∥
=

∥∥∥∥∥
∫

(µ̇n(z, θ0)± µ̇h(z))(µ̇n(z, θ0)± µ̇h(z))TdΠ(z)−
∫
µ̇h(z)(µ̇h(z))TdΠ(z)

∥∥∥∥∥
≤
∫
‖µ̇n(z, θ0)− µ̇h(z)‖2dΠ(z) + 2

∫
‖µ̇n(z, θ0)− µ̇h(z)‖ ‖µ̇h(z)‖dΠ(z) (3.33)

where ± stands for minus and plus the term afterwards.

For
∫
‖µ̇n(z, θ0)− µ̇h(z)‖2dΠ(z), first note that µ̇n(z, θ0)− µ̇h(z) is an average of centered

iid r.v.’s. Using Fubini Theorem, doing the transformation z−x = bx1, z−y = by1, u−s =

hu1, v−s = hv1, by the fact that variance is bounded above by the second moment, and the

assumed continuity of fX , we obtain that E
∫
‖µ̇n(z, θ0) − µ̇h(z)‖2dΠ(z) is bounded above
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by

1

n

∫
E

∥∥∥∥∥
∫

1

b
L

(
z − x
b

)∫
ḟX(x− u, θ0)

1

h
K

(
u− Ũ1

h

)
dudx

∥∥∥∥∥
2

dΠ(z)

=
1

n

∫
L(x1)ḟX(z − bx1 − s− hu1, θ0)K(u1)L(y1)ḟTX(z − by1 − s− hv1, θ0)

·K(v1)fŪ(s) d(u1, x1, v1, y1, s,Π(z)) = O

(
1

n

)
= o(1).

Therefore, ∫
‖µ̇n(z, θ0)− µ̇h(z)‖2dΠ(z) = Op

(
1

n

)
= op(1). (3.34)

For the second term in (3.33), from (3.31), one can observe that

∫
‖µ̇h(z)‖2dΠ(z) =

∫
‖Eµ̇n(z, θ0)‖2dΠ(z) = O(1). (3.35)

By the Cauchy-Schwarz inequality,
∫
‖µ̇n(z, θ0)− µ̇h(z)‖ ‖µ̇h(z)‖dΠ(z) is of order op(1).

Therefore ‖Ln −
∫
µ̇h(z)(µ̇h(z))TdΠ(z)‖ = o(1). To finish this proof, we only need to show∫

µ̇h(z)(µ̇h(z))TdΠ(z) = Σ0 + o(1).

By changing variables, we have

µ̇h(z) =Eµ̇n(z, θ0)

=
1

n

n∑
i=1

E

[∫
Lb(z − x)

∫
ḟX(x− u, θ0)Kh(u− Ũi)dudx

]
=

∫
Lb(z − x)ḟX(x− u, θ0)Kh(u− s)fŪ(s) d(s, u, x)

=

∫
L(x)ḟX(z − bx− s− hu, θ0)K(u)fŪ(s) d(s, u, x). (3.36)

62



Therefore, by using the continuity assumption of fX , one obtains

∫
µ̇h(z)(µ̇h(z))TdΠ(z)

=

∫
L(x)ḟX(z − bx− s− hu, θ0)K(u)fŪ(s)

· L(y)ḟTX(z − by − t− hv, θ0)K(v)fŪ(t) d(s, u, x, t, v, y,Π(z))

b→0
h→0−→

∫
L(x)ḟX(z − s, θ0)K(u)fŪ(s)L(y)ḟTX(z − t, θ0)K(v)fŪ(t) d(s, u, x, t, v, y,Π(z))

=

∫
ḟX(z − s, θ0)fŪ(s)ḟTX(z − t, θ0)fŪ(t) d(s, t,Π(z))

which is
∫
ḟZ̄(z, θ0)(ḟZ̄(z, θ0))TdΠ(z) by simple algebra.

Lemma 3.3.5. Suppose H0, (z1)–(z4), (b1)–(b2), (x1)–(x2), (π1) hold, then nb‖θ̂n−θ0‖2 =

Op(1).

Proof. Note that
∫
U2
n(z)dΠ(z) =

∫ [
f̂Z̄(z)−

∫
Lb(z − x)f̂Z̄(x, θ0)dx

]2

dΠ(z) = Tn(θ0). From

(3.15) and (h3), one can verify that

∫
U2
n(z)dΠ(z) = Tn(θ0) = Op

(
1

nb

)
. (3.37)

Recall Zn(z, θ) = Un(z) − Un(z, θ) and let Dn(θ) =
∫
Z2
n(z, θ)dΠ(z). We are going to show

nbDn(θ̂n) = Op(1). To see this, observe that nbTn(θ0) = Op(1) as shown above and θ̂n is the

minimizer of Tn(θ). From Tn(θ̂n) ≤ Tn(θ0) = Op(
1
nb

), we know nbTn(θ̂n) = Op(1) and

nbDn(θ̂n) =nb

∫
[Un(z)− Un(z, θ̂n)]2dΠ(z) ≤ 2

[
nb

∫
U2
n(z)dΠ(z) + nb

∫
U2
n(z, θ̂n)dΠ(z)

]
=2[nbTn(θ0) + nbTn(θ̂n)] = Op(1).

Next, we shall show Dn(θ̂n)

‖θ̂n−θ0‖2
≥ B with arbitrarily large probability, where B is an arbi-

trary positive number.

Op(1) = nbDn(θ̂n) = nb‖θ̂n − θ0‖2 Dn(θ̂n)

‖θ̂n − θ0‖2
.
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Recall the definition of dn(z, θ, θ0) in (3.19) and Zn(z, θ̂n) in (3.32), we have

Dn(θ̂n)

‖θ̂n − θ0‖2
=

∫ [∫
Lb(z − x)(f̂Z̄(x, θ̂n)− f̂Z̄(x, θ0))dx

]2

dΠ(z)

‖θ̂n − θ0‖2

=

∫ [∫
Lb(z − x)dn(x, θ̂n, θ0)dx+

∫
Lb(z − x)(θ̂n − θ0)T

˙̂
fZ̄(x, θ0)dx

]2

dΠ(z)

‖θ̂n − θ0‖2

≥Bn1 +Bn2 − 2B
1/2
n1 B

1/2
n2 ,

where

Bn1 =

∫ [∫
Lb(z − x)

dn(x, θ̂n, θ0)

‖θ̂n − θ0‖
dx

]2

dΠ(z),

Bn2 =

∫ [∫
Lb(z − x)

(θ̂n − θ0)T
˙̂
fZ̄(x, θ0)

‖θ̂n − θ0‖
dx

]2

dΠ(z).

We can verify Bn1 = op(1). In fact, from (x2) and the consistency of θ̂n,

EBn1 =E

∫ [∫
Lb(z − x)

f̂Z̄(x, θ̂n)− f̂Z̄(x, θ0)− (θ̂n − θ0)T
˙̂
fZ̄(x, θ0)

‖θ̂n − θ0‖
dx

]2

dΠ(z)

=E

∫ [ ∫
Lb(z − x)

∫
fX(x− u, θ̂n)− fX(x− u, θ0)− (θ̂n − θ0)T ḟX(x− u, θ0)

‖θ̂n − θ0‖

· f̂Ū(u)dudx
]2

dΠ(z)

≤

[
sup
x

|fX(x, θ̂n)− fX(x, θ0)− (θ̂n − θ0)T ḟX(x− u, θ0)|
‖θ̂n − θ0‖

]2

· E
∫ [∫

Lb(z − x)

∫
f̂Ū(u)dudx

]2

dΠ(z)

is of order op(1) by observing that E
∫

[
∫
Lb(z − x)

∫
f̂Ū(u)dudx]2dΠ(z) = O(1).

For Bn2, we notice that Bn2 ≥ inf‖s‖=1 Σn(s), where

Σn(s) =

∫ [∫
Lb(z − x)sT

˙̂
fZ̄(x, θ0)dx

]2

dΠ(z) =

∫
[sT µ̇n(z, θ0)]2dΠ(z).
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By Lemma 3.3.4, we have Σn(s) =
∫
sT µ̇n(z, θ0)(µ̇n(z, θ0))T sdΠ(z) = sTΣ0s+ op(1).

Also note that for any δ > 0, and any two unit vector s, s1 ∈ Rq, ‖s− s1‖ < δ, we have

|Σn(s)− Σn(s1)| =
∣∣∣∣∫ sT µ̇n(z, θ0)(µ̇n(z, θ0))T sdΠ(z)−

∫
sT1 µ̇n(z, θ0)(µ̇n(z, θ0))T s1dΠ(z)

∣∣∣∣
=
∣∣∣(s− s1)T

∫
µ̇n(z, θ0)(µ̇n(z, θ0))TdΠ(z)(s− s1)

+ 2sT1

∫
µ̇n(z, θ0)(µ̇n(z, θ0))TdΠ(z)(s− s1)

∣∣∣
≤δ(δ + 2)

∫
‖µ̇n(z, θ0)‖2dΠ(z).

By Lemma 3.3.4, we have
∫
‖µ̇n(z, θ0)‖2dΠ(z) = Op(1). This fact together with the com-

pactness of the set {s ∈ Rq; ‖s‖ = 1} imply sup‖s‖=1 |Σn(s) − sTΣ0s| = op(1). Therefore,

Bn2 ≥ inf‖s‖=1 s
TΣ0s + op(1). We also have 1

2
B

1/2
n1 B

1/2
n2 = op(1) by the Cauchy-Schwarz

inequality. These facts imply

Dn(θ̂n)

‖θ̂n − θ0‖
≥ inf
‖s‖=1

sTΣ0s with arbitrarily large probability.

This concludes the proof of Lemma 3.3.5.

Lemma 3.3.6. Suppose H0, (z1)–(z4), (b1)–(b2), (x1), (x3) hold. Then

∫
µ̇n(z, θ0)(µ̇n(z, θ̂n))TdΠ(z) = Σ0 + op(1).

Proof. Note that

∫
µ̇n(z, θ0)(µ̇n(z, θ̂n))TdΠ(z)

=

∫
µ̇n(z, θ0)[µ̇n(z, θ̂n)− µ̇n(z, θ0)]TdΠ(z) +

∫
µ̇n(z, θ0)(µ̇n(z, θ0))TdΠ(z).

In view of Lemma 3.3.4, we only need to show the upper bound of
∫
µ̇n(z, θ0)[µ̇n(z, θ̂n)−
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µ̇n(z, θ0)]TdΠ(z) is op(1). In fact, by the Cauchy-Schwarz inequality,

∥∥∥∥∫ µ̇n(z, θ0)[µ̇n(z, θ̂n)− µ̇n(z, θ0)]TdΠ(z)

∥∥∥∥2

≤
∫
‖µ̇n(z, θ0)‖2dΠ(z) ·

∫
‖µ̇n(z, θ̂n)− µ̇n(z, θ0)‖2dΠ(z).

Note that
∫
‖µ̇n(z, θ0)‖2dΠ(z) = Op(1). Moreover, from (b1), (x3), and by the consistency

of θ̂n,

∫
‖µ̇n(z, θ̂n)− µ̇n(z, θ0)‖2dΠ(z)

=

∫ ∥∥∥∥∫ Lb(z − x)

∫
(ḟX(x− u, θ̂n)− ḟX(x− u, θ0))f̂Ū(u)dudx

∥∥∥∥2

dΠ(z)

≤ sup
x
‖ḟX(x, θ̂n)− ḟX(x, θ0)‖2

∫ [∫
Lb(z − x)

∫
f̂Ū(u)dudx

]2

dΠ(z)

=op(b)

∫ [∫
f̂Ū(u)du

]2

dΠ(z) = op(b)Op(1) = op(1). (3.38)

Therefore,

∫
µ̇n(z, θ0)(µ̇n(z, θ̂n))TdΠ(z) =

∫
µ̇n(z, θ0)(µ̇n(z, θ0))TdΠ(z) + op(1) = Σ0 + op(1).

Lemma 3.3.7. Suppose H0, (b1)–(b2), (h3), (π1), (z1)–(z4), (x1), (x3), (kl), and (u1) hold,

then
√
n

∫
Un(z, θ0)µ̇n(z, θ̂n)dΠ(z)→ Nq(0,Σ),

where Σ = Σ1 + Σ2 + Σ3 and Σi, i = 1, 2, 3 are as defined in (3.7).

Proof. For convenience, we shall give the proof here only for the case d = 1, i.e., when

µ̇n(z, θ) is one dimensional. For multidimensional case, the result can be proved by using

linear combination of its components instead of µ̇n(z, θ).
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Note that
√
n
∫
Un(z)µ̇n(z, θ̂n)dΠ(z) can be written as the sum of the three terms:

gn1 =
√
n

∫
Un(z)[µ̇n(z, θ̂n)− µ̇n(z, θ0)]dΠ(z)

gn2 =
√
n

∫
Un(z)[µ̇n(z, θ0)− µ̇h(z)]dΠ(z)

Gn =
√
n

∫
Un(z)µ̇h(z)dΠ(z)

We are going to show the first two terms are op(1) and the last one converges to N(0,Σ).

We add and subtract
∫
Lb(z − x)fZ̄(x, θ0)dx and

∫
Lb(z − x)Ef̂Z̄(x, θ0)dx from Un(z),

then Gn can be written as the sum of Gn1, Gn2 and Gn3, where

Gn1 =
√
n

∫ [
f̂Z̄(z)−

∫
Lb(z − x)fZ̄(x, θ0)dx

]
µ̇h(z)dΠ(z)

Gn2 =
√
n

∫ [∫
Lb(z − x)

∫
fX(x− u, θ0)(fŪ(u)− Ef̂Ū(u))dudx

]
µ̇h(z)dΠ(z)

Gn3 =
√
n

∫ [∫
Lb(z − x)

∫
fX(x− u, θ0)(Ef̂Ū(u)− f̂Ū(u))dudx

]
µ̇h(z)dΠ(z)

It suffices to show Gn1 +Gn3 → N(0,Σ), Gn2 = op(1). Let sni = sni1 + sni2, where

sni1 =

∫ [
Lb(z − Z̄i)−

∫
Lb(z − x)fZ̄(x, θ0)dx

]
µ̇h(z)dΠ(z),

sni2 =

∫ [∫
Lb(z − x)

∫
fX(x− u, θ0)(EKh(u− Ũ1)−Kh(u− Ũi))dudx

]
µ̇h(z)dΠ(z).

Then We can rewrite Gn1 +Gn3 = 1√
n

∑n
i=1(sni1 + sni2) = 1√

n

∑n
i=1 sni.

Note that for each n, sni are iid centered r.v.’s. To prove Gn1 +Gn3 → N(0,Σ), we only

need to show

Es2
ni1 → Σ1, Es2

ni2 → Σ2, 2Esni1sni2 → Σ3,

E{s2
niI(|sni| > n

1
2η)} → 0, ∀η > 0. (3.39)
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By Fubini,

Es2
ni1 =

∫∫
[ELb(z − Z̄)Lb(y − Z̄)− ELb(z − Z̄)ELb(y − Z̄)]µ̇h(z)µ̇h(y)dΠ(z)dΠ(y)

=

∫
Lb(z − s)Lb(y − s)fZ̄(s, θ0)µ̇h(z)µ̇h(y)π(z)π(y) d(s, z, y)

−
[∫∫

Lb(z − s)fZ̄(s, θ0)µ̇h(z)π(z)dsdz

]2

.

By using the result in (3.36), and the assumed continuity of L and π, one obtains

lim
b→0

Es2
ni1 =lim

b→0

∫
L(z)L(y)fZ̄(s, θ0)µ̇h(s+ bz)µ̇h(s+ by)π(s+ bz)π(s+ by) d(s, z, y)

−
[∫∫

L(z)fZ̄(s, θ0)µ̇h(s+ bz)π(s+ bz)dsdz

]2

=

∫
L(z)L(y)fZ̄(s, θ0)

(∫
ḟX(s− u, θ0)fŪ(u)du

)2

π2(s) d(s, z, y)

−
[∫∫

L(z)fZ̄(s, θ0)

(∫
ḟX(s− u, θ0)fŪ(u)du

)
π(s)dsdz

]2

.

By simple algebra, we see this is indeed Σ1. Denote

HŨi
(z, θ0) =

∫
Lb(z − x)

∫
fX(x− u, θ0)Kh(u− Ũi)dudx. (3.40)

Then

Es2
ni2 =E

[∫
[EHŨ(z, θ0)−HŨi

(z, θ0)]µ̇h(z)dΠ(z)

]2

=E

[
E

(∫
HŨ(z, θ0)µ̇h(z)dΠ(z)

)
−
∫
HŨ(z, θ0)µ̇h(z)dΠ(z)

]2

which equals the variance of
∫
HŨ(z, θ0)µ̇h(z)dΠ(z), and can be written as the difference

between E[
∫
HŨ(z, θ0)µ̇h(z)dΠ(z)]2 and [E

∫
HŨ(z, θ0)µ̇h(z)dΠ(z)]2. We then calculate these
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two terms one by one. By Fubini, one obtains that

E

[∫
HŨ(z, θ0)µ̇h(z)dΠ(z)

]2

=E

∫∫
HŨ(z, θ0)µ̇h(z)HŨ(y, θ0)µ̇h(y)dΠ(z)dΠ(y)

=

∫∫
E(HŨ(z, θ0)HŨ(y, θ0))µ̇h(z)µ̇h(y)dΠ(z)dΠ(y)

=

∫∫ [ ∫
Lb(z − x)fX(x− u, θ0)Kh(u− s)Lb(y − t)fX(t− v, θ0)

·Kh(v − s)fŪ(s) d(u, x, v, t, s)
]
µ̇h(z)µ̇h(y)π(z)π(y)dzdy

which converges to
∫ [∫

fX(x− s, θ0)ḟZ̄(x, θ0)π(x)dx
]2

fŪ(s)ds as b → 0, h → 0 by simple

algebra. And

E

∫
HŨ(z, θ0)µ̇h(z)dΠ(z)

=

∫ [∫
Lb(z − x)fX(x− u, θ0)Kh(u− s)fŪ(s) d(u, x, s)

]
µ̇h(z)dΠ(z)

=

∫
L(z1)fX(x− s− hu1, θ0)Kh(u1)fŪ(s)µ̇h(x+ bz1)π(x+ bz1) d(u1, x, s, z1)

converges to
∫ [∫

fX(x− s, θ0)ḟZ̄(x, θ0)π(x)dx
]
fŪ(s)ds. Therefore, Es2

ni2 converges to

∫ [∫
fX(x− s, θ0)ḟZ̄(x, θ0)dΠ(x)

]2

fŪ(s)ds−
[∫

fZ̄(x, θ0)ḟZ̄(x, θ0)dΠ(x)

]2

= Σ2.

Next, we consider Esni1sni2. Note that Esni1sni2 can be rewritten as

Esni1sni2

=E

∫
[Lb(z − Z̄i)− ELb(z − Z̄1)]µ̇h(z)dΠ(z)

[∫
[EHŨ(z, θ0)−HŨi

(z, θ0)]µ̇h(z)dΠ(z)

]
=E

∫∫
(Lb(z − Z̄i)− ELb(z − Z̄1))µ̇h(z)(EHŨ1

(y, θ0)−HŨi
(y, θ0))µ̇h(y)dΠ(z)dΠ(y)

=

∫∫
[ELb(z − Z̄1)EHŨ1

(y, θ0)− ELb(z − Z̄i)HŨi
(y, θ0)]µ̇h(z)µ̇h(y)dΠ(z)dΠ(y).
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Note that

ELb(z − Z̄1) =

∫
L(t)fZ̄(z − bt, θ0)dt,

EHŨ1
(y, θ0) =

∫
L(x)fX(y − bx− u, θ0)K(s)fŪ(u− hs) d(u, x, s).

By the transformation z − s− (p+ q)/2 = bv and u− (p− q)/2 = ht, we obtain

ELb(z − Z̄i)HŨi
(y, θ0)

=E

[
Lb

(
z −Xi −

U1 + U2

2

)∫
Lb(y − x)

∫
fX(x− u, θ0)Kh

(
u− U1 − U2

2

)
dudx

]
=

∫
Lb

(
z−s− p+ q

2

)
Lb(y−x)fX(x−u, θ0)Kh

(
u− p− q

2

)
fX(s, θ0)fU(p)fU(q) d(u, x, s, p, q)

=2

∫
L(v)L(x)fX(y − bx− u, θ0)K(t)fU(z − s− bv + u− ht)

· fU(z − s− bv − u+ ht)fX(s, θ0) d(u, x, s, v, t)

Therefore, when b → 0, h → 0, by using the continuity of fZ̄ , fX , fŪ and fU , we have

2Esni1sni2 converges to

(∫
L(t)fZ̄(z, θ0)dt

)(∫
L(x)fX(y − u, θ0)K(s)fŪ(u) d(u, x, s)

)
· ḟZ̄(z, θ0)ḟZ̄(y, θ0)dΠ(z)dΠ(y)− 2

∫
L(v)L(x)fX(y − u, θ0)K(t)fX(s, θ0)

· fU(z − s+ u)fU(z − s− u)ḟZ̄(z, θ0)ḟZ̄(y, θ0)π(z)π(y) d(u, x, s, v, t, z, y)

=2

∫∫
fZ̄(z, θ0)fZ̄(y, θ0)ḟZ̄(z, θ0)ḟZ̄(y, θ0)dΠ(z)dΠ(y)− 2

∫
fX(y − u, θ0)

· fU(z − s+ u)fU(z − s− u)fX(s, θ0)ḟZ̄(z, θ0)ḟZ̄(y, θ0)π(z)π(y) d(u, s, z, y)

=2

[∫
fZ̄(z, θ0)ḟZ̄(z, θ0)dΠ(z)

]2

− 2

∫∫ (∫
fX(y − u, θ0)fU(z − s+ u)

· fU(z − s− u)du
)
fX(s, θ0)ḟZ̄(z, θ0)ḟZ̄(y, θ0)dsdΠ(z)dΠ(y)
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which is indeed Σ3 by simple algebra. Next, we are going to prove (3.39). Note that

E{s2
niI(|sni| > n

1
2η)} = E

{
s2
niI

(
|sni|
n

1
2η

> 1

)}
≤ E

{
s2
ni |sni|δ

(n
1
2η)δ

}
= η−δn−δ/2E|sni|2+δ.

By using Cr inequality, we have E|sni|2+δ ≤ 21+δE(|sni1|2+δ + |sni2|2+δ). Using Hölder’s

inequality, E(|sni1|2+δ) is bounded above by

E

∣∣∣∣∣
{∫

[Lb(z − Z̄i)− ELb(z − Z̄)]
2+δ

2 dΠ(z)

} 2
2+δ

·
{∫

(µ̇h(z))
2+δ
δ dΠ(z)

} δ
2+δ

∣∣∣∣∣
2+δ

=E

[∫
[Lb(z − Z̄i)− ELb(z − Z̄)]

2+δ
2 dΠ(z)

]2

·
[∫

(µ̇h(z))
2+δ
δ dΠ(z)

]δ
= O(b−δ),

and it is not hard to see

E|sni2|2+δ =E

∣∣∣∣∫ (EHŨi
(z, θ0)−HŨi

(z, θ0))µ̇h(z)dΠ(z)

∣∣∣∣2+δ

=E

∣∣∣∣∫ HŨi
(z, θ0)µ̇h(z)dΠ(z)−

∫
EHŨi

(z, θ0)µ̇h(z)dΠ(z)

∣∣∣∣2+δ

= O(1).

Then

η−δn−δ/2E|sni|2+δ ≤η−δ21+δn−δ/2E(|sni1|2+δ + |sni2|2+δ) ≤ O(n−δ/2b−δ) +O(n−δ/2)

is of the order op(1). By the L-F C.L.T., we have Gn1 + Gn3 → N(0,Σ), where Σ =

Σ1 + Σ2 + Σ3.

To finish the proof of Lemma 3.3.7, it suffices to show gn1 = op(1), gn2 = op(1) and

Gn2 = op(1). In fact, from (3.37) and (3.38), by the Cauchy-Schwarz inequality, we have

gn1 =
√
n

∫
Un(z)[µ̇n(z, θ̂n)− µ̇n(z, θ0)]dΠ(z)

≤
√
n

[∫
U2
n(z)dΠ(z)

] 1
2
{∫

[µ̇n(z, θ̂n)− µ̇n(z, θ0)]2dΠ(z)

} 1
2

=
√
nOp

(
1√
nb

)
op(b

1/2)

(3.41)
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which is of order op(1). From (b2), (3.34) and (3.37), we obtain

gn2 =
√
n

∫
Un(z)[µ̇n(z, θ0)− µ̇h(z)]dΠ(z)

≤
√
n

[∫
U2
n(z)dΠ(z)

] 1
2
[∫

[µ̇n(z, θ0)− µ̇h(z)]2dΠ(z)

] 1
2

=
√
nOp

(
1√
nb

)
Op

(
1√
n

)
= Op

(
1√
nb

)
= op(1).

From (u1) and (h3), we have

Gn2 =
√
n

∫ [∫
Lb(z − x)

∫
fX(x− u, θ0)(fŪ(u)− Ef̂Ū(u))dudx

]
µ̇h(z)dΠ(z)

=
√
n

∫ [∫
Lb(z − x)

∫
fX(x− u, θ0)

h2

2

∫
K(v)v2f ′′Ū(u+ θvh)dvdudx

]
µ̇h(z)dΠ(z)

=O(
√
nh2) = op(1),

where 0 < θ < 1. This completes the proof of Lemma 3.3.7.

Now we are ready to prove the asymptotic normality of
√
n(θ̂n − θ0). Let

Gn =

∫
Un(z)µ̇h(z)dΠ(z).

Theorem 3.3.4. Assume H0, (x1)–(x3), (z1)–(z4), (u1), (b1)–(b2), (h1), (h3), and (π1)

hold. Then n
1
2 (θ̂n − θ0) = Σ−1

0 n
1
2Gn + op(1). Consequently, n

1
2 (θ̂n − θ0)⇒ Nq(0,Σ

−1
0 ΣΣ−1

0 ),

where Σ = Σ1 + Σ2 + Σ3, and Σi, i = 0, 1, 2, 3 are as in (3.7).

Proof. Recall that θ̂n is the minimizer of Tn(θ). By the consistency of θ̂n, for sufficiently

large n, θ̂n will be in the interior of Θ and Ṫn(θ̂n) = 0. Recall definition µ̇n(z, θ) in (3.32),

Ṫn(θ̂n) can be written as

Ṫn(θ̂n) =− 2

∫ [
f̂Z̄(z)−

∫
Lb(z − x)f̂Z̄(x, θ̂n)dx

](∫
Lb(z − x)

˙̂
fZ̄(x, θ̂n)dx

)
dΠ(z)

=− 2

∫ [
f̂Z̄(z)−

∫
Lb(z − x)f̂Z̄(x, θ̂n)dx

]
µ̇n(z, θ̂n)dΠ(z).
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Therefore,

∫
f̂Z̄(z) µ̇n(z, θ̂n)dΠ(z) =

∫ [∫
Lb(z − x)f̂Z̄(x, θ̂n)dx µ̇n(z, θ̂n)

]
dΠ(z). (3.42)

Adding and subtracting
∫ ∫

Lb(z − x)f̂Z̄(x, θ0)dx µ̇n(z, θ̂n)dΠ(z) from the R.H.S. of (3.42),

recalling the definition of Un(z, θ) in (3.32), one obtains

∫ ∫
Lb(z − x)(f̂Z̄(x, θ̂n)− f̂Z̄(x, θ0))dx µ̇n(z, θ̂n)dΠ(z)

=

∫ [
f̂Z̄(z)−

∫
Lb(z − x)f̂Z̄(x, θ0)dx

]
µ̇n(z, θ̂n)dΠ(z) =:

∫
Un(z, θ0) µ̇n(z, θ̂n)dΠ(z).

Recall the definition of dn(x, θ, θ0) = f̂Z̄(x, θ) − f̂Z̄(x, θ0) − (θ − θ0)T
˙̂
fZ̄(x, θ0), the term

f̂Z̄(x, θ̂n)− f̂Z̄(x, θ0) can be written as dn(x, θ̂n, θ0) + (θ̂n − θ0)T
˙̂
fZ̄(x, θ0). Thus we have

{∫
µ̇n(z, θ̂n)

∫
Lb(z − x)

dn(x, θ̂n, θ0)

‖θ̂n − θ0‖
dxdΠ(z)

(θ̂n − θ0)T

‖θ̂n − θ0‖

+

∫
µ̇n(z, θ̂n)(µ̇n(z, θ0))TdΠ(z)

}√
n(θ̂n − θ0)

=
√
n
{∫

Un(z, θ0)µ̇n(z, θ̂n)dΠ(z)
}
.

From (x2) and the consistency of θ̂n, ‖
∫
µ̇n(z, θ̂n)[

∫
Lb(z−x)dn(x,θ̂n,θ0)

‖θ̂n−θ0‖
dx]dΠ(z) (θ̂n−θ0)T

‖θ̂n−θ0‖
‖

is bounded above by

sup
x

|fX(x, θ̂n)− fX(x, θ0)− (θ̂n − θ0)T ḟX(x, θ0)|
‖θ̂n − θ0‖

∫
‖µ̇n(z, θ̂n)‖

·

[∫
Lb(z − x)

∫
fŪ(u)dudx

]
dΠ(z) = op(1),

which is due to

∫
‖µ̇n(z, θ̂n)‖dΠ(z) ≤

∫
‖µ̇n(z, θ̂n)− µ̇n(z, θ0)‖dΠ(z) +

∫
‖µ̇n(z, θ0)‖dΠ(z) = Op(1).

Then the result of Theorem 3.3.4 is a consequence of Lemma 3.3.4 to 3.3.7.
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Remark 3.3.2. For the bandwidth assumptions, Theorem 3.3.3 requires both nb4 → 0 and

nh4 → 0, while Theorem 3.3.4 only requires nh4 → 0. The condition nb4 → 0 is needed to

deal with the asymptotic bias Ef̂Z̄(z)− fZ̄(z, θ0), while the condition nh4 → 0 is required to

dampen the effect of estimating fŪ by its kernel density estimate f̂Ū(u).

3.4 Asymptotic Distribution of the MD Test Statistic

This section contains the proofs of the asymptotic normality of the minimized distance T ∗n(θ∗n)

and Tn(θ̂n). We begin this section with a lemma, which will be used in the subsequent proofs.

Lemma 3.4.1. Let Xi, i = 1, 2, . . . , n be a sequence of i.i.d. random variables, f(z, ·) and

g(z, ·) be two measurable functions. Suppose
∫
Ef(z,X)dΠ(z) < ∞,

∫
Eg(z,X)dΠ(z) < ∞

and
∫
Ef(z,X)g(z,X)dΠ(z) <∞, then

∫ [
1

n

n∑
i=1

(f(z,Xi)− Ef(z,X))

][
1

n

n∑
i=1

(g(z,Xi)− Eg(z,X))

]
dΠ(z) = Op

(
1

n

)
.

Proof. First, for i 6= j, E
∫

[f(z,Xi) − Ef(z,X)][g(z,Xj) − Eg(z,X)]dΠ(z) = 0 due to the

independence of Xi and Xj. Therefore,

E

∫ [
1

n

n∑
i=1

(f(z,Xi)− Ef(z,X))

][
1

n

n∑
i=1

(g(z,Xi)− Eg(z,X))

]
dΠ(z)

=
1

n2

n∑
i=1

E

∫
[f(z,Xi)− Ef(z,X)][g(z,Xi)− Eg(z,X)]dΠ(z)

=
1

n

∫
[Ef(z,X)g(z,X)− Ef(z,X)Eg(z,X)]dΠ(z) = O

(
1

n

)
.
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Moreover,

E

{∫ [
1

n

n∑
i=1

(f(z,Xi)− Ef(z,X))

][
1

n

n∑
i=1

(g(z,Xi)− Eg(z,X))

]
dΠ(z)

}2

=
1

n4

∑
i,j

E

[∫
(f(z,Xi)− Ef(z,X))(g(z,Xi)− Eg(z,X))dΠ(z)

]2

+
n(n− 1)

n4
E
[ ∫

(f(z,X1)− Ef(z,X))(g(z,X1)− Eg(z,X))dΠ(z)

·
∫

(f(z,X2)− Ef(z,X))(g(z,X2)− Eg(z, Z))dΠ(z)
]

+
n(n− 1)

n4
E
[ ∫

(f(z,X1)− Ef(z,X))(g(z,X2)− Eg(z,X))dΠ(z)

·
∫

(f(z,X2)− Ef(z,X))(g(z,X1)− Eg(z, Z))dΠ(z)
]

= O

(
1

n2

)
.

Hence the desired result.

The following theorem states the asymptotic distribution of the minimum distance test

statistic based on T ∗n(θ∗n).

Theorem 3.4.1. Suppose H0, (x1)–(x3), (z1)–(z4), (b1)–(b3), (h1)–(h3), (π1), (kl), and

(u1). Then

nb1/2(T ∗n(θ∗n)− Ĉn(θ∗n))⇒ N(0,Γ),

where Ĉn(θ∗n) and Γ are as defined in (3.7) and

Γ̂n =
2b

n2

∑
i 6=j

(∫ [
Lb(z − Z̄i)−

1

n

n∑
k=1

Lb(z − Z̄k)
][
Lb(z − Z̄j)−

1

n

n∑
k=1

Lb(z − Z̄k)
]
dΠ(z)

)2

Moreover, |Γ̂nΓ−1 − 1| = op(1).

Define

T ∗n (θ∗n) = Γ̂−1/2
n nb1/2(T ∗n(θ∗n)− Ĉn(θ∗n)). (3.43)

Consequently, H0 will be rejected whenever |T ∗n (θ∗n)| > Zα/2, where α is the asymptotic size

and Zα is the 100(1− α)% percentile of the standard normal distribution.
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The proof of this theorem is facilitated by the following three lemmas. Define

T̃n(θ0) =

∫
[f̂Z̄(z)− Ef̂Z̄(z)]2dΠ(z) (3.44)

Lemma 3.4.2. Suppose (b1)–(b2), (z1) and (π1) hold. Then nb1/2(T̃n(θ0)−Cn)⇒ N(0,Γ).

To prove Lemma 3.4.2, we need the following Theorem 3.4.2, which is Theorem 1 of Hall

(1984) and reproduced here for the sake of completeness.

Theorem 3.4.2. Let X̃i, 1 ≤ i ≤ n, be i.i.d. random vectors, and let

Un =
∑

1≤i<j≤n

Hn(X̃i, X̃j), Gn(x, y) = EHn(X̃1, x)Hn(X̃1, y),

where Hn is a sequence of measurable functions symmetric under permutation, with

EHn(X̃1, X̃2|X̃1) = 0, almost surely, and EH2
n(X̃1, X̃2) <∞, for each n ≥ 1.

If

[EG2
n(X̃1, X̃2) + n−1EH4

n(X̃1, X̃2)]/[EH2
n(X̃1, X̃2)]2 → 0,

then Un is asymptotically normally distributed with mean zero and variance

n2EH2
n(X̃1, X̃2)/2.

Now let’s prove Lemma 3.4.2.

Proof. Expanding the square, T̃n(θ0) can be written as the sum of the following two terms:

Cn =
1

n2

n∑
i=1

∫ (
Lb(z − Z̄i)−

∫
Lb(z − x)fZ̄(x, θ0)dx

)2

dΠ(z),

Mn =
1

n2

∑
i 6=j

∫ (
Lb(z − Z̄i)−

∫
Lb(z − x)fZ̄(x, θ0)dx

)
·
(
Lb(z − Z̄j)−

∫
Lb(z − x)fZ̄(x, θ0)dx

)
dΠ(z).
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Let

Hn(Z̄i, Z̄j) =
1

n
b1/2

∫
[Lb(z − Z̄i)− ELb(z − Z̄i)][Lb(z − Z̄j)− ELb(z − Z̄j)]dΠ(z), (3.45)

Gn(p, q) =EHn(Z̄1, p)Hn(Z̄1, q). (3.46)

One can easily show that the relation between Hn(Z̄i, Z̄j) and Mn can be built as

∑
1≤i≤j≤n

Hn(Z̄i, Z̄j) =
1

2
nb1/2Mn.

Observe that Hn(Z̄1, Z̄2) is symmetric, we have E(Hn(Z̄1, Z̄2)|Z̄1) = 0. Applying Theo-

rem 3.4.2, in order to show nb1/2Mn → N(0,Γ), we need to further prove the following two

results:

EH2
n(Z̄1, Z̄2) <∞, for any n. (3.47)

EG2
n(Z̄1, Z̄2) + n−1EH4

n(Z̄1, Z̄2)

[EH2
n(Z̄1, Z̄2)]2

→ 0. (3.48)

To prove (3.47), observe that for each n ≥ 1,

EH2
n(Z̄1, Z̄2)

=n−2bE
[ ∫

(Lb(z − Z̄1)− ELb(z − Z̄1))(Lb(z − Z̄2)− ELb(z − Z̄2))dΠ(z)

·
∫

(Lb(y − Z̄1)− ELb(y − Z̄1))(Lb(y − Z̄2)− ELb(y − Z̄2))dΠ(y)
]

=n−2b

∫∫ {
E[Lb(z − Z̄1)Lb(y − Z̄1)]− ELb(z − Z̄1)ELb(y − Z̄1)

}2

dΠ(z)dΠ(y).

By changing variable, z−s
b

= t, we have

E[Lb(z − Z̄1)Lb(y − Z̄1)] =
1

b

∫
L(t)L

(
y − z
b

+ t

)
fZ̄(z − bt, θ0)dt,

ELb(z − Z̄1) =

∫
L(t)fZ̄(z − bt, θ0)dt, ELb(y − Z̄1) =

∫
L(t)fZ̄(y − bt, θ0)dt.
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Usual calculation shows that EH2
n(Z̄1, Z̄2) equals

n−2

∫∫ [ ∫
L(t)L(z1 + t)fZ̄(y − bz1 − bt, θ0)dt− b

∫
L(t)fZ̄(y − bz1 − bt, θ0)dt∫

L(t)fZ̄(y − bt, θ0)dt
]2

· π(y − bz1)π(y)dz1dy =: n−2κn, (3.49)

where κn → Γ/2 as n → ∞. Next, consider (3.48). Similar to the argument above, one

obtains

EH4
n(Z̄1, Z̄2)

=n−4b2E

[∫
(Lb(z − Z̄1)− ELb(z − Z̄1))(Lb(z − Z̄2)− ELb(z − Z̄2))dΠ(z)

]4

=n−4b2

∫
[E(Lb(z − Z̄1)− ELb(z − Z̄1))(Lb(y − Z̄1)− ELb(y − Z̄1))

· (Lb(s− Z̄1)− ELb(s− Z̄1))(Lb(t− Z̄1)− ELb(t− Z̄1))] d(Π(z),Π(y),Π(s),Π(t))

=n−4b2

∫ [ 1

b3

∫
L(v)L

(
y − z
b

+ v

)
L

(
s− z
b

+ v

)
L

(
t− z
b

+ v

)
fZ̄(z − vb, θ0)

+ o(1/b3)
]2

d(Π(z),Π(y),Π(s),Π(t)) = O(n−4b2(1/b3)2b3) = O(n−4b−1). (3.50)

Recall Gn(p, q) defined in (3.46). For p, q ∈ R,

Gn(p, q) =EHn(Z̄1, p)Hn(Z̄1, q)

=n−2b

∫∫
[Lb(z − p)− ELb(z − p)][Lb(y − q)− ELb(y − q)]

· E[Lb(z − Z̄1)− ELb(z − Z̄1)][Lb(y − Z̄1)− ELb(y − Z̄1)]dΠ(z)dΠ(y).

Let

Bb(y − z) =E[(Lb(z − Z̄1)− ELb(z − Z̄1))(Lb(y − Z̄1)− ELb(y − Z̄1))]

=
1

b

∫
L(t)L(

y − z
b

+ t)fZ̄(z − bt, θ0)dt

−
∫
L(t)fZ̄(z − bt, θ0)dt

∫
L(t)fZ̄(y − bt, θ0)dt.
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Then by expanding the square of integrals and changing the variables, we obtain

EG2
n(Z̄1, Z̄2) =n−4b2

∫
Bb(v − z)Bb(w − y)Bb(y − z)Bb(w − v)

· d(Π(z),Π(y),Π(v),Π(w))

=O(n−4b2(1/b)4b3) = O(n−4b).

By observing the facts below,

EG2
n(Z̄1, Z̄2)

[EH2
n(Z̄1, Z̄2)]2

=
O(n−4b)

n−4κ2
n

= o(1),

n−1EH4
n(Z̄1, Z̄2)

[EH2
n(Z̄1, Z̄2)]2

=
O(n−5b−1)

n−4κ2
n

= O

(
1

nb

)
= o(1).

we have shown (3.48) holds.

Define

Γn =2b
n− 1

n

∫∫ {
E[Lb(z − Z̄1)Lb(y − Z̄1)]− ELb(z − Z̄1)ELb(y − Z̄1)

}2
dΠ(z)dΠ(y)

=2n(n− 1)EH2
n(Z̄1, Z̄2).

From (3.49), and by using the continuity of fZ̄ , π, one obtains

Γn
4

=
n(n− 1)

2
EH2

n(Z̄1, Z̄2)

=
1

2
n(n− 1)n−2

∫∫ [ ∫
L(t)L(z + t)fZ̄(y − bz − bt, θ0)dt

− b
∫
L(t)fZ̄(y − bz − bt, θ0)dt

∫
L(t)fZ̄(y − bt, θ0)dt

]2

π(y − bz)π(y)dzdy

b→0→ 1

2

∫∫ [∫
L(t)L(z + t)fZ̄(y, θ0)dt

]2

π2(y)dzdy

=
1

2

∫∫ [
fZ̄(y, θ0)

∫
L(t)L(z + t)dt

]2

π2(y)dzdy

=
1

2

∫∫
f 2
Z̄(y, θ0)π2(y)dy

(∫
L(t)L(z + t)dt

)2

dz =:
Γ

4
.
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In sum, nb1/2(T̃n(θ0)− Cn)⇒ N(0,Γ).

Lemma 3.4.3. Under H0, when (x1)–(x3), (z1)–(z4), (h1)–(h3), (b1)–(b3), (π1), (kl), and

(u1) hold, we have nb1/2(T ∗n(θ∗n)− T ∗n(θ0)) = op(1).

Proof. Recall the definition of U∗n(z) and Z∗n(z, θ) from (3.19),

T ∗n(θ0)− T ∗n(θ∗n) = 2

∫
U∗n(z)Z∗n(z, θ∗n)dΠ(z)−

∫
[Z∗n(z, θ∗n)]2dΠ(z) =: 2Q1 −Q2.

Thus, it suffices to show that nb1/2Q1 = op(1) and nb1/2Q2 = op(1).

Recalling dn(z, θ, θ0) as defined in (3.19), we have

Q1 =

∫
U∗n(z)Z∗n(z, θ∗n)dΠ(z) =

∫
U∗n(z)[f̂Z̄(z, θ∗n)− f̂Z̄(z, θ0)]dΠ(z)

=

∫
U∗n(z)dn(z, θ∗n, θ0)dΠ(z) + (θ∗n − θ0)T

∫
U∗n(z)

˙̂
fZ̄(z, θ0)dΠ(z)

=:Q11 +Q12.

For Q11, by using the Cauchy-Schwarz inequality, and from Theorem 3.3.3, (x2), and

(3.21), nb1/2|Q11| is bounded above by

nb1/2‖θ∗n − θ0‖
[∫

(U∗n(z))2dΠ(z)

] 1
2
[∫

d2
n(z, θ∗n, θ0)

‖θ∗n − θ0‖2
dΠ(z)

] 1
2

=nb1/2Op

(
1√
n

)
Op

(
1√
nb

)
op(1) = op(1). (3.51)

Consider Q12 and notice that

∫
U∗n(z)

˙̂
fZ̄(z, θ0)dΠ(z)

=

∫
U∗n(z)[

˙̂
fZ̄(z, θ0)− ḟZ̄(z, θ0)]dΠ(z) +

∫
U∗n(z)ḟZ̄(z, θ0)dΠ(z) =: gn1 + Sn.

80



Therefore, from Lemma 3.3.2 and (3.28), one can easily verify

nb1/2|Q12| =|nb1/2(θ∗n − θ0)T (gn1 + Sn)| ≤ nb1/2Op

(
1√
n

)[
Op

(
1

nb1/2

)
+Op

(
1√
n

)]

which is of order op(1). Next, we show nb1/2Q2 = op(1). In fact,

∫
[Z∗n(z, θ∗n)]2dΠ(z) =

∫
[dn(z, θ∗n, θ0) + (θ∗n − θ0)T

˙̂
fZ̄(z, θ0)]2dΠ(z)

=

∫
d2
n(z, θ∗n, θ0)dΠ(z) + (θ∗n − θ0)T

∫
˙̂
fZ̄(z, θ0)[

˙̂
fZ̄(z, θ0)]TdΠ(z)(θ∗n − θ0)

+ 2

∫
dn(z, θ∗n, θ0)(θ∗n − θ0)T

˙̂
fZ̄(z, θ0)dΠ(z)

=:Q21 +Q22 +Q23.

Consider Q21. From Theorem 3.3.3,

nb1/2Q21 =nb1/2

∫
d2
n(z, θ∗n, θ0)dΠ(z) = nb1/2‖θ∗n − θ0‖2

∫
d2
n(z, θ∗n, θ0)

‖θ∗n − θ0‖2
dΠ(z)

=nb1/2Op(1/n)op(1)

∫ [∫
fŪ(u)du

]2

dΠ(z) = op(1).

The proof of nb1/2Q22 = op(1) is similar.

‖nb1/2Q22‖ =nb1/2‖θ∗n − θ0‖2

∥∥∥∥∫ ˙̂
fZ̄(z, θ0)[

˙̂
fZ̄(z, θ0)]TdΠ(z)

∥∥∥∥
=Op(nb

1/2)Op

(
1

n

)
Op(1) = op(1).

For Q23, by using the Cauchy-Schwarz inequality, we have nb1/2Q23 = op(1).

This concludes the proof of Lemma 3.4.3.

Lemma 3.4.4. Suppose (z1), (π1), (b1)–(b2) hold. Then Γ̂n − Γ = op(1). Consequently,

Γ > 0 implies that |Γ̂nΓ−1 − 1| = op(1).

Proof. Let Γ̃n := 2b
n2

∑
i 6=j
(∫

[Lb(z − Z̄i)− ELb(z − Z̄i)][Lb(z − Z̄j)− ELb(z − Z̄j)]dΠ(z)
)2

.
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By using LLN, it is easy to show |Γ̂n − Γ̃n| = op(1). We only need to show Γ̂n − Γn = op(1).

The claim of this lemma follows from this result and the fact that Γn → Γ.

Note that Γn = EΓ̂n. Hence

E(Γn − Γ̂n)2 =4E

[∑
i 6=j

(H2
n(Z̄i, Z̄j)− EH2

n(Z̄i, Z̄j))

]2

≤4
∑
i 6=j

EH4
n(Z̄i, Z̄j) + 4

∑
i 6=j 6=k

EH2
n(Z̄i, Z̄j)H

2
n(Z̄j, Z̄k)

≤4(n2 + n3)EH4
n(Z̄i, Z̄j).

By using (3.50) and (b2), this upper bound is O((nb)−1) = o(1).

Combing the results of Lemma 3.4.2–3.4.4, we can prove Theorem 3.4.1 as follows:

Proof of Theorem 3.4.1. Recall T̃ (θ0) defined in (3.44). Adding and subtracting Ef̂Z̄(z),

fZ̄(z, θ0) and Ef̂Z̄(z, θ0) from f̂Z̄(z) − f̂Z̄(z, θ0), we can rewrite T ∗n(θ0) as the sum of the

following ten terms:

T̃n(θ0) =

∫
[f̂Z̄(z)− Ef̂Z̄(z)]2dΠ(z), t∗n1 =

∫
[Ef̂Z̄(z)− fZ̄(z, θ0)]2dΠ(z)

t∗n2 =

∫
[fZ̄(z, θ0)− Ef̂Z̄(z, θ0)]2dΠ(z), t∗n3 =

∫
[Ef̂Z̄(z, θ0)− f̂Z̄(z, θ0)]2dΠ(z),

t∗n4 =2

∫
[f̂Z̄(z)− Ef̂Z̄(z)][Ef̂Z̄(z)− fZ̄(z, θ0)]dΠ(z),

t∗n5 =2

∫
[f̂Z̄(z)− Ef̂Z̄(z)[fZ̄(z, θ0)− Ef̂Z̄(z, θ0)]dΠ(z),

t∗n6 =2

∫
[f̂Z̄(z)− Ef̂Z̄(z)][Ef̂Z̄(z, θ0)− f̂Z̄(z, θ0)]dΠ(z),

t∗n7 =2

∫
[Ef̂Z̄(z)− fZ̄(z, θ0)][fZ̄(z, θ0)− Ef̂Z̄(z, θ0)]dΠ(z),

t∗n8 =2

∫
[Ef̂Z̄(z)− fZ̄(z, θ0)][Ef̂Z̄(z, θ0)− f̂Z̄(z, θ0)]dΠ(z),

t∗n9 =2

∫
[fZ̄(z, θ0)− Ef̂Z̄(z, θ0)][Ef̂Z̄(z, θ0)− f̂Z̄(z, θ0)]dΠ(z).

We are going to show nb1/2t∗ni = op(1), i = 1, · · · , 9.
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From (z4) and (b3), and Ef̂Z̄(z) = fZ̄(z, θ0) + b2

2

∫
L(v)v2f ′′

Z̄
(z + τ1vb, θ0)dv, where 0 <

τ1 < 1, we have

nb1/2t∗n1 =nb1/2

∫
[Ef̂Z̄(z)− fZ̄(z, θ0)]2dΠ(z)

=nb1/2

∫ [
b2

2

∫
L(v)v2f ′′Z̄(z + τ1vb, θ0)dv

]2

dΠ(z)

≤nb1/2 b
4

4
c2

∫ [∫
L(v)v2dv

]2

dΠ(z) = O(nb9/2) = o(1). (3.52)

From (u1), (b1), and (h3), one obtains

nb1/2t∗n2 =nb1/2

∫
[fZ̄(z, θ0)− Ef̂Z̄(z, θ0)]2dΠ(z)

=nb1/2

∫ [∫
fX(z − u, θ0)(fŪ(u)− Ef̂Ū(u))du

]2

dΠ(z)

=nb1/2

∫ [∫
fX(z − u, θ0)

(
h2

2

∫
K(v)v2f ′′Ū(u+ τ2vh)dv

)
du

]2

dΠ(z)

=O(nb1/2h4) = o(1),

where 0 < τ2 < 1. For t∗n3, we have

nb1/2Et∗n3 =nb1/2E

∫
[Ef̂Z̄(z, θ0)− f̂Z̄(z, θ0)]2dΠ(z) = nb1/2

∫
var(f̂Z̄(z, θ0))dΠ(z)

=nb1/2

∫
1

n
var(GŨ(z, θ0))dΠ(z) ≤ b1/2

∫
EG2

Ũ
(z, θ0)dΠ(z).

Since

EG2
Ũ

(z, θ0) =E

[∫
fX(z − u, θ0)Kh(u− Ũ)du

]2

=

∫
fX(z − u, θ0)Kh(u− s)fX(z − v, θ0)Kh(v − s)fŪ(s) d(u, v, s)

=

∫
fX(z − s− hu, θ0)K(u)fX(z − s− hv, θ0)K(v)fŪ(s) d(u, v, s),

we get nb1/2t∗n3 ≤ Op(b
1/2) = op(1). By the Cauchy-Schwarz inequality, we also have
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nb1/2t∗ni = op(1), i = 7, 8, 9. We can show Cn = Op(1/(nb)). In fact,

ECn =E

[
1

n2

n∑
i=1

∫ (
Lb(z − Z̄i)−

∫
Lb(z − x)fZ̄(x, θ0)dx

)2

dΠ(z)

]

=
1

n

∫∫ (
Lb(z − s)−

∫
L(x)fZ̄(z − bx, θ0)dx

)2

dΠ(z)fZ̄(s, θ0)ds = O

(
1

nb

)
. (3.53)

Therefore, from (3.52) and (3.53), by using the elementary inequality (a+ c)1/2 ≤ a1/2 +

c1/2 for a ≥ 0, c ≥ 0, we have

nb1/2t∗n4 ≤nb1/2(T̃n(θ0)− Cn + Cn)
1
2 (t∗n1)

1
2

≤nb1/2(T̃n(θ0)− Cn)
1
2 (t∗n1)

1
2 + nb1/2(Cn)

1
2 (t∗n1)

1
2

=op(1) + nb1/2Op

(
1√
nb

)
Op(b

2) = op(1).

Similarly, nb1/2t∗n5 = op(1). By using Lemma 3.4.1, it is not hard to see that t∗n6 = op(
1
n
).

Therefore, nb1/2t∗n6 = Op(b
1/2) = op(1).

Moreover, we can show nb1/2(Ĉn(θ∗n)−Cn) = op(1). By adding and subtracting
∫
Lb(z−

x)fZ̄(x, θ0)dx,
∫
Lb(z−x)f̂Z̄(x, θ0)dx, we can see that Ĉn(θ∗n) is the sum of Cn, Dn1, Dn2(θ∗n)

and the cross products, where

Dn1 =
1

n

∫ (∫
Lb(z − x)(fZ̄(x, θ0)− f̂Z̄(x, θ0))dx

)2

dΠ(z),

Dn2(θ∗n) =
1

n

∫ (∫
Lb(z − x)(f̂Z̄(x, θ0)− f̂Z̄(x, θ∗n))dx

)2

dΠ(z).

We only need to show nb1/2Dn1 = op(1) and nb1/2Dn2(θ∗n) = op(1). The cross products are

of order op(1) from these two facts and Cn = Op(1) by using the Cauchy-Schwarz inequality.

Actually, for Dn1, we know
∫

(
∫
Lb(z − x)(fZ̄(x, θ0) − f̂Z̄(x, θ0))dx)2dΠ(z) is bounded

above by the sum of

2

∫ [∫
Lb(z − x)(fZ̄(x, θ0)− Ef̂Z̄(x, θ0))dx

]2

dΠ(z) = O(h4)
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and

2

∫ [∫
Lb(z − x)(Ef̂Z̄(x, θ0)− f̂Z̄(x, θ0))dx

]2

dΠ(z) = O(
1

n
).

Then nb1/2Dn1 = op(1). For Dn2(θ∗n), from (x2), we can show

∫ (∫
Lb(z − x)(f̂Z̄(x, θ0)− f̂Z̄(x, θ∗n))dx

)2

dΠ(z) = O(
1

n
).

Thus nb1/2Dn2(θ∗n) = op(1).

The facts shown above together with the results from Lemma 3.4.2 – Lemma 3.4.4 com-

plete the proof of Theorem 3.4.1.

Remark 3.4.1. The conclusion of Theorem 3.4.1 still holds if θ∗n is replaced by any
√
n-

consistent estimator of θ0. One can also check the proof of Theorem 3.4.3 below and see that

the conclusion of Theorem 3.4.3 is still valid when any
√
n-consistent estimator of θ0, say

the method of moment estimate, is used, in the place of θ̂n.

The following theorem presents the asymptotic distribution of the minimum distance test

based on Tn(θ̂n).

Theorem 3.4.3. Suppose H0, (b1)–(b2), (h1)–(h3), (z1)–(z4), (x1)–(x3), (π1), (kl), and

(u1) hold. Then nb1/2(Tn(θ̂n)− Ĉn(θ̂n))⇒ N(0,Γ).

Define

Tn(θ̂n) = Γ̂−1/2
n nb1/2(Tn(θ̂n)− Ĉn(θ̂n)). (3.54)

Then for the proposed test, we reject H0 whenever |Tn(θ̂n)| > Zα/2, where Zα is the 100(1−

α)% percentile of the standard normal distribution.

Recall HŨi
(z, θ0) as defined in (3.40). Then Tn(θ0) can be written as

∫ {
f̂Z̄(z)−

∫
Lb(z − x)

[∫
fX(x− u, θ0)f̂Ū(u)du

]
dx

}2

dΠ(z)

=

∫ {
f̂Z̄(z)− 1

n

n∑
i=1

HŨi
(z, θ0)

}2

dΠ(z).
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Again, we will introduce Lemma 3.4.5 to facilitate our proof of Theorem 3.4.3.

Lemma 3.4.5. Suppose H0, (z1)–(z4), (b1)–(b2),(h1)–(h3), (x1)–(x3), (π1), (kl), and (u1).

Then nb1/2(Tn(θ̂n)− Tn(θ0)) = op(1).

Proof. Recall Un(z) and Zn(x, θ) defined in (3.32). We have

Tn(θ̂n)− Tn(θ0) =2

∫
Un(z)Zn(z, θ̂n)dΠ(z)−

∫
[Zn(z, θ̂n)]2dΠ(z) = 2Q1 −Q2.

It suffices to show nb1/2Qi = op(1), i = 1, 2. Recall dn(x, θ̂n, θ0) = f̂Z̄(x, θ̂n) − f̂Z̄(x, θ0) −

(θ̂n − θ0)T
˙̂
fZ̄(x, θ0). Q1 can be written as the sum of the following two terms:

Q11 =

∫
Un(z)

∫
Lb(z − x)dn(x, θ̂n, θ0)dxdΠ(z),

Q12 =

∫
Un(z)

∫
Lb(z − x)(θ̂n − θ0)T

˙̂
fZ̄(x, θ0)dxdΠ(z).

For Q11, from Theorem 3.3.4, (x2), and (3.37), by the Cauchy-Schwarz inequality, we have

nb1/2Q11 ≤nb1/2

[∫
U2
n(z)dΠ(z)

]1/2
(∫ [∫

Lb(z − x)dn(x, θ̂n, θ0)dx

)2

dΠ(z)

]1/2

≤nb1/2

[∫
U2
n(z)dΠ(z)

]1/2

sup
x

fX(x, θ̂n)− fX(x, θ0)− (θ̂n − θ0)T ḟX(x, θ0)

‖θ̂n − θ0‖

· ‖θ̂n − θ0‖

{∫ [∫
Lb(z − x)

∫
f̂Ū(u)dudx

]2

dΠ(z)

}1/2

=Op

(
nb1/2 1√

nb

1√
n

)
op(1)Op(1) = op(1). (3.55)

For Q12, recall µ̇n(z, θ0) =
∫
Lb(z − x)

˙̂
fZ̄(x, θ0)dx as defined in (3.32). From (3.41) and
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by Lemma 3.3.7, we have

nb1/2Q12 =nb1/2

∫
Un(z)

∫
Lb(z − x)(θ̂n − θ0)T

˙̂
fZ̄(x, θ0)dxdΠ(z)

=nb1/2(θ̂n − θ0)T
∫
Un(z)µ̇n(z, θ0)dΠ(z)

=nb1/2(θ̂n − θ0)T
∫
Un(z)(µ̇n(z, θ0)− µ̇n(z, θ̂n))dΠ(z)

+ nb1/2(θ̂n − θ0)T
∫
Un(z)µ̇n(z, θ̂n)dΠ(z)

≤nb1/2Op

(
1√
n

)
op

(
b1/2

√
nb

)
+ nb1/2Op

(
1√
n

)
Op

(
1√
n

)
= op(1).

Next, we will show nb1/2Q2 = op(1). Recall dn(x, θ, θ0) as defined in (3.19), Q2 can be

written as the sum of the following three terms:

Q21 =

∫ [∫
Lb(z − x)dn(x, θ̂n, θ0)dx

]2

dΠ(z),

Q22 =

∫
[(θ̂n − θ0)T µ̇n(z, θ0)]2dΠ(z),

Q23 =2

∫ (∫
Lb(z − x)dn(x, θ̂n, θ0)dx

)
(θ̂n − θ0)T µ̇n(z, θ0)dΠ(z).

We will show nb1/2Q2i = op(1), i = 1, 2, 3. For Q21, from (x3), by the consistency of θ̂n,

nb1/2Q21 =nb1/2‖θ̂n − θ0‖2
[ ∫

Lb(z − x)

∫
dn(x, θ̂n, θ0)

‖θ̂n − θ0‖
dx
]2

dΠ(z)

≤nb1/2‖θ̂n − θ0‖2 sup
x

[
fX(x, θ̂n)− fX(x, θ0)− (θ̂n − θ0)T ḟX(x, θ0)

‖θ̂n − θ0‖

]2

·
∫ [∫

Lb(z − x)

∫
f̂Ū(u)dudx

]2

dΠ(z)

=Op

(
nb1/2 1

n

)
op(1) = op(1).

For Q22, by using Theorem 3.3.4 and Lemma 3.3.4, one obtains

nb1/2Q22 = nb1/2(θ̂n − θ0)T
∫
µ̇n(z, θ0)(µ̇n(z, θ0))TdΠ(z)(θ̂n − θ0) = Op

(
nb1/2 1

n

)
= op(1).
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And the Cauchy-Schwarz inequality implies nb1/2Q23 = op(1).

Next, let’s prove Theorem 3.4.3.

Proof of Theorem 3.4.3. Based on Lemma 3.4.5, it suffices to show nb1/2(Tn(θ0) − Cn) ⇒

N(0,Γ) and nb1/2(Ĉn(θ̂n) − Cn) = op(1). Recall T̃n(θ0) defined in (3.44), Tn(θ0) can be

written as the sum of the following six terms:

T̃n(θ0) =

∫
[f̂Z̄(z)− Ef̂Z̄(z)]2dΠ(z) =

∫ {
f̂Z̄(z)−

∫
Lb(z − x)fZ̄(x, θ0)dx

}2

dΠ(z),

tn1 =

∫
[Ef̂Z̄(z)− EHŨ(z, θ0)]2dΠ(z),

tn2 =

∫ [
EHŨ(z, θ0)− 1

n

n∑
i=1

HŨi
(z, θ0)

]2

dΠ(z),

tn3 =2

∫
[f̂Z̄(z)− Ef̂Z̄(z)][Ef̂Z̄(z)− EHŨ(z, θ0)]dΠ(z),

tn4 =2

∫
[f̂Z̄(z)− Ef̂Z̄(z)]

[
EHŨ(z, θ0)− 1

n

n∑
i=1

HŨi
(z, θ0)

]
dΠ(z),

tn5 =2

∫
[Ef̂Z̄(z)− EHŨ(z, θ0)]

[
EHŨ(z, θ0)− 1

n

n∑
i=1

HŨi
(z, θ0)

]
dΠ(z).

From Lemma 3.4.2, we know nb1/2(T̃n(θ0)−Cn)⇒ N(0,Γ). Next, we need only to show

nb1/2tni = op(1), i = 1, 2, 3, 4, 5.

If we can show nb1/2tn1 = op(1), nb1/2tn2 = op(1), by the Cauchy–Schwarz inequality, we

obtain nb1/2tn5 ≤ [nb1/2tn1]
1
2 [nb1/2tn2]

1
2 = op(1).

By the transformation u− s = ht, we have

EHŨ(z, θ0)

=

∫
Lb(z − x)fX(x− u, θ0)Kh(u− s)fŪ(s) d(s, u, x)

=

∫
Lb(z − x)fX(x− u, θ0)K(t)[fŪ(u) + f ′Ū(u)ht+

(ht)2

2
f ′′Ū(u+ τht)] d(t, u, x)

=

∫
Lb(z − x)fZ̄(x, θ0)dx+

h2

2

∫
Lb(z − x)fX(x− u, θ0)K(t)t2f ′′Ū(u+ τht) d(t, u, x),
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where 0 < τ < 1. From (h3) and (z4), we have

nb1/2tn1 =nb1/2

∫ [ ∫
Lb(z − x)fZ̄(x, θ0)dx− EHŨ(z, θ0)

]2

dΠ(z)

=nb1/2

∫ [
h2

2

∫
Lb(z − x)fX(x− u, θ0)K(t)t2f ′′Ū(u+ θht) d(t, u, x)

]2

dΠ(z)

=O(nb1/2h4) = o(1).

What’s more,

Etn2 =E

∫ [
1

n

n∑
i=1

HŨi
(z, θ0)− E

( 1

n

n∑
i=1

HŨi
(z, θ0)

)]2

dΠ(z)

=

∫
var

(
1

n

n∑
i=1

HŨi
(z, θ0)

)
dΠ(z) =

1

n

∫
var(HŨ(z, θ0))dΠ(z)

=
1

n

∫ [
E[HŨ(z, θ0)]2 − [EHŨ(z, θ0)]2

]
dΠ(z).

Since

E[HŨ(z, θ0)]2 =

∫ {∫
Lb(z − x)

[∫
fX(x− u, θ0)Kh(u− s)du

]
dx

}2

fŪ(s)ds = O(1),

we know nb1/2Etn2 ≤ nb1/2O(1/n) = O(b1/2) = o(1).

Next, we are going to show nb1/2tn3 = op(1) and nb1/2tn4 = op(1).

From (3.53), we have Cn = Op(
1
nb

). Therefore, using the Cauchy-Schwarz inequality, we

have

nb1/2tn3 ≤nb1/2[T̃ (θ0)]1/2[tn1]1/2 = nb1/2[T̃ (θ0)− Cn + Cn]1/2(tn1)1/2

≤nb1/2(T̃ (θ0)− Cn)1/2(tn1)1/2 + nb1/2C1/2
n (tn1)1/2

=Op(1)op(1) + nb1/2Op

(
1√
nb

)
O(h2) = op(1).

Moreover, applying Lemma 3.4.1, we have nb1/2tn4 = nb1/2Op(
1
n
) = op(1).

By similar procedure as in the proof of Theorem 3.4.1, we can show nb1/2(Ĉn(θ̂n)−Cn) =
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op(1). The proof is omitted here for the sake of simplicity.

In sum, nb1/2(Tn(θ̂n)− Ĉn(θ̂n))⇒ N(0,Γ).

Remark 3.4.2. For the same reason as stated in Remark 3.3.2, the non-centered test in

Theorem 3.4.1 requires both nb4 → 0 and nh4 → 0, while the centered test in Theorem 3.3.4

only requires nh4 → 0.

3.5 Consistency and Local Power of MD Test Statistic

Consistency is a basic requirement of any reasonable test. It requires that the test should

have a power tending to 1 for any fixed alternative hypothesis when the sample size n goes

to ∞. In this section, we shall show that, under some regularity conditions, the tests in

Section 3.4 are consistent against certain fixed alternatives.

Let fX,a be a density on R and consider the alternative Ha : fX(x) = fX,a(x), for all

x ∈ R. Under Ha, density of Z̄ is fZ̄,a(z) =
∫
fX,a(z − u)fŪ(u)du, which can be estimated

by f̂Z̄,a(z) =
∫
fX,a(z − u)f̂Ū(u)dΠ(z). We shall assume that θ̂n converges to a value θa in

probability under Ha. In fact, if

θa = minimizer
θ

∫
[fZ̄,a(z)− fZ̄(z, θ)]2dΠ(z) (3.56)

is well defined, then one can show that the minimum distance estimator θ∗a or θ̂a converges

to θa in probability. The proof is omitted for the sake of brevity.

The following theorem states the consistency of the test T ∗n (θ∗n) defined in (3.43).

Theorem 3.5.1. Suppose(x1)–(x3),(z1)–(z4),(h1)–(h3), (b1)–(b3), (π1), (kl) and (u1) hold.

Under Ha, assume that θa in (3.56) is well defined, and the additional assumption that fX,a(z)

is bounded and
∫

[fZ̄,a(z) − fZ̄(z, θa)]
2dΠ(z) > 0, we have T ∗n (θ∗n) = nb1/2Γ̂

−1/2
n (T ∗n(θ∗n) −

Ĉn)→p ∞. Consequently, the above test is consistent against Ha.
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Proof. Adding and subtracting fZ̄,a(z) inside the quadratic term of the integrand, one obtains

T ∗n(θ∗n) =

∫
[f̂Z̄(z)− f̂Z̄(z, θ∗n)]2dΠ(z) =

∫
[f̂Z̄(z)− f̂Z̄,a(z) + f̂Z̄,a(z)− f̂Z̄(z, θ∗n)]2dΠ(z)

=

∫
[f̂Z̄(z)− f̂Z̄,a(z)]2dΠ(z) +

∫
[f̂Z̄,a(z)− f̂Z̄(z, θ∗n)]2dΠ(z)

+ 2

∫
[f̂Z̄(z)− f̂Z̄,a(z)][f̂Z̄,a(z)− f̂Z̄(z, θ∗n)]dΠ(z)

=:T ∗n1 + T ∗n2 + T ∗n3.

One can show that nb1/2Γ̂
−1/2
n (T ∗n1 − Ĉn) ⇒ N(0, 1). The proof is similar to that of Theo-

rem 3.4.1. Note that now

Γ̂n → 2

∫
f 2
Z̄,a(v)π2(y)dy

∫ (∫
L(t)L(z + t)dt

)2

dz =: Γ̃ in probability.

What’s more, adding and subtracting fZ̄,a(z), fZ̄(z, θa), f̂Z̄(z, θa) in the quadratic term of

the integrand in T ∗n2, expanding the term, using the fact
∫
|f̂Ū(u) − fŪ(u)|du = op(1) and

from (x3), one verifies T ∗n2 =
∫

[fZ̄,a(z)− fZ̄(z, θa)]
2dΠ(z) + op(1). Therefore,

nb1/2Γ̂−1/2
n T ∗n2 = nb1/2Γ̃−1/2

∫
[fZ̄,a(z)− fZ̄(z, θa)]

2dΠ(z) + op(nb
1/2).

By the Cauchy–Schwarz inequality, the elementary inequality (a + c)
1
2 ≤ a

1
2 + c

1
2 for

a ≥ 0, c ≥ 0, and from (3.53), one can show that

nb1/2Γ̂−1/2
n |Tn3|∗ ≤2nb1/2Γ̂−1/2

n |T ∗n1 − Ĉn|1/2(T ∗n2)1/2 + 2(nb1/2Γ̂−1/2
n Ĉn)1/2(nb1/2Γ̂−1/2

n T ∗n2)1/2

=Op(1)Op(
√
nb1/2) +Op

(√
nb1/2

1√
nb

)
Op(
√
nb1/2) = op(nb

1/2)

from nb→∞ guaranteed by the assumption (b2). Thus

nb1/2Γ̂−1/2
n (T ∗n(θ∗n)− Ĉn)

=nb1/2Γ̂−1/2
n (T ∗n1 − Ĉn) + nb1/2Γ̃−1/2

∫
[fZ̄,a(a)− fZ̄(z, θa)]

2dΠ(z) + op(nb
1/2).
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Clearly, the right hand side of the above expression tends to ∞ as n → ∞, implying that

the proposed test is consistent.

Next, we consider the consistency of the test Tn(θ̂n) in (3.54).

Theorem 3.5.2. Suppose (b1)–(b2), (h1)–(h3), (z1)–(z4), (x1)–(x3), (π1), (kl), and (u1)

hold. Under Ha, the additional assumption that θa in (3.56) is well defined, and fX,a(z) is

bounded,
∫

[fZ̄,a(z)− fZ̄(z, θ0)]2dΠ(z) > 0, we have Tn(θ̂n) = nb1/2Γ̂
−1/2
n (Tn(θ̂n)− Ĉn)→p ∞.

Consequently, the above test is consistent against Ha.

Proof. Add and subtract
∫
Lb(z − x)f̂Z̄,a(x)dx inside the quadratic term of the integrand.

Then Tn(θ̂n) can be written as sum of the following three terms:

Tn1 =

∫ [
f̂Z̄(z)−

∫
Lb(z − x)f̂Z̄,a(x)dx

]2

dΠ(z),

Tn2 =

∫ [∫
Lb(z − x)(f̂Z̄,a(x)− f̂Z̄(x, θ̂n))dx

]2

dΠ(z),

Tn3 =2

∫ [
f̂Z̄(z)−

∫
Lb(z − x)f̂Z̄,a(x)dx

] [∫
Lb(z − x)(f̂Z̄,a(x)− f̂Z̄(x, θ̂n))dx

]
dΠ(z).

One can show that nb1/2Γ̂
−1/2
n (Tn1 − Ĉn) ⇒ N(0, 1). The proof is similar to that of Theo-

rem 3.4.3. Note that now Γ̂n → Γ̃ in probability.

What’s more,

Tn2 =

∫ [∫
Lb(z − x)(f̂Z̄,a(x)− f̂Z̄(x, θ̂n))dx

]2

dΠ(z)

=

∫ [∫
Lb(z − x)f̂Z̄,a(x)dx∓

∫
Lb(z − x)fZ̄,a(x)dx∓

∫
Lb(z − x)fZ̄(x, θa)dx

∓
∫
Lb(z − x)f̂Z̄(x, θa)dx−

∫
Lb(z − x)f̂Z̄(x, θ̂n)dx

]2

dΠ(z)

where ∓ stands for first minus then plus the term after the sign. Expanding the quadratic

term and using change of variables formula, one verifies Tn2 =
∫

[fZ̄,a(z)− fZ̄(z, θa)]
2dΠ(z) +
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op(1). Therefore,

nb1/2Γ̂−1/2
n Tn2 = nb1/2Γ̃−1/2

∫
[fZ̄,a(z)− fZ̄(z, θa)]

2dΠ(z) + op(nb
1/2).

By similar argument as in Theorem 3.5.1, we know the proposed test is consistent.

Next, we shall show that the proposed tests possesses nontrivial power for certain local

alternatives which converges to the null hypothesis at the rate of 1/
√
nb1/2. For this purpose,

let ϕ be a known continuous density on R with mean 0 and positive variance σ2
ϕ, and we

consider the following local alternative hypothesis

Hloc : f(x) = (1− δn)fX(x, θ0) + δnϕ(x)

with δn = 1/
√
nb1/2. Similar to the fixed alternative case, to show the local power result,

we need to show the
√
n consistency of θ∗n and θ̂n, which is similar and omitted here for the

sake of brevity.

Theorem 3.5.3. Assume all the conditions in Theorem 3.4.1 hold. Under Hloc, if the density

function ϕ(·) is twice continuously differentiable and the second derivative is bounded, then

T ∗n (θ∗n) = nb1/2Γ̂−1/2
n (T ∗n(θ∗n)− Ĉn)⇒ N(µt, 1),

as n→∞, where µt = Γ−1/2
∫ [∫

(fX(z − u, θ0)− ϕ(z − u))fŪ(u)du
]2
dΠ(z).

Proof. Denote

f loc
Z̄ (z, θ0) =

∫
[(1− δn)fX(z − u, θ0) + δnϕ(z − u)]fŪ(u)du,

f̂ loc
Z̄ (z, θ0) =

∫
[(1− δn)fX(z − u, θ0) + δnϕ(z − u)]f̂Ū(u)du

=(1− δn)f̂Z̄(z, θ0) + δn

∫
ϕ(z − u)f̂Ū(u)du.

From Lemma 3.4.3, we have T ∗n(θ0) − T ∗n(θ∗n) = op(1). Therefore, we only need to
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show nb1/2Γ̂
−1/2
n (T ∗n(θ0)− Ĉn) ⇒ N(µt, 1). Adding and subtracting f̂ loc

Z̄
(z, θ0) from f̂Z̄(z)−

f̂Z̄(z, θ0), we can rewrite the statistic as

T ∗n(θ0) =

∫
[f̂Z̄(z)− f̂ loc

Z̄ (z, θ0) + f̂ loc
Z̄ (z, θ0)− f̂Z̄(z, θ0)]2dΠ(z).

Note that f̂ loc
Z̄

(z, θ0)− f̂Z̄(z, θ0) = −δn
[
f̂Z̄(z, θ0)−

∫
ϕ(z − u)f̂Ū(u)du

]
.

Expanding the quadratic term, we can rewrite T ∗n(θ∗n) as the sum of the following three

terms

T *loc
n1 =

∫
[f̂Z̄(z)− f̂ loc

Z̄ (z, θ0)]2dΠ(z),

T *loc
n2 =δ2

n

∫ [
f̂Z̄(z, θ0)−

∫
ϕ(z − u)f̂Ū(u)du

]2

dΠ(z),

T *loc
n3 =− 2δn

∫
[f̂Z̄(z)− f̂ loc

Z̄ (z, θ0)]

[
f̂Z̄(z, θ0)−

∫
ϕ(z − u)f̂Ū(u)du

]
dΠ(z).

Similar to the proof of Theorem 3.4.1, one can verify that nb1/2(T *loc
n1 − Ĉn)⇒ N(0,Γ).

For T *loc
n2 , it’s not hard to see

nb1/2Γ̂−1/2T *loc
n2 =Γ̂−1/2

n

∫ [∫
fX(z − u, θ0)f̂Ū(u)du−

∫
ϕ(z − u)f̂Ū(u)du

]2

dΠ(z)

=Γ̂−1/2
n

∫ [∫
(fX(z − u, θ0)− ϕ(z − u))f̂Ū(u)du

]2

dΠ(z)

=Γ−1/2

∫ [∫
(fX(z − u, θ0)− ϕ(z − u))fŪ(u)du

]2

dΠ(z) + op(1)

Similarly, we can obtain

nb1/2Γ̂−1/2
n T *loc

n3

=−
√
nb1/2Γ̂−1/2

n

∫
[f̂Z̄(z)− f̂ loc

Z̄ (z, θ0)]

[
f̂Z̄(z, θ0)−

∫
ϕ(z − u)f̂Ū(u)du

]
dΠ(z)

=−
√
nb1/2Γ−1/2

∫
[f̂Z̄(z)− f loc

Z̄ (z, θ0)]

·
[∫

(fX(z − u, θ0)− ϕ(z − u))fŪ(u)du

]
dΠ(z) + op(1)
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is of order op(b
1/4) = op(1) from

E

(∫
[f̂Z̄(z)− f loc

Z̄ (z, θ0)]

[∫
(fX(z − u, θ0)− ϕ(z − u))fŪ(u)du

]
dΠ(z)

)
= 0

and

var

(∫
[f̂Z̄(z)− f loc

Z̄ (z, θ0)]

[∫
(fX(z − u, θ0)− ϕ(z − u))fŪ(u)du

]
dΠ(z)

)
≤E

(∫
[f̂Z̄(z)− f loc

Z̄ (z, θ0)]

[∫
(fX(z − u, θ0)− ϕ(z − u))fŪ(u)du

]
dΠ(z)

)2

=
1

n
E

(∫
[Lb(z − Z̄)− f loc

Z̄ (z, θ0)]

[∫
(fX(z − u, θ0)− ϕ(z − u))fŪ(u)du

]
dΠ(z)

)2

=O

(
1

n

)
.

Theorem 3.5.4. Assume all the conditions in Theorem 3.4.3 hold. Under Hloc, if the density

function ϕ(·) is twice continuously differentiable and the second derivative is bounded, then

Tn(θ̂n) = nb1/2Γ̂−1/2
n (Tn(θ̂n)− Ĉn)⇒ N(µt, 1),

as n→∞, where µt = Γ−1/2
∫ [∫

(fX(z − u, θ0)− ϕ(z − u))fŪ(u)du
]2
dΠ(z).

Proof. From Lemma 3.4.5, we only need to show nb1/2Γ̂
−1/2
n (Tn(θ0)−Ĉn)⇒ N(µt, 1). Adding

and subtracting
∫∫

Lb(z−x)f̂ loc
Z̄

(x, θ0)dxdΠ(z) from f̂Z̄(z)−
∫
Lb(z−x)f̂Z̄(x, θ0)dx in Tn(θ0),

then Tn(θ0) can be written as the sum of the following three terms.

Tn1 =

∫ [
f̂Z̄(z)−

∫
Lb(z − x)f̂ loc

Z̄ (x, θ0)dx

]2

dΠ(z)

Tn2 =

∫ [∫
Lb(z − x)(f̂ loc

Z̄ (x, θ0)− f̂Z̄(x, θ0))dx

]2

dΠ(z)

Tn3 =

∫ [
f̂Z̄(z)−

∫
Lb(z − x)f̂ loc

Z̄ (x, θ0)dx

] [∫
Lb(z − x)(f̂ loc

Z̄ (x, θ0)− f̂Z̄(x, θ0))dx

]
dΠ(z)

Similar to the proof of Theorem 3.4.3, we can show nb1/2(Tn1 − Ĉn)⇒ N(0,Γ).
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For Tn2,

nb1/2Γ̂−1/2
n Tn2 =Γ̂−1/2

n

∫ [∫
Lb(z − x)

∫
(fX(x− u, θ0)− ϕ(x− u))f̂Ū(u)dudx

]2

dΠ(z)

=Γ−1/2

∫ [∫
L(v)

∫
(fX(z − u, θ0)− ϕ(z − u))fŪ(u)dudv

]2

dΠ(z) + op(1)

=µt + op(1).

For Tn3,

nb1/2Γ̂−1/2
n Tn3 =−

√
nb1/2Γ̂−1/2

n

∫ [
f̂Z̄(z)−

∫
Lb(z − x)f̂ loc

Z̄ (x, θ0)dx

]
·
[∫

Lb(z − x)

∫
(fX(x− u, θ0)− ϕ(x− u))f̂Ū(u)dudx

]
dΠ(z)

=−
√
nb1/2Γ−1/2

∫
[f̂Z̄(z)− f loc

Z̄ (z, θ0)]

·
[∫

(fX(z − u, θ0)− ϕ(z − u))fŪ(u)du

]
dΠ(z) + op(1).

By using similar argument as in the proof of Theorem 3.5.3, we obtain nb1/2Γ̂
−1/2
n Tn3 =

Op(b
1/4) = op(1). In sum, we have nb1/2Γ̂

−1/2
n (Tn(θ̂n)− Ĉn)⇒ N(µt, 1), n→∞.

Next, we shall discuss the optimal weight function Π which maximizes the asymptotic

local power of the proposed tests, which in turn maximizes the mean of the asymptotic

normal distribution, or Ψ(π) := Γ−1/2
∫ [∫

(fX(z − u, θ0)− ϕ(z − u))fŪ(u)du
]2
π(v)dv. By

the Cauchy-Schwarz inequality, we have

Ψ(π) ≤ 1

(2
∫

(
∫
L(t)L(z + t)dt)2dz)1/2

(∫
(
∫

(fX(z − u, θ0)− ϕ(z − u))fŪ(u)du)4

f 2
Z̄

(z, θ0)
dz

)1/2

with equality holds if and only if

π(z) ∝
(∫

(fX(z − u, θ0)− ϕ(z − u))fŪ(u)du

)2

/f 2
Z̄(z, θ0)

for all z. Since the functional Ψ is scale-invariant, that is Ψ(aw) = Ψ(π) for all positive
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constant a > 0, we take the optimal π(·) to be

π(z) =

(∫
(fX(z − u, θ0)− ϕ(z − u))fŪ(u)du∫

fX(z − u, θ0)fŪ(u)du

)2

.

One can estimate the optimal weight π(·) by wn(z) where the unknown density function or

parameter fŪ(u), θ0 are replaced by the
√
n estimates f̂Ū(u), θ∗n or θ̂n.

3.6 Simulation

To evaluate the finite sample performance of the proposed tests, a simulation study is con-

ducted in this section. The null hypothesis H0 to be tested is X ∼ N(0, σ2
X), so the unknown

parameter θ is the variance σ2
X of X. The measurement error U ∼ (0, σ2

U), where σ2
U is cho-

sen to be 0.52 and 0.82. At each X-value, double measurements on Z are obtained. The

sample size n is chosen to be 100, 200, and the weight function Π is taken to be the uniform

distribution over the closed interval [−6, 6] so that computationally the integration over this

interval is nearly same as the integration over the whole real line. The kernel functions K

and L are chosen to be standard normal density function. We repeat the test procedure 500

times for each scenario.

To study the empirical size and power of the test, the following nine non-normal distri-

butions are used. For the sake of computational efficiency, we use the method of moment

estimate θ̃n in the simulation. The empirical levels and powers are calculated as the relative

frequencies of the number of times of |T ∗n (θ̃n)| or |Tn(θ̃n)|, which are defined in (3.43) and

(3.54) respectively, exceed the critical value Zα/2, the 100(1 − α)/2-th upper percentile of

standard normal distribution. The significance level α is 0.05 in all cases.

Nine non-normal distributions as the alternative hypotheses:

• Logistic distribution with location parameter 0 and scale parameter 1;

• Cauchy distribution with location parameter 0 and scale parameter 1;

• Double exponential distribution with mean 0 and variance 1 (DE(0,1));
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• t-distribution with degrees of freedom 3, 5 and 10;

• Two-component normal mixture models 0.5N(c, σ2
ε) + 0.5N(−c, σ2

ε) with c = 0.5, 0.75

and 1.

We also test the sensitivity of the proposed tests by conducting simulation studies with

different measurement error densities and bandwidths levels.

Case I: U ∼ N(0, σ2
U), b = n−1/3, h = n−1/3.

Case II: U ∼ Laplace(0, σU/
√

2), b = n−1/3, h = n−1/3.

Case III: U ∼ N(0, σ2
U), b = 0.8 ∗ n−1/3, h = 0.8 ∗ n−1/3.

Case IV: U ∼ N(0, σ2
U), b = 1.2 ∗ n−1/3, h = 1.2 ∗ n−1/3.

Case V: U ∼ N(0, σ2
U), b = n−1/5, h = n−1/3.

Note that Case I and Case II differs in the density function of the measurement error

term U , with one being the standard normal density and the other being Laplace density

with the same level of σU . Case III, I, IV have the same order of bandwidth but different

coefficient, 0.8, 1, 1.2, respectively. Case I and Case V are different in the bandwidth for b.

Obviously, the assumption (b3) is violated. From the theorems in Section 3.4, we know the

assumption (b3) is needed for the asymptotic normality of T ∗n (θ̃n), but is not required for

that of Tn(θ̃n).

The simulation results below show that the proposed tests have reasonable empirical

level for both T ∗n (θ̃n) and Tn(θ̃n) when the assumptions (b3) and (h3) are satisfied. For

the case that assumption (b3) is violated, the empirical level become unreasonably large for

T ∗n (θ̃n), while the centered version Tn(θ̃n) still holds valid empirical levels. When sample

size n increases, the power generally increases as well. Another general trend is the power

decreases when σU gets large. When comparing the non-centered test T ∗n (θ̃n) with centered

test Tn(θ̃n), power for the centered test Tn(θ̃n) is higher than the non-centered test T ∗n (θ̃n) for

all the uni-modal distributions. The trend reverses for the bi-modal distributions. There is
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no clear change tendency with different coefficient when both b and h are chosen with order

n−1/3. Different measurement error distribution doesn’t cause significant change in power

either.

Table 3.1: Simulation results of the proposed test
(Case I: U ∼ N(0, σ2

U), b, h = n−1/3)

T ∗n (θ̃n) Tn(θ̃n)
σ2
U = 0.52 σ2

U = 0.82 σ2
U = 0.52 σ2

U = 0.82

100 200 100 200 100 200 100 200
N(0, σ2

ε) 0.046 0.050 0.054 0.066 0.048 0.050 0.050 0.066
Logistic(0,1) 0.056 0.114 0.054 0.058 0.056 0.118 0.056 0.060
Cauchy(0,1) 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

DE(0,1) 0.432 0.728 0.238 0.486 0.452 0.738 0.246 0.510
t(3) 0.528 0.796 0.376 0.698 0.536 0.802 0.390 0.702
t(5) 0.176 0.292 0.124 0.170 0.194 0.318 0.134 0.192
t(10) 0.064 0.058 0.048 0.044 0.070 0.064 0.054 0.052

0.5N(±0.5, σ2
ε) 0.076 0.078 0.046 0.054 0.064 0.068 0.044 0.048

0.5N(±0.75, σ2
ε) 0.274 0.574 0.114 0.158 0.236 0.526 0.102 0.142

0.5N(±1, σ2
ε) 0.892 1.000 0.404 0.690 0.874 0.998 0.360 0.668

Table 3.2: Simulation results of the proposed test
(Case II: U ∼ Laplace(0, σU/

√
2))

T ∗n (θ̃n) Tn(θ̃n)
σ2
U = 0.52 σ2

U = 0.82 σ2
U = 0.52 σ2

U = 0.82

100 200 100 200 100 200 100 200
N(0, σ2

ε) 0.048 0.046 0.060 0.052 0.054 0.056 0.054 0.060
Logistic(0,1) 0.094 0.102 0.072 0.086 0.094 0.106 0.072 0.092
Cauchy(0,1) 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

DE(0,1) 0.392 0.744 0.300 0.498 0.420 0.778 0.316 0.518
t(3) 0.486 0.800 0.394 0.688 0.508 0.810 0.412 0.706
t(5) 0.158 0.272 0.106 0.180 0.172 0.296 0.120 0.194
t(10) 0.056 0.068 0.048 0.048 0.060 0.076 0.052 0.048

0.5N(±0.5, σ2
ε) 0.058 0.074 0.058 0.058 0.042 0.050 0.050 0.054

0.5N(±0.75, σ2
ε) 0.314 0.618 0.118 0.206 0.276 0.574 0.098 0.184

0.5N(±1, σ2
ε) 0.898 1.000 0.542 0.868 0.880 1.000 0.522 0.846
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Table 3.3: Simulation results of the proposed test
(Case III: U ∼ N(0, σ2

U), b, h = 0.8n−
1
3 )

T ∗n (θ̃n) Tn(θ̃n)
σ2
U = 0.52 σ2

U = 0.82 σ2
U = 0.52 σ2

U = 0.82

100 200 100 200 100 200 100 200
N(0, σ2

ε) 0.048 0.048 0.060 0.042 0.048 0.054 0.056 0.044
Logistic(0,1) 0.072 0.104 0.052 0.086 0.074 0.110 0.052 0.086
Cauchy(0,1) 1.000 1.000 0.998 1.000 1.000 1.000 0.998 1.000

DE(0,1) 0.376 0.674 0.200 0.398 0.380 0.684 0.212 0.404
t(3) 0.496 0.802 0.356 0.616 0.508 0.806 0.366 0.630
t(5) 0.144 0.270 0.112 0.174 0.154 0.294 0.118 0.182
t(10) 0.058 0.062 0.044 0.054 0.066 0.064 0.046 0.056

0.5N(±0.5, σ2
ε) 0.058 0.066 0.050 0.052 0.052 0.052 0.042 0.048

0.5N(±0.75, σ2
ε) 0.252 0.502 0.090 0.148 0.236 0.468 0.080 0.134

0.5N(±1, σ2
ε) 0.880 0.994 0.378 0.676 0.862 0.992 0.360 0.648

Table 3.4: Simulation results of the proposed test
(Case IV: U ∼ N(0, σ2

U), b, h = 1.2n−
1
3 )

T ∗n (θ̃n) Tn(θ̃n)
σ2
U = 0.52 σ2

U = 0.82 σ2
U = 0.52 σ2

U = 0.82

100 200 100 200 100 200 100 200
N(0, σ2

ε) 0.070 0.046 0.068 0.062 0.078 0.066 0.074 0.056
Logistic(0,1) 0.078 0.110 0.046 0.100 0.086 0.124 0.046 0.106
Cauchy(0,1) 1.000 1.000 0.996 1.000 1.000 1.000 0.996 1.000

DE(0,1) 0.458 0.768 0.262 0.542 0.502 0.792 0.288 0.588
t(3) 0.544 0.810 0.412 0.698 0.586 0.828 0.430 0.720
t(5) 0.150 0.272 0.114 0.198 0.178 0.304 0.132 0.226
t(10) 0.036 0.076 0.042 0.066 0.050 0.088 0.046 0.070

0.5N(±0.5, σ2
ε) 0.054 0.072 0.064 0.062 0.038 0.052 0.064 0.062

0.5N(±0.75, σ2
ε) 0.254 0.610 0.088 0.176 0.186 0.532 0.074 0.152

0.5N(±1, σ2
ε) 0.856 0.998 0.414 0.742 0.826 0.998 0.376 0.702
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Table 3.5: Simulation results of the proposed test
(Case V:U∼N(0, σ2

U), b= n−
1
5 , h= n−

1
3 )

T ∗n (θ̃n) Tn(θ̃n)
σ2
U = 0.52 σ2

U = 0.82 σ2
U = 0.52 σ2

U = 0.82

100 200 100 200 100 200 100 200
N(0, σ2

ε) 0.326 0.414 0.166 0.168 0.076 0.054 0.078 0.062
Logistic(0,1) 0.072 0.096 0.072 0.084 0.084 0.120 0.076 0.100
Cauchy(0,1) 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

DE(0,1) 0.426 0.764 0.272 0.542 0.532 0.832 0.342 0.636
t(3) 0.524 0.852 0.438 0.762 0.616 0.900 0.500 0.804
t(5) 0.148 0.316 0.124 0.190 0.232 0.432 0.182 0.250
t(10) 0.056 0.066 0.034 0.064 0.068 0.094 0.040 0.078

0.5N(±0.5, σ2
ε) 0.162 0.276 0.104 0.152 0.036 0.056 0.062 0.062

0.5N(±0.75, σ2
ε) 0.408 0.762 0.170 0.316 0.206 0.470 0.056 0.154

0.5N(±1, σ2
ε) 0.916 1.000 0.500 0.874 0.794 0.998 0.374 0.748
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Chapter 4

Conclusion

In this dissertation, goodness-of-fit tests are proposed for checking the adequacy of para-

metric distributional forms of the regression error density functions and the error-prone

predictor density function in measurement error models, when replications of the surrogates

of the latent variables are available.

In Chapter 2, we proposed a goodness-of-fit test for checking the adequacy of parametric

forms of the regression error density functions in linear errors-in-variables regression models.

Instead of assuming the distribution of the measurement error being known, we assume that

replication of the surrogates of the latent variables are available. The test statistic is based

upon a weighted integration of the L2 distance between a nonparametric estimator and a

semiparametric estimator of the density functions of the residuals.

Under the null hypothesis, the test statistic was shown to be asymptotically normal

(Theorem 2.2.1). Consistency (Theorem 2.3.1) and local power results (Theorem 2.3.2)

of the proposed test under fixed alternatives and local alternatives were also established.

Comparing these results with Koul and Song (2012)’s, in which the density function of

measurement error was assumed to be known, one can see that replacing the density function

of U with a kernel density estimate did not slow down the convergence rate of the test

statistic. One can check the proof of Theorem 2.2.1 and find out that this is a consequence

of requiring nb1/2w4 → 0.
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Actually, the condition nb1/2w4 → 0 is required to dampen the effect of estimating fŪ by

its d-dimensional kernel estimate. Together with the bandwidth assumptions nb → ∞ and

nwd → 0, which are commonly used in the univariate and multivariate kernel estimation,

we must have d < 8. Therefore, one limitation of the proposed test in Chapter 2 is that

the linear errors-in-variables regression model under consideration cannot have more that

8 predictors. In the future work, we will figure out ways to alleviate this constraint. One

possible methods might be considering higher order terms in the Taylor series when deriving

the bias between f̂Ū and fŪ .

In Chapter 3, we proposed a class of goodness-of-fit tests for checking the parametric

distribution forms of the error-prone random variables in the classic additive measurement

error models. By giving up the commonly adopted assumptions of the distribution of the

measurement error being known, we assumed replications of the surrogates of the error-prone

variables are available. Two types of test statistics were defined based upon a weighted inte-

grated squared distance between a nonparametric estimator and (centered or non-centered)

semi-parametric estimator of the density functions of the averaged surrogate data. Under

the null hypothesis, the minimum distance estimator (Theorem 3.3.3 and Theorem 3.3.4) of

the distribution parameters and the test statistics (Theorem 3.4.1 and Theorem 3.4.3) are

shown to be asymptotically normal. Consistency (Theorem 3.5.1 and Theorem 3.5.2) and

local power (Theorem 3.5.3 and Theorem 3.5.4) of the proposed tests under fixed alternatives

and local alternatives are also established.

Theorems in Chapter 3 show that the two different types of tests proposed share similar

properties on asymptotic normality, consistency and local power, but under different require-

ment on the bandwidths. In addition to the assumptions nb2 →∞ and nh→∞, which are

commonly used in the univariate kernel smoothing estimation procedures, the non-centered

test requires nb4 → 0 as well as nh4 → 0, while the centered test only requires nh4 → 0. The

requirement nb4 → 0 is the consequence of considering the asymptotic bias Ef̂Z̄(z)−fZ̄(z, θ0)

in the non-centered test. The centered version avoided analyzing the asymptotic bias, but

still require nh4 → 0 since f̂Ū(u) is used to replace fŪ in the statistic Tn(θ). For considering

the multivariate case X being d-dimensional, in the non-centered test, one would require
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nb2d →∞, combining this with nb4 → 0, we must have d = 1. The centered test has better

potential of being generalized to higher dimensional case, which will be our next step of

research.

Throughout this dissertation, we require the density function of the measurement error

term U to be symmetric about 0. The significance of this symmetry assumption lies in the

fact that U1+U2 and U1−U2 will have the same distribution. Therefore, one can estimate the

distribution of U1 +U2 by using U1−U2, which in turn can be estimated through Z1−Z2, on

which we have observations. In the future research, it is worthwhile to consider developing

more general tests by relaxing the symmetric assumption.
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