A GRAPHICS SUPPORT SYSTEM 3°

FOR COMMUNICATING PROCESSES PROGRAMMING

by

RICHARD GARY SANDERS

B.Arch., Kansas State University, 1978

A MASTER'S THESIS

submitted in partial fulfillment of the

requirements for the degree

MASTER OF SCIENCE

Department of Computer Science

KANSAS STATE UNIVERSITY

Manhattan, Kansas

1980

Approved by:

Major fessor

THIS BOOK
CONTAINS
NUMEROUS PAGES
WITH THE ORIGINAL
PRINTING BEING
SKEWED
DIFFERENTLY FROM
THE TOP OF THE
PAGE TO THE
BOTTOM.

THIS IS AS RECEIVED
FROM THE
CUSTOMER.

SYec.CO“o
LD

2.bb8

T4
1980

c.2 TABLE
List of Illustrations . .+ + « &«
Acknowledgements « « o « « & o &

Introduction « « « ¢« ¢« ¢ o o« o «

Chapter 1. Techniques

1.1 Software Configuration
1.2 Requirements . « . .
1.3 User Commands .+ « « &«
1.4 Heuristic .« « o « « &

Chapter 2. Implementation

2.1 Algorithms . o« o o o
2.2 Implementation

24241 PICTURE Record Definition
2.2.2 Graph Analysis .
2.2.3 Pattern Selection . . .
2.2.4 Locating Node in

2.3 Adaptability « « « «

Chapter 3. Conclusion

3.1 SUMMArY &« o « o o o =
3.2 Performance . « o« « «
3.3 Proposed Enhancements

OF CONTENTS

a
.
L]
a e & e
- - - -
-

Pattern . .

Appendices
A.1 Simulated Terminal Session « « « &«
A.2 Patterns « « o o « ¢ o o o o o o @

References « « « s s s s s« o o &

ii

L] . . -

L] L - - -

L] - - -

iii

10
12

24
30
31
38
k1
53
54

55
56
57

62
65

84

Figure
1.
2!
30
4,
5.
6
To
8'
gt

10,
11.
12.
13.
1}4.
15'
16.
17,
18,

19.
20.
21.
22,
23.
24,

25,
26.
27
28-
29.
30.
31.
32-
33.
34.
35-
36.

LIST OF ILLUSTRATIONS

Sample Configurations + « « o o o ¢ o o« ¢ o o o « @
Command Processor Configuration . . « « « ¢ + o« o &
Dining Philosophers Configuration « « « o« ¢ o « o &
Showing all Cycles in Dining Philosophers Problem .
Object with 4 Elements and 6 Connections . . . « .
The Five Possible Cycle Groups . « « o ¢ o o o s o
The Five Possible Ways to Draw the Cycle Groups . .« .
A Cycle with 3 Outside Nodes .« o« ¢ « o o o o o o & »
Showing How Cycle with 3 Outside Nodes is Plotted
Depending on its Position Type .« ¢« ¢ ¢ ¢ o o & &
Objects with Crossing Arcs .+ & « o = o o o o s = &
Objects Redrawn Without Crossing Ares . « « « « « »
Illustration of Best Arc Between Two Nodes . . .
Illustration of Best Arc for 3-Node Orientation .
The Main Structure of the GSS &« &+ « ¢ &« ¢ « s s « »

L] L) L] L]

Illustration of a Connected Graph « + « &« « « &
Tree Showing Relation of Picture Components . .
The Procedure DEFINE OBJECTS . ¢ ¢ « « o« s o o s o &
Pixel Pad and the Relationship of a Pixel to a
Relative Row and Column « « « « o o « o o s o o o« &
Shows the Pixel Pad with the Possible LOC_PIXELs
Indicated by Asterisks . . ¢« « ¢ ¢ « s o s o o s =
Shows Pixel Pad with the Possible LOC_PIXELs
Indicated by Asterisks .+ ¢« ¢ ¢« ¢ + ¢ ¢ o « s « o &
Snapshot of Current Relative Picture Showing
Current Node in Location 10,10 + ¢ ¢ « « s « « s =
Snapshot of Pixel Pad Placed Over Portion of Current
Relative Picture . . « « o o o o « o s o o o o o« o
Snapshot of Pixel Pad Places Over Portion of Current
Relative Picture . « « ¢ o ¢ » ¢ o & o o s+ o o« s &«
Snapshot of Pixel Pad Placed Over Portion of Current
Relative Picture . ¢« « ¢« ¢ ¢ ¢ o « o« « &«
This is the Way the GSS Draws 6 Node Pipe .
This is a Clearer Way to Draw a 6 Node Pipe
Graphs Could be Drawn in 3-Space . .
Illustration Showing Modified Arcs .
Pattern for Pipes and Hangers . . '
Pattern for Pipes and Hangers
Pattern for Pipes and Hangers
Pattern for Pipes and Hangers
Pattern for Pipes and Hangers
Pattern for Pipes and Hangers
Pattern for Pipes and Hangers
Pattern for Pipes and Hangers

.

& o e & & = & =
L

°
L]
L]
L]
L]
-
-
L]
-
.

e & & 8 @®© ® @&
e = & e @ @

e & e & ° & @

e = ® a ® & =

¢ & & o 8 8 & @
.

e & & & ® & @ & © &

« e & o © & 8 & o @

iii

52
58
58
59
60
66
67
68
69
70
71
T2
T3

37.
38.
39.
4o.
b1,
42,
43.
4y,
45,
46.

Pattern for Cycle
Inside Nodes .
Pattern for Cycle
Inside Node . .
Pattern for Cycle
Inside Node . .
Pattern for Cycle
Inside Node . .
Pattern for Cycle
Inside Nodes .
Pattern for Cycle
Inside Nodes .
Pattern for Cycle
Inside Nodes .
Pattern for Cycle
Inside Node . .
Pattern for Cycle
Inside Nodes .
Pattern for Cycle
Inside Nodes .

with Three Outside Nodes and No

. e L] L] s e a e & & @ LI] . &

with Three Outside Nodes and One

L] . - .

with Four Outside Nodes and No

LI] L] e @ @ @ ® 8 @ ® @ L] L] s =

with Four Outside Nodes and One
;iih'F;u; 6u;sidé ﬁoée; ;n& %w;
;iéh.Fivé 6u£sidé ﬁoée; ;né ﬁo'
;i;h-Six.O;tside Nodes and No

with Six Outside Nodes and One
;iih'S;v;n'oﬁt;iée.N;d;s.and.No

with Eight Outside Nodes and No

L] - L L

. L] - . L] L] . L] - L]

iv

T4
T5
76
Tt
78
79
80
81
82
83

ACKNOWLEDGEMENTS

This research was supported in part by the Army Institute for
Research in Management, Information, and Computer Systems under grant
number DAAG 29-78-G-0200 from the Army Research Office.

I would also 1like to express by gratitude to Dr. Virgil E.
Wallentine who served as my major professor and provided valuable
input into this document. I would also 1like to thank the other
members of my thesis committee-- Dr. William J. Hankley and Dr Rod M.

Bates for their assistance.

INTRODUCTION

The complexity of many sophisticated programming tasks reguires
a methodology to simplify and filter information to a manageable
level. The GSS (Graphics Support System) described in this document
will automatically draw pictures of software configuration networks of
communicating sequential processes as they are constructed. A
configuration, as defined in [5,3], is constructed of one to eight
nodes. Each node can be hierarchical in nature and can itself be a
configuration. Nodes communicate via ports through connections to-
other nodes. A node can be connected to as few as zero nodes to as
many as seven nodes. A maximum of eight ports and connections is
allowed per node, and more than one connection can exist between any
two nodes, A connection can be specifled to pass information in only
one direction or in both directions. In addition, the nodes, ports,
and connections in the picture must show the direction of information
flow.

GSS does not bulld configurations although it could be modified
to do so. It is meant as a documentation tool that assists in the
understanding or explanation of a software configuration.

The most important contribution of GSS is the method used to
determine the complex relationships that exist between the picture
components, There are two basic relationships that must be analyzed
before a picture can be drawn which are the relationship of one node
to another as defined by connections, and the organization of the

1

nodes within the picture as defined by information flow,

Arbitrary configurations can be decomposed into three distinct
types of objects: Hangers, pipes, and cycles. The decomposition is
accomplished by following and analyzing all of the node connections
and constructing patterns of linkage. A hanger is constructed of two
nodes, A and B. Node A can only connect to node B, whereas node B can
connect to nodes in addition to node A, A pipe is constructed of two
nodes, A and B. Both node A and node B can both connect to nodes
other than each other. A cycle is constructed of more than two nodes
such that the nodes, when placed in a directed graph, form a cycle.

The purpose of building objects is +to define a predictable,
repeatable, heuristic that will draw pictures in the desired manner.
The number of nodes in an object determines the shape of the object.
An objects' shape is used to select a predefined pattern which defines
how member nodes will be drawn relative to one another. Flow into and
out of nodes is studied to determine where they should be placed
relative to the picture and relative to other nodes within their
parent object.

GSS allows the user to interact in drawing portions of a picture
or it will draw the picture without user assistance. Once a picture
has been drawn it can be saved and recalled later.

The graphics system described in this paper has been implemented
in SEQUENTIAL PASCAL and is running on an INTERDATA 8/32. The output
devices it is currently drawing pictures on include a dumb CRT, a
lineprinter, a plotting printer, and a Chromatics Color Graphics
System.

The algorithm is simple to alter and can be adapted with very

2

little trouble to devices with differing resolution or capabilites,
If new object shapes are needed, the only required change is to add
new patterns to accommodate the shape. Computing time for a picture
with eight nodes and two ports per node is under two zeconds, This is
more than fast enocugh to support user interaction.

Chapter one documents the set of problems that drawing pictures
of connected graphs presents and proposes solutions to the problems,
Part one describes the software configuration that the GSS is designed
to draw. Part two defines the graphics capabilities needed to draw a
software configuration and discusses other design limitations., Part
three discusses the heuristic that is proposed to draw
configurations.,

Chapter two documents the implementation of the heuristic. Part
one defines high level algorithms that are used to determine
relationships in the configuration and that are used to construct the
actual picture. Part two discusses in general terms how the
algorithms can be implemented in a high level language such as PASCAL.
Part three examines the adapability of the algorithms with respect to
adapting GSS to different display devices and to varying 1limit
variables. The limit variables inelude such things as the number of
pixels in the picture, the number of elements allowed, and the maximum
number of ports per element. Part three also discusses how the use of
a color display can effect the presentation of material.

Chapter three documents the conclusion. Part one presents a
summary of this document. The performance of GSS is evaluated in part
two and several proposed enhancements to GSS are presented in part

three.

CHAPTER 1

1.1 Software Configuration

In [5] NADEX[7] is extended to support general graphs of
communicating sequential programs. Using software tools described in
[5,3], nodes can be distributed across a computer network. A software
configuration is a graph of nodes of processes in a message based
system. Nodes talk to one another by sending messages on Data
Transfer Streams(DTSs). A DTS is connected to a node at a port. 411
nodes have at least one port. A DTS can carry information in only one
direction. Therefore, the general graph that represents a software
configuration is a directed graph. The nodes in the configuration are
the nodes in the graph and the DTSs in the configuration are the arcs.
A specific graph represents a specific software configuration.

Configurations can be either completely or partially defined,
Partially defined configurations can later be combined to form
complete configurations. Therefore, configurations can be defined

hierarchically.

1.2 Reguirements

When listing requirements for a computer graphics program, the
designer must consider the input, the computing needs, and the output

devices. The input for the GSS is from one of two types of files

which are a Partial Configuration Descriptor(PCD) file containing a
record of the definition of a configuration, or a Picture(PIC) file
containing the definition of a configuration picture which has already
been drawn.

The computing needs are extensive. The primary objective of a
graphics system is to draw plctures in a manner that the user
expects. Figures 1. 2, and 3 show a number of sample configurations
that the GSS is expected to draw. Note that the dining philosophers
problem[4] is included as a prospective configuration. The problem of
drawing a connected graph with cycles 1s the impetus for this thesis
and the dining philosophers problem appears to be a good test for the
heuristic since it is a complex cycle. Other examples show
configurations made of hangers, pipes, and less complex cycles,

The GSS should be smart enough to draw a reasonably oriented
picture without user intervention. This implies that the algorithm
should be able to analyze the description of the graph, calculate
possible ways to draw the configuration, select the best possibility,
and then draw the picture. Flexibility for the user is important if
the user is going to be able to draw a meaningful picture. Therefore,
the user should be allowed to input recommendations as to how a
picture should be arranged. This input could take the form of making
suggestions to the GSS before the picture is drawn, or while the GSS
is selecting the best possibility. The user should be able to take
advantage of the faet that the GSS can faultlessly analyze the
relationships between nodes and can in many cases draw a large number
of different organizations of the configuration. This offers the

possibility for the user to step through different computer generated

THIS BOOK
CONTAINS
NUMEROUS PAGES
WITH DIAGRAMS
THAT ARE CROOKED
COMPARED TO THE
REST OF THE
INFORMATION ON
THE PAGE.

THIS IS AS
RECEIVED FROM
CUSTOMER.

NODE1

p1

NODES

pl

NCDEX

p3
NODE2 p2

NODE3

NCODET
p1

p3
NODES p2

PCD2

out

e e}

Fig. 1.

NCDE8

Sample configurations

6

pl CONSOLE pzl(._
%)

p3 3
CMDP P2} el P2 LINK
p1 p1

p1 FSS p2

Fig. 2. Command processor configuration

uoTje nsTJuco sasydosortud Buturg °f

*ITd

1 tTrud 23od Zrrud §
)
210
E€TIHd wood K-]
L3u0g u— &
eTTyd gttud
HOOY
LTTud
2trud
MO
LTTyd
u—
: 3 21103 L'TIH 1307 K

ci0J

Z'TIHd

L3103

ctrud

L3Mod

LTrud

drawings of a configuration until the proper drawing is found.

Calculating the best way to draw a cycle is more difficult for a
computer than for a user. However calculating all of the possible
ways to draw a cycle 1is easier for a computer than for a user.
Therefore, the computer should calculate all the possible ways to draw
a cycle, The user should then be allowed to make a choice of a
pattern. However, if the user does not want to make a choice, the
computer should have the knowledge to make a selection on its own.

Elements must be plotted in such a way that crossing arcs are
avoided thereby preventing the picture from getting too confusing. In
many cases, rearranging the relative positions of the elements in the
picture can reduce the number of crossed ares, Therefore the GSS
should attempt to select the pattern for plotting an object that will
produce the least crossed arcs.

The algorithm should be readily adaptable to allow more than a
certain number of nodes or ports to be drawn, or to adapt the GSS to
new configuration types. Although the GSS is meant to run under NADEX
which can run very large programs, the GSS should be designed in
modules small enough so that it c¢an be segmented to run on a small
stand alone intelligent graphics device such as a Chromatics. This
would also allow the segments to be split across the main computer and
the intelligent output device thus gaining concurrent computing
ability.

The user should be able to select from a variety of output
devices ineluding a dumb CRT, a line printer, a plotter, or a graphics
display. Also, the sophistication of the piecture output should

reflect the sophistication of the output device. For instance, a CRT

has the resolution capability to display a configuration with eight
nodes., While a plotter or graphics display can display sixteen nodes
with ease. A color graphics display or color plotter also allows the
user to display a more information with more clarity in less space.
The user should also have the capability to save and recall
pietures that have been drawn correctly. Execution time 1s important

since the system is interactive.

1.3 User Commands

The Graphies Support System may be accessed through the User

Interface which allows the user to do the following types of commands:

a. Get PCD or PIC files that have been produced.
The command is FILE(name: configuration name).
b. Display data concerning the picture components-nodes & ports.
The command is DATA(name: element name).
c. Assist the program in drawing pictures by selecting object
shapes.
The command is ASSIST.
d. Manipulate a picture by shifting nodes or rotating objects.
The commands are:
TRANSLATE(direction: (up,down,left,right),unit:integer).
ROTATE,
SWITCH(name:node name,name:node hame).
GRID,

MOVE (name :node ;Row, Column:integer).,

10

e. Move hierarchically through PCD file nodes to lower levels.,
EXPAND(name: node name),

'+ Select an output device upon which to draw the picture.
DRAW(device: (Console,Color,Plotter,Printer)).

g. Create a file and save a picture.

SAVE(name: file name);

The FILE command allows the user to search for an existing PIC
file of the configuration that is to be drawn. If the PIC file does not
exist then the requested PCD file is retrieved. This prevents the user
from wasting unnecessary time redrawing a picture, If a PCD file is
retrieved, it is automatically converted into a PIC record. The DATA
command will display information relating to node requested. The
information returned by the GSS includes the host name, the hierarchical
name if the node 1s hierarchical, and a list and description of the
internal and external ports in the node.

ASSIST supplies the user with the names of all nodes in the
configuration and indicates if any objeects in the picture are cycles.
If cycles do exist, the user is asked if he wanté to help the GSS to
draw them. If the user wants to assist the computer the GSS displays
the possible ways to draw each cycle and asks the user to make a choice.
ASSIST can be repeated until the picture is formatted according to the
user's expectations.

The next five commands allow the user to manipulate a drawn
picture by moving nodes about. The picture is automatically redrawn on
the current device after any one of these commands is executed,

TRANSLATE will move the entire picture up, down, left, or right for the

11

designated number of units, ROTATE will rotate a particular cycle
around its center in a clockwise or counterclockwise direction. SWITCH
allows the user to switch the location of two nodes. The GRID command
will draw an X,Y grid on the picture, This can assist the user by
supplying the units needed to do a translate or a move., MOVE will move
a node from one position to another without disturbing the rest of the
picture.

EXPAND will take the desired node and determine if it is
hierarchical. If it is, the hierarchical file name of the node is used
to retrieve the file using the FILE command.

DRAW is used to actually display a configuration on a device. If
no device name is supplied, the picture is drawn on the last device used
or on the console.

The SAVE command allows the user to save a picture in a PIC file
after a configuration has been drawn properly. The PIC file is not

device dependent.

1.4 Heuristia

Graphics Systems typically permit a user to draw a picture by
defining and plotting objects and arcs. However, as pictures get more
complicated or as users begin to expect more from their system, the need
for computer assistance in defining and drawing pictures becomes
inportant. The requirement that the GSS should be able to draw pictures
wilthout user intervention made the algorithm a great deal more
complicated since it now required a heuristic for determining how a
picture should be organized. Also, the problem of drawing directed
graphs with cycles is a great deal more complex than drawing graphs with

12

only pipes and hangers.

The possible object shapes are PIPE,CYCLE,and HANGER. The shapes
may be differentiated by the type of elements they contain. Elements
may be classified according to how many other elements they connect to,
or touch. If an element touches only one other element, it is
designated as a TERMINAL element. If an element touches two or more
other elements then it 1is designated as a NON-TERMINAL, A HANGER
contains two elements that <touch each other and one element must be a
TERMINAL. A PIPE contains two elements that touch one another and both
elements must be NON-TERMINALS. A CYCLE contains three to eight
elements that are related such that when all elements are connected
according to touches they form a connected graph.

A graphic description of object shapes 1s shown below:

HANGER TERMINAL====- < TERMINAL,NON-TERMINAL>
PIPE NON~TERMINALw——ee NON-TERMINAL
CYCLE NON-TERMINAL~-===NON-TERMINAL
! !
! !
NON-TERMINAL === NON-TERMINAL

Objects are interconnected through common NON~-TERMINALS, Elements
and objects are located relative to one another according to their
POSITION. The types of element positions are IN,MID,and OUT. Elements
are classified according to the direction of the ARCs that connect to
it. ARCs can have three possible directions, These are TC, BOTH, and
FROM, TO indicates that information flows into the element through the

ARC, BOTH indicates that information flows into and from the element

13

throught the ARC, FROM indicates that information flows from the
element through the ARC. An element's POSITION is determined by
counting the number of TO0s, BOTHs, and FROMs that it contains and

applying the following rules:

IN if TO > (BOTH and or FROM).
MID if BOTH only or TO = FROM,

QUT 4if FROM > (BOTH and or TO).

An object's position is determined by examining the member
elements' positions and counting the number of IN elements, MID
elements, and OUT elements. These counts are used to select the

object's position according to the following rules:

IN if IN elements > (MID or OUT elements).
MID if no IN or OUT elements or if IN elements = OUT elements.

OUT if OUT elements > (MID of IN elements).

Objects are constructed by tracing and recording all possible
non-redundant paths through the graph. 4 path is a list of elements
that can be used to determine an object type. A4s paths are recorded
they are analyzed to determine their type. If a path contains two
elements, it is a pipe or a hanger. Then, if both of the elements are
non-terminals, the object is a pipe. If one is a terminal, the object
is a hanger. If the path contains two occurrences of the same element,
the object is a cycle.

Two problems exist after all of the elements have been grouped
into objects. A cycle is actually constructed of pipes which form a

closed loop. Therefore, the pipes that are contained within the cycle

14

are redundant and must be discarded. The second problem is more
complex. Cycles with more than 3 elements and U4 connections are
actually formed by a combination of smaller cycles. Figure Y4 shows that
eight overlapping cycles exist in the dining philosophers problem,

The method used to bind overlapping cycles to a common object is
simple. If any two c¢ycles have two non-terminal elements in common,
they describe a common object. As cycles are linked to an object, they
become the choices for ways to draw the object, PFigure 5 gives an
example of an obJject with four elements and six connections.

Figure 6 lists all of the cycles in Object A. Figure T shows the
five possible ways to draw the object. When comparing Figure 6 to
Figure T it can be seen that elements in Cycle 1 are the same elements
drawn on the ocutside of the object in Picture 1. The same is true for
Cycle 2 and Picture 2, Cycle 3 and Picture 3, Cycle 4 and Picture 4, and
Cyele 5 and Picture 5. The list of cycles in Figure 6 form a list from
which the computer or the wuser can select the desired way to draw the
picture.

It is a simple matter to plot Objects of type HANGER or PIPE since
these can be plotted one node at a time. There are two steps needed to
plot a node relative to another node. The first step is to determine on
which side of the key node the new node should be located. This can be
done by analyzing the flow between the nodes. If the flow is from the
new node to the key node then the new node should be placed on the input
side of the key node. If flow is from the key node to the new node then
the new node should be placed on the output side of the key node. If
flow does not give a clear indication of a preferable location then the

new node is placed in a middle location relative to the key node.

15

Fig. 5. Object with 4 elements
and 6 connections

17

Cycle Member Elements

1 1
2
1
1

nwWwwmMm
= = sw

2
3
!
5 12314

Fig. 6 The five possible cycle groups

Picture 1 Picture 2
? 1
AN AN
f =3 e
Picture 3 Picture U4

<
B >3
Picture 5§

Fig. 7. The five possible ways to draw tiae cyele groups

18

The type of objeet in itself can also direct the placement of
nodes., If the nodes are in a PIPE, they should be located linearly to
one another. However, if the object 1is a HANGER then no clear pattern
for location can be made. The plotting of a CYCLE is quite different
from plotting the other shapes because three or more nodes must be
located relative to one another,

A number of different methods could be used in plotting CYCLES.
One such method would plot nodes one at a time, constantly shifting
nodes in relation to each other until all of the nodes are plotted
satisfactorily. This method would not suffer from the limitations of
using only predefined patterns but it is more time consuming, more
complicated, and more random in its results. Because of the limited
number of nodes that the GSS 1s required to draw. the use of patterns
seemed a logical solution. The patterns that were defined to support
the GSS can be found in the appendices. An object is matched to a
pattern according the number of outside and inside nodes in the
selected cycle. Figure 8 shows a CYCLE with 3 outside nodes and 1
inside node. Once the pattern has been selected to draw the object, a
clear sﬁace in the current picture must be found relative to the key
node in which to place the object. This is done by successively
overlaying the pattern on the picture until there are no collisions or
overlapping nodes in the proposed pattern and the existing plcture.

Depending on the shape, there can be several possible ways to
connect the object to the key node and this in turn guides the placement
of the pattern in the picture. Figure 9 shows the desired location of
the current example depending on whether the object is of type IN, MID,

or OUT. Once the object has been located in the picture, the nodes are

19

/N

Fig. 8§ A cyecle with 3 outside nodes

VANRVANRVAN

Type IN Type MID Type OUT

Fig. 9. Showing how cycle with 3 outside nodes can be
plotted depending on its position type. HNC represents the
current node which has already been plottad.

20

placed in the object. If possible, nodes of type IN are placed on the
input side of the object and nodes of type OUT are placed on the output
side of the object, Once the current object has been plotted and if
more objects exist, a key node is found within the object and the next
object is plotted.

After all of the elements have been positioned, the arcs and ports
must be plotted. Drawing arcs is not very complicated as long as the
nodes have been located correctly relative to each other, and if there
are only one or two ares between any two elements. Fortunately, most
configurations have very few arcs between any two elements. Also, if
the preceding heuristic is used to plot elements, any two elements will
be oriented with a clear path for arcs between them.

In most cases, arcs will not have to0 cross one another. Several
cases in which crossing ares are unavoidable are shown in Figure 10.
However, in some cases by selecting a different pattern to draw the same
objeat, arc intersections can be reduced or eliminated. Figure 11 shows
the same objects in Figure 10 redrawn using different patterns.

Arcs are drawn by selecting the correct free port in each element.
Then the relationship between the ports is defined and the correct arc
pattern is selected to guide the plotting of the arc. Finding the
correct free ports and arc is a straightforward process of trying
possible arc patterns until one that works is found. If two elements
are oriented as in Figure 12.a, the best arc is shown in Figure 12.b.

If three elements are oriented as in Figure 13.a, the first arc
choice might be Figure 13.b, the second choice might be Figure 13.c, and

the last choice might be Figure 13.d.

21

—_—

w

Object

1

3 4 3 2
Object 2 Object 3
Fig. 10. Objects with crossing arcs
2\\\\\ /////6 T
/1 5\ /2\
3 4 3
Object 2 Object 3

Fig. 11.

Objects redrawn without crossing arcs

22

a. b.

Fig. 12. Illustration of best arc between two nodes

e b. C. d.

Fig. 13. Illustration of best arc for 3-node crientation

23

CHAPTER 2

2.1 Algorithms

The Graphics Support System can be subdivided into six submodules
or classes:
1) User Interface.
2) Conversion of PCD file to a PIC file.
3) Analyze the PIC file to generate the relationships that will be
used throughout the program to draw the pictures.
4) Determine object shapes, PIPE,HANGER,CYCLE.
5) Draw the picture in relative screen coordinates, independent
of output device.

6) Convert the relative picture to an absolute picture destined
to a specific device.

The main structure of the GSS is:

REPEAT
Get a command from user.
If valid command then call appropriate submodule,

UNTIL command = END.

The commands can be broken down into three subsets. The
relationship between user commands and the submodules is shown in Figure
14, The first subset allows file manipulation and includes the commands
FIle, EXpand, and SAve, The second subset allows picture manipulation
and includes the commands GRid, SWitch, ROtate, TRanslate, and DRaw.
The third subset supplies the user with information pertaining to
elements or objects and allows the user to assist the computer in
drawing the picture. The commands are ASsist, DAta, and HElp. The

following discussion will present the algorithms that implement the

24

USER INTERFACE

DRIVER
FILE PICTURE USER INFORMATION
MANIPULATION MANTIPULATION & ASSISTANCE
FIle GRid HElp
EXpand ROtate ASsist
SAve SWitch DAta
TRanslate
DRaw
MOve
Fig. 14. The main structure of the GSS

25

commands in each of the subsets.
The commands in the first subset allow the user to open or close a
file or to create a PIC file. The FILE command algorithm is described

below:

CLASS FILE (name: filename)
BEGIN
IF name,PIC exists THEN OPEN name.PIC
ELSE OPEN name.PCD;
IF file type PCD THEN CONVERT PCD file to PIC file;
END;

CLASS EXPAND (name: element_name)

BEGIN
IF name <> hierarchical name THEN get hierarchical name;
Call CLASS FILE (hierarchical name);

END;

CLASS SAVE (name: filename)
BEGIN
IF name.PIC does not exist then CREATE a file name.PIC and
WRITE (file);
END;

The commands in the second subset support user manipulation a

picture:

CLASS GRID (device: device_types)

BEGIN
Calculate an X and Y grid relative to a specific device;
Add the grid to the display file;
Call CLASS DRAW (current device);

END;

CLASS SWITCH (elementl,element2: element_name)
BEGIN
Switch the coordinates for element! and element2;
Call CLASS DRAW(current device);
END;

26

CLASS ROTATE (direction: direction_types)

BEGIN
Switch the coordinates for a cycle in indicated direction;
Call CLASS DRAW(current device);

END;

CLASS TRANSLATE (direction: direction_types,unit: integer)
BEGIN
Shift all picture file coordinates in the indicated
direction for the specified number of units;
Call CLASS DRAW(current device);
END;

CLASS DRAW (device: device_types)
BEGIN

Call CLASS DEFINE_OBJECTS;

Call CLASS PLOT_NODES;

Call CLASS DRAW_PICTURE(device);
END;

The commands in the third subset provide the user with information
concerning the GSS command set or pertaining to the picture

organization:

CLASS ASSIST;
BEGIN
Display names of all elements.
IF there are any cycle objects THEN ask user if he wants
to assist in selecting shape of cycle objects;
IF the user wants to interact
THEN BEGIN
List information about cycle choices;
Ask user to make a selection of a shape;
END
ELSE the GSS selects the cycle choice;
END;

CLASS DATA (name : element_name);
BEGIN

Print information about the element with id = name;
END;

27

CLASS HELP
BEGIN

Print the annotated list of commands available in the GSS
END

The algorithms described next support the GSS commands., They
describe how the input file is transformed into objects, how the objects
are located in the picture, and how the entire picture is drawn to a

device.

CLASS DEFINE_OBJECTS;

BEGIN
Def'ine connections between nodes.
Combine nodes into objects.
Combine common objects.
Determine if nodes are of type IN, MID, or OUT.
Determine if objects are of type IN, MID, or OUT.
If any objects of type cycle exist determine all the possible

ways to draw the object.
END;

CLASS PLOT_NODES;
BEGIN
Select the first node.
Select the first object.
Plot the first node.
REPEAT
GET_NEXT_NODE in object;
IF not another node in object
THEN GET_NEXT_OBJECT
ELSE PLOT_A _NODE(node);
UNTIL no more nodes or objects to plot.
END

28

CLASS GET_NEXT_NODE;

BEGIN
IF another node in current object
THEN
BEGIN
Nodes are plotted clockwise around an object
so the next node must satisfiy two conditions:

1. Connect to current node.

2. Be of the proper type of position if there
is a choice. This means that if the current
node is a MID and the next position to be
plotted in the object is on the OUT side of
the current node, the next element to be
selected should be of position OUT or MID
if possible,

Following these rules, select the next node;
END;
END;

CLASS GET_NEXT_OBJECT;
BEGIN
IF there is another object to plot THEN
BEGIN
Using the non _terminal external element in the current
object select, select the next object, If there is
a choice of next objects always select the large one
to do next,
END;
END;

29

CLASS SELECT_PATTERN;
Using the current object
BEGIN
Select a choice if one has not been selected by the user;
Count the number of outside and inside nodes in the
object;
IF the object is a cycle, count the number of outside
and inside nodes;
CASE object type OF
PIPE or HANGER: The object will be plotted using the
pattern for pipes and hangers;
CYCLE : The pattern will be chosen according to the
number of outside and inside elements;
END;
REPEAT
CASE positon of object OF
IN : Select the object orientation that is defined
for an input type object;
MID : Select the mid object orientation;
OUT : Select the out object orientation

END;

Overlay the selected pattern on the existing picture
and check to see if there are any collisions with
previously plotted node;

IF a collision THEN chose another object orientation;

UNTIL no collision OR no more patterns to try;
IF no more patterns to try THEN error condition and
another choice of pattern must be made;
END;

CLASS DRAW_PICTURE(device: device_types);
BEGIN
Adjust limit variables to match device;
Draw boxes;
Draw text in boxes;
Select arcs;
Draw ports;
Draw arcs;
END;

2.2 Implementation

The GSS has been implemented in SEQUENTIAL PASCAL and is currently

running on an Interdata 8/32. A detailed documentation of the GSS can

be found in [6]. The following implementation details will discuss the

heuristics that analyze directed graphs and select patterns.

30

2.2.1 PICIURE Data Structure

The‘PICTURE data structure holds all of the information that is
needed by GSS to draw a picture of a configuration on any output
device, Figure 15 is a drawing of a connected graph containing two
cycles, A and B, and a hanger C. Figure 16 shows how the components of
PICTURE relate to one another and demonstrates how they would be
organized when defining the graph in Figure 15.

A picture as defined in PICTURE is composed of objects which can
be of type HANGER, PIPE, or CYCLE. Each object is composed of one or
more groups which can also be of type HANGER, PIPE, or CYCLE., If an
object is of type HANGER or PIPE then it contains only one group.
However, if the object is a CYCLE then it can contain one or more groups
of type CYCLE. Each group is composed of one or more elements and
multiple groups can point to the =same element. If more than one
object's groups point to a common element, that element is designated as
being EXTERNAL and will be wused to connect two objects together when
drawing the picture. Each element connects to one or more ports. Ports
are unique to an element and can be of two types, INTERNAL or EXTERNAL.
INTERNAL ports connect to other ports within the current configuration.
EXTERNAL ports, which only exist in partial configuration descriptions,
do not connect to another port in the current picture and are drawn
differently than INTERNAL ports.

The PICTURE record is described next. The constants used in the
program are defined first. Notice that these are the values to change
if any limit in the program is going to altered. For instance, if the
number of nodes is to be changed, simply assign a different value to
MAX_ELEMENT.

31

Fig. 15. Illustration of a connected graph

/

Picture

Objeii\; Object 2 Objeet 3
Group 1 Group 2 Group 3

/ ‘

Elem 1 Elem 2 Elem 3 Elem 4 Elem 5 Elem 6 Elem 7

A

P1 P2 P3 P4 P5 P6 P7T P8 P9 P10 P11 P12 P13 P14 P15 P16

Fig. 16. Tree showing relation of picture components,
P1 through P16 represent ports.

32

CONST

MIN _ELEMENT = 1; MAX_ELEMENT = 8;
MIN PORT = 1; MAX PORT = 32;
MIN ARC = 1; MAX_ARC = 16;
MIN OBJECT = 13 MAX_OBJECT = T3
MIN_GROUP = 1; MAX_GROUP = 30;
MIN STACK = 1; MAX_STACK = 30;
MAX COL = T9;

FIRST _COL = 103

FIRST_ROW = 10;

CONSOLE_MAX_WIDTH = T;
CONSOLE_MAX_HEIGHT = 5;
DF_MIN ROW = 1; DF_MAX ROW = 21; DF_MIN COL = 0; DF_MAX_COL

79;

FIRST_ROW and FIRST_COL defi-ne where the first node will be
plotted in relative space, When plotting pictures on the console, the
two CONSOLE constants define the greatest number of pixel locations and
how wide and high the picture may be. The four DF constants define how
big the display file is when drawing pictures on the console,

The following types are used in the GSS:

TYPE
STRING2 = ARRAY[1,.2] OF CHAR;
STRINGS = ARRAY[1..8] OF CHAR;
STRING12 = ARRAY[1..12] OF CHAR;
GROUP_INDX = MIN_GROUP..MAX_ GROUP;
ELEMENT_INDX = MIN_ELEMENT..MAX_ELEMENT;
PORT_INDX = MIN_PORT..MAX_PORT;
OBJECT_INDX = MIN OBJECT..MAX_OBJECT;
CONNECTION_TABLE_INDX = ELEMENT INDX;
STACK_INDX = MIN STACK..STACK_LIMIT;
GROUP_SET = SET OF GROUP_INDX;
ELEMENT_SET = SET OF ELEMENT INDX;
PORT_SET = SET OF PORT_INDX;
OBJECT SET = SET OF OBJECT INDX;
FLOW_DEF = (TO_,FROM ,BOTH_);
PORT_TYPE_DEF = (INTERNAL,EXTERNAL);
POSITION DEF = (IN_,MID ,OUT_);

33

The port record holds the information relative to each port in the

configuration:

PORT_DEF = RECORD

PORT_ID: STRINGS;

IN_ELEMENT : ELEMENT_INDX;

FLOW : FLOW_DEF;

CASE PORT_TYPE:PORT_TYPE_DEF OF
INTERNAL : (TO_PORT: PORT_INDX);
EXTERNAL : (EXTERNAL NAME: STRINGS8);

END;

PORT_ID has the name of the port. IN ELEMENT is a pointer to the
parent element. FLOW indicates the direction that information flows
through the port. The PORT_TYPE indicates if the port is INTERNAL or
EXTERNAL.,

The definition of each element is contained in the following
record:

ELEMENT _DEF = RECORD
X: INTEGER;
Y: INTEGER;
LLC: BOOLEAN;
IN_OBJECTS: OBJECT_SET;
NODE_ID: STRINGS;
PORTS: PORT_SET;
HIERARCHICAL: BOOLEAN;
HIER NAME : CHARS8;
NODE_POSITION : POSITION_DEF

END;

NODE_KIND_DEF = (TERMINAL,NON_TERMINAL);

X and Y hold the coordinates where the element is plotted.
IN_OBJECTS is a pointer to parent objects and NODE_ID contains the name
of the node. PORTS contains a set of pointers to all of the ports in
the element and HIERARCHICAL specifies if the node is hierarchical and
itself defines another configuration. HIER_NAME specifies the name of

the hierarchy if' the name is different than NODE_ID, NODE_POSITION

34

defines where the node should be plotted in relation to the picture.
HOST_ID specifies the name of the host that the element resides in.

Connections between nodes are defined in the connection table:

CON_TABLE_DEF = RECORD
TOUCHES : ELEMENT_SET;
NODE_KIND: NODE_KIND_DEF
END;
KIND_DEF = (UNDEF_,HANGER_,PIPE_,CYCLE_);

There 1is an entry in the table for each element in the
configuration and for each entry there 1is a set of elements that each
element TOUCHES. An elements node kind is defined in NODE_KIND,

The desceription of each object is contained in the following

record:

OBJECT_DESC = RECORD

ALL, MEMBERS : ELEMENT_SET;

GROUPS_NOT_TRIED: GROUP_SET;

GROUPS_TRIED: GROUP_SET;

OBJECT_POSITION: POSITION_DEF;

KIND: KIND_DEF;

EXTERNAL: ELEMENT_SET;

CYCLE_CHOICE : NO_CHOICE.,MAX GROUP

END;
ELEMENT_ARRAY= ARRAY[ELEMENT_INDX] OF ELEMENT_DEF;
PORT_ARRAY= ARRAY[PORT_INDX] OF PORT_DEF;
CONNECTION TABLE_ARRAY= ARRAY[CONNECTION_TABLE INDX]

' OF CON_TABLE_DEF;
GROUP_ARRAY= ARRAY[GROUP_INDX] OF ELEMENT_ SET;
OBJECT_ARRAY= ARRAY[OBJECT_INDX] OF OBJECT_DESC;

ALL_MEMBERS contains a set of pointers to all the elements in the
object. GROUPS_NOI_IRIED is used in selecting an object pattern and to
keep track of choices that have been tried. GROUPS TRIED contains the
set of all groups that have been tried. OBJECT POSITION indicates the

optimum relative location for the object in the picture. KIND indicates

what kind of objeect it is, if it is a PIPE, HANGER, or CYCLE. EXTERNAL

35

contains the set of all EXTERNAL nodes in the object, and is used to
connect objects together. CYCLE CHOICE indicates the pattern that was
last used to draw the object.

The picture description record defines all of the entities that
make up the picture:

PICTURE _DESC = RECORD

ELEMENT: ELEMENT_ARRAY;
PORT: PORT_ARRAY;
CONNECTION : CONNECTION_TABLE ARRAY;
GROUP: GROUP_ARRAY;
OBJECT: OBJECT_ARRAY;
SUCCESSFUL : BOOLEAN
NUM_NODES : INTEGER;
NUM_OBJECTS : OBJECT_INDX;
NUM_PORTS : PORT_INDX;
NUM_GROUPS : GROUP_INDX;

END;

The SUCCESSFUL boolean is used through the program to indicate a
successful plotting operation. If, at the end of the program,
SUCCESSFUL is false then the picture can not be drawn for some reason
that will be indicated by an error message.

The following global variables are used in the program:

VAR
PICTURE : PICTURE DESC;
CD : UNIV_PCD_TYPE;

PICTURE is the data structure that holds the picture definition.
CD is the record that holds the definition of a software configuration.
Information in the CD is extracted to the PICTURE record if this is the
first time this configuration is being drawn. After the PICTURE record
has been initialized, the CD is not accessed again. A description of

the UNIV_PCD TYPE can be found in [5].

36

2.2.2 Graph Analysis and Object Definition

The first step in drawing a picture after the CD file has been
converted is to analyze the graph to determine relationships and build
objects, This i1s done in the class DEFINE OBJECTS which will use
several additional data structures:

CONST
MIN_STACK = 1; STACK_LIMIT = MAX_ELEMENT;
TYPE
STACK_INDX = MIN_STACK..STACK LIMIT;
GROUP_DEF = RECORD
KIND : KIND_DEF;
COMMON : OBJECT_INDX;
END;
GROUP_DESC_DEF = ARRAY[GROUP_INDX] OF GROUP_DEF;
VAR
ACTIVE_NODES : ARRAY[STACK_INDX] OF ELEMENT_INDX;
TOS : STACK_INDX;
GROUP_DESC : GROUP_DES DEF;
TEMP_CON_TABLE : CONNECTION _TABLE_ ARRAY;

Figure 17 shows the procedure DEFINE OBJECTS which analyzes the
graph definition, then creates and describes objects, groups, elements,
and ports.

INITTIALIZE _TEMP_CON builds a duplicated copy of CONNECTION.
SELECT_FIRST_NODE selects the first node to be located. It makes its
selection by finding the node that connects to the most other nodes.
This node is pushed on the stack. ANY ACTIVE NODES peeks in the stack
to see if any elements are on the stack. If there are then the analysis
is not complete.

The CURRENT_NODE is the one that is on the top of the stack, The
NEXT_NODE is found by looking in the TEMP_CON_TABLE set for the
CURRENT_NODE and pulling one out. The NEXT_NODE is then removed from

the CURRENT NODE's TEMP_CON TABLE so that the same connection will not

37

PROCEDURE DEFIME_OBJECTS;
VAR SAVE_CURRENT_NODE,CURRENT_NODE,
NEXT_NODE: ELEMENT_INDX;
DONE : BOOLEAN;
BEGIN
INITIALIZE TEMP_CON;
SELECT_FIRST NODE;
WHILE (ANY_ACTIVE NODES) DO
BEGIN
CURRENT_NODE := PEEK(TOP);
SAVE_CURRENT_NODE := CURRENT_NODE;
NEXT NODE := NEXT(CURRENT_NODE);
REMOVE(CURRENT_NODE,NEXT NODE);
CURRENT _NODE := NEXT NODE;
CASE NODE_TYPE(CURRENT_NODE) OF
TERMINAL: BEGIN REMOVE(NEXT_NCDE,SAVE CURRENT_NODE);
HANGER(CURRENT_NODE) ;

END;
NON_TERMINAL: IF SEARCH(CURRENT_NODE) = NOT_FOUND
THEN
BEGIN
REMOVE(NEXT_NODE, SAVE_CURRENT_NODE) ;
PUSH(CURRENT_NODE) ;
END
ELSE CYCLE(CURRENT_NODE)
END;
DONE := FALSE;
REPEAT

IF ANY_ACTIVE_NODES THEN
IF EMPTY(PEEK(TOP)) THEN
BEGIN REINIT(PEEK(TOP));
IF TOP > MIN STACK THEN PIPE;
POP;
END ELSE DONE := TRUE;
UNTIL NOT(ANY_ACTIVE_NODES) OR DONE;
END;
COMBINE;
END;

Fig. 17. The Procedure DEFINE_CBJECTS

38

be seen twice. Then the NEXT _NODE becomes the CURRENT_NODE.

If the CURRENT NODE is a terminal then the previous CURRENT_NODE
is removed from the CURRENT_NODE's TEMP_CON_TABLE and an object of type
HANGER is created consisting of two elements, the CURRENT NODE and the
element on the top of the ACTIVE stack, If the element is a
non_terminal then the first step is to search the ACTIVE stack to see if
the CURRENT_NODE is already on the stack, If it is, a CYCLE group is
created having the following members. The first group member is the
CURRENT_NODE and the other members are found by popplng elements off the
stack until the element that matches the CURRENT NODE is encountered.
As each element is popped it is added to the CYCLE group. As a final
step all of the elements that were popped off the stack are pushed back
on the stack in the original order. The CURRENT_NODE is not pushed on
the stack.

If the CURRENT_NODE was not found on the ACTIVE stack, it is
pushed on the stack and the previous CURRENT NODE is removed from the
TEMP_CON_TABLE of the CURRENT_NODE, Before the loop i1s repeated the
TEMP_CON TABLE must be reinitialized for any elements that are on the
ACTIVE stack that have had all of there connections analyzed. As they
are reinitialized they are popped off the stack and PIPE objects are
formed from the element on the top of the stack and the one just under
it If all of the elements get popped off of the stack then the
procedure is done, if not, then a new CURRENT _NCODE is found and the

process begins again.

39

After all of the groups have been created the COMBINE procedure
shown below is called:

PROCEDURE COMBINE;

BEGIN
GROUPS_TO_OBJECTS;
ELIMINATE REDUNDANT_CYCLES;
MAKE KIND;
MAKE_GROUPS_NOT_TRIED;
DETERMINE_EXTERNAL;
DETERMINE_IN OBJECTS;
DETERMINE POSITION;

END;

GROUPS_TO_OBJECTS combines common groups together to form objects.
HANGERs are not considered here because they cannot be combined. The
method for combining groups is very simple. Compare every group with
every other group. If any two groups contain two or more identical
elements, they are placed in the same object. After all groups have
been combined, the CYCLE objects will contain both CYCLE groups and PIPE
groups, The PIPE groups are redundant information and must be deleted,

MAKE ALL MEMBERS simply makes a set of all the elements in all the
groups the are contained within the object. MAKE KIND determines the
kind of object based on the type of groups found in the object. If an
object contains a HANGER group the object type becomes HANGER. If an
object contains a PIPE group the object type becomes PIPE. Finally, if
the object contains a CYCLE group the object type becomes CYCLE,

GROUPS_NOT_TRIED is only done for CYCLE objects. It is a set of
all the CYCLE groups in the object. DETERMINE EXTERNAL is a set of all
the elements in the object that are common to other objects,
DETERMINE_IN_OBJECTS initializes the IN_OBJECTS variable of each element
with a pointer to the object that it is in, DETERMINE_POSITION
calculates the NODE FPOSITION and OBJECT_POSTION for each element and

4o

object. This is done for each element by counting the number of
TO,BOTH,and FROM ports and then assigning the position according to the
following rules:

IN if more FROMs than TOs.

OUT if more TOs than FROMs,

MID otherwise.
Then the object postion is determined by counting the number of IN,
MID, of OUT elements and then assigning the position according to the
following rules:

IN if more INs than OUTs,

OUT is more OUTs than IN=s,
MID otherwise.

2.2.3 Pattern Selection

The process of plotting objects has already been discussed in
section 2.2 and a detailed explanation can be found in [6]. However,
the process of selecting a pattern and locating elements in the picture
is interesting and will be discussed next.

The method of selecting a pattern is based on the shape of the
object to be plotted and can be determined using the object's kind
definition. If the object is a PIPE or HANGER, the
PATTERN FOR_PIPES AND HANGERS is called. If the object iz a cycle, a
pattern for that particular shape of c¢ycle 1s called. A cycle's shape
is determined by the number of outside and inside elements in the cycle
group that is the current choice. The method of placing an object in
the picture will be discussed after the PIXEL PAD has been defined.

The PIXEL is an entity that represents a location on a a PIXEL_PAD

11

shown in Figure 18. The PIXEL PAD represents a window of a certain
portion of plotted picture. The plotted picture is defined by the X and
Y coordinates of elements that have already been plotted.

The PIXEL_PAD is oriented over the existing plcture Dby placing a
certain PIXEL, F5 in the c¢ase of plotting a hanger, over the current
node, If the current node was in location 10,10, F5 would represent
that location. Then if there is a plotted node in location 8,10, F3
would represent that location, A PIXEL can be converted into a a set of
actual picture coordinates by converting the PIXEL into a row and a
column as shown in Figure 18, then adding a row offset and a column
offset to the row and column respectively. The offsets are calculated
according to where the PIXEL PAD is oriented over the picture. There
are two types of object patterns defined for GSS. These are patterns
for pipes and hangers and patterns for cycles., The two pattern types
are very =similar but they are used in slightly different fashons to
Select the next possible way to plot the pattern. The record defining a
pattern is presented next:

PATTERN_DEF = RECORD
LOCATION : ARRAY[1..8] OF
RECORD
LOC_PIXEL : PIXEL;
NEXT_OUTSIDE : INTEGER;
NEXT_INSIDE : INTEGER;
XLOC : INTEGER;
YLOC : INTEGER;
END;
INSERT_PTR : INTEGER;
START_LOCATION : PIXEL;
SPACE_NEEDED : ARRAY[1..8] OF PIXEL_SET;
REQUIRED_SPACE : PIXEL SET;
NUM_LOCATIONS : INTEGER;
LAST CHOICE : (FIRST,SECOND,THIRD,FOURTH);
END;
LOCATION is wused as a circular linked 1list with NEXT _OUTSIDE

42

Row
+5 KX0,K1,K2,X3,K4,X5,K6,K7,K8,K9,K10,
+4 Jo,Jd1,J2,4J3,d4,J5,J6,37,48,J9,J10,
#3 T10,31,I2,I3,1%,15:36,07:18,19,110,
+2 HO,H1,H2,H3,H4,H5,H6,HT,H8,H9, H10,
+1 Go0,G1,G2,G3,G4,G5,G6,G7,G8,G%,G10,
0 FO,F1,F2,F3,F4,F5,F6,F7,F8,F9,F10,
-1 EO,E1,E2,E3,E4,E5,E6,ET,E8,E9,E10,
-2 Do,D1,D2,D3,D4,D5,D6,D7,D8,D9,D10,
-3 c¢o,c1,c2,C3,C4,05,C6,C7,C8,C9,C10,
-4 Bo,B1,B2,B3,B4,B5,B6,B87,B8,B9,B10,
-5 A0,A1,A2,A3,Al4,AS5,46,A7,A8,49,A10

Col =5 <4 =3 =2 =1 0 +1 +2 +3 +4 +5

Fig. 18. Pixel Pad and the
relationship of a pixel to a relative
row and column.

43

pointing to the next location in the 1list, NEXT_QUTSIDE, as used in a
the pipe-hanger pattern points to the next way to try to draw the
pattern relative to the CURRENT_NODE, In a cycle, NEXT_OQUTSIDE points
the next node location on the perimeter of the cycle pattern,
NEXT_INSIDE is not used in the pipe hanger pattern but it points to the
next node location on the inside of a cycle pattern. X _LOC and Y_LOC
are coordinate locations which are calculated when a pattern orientation
is selected. These locations are used in the class which plots nodes to
locate nodes in the picture.

LOC_PIXEL specifies a pixel where a node in the object can be
located. The INSERT_PTR points to the first location in the LOCATION
list and is assigned according to the type of object position for the
new object. The value in START _LOCATION specifies the pixel in the
pattern which is wused to orient the pattern to the current node.
SPACE_NEEDED is used in the pipe-hanger pattern to designate the set of
pixels that must be free when the pattern is overlayed on the picture.
REQUIRED_SPACE serves the same function in the cycle patterns.
LAST_CHOICE is used in the c¢yele patterns to designate the last valid
way to try to overlay the pattern., For instance. if there are three
ways to orient a certain pattern, LAST_CHOICE would be assigned THIRD.

The following example shows the values assigned to the pattern for
pipes and hangers.

Figure 19 shows the pixel pad with the possible LOC_PIXELs
indicated by brackets. Remember that the current node is located in the

position indicated by pixel F5.

4y

XK1,K2,K3,K4,K5,K6,K7,K8,K9,K1
J1,J2,J3,J4,J5,36,47,48,J9,J1
11,1I2,13,14,15,16,1I7,18,I9,I
H1,H2, *,H4, * H6, *,6H8,H9,HI
¢1,62,6G3,G4,65,G6,G7,G8,G9,G1
F1,F2, *,F4,F5,F6, * F8,F9,F1
E1,E2,E3,E4,ES,E6,E7,E8,E9, E1
p1,D2, #,D4, #,D6, *,D8,D9,D1
¢1,c2,c3,C4,05,C6,C7,C8,C9,C1
B1,B2,B3,B4,B5,B6,B7,B8,B9, 81
A1,A2,A3,AY,A5,46,A7,48,49,410

Fig. 19. Shows the pixel
pad with the possible LOC_PIXELs
indicated by asterisks.

X1,K2,K3,K4,K5,K6,KT7,K8,K9,&1
J1,J2,J3,J4,J5,36,J7,48,39,J1
11,12,13,1I4,15,16,1I7,I8,I9,I1
H1,H2,H3,H4, *,H6,HT,H8,H9,H!
¢1,G2,G3,G4,G5,G6,G7,G8,G9,G1
F1,F2,F3,F4, #,F6,F7,F8,F9,F1
E1,E2,E3,E4,E5,56,E7,E8,E9,E1
D1,D2, ¥,D4,D5,D6, ¥,D8,D9,D1
162,03 ;08,05 , 06,07 ,C8,09,C!
B1,B2,B3,BY4,585,86,37,B8,B9,31
A1,42,43,4%,45,46,47,48,49,410

Fig. 20. Shows pixel pad
with the possible LOC_PIXELs
indicated by asterisks.

45

The following code shows how the PATTERN _DEF record is initialized

when doing the pipe-hanger pattern:

LOCATION[1].LOC_PIXEL
LOCATION[2].LOC_PIXEL
LOCATION[3].LOC_PIXEL
LOCATION[4].LOC_PIXEL
LOCATION[5].LOC_PIXEL :
LOCATION[6].LOC_PIXEL :
LOCATION[7].LOC_PIXEL :
LOCATION[8] .LOC_PIXEL
CASE OBJECT_POSITION o
IN_ : INSERT PTR
MID_: INSERT PTR
OUT_: INSERT_ PTR
END;
START LOCATION := F5;
SPACE_NEEDED[1] := [G2,G3,F2,F3,E2,E3];
SPACE_NEEDED[2] := [I2,I3,I4,H2,H3,H4,G2,G3];
SPACE_NEEDED[3] := [I4,I5,I6,H4,H5,H6];

F3; LOCATION[1].NEXT_OUTSIDE
H3; LOCATION[2].NEXT_OUTSIDE
H5; LOCATION[3].NEXT_OUTSIDE
H7; LOCATION[Y4].NEXT OUTSIDE
FT7; LOCATION[5].NEXT_OUTSIDE
D7; LOCATION[6].NEXT_ OUTSIDE
D5; LOCATION[7].NEXT_OUTSIDE
D3; LOCATION[8].NEXT OUTSIDE

ss os
°e se o8

ll nuwuwn n R
o nmnunnun

= = ou WN
we we we ws wer ws we we

se ®e 83 °% we

. . e
Ul Ul = 5.
we s

SPACE_NEEDED[4] := [16,I7,I8,H6,H7,H8,G7,G8];
SPACE_NEEDED[5] := [GT,GB,FT,F&,ET,ES];
SPACE_NEEDED[6] := [ET,E8,D6,D7,D8,C6,C7,C8];
SPACE_NEEDED[7] := [D4,D5,D6,C4,C5,C6];
SPACE_NEEDED[8] := [E2,E3,D2,D3,D%,C2,C3,C4];

The INSERT_PTR is initialized as a pointer to the first possible
position in which to locate the node. In the case of a pipe of position
IN, the first location choice would place the node in location F3. If
F3 already contains an element, then the NEXT_OUTSIDE pointer is
followed to the next choice, H3 in the current example. Successive
locations are tried until an empty location is found.

The next example shows the values assigned to the pattern for a
cycle with three outside nodes and one inside node. Figure 20 shows the
pixel pad for this pattern with the possible LOC_PIXELS indicated by

asterisks.

46

The following code shows how the PATTERN_DEF record is initialized
when doing the pattern for a cycle with three outside nodes and one

inside node:

WITH LOCATION[1] DO BEGIN
LOC_PIXEL := D3; NEXT OUTSIDE := 2; NEXT INSIDE := 4; END;
WITH LOCATION[2] DO BEGIN

LOC_PIXEL := H5; NEXT OUTSIDE := 3; NEXT_INSIDE := 4; END;
WITH LOCATION[3] DO BEGIN

LOC_PIXEL := D7 ; NEXT OUTSIDE := 1; NEXT INSIDE := 4; END;
WITH LOCATION[4] DO LOC_PIXEL := F5;
CASE CHOICE OF

FIRST : IF OBJECT_POSITION

OQUT_ THEN INSERT_PTR :
ELSE INSERT_PIR :

SECOND_:INSERT_PTR := 2;

THIRD_ :IF OBJECT_POSITICN

OUT_ THEN INSERT_PIR :
ELSE INSERT_PTR :

END;

REQUIRED_SPACE := [C2,C3,C4,D2,D3,D4,D5,D6,D7] +
[D8,E2,E3,El4,E5,E6,ET7,E8,C6] +
[c7,C8,F4,F5,F6,I4,1I5,16,G4] +
[G5,G6,H4,H5,H6];

CASE INSERT_PTR OF

1: REQUIRED_SPACE := REQUIRED_SPACE -~[D3];
2: REQUIRED_SPACE := REQUIRED_SPACE - [H5];
3: REQUIRED SPACE := REQUIRED SPACE - [D7]

END;

LAST_CHOICE := THIRD_;

CASE INSERT_PTR OF

1: START_LOCATION:= D3;
2: START LOCATION:= H5;
3: START _LOCATION:= DT

END;

The INSERT PTR is initialized as a pointer to the first way to
position the object relative to the current node. If this is the FIRST
choice and the objeect position is OUT, the INSERT_PTR would be set to
one. The INSERT_PTR now points to the node loecation which will serve as
the START_LOCATION. This is the location which already contains the
current node. REQUIRED_SPACE is initialized to hold the set of pixels

which must be free if the object is to be plotted using this orientation

of the object. If the FIRST choice 1s not possible, the SECOND choice

u7

is tried and so on. Figure 21 shows the current node plotted in
location 10.10. The FIRST, SECOND, and THIRD choices for locating the
current pattern relative to the current node are shown in Figures 22,
23, and 24 respectively.

The only record of where an element has been plotted is kept in a
record that deseribes each element. The location is recorded as an X
coordinate and an ¥ coordinate.

The first step in selecting a pattern involves creating a set of
locations where nodes have already been plotted. This set is
constructed by converting the X,Y coordinates for each plotted node into
a pixel location in the pixel pad. However, before this is done, a
prospective pattern must be selected according to the description of the
new object to be plotted. If it 4is a pipe, the pattern for pipes and
hangers is created. If it 1is a c¢ycle with three nodes on the outside
and one node on the inside then the pattern for that shape is created.
Patterns are created by initializing the PATTERN_DEF record for a
certain shape.

There are two reasons for using patterns to position objects.
First, a pattern provides a way to define an object shape and provides a
way to position the nodes within the shape. Second, the pattern
contains a list of locations or pixels in the current picture which must
be empty if the shape is to be plotted in that space,

Pixels are relative locations within the pixel pad. The pixel pad
is a window which can be moved about over the existing picture to give a
snapshot of the nodes which have been plotted in the windowed part of
the picture. The window is positioned according to the START LOCATION

pixel initialized in the current pattern. In the current example for a

48

T 1

15

14

13

12

11

10

2

Fig. 21. Snapshot of
current node in location 10,10.
plotted.

49

10

current

relative picture showing

18

17 KO K1 K2 K3 K4 K5 K6 K7 K8 K9 K10
16 J0 J1 J2 J3 Ju | J5 J6 Jr J8 J9 J1o
1 10 I1 I2 I3 i4 i5 i6 IT I8 I9 I10
14 HO H1 H2 H3 h4 [h5] h6 HT H8 H9 HI0
13 G0 G1 G2 G3 g4 g5 g GT G8 G9 G0
12 - FO F1 F2 F3 f4 [f5] f6 F7 F8 F9 F10
11 E0 E1 e2 e3 e e5 e6 e e8 E9 EI0
10 DO D1 d2 [d3] d4 d5 d6 [d7] d8 D9 D10
9 €O C1 e2 e3 ch C5 o6 7T 8 C9 C10
8 BO Bl B2 B3 B4 BS B6 BT B8 B9 BI0

7 A0 M A2 A3 A4 A5 A6 A7 A8 A9 A10

7 8 9 0 11 12 13 14 15 .16 17 18

Fig. 22. Snapshot of pixel pad placed over portion of
current relative picture. Node 1 is the current node and is
located under pixel FT7. A pair of brackets represent a
prospective node location in the pattern. A lower case letter
represents a pixel that must not contain a plotted node.

50

14

13 KO K1 K2 K3 K4 K5 K6 K7 K8 K9 K10
12 J0 J1 J2 J3 J4 J5 J6 JT I8 J9 J10
11 I0 I1 I2 I3 i4 i5 46 I7T I8 I9 I10
10 HO H1 H2 H3 h4 [h5] h6 HY H8 H9 HI0
9 GO G g2 g3 g4 g5 gb g7 g8 G9 G10

8 FO F1 f2 f3 f4 [f5] 6 f7 £8 F9 F10

7 EO E1 e2 e3 el e e e e8 E9 E10

6 | DO D1 d2 [d3] d4 d5 d6 [d7] d8 D9 D10)
5 . CO C1 e2 e3 cb C5 <6 <7 e8 C9 C10)
4 | BO B1 B2 B3 B4 B5 B6 BT B8 B9 510)
3) A0 A1 A2 A3 A4 A5 A6 AT A8 A9 A10)

5 6 7 8 9 10 N 12 13 14 15 16

Fig. 23. Snapshot of pixel pad placed over portion of
current relative picture. Node 1 is the current node and is
located under pixel F7. A pair of brackets around a pixel
indicates a prospective node location in the pattern. Lower case
letters indicate pixels that must not contain a plotted ncde.

51

18

17 KO K1 K2 K3 K4 K5 K6 K7 K8 K9 K10
16 J0 J1 J2 J3 8 J5 JI6 JT I8 J9 J10
15 T0 I1 I2 I3 i4 45 16 I7 I8 I9 I10
14 HO H1 H2 H3 h¥ [h5] h6 H7Y H8 H9 HIO
13 G0 Gl G2 G3 g4 g5 g6 G7 G8 G9 GI0
12 F0O F1 F2 F3 4 ([f5] f6 F7 F8 F9 F10
11 E0 E1 e2 e3 el e5 eb eT e8 E9 E10
10 Do D1 d2 [d3] d4 d5 d6 [d7] d8 D9 D10
9 CO €1 e2 e3 4 C5 6 o7 8 C9 C10
8 BO BT B2 B3 B4y BS B6 BT B8 B9 B10
7 A0 A1 A2 A3 A% A5 A6 AT A8 A9 A10

Fig. 24. Snapshot of pixel pad placed over portion of
current relative picture, Node 1 is the current node and is
located under pixel FT. 4 pair of brackets around a pixel
indicate a prospective node location in the pattern. A lower
case letter represents a pixel that must not contain a plotted
node.

52

cycle, the first START_LOCATION is D3. Therefore, if the current node
has been plotted in X = 10 and ¥ = 10, the window is positioned so that
D3 rests over picture coordinates 10,10.

Then the locations of all the plotted elements that lay within the
window are converted to pixels and stored in a COLLISION SET of type
plxel_set.

Once the COLLISION SET is made it is compared to the
REQUIRED_SPACE set for the pattern. If a pixel is in both sets there is
a collision and the current choice for orientating the pattern cannot be
, used., If there is another choice of a way to lay out the pattern then
that way is tried, otherwise the picture cannot be drawn using this
pattern.

After a pattern orientation has been found, the locations for
inserting nodes within the pattern are calculated by converting the
value in each LOC_PIXEL iInto an X and Y coordinate and storing these

coordinates in the respective XLOC and YLOC locations.

2.2.4 Locating a Node in a Pattern

The implementation of PLOT_A_NODE is now described. After an
object has been selected to be plotted and a pattern has been chosen to
guide the placement of nodes in the picture, PLOT_A _NODE is called
repeatedly to plot each node in the object. Its purpose is to place the
current node in the next empty location in the chosen pattern., Hemember
that the nodes in a cycle are always plotted in a clockwise manner
around the outside of the object. Then the inside nodes are plotted in
a clockwise direction around the inside of the object.

The method for placing the next node is very simple. The next

53

empty location in the pattern is indicated by the X_LOC and Y_LOC values
pointed to by the NEXT_OUTSIDE value of the locatlon where the last node
was plotted. All that needs to be done to plot a node is to copy the
¥ _LOC and Y_LOC values for the next location in the pattern into the X
and Y coordinates location for the newly plotted node. If all of the
outside locations are full, the next node being plotted is an inside
node and its location is found by following the NEXT_INSIDE pointer

rather than the NEXT_OUTSIDE pointer.

2.3 Adaptability

The GSS is constructed so that it can be easily adapted to define
and add new object and are patterns, and to change the limits for
numbers of nodes, ports, and pixels.

Adding a new object shape to GSS requires the definition of a new
pattern. To define a pattern the user calculates the relationship
between each element location in the object. Then the new pattern is
added to the existing set of possible patterns.

Adding a new arc shape to GSS can be done by building a set of
subarcs that construct the arc. Then the new arc is added to the
existing set of possible arcs.

The number of nodes or ports allowed in the picture can be
increased or decreased by simply changing a MAX _NODES or MAX_ PORTS
constant. The number of nodes is 1limited only by the display
resolution. The number of ports is 1limited by the size of an element.
The maximum number of pixels in the display influences the organization
of the elements in the final picture. Changing the number of pixels,
therefore, changes the shape of the picture.

54

CHAPTER 3

3.1 Summary

A method for automatically drawing general directed graphs of
communicating sequential programs has been presented. The primary
reason for developing the heuristic was to create a user tool, called
the Graphics Support System, for describing and documenting software
configurations. These are graphs of nodes of processes in a message
based system. A drawing of a configuration contains three main
elements: nodes representing processes, arcs representing Data Transfer
Streams which dinterconnect nodes, and ports where arcs connect to
nodes,

The GSS was designed to display a configuration in an
uncomplicated, meaningful way. This led to the development of a
hierarchical picture definition which allowed the wuser to display a
complete configuration or to expand a configuration node to display a
partial configuration.

A heuristic for converting a graph desecription into a set of
objects that form a picture is the major contribution of this document.
The heuristic combines related nodes to form objects, then defines the
different shapes that can be used to draw each object. After a shape
for each object has been selected by the computer or the user, the
picture is drawn by placing each object in the picture at the proper

relative position. Once the objects have been arranged properly, the

55

GSS will automatically draw all of the arcs, ports, and text. Finally,
the picture is displayed on the selected device and the user can save
the picture by creating a PIC file.

The heuristic has been implemented and will draw a picture of a
complete or partial configuration containing eight nodes on a variety of

output devices,

3.3 Performance

The GSS has been implemented in about 3000 lines of PASCAL code.
The algorithm generally takes less than one second of computing time and
several seconds to a minute to plot a picture, depending on the output
device. The use of hierarchical picture definitions produces pictures
of the correct complexity. Drawing graphs of more than eight nodes
increases the complexity of pictures and puts a limit on the types of
output devices. A dumb terminal simply does not have the resolution to
draw more that eight nodes. In comparing devices, the dumb terminal is
least suitable and a high resolution color terminal is most suitable
because it can reduce the graphic complexity.

The heuristic has no trouble in analyzing graphs and there is
hardly a limit to the size of graphs that can be manipulated. However,
the GSS connot draw graphs that contain objects that do not have a
predefined set of possible shapes. Therefore, the user must know what
shapes prospective graphs contain and add them to the GSS as they are
need. Adding a new shape only requires defining an additional pattern.
New arc shapes can be added by defining additinal arc patterns,

The GSS always draws graphs with the fewest crossing ares, unless
the user switches nodes around before the picture is drawn. It is very

56

difficult to always pick the arc that looks best. Also, it will blow up
if no pattern exists for an object, or if there are too many arcs

between two nodes.

3.4 Proposed Enhancements

The heuristic described in this document could be extended to draw
graphs of things other than software configurations by writing a
frontend conversion routine.

The GSS could be modified to build software configurations using a
graphics CRT and a light pen. The only change would involve writing a
routine that inserts into the PICTURE record the node connections as
they are input by the user.

GSS can be modified to calculate the longest pipe in the graph.
This can assist the computer in constructing the picture. Figure 25
shows how a a six node pipe is wusually drawn. Figure 26 shows how the
same graph could be draw if the length of the pipe 1s known and used to
split the pipe in half,

If graphs are to be drawn that have large or complicated cycles, a
possible addition to the GSS would allow it to draw cycles that it does
not have predefined patterns for. However, this would require a more
sophisticated heuristic and more computing time.

The ability to draw three dimensional graphs could be explored. A
cycle with four or more elements and six or more connections could be
drawn in 3-space and, in some cases, could present information more
clearly than if the graph were drawn in 2-space. A very simple example
is shown in Figure 27.

From an aesthetic point of view, it would be nice to be able to

57

N1 N2 N3 NU

Né

Fig. 25 This is the way the GSS draws 6 node pipe

N Ny
m . N2 A3

N5 N6

N/
N/
N

Fig. 26 This a clearer way to draw a 6 node pipe

58

Graph drawn in 3-Space

Graph drawn in 2-Space

Fig. 27. GCraphs cculd te drawn in 3-space

59

Original Drawing

Modified Drawing

Fig. 28. TIllustration showing modified ares

60

alter drawn arc patterns as shown in Figure 28.

The proplem of having the G3S blow up if there are too many arcs
between twe nodes can be solved by defining a hierarchical arc
structure, When the number of arcs between two nodes becomes critical,
they are combined into a single arc and a description of the
hierarchical arc is supplied elsewhere in the picture or on the user's

console.

61

APPENDICES

A.1 Simulated Terminal Session

A sample session using the "Graphics Support System":

enter GS3S "GSS is a CSS file that brings up the
Graphics Support System"

GRAPHICS SUPPORT SYSTEM

WO RN NN RN

GRAPHICS SUPPORT SYSTEM
FERRBERRAARDRRRRRERAEUURSRRY

FOR ASSISTANCE TYPE "HElp will list all the possible commands
that may be used in GSS"
ENTER COMMAND =>
enter FI FOURNODES "The FIle command will cause GSS to search
for the file UNIX.PCD, If it is found
it will open the file, read it, and
determine relations. If a PIC file does
not exist then it will search for a PCD
file"
ENTER COMMAND ->
enter AS "ASsist will list the names of all
elements and indicate if any of
elements are hierarchical., If any CYCLEs
exist then data that can be used to help
select a desired pattern can be entered"

NODE NAME HIER
1 ONE NO
2 TWO NO
3 THREE NO
H FOUR YES
NO CYCLES EXIST "This will be displayed if' there are no

cycles®
CYCLES EXIST DO YOU WISH TO MAKE A CHOICE?
"This will be displayed if there are

cycles"

enter NO "If the computer is to select the shape of
the object.

enter YES "If the user wants to assist the computer

in selecting the proper shape."

62

If YES then:

CYCLE MEMBERS CHOICE OUTSIDE INSIDE TRIED EXTERNAL
1 1234 123 b 3

134 2 3

1234 3

234 1 3

124 3 3

U&= Wwh -

"This picture contains one CYCLE that
has 4 elements., It can be drawn 5
different ways., Choices 1,2,4, and 5
have 3 nodes on the outside with one
on the inside. While choice 3 has 4
elements on the outside and no center
element, The EXTERNAL field indicates
that this cycle connects to another
object
through element 3 and thus CHOICE 5 might
not be a good choice. A much clearer
picture can be drawn if EXTERNAL elements
are located on the outside,"
ENTER CYCLE ->
enter 1 "Select cycle number 1"
ENTER CHOICE ->
enter 2 "The cycle will be drawn with elements
1,3, and 4 on the outside and 2 on the
inside"
DO YOU WISH TO MAKE A CHOICE? "If there is more than one cycle then
additional choices can be made."
enter NO

ENTER COMMAND ->
enter DA ONE "DAta will display information relating
to the element ONE,"

NODE_NAME IS ONE
PORT_ID DIRECTION EXTERNAL TO_NODE TO_PORT

P2 FROM TWO P
P3 TO THREE P1
Py BOTH MACCO FOUR P1

ENTER COMMAND =->
enter DR CONSOLE "DR will draw the picture on the
console device,"

ENTER COMMAND =>
enter SW ONE, THREE "SWitch will switch the locations of
the elements ONE and THREE then
redraw the picture"

63

ENTER COMMAND ->
enter TR LEFT 2

ENTER COMMAND =>
enter SA DODA

ENTER COMMAND ->
enter EX FOUR

ENTER COMMAND =->
enter EN

"TRanslate will shift the entire picture
2 pixels to the left."

"SAve will take the current picture and
save it in a new file called DODA,PIC.™

"EXpand will make certain that FOUR is
a hierarchical element then perform a
FI on the file,"

"ENd will terminate the session.”

64

A2 Patterns

The following pages contain the object patterns that have been
implemented in the GSS. The patterns are shown imbedded in the pixel
pad since this is the way that they are used when locating a shape. The
LOC_PIXELs are shown surrounded with brackets, In all of the
pipe-hanger patterns the key node is F5, However, this is not true in
most of the cycle patterns, The pixels that are in the collision set

are shown in lower case letters.

65

KOO K1 K2 K3 K4 K5 K6 K7 K8 K9 K10
Jo J1 J2 J3 J4 J5 J&6 J7T J8 J9 J10
0 I I2 I3 14 15 I IT I8 I9 I10
HO H1 H2 H3 HY H5 H6 HY H8 H9 HIO
GO G1 g2 g3 g4 g5 g6 GT G8 G9 G10
FOO F1 f2 [f3] f4 [f5] f6 F7T F8 F9 F10
EO E1 e2 e3 el e5 e ET E8 E9 EI0
bpo D1 D2 D3 D4 D5 D6 DT D8 D9 D10
co €1 ¢c2 €3 C4 C5 C6 CT C8 C9 cC10
BO B1 B2 B3 B4 B5 B6 BY B8 B9 BI0

A0 A1 A2 A3 A4 A5 A6 AT A8 A9 A10

Fig. 29. Pattern for pipes and hangers.
Brackets around a pixel represent a location in a
pattern where a node can be placed. A lower case
letter in a pixel location indicates a pixel that must
not contain a plotted node,

66

KO K1 K2 K3 K4 K5 K6 K7 K8 K9 K10
JOo J1 J2 J3 J4 J5 J6 JT J8 J9 J10
I I i2 i3 i¥ 15 I6 I7T I8 I9 I10
HO H1 h2 [h3] h4 H5 H6 H7Y H8 H9 HIO
GO G1 g2 g3 g4 g5 g6 GT G8 G9 GI10
FO F1 F2 F3 4 [f5] f6 F7 F8 F9 F10
E0O E1 E2 E3 e4 e5 e ET E8 EI E10
Do D1 D2 D3 D4 D5 D6 D7 D8 D9 DIO
co €1 cz Cc3 C4y ¢ €6 CT C8 <C9 C10
BO B1 B2 B3 B4 B5 B6 BT B8 B9 B0

A0 M A2 A3 A}y A5 A6 AT A8 A9 A10

Fig., 30. Pattern for pipes and Hangers.
Brackets around a pixel represent a location in a
pattern where a node c¢an be placed. A lower case
letter in a pixel location indicates a pixel that must
not contain a plotted node.

67

KO

Jo

I0

HO

GO

FO

EO

DO

Cco

AQ

K1

dJi

I1

H1

G1

F1

E1

D1

C1

B1

A1

Fig.

K2

J2

I2

G2

F2

E2

D2

c2

B2

A2

K3
J3
I3
H3
G3
F3
E3
D3
C3
B3

A3

K4 K5
Ji J5
iy 15
h4 [h5]
gh g5
4 [f5]
el e5
D4 D5
Cy ¢©5
BY BS
A4 A5
Pattern

Ké
Jé

i6

gb
6
eb
D6
c6
B6

A6

K7
J7
17
HY
g7
F7
ET
D7
CT
BY

AT

K8
J8
18
H8
g8
F8
E8
D8
c8
B8

A8

K9
J9
19
H9
G9
F9
E9
D9
C9
B9

A9

K10
J10
I10
H10
G10
F10
E10
D10
C10
B10

A10

for pipes and Hangers.

Brackets around a pixel represent a location in a
pattern where a node
letter in a pixel location indicates a pixel that must
not contain a plotted node.

can be placed.

68

A lower case

K0

Jo

I0

HO

FO

EO

Do

co

BO

40

K1

J1

I1

H1

G1

F1

E1

D1

C1

B1

A1

Fig.
Brackets around a pixel

K2

J2

12

H2

G2

F2

D2

c2

A2

K3
J3
13
H3
G3
F3
E3
D3
C3
B3

A3

pattern where a node
letter in a pixel location indicates a pixel that must
not contain a plotted node.

K4 K5
J} J5
Iy 15
HY H5
gh g5
4 [f£5]
eh &5
Dy D5
Cy C5
BY B5
AL A5
Pattern

can be placed.

69

Ké
Jé
i6
h6é

gb

eb
D6
Cé6
B6

A6

K7
J7
i7
[h7]
g7
F7
E7
DT
CT7
BT

AT

K8
J8

i8

g8
F8
E8
D8
c8
B8
A8

K9
J9
19
H9
G9
L2
E9
D9
€9
B9
A9

K10

J10

I10

H10

G10

F10

E10

D10

Cc10

B10

A10

for pipes and Hangers.
represent a location in a
A lower case

KOO K1 K2 K3 K4 K5 K6 KT K8 K9 K10
Jo J1 J2 J3 J4 J5 J6 J7 J8 J9 J10
I I I2 I3 14 15 16 1I7f I8 Ig I10
HO H1 H2 H3 H4 H5 H6 HY H8 H9 HIO
GO &1 G2 G3 g4 g5 g6 g7 g8 G9 GI10
FO F1 F2 F3 4 [f5] f6 [f7] f8 F9 F10
EO E1 E2 E3 el e5 e e e8 E9 EI0
DO D1 D2 D3 D4 D5 D6 D7 D8 D9 D10
co €1 €2 €3 c4 ¢ Cp CT C8 (€9 C10
BO B! B2 B3 By B5 B6 B7Y B8 B9 B10

A0 A1 A2 A3 A4 A5 A6 AT A8 A9 A10

Fig. 33. Pattern for pipes and Hangers.
Brackets around a pixel represent a location in a
pattern where a node can be placed. A lower case
letter in a pixel location indicates a pixel that must
not contain a plotted node.

0

KO

JO

I0

HO

Fo

EO

Do

Cco

BO

40

K1

J1

I1

H1

G1

F1

E1

D1

C1

B1

Al

Fig.

K2

J2

12

H2

G2

F2

E2

D2

c2

B2

K3
J3
I3
H3
G3
F3
E3
D3
C3
B3

A3

K4 K5
Ji J5
Iy 15
HY H5
g4 g5
4 [£5]
el e5
D} D5
cy C5
B4 BS
Ay 45
Pattern

K6
J6

I6

gb

eb
dé6
cb
B6

A6

K7

I7

GT
FT
eT
[dT]
eT
BT
AT

K8
J8
I8
H8
G8
F8
e8

c8
B8

A8

K9
J9
19
H9
G9
F9
E9
D9
C9
B9

A9

K10

J10

I10

H10

G10

F10

E10

D10

c10

B10O

410

for pipes and Hangers.

Brackets around a pixel represent a location in a

pattern where a node can be placed.

A lower case

letter in a pixel location indicates a pixel that must
not contain a plotted node.

71

KO K1 K2 K3 K4 K5 K6 K7 K8 K9 K10
Jo J1 J2 J3 J4 J5 J6 J7T I8 J9 J10
I0 11 I2 I3 I4 I5 I6 IT I8 I9 I10
HO H1 H2 H3 HY H5 H6 HY H8 H9 H10
GO 61 G2 G3 gh g5 g6 G7T GB @9 G10
FO F1 F2 F3 4% [f5] f6 F7T F8 F9 F10
EO E1 E2 E3 e4 e5 e Ef E8 E9 E10
D0 D1 D2 D3 d4 [d5] d6 D7 D8 D9 D10
CO C1 C2 C3 c4 o5 e6 C7T C8 (€9 C10
BOo BT B2 B3 By B5 B6 BY B8 B9 BI0

A0 A1 A2 A3 A4 A5 A6 AT A8 A9 A10

Fig. 35. Pattern for pipes and Hangers.
Brackets around a pixel represent a location in a
pattern where a node can be placed. A lower case
letter in a pixel location indicates a pixel that must
not contain a plotted node.

72

KO

Jo

I0

HO

GO

Fo

EO

DO

co

BO

AD

pattern where a node can be placed.

K1
dJi
13
H1
G1
F1
E1
D1
C1
B1

Al

Fig.

K2

J2

I2

H2

G2

F2

e2

dz

c2

B2

A2

K3
J3
13
H3
G3
F3
e3
[a3]
e3
B3

A3

36,

K4 K5
Jy J5
Iy 1Is
HY H5
gh &5
3y [f5]
el b
d4 D5
cd C5
B4y B5
Ay A5
Pattern

K6
J6
16
H6

g6

eb
D6
Cé
B6
A6

for

K7
J7
I7
HT
GT
F7
ET
D7
CT7
BT
AT

pipes

K8
J8
I8
H8
G8
F8
E8
D8
c8
B8

A8

K9
J9
19
H9
G9
F9
E9
D9
c9
B9

A9

K10
J10
110
H10
¢10
F10
E10
D10
€10
B10

A10

and Hangers.
Brackets around a pixel represent a location in a

A lower case

letter in a pixel location indicates a pixel that must
not contain a plotted node.

73

KO K1 K2 K3 K4 K5 K6 K7 K8 K9 K10
Jo J1 J2 J3 Jv J5 J6 J7 I8 I3 J10
10 I1 I2 I3 I¥ I5 I6 IT I8 I9 I10
HO H1 H2 H3 b4 h5 h6 H7Y HB H9 H10
GO 61 G2 G3 g4 [g5] g6 GT G8 G9 G10
FO F1 F2 f3 f4 f5 f6 7 F8 F9 F10
EO E1 E2 e3 [ell] e5 [e6] e E8 E9 E10
DO D1 D2 d3 d4 d5 d6 d7 D8 D9 D10
co €1 C2 €3 C4y €5 C6 C7T C8 C9 C10
BO B1 B2 B3 BY B5 B6 BY B8 B9 B10

A0 A1 A2 A3 A4 A5 A6 AT A8 A9 A10

Fig. 37. Pattern for cycle with three
outside nodes and no inside node. Brackets around a
pixel represent a location in a pattern where a node
can be placed. A lower case letter in a pixel
location indicates a pixel that must not contain a
plotted node.

T4

KO K1 K2 K3 K4 K5 K6 K7 K8 K9 K10
Jo J1 J2 J3 J4 J5 J6 J7T I8 J9 J10
I0 I I2 I3 iy i5 i6 I7 I8 I9 I10
HO H1 H2 H3 hi [h5] hé HT H8 H9 H10
GO G1 - G2 G3 gh g5 gb G7 G8 G9 G10
FO F1 Fz F3 fy [f5] f6 FT F8 F9 F10
E0O E1 e2 e3 el e5 eb e e8 E9 EI0
D0 D1 d2 [d3] du ds d6 [d7] d8 D9 D10
CO €1 e¢2 3 c4 €5 b6 7 8 C9 C10
B0 B1 B2 B3 BY B5 B6 BT B8 B9 B10

A0 A1 42 A3 A4 A5 A6 AT A8 A9 A10

Fig. 38. Pattern for cyecle with three
outside nodes and one inside node., Brackets around a
pixel represent a location in a pattern where a node
can be placed. A lower case letter in a pixel
location indicates a pixel that must not contain a
plotted node,

75

KO K1 K2 K3 K4 K5 K6 K7 K8 K9 K10
Jo J1 J2 J3 J4 Jd5 J6 J7T J8 J9 J10
I0 11 I2 I3 Iy I5 I6 IT I8 I9 IO
HO H1 H2 h3 h4 h5 h6 h7 H8 H9 H10
GO G1 G2 g3 [g4] g5 [gh]l g7 G8 GO G10
FO F1 F2 f3 f4 5 f6 f£7 F8 F9 F10
EO E1 E2 e3 [el] e5 [eb] e E8 EI E10
DO D1 D2 d3 d4 d5 d6 d7 D8 D9 D10
Co €1 €2 €3 C4 €5 C6 CT C8 C9 C10
BO Bl B B3 By B5 B6 BT B8 B9 B10

A0 A1 A2 A3 A4 A5 A6 AT A8 A9 A10

Fig. 39. Pattern for cycle with four
outside nodes and no inside node. Brackets around a
pixel represent a location in a pattern where a node
can be placed. A lower case letter in a pixel
location indicates a pixel that must not contain a
plotted node.

76

KOO K1 K2 K3 K4 K5 K6 K7 K8 K9 K10
Jo J1 J2 J3 J4 J5 Jd6 J7T J8 J9 J10
I0 I1 12 i3 i¥ I5 16 i7 18 I9 I10
HO H1 h2 [h3] n4 h5 h6 [h7] h8 H9 H10
GO Gt g2 g3 g4 g5 g6 g7 &8 G9 GI10
FO F1 f2 f3 4 [f5] f6 7 £8 F9 F10
EOO E1 e e3 el e e e e8 E9 E10
DO D1 d2 [d3] d4 d5 d6 [d7] d8 D9 D10
CO C1 e2 3 c4 €5 6 7T 8 C9 C10
BO Bt B B3 By B5 B6 BY B8 B9 BI0

A0 M A2 A3 A4 A5 A6 AT A8 A9 A10

Fig. 40, Pattern for cycle with four
outside nodes and one inside node. Brackets around a
pixel represent a location in a pattern where a node
can be placed, A lower case letter in a pixel
location indicates a pixele that must not contain a
plotted node.

77

KO K1 E2 K3 K4 K5 Xb K7 k8 K9 K10
Jo J1 Jz2 dJ3 Ju J5 Jé J7 J8 J9 J10
10 i iz i3 Iy 15 I6 i7 i8 i9 I10
HO k1! [h2] h3 h} h5 hb h7 [h8] h9 HI0
G0 g1 g2 83 gd g5 g6 T &8 g9 G0
FO 1 f2 £f3 [f4] 5 [f6]1 17 8 f9 F10
EO el e2 e3 eif e e e e8 e9 EIO
DO d1 [d2] d3 dbi d5 dé d7 [d8] d9 D10
CO o1 e2 3 C4 C5 C6b 7 8 9 C10
BO B1 B2 B3 BY B5 B6 BY B8 B9 B10

A0 M1 A2 A3 A%F A5 A6 AT A8 A9 A10

Fig. M. Pattern for cycle with four
outside nodes and two inside nodes. Brackets around a
pixel represent a location in a pattern where a node
can be placed. A lower case letter in a pixel
location indicates a pixel that must not contain a
plotted node.

78

K0 K1 K2 K3 K4 K5 Kb KT K8 K9 K10
Jo J1 J2 J3 Jy J5 J6 J7 J8 J9 J10
Io I I2 I3 iy i5 16 I7 I8 I9 I10
HO H1 H2 H3 h4 [h5] hb HT H8 H9 H10
GO G1 g2 g3 gh g5 gb g7 g8 €G9 G10
FO F1 fa [f3] 4 f5 f6 [£7] £f8 F9 F10
EO E1 e e3 ei e e e e8 EI E10
Do D1 d2 [d3] d4 d5 dé [d7] d8 D9 D10
CO C1 e2 e¢3 c4 C5 b6 7 8 C9 CI10

B0 B B2 B3I B4y B B6 BY B8 B9 B10

S

40 M A3 A4 A5 A6 AT A8 A9 A1O

Fig. 42, Pattern for c¢yecle with five
outside nodes and no inside node, Brackets around a
pixel represent a location in a pattern where a node
can be placed. A lower case letter in a pixel
location indicates a pixel that must not contain a
plotted node.

79

KO K1 K2 K3 K4 K5 K6 KT K8 K9 K10
Jo J1 J2 J3 J4 J5 J6 J7T I8 J9 J10
I0 I1 I2 I3 i4% i5 i6 IT I8 I9 I10
HO H1 h2 h3 h4 [h5] h6 h7 h8 H9 H1O0
G0 G1 g2 [g3] gh g5 g6 [g7] g8 G9 G10
FO F1 f2 f3 f4 f5 f6 f£7 f£f8 F9 F10
E0 E1 e2 [e3] e e5 eb [e7T] e8 EI EI0
DO D1 d2 d3 d4 [d5] d6 d7 d8 D9 D10
CO C1 C2 C3 ch o5 o6 CT €8 C9 C10
BO B! B2 B3 BY B5 B6 BT B8 B9 B10

A0 A1 A2 A3 AW A5 A6 AT A8 A9 A10

Fig. U43. Pattern for cycle with six
outside nodes and no inside node. Brackets around a
pixel represent a location in &a pattern where a node
can be placed. A lower case letter in a pixel
location indicates a pixel that must not contain a
plotted node.

80

KO K1 K2 K3 KA K5 Ké6 KT K8 K9 K10
J0 dJ1 J2 J3 Ju J5 Jb J7 J8 J9 J10
I0 I I2 I3 iy i5 i6 IT I8 I9 I10
HO H1 h2 h3 h4 [h5] hé h7 h8 H9 H10
G0 Gt g2 [g3] g4 &5 g6 [g7] g8 G9 G10
FO F1 f2 3 4 [f5]1 f6 f7 f8 F9 F10
E0O E1 e2 [e3] ek e5 e [eT] e8 ES EI10
DO D1 d2 d3 d4 [d5] d6 d7 d8 D9 DIo
co C1 C2 C3 «ck4 c5 ¢b C7 C8 co C10
B0 Bl B2 B3 BY B5 B6 BT B8 B9 B10

AO AT 42 A3 A4 A5 A6 AT A8 A9 A10

Fig. 44, Pattern for ecyecle with six
outside nodes and one inside node., Brackets around a
pixel represent a location in a pattern where a node
can be placed. A lower case letter in a pixel
location indicates a pixel that must not contain a
plotted rnode.

81

KO K1 K2 K3 K4 K5 K6 K7 K8 K9 K10
Jo J1 J2 J3 J4 J5 J6 J7 J8 J9 J10
0 I iz i3 iy I5 16 i7 18 I9 I10
HO H1 h2 [h3] hi h5 h6 [h7] h8 H9 H10
GO Gt g2 g3 g4 g5 gb g7 g8 G9 GI10
FO F1 f2 [f3] 4 5 f6 [f7] f8 F9 F10
EO E1 e2 e3 el e5 eb eT e8 E9 E10
Do D1 d2 [d3] d4 [d5] d6 [d7] d8 D9 D10
CO C1 e2 e3 cd e5 e6 e7 8 C9 C10
BO B1 B2 B3 BY B5 B6 BT B8 B9 B10

A0 A1 A2 A3 A4 A5 A6 AT A8 A9 A10

Fig. 45, Pattern for cycle with seven
outside nodes and no inside node. Brackets around a
pixel represent a location in a pattern where a node
can be placed. A lower case letter in a pixel
location indicates a pixel that must not contain a
plotted node.

82

KOO K1 K2 K3 K4 K5 K6 K7 K8 K9 K10
Jo J1 J2 J3 J4 J5 Jb JT J8 J9 J10

I0 I

K

i3 iy i5 16 i7T 18 19 I10
HO H1 h2 [h3] h4 [h5] h6 [h7] h8 H9 H10
GO G1 g2 g3 gh g5 g6 g7 g8 G9 G10
Fo F1 f2 [£f3] frh 5 f6 [f7T] f8 F9 F10
EO E1 e e3 e4i e5 e e e8 E9 EIO0
DO D1 d2 [d3] d4 [d5] 46 [d47] d8 D9 D10
CO C1 2 e3 c4b 5 b 7T <8 C9 CI10
BO B1 B2 B3 Bﬁ B5 B6 BY B8 B9 B10

A0 A1 A2 A3 A4 A5 A6 AT A8 A9 A10

Fig. Uu6. Pattern for oyecle with eight
outside nodes and no inside node. Brackets around a
pixel represent a location in a pattern where a node
can be placed. A lower case letter in a pixel
location indicates a pixel that must not contain a
plotted node.

83

3.

6.

Te

REFERENCES

Bourne, S. R. The UNIX shell. The Bell System Technical Journal
57y 6, Part 2 (July=-August 1978), 1971-1990.

Brinch Hansen, Per. The Architecture of Concurrent Programs,
Prentice_Hall, Englewood Cliffs, N. J., 1977.

Fundis, R.M. Command processors for dynamic control of software
configurations. M.S. Report, Dept. Computer Science, Kansas
State University, Manhattan, Kansas (1980).

Hoare, C. A. R, Communicating sequential processes. COMM, ACM 21 ,
8 (August 1978), 666-6T77.

Rochat, K. L. A software structuring tool for message-based
systems. M.S. Thesis, Dept. of Computer Science, Kansas State
University,Manhattan, Ks., 1980.

Sanders, R.G. Users guide to the Graphics Support System. Report
TR-80-04, Department of Computer Science, Kansas State
University, Manhattan, Ks., July 1980.

Young, Robert, and Wallentine, Virgil. The NADEX core operating
system services, Technical Report TR-19-11, Department of
Computer Science. Kansas State University, Manhattan, Ks.,
November 1979.

84

A GRAPHICS SUPPORT SYSTEM
FOR COMMUNICATING PROCESSES PROGRAMMING

by

RICHARD GARY SANDERS

B.Arch., Kansas State University, 1978

AN ABSTRACT OF A MASTER'S THESIS

submitted in partial fulfillment of the

requirements for the degree

MASTER OF SCIENCE

Department of Computer Science

KANSAS STATE UNIVERSITY
Manhattan, Kansas

1980

ABSTRACT

The complexity of many sophisticated programming tasks requires a
methodology to simplify and filter information to a manageable level.
The GSS (Graphics Support System) described in this document will draw
pictures of software configurations. A configuration is a directed
graph containing one to eight nodes. Each node c¢an consist of a
sequential or concurrent program, be hierarchical in nature, and can
itself be a configuration.

The most important contribution of GSS is the method used to
determine the complex relationships that exist between the picture
components,

Arbitrary configurations can be decomposed into three distinct
types of objects: Hangers, pipes, and cycles. The decomposition is
accomplished by following and analyzing all of the node connections and
constructing patterns of linkage. The purpose of building objects is to
define a predictable, repeatable heuristiec that will draw pictures in
the desired manner. The number of nodes in an object determines the
shape of the object. An object's shape is used to select a predefined
pattern which defines how the nodes will be drawn relative to one
another. Flow into and out of nodes is studied to determine where they
should be placed relative to the picture and relative to other nodes
within their parent object.

GSS allows the user to interact in the drawing portions of a
picture or will draw the picture without user assistance. GSS does not

1

build configurations., It is meant as a documentation tool that assists

in the understanding of a software configuration.

