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Abstract 

Cluster based lack of fit tests for linear regression models are generally effective in 

detecting model inadequacy due to between- or within-cluster lack of fit.  Typically, lack of fit 

exists as a combination of these two pure types, and can be extremely difficult to detect 

depending on the nature of the mixture.  Su and Yang (2006) and Miller and Neill (2007) have 

proposed lack of fit tests which address this problem.  Based on a simulation comparison of the 

two testing procedures, it is concluded that the Su and Yang test can be expected to be effective 

when the true model is locally well approximated within each specified cluster and the lack of fit 

is not due to an unspecified predictor variable.  The Miller and Neill test accommodates a 

broader alternative, which can thus result in comparatively lower but effective power.  However, 

the latter test demonstrated the ability to detect model inadequacy when the lack of fit was a 

function of an unspecified predictor variable and does not require a specified clustering for 

implementation. 

   

 



 iii

Table of Contents 

List of Figures ................................................................................................................................ iv 

List of Tables .................................................................................................................................. v 

Acknowledgements........................................................................................................................ vi 

CHAPTER 1 - Introduction ............................................................................................................ 1 

CHAPTER 2 - Lack of Fit Tests..................................................................................................... 5 

2.1 Su and Yang Test.................................................................................................................. 6 

2.2 Miller and Neill Test............................................................................................................. 8 

CHAPTER 3 - Simulation Studies................................................................................................ 13 

3.1 The First Simulation Study ................................................................................................. 13 

3.2 The Second Simulation Study............................................................................................. 17 

3.3 The Third Simulation Study ............................................................................................... 20 

3.4 The Fourth Simulation Study.............................................................................................. 21 

3.5 The Fifth Simulation Study................................................................................................. 22 

3.6 The Sixth Simulation Study................................................................................................ 24 

CHAPTER 4 - Conclusion............................................................................................................ 27 

References..................................................................................................................................... 28 

Appendix A - R code for Simulation Study.................................................................................. 31 

Appendix A-1 R Code for Yang’s overall test for the First Simulation Study......................... 31 

Appendix A-2 R code for the Third Simulation Study............................................................. 34 

Appendix A-3 R code for the Six Simulation Study ................................................................ 40 

Appendix A-4 R code for the common function CXmat.......................................................... 48 

Appendix A-5 R code for the common function CZmat .......................................................... 48 

Appendix A-6 R code for the common function basis ............................................................. 48 

Appendix A-7 R code for the common function ppo ............................................................... 49 

Appendix A-8 R code for the common function quantnorep ................................................... 49 



 iv

 

List of Figures 

Figure 3.1 A scatter plot of the data generated from the model 2 sin(4 )x xy eβ+= + , along with 

the fitted null model and true regression curve..................................................................... 14 

Figure 3.2 Empirical Power for the SY  and MN  tests with data generated from the model 

2 sin(4 )x xy eβ+= + . ......................................................................................................... 15 

Figure 3.3 A scatter plot of data generated from the model 2 sin( )x ey x β+ += , along with the 

fitted null model and true regression curve........................................................................... 16 

Figure 3.4 Empirical Power for the SY  and MN  tests with data generated from the model 

2 sin( )x ey x β+ += . ........................................................................................................... 17 

Figure 3.5 Empirical Power for the SY  and MN  tests with data generated from the model 

2 sin( )x ey x β+ += . ........................................................................................................... 18 

Figure 3.6 Empirical Power for the SY  and MN  tests with data generated from the model 

2 sin(4 )y x x eβ= + + . ......................................................................................................... 19 

Figure 3.7 Empirical Power for the SY and MN  tests with data generated from the model 
2

21 x ey β= + + .................................................................................................................... 21 

Figure 3.8 Scatter plot for the predictor variables 1 2and x x  for Simulation Study 5. ................. 23 

Figure 3.9 Empirical Power for the SY  and MN  tests with data generated from the model 

1 2 25 3x xy eβ+ + += ............................................................................................................. 24 

Figure 3.10 Scatter plot for the predictor variables 1x  and 2x  for Simulation Study 6. .............. 25 

Figure 3.11 Empirical Power for the SY  and MN  tests with data generated from the model 

1 2 25 3 cos( )x x ey β= + + + .................................................................................................... 26 



 v

 

List of Tables 

Table 3.1 Empirical Power for the SY  and MN  tests with data generated from the model 

2 sin(4 )x xy eβ+= + . ......................................................................................................... 14 

Table 3.2 Empirical Power for the SY  and MN  tests with data generated from the model 

2 sin( )x ey x β+ += . ........................................................................................................... 16 

Table 3.3 Empirical Power for the SY  and MN  tests with data generated from the model 

2 sin( )x ey x β+ += . ........................................................................................................... 18 

Table 3.4 Empirical Power for the SY  and MN  tests with data generated from the model 

2 sin(4 )y x x eβ= + + . ......................................................................................................... 19 

Table 3.5 Empirical Power for the SY  and MN  tests with data generated from the model 
2

21 x ey β= + + .................................................................................................................... 20 

Table 3.6 Empirical Power for the SY  and MN  tests with data generated from the model 

2

.
1.0 exp( 2

1
)

0 e
x

y
β

+
+ −

= ..................................................................................................... 22 

Table 3.7 Empirical Power for the SY  and MN  tests with data generated from the model 

1 2 25 3x xy eβ+ + += ............................................................................................................. 23 

Table 3.8  Empirical Power for the SY  and MN  tests with data generated from the model 

1 2 25 3 cos( )x x ey β= + + + .................................................................................................... 26 



 vi

 

Acknowledgements 

There are a number of people I would like to thank for their help in carrying out the work 

described in this report. I am especially grateful to Dr. James W. Neill, my major professor, for 

proposing the report topic and for his guidance, patience and support that he has given me. This 

report would not have been completed without his assistance.  

 

Special thanks to my committee members, Dr. Haiyan wang and Dr. Weixing Song, for 

their kind help.  Also, I wish to express my appreciation to all of the faculty in the Department of 

Statistics.  

 

Finally, I would like to especially thank my wife Yali for her continuous support and 

encouragement throughout my studies. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 - 1 - 

 

CHAPTER 1 - Introduction 

 

In parametric linear regression models, lack of fit is said to exist when the proposed 

model has an incorrectly specified mean structure. The traditional regression lack of fit test for 

models with replication was given by Fisher (1922).  This test is appropriate for detecting model 

inadequacy which generalizes the mean structure of the proposed model. In particular, if the true 

model is embedded in a general alternative given by the one-way ANOVA model then the 

traditional test is useful for detecting such lack of fit. Such lack of fit is referred to as between 

cluster lack of fit, and for example, may involve the need for higher order polynomial terms. For 

the common circumstance in which replicate measurements are not obtained, there is a set of 

methods for testing lack of fit which is based on mimicking the traditional lack of fit. With these 

methods, rows of the design matrix that are nearly replicates are identified in order to construct 

alternative full models. Tests for lack of fit using near replicates include the work by Green 

(1971), Breiman and Meisel (1976), Atwood and Ryan (1977), Lyons and Proctor (1977), 

Shillington (1979), Daniel and Wood (1980), Utts (1982), Neill and Johnson (1985), Joglekar, 

Schuenemeyer, and LaRiccia (1989) and Christensen (1989, 1991).  

 

Christensen’s approach is of particular interest since the lack of fit space was 

characterized as a sum of orthogonal subspaces with corresponding optimal tests. In particular, 

Christensen characterized lack of fit as existing between clusters of near replicates, within 

clusters, or as a combination of these two pure types. However, Christensen’s tests are uniformly 

most powerful invariant only for the specified grouping of the data into near replicates. Indeed, 

Christensen (1991) noted that an important fundamental problem in nonreplicated lack of fit 

testing was the lack of an optimal strategy for grouping observations into efficacious clusters. 

Miller, Neill and Sherfey (1998, 1999) then presented a statistically principled framework within 

which to study the selection of near replicates for use with Christensen’s tests. The methodology 

is based on a maximin power criterion that incorporates nearness considerations to cluster 
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observations into groups of near replicates. Their work constructs a single clustering for the 

nonreplicated case that is optimal for detecting between-cluster lack of fit. 

Christensen (2003) has noted that significantly small values of the traditional F-statistic 

may indicate the presence of lack of fit due to features that are in fact not part of the proposed 

model. Such lack of fit is referred to as within-cluster lack of fit, and for example, may involve a 

trend in time within each group of replicates whenever the replicates are observed in a time 

sequence. Typically, lack of fit exists as a combination of these two pure types and can be 

extremely difficult to detect depending on the nature of the mixture. Christensen (2003) also 

showed that the traditional F-statistic can become large or small because the assumed covariance 

structure is incorrect, even when the mean structure of the proposed model is correct. 

 

As noted by Christensen (1989, 1991, 2002), the suggested lack of fit tests based on near 

replicates may also be unable to detect mixtures of the two pure types. Since these tests reduce to 

the traditional test when the clusters consist of exact replicates, such performance is not 

unexpected. Recently, Su and Yang (2006) and Miller and Neill (2007) have suggested lack of fit 

tests for the case of nonreplication that may be useful for detecting all of the above types of 

model inadequacies, including mixtures. These tests assume normal errors and that the 

covariance structure is not misspecified. Cluster-based tests for assessing independence and 

variance function specification are given by Christensen and Bedrick (1997) and Bedrick (2000).  

 

Su and Yang (2006) assume that clusters of near replicate observations have been 

identified. Given such a clustering, the authors construct a full model that contains the proposed 

model, and which is intended to be able to approximate the true model locally in each cluster. In 

particular, the constructed full model depends on functions of all of the independent variables of 

the proposed model, which for example, may include powers and cross-products of the specified 

predictive variables. This test thus contains Christensen’s (1989) test and the test proposed by 

Atwood and Ryan (1977) based on the partition method, which is also discussed by Christensen 

(2002). This test may work well whenever any model inadequacies are not due to unspecified 

predictor variables. Also, when exact replicates are available, this test reduces to the traditional 

test, which has been shown not to be effective in detecting mixtures of between- and within-

cluster lack of fit. 
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Miller and Neill (2007) developed a lack of fit testing procedure based on families of 

groupings of the observations. For models with replication, the possible groupings are inherently 

determined by the row structure of the design matrix. The use of groupings embeds the one-way 

ANOVA model in more general models which provides tests which can be effective in detecting 

mixtures of the two pure types of lack of fit. Since the efficacy of a particular choice of grouping 

is a function of the unobservable lack of fit, several such tests are considered, each based on a 

different grouping of the observations, and the multiple testing approach of Baraud et al. (2003) 

is followed. More generally, the preceding testing procedure based on families of groupings was 

extended to the case of nonreplication. For this case, the authors proposed that such families be 

determined by linear orders on the predictor variables based on disjoint parallel tubes in predictor 

space. Test statistics follow the clustering-based lack of fit tests given by Christensen (1989, 

1991), by considering the groupings as determining special types of clusterings. In order to 

detect general lack of fit, several such tests are again considered, each based on a different 

grouping of the observations, and the multiple testing approach given by Baraud et al. (2003) is 

followed. 

 

  For completeness, it is remarked that several other approaches for assessing the 

existence of lack of fit have been proposed. In particular, the use of nonparametric regression 

techniques to test the adequacy of parametric regression models is discussed by Hart (1997), 

Aerts et al. (2000), Eubank et al. (2005) and the references therein. Also, the use of partial sum 

residual empirical processes has been suggested by Khmaladze and Koul (2004) and the 

references therein to assess goodness of fit in regression models. Finally, graphical methods used 

for checking model adequacy were given by Cook and Weisburg (1997), for example. 

 

This report reviews the tests of Su and Yang (2006) and Miller and Neill (2007) in 

Chapter 2. Chapter 3 presents some simulation results which compare these two lack of fit 

testing procedures, the results of which are given in Chapter 4.      

 

Some notation that is used in the report is now introduced. Let n⊂V R  be a vector space 

and let ⊂U V  be a subspace. We denote by ⊥

VU  the orthogonal complement of U  with respect 
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toV . If  n=V R  then we simply write ⊥U . Let PV  denote the orthogonal projection operator 

ontoV , and let dimV  represent the dimension ofV .  For nυ∈R , 2|| ||υ  is the squared Euclidean 

length 2
1

n
ii

υ
=∑  ofυ . For a matrix A, A′  denotes the transpose of A and ( )C A  is the linear 

subspace of nR  generated by the columns of A. The orthogonal projection matrix for projecting 

onto ( )C A  can be computed as ( )A A A A−′ ′  where ( ' )A A −  represents any generalized inverse of 

' .A A  Let ,r sF  denote the central F distribution with r numerator and s denominator degrees of 

freedom. We write , ( )r sF α for the 100 thα  percentile of a ,r sF distribution and let 

, ( ) Pr( )r sF u F u= >  where ,~ r sF F , so that 1
,,

( ) (1 )r sr s
F Fα α− = − . 

 

In order to specify a grouping of n  observations into c groups, we use an n c× matrix Z 

which contains indicator variables for the groups. That is, Z contains only zeros and ones, and 

the nonzero values in the thj column of Z correspond to the observations in the thj group, 

1,..., .j c=  A grouping determined by such a Z matrix will also be called a clustering or partition 

of the observations. For example, with 11n = and 3c = , to indicate that observations 1, 2, 3 and 

4 belong to group 1, that observation 5, 6 and 7 belong to group 2 and that the observations 8, 9, 

10 and 11 belong to group 3, Z has the form 

1 1 1 1 0 0 0 0 0 0 0
0 0 0 0 1 1 1 0 0 0 0
0 0 0 0 0 0 0 1 1 1 1

Z
⎡ ⎤

′ = ⎢ ⎥
⎢ ⎥⎣ ⎦

. 
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CHAPTER 2 - Lack of Fit Tests  

 

A common approach to testing a proposed linear regression model Y eX β= +  for lack 

of fit involves testing the model against a constructed full model Y eX β∗= + with ( )C X ⊂  

( ).C X∗  Here, X is a nonrandom n p× matrix of predictor variables, pβ ∈ R  is an unknown 

parameter vector and 2~ (0, )ne N Iσ is an n − dimensional random error vector with unknown 
2 0.σ >  As noted by Christensen (2002), there are few theoretical guidelines for choosing X∗ , 

and hence the constructed full model. With no other variables available, the choice of X∗  is 

necessarily based on those variables represented in the proposed model matrix X. The challenge 

is to define X∗  so that the constructed full model provides not only a sufficiently general 

alternative which includes the true data generating model, but also leads to a test with sufficient 

power to detect lack of fit i.e. when ( )E Y X β≠ .  

 

For examples of specific models representing the general types of lack of fit discussed in 

Section 1, consider testing the adequacy of a simple linear regression model with replication 

given by  

                                              0 1ij i ijy x eβ β= + +                                                                              (1) 

for 1, ,i c= "  and 1, ,j N= " , when the underlying true model has the form  

                                 2
0 1 2 cos( )ij i i j ijjy x x t etβ β β γ ω δ= + + + ++                                                 (2) 

where t1<t2< . . . <tN. For different choices of the parameters, model (2) (except for the cosine 

term) was utilized by Christensen (2003) to exemplify various types of model inadequacy. In 

particular, with 2 0β ≠  and 0γ δ= =  lack of fit exists in the between-cluster subspace 

B = ( ) ( )C X C Z⊥ ∩  and represents traditional polynomial lack of fit between the groups of 

replicates. If 2 0β =  and either 0γ ≠  or 0δ ≠ then lack of fit exists in the within-cluster 

subspace W= ( ) ( )C X C Z⊥ ⊥∩  and represents a trend and/or periodic lack of fit within the groups 
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of replicates. Finally, if 2 0β ≠  and either 0γ ≠  or 0δ ≠  then lack of fit exists in both subspaces 

B and W as a mixture of the two pure types. In the preceding, there are replicated rows of X and 

Z is a matrix of indicator variables having the same row structure as X (i.e. Z contains only zeros 

and ones, and the nonzero values in a column of Z correspond to a grouping or clustering of like 

rows of X). The interpretation for the case of near replication generalizes the preceding concepts. 

 

2.1 Su and Yang Test  
 

Su and Yang (2006) proposed an overall lack of fit test, along with tests for detecting 

between- and within-cluster lack of fit. The overall lack of fit test is based on a constructed full 

model which is intended to approximate the true model locally within each cluster, according to 

a specified clustering of the observations. In particular, the authors model the thj  response in the 
thi cluster as  

                                                    ij ij ij i jiw ey x β α′+ +′=                                                                    (3) 

for 1,...,i c=  and 1,..., .ij n=  

 

Here i jx ′ is a known 1 p×  vector of regression variables associated with the proposed 

model and ijw′ is a 1 iq× vector of regression variables determined as functions of the variables in 

.i jx ′ For example, in addition to containing a 1 which functions as an intercept for cluster ,i  ijw′  

may contain the first and second order powers of all of the predictor variables in .i jx ′ If 

sufficiently large amounts of data are available within a cluster, then a more complex model may 

be fitted where the i jw ′ may contain functions of the variables in i jx ′ other than powers and 

cross-products, such as trigonometric functions and wavelets. The β  and iα  are unknown 

parameter vectors associated with i jx ′ and ijw′ , respectively.  

 

In matrix form, the constructed full model is 

                                                           W eY X β α+ +=                                                                 (4) 
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where  

                                                            [ ]ijX x= ′          

is a n p× matrix with 1

c
iin n

=
= ∑ and 

                                        1 2Diagonal[ , , , ]cW W W W= "          

is a n q× matrix with 1

c
iiq q

=
= ∑ , where 

                                                            [ ]i ijW w= ′          

is a i in q× matrix and  

                                                      1 2( , , , ).ca a a a=′ ′ ′ ′"     

 

  An F-statistic for testing the proposed model Y eX β= +  for lack of fit as compared to 

the constructed full model (4) is  

   
2

( , ) ( )
2

( , )

|| ( ) || (dim ( , ) dim ( ))
.

|| ( ) || ( dim ( , ))
C X W C X

n C X W

P P Y C X W C X
F

I P Y n C X W
− −

=
− −

 

 

Lack of fit is concluded at level a  whenever observed 

                                dim ( , ) dim ( ), dim ( , ) .( )1C X W C X n C X WF F α− −> −  

 

As noted by Su and Yang, the success of the proposed overall test depends on how well 

model (4) approximates the true model locally within each cluster. The authors provide an 

analytical comparison of the overall test for lack of fit with the test presented by Christensen 

(1989) based on expected mean squares. The analysis explains why the proposed overall test 

may perform better than Christensen’s test, especially in the presence of within-cluster lack of fit. 

 

If lack of fit is detected by the overall test, then Su and Yang suggest the following test 

statistics for detecting between- and within-cluster lack of fit 

   
2

( , ) ( )
2

( , )

|| ( ) || (dim ( , ) dim ( ))
|| ( ) || ( dim ( , ))

C X Z C X

n C X W

P P Y C X Z C X
F

I P Y n C X W
− −

=
− −

 

and 
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2

( , ) ( , )
2

( , )

|| ( ) || (dim ( , ) dim ( , ))
,

|| ( ) || ( dim ( , ))
C X W C X Z

n C X W

P P Y C X W C X Z
F

I P Y n C X W
− −

=
− −

 

 

respectively, to determine whether there is a dominant pure type of lack of fit. The critical points 

associated with these test statistics are 

                                dim ( , ) dim ( ), dim ( , ) )(1C X Z C X n C X WF α− − −  

and 

                                dim ( , ) dim ( , ), dim ( , )( )1 ,C X W C X Z n C X WF α− − −  

respectively. The matrix Z in the preceding test statistics represents a specified clustering. Su and 

Yang suggest that a reasonable number of degrees of freedom for the F-tests should be a factor in 

determining such clusterings of the observations into near replicates and also in the choice of a 

W matrix. When there are insufficient data, the authors suggest other tests, such as those 

presented by Christensen (1989, 1991), may be preferable. 

 

This report will focus on the overall lack of fit test and thus will involve model (4) as the 

constructed full model. Further, this report will consider only the case when p=1 for X and ijw′ = 

2, )(1, ii j jx x for the construction of W in the simulation study in this report. 

 

2.2 Miller and Neill Test  
 

Miller and Neill (2007) proposed a multiple testing procedure to test a proposed model 

Y eX β= +  for lack of fit. For the case of one predictor variable, the values of the predictor can 

be ordered to obtain useful groupings of the observations for detecting lack of fit in 

nonreplicated regression. In particular, we may consider groupings based on consecutive pairs, 

triples, quadruples, etc. along the ordered values of the predictor. Each such grouping determines 

a matrix #Z  of indicator variables and is used in the cluster-based regression lack of fit tests 

presented by Christensen (1989, 1991), with such grouping serving as the clusterings. In 

particular, the groupings provide function approximations to the underlying true regression, and 

hence variance estimators to be used in testing for lack of fit. Using the multiple testing approach 
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of Baraud et al. (2003) with families of such groupings, Miller and Neill demonstrated that lack 

of fit involving low signal-to-noise ratios and high frequency misspecifications can be effectively 

detected.  

 

The importance of ordering predictors, residuals or sequences of alternative models in the 

multiple regression setting, and the associated difficulties in testing for lack of fit, has been noted 

by Aerts et al. (1999, 2000 and 2004) and Fan and Huang (2001). For the purpose of forming 

families of groupings in higher dimension for use with Christensen’s lack of fit tests, Miller and 

Neill proposed that such families be determined by linear orders on the predictors based on 

disjoint parallel tubes in predictor space. Kulasekera and Gallagher (2002) used a similar tube 

construction, along with smoothness conditions for a specified nonparametric regression surface, 

in order to obtain consistency and asymptotic normality of difference-based estimators of 

variance determined by such ordering. A more complete discussion for the case of predictors 

with dimension greater than one is given by Miller and Neill (2007). However, the focus of this 

report will be on the case of one predictor variable without replication. 

 

Now let #Z denote a matrix of indicator variables corresponding to a grouping 

determined by taking groups of consecutive predictors along the linear orders for predictors of 

dimension one as described in the preceding. Then the lack of fit space ( )C X ⊥  can be written as 

# # #( )C X B W S⊥ = ⊕ ⊕  

where # #( ) ( )B C X C Z⊥= ∩  , # #( ) ( )W C X C Z⊥ ⊥= ∩  and 
# # #

( )
( ) .

C X
S B W ⊥

⊥= ⊕  This 

decomposition of the lack of fit space follows Christensen (1991) with the clustering given by 

the grouping represented by #Z . Analogous to the case of replication, the first two subspaces in 

the above decomposition are called the (orthogonal) between- and within-cluster lack of fit 

subspaces, respectively, corresponding to a particular grouping. The third subspace #S  has 

relatively low dimension. Thus, for a specified grouping represented by #Z , Miller and Neill test 

the model given by 

0 : eH Y X β= +  
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for lack of fit by comparing it to the complementary full models (i.e. two alternative full models 

whose error spaces are complementary with respect to ( )C X ⊥  ) specified by 

#

#

:B
a B

H Y X eθ γ= + +Q  

and 
#

#:E

E

W
a W

H Y X eθ γ= + +Q  

where  # # #
EW W S= ⊕  is the (extended) within-cluster lack of fit subspace, and where #B

Q  and 

#WE
Q  are matrices such that #

#)
B

B=C(Q  and #
#) .EW E

W=C(Q  Thus, 0H  is rejected if  

dim ,dim# # # )(1
B B WE

F F α> −  

or if the complementary test statistic  

,# dim dim# # #1 )/ (1
W B W BE E

F F F α= > −  

where #B
F  is the likelihood ratio test statistic for testing 0H  versus 

#B
aH  given by 

2

2

#
#

# #
#

|| || / dim
.

|| || / dim
B

B
EWE

P Y B
F

P Y W
=  

 

We remark that especially for predictors of dimension greater than one the use of 

Christensen’s tests, based on most clusterings, is likely to involve mixtures of (orthogonal) 

between- and within-cluster lack of fit. Thus, it is important to be able to detect such. With this 

in mind, let Z be any grouping matrix such that #( ) ( )C Z C Z⊂  where #Z  is a matrix of 

indicator variables for the nonreplicated case of the sort described above. As shown by Miller 

and Neill (2007), when lack of fit exists as a combination of the two pure types as determined by 

,Z the expectation of the numerator in the #B
F  statistic includes a function of such mixture lack 

of fit. This allows tests based on suitable #Z  groupings to possess effective power to detect 

mixtures of Christensen’s (orthogonal) between- and within-cluster lack of fit. In addition, the 

use of #Z  groupings associated with alternative spaces of large dimension give complementary 

tests based on critical points which can provide effective power for detecting of lack of fit. For 

example, using groupings based on consecutive pairs according to the linear orders in the 
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nonreplicated case, the degrees of freedom parameters are approximately equal, assuming 2/ .p n≪  

In particular, if #dim ( ) / 2C Z n=  then (generically) #dim / 2B n p= −  and #dim / 2.EW n=  

( Alternatively, similar results are obtained for complementary tests based on the within- and 

(extended) between-cluster lack of fit subspaces #W  and # # # ,EB B S= ⊕  respectively. In 

particular, (generically) #dim / 2 1W n p= − +  and #dim / 2 1EB n= −  whenever #dim ( ) / 2.)C Z n=  

However, given the unknown nature of the underlying regression function, #Z  groupings 

associated with alternative subspaces of smaller dimension are also potentially useful. Thus, 

Miller and Neill also considered groupings based on consecutive triples, quadruples, quintuples, 

hextuples, etc. The use of alternative subspaces with various dimensions reflects the bias-

variance tradeoff problem, as encountered in nonparametric smoothing (Hart (1997) and 

Wasserman (2006)). It is also analogous to the use of a family of bandwidths in the scale space 

approach to curve estimation as discussed in Chaudhuri and Marron (1999, 2000). 

 

As noted previously, the efficacy of a particular choice of grouping of the observations 

depends on the unobservable lack of fit.  Thus, to enhance the power to detect general lack of fit 

associated with the proposed model ,Y eX β= +  Miller and Neill considered a testing procedure 

which involves doing several pairs of complementary tests, each based on a different grouping 

contained in a specified family of such groupings. For the case of one predictor, the authors 

considered families of groupings based on consecutive pairs, triples, quadruples, etc. and use the 

multiple testing approach of Baraud et al. (2003) with corresponding complementary test 

statistics #B
F  and # .

WE
F  

 

To describe a multiple testing procedure based on a family of groupings, let G denote the 

collection of groupings under consideration. Also, let the set of corresponding pairs of 

complementary lack of fit subspaces { }# # #, :B W Z= ∈S G � be indexed by a set .M�That is, 

S ={ }:mS m∈M  where mS  is a #B  or a #W  for some #Z ∈G�. Let ( )m mV C X S= ⊕  and note 

that card 2 card .=M G  Following Baraud et al. (2003), let 
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2
1

,2

|| ||
sup( ( ))

|| ( ) || /
S mm

a D N mm m
m V mm

P Y D
T F a

I P Y NM

−

∈
= −

−
 

and reject 0H  whenever aT >0. In the preceding, dimm mD S= , dimm mN V ⊥=  and { : }ma m∈M� 

is a collection of numbers in (0, 1) such that 
0

Pr ( 0)H aT a> ≤ . Note that with 2~ (0, )ne N Iσ , 

this multiple testing procedure rejects the adequacy of the proposed model if the F-statistic for 

testing 0H  against , : ( )a m mH E Y V∈  is significant at level ma  for some m∈M�. Further, as 

stated in Baraud et al., if na denotes the a -quantile of the random variable 

,inf ( )n D N mm mm
T F

M
R

∈
= , 

where  

                                                        
2

2

|| || /
|| || /

Sm
m

Vm

m

m

P e D
e P e N

R =
−

, 

then the choice of m na a=  for all m∈M�ensures that 
0

Pr ( 0)H aT a> ≤ . 

 

As in Baraud et al. (2003) and Miller and Neill (2007), in this report simulation (using 

Gaussian errors) is used to determine the value of na . Alternatively, a choice of ma  such that 

mm
a α

∈
=∑ M

 provides a conservative testing procedure with level at most equal toα according 

to the Bonferonni inequality. However, with / ca drmα α= M , this alternative choice for mα  

was shown by Baraud et al. to be more robust with respect to departures from Gaussian errors.  
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CHAPTER 3 - Simulation Studies 

 

 The lack of fit testing procedures proposed by Su and Yang (2006) and Miller and Neill 

(2007) are compared with various data generating models and parameter settings in the following 

simulation studies. In all of the studies, the null model to be tested for lack of fit is the univariate 

regression model 0 1 ,x ey β β+ +=  where the errors were assumed to be independent and 

identically distributed according to 2(0, )N σ . The errors for the data generating models were 

randomly generated according to (0,1)N . The empirical power for each case considered is based 

on 2000 simulated datasets corresponding to each parametric setting of a particular data 

generating model. The significance level was set at .05α =  for all cases. In the following, the 

parameter Nsize refers to the groupings based on consecutive pairs, triples, quadruples, etc. 

along the ordered values of the predictor as required for the Miller and Neill test. Also, the 

required clusterings for the Su and Yang test were determined by the R functions cutree and 

hclust  to create hierarchical clustering groups corresponding to specified numbers of clusters. 

The R  codes used for all calculations in the simulations are collected in the Appendix to this 

report. Finally, the results for the Su and Yang test will be labeled with SY , while the results for 

the Miller and Neill test will be labeled with MN  for brevity. 

 

3.1 The First Simulation Study 
 

For the first simulation study, 25n =  observations were generated according to the true 

model 1 2 sin(4 ) ey x xβ β+ += , where 1 1β = , and 2β = 0, 0.8, 1.6, 2.4, 3.2. Also, x  takes the 

values 0.0, 0.2, 0.4, 0.6, 0.8, 2.0, 2.2, 2.4, 2.6, 2.8, 4.0, 4.2, 4.4, 4.6, 4.8, 6.0, 6.2, 6.4, 6.6, 6.8, 

8.0, 8.2, 8.4, 8.6, 8.8. This data generating model was also used by Su and Yang (2006), where 

values for the predictor x  possess a clear clustering pattern. In particular, the 25n = values can 

be readily partitioned into 5c =  clusters. A scatter plot of a typical simulated dataset generated 
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by true model, along with the fitted null model and true model regression function are given in 

Figure 3.1. The empirical powers for the SY  and MN  testing procedures for various parameters 

are listed in Table 3.1 and plotted in Figure 3.2.  

Figure 3.1 A scatter plot of the data generated from the model 2 sin(4 )x xy eβ+= + , along 

with the fitted null model and true regression curve. 
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Table 3.1 Empirical Power for the SY  and MN  tests with data generated from the model 

2 sin(4 )x xy eβ+= + . 

MN  test 
2β  

Nsize=(2,3) (2,3,4) (2,3,4,5) (4) (5) 
SY test 

0 .0405 .0575 .0435 .054 .053 .047 

.8 .0655 .09 .088 .133 .054 .155 

1.6 .18 .28 .235 .433 .065 .4815 

2.4 .231 .52 .424 .7125 .045 .798 

3.2 .297 .681 .606 .893 .0165 .9515 
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Figure 3.2 Empirical Power for the SY  and MN  tests with data generated from the model 

2 sin(4 )x xy eβ+= + . 

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.8 1.6 2.4 3.2

Beta 2

Empirical Power

SY
Nsize=(4),MN
(2,3,4),MN
(2,3,4,5),MN
(2,3),MN
(5),MN

 
 

With a clear pattern of clustering and lack of fit that is a function of only the specified 

predictor, the SY  test has effective power for the selected parameter settings in this particular 

data generating model. Empirical powers for the MN  test were computed for several settings of 

the Nsize parameter corresponding to several families of groupings. Each setting of Nsize 

provides a family of alternative lack of fit subspaces with various dimensions. Since the efficacy 

of a particular choice of grouping depends on the unobservable lack of fit, a family of groupings 

with sufficient breadth of dimensions is generally required for a more powerful testing procedure. 

This is reflected in the sensitivity to the Nsize settings for the MN  test. Since the MN  test 

accommodates a broader alternative than the SY  test, the empirical powers for the MN  test are 

comparatively lower than those for the SY  test for this particular simulation. 

 

In order to compare the SY  and MN  tests for detecting lack of fit with different 

frequency components, data was generated according to the true model 1 2 sin( )xy x eβ β+= +  

where the parameters 1 2andβ β  were chosen as before, along with the same values of the 
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predictor x . A scatter plot of a typical simulated dataset generated by this true model, along with 

the fitted null model and true model regression function are given in Figure 3.3. The empirical 

powers for the SY  and MN  testing procedures for various parameters are listed in Table 3.2 and 

plotted in Figure 3.4. 

 

Figure 3.3 A scatter plot of data generated from the model 2 sin( )x ey x β+ += , along with 

the fitted null model and true regression curve. 
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Table 3.2 Empirical Power for the SY  and MN  tests with data generated from the model 

2 sin( )x ey x β+ += . 

MN  test 
2β  

Nsize=(2,3,4) Nsize=(2,3,4,5) 
SY test 

0 .049 .055 .05 

.8 .154 .2315 .197 

1.6 .6095 .8475 .7154 

2.4 .9425 .998 .984 

3.2 .9965 1 1 
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Figure 3.4 Empirical Power for the SY  and MN  tests with data generated from the model 

2 sin( )x ey x β+ += . 
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As before, when there is a clear pattern of clustering and lack of fit is a function of only 

the specified predictor, the SY  test has effective power. Empirical powers for the MN  test with 

either setting of Nsize are reasonably effective as well for this particular simulation. 

 

3.2 The Second Simulation Study 
 

For the second simulation study, 25n =  observations were generated according to the 

true model 1 2 sin( )y x x eβ ωβ= + +  as in the first simulation study, except that the values of the 

predictor variable x  were taken from 0.352 to 8.8 at equally spaced intervals of length 0.352. 

Unlike the first simulation, the values of x  do not exhibit a clear clustering structure. Since the 

SY  test requires a specified clustering, several different clusterings were used for evaluation of 

the SY  test. In particular, clusterings with 3, 4, 5 and 6 groups were used to construct the 

alternative model for the SY  test. The empirical powers for the case when 1ω =  are listed in 
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Table 3.3 and plotted in Figure 3.5. Both testing procedures exhibit comparable and effective 

power for this case. However, the results for the case when 4ω = indicate that the SY  test may 

not necessarily perform well when a clear clustering structure is not present. The MN  test with a 

family of groupings corresponding to Nsize = (2, 3, 4, 5) exhibits effective power for this 

simulation case. The empirical powers for this case are listed in Table 3.4 and plotted in Figure 

3.6. 

 

Table 3.3 Empirical Power for the SY  and MN  tests with data generated from the model 

2 sin( )x ey x β+ += . 

MN  test SY test 
2β  

Nsize=(2,3,4,5) Clusters=3 Clusters=4 Clusters=5 Clusters=6 

0 .0565 .0505 .0515 .0505 .054 

.8 .228 .3455 .265 .2175 .1965 

1.6 .835 .94 .8345 .76 .6905 

2.4 .996 1 .996 .99 .9785 

3.2 1 1 1 1 1 

 

Figure 3.5 Empirical Power for the SY  and MN  tests with data generated from the model 

2 sin( )x ey x β+ += . 
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Table 3.4 Empirical Power for the SY  and MN  tests with data generated from the model 

2 sin(4 )y x x eβ= + + . 

MN  test SY  test 
2β  

Nsize=(2,3,4,5) Clusters =3 Clusters =4 Clusters =5 Clusters =6 

0 .049 .047 .053 .046 .048 

.8 .0465 .0185 .0455 .041 .0475 

1.6 .07 .003 .0011 .0016 .0325 

2.4 .124 0 0 .0035 .0145 

3.2 .175 0 0 .0001 .006 

5 .305 0 0 0 0 

10 .6975 0 0 0 0 

 

Figure 3.6 Empirical Power for the SY  and MN  tests with data generated from the model 

2 sin(4 )y x x eβ= + + . 
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3.3 The Third Simulation Study 
For the third simulation study, observations were generated according to the true 

model 2
21 x ey β= + +  where the predictor variable x  takes values generated from the uniform 

distribution on (-2, 2). As in the second simulation study, the values of  x  do not exhibit a clear 

clustering structure so that clusterings with 5, 6 and 7 groups were used to construct the 

alternative model for the SY  test for the case of 64n =  observations. To further investigate the 

effect of sample size on the performance of the MN  test, the case of 120 80,1n =  were also 

considered, each with the parameter Nsize = (2, 3, 4, 5). Since the lack of fit is due to the 

omission of a polynomial term in the specified predictor variable, the lack of fit is dominated by 

the between-cluster pure type. As a result, both testing procedures exhibit comparable and 

effective power for this particular simulation. The empirical power results are listed in Table 3.5 

and plotted in Figure 3.7. Note that only the results for the case 64n =  are plotted. 

  

Table 3.5 Empirical Power for the SY  and MN  tests with data generated from the model 
2

21 x ey β= + + . 

MN  test SY  test 

64n =  120n =  180n =  64n =  

 

2β  

Nsize=(2,3,4,5) Nsize=(2,3,4,5)  Nsize=(2,3,4,5) Clusters=5 Clusters=6 Clusters=7

0 .0425 .052 .055 .0505 .0535 .0465 

.2 .088 .1163 .152 .137 .148 .1305 

.3 .223 .3268 .4235 .2715 .33 .2815 

.4 .4097 .6595 .8185 .5425 .6025 .4845 

.6 .8597 .989 1 .918 .9615 .914 

.8 .9711 1 1 .998 .9995 .9955 

1 .9985 1 1 .9995 1 1 
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Figure 3.7 Empirical Power for the SY and MN  tests with data generated from the model 
2

21 x ey β= + + . 

0

0.2

0.4

0.6

0.8

1

1.2

0 0.2 0.3 0.4 0.6 0.8 1

Beta2

Empirical
Power

MN

SY,Clusters=5

SY,Clusters=6

SY,Clusters=7

 
 

3.4 The Fourth Simulation Study 
For the fourth simulation study, observations were generated according to the true model  

                             
2

,
1.0 exp( 2

1
)

0 e
x

y
β

+
+ −

=   

where the predictor x  takes values randomly generated from the (0,1)N  distribution. As in the 

second and third simulation studies, the values of x do not exhibit a clear clustering structure so 

that clusterings with 5, 6 and 7 groups were used to construct the alternative model for the SY  

test for the case of  64n =  observations. To further investigate the effect of sample size on the 

performance of the MN  test, the cases of 120 80,1n =  were also considered, each with the 

parameter Nsize = (2, 3, 4, 5). With the true model representing a logistic regression model, both 

testing procedures exhibit comparable and effective power, although the empirical power for the 

SY  test is slightly higher than that for the MN  test for comparable sample size. Note that both 

tests indicate some loss of power for increasing values of 2β  for this particular simulation. The 

empirical power results are listed in Table 3.6. 
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Table 3.6 Empirical Power for the SY  and MN  tests with data generated from the model 

2

.
1.0 exp( 2

1
)

0 e
x

y
β

+
+ −

=  

MN  test SY  test 

n=64 n=120 n=180 n=64 

 

2β  

Nsize=(2,3,4,5) Nsize=(2,3,4,5) Nsize=(2,3,4,5) Clusters=5 Clusters=6 Clusters=7

0 .055 .047 .0525 .052 .0535 .0485 

.2 1 1 1 1 1 1 

.4 .999 .999 1 1 .9995 .999 

.6 .9845 .989 1 .999 .995 .987 

.8 .9335 .9675 1 .9895 .977 .952 

1 .868 .9605 1 .9735 .9445 .907 

 

3.5 The Fifth Simulation Study 
For the fifth simulation study, 50n =  observations were generated according to the true model 

1 2 25 3 x ey x β= + + +  where predictors 1 2andx x  take predetermined values as indicated in 

Figure 3.8. The null model remains a simple linear regression model of y  on 1x  in this case, but 

unlike the preceding simulation studies the true model depends on an unspecified predictor 

variable 2x . With only 1x  specified, there are 5c =  readily identified clusters. However, there 

are consistent trends across such clusters determined by the 2x  predictor variable, as can be seen 

in Figure 3.8. Based on a constructed alternative model using the 5c = clusters determined by 1x , 

the SY  test possesses extremely low power. However, the MN  test with Nsize = (2, 3, 4, 5) 

exhibits effective power, even in the case when the true data generating model depends on an 

unspecified predictor and when such lack of fit involves consistent trends across the identifiable 

clusters determined only by the specified predictor. It is of interest to note that when the 

constructed alternative model for the SY  test is based on the 10c =  clusters that can be readily 

identified in Figure 3.8 by using both predictors 1 2and x x , the corresponding power values are 

clearly improved. Of course, such clustering would not be available to the experimenter in 
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practice since 2x  is unknown. The empirical power results are listed in Table 3.7 and plotted in 

Figure 3.9.    

 

Figure 3.8 Scatter plot for the predictor variables 1 2and x x  for Simulation Study 5.  
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Table 3.7 Empirical Power for the SY  and MN  tests with data generated from the model 

1 2 25 3x xy eβ+ + += . 

MN  test SY  test 
2β  

Nsize=(2,3,4,5) Clusters=5 Clusters=6 Clusters=10 Clusters=12

0 .0445 .0485 .0513 .043 .0435 

.1 .0585 .0543 .0623 .0825 .0742 

.3 .36 .042 .119 .562 .485 

.5 .871 .0205 .172 .971 .937 

.7 .994 .008 .198 .9995 .998 

.9 1 .002 .174 1 1 
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Figure 3.9 Empirical Power for the SY  and MN  tests with data generated from the model 

1 2 25 3x xy eβ+ + += . 
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3.6 The Sixth Simulation Study 
 

For the sixth simulation study, 80n =  observations were generated according to the true 

model 21 2cos3 )5 (y x x eβ= + + + where the predictor 1x  takes sorted values generated from the 

uniform distribution on (0, 10) and the predictor 2x  takes predetermined values according to a 

repeating sequence between 0 and 10 at equally spaces intervals of 10/15. A typical simulated 

scatter plot of 1x  and 2x values is given in Figure 3.10. The null model remains a simple linear 

regression model of y  on 1x  in this case, and like the fifth simulation study the true model 

depends on an unspecified predictor variable 2x . With only 1x  specified, there is no clear 

clustering structure so that clusterings with various group sizes were used to construct the 

alternative model for the SY  test. However, there are consistent trends across the values of 1x  
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determined by the 2x  predictor variable, as can be seen in Figure 3.10. Based on constructed 

alternative models using 5, 6 and 7 clusters on the unstructured values taken by 1x , the SY  test 

possesses extremely low power. However, it is of interest to note that when constructed 

alternative models for the SY  test are based on 12, 14, and 16 clusters, the corresponding power 

values are clearly improved. Of course, such clusterings would not necessarily be selected by the 

experimenter in practice since 2x  is unknown. In contrast, the MN  test with Nsize = ( 2, 3, 4, 5) 

exhibits effective power, even in this case where the true data generating model depends on an 

unspecified predictor and the lack of fit involves consistent trends across unstructured values 

taken by the specified predictor. The empirical power results are listed in Table 3.8 and plotted in 

Figure 3.11.  

 

Figure 3.10 Scatter plot for the predictor variables 1x  and 2x  for Simulation Study 6.  
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Table 3.8  Empirical Power for the SY  and MN  tests with data generated from the model 

1 2 25 3 cos( )x x ey β= + + + . 

MN  test SY  test 
2β  

Nsize=(2,3,4,5) Clusters=5 Clusters=6 Clusters=7 Clusters=12 Clusters=14 Clusters=16

0 .0535 .04 .043 .044 .0405 .0425 .0465 

.5 .108 .0545 .0495 .0565 .087 .095 .124 

1.0 .5455 .054 .0535 .0605 .21 .2705 .446 

1.5 .954 .049 .042 .053 .3905 .498 .8255 

2.0 1 .032 .026 .0375 .5665 .711 .97 

2.5 1 .022 .0165 .0225 .704 .8555 .997 

 

 

Figure 3.11 Empirical Power for the SY  and MN  tests with data generated from the model 

1 2 25 3 cos( )x x ey β= + + + . 
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CHAPTER 4 - Conclusion 

 

The goal of this report is to first review two recently proposed cluster based regression 

lack of fit tests. These test procedures were presented by Su and Yang (2006) and Miller and 

Neill (2007), and address the problem of detecting lack of fit which may exist as a combination 

of the two pure types of between- and within-cluster lack of fit, and were discussed in Chapters 1 

and 2. The second goal of this report is to make some comparisons between the two testing 

procedures, at least for the case of one specified predictor variable. The simulation studies 

presented in Chapter 3 indicate that the test proposed by Su and Yang is especially effective 

when the lack of fit is not due to an unspecified predictor variable and when there is a clear 

pattern of clustering in the specified predictor variable. The simulation studies also indicate that 

the test proposed by Miller and Neill (2007) is especially effective when the family of alternative 

lack of fit subspaces possesses sufficient breadth of dimensions. This test accommodates a 

broader alternative, which can thus result in comparatively lower but effective power. However, 

this test demonstrated an ability to detect model inadequacy when the lack of fit was a function 

of an unspecified predictor variable and does not require a specified clustering for 

implementation. Future comparisons would involve the case of more than one specified predictor 

variable.  

 

 

 

 

 

 

 

  

 

 



 - 28 - 

 

References  

Aerts, M., Claeskens, G. and Hart, J.D. (1999). Testing the Fit of a Parametric Function, Journal 

of the American Statistical Association, 94, 869-879. 

Aerts, M., Claeskens, G. and Hart, J. D. (2000). Testing Lack of Fit in Multiple Regression, 

Biometrika, 87, 405-425. 

Aerts, M., Claeskens, G. and Hart, J.D. (2004). Bayesian-Motivated Tests of Function Fit and 

Their Asymptotic Frequentist Properties, The Annals of Statistics, 32, 2580-2615. 

Atwood, C., and Ryan, T. (1977). A Class of Tests for Lack of Fit to a Regression Model, 

unpublished manuscript. 

Baraud, Y., Huet, S. and Laurent, B. (2003). Adaptive Tests of Linear Hypotheses by Model 

Selection, The Annals of Statistics, 31, 225-251. 

Bedrick, E. (2000). Checking for Lack of Fit in Linear Models with Parametric Variance 

Functions, Technometrics, 42, 227-236. 

Breiman, L. and Meisel, W. S. (1976). General Estimates of the Intrinsic Variability of Data in 

Nonlinear Regression Models, Journal of the American Statistical Association, 71 301-

307. 

Chaudhuri, P. and Marron, J. S. (1999). SiZer for Exploration of Structures in Curves, Journal of 

the American Statistical Association, 94, 807–823. 

Chaudhuri, P. and Marron, J. S. (2000). Scale Space View of Curve Estimation. The Annals of 

Statistics, 28, 408–428. 

Christensen, R. (1989). Lack of Fit Based on Near or Exact Replicate, The Annals of Statistics, 

17, 673-683. 

Christensen, R. (1991). Small Sample Characterizations of Near Replicate Lack of Fit Tests, 

Journal of the American Statistical Association, 88, 752-756. 

Christensen, R. (2002). Plane Answers to Complex Questions: The Theory of Linear Models, 3rd 

ed., Springer.  

Christensen, R. (2003). Significantly Insignificant F Tests, The American Statistician, 57, 27-32. 



 - 29 - 

Christensen, R. and Bedrick, E. (1997). Testing the Independence Assumption in Linear Models. 

Journal of the American Statistical Association, 92, 1006-1016. 

Cook, R. D. and Weisberg, s. (1997). Graphics for Assessing the Adequacy of Regression 

Models, Journal of the American Statistical Association, 92, 490-499. 

Daniel, C. and Wood, F. S. (1980). Fitting Equations to Data 2nd ed., Wiley. 

Eubank, R. L., Chin-Shang L. and Wang, S. (2005). Testing Lack-of-Fit of Parametric 

Regression Models Using Nonparametric Regression Techniques, Statistica Sinica, 15, 

135-152. 

Fan, J. and Huang, L. (2001). Goodness-of-Fit Tests for Parametric Regression Models, Journal 

of the American Statistical Association, 96, 640-652. 

Fisher, R. (1922). The Goodness of Fit of Regression Formulae and the Distribution of 

Regression Coefficients, Journal of the Royal Statistical Society, 85, 597-612. 

Green, J. R. (1971). Testing Departure From a Regression Without Using Replication, 

Technometrics, 13, 609-615. 

Hart, J. D. (1997). Nonparametric Smoothing and Lack of Fit Tests, Springer. 

Joglekar, G., Schuenemeyer, J. H., and LaRiccia, V. (1989). Lack-of-Fit Testing When 

Replicates Are Not Available, The American Statistician, 43, 135-143. 

Khmaladze, E. V. and Koul, H. L. (2004). Martingale Transforms Goodness-of-Fit Tests in 

Regression Models, The Annals of Statistics, 32, 995-1034. 

Kulasekera, K. and Gallagher, C. (2002). Variance Estimation in Nonparametric Multiple 

Regression, Communications in Statistics, Part A- Theory and Methods, 31, 1373-1383. 

Lyons, N. I. and Proctor, C. H. (1977). A Test for Regression Function Adequacy, 

Communications in Statistics, Part A- Theory and Methods, 6, 81-86. 

Miller, F. R. and Neill, J. W. (2007). General Lack of Fit Tests Based on Families of Groupings, 

To appear in Journal of Statistical Planning and Inference. 

Miller, F. R., Neill, J. W. and Sherfey, B. W. (1998). Maximin Clusters for Near Replicate 

Regression Lack of Fit Tests, The Annals of Statistics, 26, 1411-1433. 

Miller, F. R., Neill, J. W. and Sherfey, B. W. (1999). Implementation of a Maximin Power 

Clustering Criterion to Select Near Replicates for Regression Lack of Fit Tests, Journal 

of the American Statistical Association, 94, 610-620. 



 - 30 - 

Neill, J. W. and Johnson, D. E. (1985). Testing Linear Regression Function Adequacy Without 

Replication, The Annals of Statistics, 13, 1482-1489. 

Shillington, E.R. (1979). Testing Lack-of-Fit in Regression Without Replication. Canadian 

Journal of Statistics, 7, 137-146. 

Su, Z. and S. Yang (2006). A Note on Lack of Fit Tests for Linear Models Without Replication, 

Journal of the American Statistical Association, 101, 205-210. 

Utts, J. M. (1982). The Rainbow Test for Lack of Fit in Regression, Communications in 

Statistics, Part A- Theory and Methods, 11, 2801-2815. 

Wasserman L. (2006). All of Nonparametric Statistics, Springer.  

 

 



 - 31 - 

 

Appendix A - R code for Simulation Study 

########################################################################### 

# The following R codes were used in the first, third and sixth simulation studies to compare  

# Miller and Neill’s lack of fit test based on a family of groupings and Su and Yang’s overall 

#lack of fit test method. The R codes for the other simulation studies are omitted due to 

#similarities. 

############################################################################ 

Appendix A-1 R Code for Yang’s overall test for the First Simulation Study 

 

source("ppo.s") 

source("basis.s") 

source("CZmat.s") 

source("CXmat.s") 

options(echo=F) 

n<-25 

ysim<- 2000 

alpha<- .05 

stdev<-1 

onesn<- matrix(rep(1,n),byrow=F) 

x1<-

matrix(c(0,.2,.4,.6,.8,2.0,2.2,2.4,2.6,2.8,4.0,4.2,4.4,4.6,4.8,6.0,6.2,6.4,6.6,6.8,8.0,8.2,8.4,8.6,8.8),

byrow=T) 

x2<-sin(4*x1) 

X<-x1 

############################## 

#predetermine the size for each cluster 
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############################## 

Blksize<-c(5,5,5,5,5) 

xperm<-rep(1:n) 

C<- vector("list",1) 

N<-0 

for (i in 1:length(Blksize)){ 

       if(i==1) {N=Blksize[i]} 

       if(i>1){N=N+Blksize[i]} 

       start<-N-Blksize[i]+1 

       C[[length(C)+1]]<-xperm[start:N] 

      } 

 C[1]<- NULL 

 Cmat<- CZmat(C,n) 

 Xmat<-CXmat(C,x1,n) 

########################### 

 ## Get XW matrix 

 ########################### 

 XW0<-lapply(as.list(1:length(Blksize)),function(i,Cmat,Xmat)    

           {   

       C1<-matrix(Cmat[,i],ncol=1) 

       X1<-matrix(Xmat[,i],ncol=1) 

       X12<-X1**2 

       Wi<-cbind(C1,X1,X12) 

        return(Wi)},Cmat,Xmat) 

 

XW1<-matrix(unlist(XW0),n, 3*length(Blksize)) 

XW<-cbind(x1,XW1) 

 

beta<-c(0,0.8,1.6,2.4,3.2) 

for (L in 1:length(beta)){ 

     beta2<-beta[L] 
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     ytrue<-x1+beta2*x2 

    YTRUE<-matrix(ytrue,n,byrow=T) 

    nreject<-matrix(100) 

    for (k in 1:ysim){ 

        error<- matrix(rnorm(n,mean=0,sd=stdev),n,byrow=T) 

        Y<- YTRUE+error 

         

############ 

        #   get ssex and dfssex 

        ############# 

       dfssex<-basis( diag(n)-ppo(X)) 

       ssex<-t(Y)%*%(diag(n)-ppo(X))%*%Y 

        

       dfssexw<-basis(diag(n)-ppo(XW)) 

       ssexw<-t(Y)%*%(diag(n)-ppo(XW))%*%Y 

 

       ssnum<-ssex-ssexw 

       dfnum<-dfssex-dfssexw 

       msnum<-ssnum/dfnum 

       ssden<-ssexw 

       dfden<-dfssexw 

       msden<-ssden/dfden 

       F<-msnum/msden 

       Fc<-qf(1-alpha,dfnum,dfden) 

       nreject[k]<-F>Fc 

      } 

# ******* get test power 

cat(" Simpower is \n") 

print(simpower) 

} 
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Appendix A-2 R code for the Third Simulation Study 
 

source("ppo.s") 

source("basis.s") 

source("CZmat.s") 

source("CXmat.s") 

source("quantnorep.s") 

options(echo=F) 

n<-64 

stdev<- 1 

MIN<--2 

MAX<-2 

 

Nsize<- c(2,3,4,5) 

ysim<- 2000 

ansim<- 10000 

alpha<- .05 

thetaL<-c(0,.2,.4,.6,.8,1.0) 

 

x<- matrix(runif(n,MIN,MAX),byrow=F) 

xsq<-x**2 

onesn<- matrix(rep(1,n),byrow=F) 

 

X<- cbind(onesn,x) 

error<- matrix(rnorm(n*ysim,mean=0,sd=stdev),ysim,n,byrow=T) 

for (L in 1:length(thetaL)){     #calculate for different theta 

 

############################## 

##  based on Neill's method 

############################# 

theta<-thetaL[L] 
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#cat("theta is \n") 

#print(theta) 

 

lof<-theta*xsq 

LOF<- matrix(lof,ysim,n,byrow=T) 

 

Y<- LOF+error 

xperm<- order(x) 

 

Clist<- lapply(as.list(1:length(Nsize)),function(i,xperm,Nsize) 

     {Ci<- vector("list",1) 

      N<- Nsize[i] 

      Blk<- floor(length(xperm)/N) 

      start1<- 1 

 

      if(1<=Blk) 

               {for(j in 1:Blk) 

                       {mj<- ((j-1)*N)+start1 

                        Ci[[length(Ci)+1]]<- xperm[mj:(mj+N-1)]} 

               } 

       resid<- length(xperm)-(Blk*N) 

 

 if(resid>0) 

 #exclude singletons    if(resid>1) 

               {start2<- (Blk*N)+start1 

                Ci[[length(Ci)+1]]<- xperm[start2:length(xperm)]} 

 

       Ci[[1]]<- NULL 

       return(Ci) 

                },xperm,Nsize) 
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NC<- length(Clist) 

 

Cmatlist<- lapply(Clist,function(C,n) 

          {Cmat<- CZmat(C,n) 

           return(Cmat) 

                       },n) 

MBlist<- lapply(Cmatlist,function(Cmat,X) 

       {MB<- ppo(Cmat)-ppo(ppo(Cmat)%*%X) 

        return(MB) 

                 },X) 

dfBlist<- lapply(MBlist,function(MB) 

        {dfB<- basis(MB) 

 

         return(dfB) 

                   }) 

MXperp<- diag(n)-ppo(X) 

dimCXperp<- basis(MXperp) 

MWSlist<- lapply(MBlist,function(MB,MXperp) 

        {MWS<- MXperp-MB 

         return(MWS) 

                   },MXperp) 

 

dfWSlist<- lapply(as.list(1:NC),function(j,dfBlist,dimCXperp) 

         {dfWS<- dimCXperp - dfBlist[[j]] 

 

          return(dfWS) 

                     },dfBlist,dimCXperp) 

 

an<- quantnorep(n,ansim,NC,alpha,MBlist,MWSlist,dfBlist,dfWSlist) 

Tvals<- apply(Y,1,function(y,NC,MBlist,MWSlist,dfBlist,dfWSlist,an) 

      { 
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        bestcomp<- lapply(as.list(1:NC),function(j,y,an,MBlist,MWSlist,dfBlist,dfWSlist) 

                  { 

                   MSB<- (sum((MBlist[[j]]%*%y)^2))/dfBlist[[j]] 

                   MSWS<- (sum((MWSlist[[j]]%*%y)^2))/dfWSlist[[j]] 

 

                   FB<- MSB/MSWS 

                   FWS<- 1/FB 

 

                   Bcpt<- qf(1-an,dfBlist[[j]],dfWSlist[[j]]) 

                   WScpt<- qf(1-an,dfWSlist[[j]],dfBlist[[j]]) 

 

                   diffB<- FB-as.numeric(Bcpt) 

                   diffWS<- FWS-as.numeric(WScpt) 

 

                   best<- max(diffB,diffWS) 

                   return(best) 

                              },y,an,MBlist,MWSlist,dfBlist,dfWSlist) 

 

        Tval<- max(unlist(bestcomp)) 

        return(Tval) 

                   },NC,MBlist,MWSlist,dfBlist,dfWSlist,an) 

 nreject<- Tvals > 0 

simpower<- mean(nreject) 

 

cat("T simulated power based on Neill's method \n") 

print(simpower) 

#Tstats<- summary(Tvals) 

#cat("T statistic summary\n") 

#print(Tstats) 
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################################# 

## The following code is used to simulate for yang's overall test 

## use the above x1, x2 and error matrix 

#################################### 

 

############################## 

# Cluster the dataset 

# Then get the size for each cluster 

############################## 

cat(" Simpower based on Yang's test is \n") 

cluster_n<-c(5,6,7,8,9,10,11,12,13,14,15,16) 

x1<-matrix(sort(x),ncol=1) 

x12<-x1**2 

for (cl in 1:length(cluster_n)){ 

Blk<-cluster_n[cl] 

cluster<-cutree(hclust(dist(x1),method="complete"),Blk) 

xperm_yang<-rep(1:n) 

Blksizelist<-vector("list",1) 

for (i in 1:Blk) { 

Blksizelist[length(Blksizelist)+1]<-sum(cluster==i)} 

Blksizelist[1]<-NULL 

Blksize<-unlist(Blksizelist) 

 

C_yang<- vector("list",1) 

N<-0 

for (i in 1:length(Blksize)){ 

       if(i==1) {N=Blksize[i]} 

       if(i>1){N=N+Blksize[i]} 

       start<-N-Blksize[i]+1 

       C_yang[[length(C_yang)+1]]<-xperm_yang[start:N] 

      } 
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C_yang[1]<- NULL 

 Cmat_yang<- CZmat(C_yang,n) 

 Xmat_yang<-CXmat(C_yang,x1,n) 

 

X_yang<-cbind(onesn,x1) 

 

 ########################### 

 ## Get XW matrix 

 ########################### 

 XW0<-lapply(as.list(1:length(Blksize)),function(i,Cmat_yang,Xmat_yang)    

           {   

       C1<-matrix(Cmat_yang[,i],ncol=1) 

       X1<-matrix(Xmat_yang[,i],ncol=1) 

       X12<-X1**2 

       Wi<-cbind(C1,X1,X12) 

        return(Wi)},Cmat_yang,Xmat_yang) 

 

XW1<-matrix(unlist(XW0),n, 3*length(Blksize)) 

XW<-cbind(X_yang,XW1) 

 

 ytrue<-1+theta*x12 

YTRUE<-matrix(ytrue,n,byrow=T) 

 

 nreject_yang<-matrix(100) 

 

    for (k in 1:ysim){ 

         error_yang<- matrix(unlist(error[k,]),nrow=n) 

        Y_yang<- YTRUE+error_yang 

        ############ 

        #   get ssex and dfssex 

        ############# 
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       dfssex<-basis( diag(n)-ppo(X_yang)) 

       ssex<-t(Y_yang)%*%(diag(n)-ppo(X_yang))%*%Y_yang 

        

       dfssexw<-basis(diag(n)-ppo(XW)) 

       ssexw<-t(Y_yang)%*%(diag(n)-ppo(XW))%*%Y_yang 

 

       ssnum<-ssex-ssexw 

       dfnum<-dfssex-dfssexw 

       msnum<-ssnum/dfnum 

       ssden<-ssexw 

       dfden<-dfssexw 

       msden<-ssden/dfden 

       F<-msnum/msden 

       Fc<-qf(1-alpha,dfnum,dfden) 

       nreject_yang[k]<-F>Fc 

      } 

 

# ******* get test power 

 

simpower_yang<-mean(nreject_yang) 

print(simpower_yang) 

} 

} 

 

Appendix A-3 R code for the Six Simulation Study 
rm(list=ls()) 

source("ppo.s") 

source("basis.s") 

source("CZmat.s") 

source("quantnorep.s") 



 - 41 - 

source("CXmat.s") 

options(echo=F) 

 

n<-80 

ysim<- 2000 

ansim<- 10000 

alpha<- .05 

stdev<-1 

MIN<-0 

MAX<-10 

 

cluster_n<-c(5,6,7,8,9,10,11,12,13,14,15,16) 

Nsize<- c(2,3,4,5) 

#thetaL<-c(0,.5,1.0,1.5,2.0,2.5,3.2) 

 thetaL<-c(0,0.5,.6,.7,.8) 

onesn<- matrix(rep(1,n),byrow=F) 

 

x1<-matrix(sort(runif(n,MIN,MAX)),ncol=1) 

x20<-matrix(rep(seq(MIN,MAX,by=(MAX-MIN)/15),length=n),ncol=1) 

x2<-cos(x20) 

#x2<-sin(4*x20) 

#x1<-matrix(sort(runif(n,MIN,MAX)),ncol=1) 

#x20<-matrix(rep(seq(MIN,MAX,by=(MAX-MIN)/23),length=n),ncol=1) 

#x2<-x20 

 

error<- matrix(rnorm(n*ysim,mean=0,sd=stdev),ysim,n,byrow=T) 

for (L in 1:length(thetaL)){     #calculate for different theta 

      theta<-thetaL[L] 

      #cat("theta is \n") 

      lof1<-5+3*x1+theta*x2 

     ############################################### 
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     # The following code used for Neill's method 

     ############################################### 

      LOF1<- matrix(lof1,ysim,n,byrow=T) 

      X_N<- cbind(onesn,x1) 

      xperm_N<-order(x1) 

      Y1<- LOF1+error 

      Clist<- lapply(as.list(1:length(Nsize)),function(i,xperm_N,Nsize) 

              {Ci<- vector("list",1) 

                N<- Nsize[i] 

                Blk_N<- floor(length(xperm_N)/N) 

                start1<- 1 

 

                if(1<=Blk_N) 

                    {for(j in 1:Blk_N) 

                       {mj<- ((j-1)*N)+start1 

                        Ci[[length(Ci)+1]]<- xperm_N[mj:(mj+N-1)]} 

                    } 

               resid<- length(xperm_N)-(Blk_N*N) 

               if(resid>0) 

              #exclude singletons    if(resid>1) 

                    {start2<- (Blk_N*N)+start1 

                     Ci[[length(Ci)+1]]<- xperm_N[start2:length(xperm_N)]} 

               Ci[[1]]<- NULL 

               return(Ci) 

                },xperm_N,Nsize) 

 

    NC<- length(Clist) 

 

    Cmatlist<- lapply(Clist,function(C,n) 

          {Cmat<- CZmat(C,n) 

           return(Cmat) 
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           },n) 

   MBlist<- lapply(Cmatlist,function(Cmat,X_N) 

          {MB<- ppo(Cmat)-ppo(ppo(Cmat)%*%X_N) 

           return(MB) 

           },X_N) 

   dfBlist<- lapply(MBlist,function(MB) 

         {dfB<- basis(MB) 

          return(dfB) 

          }) 

   MXperp<- diag(n)-ppo(X_N) 

   dimCXperp<- basis(MXperp) 

 

   MWSlist<- lapply(MBlist,function(MB,MXperp) 

         {MWS<- MXperp-MB 

           return(MWS) 

          },MXperp) 

 

   dfWSlist<- lapply(as.list(1:NC),function(j,dfBlist,dimCXperp) 

        {dfWS<- dimCXperp - dfBlist[[j]] 

 

         return(dfWS) 

         },dfBlist,dimCXperp) 

 

   an<- quantnorep(n,ansim,NC,alpha,MBlist,MWSlist,dfBlist,dfWSlist) 

 

   Tvals1<- apply(Y1,1,function(y,NC,MBlist,MWSlist,dfBlist,dfWSlist,an) 

           { 

             bestcomp<- lapply(as.list(1:NC),function(j,y,an,MBlist,MWSlist,dfBlist,dfWSlist) 

                   { 

                     MSB<- (sum((MBlist[[j]]%*%y)^2))/dfBlist[[j]] 

                     MSWS<- (sum((MWSlist[[j]]%*%y)^2))/dfWSlist[[j]] 
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              FB<- MSB/MSWS 

                     FWS<- 1/FB 

 

                     Bcpt<- qf(1-an,dfBlist[[j]],dfWSlist[[j]]) 

                    WScpt<- qf(1-an,dfWSlist[[j]],dfBlist[[j]]) 

 

                    diffB<- FB-as.numeric(Bcpt) 

                    diffWS<- FWS-as.numeric(WScpt) 

 

                    best<- max(diffB,diffWS) 

                    return(best) 

                   },y,an,MBlist,MWSlist,dfBlist,dfWSlist) 

 

            Tval1<- max(unlist(bestcomp)) 

            return(Tval1) 

           },NC,MBlist,MWSlist,dfBlist,dfWSlist,an) 

 

   nreject1_N<- Tvals1 > 0 

   simpower1_N<- mean(nreject1_N) 

   cat("T1 simulated power based on Neill's test  is \n") 

   print(simpower1_N) 

 

   #cat("T2 simulated power\n") 

   #print(simpower2) 

   #Tstats<- summary(Tvals) 

   #cat("T statistic summary\n") 

   #print(Tstats) 

   ################################# 

   ## The following code is used to simulate for yang's overall test 

   ## use the above x1, x2 and error matrix 

   ## for the same theta, try different number of clusters  
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   #################################### 

   cat(" Simpower based on Yang's test is \n") 

   cat("the numbers of clusters for Yang's method are\n") 

   print(cluster_n) 

   x1_Y<-x1                                            # x1 used for Yang's method 

   x12_Y<-x1_Y**2 

   Y_Y<-lof1       # Y used for Yang's method 

   for (cl in 1:length(cluster_n)){ 

         Blk_Y<-cluster_n[cl] 

        #partition the dataset x1 into Blk_Y clusters 

 cluster<-cutree(hclust(dist(x1),method="complete"),Blk_Y) 

 

     ############################## 

     # predetermine the size for each cluster 

     # and get  Z matrix and corresponding Xmatrix, they have the same rows and collumns  

     ############################## 

     xperm_Y<-rep(1:n) 

     Blksizelist<-vector("list",1) 

     for (i in 1:Blk_Y) { 

          Blksizelist[length(Blksizelist)+1]<-sum(cluster==i)} 

          Blksizelist[1]<-NULL 

          Blksize<-unlist(Blksizelist) 

          C_Y<- vector("list",1) 

          N_Y<-0 

          for (i in 1:length(Blksize)){ 

                if(i==1) {N_Y=Blksize[i]} 

                if(i>1){N_Y=N_Y+Blksize[i]} 

               start<-N_Y-Blksize[i]+1 

               C_Y[[length(C_Y)+1]]<-xperm_Y[start:N_Y] 

          } 

           C_Y[1]<- NULL 
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           Cmat_Y<- CZmat(C_Y,n) 

           Xmat_Y<-CXmat(C_Y,x1_Y,n) 

 

           X_Y<-cbind(onesn,x1_Y) 

 

           ########################### 

           ## Get XW matrix 

           ########################### 

           XW0<-lapply(as.list(1:length(Blksize)),function(i,Cmat_Y,Xmat_Y)    

                {   

            C1_Y<-matrix(Cmat_Y[,i],ncol=1) 

            X1_Y<-matrix(Xmat_Y[,i],ncol=1) 

            X12_Y<-X1_Y**2 

            Wi<-cbind(C1_Y,X1_Y,X12_Y) 

             return(Wi)},Cmat_Y,Xmat_Y) 

 

          XW1<-matrix(unlist(XW0),n, 3*length(Blksize)) 

          XW<-cbind(X_Y,XW1) 

        ################################## 

 # Use loop to calculate the nubmer of detecting the lack of fit  

 # in ysim times 

 ################################# 

 nreject_Y<-matrix(100) 

         for (k in 1:ysim){ 

              error_Y<- matrix(unlist(error[k,]),nrow=n) 

             Y_Ytrue<- Y_Y+error_Y 

             ############ 

             #   get ssex and dfssex 

             ############# 

            dfssex<-basis( diag(n)-ppo(X_Y)) 

            ssex<-t(Y_Ytrue)%*%(diag(n)-ppo(X_Y))%*%Y_Ytrue 
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            dfssexw<-basis(diag(n)-ppo(XW)) 

            ssexw<-t(Y_Ytrue)%*%(diag(n)-ppo(XW))%*%Y_Ytrue 

 

            ssnum<-ssex-ssexw 

            dfnum<-dfssex-dfssexw 

            msnum<-ssnum/dfnum 

            ssden<-ssexw 

            dfden<-dfssexw 

            msden<-ssden/dfden 

            F<-msnum/msden 

            Fc<-qf(1-alpha,dfnum,dfden) 

            nreject_Y[k]<-F>Fc 

           } 

     # ############### get test power 

     simpower_Y<-mean(nreject_Y) 

     #cat(" SSnum is\n ") 

     #print(ssnum) 

     #cat("SSden is\n") 

     #print(ssden) 

     #cat("dfnum is \n") 

     #print(dfnum) 

     #cat("dfden is \n") 

     #print(dfden) 

     #cat("F is \n") 

     #print(F) 

     print(simpower_Y) 

     }} 
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Appendix A-4 R code for the common function CXmat 
CXmat<- function(cl,x,n) 

       {CX<- matrix(rep(0,n*length(cl)),ncol=length(cl)) 

 

        for(j in 1:length(cl)) 

               {cverts<- matrix(rep(0,n),ncol=1) 

                vertj<- cl[[j]] 

                       for(k in 1:length(vertj)) 

                               {cverts[vertj[k],]<- x1[vertj[k]]} 

                CX[,j]<- cverts} 

        return(CX)} 

Appendix A-5 R code for the common function CZmat 
CZmat<- function(cl,n) 

       {CZ<- matrix(rep(0,n*length(cl)),ncol=length(cl)) 

 

        for(j in 1:length(cl)) 

               {cverts<- matrix(rep(0,n),ncol=1) 

                vertj<- cl[[j]] 

                       for(k in 1:length(vertj)) 

                               {cverts[vertj[k],]<- 1} 

                CZ[,j]<- cverts} 

        return(CZ)} 

Appendix A-6 R code for the common function basis 
basis<- function(A) 

{ 

 B<- A%*%t(A) 

 m<- nrow(B) 

 e<- eigen(B,symmetric=T) 

 vals<- e$values 
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 vals<- unlist(vals) 

 #cat("eigenvalues\n") 

 #print(vals) 

 vecs<- e$vectors 

 nzvals<- vals[abs(vals)>1.0e-6] 

 rankA<- length(nzvals) 

 #basis<- vecs[1:m,1:k] 

 #return(basis) 

 return(rankA) 

} 

Appendix A-7 R code for the common function ppo 
require(MASS) 

ppo<- function(C) 

{ 

 M<- C%*%ginv(t(C)%*%C)%*%t(C) 

 return(M) 

} 

Appendix A-8 R code for the common function quantnorep 
 

quantnorep<- function(n,ansim,NC,alpha,Mnumlist,Mdenlist,dfnumlist,dfdenlist) 

        { 

        error<- matrix(rnorm(n*ansim,mean=0,sd=1),ansim,n,byrow=T)     

         infs<- apply(error,1,function(e,NC,Mnumlist,Mdenlist,dfnumlist,dfdenlist) 

                 { 

           Fpvals<- lapply(as.list(1:NC),function(j,e,Mnumlist,Mdenlist,dfnumlist,dfdenlist) 

                             { 

                              MSnum<- (sum((Mnumlist[[j]]%*%e)^2))/dfnumlist[[j]] 

                              MSden<- (sum((Mdenlist[[j]]%*%e)^2))/dfdenlist[[j]] 
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                              F<- MSnum/MSden 

                              Fpval<- 1-pf(F,dfnumlist[[j]],dfdenlist[[j]]) 

                              return(Fpval) 

                                          },e,Mnumlist,Mdenlist,dfnumlist,dfdenlist) 

                 Fcompvals<- 1-unlist(Fpvals) 

                 pvals<- c(unlist(Fpvals),Fcompvals) 

 

                 inf<- min(pvals) 

                 return(inf) 

                           },NC,Mnumlist,Mdenlist,dfnumlist,dfdenlist) 

             an<- quantile(infs,alpha) 

             return(an) 

                       } 

 

 


