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INTRODUCTION

Essentially the terra "Monte Carlo Method" refers to any computational

technique which makes use of stochastic processes. Situations which lend

themselves to such techniques tend to have a probabilistic background.

However, the solution of many problems of a physical nature has been

found to be easily adaptable to this approach. In most cases where a

Monte Carlo method is used, there are analytic techniques which could

give the solution. The reason for not using the analytic technique is

usually because of the cumbersomeness of this more standard method for

the particular case at hand.

In this paper many references are made to random numbers, randomness,

and similar concepts. From a practical standpoint, there is no such

thing as a random number. That is, a sequence of numbers, although

referred to as random, will only appear to have random characteristics.

By definition, a sequence of numbers is random if each number in the

sequence is statistically independent from every other number in the

sequence, and all possible distinct values in the domain of the sequence

are distributed identically. To get a sequence which satisfies this

definition is impossible, from a practical standpoint. This makes it

necessary to devise techniques which give random-appearing sequences,

so-called "pseudo-random" sequences.

In Section II of this paper, some methods for developing such

sequences are given and compared. Methods of testing sequences are

also given. The term random number, as used in this paper, refers to

a generated number from the uniform or rectangular distribution.



Lehmer is quoted in £3J as describing a pseudo-random sequence as

"a vague notion embodying the idea of a sequence in which each term

is unpredictable to the uninitiated and whose digits pass a certain

number of tests, traditional to statisticians and depending somewhat

on the uses to which the sequence is to be put. " This is about as

concise a definition as one can find in the literature on this topic.

Of the various methods for generation of random sequences, the

most interesting are those in the section called Ergodic Theorems.

The name ergodic has been applied "to those mechanical systems which

have the property that each particular motion, when continued indefinitely,

passes through every configuration and state of motion of the system

which is compatible with the value of the total energy", page 2182

in £93 • This idea is not unlike the idea of a random sequence, which

is probably why Weyl used the term, in [3]

.

Section III, on sampling, contains methods of transforming the

uniform distribution into some other distribution which may be of use

in a specialized instance. Other distributions may be needed often in

quadrature applications, random walks, simulation situations, sampling

studies, etc. Several general methods are listed in addition to a few

special cases which are intended to indicate a possible approach to

be taken when an obscure distribution occurs in practice.

Quadrature techniques are discussed in Section IV. This is the

classical application of Monte Carlo methods dating back to Buffon and

others, page 2381 in £9]. The solution of partial differential

equations, discussed in Section V, is in one sense a type of quadrature.

The approach given introduces the ideas of random walks. A random walk



shall be defined as the path described by a particle when moving

between two points of a grid in a finite number of steps. Random

walks are also used in connection with simulation of small particle

transmission, which has widespread usage in the area of nuclear physics.

Again it must be mentioned that not all the applications of

Monte Carlo methods are covered in this paper. The only applications

which are included are sampling, quadrature, and random walks. Actually

these are quite inter-related in that the distributions listed in the

section on sampling could be of interest in the uses of Monte Carlo

quadrature to suggest factorizations of integrands and when a random

walk happens to have probabilities from some non-uniform distribution.

II. Generation of Random Sequences

A. Methods of Generation

1. Electronic noise machines

These devices are, figuratively speaking, electronic roulette

wheels. They are probably the best possible devices for generating

random numbers. Their main drawbacks are their cost and lack of

adaptability.

The Rand tables £l
1J

were generated by an electronic device by

passing random frequency pulses through a binary counter. The resulting

binary numbers were converted to decimal numbers and punched out on

Hollerith cards. The table was then transformed by adding corresponding

digits on adjacent punched cards modulo ten. This transformation

improved the uniformity of the distribution of the digits. The original

production of digits was tested statistically and the machine refined

until the numbers it produced were considered satisfactory.



Another device of a similar nature is ERNIE
J3J.

ERNIE is a

random digit generator used by the British Post Office for the sole

purpose of determining numbers for a lottery. It is not part of a

computer, however, and only produces digits at a rate of about fifty

per second.

The maintenance of these devices seems to be an important factor

in their adoption. The machine used for the Rand tables was said to

"run down" after repeated usage, that is, give statistically biased

numbers even though periodic electronic checks seemed to indicate

that it was in order. This fact indicates that continual tests must

be made on the numbers and that electronic adjustments must be

effected when necessary.

Since the development of efficient and reliable arithmetic

generators, the use of electronic generators has lapsed. The present

arithmetic generators are at least sufficient for most purposes, but

it is quite doubtful that they can ever achieve the random qualities

of the electronic generators.

2. Ergodic theorems

*

Work has been done examining the randomness of the digits in

the decimal expansions of tr* and e and various functions of them [3]

.

For example, Weyl in 191 6 proved many ergodic theorems when he showed

that the fractions ffn2 - [fl'n
2
] , for n = 1, 2, 3t ... 1 are uniformly

distributed between zero and one (where [x] is the so-called "bracket

function", the largest integer contained in x). Some work has been

published in this area by others. The obvious drawback to these

procedures is the cumbersome computational aspect.



3. Congruontial methods

Congruential methods are arithmetical procedures which are used to

manufacture a sequence of numbers which appear random. Obviously these

procedures are completely deterministic, yet they produce numbers which

can be used as though they were in fact truly random. The main con-

sideration when developing those methods are periodicity, the occurrence

of runs, and possible degeneration of the sequence. For purposes of this

paper a run is the distance between the successive occurrences of the

same value in the sequence.

a. Multiplicative Congruential methods

Multiplicative congruential methods of generation use a form as

follows: un+-|
= unX + C (mod m) where X is a constant multiplier, m is

the size of the word (an integral power of 10), un is the desired random

number from a rectangular distribution such that 4t vl^ * 1 , and C is

an additive constant. As an example, if one picks the following

starting values: ra = 100, X = 11, C = 7, and Uq = 13; one would have:

un+^
= un-11 +7 (mod 100). So the first few terms of the sequence

would be:: u
Q = 13, u.j = 50, Ug = 57t *u = >* • • • • ^e special

case where C = gives rise to the power residue method of generation.

The primary concern of this section is to develop the characteristics

of these methods from the standpoint of number theory. By judicious

choice of parameters, the sequences which are produced have a "more

random appearance". From a statistical investigation of the produced

sequence it turns out that as long as the sequences do not repeat too

readily, the results are satisfactorily random appearing. It is easily



seen that the sequence will repeat at least after m numbers, as there

will be only m possible values of un (mod m). For the power residue

method the sequence repeats before the full period, so additional

restrictions must be placed upon the parameters.

For the case of C not zero, a theorem giving conditions on the

parameters to insure a full period is given in [3]. The conditions are:

1 . ) C must be relatively prime to m, thus C cannot be a multiple of 2

or 5 as m is a power of 10. 2.) X = 1 (mod p), where p is a prime

factor of m; or X = 1 (mod k) if four is a factor of m.

For the case of C = 0, conditions are given in (%] for the choice

of parameters which maximize the period. The starting values for u

must not be a multiple of 2 or 5 and must be k digits in length, where

ffl 10 . For k * 3 these conditions will yield 5 m«10"2 terms before

repeating. The constant multiplier should be of the form x = 200 t + r,

where t is any integer and plus or minus r represents an element from

one of the 32 residue classes modulo 200. The values for r are as

follows: 3. 11. 13, 19, 21, 27, 29, 37, 53, 59, 61 , 67, 69, 77, 83, 91.

It has usually been found to be best to choose an X whose value is

close to ]/HT .

Once having a sequence of ^ a sequence of d-digit random numbers

from the rectangular distribution over f),l) is obtained by discarding

the lower order digits of each term of the sequence of u. These

remaining higher order digits will have the greatest period of any of

the digits in each term.



Prom this discussion it is seen that the same period can be

obtained by using the power residue method as from the regular

multiplicative method only at the expense of using a larger value of m.

If one were generating this sequence on a digital computer with fixed

word length, this could be an important consideration.

The primary difference in the properties of the sequences obtained

from the two given methods is the statistical behavior of the terms.

Both methods are generally quite good; however, the regular multiplicative

method seems to be completely unacceptable for some particular choices

of parameters. There are only a very few cases of this [3], but there

are no such exceptional cases for the power residue method.

b. Mid-square method

The mid-square method of generating a sequence of random rectangular

deviates was developed by von Neumann and Metropolis about 19^-6. These

men were the first to consider the idea of developing an arithmetic

generator, [3] ; [*i] ; articles by Taussky, Todd, and Metropolis in [6]

;

articles by Brown, Forsythe, and Hammer in [8], The procedure is to

take for a starting value an m-digit number, square it, and take for

the next term in the sequence, the middle m digits of the 2m-digit

product.

This method is very difficult to analyze and has not always produced

satisfactory results. The period must be found by trial using the

particular starting value. The procedure generally does not return to

the starting value to repeat. This method of calculation is a trifle

cumbersome to use and thus computing is relatively slow. This procedure

was used successfully at Los Alamos for many years to obtain sequences of

about 750,000 terms fa?.
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c. Additive

The additive congruential methods of generation, often referred to

as Fibonacci series, page 718 in [9]. have as a general form: u^ =

u + u , (mod m). The use of this procedure is much quicker for

computational purposes and has a long period but is statistically

unsound. It is essentially a power residue method with the constant

multiplier, X, taken to be equal to (1 + /5)/2, which is too small

for good results [4J. Many variations of this procedure have been

developed, but they cause the use of this procedure to lose its

advantage of speed of calculation. Many other types of additive

generators have been developed and considered in recent years f3J.

B. Tests for Randomness

There are two basic classifications of statistical tests for

randomness: runs and frequency. Run tests are primarily concerned

with the independence of the successive numbers. Frequency tests

determine whether the numbers actually fit the proper distribution.

All of these tests assume the sequences are independent and uniformly

distributed in order to arrive at expected frequencies.

Frequency tests are the easiest to use. One generates a series

of large blocks of digits and counts the number of occurrences of each

digit. Then one applies a chi-square "goodness-of-fit" test [3] on

the block of digits to get a probability statement on the likeliness

of such a block. It is advisable to apply these tests on blocks which

are not too large and then combine blocks and apply the tests on the



larger blocks. In this manner one would have a measure of the over-all

periodicity. One also could check the frequency of odd and even digits,

which are assumed to be binomially distributed.

.
Run tests include poker tests and serial tests. Poker tests

consider sets of five digits and consider the probable occurrence of

various arrangements of digits in the particular chosen sets. As

examples of such five digit sets to consider: busts, abcde; pairs,

aabcd; two pairs, aabbc; three of a kind, aaabc; full house, aaabb;

four of a kind, aaaab; and five of a kind, aaaaa. The Rand Corporation

C11J applied this technique to blocks of 1000 poker hands by calculating

the expected frequency and running a chi-square "goodness-of-fit" test

against the actual observed frequencies. As with the frequency tests,

the poker tests can be applied to a seemingly endless variety of blocks

of digits.

Serial tests investigate the order of the digits in the sequences

generated. For example, one could check the frequencies with which each

digit followed a certain digit and test whether the orderings were all

equally likely. Again a chi-square "goodness-of-fit" test would apply.

Also one could count the number of runs of various lengths which occurred.

A certain number of runs would be expected to occur and this could be

compared to how many actually occurred.

Another approach to testing relationships among the elements of the

sequence is to use the serial correlation coefficient
[3J.

A measure of

serial correlation is essentially a correlation coefficient calculated

between two sequences of numbers, where the i th element in the first

sequence is the (i+k) th element in the second sequence. The first

sequence is then said to have a lag of k. The serial correlation
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coefficient will therefore measure the relationship between digits which

are k terms apart. This coefficient is especially useful when using

deterministic generators, as the independence of the elements implies

a correlation zero. It will, therefore, be a measure of how "good" the

starting values of the parameters are, where "good" refers to the

appearance of the generated sequence with respect to randomness.

This by no means exhausts the possible list of tests for randomness.

If the numbers are to be used for a specific purpose, some tests may be

more meaningful than others. This situation has caused the designation

of "pseudo-random sequence" by Lehmer which was referred to in the

introduction of this paper.

III. Sampling Techniques

A. General Cases

1 . Table look-up

The most straight-forward and the easiest approach to arriving at

a random-sampling distribution is to prepare a table of values and randomly

pick a set of values from the table. To set up the table, first list

the values of F(X), the cumulative distribution function under consideration,

taken at a constant increment of F(X) where the range of F(X) has been

standardized to the unit interval. The table will then be taken to

contain the values of X corresponding to the values of F(X) in the list.

The degree of precision for this method is determined by the value of k,

where there are 10 items in the table.
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It is thus most convenient to use 10~* for the increment on F(X)

and then interpret a k-digit uniform deviate as the location in the

table of a particular randomly drawn value of X. Ey taking advantage

of symmetry and other peculiarities of the distribution under study,

one can decrease the size of the table necessary for the sampling. In

many instances this reduction is an important consideration*

The use of this method, in reference to applications on digital

computers, is usually faster than other methods of sampling. That is

to say, it would take less computer time per random value of X than

most other methods.

The extension of the use of this method to three or more dimensions

requires too many values for a reasonable table. This is due to the

fact that the number of tabled values increases exponentially as the

number of dimensions increases linearly.

2. Modified table look-up

Marsaglia £5 J recommends a modification of the table look-up

method given in the preceding section. The use of this modification is

generally slower per average variate but requires a much smaller table.

The method will be described by giving an example so as to alleviate

some notational problems. This example has been taken directly from [5]

with supplementary remarks inserted for added clarity.

It is assumed that a source of uniform deviates (0,1) is available.

Suppose one wishes to sample from the distribution of a discrete variable

whose distribution is as follows:
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Value of X Probability of such an X

a .023
b .038

c .074

d .103

e .148

f .206

g .1^
h .101

i .093

j .037
k .026

ra .011

Consider setting up a table of values of X as follows:

n X n X n X

d

1 e

2 f

3 f

k g

5 h
6 a

7 a

8 b

9 b

10 b

11 c

12 G

13 C

14 c

15 c

16 c

17 c

18 e

19 G

20 e

21 e

22

23 2
24 g
25 S

26 i

27 i

28 i

29 i

30 i

31 i

32 i

33 i

34 i

35 3

36 j

37 j

38 k

39 k

40 ... ra

41 a

42 a

^3 a

44 b

45 b
46 b

47 b
48 b

49 b

50 b

51 b

52 c

53 G

54 C

55 C

56 d

57 d
58 d

59 e

60 e

61 e

62 8

63 8

64 3

65 e

66 e

67 f
68 f

69 f

70 1

71 f

72 f

73 h

7^ i

75 i

76 i

77 J

73 j

79 3

30 3

81 3

82 3

83 3

84 k

85 k

86 k

87 k

88 k

89 k

90 m
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Note that the first six X's in the table are the values which have

a probability of occurrence greater than .099. In other words, if the

given probabilities are truncated after the first decimal digit there

results:

Value of X Probability of such an X

d .1

e .1

f .2

g .1

h .1

These correspond to the first six values in the table.

In a similar manner for the next thirty-five items in the table

there are values of X which would occur if one considered only the second

digits of the given probabilities as probabilities of occurrence. These

values of X are placed in the table with the frequency associated with

their respective second digits. Likewise, the last fifty items in the

table are the values of X associated with the frequency of the third

digit of the given probabilities.

This procedure, once the table is properly set up, requires one to

acquire a three-digit uniform deviate, called d-jcLjdo. If d
1
£ 6, pick

the value of X in location n = d
1

. If 60 £ d. d
2

*- 95 » pick the value

of X in location n = d^-^O-o). If 950 £ d^dgd^, pick the value of

X in location n = d-jcUdo- (950-35-6). Note that six is the sum of the

first digits in the given probabilities and thirty-five is the sum of

the second digits in the given probabilities.

Thus the sum of all the individual digits in the given probabilities

is the number of values needed for the table, and is not one thousand,

as would be the case when using the method of the preceding section.



The use of this method, although using far fewer values in the table,

gives rise to a slower procedure than the previous method.

It should be remarked that this: method can be used for some

continuous distributions if one can be satisfied with using discrete

points for the values of X. This is usually the case in any applied

situation anyway.

3 . Inverse

In a few instances it is possible to determine analytically the

actual inverse of the distribution function, as an example Y = F(X) =

X
n

, X = ^VyT The sampling problem is then reduced to the evaluation of

a given function for points randomly drawn from the domain of definition.

Too often when the inverse can be found, it is a function which

is not in a form which can be conveniently evaluated. It may then be

easier to use one of the given general methods or to try to find a

special technique to fit the situation.

k. Distribution function as an integral

Another general method which is of interest makes use of the fact

that the distribution function, Y = F(X), is the integral of the density

function, f(X). It requires the use of two uniform deviates, one for

the X axis and one for the Y axis. The X deviate is taken uniformly

from the interval between the limits of definition of the function. The

Y deviate is taken uniformly from the interval from zero to the upper

bound on f (X).
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The procedure is as follows: pick an X and a Y; compute f(X);

if f(X) £ Y, accept X; if f(X)>Y, reject X and pick a new pair of

uniform deviates and repeat the process. The accepted values of X

will have the desired distribution [1J

.

This procedure is readily extended to a multi-dimensional situation.

This is done simply by picking a uniform deviate for each dimension, thus

giving a set of several X's and one Y.

The main disadvantage of this method is that it "wastes" or does

not use so many of the required uniform deviates. Usually this is not

of much significance as uniform deviates are readily available.

B. Special Cases

1 . Normal Distribution

a. The central limit theorem

One of the simplest techniques for generating normal deviates makes

use of The Central Limit Theorem from probability theory, page 257 in [l3j.

This theorem states that the distribution of the mean of independent

deviates from any distribution will approach the normal distribution as

the sample size becomes large. Thus using Y = (S - j) V \Zn, where S

is the mean of n uniform deviates, one can say that the distribution of

Y will approximate a normal distribution with, a mean of zero and a

variance of one.

In regard to the actual distribution of Y, the mean is zero and

the variance is one. Unfortunately the higher even moments of Y are

dependent upon n. The central moments for the normal are^i = for

k = 1, 3, 5. 7, ... and^
2k

=
1 *3 # 5'... • (2k-1 ) for k = 1, 2, 3, ... .
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The higher odd central moments of Y are zero. The fourth central

,
48 18

moment of Y is 3 - 6/5n and the sixth central moment of Y is 15 + y^? " *jj.

The other higher even moments become increasingly dependent upon n. This

factor results in the need for n to be larger for a satisfactory approxi-

mation.

For studies which may be sensitive with regard to higher moments,

this method is not desirable. The use of this approach will, therefore,

depend upon the problem.

In [k] the authors imply that n = 6 will be completely satisfactory.

However, Muller £?1 discourages the use of this method altogether. Its

primary advantage is its ease of computation.

Kuller |*7j shows that for values within plus or minus three standard

deviations of the mean, the approximated normal deviates are fairly good.

However for values beyond these limits, the approximation is extremely-

poor.

b. Hasting ! s approximation

Easting's [2J
has developed a rational approximation for random

normal deviates which is very reliable for all values of these deviates.

However, the use of this method is not as fast as the use of most other

methods. The procedure is as follows: pick values of u which are

uniformly distributed on the interval (0,.5j , compute r = -2 In u, evaluate

X = r -
a
o + a

1 r + ^r2

1 + b^ r + b
2r

2 + b2r3



17

whore a
Q

= 2.515 517 b = 1.^32 788

a
1

= 0.802 853 b
2

= 0.189 269

a
2
= 0.010 328 b =\ 0.001 308

By randomly assigning a plus or minus sign to the computed X's, one will

get approximately normally distributed values.

Muller L7J reports that this method is exceptionally reliable but

much too cumbersome for ease of computation.

c. Teichroew method

An approximation method for the normal distribution was developed

by Teichroew for his doctoral dissertation (see [7] and [12j ). His

method may b© called "an approximation by curve fitting."

The procedure is as follows: find a value Y = m(S) such that

} / e-Vz dt = / f -;(t) dt , where S is a sum of 1V^ Zoo /o

uniform deviates. Now f .(S) is the density function of S. One must

require that Sj 4 S Z Su . These bounds are determined by the accuracy

required by the problem. An interpolating polynomial is to be determined

to approximate Y = m(S). A Chebycheff polynomial of degree (k-1 ) is

fitted so that it coincides with m(S) at the points whose abscissas

are the k zeros of the Chebycheff polynomial of degree k. If j is

chosen to be equal to twelve, for example, this method gives good results.

Since £ S £. 12, one picks SL = 2 and Su
= 10. This will exclude only

0.002 percent of the desired distribution and will simplify the

approximation greatly. On setting r = (S-6)/4, there results

9
X = y d2j+i

T
2j+1 ^r )' where Ti(r ) is the i th Chebycheff polynomial.

j=0
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The d. are the coefficients which arise in the approximation. In

practice this series can be truncated at Tg(r) due to the negligible

coefficients of the higher order terras. This simplified to:

X = a..r + a^r^ + a<-r5 + a^r' + agr" ,

where a
1
= 3.9^-9 846 138

a
3
=0.252 408 ?84

a^ = 0.076 542 912

a
?
= 0.008 355 963

a
9
=0.029 899 7?6 \

Thus this polynomial transforms the set of r = (S-6)/^, where S

is the sum of twelve uniform deviates, into a set of X which are

approximately normally distributed with a mean of zero and a variance

of one.

2. Chi-square

Teichroew and Sitgreaves [12J mention a method for sampling from a

chi-square distribution. The procedure is to compute a set of Y =

k
-2 In ( // li) where the X; are uniform deviates from [0,1). These Y

i=1

will have a chi-square distribution with 2k degrees of freedom.

It is shown on page 1 89 of [13J
that this function is an exact

chi-aquare. This seems to show that if one is interested in doing some

sampling from a particular distribution, it would be worthwhile to

browse through a good book on mathematical statistics.
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3. Distribution function of Xn

If one should want to sample from a distribution of the form,

F(X) = X
n

, one would need to compute the nth root of a uniform [0,1)

deviate to get the desired X value. One finds on page 236 in
[13J

that

the given distribution function is the distribution function of the

maximum value of n uniform deviates. Thus instead of computing an

nth root, one only needs to generate n uniform deviates and pick the

largest.

The use of this procedure is usually much quicker than computing

the nth root, although one might consider the disadvantage of dis-

carding of the (n-1 ) uniform deviates each time.

IV. Quadrature Techniques

Quadrature by Monte Carlo techniques goes back at least to the

eighteenth century when Buffon considered his famous needle problem,

page 2381 f9J. The problem is to consider a series of equidistant

parallel lines and a straight wire which is shorter than the distance

between the lines. If the wire is tossed "at random" upon the lines,

it will either cross a line or it will lie between two lines. Buffon

and Laplace proved that, under repeated trials, the fraction of trials

in which a line is crossed will approach the ratio of twice the length

of the wire to the circumference of a circle with diameter equal to the

distance between two of the lines.

This fact was used in the Monte Carlo determination of the value

of fT". The method was used to achieve surprisingly good results.

Actually the validity of the method was not believed until the experiment

had been repeated so often that "there could never have been any doubt

about it." [9].
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»

The sampling method in k of IH A which considered the distribution

function as an integral, indicates one approach to Monte Carlo quadrature

procedures. One could randomly pick values of X which were uniformly

distributed over the interval of definition of X and calculate the

integrand, f(X). If the calculated value of f(X) was less than a value

of I which had been randomly picked from the range of values for I = f(X),

the X would be accepted. If f (X) had been greater than Y, the value of

X would have been rejected. The fraction of acceptances from the total

number of trials, when multiplied by the range of Y and the interval of

X, would approximate the value of the integral of f (X) over the interval

of X.

This method has several definite disadvantages. One of them is

the non-use of the required random numbers. The computation time may

also be quite lengthy. If the function happens to have a long interval

of definition or is unbounded, or has a large bound, this method will

not be satisfactory.

A more desirable approach takes advantage of the statistical theory

of expectations
[13J.

Consider the integralJ g(X) f(X) dx, where

the integrand has been arbitrarily factored. If one obtains N values

of X which have a distribution of f (X) on [a,b] , an estimate of the

value of the integral can be obtained by taking the arithmetic mean of

the values of g(X). The error of this method is of the order of (N~ 2
)i

which means that for one more decimal place of accuracy one must use

one hundred times the number of values of X, that is 100 N instead of

N values.
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For multiple quadrature one proceeds in the same manner. However,

if there are k dimensions, then k random numbers must be picked so as

to have a distribution of f(X) for the calculation of each g(X
1

, Xg, .... X^).

In order to increase the accuracy of these procedures, one could

partition the interval of X and concentrate on the more important parts.

Thus if the function is 'veil-behaved" in some parts of the domain of

definition, one would not need to do much sampling there. For sections

of the domain in which the function is not as nicely behaved, one should

do more extensive sampling. This technique is called importance, or

stratified, sampling.

Most integrals which are easily adapted to Monte Carlo quadrature

arise from a probabilistic background. It is hard to say whether this

is coincidental or symptomatic, Kahn in [ic]. Too often the reason for

using a Monte Carlo approach to quadrature occurs when the more common

techniques would require the evaluation of the function at a large

number of points. For instance, with the trapezoidal rule and m intervals

each in n dimensions, one must compute mn values of the function. With

very many intervals the accuracy of this approach is often surpassed by

a Monte Carlo approach with the calculation of far fewer points, when

n is large.

V. Partial Differential Equations

Consider a rectangular grid with coordinates (x,y) and a particle

which is restricted in movement between coordinate points of the grid.

That is, for each step this particle can move in any direction only

between adjacent points of the grid. A random walk shall be defined as

the path described by a particle when moving between two points in the

grid in a finite number of steps. Thus if the direction of movement for
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each step is arbitrary, the probability of movement to an adjacent

position in a particular direction is one-fourth. Hence, there exist

several possible paths, each equally likely.

Consider the probability that a particle will be at position (i,j)

after S steps from position (0,0) and call this probability V(i, j,S).

This probability must satisfy the following difference equation;

V(i,j,S-M) = i{v(i+1,j,S) + V(i-1,j,S) + V(i,j+1,S) + V(i,j-1,S)} .

This is due to the fact that after S steps, the particle must have been

at one of the four positions adjacent to position (i,j). This equation

can be written as follows:

V(i,j,S+l) - V(i,j,S) =

i{[v(i+1,j,S) - 2V(i,j,S) + V(i-1,j,S)j

+[V(i,j+1,S) - 2V(i,j,S) + V(i,j-1,S)]|.

This form relates the first difference in probabilities with respect to

time with the second differences with respect to position. Thus it is

similar in form to the following partial differential equation, the

3 V ,

*^ VL This similarity suggests thatheat equation: S V _ v
•at i^# ' W

a limiting process could lead to a formal relationship.

For the case where -~£ = 0, this equation becomes Laplace's

equation which occurs often in boundary value problems. It is useful

to be able to solve for a solution to Laplace's equation at a point

interior to the given boundary rather than to find an analytic expression

for the solution and evaluate it at the particular point, particularly

since the latter cannot always be done.
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A procedure for finding the solution at a point subject to given

boundary values is as follows. Set up a rectangular grid over a region

containing the boundary. Construct a sequence of random walks from the

point of interest (x^y^) using random numbers to determine the choice

of direction. Terminate each random walk when it crosses the boundary

and note the value of the function at this point on the boundary. The

walks will always cross the boundary in that the probability of remaining

in the region forever is zero. The average of these terminating values

will be the value assigned to the function at (x^y^). The accuracy

of this estimate obviously depends upon the number of random walks

considered. Accuracy can also be improved by diminishing the mesh

size of the grid.

Although this procedure has been outlined for two dimensions only,

it can be readily extended to higher dimensional spaces. This modification

merely increases the complexity of the grid and increases the number of

possible moves at each step of the random walk.

This procedure is adaptable to many second order partial differential

equations of the elliptic type, Klahn in M
OJ

. Consider an equation of

+
3~

the following form: F(X,Y) = B^ $-1 + 2B1? _2LX + B97 ^2V + 2A, 3V

2A2 •—— . If the mesh size of the grid is h, the following differences

will be used to represent the partial derivatives:

[VCP,) - V(P
Q )] /hfor|!

[V(P2 ) - V(P )J /h for M
(VCP-j) - 2V(P

Q
) + V(P

3
)] /h

2
for -|?g

(y(p5 ) - v(p.,) - v(p
2 ) + y(p

o )]
/h2 for -J&L

and [V(P
2 ) - 2V(P

Q ) + V(P^)] /h2 for -j£v
.
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The symbol P
Q

designates the point (x,y). The ?± are for the points

adjacent to P and starting at (x+h,y) and proceding counter-clocln-ri.se,

and ?c denotes (x+h, y+h); that is:

Define coefficients as:

P^P) = (3
ri

- 2B
12

+2hA
1
)/D,

P2
(P) = (3

22
- 2B

12
+ 2hA

2
)/D,

p
3
(P) = B^/D,

ty(»
= B

22
/D,

P5
(P) = 2B

12
/D, and

D = 2Bn + 2322
- 2B

12
+ 2h(A

1
+ Ag).

These are assumed positive. These conditions of positivity are satisfied

for small h, B^
2

= 0, and B^ - B > 0. These also ensure that the

equation be an elliptic partial differential equation. Independent of

the B. • or the A. , the sum of the p. (P) must be identically one. The

p^(P) can thus be seen to be the transition probabilities at P. The

general elliptic equation, when -written in difference form will be as

follows: V(P) = r p±
(P) V(P

±
) - h2 F(P)/D.

As in the special case, a sequence of random walks is considered and

the average of the tallies for all the walks is computed. For the

general elliptic equation the calculation of each tally is more complex.
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The required tally will be: i±
= (^ - ? h

2
F(P..)/D(P..), where ^

is the value of the function at the boundary points trhich terminated

the walk, the ? . are the coordinates of each step in the random walk,

and the sum is taken over all the stepping points in the walk.

The justification of this expression as a solution to the difference

equation relies on the fact that there will be a finite number of steps

in the walk and that all the Q^ are positive. The fact that the number

of steps is finite has been previously discussed. The presumption that

the Q~ are positive is not too restrictive in that some constant can

be added to each value in order to meet this requirement. This will

merely give a solution which will be greater than the required solution

by an additive factor of this constant.

If W^CP) is taken to be the average value of the tallies which are

for walks of length m, then it satisfies the following equation for

each P of the grid: Wm(P) = ±_ p. (P) Wm_1 (P,) - h
2

F(P)/D(P). The

i=1
x

last term is added to Wm(P) at every step, as ^m (P) is defined as the

average of the tallies and it will therefore be contributed from each P.

The summation represents the transition probabilities possible at each

step. Now the expression for Wm+^
(P) will be similar. Since Wm+^

(P) - Wm(P)

£ Pi^fW ~ W
m-l(

P
ii! •

the P1,0Perty W
m+1 £ wm will always be true

i=1

due to the transition probabilities. Hence the W (P) 's form a monotonic

sequence with, an upper bound of R + S • £ • In this expression R is the

maximum boundary value, S is the maximum value of -h^ F(P)/D(P) within

the boundary, and k"~ is the average of the number of steps in the random

walks. With a bounded region of finite area, k is uniformly bounded,

independent of n; ICLahr in £ 1 0J . By taking the limit as m approaches

infinity, it develops that the given expression for the tally is in fact

a solution to the given difference equation.
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Many variations are possible for this type of problem. Much

literature is available on special cases and particular situations.

Too often a special technique is more advisable to use for a given

situation. Again, as in most Monte Carlo approaches, much ingenuity

must be applied in order to arrive at a "best" method of attack.
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ABSTRACT

Monte Carlo Methods are computational procedures which use random

numbers to arrive at solutions for mathematical problems. These

procedures accomplish this by taking advantage of various stochastic

properties of random numbers in the evaluation of functions. This

paper discusses some of the requirements of a Monte Carlo technique.

The most important requirement is a method for selection of random

numbers from a uniform distribution. Methods of testing the randomness

of sequences of numbers and methods of arriving at sequences of non-

uniform random deviates are also given.

The classical mathematical application of Monte Carlo Methods is

quadrature. Quadrature is discussed from the standpoint of using the

random sampling distributions discussed in the previous sections. The

final section discusses the solution of elliptic partial differential

equations by the use of random walks. *

This paper is intended to give some methods or procedures which

are important in a good application of Monte Carlo techniques. If

the given methods are not found to be essential in a particular

application, it is hoped that they will be found to be quite helpful.


