

DESIGNING AND ANALYZING AN EVENT SERVICE FOR SENSOR NETWORKS

by

SUMEET GUJRATI

B.Sc., Devi Ahilya University Indore, India, 2002
M.C.A., Indian Institute of Technology Roorkee, India, 2005

A THESIS

submitted in partial fulfillment of the requirements for the degree

MASTER OF SCIENCE

Department of Computing and Information Sciences
College of Engineering

KANSAS STATE UNIVERSITY
Manhattan, Kansas

2008

Approved by:

Major Professor
Dr. Gurdip Singh

ABSTRACT

This work is motivated by the OMG’s CORBA Event Service Specification. CORBA is the

acronym for Common Object Request Broker Architecture. In this research, we implemented and

analyzed an event service using a model similar to the OMG model for sensor networks

applications which are written in nesC programming language, an extension of C programming

language. This implementation has been tested on a test bed created using Crossbow’s TelosB

motes and Crossbow’s Stargate Netbridge modules as gateways. Event service interface

implementations, which reside on the motes, are written in nesC. The data routing part, which is

done through Stargate Netbridges, is written in the C language. This document contains

experimental results obtained by deploying and running the implementation on the test bed.

Table of Contents

List of Figures ... v

List of Tables ... vi

ACKNOWLEDGEMENTS .. vii

CHAPTER 1 - Introduction to the CORBA Event Service .. 1

1.1 Overview ... 1

1.2 Event Communication .. 2

1.3 Initiating Event Communication ... 3

1.3.1 Push Model .. 4

1.3.2 Pull Model .. 4

1.4 Types of Event Communication ... 5

1.4.1 Untyped Event Communication ... 5

1.4.2 Typed Event Communication .. 5

CHAPTER 2 - The Test bed ... 6

2.1 Components .. 6

2.2 Determining Board Size .. 7

2.3 Selecting Gateway .. 8

2.4 Creation of Test-bed ... 8

2.5 Other Devices ... 10

CHAPTER 3 - Event Service Interfaces and Architecture for Sensor Networks 11

3.1 The push_consumer interface ... 12

3.2 The push_supplier interface .. 12

3.3 System Architecture: Hardware Setup .. 12

3.4 System Architecture: Software Setup ... 14

CHAPTER 4 - An Example Illustrated with Data Structures ... 16

4.1 Steps to form a given topology ... 16

4.2 System Operation .. 16

4.3 Data Structures .. 17

CHAPTER 5 - Basic Algorithms .. 18

 iii

5.1 Algorithm to create tree of gateways .. 18

5.2 Algorithm for advertize call .. 19

5.3 Algorithm for subscribe call ... 21

5.3.1 On motes (in nesC) .. 21

5.3.2 On gateways (in C) .. 21

5.4 Algorithm for the push call ... 22

5.4.1 On motes (in nesC) .. 22

5.4.2 On gateways (in C) .. 24

CHAPTER 6 - Performance Analysis... 25

6.1 Test with one board ... 25

6.2 Test with three boards ... 27

6.2.1 Configuration 1 .. 27

6.2.2 Configuration 2 .. 29

CHAPTER 7 - Conclusion and Future work .. 31

7.1 Conclusion .. 31

7.2 Future work ... 31

References ... 33

 iv

List of Figures

Figure 1.1 CORBA Model for Basic Client/Server Communication .. 1

Figure 1.2 Suppliers and Consumers Communicating through an Event Channel 3

Figure 1.3 Push-style Communication between a supplier and a consumer 4

Figure 1.4 Pull-style Communication between a supplier and a consumer 5

Figure 2.1 Crossbow’s TelosB motes ... 6

Figure 2.2 Crossbow’s Stargate Netbridges.. 6

Figure 2.3 USB hub .. 6

Figure 2.4 USB Cable ... 6

Figure 2.5 18” x 36” Plexi Glass board .. 7

Figure 2.6 Router .. 7

Figure 2.7 Ethernet cable .. 7

Figure 2.8 Velcro .. 7

Figure 2.9 A mote with Velcro ... 9

Figure 2.10 A complete Board .. 9

Figure 2.11 4 x 12 Mesh ... 10

Figure 2.12 Zigbee Relay .. 10

Figure 3.1 Push-style communication between a supplier and an event channel, and a consumer

and an event channel. .. 11

Figure 3.2 Typical System setup ... 13

Figure 3.3 Interaction of various software components .. 15

Figure 4.1 Example Topology .. 16

Figure 6.1 Frequency Vs Events received .. 26

Figure 6.2 Multiple boards test: configuration 1 .. 27

Figure 6.3 Frequency Vs Events received for configuration 1 ... 28

Figure 6.4 Multiple boards test: configuration 2 .. 29

 v

List of Tables

Table 6-1 Frequency Vs. Events received on a single board .. 26

Table 6-2 Results for Configuration 1 .. 28

Table 6-3 Results for Configuration 2 .. 30

 vi

 vii

ACKNOWLEDGEMENTS

First and foremost I offer my gratitude to my advisor, Dr. Gurdip Singh, who has

supported me throughout my thesis with his patience and knowledge whilst providing me the

funding to work in my own way. I attribute the level of my Master degree to his encouragement

and effort and without him this thesis, too, would not have been completed or written.

I am thankful to Dr. Daniel Andersen and Dr. Mitchell Neilson for kindly serving in my

major committee. In my daily work I have been blessed with a friendly and cheerful group of

fellow students. I would like to thank Dinesh Challa, Sandeep Pulluri and Lakshman Kaveti for

providing me good comments on my work and helping me develop various parts of the

implementation.

The department of Computing and Information Sciences has provided me the support and

funding I have needed to complete my thesis. I am thankful to the department.

I am grateful to my uncle and aunt Mr. Kailash Mahajan and Mrs. Lata Mahajan of Ann

Arbor, MI for their kind support throughout my stay in USA. I am thankful to my wife Sonal for

her constant support and unbelievable patience throughout my research work. I am thankful to

my best friend Minto Michael for always encouraging and supporting me, especially at terrible

times.

Finally, I thank my parents for supporting me throughout my studies at K State. Without

their support and encouragement I could not have attended the University.

CHAPTER 1 - Introduction to the CORBA Event Service

CORBA is the acronym for Common Object Request Broker Architecture. The CORBA

event service specification is a communication model which allows a producer application to

send event data to a consumer application. The model defines two different approaches for

initiating event communication. Each of these two approaches again can take two forms. This

chapter gives an overview of CORBA event service specification terminology and concepts,

which are the basis of the implementation of our event service for sensor networks. This

document uses terms producer and supplier interchangeably. Figures and some contents of this

chapter are from [1] and [2].

1.1 Overview
The client-server communication model is fundamental to the CORBA architecture. In

this model, a standard CORBA request by a client results in a synchronous execution of an

operation on a specified object in a server. If the operation defines parameters or return values,

then the data is communicated between the client and the server. For the request to be successful,

both the client and the server must be available. This model is depicted in Figure 1.1

Figure 1.1 CORBA Model for Basic Client/Server Communication

If a request fails because the server is not available, then the client receives an exception

and in such a case, it must take some appropriate action. However, some applications need a

more complex and indirect communication style. For example (Examples 1 to 4 are taken from

ref [1]):

1. A system administration tool is interested in knowing if a disk runs out of space. The

software managing the disk is unaware of the existence of the system administration tool.

 1

The software simply reports that the disk is full. When the disk runs out of space, the

system administration tool opens a window to inform the user which disk has run out of

space.

2. A property list object is associated with an application object. The property list object is

physically separate from the application object. The application object is interested in the

changes made to its properties by a user. The properties can be changed without

involving the application object. That is, in order to have reasonable response time for the

user, changing a property does not activate the application object. However, when the

application object is activated, it needs to know about the changes to its properties.

3. A CASE tool is interested in being notified when a source program has been modified.

The source program simply reports when it is modified. It is unaware of the existence of

the CASE tool. In response to the notification, the CASE tool invokes a compiler.

4. Several documents are linked to a spreadsheet. The documents are interested in knowing

when the value of certain cells has changed. When the cell value changes, the documents

update their presentations based on the spreadsheet. Furthermore, if a document is

unavailable because of a failure, it is still interested in any changes to the cells and wants

to be notified of those changes when it recovers.

Clearly, this type of communication is indirect and cannot be handled by simple client-

server style. Hence, we need event-based communication

1.2 Event Communication
The Event Service decouples the communication between objects. The CORBA event

service defines the concept of events for CORBA communication. The application, at which the

event is originated, is called an event supplier and the applications, which register themselves to

receive event data, are known as consumers. Event data are communicated between suppliers

and consumers by issuing standard CORBA requests. There are two approaches to initiating

event communication between suppliers and consumers, and two orthogonal approaches to the

form that the communication can take.

To support this model, CORBA event service introduces a new element, called an event

channel. An event channel is a middleware which mediates the transfer of events between

 2

suppliers and consumers. The steps for event communication between a supplier and a consumer

are as follows:

1. Consumers register themselves with the event channel for the events in which they are

interested.

2. Suppliers advertise the event data to the event channel.

3. After channel receives event data from the suppliers, it forwards the data to appropriate

consumers.

An event channel allows multiple suppliers to communicate with multiple consumers

asynchronously. An event channel is both a consumer and a supplier of events. Figure 1.2

depicts this concept.

Figure 1.2 Suppliers and Consumers Communicating through an Event Channel

Event channels are standard CORBA objects and communication with an event channel

is accomplished using standard CORBA requests.

1.3 Initiating Event Communication
The two approaches to initiating event communication are called the push model and the

pull model. The push model allows a supplier of events to initiate the transfer of the event data to

consumers. The pull model allows a consumer of events to request the event data from a

supplier. In the push model, the supplier takes the initiative; in the pull model, the consumer

takes the initiative.

 3

1.3.1 Push Model

In the push model, suppliers generate events and pass them to a consumer via event

channel. In other words, suppliers “push” event data to consumers; that is, suppliers

communicate event data by invoking push operations on the PushConsumer interface.

In order to set up push-style event communication, consumers and suppliers need to

exchange PushConsumer and PushSupplier object references. Event communication can

be broken in two ways, either by invoking a disconnect_push_consumer operation on the

PushConsumer interface or by invoking a disconnect_push_supplier operation on the

PushSupplier interface.

Figure 1.3 illustrates push-style communication between a supplier and a consumer.

Figure 1.3 Push-style Communication between a supplier and a consumer

1.3.2 Pull Model

In the pull model, consumers request suppliers to generate events. In other words,

consumers “pull” event data from suppliers; that is, consumers request event data by invoking

pull operations on the PullSupplier interface.

In order to set up a pull-style communication, consumers and suppliers need to exchange

PullConsumer and PullSupplier object references. Event communication can be broken in

two ways, either by invoking a disconnect_pull_consumer operation on the

PullConsumer interface or by invoking a disconnect_pull_supplier operation on the

PullSupplier interface.

Figure 1.4 illustrates pull-style communication between a supplier and a consumer.

 4

Figure 1.4 Pull-style Communication between a supplier and a consumer

1.4 Types of Event Communication
As mentioned above, each of these two approaches of event communication can take one

of the two forms, typed or untyped. We briefly describe each of them in the following sections.

1.4.1 Untyped Event Communication

This form uses generic push and pull operations. An event is propagated by calling a

series of push or pull operations. The push operation requires a single parameter which is

event data of type any. The pull operation requires no parameters, but it transmits event data

of type any in its return value. Both consumer and supplier applications must agree on the

contents of the type any.

1.4.2 Typed Event Communication

In this type of event communication, the programmer specifies application specific

interfaces through which events are transmitted. Instead of using push and pull operations

and transmitting data of type any, the programmer specifies an interface and data type that

suppliers and consumers use for transmitting events.

 5

CHAPTER 2 - The Test bed

As mentioned in the abstract, our experiments are deployed and tested on a test bed.

While creating the test bed, much of the time was spent on basic experiments to decide on the

board (see Figure 3.5) dimensions and gateway to be used. Some of the time was spent on

selecting USB hubs, USB cables and Velcro from a variety of vendors so that they all fit well on

the board. This chapter describes various components and how they are integrated together to

form the test bed.

2.1 Components
Test bed was created using various hardware components. The components are listed

below:

Figure 2.1 Crossbow’s TelosB motes

Figure 2.2 Crossbow’s Stargate Netbridges

Figure 2.3 USB hub

Figure 2.4 USB Cable

 6

Figure 2.5 18” x 36” Plexi Glass board

Figure 2.6 Router

Figure 2.7 Ethernet cable

Figure 2.8 Velcro

The test-bed uses 12 plexi glass boards. Each board is made up of 8 TelosB motes, 1

Stargate Netbridge and one 13 port USB hub. Thus, the test-bed consists of 96 motes, 12

Stargate Netbridges and 12 USB cables. Motes are powered using the USB hub via USB cables.

A USB cable is used to connect the hub to a Stargate Netbridge’s USB port, thus each mote can

be accessed by a C program running on the Stargate Netbridge. Stargate Netbridges on each

board are connected to the router via an Ethernet cable. This allows the Stargate Netbridges to

communicate each other via TCP connections.

2.2 Determining Board Size
We wanted to create a mesh of 96 TelosB motes in the lab. The maximum

communication range of TelosB motes is around 75 meters -100 meters if there is no obstacle in

between. We wanted 96 motes to communicate each other in a mesh and since the lab is very

 7

small, each mote will be able to communicate with every other mote and our purpose of creating

the mesh will not be justified.

There are several interfaces provided by TinyOS, using which we can reduce the

communication range of the motes. CC2420Control is one such interface. It provides a

command SetRFPower (int range). We used this command to solve our purpose. By hit and

trial experiments, we found that if we use SetRFPower(1), the two motes cannot communicate

if placed more than 3-4 inches apart. In this case, the motes have to be placed very close to each

other. We did not want that. We figured out that with SetRFPower(2), the communication

range is 8-10 inches and with SetRFPower(3), the communication range is approximately 1

meter, which is very large. We decided to choose SetRFPower(2).
To create a 2 x 4 mesh of 8 motes, we required no more than 18” x 36” space. We

decided to have 12 18” x 36” plexi glass boards and motes placed on them to create 12 2 x 4

meshes. This way, we can arrange these boards to generate different type of meshes according to

the requirements of the application. These 12 boards are easy to carry and can be placed in the

lab. They can be hung on the wall as well. By creating the test bed in the lab, we simulated a

larger deployed network of motes in the lab.

2.3 Selecting Gateway
Once the board size was determined, the next task was to decide on the gateway to be

used on each board. We have some Crossbow’s Stargate, which have WiFi. JVM is available for

this platform which makes it easier to write TCP client/server application. Unfortunately,

Crossbow stopped manufacturing Stargates and replaced them with a newer version, called

Stargate Netbridge. It does not have Wifi; instead it has an Ethernet port. We could not find any

JVM for this platform; however we could install C/C++ on it, thus we had to write TCP

client/server application in C. By considering all these, we decided to use Crossbow’s Stargate

Netbridge as a gateway on each board. We will use term gateway or node for Stargate Netbridge

throughout the document.

We also have HP some IPAQs which we are trying to make USB hosts. We are also

studying Java on IPAQs so that in future, we can use them as gateways.

2.4 Creation of Test-bed

 8

This section describes how these components are integrated together to form the test bed.

The steps are as follows.

1. First we cut four Velcro of board size and stick them on the board shown in Figure 2.10.

2. We then take 8 motes and stick Velcro on them as shown in Figure 2.9.

Figure 2.9 A mote with Velcro

3. Stick the motes on the board as shown in Figure 2.10.

4. Next, we take gateway and USB hub and stick them on the board using Velcro as shown

in Figure 2.10.

5. Finally, we attach motes to USB hub using USB cables, and connect USB hub to gateway

using USB cable.

6. Ethernet port of the gateway can be connected to the router using an Ethernet cable, if

required. By using the router and a set of C programs running on gateway, we can create

any topology for the gateways, either tree or ring or any other according to the

experiment to be performed. In this thesis, we create a tree of gateways. See Section 4.1

for details

7. Each of the gateways, USB hubs and router requires separate power supply.

8. A completed board without Ethernet cable and power supplies is shown in Figure 3.10.

Figure 2.10 A complete Board

 9

Distances of the motes can be adjusted according to needs. The four Velcro can be moved

up and down, the motes can be stuck anywhere on Velcro we want, thus providing us flexibility

to adjust their position in any direction.

Figure 2.11 shows an experimental test bed of 48 motes created using 6 boards. It forms

a mesh of 4 x 12.

Figure 2.11 4 x 12 Mesh

2.5 Other Devices
Other devices, like Zigbee relays, as shown in Figure 2.12, can be attached to the boards.

It can be glued to the board near the USB hub (see a vertical oval at the right hand side panel of

the board, Figure 2.9). This type of relay can be used as an actuator, if required in an application.

In this thesis, we did not use any such device.

Figure 2.12 Zigbee Relay

 10

CHAPTER 3 - Event Service Interfaces and Architecture for Sensor

Networks

In this chapter, we define the interfaces which are used to implement event service for

sensor networks. The names of the interfaces are same as used in standard CORBA event service

specification. As defined in Section 1.2, an event channel is a middleware which mediates the

transfer of events between suppliers and consumers. The event channel decouples the

communication between suppliers and consumers. In this research, we implemented event

channel to work with the push model. The behavior of the event channel in this case is described

in Figure 3.1 below. Some figures and some contents of this chapter are from [1] and [2].

Figure 3.1 Push-style communication between a supplier and an event channel, and a

consumer and an event channel.

The required module and interfaces for this model are described below.

Module EventChannel

{

 provides interfaces:

push_consumer

 push_supplier

 command advertise(event id)

 command subscribe(event id)

}

interface push_consumer

{

 11

 command Push(event_id, data)

 command disconnect

}

interface push_supplier

{

 command disconnect

}

3.1 The push_consumer interface
A push-style consumer supports the push_consumer interface to receive event data. A

supplier communicates event data to the consumer by invoking the push operation and passing

the event data as a parameter. The disconnect operation terminates the event communication;

it releases resources used at the consumer to support the event communication.

3.2 The push_supplier interface
The disconnect operation terminates the event communication; it releases resources

used at the supplier to support the event communication.

As an example, consider mote 1 which is interested in producing an event temperature

and another mote 2, which is interested in receiving temperature data. The steps to establish this

event communication are as follows:

1. Mote 2 executes subscribe(temperature).

2. Mote 1 executes advertize(temperature).

It is also possible that mote 1 executes advertize(temperature) before mote 2 executes

subscribe(temperature). As soon as mote 1 executes advertize(temperature), it starts pushing

temperature data to the event channel. Event channel then forwards the data to the destination

mote, in this case mote 2.

Following sections discuss hardware and software architecture of the system.

3.3 System Architecture: Hardware Setup
In this section, we will describe how the test bed is configured to implement and deploy

event service for sensor networks. We do not use all of the 12 boards; instead we took some of

them and arrange them in a desired configuration. It doesn’t matter if they form mesh or not. We

 12

consider each board as a separate region and motes on the boards as forming a tree consisting of

7 motes, with the base station as the root. The root has two children and these two children again

have two children each, thus summing 7 motes in the tree. We do not use the eight motes. A

typical system hardware setup using 3 boards is shown in Figure 3.2 below. The naming

convention in the figure is as follows:

PC: Personal Computer (Desktop / Laptop)

SN: Stargate Netbridge (gateway)

BS: Base Station (it is a telosB mote)

 : Other Motes (telosB)

The connections between motes and USB hub and USB hub to gateway are not shown as

it will make the figure messy.

Figure 3.2 Typical System setup

Further, a tree of gateways is also formed. For example, with these three boards, we can

form a tree with SN1 as root and SN2 and SN3 as its children. Or, we can form a tree with SN1

as root, SN2 as its child and SN3 is child of SN2. We form the tree of gateways using TCP

connections.

Since all gateways are connected to the router, they can also communicate directly with

each other. But in order to test our event service, we don’t want them to communicate directly;

instead, we want them to communicate as specified by the child-parent relationship.

 13

Chapter 4 discusses an example in detail with how consumers and suppliers use the event

service interfaces and calls the commands provided by them to establish event communication.

3.4 System Architecture: Software Setup
The software is written in C and nesC programming languages. The event service

interfaces are implemented in nesC and reside on motes. Motes communicate with each other

wirelessly via radio (using generic comm layer). The data routing functionality is written in C

and is done via gateways. Gateways communicate with each other via TCP channels. Motes

communicate with each other via radio links. The base station can communicate with the

gateway via the UART interface. The UART interface can read data from or write data to USB

using already existing software component called serial forwarder. It is written in C. All the data

structures, which are discussed in Chapter 4, reside on gateway. Interactions of the various

software components are shown in Figure 3.3 below.

Apart from the programs for gateways and motes, a separate set of programs was written.

This includes a program written in C and a program written in nesC, installed on a mote, which

is different from the motes on the board. We call this mote as the instructor. This program gets

the user input. When the user gives an input to the C program, it sends the input string to the

mote. The mote then interprets the command and does the appropriate actions. Some of the

actions are as follows:

1. cmd\> -3-10-temp- When the instructor mote receives this string, it tells mote 3 on the

board to execute an advertise call for the event temp.

2. cmd\> -4-11-temp- When the instructor mote receives this string, it tells mote 4 on the

board to execute a subscribe call for the temp event.

3. cmd\> -3-13-0300- When the instructor mote receives this string, it tells mote 3 on the

board to set the push frequency to 300 milliseconds.

4. cmd\> -3-12-temp- When the instructor mote receives this string, it tells mote 3 on the

board to execute the push call for the temp event. This call is executed 100 times, at the

frequency set by the previous command.

However, once a mote executes an advertize call, it starts pushing the specified events.

But for testing purposes, we have delayed the pushing of events until the supplier is instructed to

do so by instructor.

 14

Figure 3.3 Interaction of various software components

Supplier (a leaf mote) Consumer (a leaf mote)

Push_consumer, Advertize Push_supplier, Subscribe

Generic Comm Layer

Base Station

UART Interface

nesC part (on motes)

Serial Forwarder

Data routing

algorithms and

Data structures

(gateway 1).

Data routing

algorithms and

Data structures

(gateway 2).

Data routing

algorithms and

Data structures

(gateway n).

C part (on gateways)

Serial Forwarder Serial Forwarder

 15

CHAPTER 4 - An Example Illustrated with Data Structures

This chapter gives an overview of how the event service works. It highlights the steps to

form a tree topology of gateways followed by the system operations using an example. This

chapter concludes by giving an overview of the data structures used on the gateways.

Consider the 4 gateways (SN) and the tree structure we want them to form as shown in

Figure 4.1.

Figure 4.1 Example Topology

4.1 Steps to form a given topology
Following are the steps to be followed to create the given tree structure:

1. The PC opens a TCP socket (port 8000) and listens on that port. It also opens a file

containing the tree structure.

2. When an SN gets connected to a router, it will execute a script to connect to the PC on

port 8000. PC remembers its IP address.

3. As soon as all of the SNs are connected to the PC, it will instruct each one of them to

open a TCP connection so that the given tree structure can be formed.

4.2 System Operation
Once the tree structure is formed, the actual operation of the system takes place. Let,

mote 1 of SN4 be the supplier of the event temp and mote 1 of SN3 be the consumer of the

event. Two system calls are used by the suppliers and consumers to indicate their role in the

system.

The suppliers call advertise(event type) to indicate that they can produce event data.

Consumers may call subscribe(event type) to indicate that they are consumers of the data.

 16

Whenever a supplier produces the data, it has to be transferred to the consumer. When a supplier

produces some event data, it makes a system call Push(event type, data).

So, in this case, when mote 1 of SN4 calls advertise, an entry is made in the Advertise

data structure in SN. This data structure will store the mote id and the event type; in this case, it

will look like (1, temp).

When mote 1 of SN3 makes the subscribe system call, the following sequence of actions

takes place:

1. An entry is made in the Subscriber data structure in SN3. The entry will have mote id and

event type, in this case (1, temp).

2. SN3 will then propagate the request further indicating that SN3-IP needs event temp. We

maintain another data structure, called Event_Request. It has IP address and event type as

fields. In this case, on SN1, it will look like (SN3-IP, temp). After SN1 updates this data

structure, it further propagates the request in the network. In this case, it will only transfer

it to SN2. SN2 will make an entry in the Event_Request data structure as (SN1-IP, temp).

SN2 then propagates it further to SN4 and SN4 will have an entry (SN2-IP, temp).

When mote 1 of SN4 makes the push system call, the event data goes to SN4. On SN4,

the following actions happen:

1. SN4 then checks its Subscribe data structure to check if there is any consumer in its local

network. If yes, then it transfers the event data and proceeds to step 2.

2. It then checks the Event_Request data structure to check if some other SN has requested

temp. In this case, SN2-IP has requested temp; so it forwards the data to SN2.

3. SN2 on receiving this data performs step 1.

4.3 Data Structures
We infer from the above discussion that the following data structures are needed to

implement the model.

1. Advertize (mote_id, event_type)

2. Subscribe (mote_id, event_type)

3. Event_request (SN-IP, event_type)

 17

CHAPTER 5 - Basic Algorithms

This chapter discusses various algorithms which are implemented in either C or nesC to

develop the entire system. We assume that following tree of motes on the board:

 0 (Base Station)
 ____________|____________
 | |

1 2
 ______|______ ______|______
 | | | |

3 4 5 6

We also assume that only leaf nodes can act as suppliers or consumers. The algorithms

are presented one by one in the following sub sections with the above assumptions in mind.

5.1 Algorithm to create tree of gateways
Input: A topology file.

Output: A tree of gateways is constructed. Gateways then wait for further actions.

Steps:

1. PC reads topology file. The topology file has number of nodes, say n, in the first line. PC

waits for n connections.

2. Assign IDs to various nodes which request connection to PC in sequence.

3. Once all connections are established, the PC instructs each node, starting from the root,

about their child-parent relationship. This relationship is read from the topology file.

Once the message is sent to a node, it waits for response from that node.

4. Each node, after receiving this relationship information, waits for the children (if any) to

connect. Once all children are connected, a message is sent to PC telling that the node has

established all required connections. PC after receiving this message tells the next node to

establish the connections.

5. Once the tree is formed, all nodes wait for data from either the base station or another

node, either parent or child.

Pseudo Code:

Server (Running on PC):

read num_of_nodes;

 18

for i 1 to num_of_nodes

 accept connection from a node;

 store socket descriptor in socket_fd[i];

for i 1 to num_of_nodes

 send child-parent relationship to socket_fd[i];

 wait for response from node i;

Client (running on nodes):

connect to server;

wait for child-parent relationship from server;

if (node has no parent)

 wait for connections from children;

 send acknowledgement to server;

else (node has a parent and has children)

 connect to parent;

 wait for connections from children;

 send acknowledgement to server;

else (node has parent and no children)

 connect to parent;

 send acknowledgement to server;

5.2 Algorithm for advertize call
Input: A message from instructor to a leaf mote.

Output: An entry is made in the Advertize data structure on the gateway.

Steps:

1. On receiving the instruction to execute the advertise call, a leaf mote keeps on sending a

request to its parent (intermediate motes, i. e. 1 or 2) until it receives an

acknowledgement from its parent.

2. Once a request is received by an intermediate mote, it keeps on forwarding the request to

the base station (mote 0) until it receives an acknowledgement from the base station.

3. When the base station receives the advertize request, it sends the request to the gateway.

The gateway, on receiving the request, updates its Advertize data structure.

 19

Pseudo Code:

do

if (instructor mote)

 wait for user input;

 construct advertize(event) command;

leaf mote ! advertize(event);

 fi

if (leaf mote)

 ack 0;

 do

 instructor mote ? advertize(event);

 parent ! advertize(event);

 parent ? ack ack 1;

 if (ack = 1) break;

od

 fi

 if (intermediate mote)

 do

 ack 0;

 child ? advertize(event);

 base station ! advertize(event);

 base station ? ack ack 1;

 if (ack = 1) -> break;

 do

 fi

 if (base station)

 do

 child ? advertize(event);

 client on gateway ! advertize(event);

 do

if (client on gateway)

 20

 do

 base station ? advertize(event);

 update advertize data structure;

 do

 od

5.3 Algorithm for subscribe call
This is a split call. Half of the part is implemented in nesC on motes. The other half is

implemented on gateways in C.

5.3.1 On motes (in nesC)

Input: A message from the instructor mote to a leaf mote.

Output: An entry is made in the Subscribe data structure on the gateway. The

Event_Request data structure on all other gateways is also updated.

Steps: The algorithm is same as the algorithm described in Section 5.2.

1. On receiving the instruction to execute the advertise call, a leaf mote keeps on sending

request to its parent (intermediate motes, i. e. 1 or 2) until it receives an

acknowledgement from the parent.

2. Once the request is recdeived by an intermediate mote, it keeps on forwarding the request

to the base station (mote 0) until it receives an acknowledgement from the base station.

3. When the base station receives the subscribe request, it sends the request to the gateway.

The gateway, on receiving the request, updates the Subscribe data structure. The gateway

then propagates the information to other gateways in the network.

Pseudo Code:

The pseudo code is exactly same as the pseudo code of algorithm in Section 5.2.

5.3.2 On gateways (in C)

Input: A message from node.

Output: The Event_Request data structure of parent and children gateways is updated.

Steps: The algorithm is the same as the algorithm described in Section 5.2.

1. Once a gateway updates its Subscribe data structure (Step 3 of Algorithm 5.3.1), it does

the following. Assume that the subscribe call has just caused the temp event to be

 21

inserted in the Subscribe data structure. If the gateway has already propagated the

information for the temp event in the network, then nothing has to be done; otherwise it

then sends the event information to its parent and all children.

2. On receiving the event information, other gateways updates the Event_Request data

structure, and propagate this information further in the network. Thus, this information is

propagated all over network.

Pseudo Code:

base station ? subscribe(event);

search subscribe data structure for event;

Start: if (an entry of event is found in subscribe data structure)

 do nothing;

else

 if (has parent and request not received from parent)

 parent ? subscribe(event);

 for i 1 to num_children

 request not received from child[i] child[i] ! subscribe (event);

 if (has parent)

 parent ? subscribe(event);

 update event_request data structure;

for i 1 to num_children

 child[i] ? subscribe (event);

 update event_request data structure;

go to start;

5.4 Algorithm for the push call
This call is split into three (or TWO) steps. Half of the part is implemented in nesC on

motes. The other half is implemented on the gateways in C.

5.4.1 On motes (in nesC)

Input: A message from a leaf.

Output: An event data is send to the gateway.

Steps:

 22

1. A leaf node sends event data to the base station via intermediate motes. We do not ensure

reliability, so we do not send acknowledgements as we did for advertize and subscribe

calls.

2. On receiving the event data, the base station sends data to the gateway via UART

interface.

3. Send event data to base station if Subscribe data structure has any entry for that particular

event. Then execute Algorithm 5.4.2.

4. On receiving event data from gateway, the base station sends the data to the consumer via

intermediate motes. Again, this operation need not be reliable.

Pseudo Code:

do

 if(leaf mote)

 parent ! event data;

 parent ? event data process data;

 fi

 if(intermediate mote)

 child ? event data;

 base station ! event data

 base staation ? event data forward it to destination mote;

 fi

 if(base station)

 client on gateway ! event data;

 client on gateway ? event data

 forward it to intermediate mote;

 fi

 if(client on gateway)

 base station ? event data

if(subscriber data structure has entry for event)

base station ! event data;

fi

execute algorithm 5.4.2;

 23

 other gateways ? event data

if(subscriber data structure has entry for event)

base station ! event data;

fi

 fi

 od

5.4.2 On gateways (in C)

Input: An event data from gateway.

Output: An event data is send to gateway or base station.

Steps:

1. Send event data to all gateways for which an entry is found in Event_Request data

structure.

2. Execute step 3 of Algorithm 5.4.1.

Pseudo Code:

for all gateways entries found in event_request data structure for event

 gateway ! event data;

 24

CHAPTER 6 - Performance Analysis

We tested our approach in number of ways. The simplest test is to assume that all

suppliers and consumers are on the same board. In this case, actually there will no

communication among gateways. We further divide this case into various sub cases, for example,

one supplier and one consumer, one supplier and two consumers and so on. We tested all of

these cases with various frequencies for generating the events. We then tested with multiple

boards. In this case, there will be communication among gateways. Section 6.1 contains results

of one board and Section 6.2 contains results of multiple boards.

6.1 Test with one board
We consider four different cases.

1. One supplier and one consumer of an event.

2. One supplier and two consumers of an event.

3. One supplier and three consumers of an event.

4. One supplier and one consumer of two different events.

Suppliers push 300 events in each case. We test each case with different frequencies of

pushing events. For each case, we took seven readings, discarded two extreme readings and took

the average of the remaining five readings. We then studied the average number of events

received by the consumers. The following table contains the results.

In Table 6-1, 1 sup (temp) means that there is 1 supplier of event temperature. 1 cons

(pres) means that there is one consumer of event pressure.

Number Freq 1 sup (temp) 1 sup (temp) 1 sup (temp) 1 sup (temp), 1 sup (pres)
(ms) 1 cons (temp) 2 cons (temp) 3 cons (temp) 1 cons (temp), 1 cons (pres)

1 1 6 3 3 3
2 5 24 18 18 21
3 10 51 51 48 48
4 25 102 99 93 102
5 50 126 120 117 123
6 75 195 138 123 132
7 100 216 132 126 129
8 150 231 228 195 201
9 200 231 231 222 225
10 250 234 234 222 222

 25

11 500 231 234 234 231
12 750 234 231 228 228
13 1000 231 228 231 228

Table 6-1 Frequency Vs. Events received on a single board

Figure 6.1 shows the graph of the data from Table 6-1.

Figure 6.1 Frequency Vs Events received

We observe that after reading number 9 (corresponding to frequency of 200 ms), the

number of events received tend to be constant (between 220-235). These results have been

obtained when advertize and subscribe data structures are stored on gateway. But, on a single

board, it is useless to store them on the gateway. Each time an event is pushed, the request has to

go through the gateway via base station. The gateway then sends the data back to the base station

if it finds any subscriber entry in subscriber data structure. If we store these data structures on the

base station instead, then when single board is used, the cost of sending data to and from

gateway to base station is saved. In this case, total number of events received is much higher; it

is close to 275.

One more interesting case we observed on a single board. If we set up the system such

that mote x is supplier of event e1 and mote y is consumer of that event; mote y is supplier of

event e2 and mote x is consumer of that event, then the results change drastically. We found total

 26

number of events received reduced to 165-180 for all frequencies above 200 ms. It is because

there is more interference.

6.2 Test with three boards
We configured the system in many different ways using three boards and tested the event

service on those configurations. Some of the configurations and corresponding results are given

below. A figure is drawn corresponding to each configuration. A P next to a leaf mote indicates

that it is a supplier and a C next to a leaf mote indicates that it is a consumer.

6.2.1 Configuration 1

1 Supplier on SN2

N Remote consumers on SN3, where N = 1, 2, 3, 4

 SN1

 BS

1 2
3 4 5 6

 SN2 SN3

Figure 6.2 Multiple boards test: configuration 1

There are four possible experiments for this configuration for four different values of N.

Supplier pushes 100 events in each case. We test each case with different frequencies of pushing

events. For each case, we took seven readings, discarded two extreme readings and took average

of remaining five readings. We then studied average number of events received by consumers.

Table 6-2 contains the results. Figure 6.2 shows corresponding graph.

BS

1 2

3 4 5 6

BS

1 2

3 4 5 6

 P C C C C

 27

Number Freq (ms) N = 1 N = 2 N = 3 N = 4
1 1 4 3 3 2
2 5 12 12 11 10
3 10 30 28 28 25
4 25 70 66 66 60
5 50 71 67 66 64
6 75 74 74 73 73
7 100 75 76 75 75
8 150 76 77 76 76
9 200 78 78 77 74
10 250 76 77 75 78
11 500 79 77 78 76
12 750 78 76 77 78
13 1000 79 77 76 77

Table 6-2 Results for Configuration 1

Figure 6.3 Frequency Vs Events received for configuration 1

We observe that after reading number 7 (at frequency of 100 ms or more); total number

of events received tends to be constant, i. e. between 75-79. Note that, this frequency was 200 ms

while all the consumers were on the same board. If remote consumers are receiving an average

of 75 events with a frequency of 100 ms, local consumers should definitely receive 75 or more

events with the same frequency. We are still trying to figure out what causing this difference.

 28

6.2.2 Configuration 2 ation 2

1 Supplier on SN2 1 Supplier on SN2

N Remote consumers on SN3, where N = 1, 2, 3, 4 N Remote consumers on SN3, where N = 1, 2, 3, 4

1 local consumer on SN2 1 local consumer on SN2

 SN1

BS

 1 2
 3 4 5 6

 SN2 SN3

Figure 6.4 Multiple boards test: configuration 2 Figure 6.4 Multiple boards test: configuration 2

There are four possible experiments for this configuration for four different values of N.

Supplier pushes 100 events in each case. We test each case with different frequencies of pushing

events. For each case, we took seven readings, discarded two extreme readings and took average

of remaining five readings. We then studied average number of events received by consumers.

Table 6-3 contains the results.

There are four possible experiments for this configuration for four different values of N.

Supplier pushes 100 events in each case. We test each case with different frequencies of pushing

events. For each case, we took seven readings, discarded two extreme readings and took average

of remaining five readings. We then studied average number of events received by consumers.

Table 6-3 contains the results.

Number Number
Freq
(ms)
Freq
(ms)

Local
Consumer

Local
Consumer N=1/2/3/4N=1/2/3/4

1 1 1 1
2 5 3 2
3 10 3 8
4 25 6 20
5 50 25 33
6 75 27 36
7 100 30 37
8 150 32 36
9 200 33 37
10 250 32 36
11 500 31 38
12 750 32 37

BS

1 2

3 4 5 6

BS

1 2

3 4 5 6

 P C C C C C

 29

13 1000 33 38
Table 6-3 Results for Configuration 2

It is observable that by introducing just a single local consumer, the performance

degrades drastically. Results for N = 1, 2, 3, 4 are almost same. We need to look into this case

more deeply as to why it is behaving this way. We are still trying to figure out the reasons behind

this behavior.

 30

CHAPTER 7 - Conclusion and Future work

7.1 Conclusion
We draw the following conclusions.

1. If all the consumers are on the same board, then the implementation works fine for

frequencies greater than or equal to 200 ms. In this case, consumers receive an average of

75%-80% of events.

2. If consumers are on remote board and there is no local consumer, then consumers receive

an average of 75%-80% of events for all frequencies greater than or equal to 100 ms.

3. If we introduce a local consumer, then the performance drops down to 35%-40%.

7.2 Future work
There are few areas which we are going to implement in the future. These are

1. Failure Management: While developing and testing this model, we assumed that neither

the base station nor the gateway will ever fail. In case, if the base station fails, then we

need to choose a new base station. Gateways open a serial forwarder for each base station

on a particular port. At present, this port is hardcoded in the program. This needs to be

taken care of if we select a new base station.

If a gateway fails, we need to reconstruct the tree of gateways. We need to merge

the existing tree of motes of the failed gateway to some other gateway.

2. Algorithm Optimization: There are lots of places where we can optimize our

algorithms. One such optimization is discussed in Section 6.1.

We observe from Section 6.2.2 that by introducing a local consumer, the overall

performance degrades. We need to optimize the program code which processes a push

call.

3. Movable Motes: At present, we have studied the event service for static motes only. We

will test this event service for movable motes also. For example, a robot with a mote on

top of it is moving around, which is subscriber for the temperature event. Then, we will

study how our event service should be modified to handle this case.

4. Complex Events: We can imagine a set of complex events. For example, a mote is

interested in an event, for example, temperature > 50 and temperature < 60 and humidity

 31

> 40%. Then how various data structures should be modified to accommodate these

needs.

5. Tree structure of motes and wireless routing: In the present work, we have assumed a

fixed tree of seven motes. Wireless routing is also fixed. For example, if leaf mote wants

to send some data to base station, it will send data to its parent, i. e. mote 1 and mote 1

will forward the data to base station. Future modifications to this static structure will be

to have variable tree of motes and wireless data routing through TinyOS Multihop

component.

 32

 33

References

[1] OMG event service specification manual.

http://www.omg.org/docs/formal/04-10-02.pdf

[2] OrbixEvents Programmer’s Guide.

www.iona.com/support/docs/orbix/gen3/33/html/orbixevents33_pguide/intro.html

[3] TinyOS 1.x tutorial.

 http://www.tinyos.net/tinyos-1.x/doc/tutorial/

[4] Beej’s guide to network programming.

http://beej.us/guide/bgnet/

[5] Crossbow’s Stargate Netbridge User manual.

www.xbow.com/Support/Support_pdf_files/Stargate_NetBridge_Users_Manual.pdf

http://www.omg.org/docs/formal/04-10-02.pdf
http://www.iona.com/support/docs/orbix/gen3/33/html/orbixevents33_pguide/intro.html
http://www.tinyos.net/tinyos-1.x/doc/tutorial/
http://beej.us/guide/bgnet/
http://www.xbow.com/Support/Support_pdf_files/Stargate_NetBridge_Users_Manual.pdf

	CHAPTER 1 - Introduction to the CORBA Event Service
	1.1 Overview
	1.2 Event Communication
	1.3 Initiating Event Communication
	1.3.1 Push Model
	1.3.2 Pull Model

	1.4 Types of Event Communication
	1.4.1 Untyped Event Communication
	1.4.2 Typed Event Communication

	CHAPTER 2 - The Test bed
	2.1 Components
	2.2 Determining Board Size
	2.3 Selecting Gateway
	2.4 Creation of Test-bed
	2.5 Other Devices

	CHAPTER 3 - Event Service Interfaces and Architecture for Sensor Networks
	3.1 The push_consumer interface
	3.2 The push_supplier interface
	3.3 System Architecture: Hardware Setup
	3.4 System Architecture: Software Setup

	CHAPTER 4 - An Example Illustrated with Data Structures
	4.1 Steps to form a given topology
	4.2 System Operation
	4.3 Data Structures

	CHAPTER 5 - Basic Algorithms
	5.1 Algorithm to create tree of gateways
	5.2 Algorithm for advertize call
	5.3 Algorithm for subscribe call
	5.3.1 On motes (in nesC)
	5.3.2 On gateways (in C)

	5.4 Algorithm for the push call
	5.4.1 On motes (in nesC)
	5.4.2 On gateways (in C)

	CHAPTER 6 - Performance Analysis
	6.1 Test with one board
	6.2 Test with three boards
	6.2.1 Configuration 1
	6.2.2 Configuration 2

	CHAPTER 7 - Conclusion and Future work
	7.1 Conclusion
	7.2 Future work

