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CHAPTER 1

INTRODUCTION

Fluidized beds are of considerable importance to energy resources

conversion and energy conservation in view of their versatile applications

in different operations, such as coal gasification, coal liquefaction, oil

shale retorting, solid fuel combustion, biomass pyrolysis, catalytic hydro-

carbon synthesis, and waste heat recovery. The behavior of a fluidized

bed has been investigated extensively by numerous researchers since the

early 1940's. In spite of this and the fact that fluidized beds have

been successfully applied to many processes, (see, e.g., Kunii and

Levenspiel, 1969), their characteristics, especially local, microscopic,

mesoscopic or dynamic characteristics, are yet to be fully understood be-

cause of their complexity and because of the lack of suitable techniques

and facilities for studying them.

To characterize a fluidized bed, it is necessary to have a thorough

understanding of the hydrodynamics or aerodynamics of the bed. The hydro-

dynamics of the bed are known to be interrelated to fluctuations of

pressure or porosity around their mean values over the bed. It is worth

mentioning that fluctuations in parameters of the physical phenomena in

a process often reveal important characteristics of the system (see, e.g.,

Prigogine and Stengers, 1984). The nature of pressure or porosity fluctua-

tions in a fluidized bed is a complex function of various factors, includ-

ing particle properties, bed configuration, pressure, temperature, external

noises, and properties and flow conditions of the fluidizing fluid. Most

of these ractors affecting the hydrodynamics of the bed are stochastic in

nature, and indeed considerable effort has been spent to study them from
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stochastic or statistical points of view (see, e.g., Orcutt and Carnenter,

1971; Buker e_t al . , 1977); however, the majority of the so-called

stochastic investigations conducted in the past resorted to somewhat ad

hoc approaches.

It is the objective of this work to study statistically and

stochastically the hydrodynamic properties of a gas-solid fluidized bed.

The emphases are on the topics of bubble coalescence and breakage

phenomena as well as the screen and temperature effects on the bed

performances. In addition to the present chapter, this thesis contains

five chapters. Chaper 2 reviews the literature on three different

aspects of f luidized-bed hydrodynamics, including the bubble coalescence

and breakage phenomena, screen effect, and temperature effect. Chapter 3

deals with the modeling of bubble coalescence and breakage in a dispersed

system by the master equation approach. The proposed formulation can be

readily extended to the modeling of bubbling in a fluidized bed. In Chapter

4, the screen effect on the behavior of a fluidized bed is discussed.

Chapter 5 is concerned with the hydrodynamics of a fluidized bed at elevated

temperature. The concluding remarks and recommendations for future work

are contained in the last chapter, Chapter 6.
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CHAPTER 2

LITERATURE REVIEW

This chapter reviews the literature on three different aspects of

the fluidized bed, namely, the stochastic modeling of the bubble coal-

escence and breakage in a fluidized bed, the screen effect on a fluidized

bed, and the temperature effect on a fluidized bed.

2.1 STOCHASTIC MODELING OF THE BUBBLE COALESCENCE AND BREAKAGE

The bubble coalescence and breakage phenomena extensively influence

the hydrodynamic properties of a fluidized bed. These phenomena have been

observed to be stochastic in nature (see, e.g., Orcult and Carpenter, 1971;

Argyriou et al , 1971; Buckur et_ al . , 1977); however, it appears that only

limited effort has been made toward studying them from a stochastic point

of view. In this section, we first examine some previous attempts at

modeling bubble coalescence and breakage in dispersed systems in general.

This is followed by a review of the publications specifically concerned

with these phenomena in fluidized beds. The review focuses on those works

emphasizing mathematical modeling.

Valentas and Amundson (1966) were among the earliest workers to

mathematically model the coalescence and breakage of bubbles in a con-

tinuous dispersed-phase system. They resorted to a deterministic popula-

tion balance approach to determine the steady-state distribution of bubble

sizes; however, their model can not be used in a predictive manner be-

cause of the lack of information on the frequencies of coalescence and

breakage. To remedy this situation, various groups of workers (e.g.,

Ramkrishna, 1974; Bajpai et^ al_. , 1976; Coulaloglou and Tavlarides, 1977)
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have extended the population balance equation specifically to agitated

liquid-liquid dispersed systems in which the bubble coalescence and

breakage frequencies can be empirically evaluated. Argyriou et_ al., (1971)

have presented a population balance formulation to describe the bubble

growth in a fluidized bed following the mathematical framework proposed

by Hulburt and Katz (1964). Note that all these approaches are essentially

deterministic, based on the conservation of the bubble volume, and can

not realistically describe the stochastic nature of a fluidized bed.

Shah et al^. (1977) resorted to a simulation technique in solving the

population balance equation to analyze the dynamics of bubble populations

in a gas fluidized bed. Ligon and Amundson (1981 a,b) have developed

stochastic models to investigate the significance of the fluctuating

nature of fluidized beds on reactor performance. The fluctuating bubble

size distribution within the bed is simulated by stochastic mass and

heat transfer coefficients. Ho et al. (1983) have proposed a stochastic

renewal counting process to model the bubble formation.

The so-called master equation is the probability balance equation of

a Markov process (van Kampen, 1981). Fox and Fan (1984) have successfully

applied this formulation to the analysis of the residence time distribu-

tions in continuous stirred tank reactors. Their work indicates that

the master equation approach is worth exploiting for stochastically

modeling dispersed systems in general, and fluidized beds in particular.
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2.2 SCREEN EFFECT ON A FLUIDIZED BED

The heterogeneity caused by bubbling, slugging, and channeling in

a fluidized bed is undesirable because they reduce the extent °f fluid-

solid contact and, thus, the efficiency of the process (Bakker and

Heertjes, 1958, i960). It has been suggested that bubbles, slugs, and

channels might be reduced by inserting a screen or other mechanical

devices in the bed (Massimilla, et al. , 1956). Although the screen

prevents channeling and slugging, it causes other concomitant effects,

e.g., hindering the heat and mass exchanges among various regions in the

bed. The effects of screen insertion on the fluidized bed behavior were

investigated by different methods. Massimilla e_t al_. (I960) carried out a

photographic study of the flow pattern in a fluidized bed with screen

baffles, and Bailie et al. (1963) used the gamma-ray attenuation technique

to investigate the longitudinal solid density distribution in a gas-solid

screen fluidized bed.

The effect of screen becomes pronounced as the number and fineness

of the screens are increased (Winter, 1968). The root mean square

values of pressure fluctuations are lower for a packed fluidized bed

than those of the same fluidized bed with no packing. Furthermore, a

maximum is observed on a plot of the root mean square vs. flow rate for

each packing; when no packing is used, the root mean square values in-

crease continuously with the gas flow rate (Kang et al. , 1967). On the

other hand, it has also been observed that gas channeling and holdup of

particles in packing interstices exist in a packed bed (Sutherland et al.,

1963).
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Several investigators (Sutherland et al. , 1963; Rang et al . , 1967;

Winter, 1968) examined experimentally the effect of open and cylindrical

packings and screen inserts on the stability of the gas-solids fluidized

bed. The diameter of the open and cylindrical packings and the opening

of screens employed were much larger than the average diameter of

particles.

To enhance our fundamental understanding of the effect of screen

packing on the performance of the gas-solid fluidized bed in terms of

pressure fluctuations, it is highly desirable that a bed with the simplest

possible configuration be examined; in other words, a bed with a single

screen installed across the entire section of the bed should be investi-

gated.

2.3 TEMPERATURE EFFECT ON A FLUIDIZED BED

Although the majority of f luidized-bed processes are operated at

elevated temperatures, relatively little effort has been spent to in-

vestigate the hydrodynamic behavior of fluidized beds at such temperatures.

Various aspects of the fluidized bed behavior, such as the minimum

fluidization velocity, the bubble frequency, and the apparent bed viscosity,

change significantly with temperature (Mil et al . , 1973); however, most

of the research in the past only emphasized the variation of minimum

fluidization velocity (Singh et al. , 1973; Broughton, 1974; Saxena and

Vogel, 1977; Desai et al. , 1977; Doheim and Collinge, 1978; Sovboda and

Hartman, 1981a,b; Batterill et al, , 1982). Yoshida et al
.

(1975) were among

the first to publish data on bubble sizes at high temperature. Geldart and

Kapoor (1976) studied the temperature effect on the minimum bubbling

velocity. Yamazaki et al. (1984) investigated the characteristics of

slugging at elevated temperatures.
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Research efforts on the dynamic behavior of fluidized beds, such

as pressure fluctuations, at high tempertures have indeed been limited.

Svoboda et al . (1983) analyzed the pressure fluctuations in a gas-solid

fluidized bed at elevated temperatures. Their results show a significant

temperature effect on the pressure fluctuations in terms of the major

frequency and amplitude; however, only a limited number of data are

presented by them. Furthermore, since the pressure and temperature are

inversely related to each other for a gas, the temperature effect on the

fluidized bed behavior can be deduced from the pressure effect (Weimer

and Quarderer, 1983; Knowlton and Hirsan, 1984).
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CHAPTER 3

STOCHASTIC MODELING OF BUBBLE COALESCENCE AND BREAKAGE

BY USING THE MASTER EQUATION

The bubble coalescence and breakage phenomena are Important in studying

a multi-phase dispersed system in view of their direct influence on the

system dynamics and behavior. Specifically, it is well known that the

knowledge of the evolution of the bubble size distribution is of signif-

icance for predicting the parameters of the system, such as the inter-

facial area and the rates of heat and mass transfer between phases, which,

in turn, govern the system performance. While the bubble coalescence and

breakage are stochastic in nature, all the previous attempts to model the

phenomena resorted to the deterministic approach, or at best, to a some-

what ad hoc stochastic approximation. In this chapter, a comprehensive

and systematic methodology, which is capable of not only describing the

macroscopic (deterministic) component of bubble coalescence and breakage

but also recovering the microscopic or mesoscopic (stochastic) information

about the bubble population is developed. The methodology is known as the

master equation formulation followed by its expansion (van Kampen, 1981).

For simplicity in stochastic modeling, an assumption of the Markov

property can be imposed. This often gives rise to the absolute probability

balance (or the Master equation) of the fluctuating variables being modeled.

Expansion of this equation around the macroscopic value of a variable leads
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to both a macroscopic (deterministic) expression (population balance) and

a stochastic diffusion equation characterizing the dispersion around the

macroscopic mean value. A logistic flow chart of the stochastic modeling

work is presented in Fig. 3-1. It will be shown, by use of the master

equation expansion, that we can first obtain the bubble population balance

equation representing the macroscopic profile. In addition, a Fokker-

Planck equation is generated from the expansion, recovering the mesoscopic

information about the bubble size distribution. Thus, a fairly complete

description of a stochastically behaving system is achieved by resorting

to both the population balance and Fokker-Planck equations. This is

illustrated with a simple example of a two-bubble-size batch system for

which the analytical expression is attainable.
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3.

1

SYSTEM DESCRIPTION

Consider a multi-phase closed system; the probability for this system

to have a bubble size distribution of {n} » [n , n , n , ..., n^) at time

t is denoted as P((n},t). Figure 3-2 depicts a P-in}-t relationship.

P({n},t) signifies the probability that the system, at an arbitrary time t,

consists of n (number of) bubbles of size le , n bubbles of size 2c, and so

on, where n.'s are random numbers and e is an infinitesimal volume
l

element. The following assumptions are imposed to derive the master

equation of the system;

(1) The time interval, At, is chosen sufficiently small so that no

more than one transition, bubble coalescence or breakage, is

observed during this time interval.

(2) Coalescence is binary; a target bubble emerges at the expense

of two and only two smaller size source bubbles. Higher order

collisions can be treated as binary coalescence occurring in

sequence if the time interval is suitably chosen.

(3) Bubble breakage is also binary ; two and only two daughter

bubbles are created from a single bubble per breakage.

3.2 MASTER EQUATION FORMULATION

Figure 3-3 shows the paths of the system entering and leaving its

reference state {n} at time t in the light of the assumptions made in

section 3.1. Performing a probability balance around the reference

state gives
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(prob. of the system remaining in state !n} at time t+At)

At

' corresponding

At -{ breakage

,. intensity

, At)

(1)

P({n}, t+At) = I P(fa },t)B*({n },{n})At + I P({n
b

) ,t)a*({n
b

) {n})At

{a } (n )

a b

+ P({n},t)[l - t S*((n},{n
c
})At

{n }

- I a*({n},{n,})At ]

a

{n,}
a

(2)

where sets {n}, {n }, {n, }, {n }, and (n } are defined in Fig. 3-3. The
a b c a

intensity functions a* ( {*} , {*}) and B*({*}, (*)), can be defined

through visualization of the following processes based on the binary

coalescence and breakage assumptions,

(coalescence) ie + (j-i)e tJ~>je

i/ 2 )c + a/2)e
B(

-1/2 ' u>i
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(breakage) je "^^^ ij-Dc + ie

These mechanisms lead to

3*({*},{*}) - dn./dt ~\

a <1'
.1 /2)

->(J/2) F + CJ/2>c

%J^n,n. .; i/j/2, i<j

S(i,3)
n4/ ,(n,-, -1); 1-3/2

n "j/2'-"j/2

»*({*},{*}) -dn./dt = a(j,i)n.; i<j (3)

Applying the definitions of the intensity functions into eqn. (2),

explicitly specifying the upper and lower bounds of the resultant

equation after taking the limits of At-*0 yields the probability balance

equation for the system,

aP( ' nl - t)
l I -

B%li
(n .+l)(n. ,+l)P({n .},t)

3t ._ . , Q i j-i al

l fflM»(„.
/2+2 )(,j/2

H)P((n
a2

),t)

3=2

even

*>
l

2
J

X £ a(j,i)(n.+l)P({n
bl

},t)

3-3 i-1

+ E a(j,j/2)(n.+l)P({n
b2

},t)

3=2
even

- E 2. [

B-^^- n.n._. + a(j,i)n.]P({n},t) (4)

j=3 i=l



3-6

An equation involving incremental changes, e.g., eqn. (4), can be

written in a more compact form by introducing the "step operator" ad-

vocated by van Kampen. The step operator, E , is so defined that the

subscript, a, denotes the position while the superscript, b, denotes

the step size of the incremental change. For example,

E
b
(x + x ) = (x + b) + x (5)

a a c a c

Thus,

E^ 1 .E.Vn. . P({n},t) - (n.+l)(n +1) P(!n'),t) (6)
i j-i j i J-i

where

{n} = {vv
{n'} =

{vv

n., ..., n. ., ..., n }

i 3-1 :

n +1, . . . , n. ,
+ 1, . . . , n.-l, . . .}

i l-i 1

By resorting to the step operators, the master equation, eqn. (4),

can be rewritten as

P({n},t) = £ I [^-if1 CH^l
. E"

1
-Dn.n._. P({n},t)]

j=3 i=l

+ z
,B(iZ|o)

(

2 /2E
-l.

1)nj/2(nj/2 .1)p({nKt)1
j= 2

even

CO L

2

+ E E Mj.iKET 1
eT^. E

1
-l)n P({n),t)]

j=3 1=1
r J i

3

+ E a j,j/2 E.^ E
1

-l)n. P({n},t)] (7)
.

J j/2 1 J
J=2
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I
[MlJl (ElE 1

.
E"1 _1)n . n .

P]

j=3 1=1
n i J-i J i J-i

+ ^ [
»i^

(

.;^i.
1) .j(.j

.1)F]

+ I I [a(j,i)(E.
1
E.

1
.E

1
-l)n.P]

j=3 i=l

+ Z [a(2j,j)(E"
2
E^ -l)n P] (8)

j=l J J J

In spite of its obvious physical significance, only in rare cases can

the nonlinear master equation*, eqn. (8), be solved explicitly. A systematic

means for resolving this difficulty is the master equation expansion. The

technique is developed in the form of a power series expansion in a

parameter Q. Accordingly, we shall first transform eqn. (8) into

an approximate continuous form. To accomplish this, we replace the dis-

crete variable set {n} with a continuous function n(V) as illustrated in

Fig. 3-4. The step operator and its effect on a continuous function n(V)

are now defined as

E
b
n(V) = n(V) + bl(V-a) (9)

a

where I(V-a) is an index function defined as

* The non-linearity of the master equation is perceived in terms of its

coefficients

.
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= elsewhere

Also, in reference to Fig. 3-4, we can write

n = n(-c)

n
2

= n ("2 E ^

n. = n(~^) = n(v) (10)

and

n. = n(^f^e) - n(v')
J 2

/ -\ ,2 j-1 2i-l , r ' \
a(j,i) = a(ri—z '~^>

—c >
= a (v .

v )

3(i,j) = Bf—e.^E) - S(v.v')

(ID

The master equation expressed in continuous form is then (see APPENDIX

A)
f j,

P(n(V),t) = lira- (f";
2

a(v',v)[E 'e J E
1

, -l]n(v ' )Pdvdv

'

E+
£ \0

v v -v v

+ !°T a*(u,v)I(w-2v)[ E~
2

E
1

-1 IndJPdvdm
v

"

» 2 b(v,v') r
E

l
E

l
E
-l _ 1 ]

I1 (v ) n ( v
'_v )pdvdv'

° v v -v v
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«y> b*(v,») I(uK2 )( E
2
E
-1

_ 1]n (v )[ n (v ) -lJPdvdu
Q V w

(12) J

The presence of step operators in eqn . (12) renders its mathematical

manipulation unwieldy. This can be circumvented through clarification of

the relationship between the step operator and Taylor series expansion.

A Taylor series expansion applied to an arbitrary function f(x) yields

2

f (x+Ax) - f (x) = f^(Ax) + ~ ^|(Ax)2 + . . . (13)

9x

Here, Che function of interest is p(n,t). Expanding it with

respect to n yields

2

p(n+An,t) - P (n,t) = f^(An) + \y ^-f
(An)

2
+ . . . (14)

where An can be chosen to be bl(V-a); by definition [see eqn. (9)]

(E
b
-l) P (n,t) = b|£| +|J 4| + -'-> (15)

a 3n
lv=a 3n l V=a

By operating both sides of eqn. (15) through a second step operator, we

obtain

E^-DpCn.t) - E-<bN + |J4| + ..., (16)
V=a dn '

V=a

The step operator has no effect on the right hand side of this equation

because all terms inside the parentheses are constants; thus,

d„b ,_ ^ ,,_ ., _,_ jIpI J.d_l_P.| 4. ...1
E
c
E
a
p(n,t) - [p(n,t) + d^| + 2!~ 7^

'v=c ' 3n 'V=c

b
3n I, 2' 2

+ •• ( 17 '

'V=a 3n I

or equivalent ly

,



(#-i>pe.t> - iftl +$rH|
2 ,2

.! 2
V=a 3n v=a

3-10

'V=c 3n ' v=c

Repeating the procedure gives

,„b d„f .. , 3| ,

b
2

3
2

(E E E -1) = b— + -r-. ~ace 3n „ 2! . 2
'V=a 3n

(18)

12 2

V=c
2!

3n
2

' V=e 3n

(19)

3.3 MASTER EQUATION EXPANSION

Due to the law of large numbers, we can expect that the probability

of a random variable, e.g., n(V), to have a distribution with a sharp

maximum around its macroscopic value, denoted here as n=£20, and a width

of order fi

2 2
. Therefore, we can write

n(V,t) = fi0(V,t) + fi\(V,t) (20)

This equation is the basis of the so-called master equation expansion in

which a random variable is expressed as a linear combination of two parts,

namely, a deterministic component and a stochastic component. The ex-

pansion parameter U governs the extent of fluctuations. Often, Q can

simply be the size of the system. Also in eqn. (20), is the determin-

istic solution while x is a new random variable replacing n. Accordingly,
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the probability distribution function p(n,t) can be rewritten as a

function of x as

p(n,t)dn = u(x,t)dx (21)

Equations (20) and (21) lead to a sequence of transform functions

(22)

(23)

3n = £!
2
3x

3x 3n 3x 3n

3tt _ _9_n ^p j)r\ dp^ dr\

3t " 3x 3t 3x 3n at

rit 9x dt (24)

From eqns. (19) and (22), we have

(E
b
E
d
E
f

-1) i W- !i -1
ace 3x

-k 3

1

+ dfi

+ fn V3x

2 2

+ ^ n"
1^-

2! ,2
3x .

V=a

2 2

n 2!
V

' ,2
V=c 3x

V=c

V»e

2 2i

2!
3x

2
lv=e

(26)

Note that eqn. (26) is essentially eqn. (19) written in terms of fi with

higher order terms from the Taylor series expansion truncated . The

truncation will not cause any significant error if the parameter is

suitably chosen . Substituting eqns. (20), (25), and (26) into the

master equation, eqn. (12) , yields
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3*_ nH 30 i!
!

at at ax

i i co o - L^ a

Lim -< / / a(v'.v)[-Sl «-

+0
£

-h _a_

3x

i -i a

+ 2" 7T
i ,-i

3x

i .-ia
2

V=v

. (S!0(v') + fi^x(v'))7idvdv'

V=v'

h a| x „-* _a|
+ / / a*( u) ,v)I0o-2v)[-2n ^- + n

ix lx

2
3x I 3x^1 V=ui

V=v

(£20 (uj) + n
2x(w))itdvdu

" 'V=v

- ^ w
V=v -v ' V=v

3x ..
V=v

x

1 „"1 3

9x I

.(!!0(v)+ n''
2x(v))(S20(v'-v)+f!

2x(v'-v))Tidvdv'

+ rr^u^vx^i aJf f3x[

4 n-i a
+ ^ a —

;

z
ax'

+ I B
-i 3

](ji(8(v ) + tr x(v))
2

3x 'V-u

..(n0(v)+fi x(v) -l)ndvdw (27)
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Collecting terms of order ft in eqn . (27) gives rise to the following

macroscopic equation for the system;

_30 3ff_

3t 3x

lim -{ r I
2
a(v',v)[- \-\ - \-\ + \-\ ]0(v')Tidvdv'

e^O
€ dx

lv=v
dx

lv=v'-v
,x

lv=v'

+ / / a*(u),v)I(u-2v)[-2 — + T~\ K
3xl V=v

3x|
V=u>

(u)Trdvdw

+ /" /
2
b(v,v')[|- + |- - f- ]0(v)0(v l -v)TTdvdv'

'V=v 'V=v'-v 'V=v'

+ /" /" b*(v,w)I(u-2v)[2|-| - |- ]0(v)0(v)Tidvdu,. ) (28)
dx

lV=v
X|

V= a)

Collecting terms of order from eqn. (27) yields the Fokker-Planck

equation of the system given below ••

— - lira - < / / a(v',v)[(-^-
3t

e->0
£ 8x

lv=v
+§- )x(v'i>

V=v'-v IV=v'

+ M-J2\ 2
3x I

+ —• ) 0(v')]ndvdv'

V=v'-v
3x

V-v'

+ J"°°
/" a*(u,v)I(M-2v)[(-2 ^A +

j
)x(w)

V=v 'V-W

2 t 2

+ y(4 ^ +^1 )0<fc>)]irdvdw

3x
v=v

3x
V-a

oo 3x|
v=v

3x,
v=v'-v

3x|
v=v
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i s
2

r 3
2

I

(0(v)x(v'-v)+0(v'-v)x(v)) + -(—=- + —J\1
3x

2
' 8x

2 'V=V-v
V=v

3
2

I

+^ )0(v)0(v'-v)]itdvdv'

3x I
,

V=v

+ S" r b*(v,u1 )I(w-2v)[(2 |-J - -iM )

V=v V"ui

2 . 2 I

(20(v)x(v)) + -|(4 ^J + ^~2 )0
2
(v)]7idvdui

3x „ 3x I

V=v V=u)

(29)

Carefully rearranging eqn. (28) leads to a compact form (see Appendix B)

30(V)

3t
/ a' (v,V)0(v)dv

V

- /
V
a'(V,v)0(V)dv

I
2 b'(v,V)0(v)0(V-v)dv

- !°° b'(V,V+v)0(V)0(v)dv (3°)

The term on the left-hand side of the above equation denotes the rate of

change of the bubble density (for bubbles of size V). On the right hand

side of the equation, the first two terms represent the bubble density

increase and decrease, respectively, due to bubble breakage while the

last two terms those due to bubble coalescence. Equation (30) holds

for every possible bubble size V. Thus, the resultant set of equations

can be used to solve for a bubble size distribution in the system at

any instance.
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Equally important is the information that can be retrieved from

the Fokker-Planck equation, eqn. (27). By applying an approach similar

to that employed in deriving eqn. (30) from eqn. (29), we can recover

any moment of the random variable x. For instance, the first and the

second moments of x are, respectively (see Appendix C)

,

^^ - /"a'(v,V)<x(v)>dv
dt

~ f
V

a' (V,v)<x(V)>dv

+ f
2
b'(v,V)[0(v)<x(V-v)>+0(V-v)<x(v)>]dv

/ b'(V,V+v)[0(V)<x(v)>+0(v)<x(V)>]dv (31)

d<x(V)z>

dt
= IS a'(v,V)<x(v)"'>dv

V 2
- J" a'(V,v)<x(V) >dv

V

+ 2/
2
b'(v,V)[0(v)<x(V-v)

2
>+0(V-v)<x(v)

2
>]dv

- 2/°° b'(V,V+v)[0(V)<x(v)
2
>+0(v)<x(V)

2
>]dv

+ f a'(v,V)0(v)dv
V

+ hf
V

a' (V,v)0(V)dv

+ I
1
b'(v,V)0(v)0(V-v)dv

+ r b'(V,V+v)0(V)0(v)dv (32)
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3.4 EXTENSION TO AN OPEN SYSTEM

The master equation model established in the previous sections

is for the closed system. Nevertheless, it can be extended to an

open system simply by including terms for input and output in the

right-hand side of eqn. (12). An example of such a system is a

fluidized bed where bubbles are generated from the gas distributor

at the bottom and disappear from the top. The input term is

In = !" nC(v)P(n(v)-I(V-v),t)dv-; f£(v)P(n(V) , t)dv (33a)

In = f" S15(v)(E
v

1
-l)P(n(V),t)dv (33b)

and the output term is

Ou = /* ?<v)P(n(V)+I{V-v),t)dv-/°°nc<n(V),t)dv (34a)

Ou = /" ?(v)(E
L
-l)n(v)P(n(V),t)dv (34b)

where ftC(v)dv is the rate at which the bubbles of sizes ranging from v

to v+dv enter the system, and C(v)dv is the rate at which the bubbles

of sizes ranging from v to v+dv leave the system. Thus, the first term

in eqn. (33a) is the rate of change of the probability for the system to

reach a reference state n(V) , while the second term that for it to leave a

reference state. The terms in eqn. (34a) can be interpreted similarly.

Note that eqn. (33a) or (33b) does not explicitly contain the random

variable, n(V), because the mode of bubble generation at the distributor



3-17

is specified in the present modeling without regard to the bubble coalescence

and breakage governing the system behavior. Also note that & appears ex-

plicitly in this equation, and thus the input term represented by the

equation contributes to the population balance equation resulting from the

master equation expansion.

3.5 A CASE STUDY: TWO-BUBBLE-SIZE SYSTEM

A simple two-phase closed system, consisting of an emulsion phase

and a bubble phase, which is restricted to having only two different

bubble sizes, is employed to illustrate the master equation expansion

technique. An example of a two-bubble-size system can be a fluidized

bed or a bubble column under certain condition. The case study can be

initiated by writing the system volume conservation equation for the bubble

phase, namely,

V - a V + n
2
V
2

(35a)

From eqn. (20), we obtain

V = (0 12 + x^^ + (0
2
« + x

2

«"2)V
2

(35b)

where V is the total volume of the bubble phase, a the total volume of

the system, n the number of smaller bubbles of volume V , and n^ that

of larger bubbles of volume V . Since the system is of two bubble sizes,

it is obvious that V =2V . Let a be the bubble breakage rate and b^

the coalescence rate. Hence, at any time instance,

N = V/V
L

= n-(t) + 2n
2
(t)

= (0 (t) + 20
2
(t))i2 + (x^t) + 2x

2
(t))S)'

2 (36)
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In what follows, time t will be eliminated for simplicity; in other

words, n , n , 0. , 0, , x , and x are all understood to be functions

of time.

Master equation expansion gives rise to the following sequence

of equations, corresponding to the sequence of equations, eqns. (30)

to (32).

(i) Population balance equations:

d0, ,
t = a - b (37a)

dt 21
W
2 12

W
1

^1 = -i, + ib
2 (37b)

dt 2 21*7 2 12
P
1

(ii) first moment equations:

^il
= •2l<V-b

12*l
<V (38a>

TE* - -^21<v4 b12VV (38b)

(iii) second moment equations:

2
>

-^ - 2a
21

<x
1

2>-4 b
12 1

<x2> + a
21 2

+ b
12 0j

(39)

2

"J " " I a21<V + b
l 2VV +

I
a
21 2

+
\

b
12*l

(40>

Of these seven equations, six are independent, from which six unknowns,

2 2
, , <x >, <x >, <x">, and <x

2
> can be determined.

First, the sum of eqn. (37a) and twice of eqn. (37b) gives

^W. . o (*>
dt
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from which we conclude that

X
+ 20

2

is constant. In other words, we can write

+ 20,, -
X
(O) + 20

2
(O) (*2)

The equality must hold under any circumstances, even when

2
(O) -

Thus,

V (43)

1
(O) + 20

2
(O) =

1
(O) - y^

and

a +2 = -2- = -A W4)
w
i ^2 v n n

This implies that 0, can be expressed in terms of
X

or vice versa.

Consequently, from eqns. (37a) and (44), we obtain

d0, a„ n
N4 - -W - v - bi2<

(45)

This is a nonlinear first order O.D.E.; its solution is (see Appendix D)

,

(0)-(A+B) A-B -2Bb
12

t

1_
(0)-(A+B) A+B

6

h" (A + B) ~
l(
O)-(A+B) =255^" (46)

1_

1
(O)-(A-B)

e

and, thus, we find from eqn. (44)

= I(!i _ rt
)

(47)
w
2 2

l
n i
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where

a
21

A = - j— (48)
4b

12

„ 1 /.
a
21 .2

" 2a
21

N
l

2 j 2bu b
12

n

Taking the limits as t + ro
, we find 0-j converging to a constant value

of (A+B) , which is the steady state solution given as (see

Appendix E)

-a.^+L.V + 8a,,b N n

0, = A+B =
21 V 21

., r

21 12 L
(50)

is 4b
12

r,

This together with eqn. (37a) yield (also see Appendix E)

b
12„,2

2s a
21

is
(51)

Equations (46) and (47) are the transient solutions for the

macroscopic bubble densities. Next, we shall examine the stochastic

behavior of the system under a macroscopically steady-state conditon.

i.

To do so, a small perturbation, of order 2
, of the fluctuating com-

ponent, x, will be imposed on the system, and the subsequent behavior

of the first and second moments of the fluctuating component will be

studied. The solution for the first moment of the random variable, x,

is again initiated by summing eqn. (38a) and two times eqn. (28b),

obtaining

d(<x
:
>+2<x

2
>)

.11

This results in

= (52)
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<x > + 2 <x> - <x (0)> + 2<x
2
(0)> (53)

By resorting to the macroscopic steady-state version of eqn. (20), i.e.,

n(t) = n + x(t)Q S (54)

we obtain the initial conditions

<x,(0)> = -1 r-^- (55)
1

sv*

... 0, n-n,(0)
<X

2
(0)> = Is ^1 ( 56 )

2n'
5

n (0) and n (0) in these expressions are always integers while

<x (0)>, <x (0)>, and are real numbers. <x (0)> and <x
2
(0)>

generally are not zero. Combining eqns . (38a) and (53) yields

X
l d<x > t a

;
l- — " -/ <^ + b

12 ls
)dt

Q)>
a21 «x

l(
0)>+2<x

2
(0)» o

1 a
21
+2b

12 ls (57)

Thus,

(•,,+».,#. )<x > - a (<x (0)> + 2<x (0)>) a
21
+2b

12
gls

21 J-*- i s -
1 t± = exp I (.- ^

2b, n 0. <x
1
(0)> - 2<x (0)>

12 Is 1 ^

2b^ ls
<x

1
(0)>-2<x

2
(0)> VMs

<x
i
>= ^^As Pl( 2

)tl

(58)

+
~ a

21
+2b

12 ls

from which <x > is solved to be

21
«x

1
(0)>+2<x

2
(0)»

(5g)
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b
12 ls

<X
l
(O)> -<X

2
(O)>

..
a
21
+2b

12
g
lsu1exp [( 7. )t]

a
21
+2b

12 ls

b.,0, (<x,(0)>+2<x (0)>)

+
12 1S

},. „
2

(60)
a
21
+2b

12 ls

The boundary conditions require that as t

<Xl O)> = <x
2
(~)> = (61)

from which we can show that

<x > + 2<x
2
> = <x

1
(0)> + 2<x

2
(0)> = (62)

Hence

,

2b
12 ls

<x
1
(O)>-2<x

2
(O)> VVls

<x > = -r=r—

3

exp [( ; )tj (63)
1 a

21
+2b

12 ls
2

b.,0. <Xl (0)>-<x,(0)> a +2b
««>.- 121s

I
2

exp [(-
2L 12 1S

)t] (64)
2 a

21
+2b

12 ls
2

These results show that the means of the random fluctuations will

converge exponentially to zero as time proceeds.

2
Furthermore, the second moments of the random variables <x^>

2
and <x„> can be solved from eqns. (39) and (40) for the macroscopic

steady state. Taking the second derivatives of eqns. (39) and (40)

gives rise to

2 2 2 2
d <x,> d<x> d<x >

dt

2 2 2 2
d <x > . d<x > d<x >

-^=-! a21^ + b12*ls^ C66)

dt



Summing the results gives 3-2J

d
2
(<xj> + 4<x^» _ (67)

dt

or equivalently

,

2 2 . (68)
<x^> + 4<x

2
> - c

x
t + c

2

From the equation above, <x
2
> can be expressed in terms of <x,>

.

Substituting the resultant relationship into eqn. (65) yields,

d2<V . £ 1 f^, - * # ^- c«
T" =2a

21
(T"4 dt > *

b
12

W
ls dt

dt

2
Setting y = d<x >/dt, we obtain

y " a
21
+8b

12 l E

which, in turn, gives

2
<d x > a a

21
c
l (71)-^ . , . ^ exp[. (

-|i + 4b
12 l8

)t] ^8b^

2
°3 _, r_/^2i + 4b_.a. )tl + rl 1

a t + c
4

<v -
-

(i
2t4a:) exp[ "

(^ + 4b^)t] + ^^a
(72a)

Substituting <x
2
> into eqn. (68) gives

a 2(^,-0, t c
,

c i 21 , , 1 12 Is "t

2, . _/ 1 . > expf-HP + ^i^' 1
+
7..+8b..0. " 4

-fcsfcr? expM~ + "Mt] + 7̂ ^*r '21121s
(72b)
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2 2
For the initial condition, <x (0)> and <x (0)> being zero at

t=0, we conclude that

c
4

- 2c
3
/(a21+8b 12 ls )

2 2
On the other hand, <x > and <x > must satisfy eqns. (39) and (40)

under any circumstances. Substitution of their expressions back into

the governing equations gives the answers for c and c (see Appendix F)

Cl
- 6a

21 2s
(73)

4b
12

gL (4b
12

g
ls-

a
21) (74)

°
3 ~ a

21
+8b

12 ls

Equations (72a) and (72b) represent the macroscopically steady-

state solutions for the second moments of the fluctuating components.

Recalling that the means of the fluctuating components, expressed as

eqns. (63) and (64), converge to zero as time proceeds, we may use

<x
2
> and <x

2
> as estimators for a

2
and cy variances of the fluctuating

components, by definition

o
2 = <x

2
> - <x>

2 OS)
X

When time approaches infinity, we see from eqns. (72a) and (72b)

that a
2

and a
2
also approach infinity if the system is unbounded.

This is in accordance with the expected behavior since the master

equation expansion assumes that the process is Gaussian distributed on

an unbounded state-space, whose variance is known to diverge linearly

with time. However, for a bounded system which is physically realistic,

it is expected that the maximum of the variance of the fluctuations is of
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order of the system size. Therefore, the master equation expansion is

valid for such a system sufficiently far from the boundaries. The time

required for a stochastic system to reach its maximum randomness

can be estimated from eqns. (72a) and (72b). It will be approximately

equal to the time necessary for the variance to reach the system

size, a. After this point, the original Fokker Planck equation resulting

from the master equation expansion must be solved for the probability

density function of the fluctuating component subject to appropriate

boundary conditions, e.g., reflecting boundaries; we can no longer

exploit the governing differential equations for the moments, e.g.,

eqns. (31) and (32), of the probability distribution.

3.6 DISCUSSION

It has been shown in this chapter that a fairly complete descrip-

tion of a stochastically behaving system can be obtained by the master

equation modeling technique. The tenet of the proposed methodology

manifested itself in two major steps.

Step 1. Imposition of the Markov property assumption and defini-

tion of the transition states of the system. This often gives rise to

a discrete-state absolute probability balance equation, i.e., the

master equation.

More often than not, the resultant master equation can not be

solved explicitly. Thus, a systematic approach need be employed to

find its approximate solution.

Step 2. Approximate solution through master equation expansion.

This leads to a population balance equation and a Fokker-Planck

equation.



3-26

Inspite of its usefulness, implementation of the master equation

expansion involves tedious manipulations. Among the difficult mani-

pulations encountered are the transformation of the discrete-state

master equation into its equivalent continuous form and the power series

expansion of the random variable.

In this chaper, the methodology is illustrated with a simple

example . Although real-word problems , e.g., the bubble behavior

in the fludized bed are far more complicated than this example,

they can be modeled similarly. Upon the completion of the expansion,

governing equations can be generated not only for the first and

second moments discussed in this chapter, but also for the higher order

and cross moments. Thus, information on the mean and fluctuating

component of the system can be obtained by solving a sequence of

these simultaneous differential equations. In principle, this can be

implemented with the aid of digital computer; however, in reality,

this may often be extremely difficult, if not impossible.
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NOTATION

a, a* - bubble breakage rate constants defined in eqn. (A-9)

,

a

'

= ensemble bubble breakage rate constant defined in

eqn. (B-10), l/cm^ sec

b,b* = bubble coalescence rate constants defined in eqn. (A-9)

,

1/sec

b

'

= ensemble bubble coalescence rate constant defined in

eqn. (B-10), 1/sec

E = step operator defined in eqns. (5) and (9)

I(v-a) = index function

n(V) = bubble size distribution function

{n} = random number set representing a discrete bubble size

distribution

n. = size distribution random number representing the

number of bubbles of size ie

= random number sets defined in Fig. 3

(n }, {n,}
c d

p(n, t) = probability density function, a continuous version of

P({n}, t)

P({n}, t) = probability of the systems to consist of a discrete

bubble size distribution of {n} at time t

t = time, sec

3
V - bubble volume, cm -

x random variable defined in eqn. (20), l/cm

<x> = first moment of a random variable x

2
<x > = second moment of random variable x
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Greek Letters

a = bubble breakage rate constant, 1/sec

a* = bubble breakage intensity defined in eqn. (3), 1/sec

3
8 = bubble coalescence rate constant, cm /sec

B* - bubble coalescence intensity defined in eqn. (3), 1/sec

3
e = infinitesimal volume element, cm

C = the output rate of bubbles of sizes ranging from v to v+dv per

per unit volume

£ = parameter of the input rate of bubbles of sizes ranging from

v to v4-dv, ft£(v)dv

tt = probability density function defined in eqn. (21)

3
f) = bubble number density, l/cm

3
fi = system volume, cm
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Draw the process transition diagran

'
'

Obtain the intensity function.

Derive the Kolmogorov forward differential

equation for the transition probability

l_f
Derive the Master Equation

(Absolute probability balance)

Solve the Kolmogorov forward

differential equation

Expand the master equation

pulation balance equation

Obtain the absolute probability
density for the random vector

and Fokker-Planck equation

Solve for the mean and the
higher order cumulants of the
random variables

Formulate the differential equat ion:

for the moments from Fokker-Planck
L

nuiirirn

r
Evaluate the mean
order cumulants o
variables

and the higher
the random

Fig. 3-1. Logistic flow chart for stochastic modeling.



P({n},t)

Fi „. 3-2. P-{n}-t relationship for Illustrating the bubble size

distribution in a dispersed bubbling system.
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.
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APPENDIX A

CONVERSION OF EQUATION (8) INTO A CONTINUOUS FORM, EQUATION (12)

To convert eqn. (8) into a continuous form, we let

V = (i - |)E

It 1
1v = (j - j)e

-M
•

v ' + i

(A-l)

(A-2)

The upper bound of the summation over i is

i . i
(j

- 1) (A-3)

Z + I - I(il + 1-1) (A-4)
e 2 2 e 2

2v' - 3e
v = (A-5)

4

The second and fourth terms of eqn. (8) can be rewritten, in continuous

notation, respectively, as

f Z
B(V '" ) I(ol-2v)[E

2
E"

1
-l]n(v)[n(v)-l]P(n(v),t) (A-6)

e a v ui

U)=0 V="T-

and

E
™ a(a),v)I(oj-2v)[E

v

2
Ej

j

-l]n(u)P(n(v) , t

)

(A-7)

B-0 V-|
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respectively. Here I(w-2v) is an index function defined in eqn. (9) in

the text. Equation (8) now becomes

P(n,t) = T. t o(v',v) [E"
1^"*

v
E^-l]n(v')P(n,t)

v-f v-|

+ f ? a(iii,v)I(u-2v) [E~ E - l]n(u))P(n,t)

2v'- E

- B(v.v')
[E

1
E1 E

-l]
n(v)n(v'-v)P(n,t)

e c f! vv-vv
v= V=

2 2

» | MXiHl I(a)-2v)(E
2
E"

1
-l]n(v) [n(v) -1 ]P (n, t)

e n v ui

ai=0 v=x

(A-8)

Here, a(*,*) and B(*,*) are only variables which left defined in

discrete form in the equation above. In order to complete the trans-

formation, they need be redefined in continuous forms.

Let us set

a(v' ,v) = a(v' ,v)/e

a*(u,v) = o(u,v)/e

(A-9)
b(v,v') = B(v,v')/e

b*(v,oi) = B(v,uj)/e

under the condition that the following properties hold.

1) a(2v,v) - a(v,0) -

2) a*(2v,v) = - limit a(v',v)
1
v'+2v

(A-10)

3) b(v,2v) = b(0,v) =

4) b*(v,?v) = — limit b(v,v')

v'-*2v

Taking limits as c-O gives
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I I a(v l ,v)[E~

1
E~l_

v
E^ -l]n(v')p(n,t)ee

v* v

-2 1
+ T. Z a<a),v)I(w-2v)[E E -l]n(fjj)p(n,t)ee

V CO

0) V

+ I I
b(v * V

'

)
[E

1
E
1

, E~] -l]n(v)n(v'-v)p(n,t:)ee
, Q v v -v v

v v

+ Z Z
b(v

!
a]) I(w-2v)[eV

1
-l]n(v) [n(v)-l]p(n,t)£:£

0) V

(A-IOa)

or its equivalent continuous form

(
r

p(n,t) = 11m- < /" /
2
a(v , ,v)[E

v

1
E
vl_v

E^ -l]n(v')p(n,t)dvdv'

e+0
E

[

+ /" /" a*(u,v)I(u-2v)[E~ E -l]n(u)p(n,t)dvdw

0,
V

+ /" f
2 b(V

A
V '

)
[E

1
E
1

, Z~] -l]n(v)n(v'-v)p(n,t)dvdv"
a v v v

+ /" /" k^iXl^i I( u)-2v)[E
2
E"

1
-l]n(v)[n(v)-l]p(n,t)dvdw

a v a
(A-ll)

which is identical to eqn. (12) in the text.
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APPENDIX B

REARRANGEMENT OF EQUATION (28) TO A COMPACT FORM , EQUATION (30)

The partial derivatives incorporated with the term lim — in the

E+0

right hand side of eqn. (28) can be expressed in terms of delta function,

for example

e_
C 3x

V=v
3x

V-v'-v
3X

V=v

= (-6(V-v)-6(V-v'+v) + «(V-v')]— (B-l)

where the delta function S(V-a) is known as

S(V-a) = lim - I(V-a)

e-*0
E

(•» @ V=a

1 elsewhere

Therefore, write out eqn. (28) in the text in terms of delta

functions and divide both sides of the equation by - ^, we obtain

y

'

|£ = 1™ f
2 a(v',v)6(V-v)0(v')dvdv'

3t

y'

+ /" f
2
a(v',v)6(V-v'+v)0(v')dvdv'

o
,

y
- f° f

2
a(v',v)«(V-v , )U(v , )dvdv'

'0

+ 2/" /" a*(u,v)I( -2v)6(V-v)0(u>)dvdu)

- !" !°° a*(u,v)I(ui-2v)6(V-u))0(ui)dvdio

v'

- /" I
2 b(v,v')S(V-v)0(v)0(v'-v)dvdv'
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S" f
2 b(v,v')6(V-v'+v)0(v)0(v'-v)dvdv'

v'

+ f" I
1 b(v,v')fi(V-v')0(v)0(v'-v)dvdv'

- 2/°° s" b*(v,u))I(o)-2v)6(V-v)0(v)0(v)dvdw

+ l" S" b*(v,u,)I(w-2v)6(V-i»))0(v)0(v)dvdio (
B " 2 )

By changing the sequence of integration into a suitable order, we

can first perform the integration with respect to the delta function

for each term in the right hand side of eqn. (B-2) .
For instance,

consider the first term in the right hand side of eqn. (B-2), we

obtain

v'

l" f
2
a(v',v)6(V-v)0(v')dvdv'

= /" !" a(v' ,v)6(V-v)0(v')dv'dv

2v

= /" a(v , ,V)0(v')dv' ( B- 3 ^

2V

Next, for the second term

y
1

f° f
2 a(v',v)5(V-v'+v)0(v')dvdv'

/" f
u a(u+v,u)6(V-u)0(u+v)dvdu (u=v'-v)

/
V
a(V+v,V)0(V+v)dv

= /^(vWWvMdv 1 (v'=V+v) (B-4)
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Performing the integration term by term leads to

M = /" a(v',V)0(v , )dv' + /
2V

a(v',V)0(v')dv'
at

2V v

V

- /
2 a(V,v)0(V)dv + 2/" a*(ui,V)I(u)-2V)0(u)du

- /°°a*(V,v)I(V-2v)0(V)dv

- r b(V,V+v)0(V)0(v)dv

V

- /
V b(V,V+v)0(v)0(V-v)dv

V

+ f
2

b(v,V)0(v,)0(V-v)dv

- 2/" b*(V,io)I(u-2V)0(V)0(V)du

+ !" b*(v,V)I(V-2v)0(v)0(v)dv (B-5)

or in a more compact form

^ = f™ a(v',V)0(v')dv' + 2/°° a*(u),V)I(o)-2V)0(ui)du

3t
V

V

- f
2

a(V,v)0(V)dv - /
V a*(V,v)I(V-2v)0(V)dv

QO 2

- /" b(V,V+v)0(V)0(v)dv - 2/ b*(V,w)I(w-2V)0 (V)dw

V

+ /
2
b(v,V)0(v)0(V-v)dv + /

V
b*(v,V)I(V-2v)0 (v)dv

(B-6)

from which

M = /
c

°[a(v,V)+2a*(v,V)I(v-2V)]0(v)dv

i /
V [a(V,v)+2a*(V,v)I(V-2v) ]0(V)dv

2

V

+ f
2 [b(v,V)+2b*(v,V)I(V-2v) ]0(v)0(V-v)dv
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- /" [b(V,V+v)+2b*(V,V+v)I(V-v)]0(V)0(v)dv (B-7)

In derivations above, we make use of the property that in a(j,i)

and b(i,j), the value of i cannot exceed that of j. Also realized is

the relation

V

/
V

b*(v,V)dv = 2/
2
b*(v,V)dv (B-8)

By definitions of a(j,i), a*(j,i), b(i,j) and b*(i,j) shown in eqn.

(A-10) , eqn (B-7) is understood to be

M = /" a'(v,V)0(v)dv - j f
V

a'(V,v)0(V)dv
3t

v
^0

V

+ f
2 b'(v,V)0(v)0(V-v)dv

C b'(V,V+v)0(V)0(v)dv (B-9)

where

a'(v,V) » a(v,V) + I(v-2V) lim a(v,V)

v>2V

a'(V,v) = a(V,v) + I(V-2v) lim a(V,v)

V->2v

b'(v,V) = b(v,V) + I(V-2V) lim b(v,V)

V-+2v

b'(V,V+v) = b(V,V+v) + I(V-v) lim b(V,V+v)

V->-v

Equation (B-9) is identical to eqn. (30) in the text.

(B-10)
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APPENDIX C

DERIVATIONS OF EQUATIONS (31) AND (32)

Rewrite eqn. (29) in terms of delta function as discussed in

APPENDIX B,

|l = /" f
2
a(v',v)r-5(V-v)-«(V-v , +v)+6(V-v')]-^-(x(v')iT)dvdv'

3t

a

+ /" /" a*(u,v)I(ai-2v)[-26(V-v)+S(V-(ii)]g^(x(u)Ti)dvdai

v'

+ !" f
2 b(v,v')[6(V-v)+6(V-v'+v)-6(V-v')]

-^[0(v)x(v'-v)+0(v'-v)x(v)]Trdvdv'
9x

+ /" /" b*(v,u)I(ii)-2v)[25(V-v)-5(V-a))]— [20(v)x(v)]Ttdvdui

v'

+\!™ f
2 [6(V-v)+6(V-v'+v)+5(V-v')l

2

-^-[a(v , ,v)0(v , )n+b(v,v')0(v)Cl(v , -v)Ti]dvdv'

3x

3
2

+ If" ;
co

l( Uj-2v)[46(V-v)+6(V-u)]

—

^[a*(.ui,v)<iM-n
2 3x

+ b*(v,u)0
2
(v)TT]dvdu CC-1)

Integrating this equation term by term and ultilizing the property of

the delta function gives

P- = S" -aCv'.V^IxCv^irldv'
3t

2V
<Jx

- /
2V

a(v',V)-;p[x(v')T.]dv'

v
x
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+ ;
2

a(V,v)~fx<V)ir]<lv

2/ a*(u,V)I(u)-2V)T--[x(u))ir]dw
oX

+ / a*(V,v)I(V-2v)—[x(V)ir]dv

+ / b(V,V+v)^[0(V)x(v)+0<v)x(V)]lTdv

v
dx

+ f
V
b(V,V+v)-^[0(V)x(v)+?l(v)x(V)]7rdv

o
dx

V

- /
2 b(v,V)^-[0(v)x(V-v)+0(V-v)x(v)]Tidv

o
3x

+ 4/ b*(V,u))I(a!-2V)-r-[0(V)x(V)hdu
8x

2/°° b*(v,V)I(V-2v)-^[0(v)x(v)]TTdv

+ j l" a(v',V)-^[0(v')ir]dv'

2V 3x

+ 4 ;
2Va(v',V)^i

7[0(v
l )Tr]dv'

1
V 3x

X 2

+ \ !
2

a(V,v)-J 2-[0(V)7i]dv

3x
2

+ % /°a*(w,V)I(w-2V)-^r[0(u)Tr]du!
2

3X
Z

2

+ | /°°a*(V,v)I(V-2v)-^[0(V)ir]dv
2 3x

+ | /"b(V >
V+v)-^-[0(V)0(v)Ti]dv

2

+ | /
V
b(V,V+v)-^2-t0(V)0(v)it]dv

3x

V
,2

+ | /
2
b(v,V)^Y[0(v)0(V-v)Ti]dv

3x



a
2

2

% /"b*(V,w)I(u>-2V)-^-[0 (V)n]du
2

3x

1 » 3
2

2
+ ± / b*(v,V)I(V-2v)—j-[0 (v)n]dv

2
3x
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(C-2)

In order to derive equations for the moments of the random variable

x, we need the following integrations,

1) /" x(V)^dx - -rf /™x(V)7r(x,t)dx

3t

s 3[x(v)n
2) £ x (y)

i ""v'"dx = x(V;<(v)Tr -
[m

x(v)7Tdx

= -<x(v)>

3x x
/ 3x

Similarly,

,.2 3tt

A) / x(V) |rdx = <x(V) >
3t

5) />(V)
? 8[

^
g),1

ix - -2<x(v)
2
>

9 a
2
,

6) /" x(vf ^dx = 2

where <x> stands for the first moment of x, and <x > the second moment.
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Multiplying bocft sides of eqn. (C-2) by x(V) and subsequently

integrating the resultant equation with respect to x over the range of

(-»,") term by term, we obtain the equation for the first moment of x, i.e.,

d<x(V)> = ;°°[a(v',V)+2a*(v , ,V)I(v'-2V)]<x(v')>dv'
dt

V

- | /
V [a(V,v)+2a*(V,v)I(V-2v)]<x(V)>dv

2

V

+ f
2 [b(v,V)+2b*(v,V)I(V-2v)][0(v)<x(V-v)]>

+ 0(V-v)<x(v)>dv

- l" [b(V,V+v)+2b*(V,V+v)I(V-v)][0(v)<x(v)>

+ 0(v)<x(V)>dv (C-3)

2
Multiplying both sides of eqn. (C-2) by x(V) and subsequently integrating

the resultant equation with respect to x over the range of (-™,«0, we

obtain the equation for the second moment of x, i.e.,

3<xffl_> _ 2/
-

a .

(v
- >V)<x(v')

2
>dv'

at

- /
V

a'(V,v)<x(V) >dv

V
"? 2 2

+ If b'(v,V)[(J(v)<x(V-v) >+0(V-v)<x(v) >]dv

2 2
2/ b'(V,V+v)[0(V)<x(v) >f0(v)<x(V) >]dv

+ / a'(v\V)0(v')dv
V

+ \ f
V

a'(V,v)0(V)dv
1
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+ f
2
b'(v,V)0(v)0(V-v)dv

+ /" b'(V,V+v)0(V)0(v)dv (C-4)

Here, eqns. (C-3) and (C-4) are the same as eqns . (31) and (32),

respectively, in the text.
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APPENDIX D

SOLUTION FOR EQUATION (45)

Rewriting eqn. (45), we have

—i = a(8? + b0. + c (D-D
dt 1 1

where

a - -b
12

b " 2

a
21
N
l

c
ia

With the fact that b
2
-4ac>0, we have the solution for eqn. (D-l)

from integration table

S " a(p-q)'
tnl

(0rq)(0
o
-
P )

J

where

(D-3)

(D-4)

(D-5)

1
a
21 .2

2a
21

N
l (D-6)

2' <2b
12

) b
12

«

^(0)
(D- 7)

p =
'

A + B

q
= A - B

A = -
a
21

4b
12
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From eqns. (D-3) and (D-4) , we obtain

a(p-q) = -2Bb
12

Thus, eqn. (D-2) can be rewritten as

-1
(ypHyo) 2Bbl2

l

(*rq)(* -p)

(A-B)[*n-(A+B)]e
2Bb12 t

-(A+B)[ 1

(lo-(A-B)]
, = o y (d-9)
1

[* -(A+B)]e"
2Bbl2 t

-[* -(A-B)]

Equation (D-9) is an equivalent expression for eqn. (46) in the text.
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APPENDIX E

STEADY STATE SOLUTION FOR EQUATION SET (37a) AND (37b)

To obtain the steady state solutions for the macroscopic bubble

number densities, *u and 9^, the left hand sides of eqns. (35) and

(36) are set to zero. The resultant equations are identical to each

other; it is of the form

2s a Is

The volume conservation gives

N
l

" V + 2
«2s

n
(E_2)

Merging eqns. (E-l) and (E-2) yields a quadratic equation of
lg

2b
12

n(3
ls

+ a2l^ls - a
21

N
l

' ° (E" 3)

from which 0- is solved to be
Is

-»2l"
+ 4/ + 8a

21
b
12
N
l" (E_4)

ha
=

4b
12

n
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APPENDIX F

SOLUTION FOR CONSTANTS c AND c
3

IN EQUATION (71)

By summing eqn. (39) and 4 times eqn. (40) at macroscopic steady-

state, we have

2 2
d<x > d<x >

,

Replacing <x^> and <x^> with eqns . (72a) and (72b), respectively, we obtain

2
c
l "

3(a
21 2s

+ b
12*ls>

- *n*U
(F" 2)

Next, by direct substitution of eqns. (72a) and (72b) into eqn. (39),

we obtain

c
3
exP [-(^ + 4b

12 ls
)t] +

a2

a
'

+lh
l

iAs

a
21
+8b

12 ls
2 " 1S

+
4a

21
C
l
b
12

g
ls

t -
4a

21
C
l
b
12^1s

t

a
21
+8b

12 ls

(

a
21
+8b

12 ls
)c

3
+ a f +b „2 (M)

"
(aH+8b

12 ls
)

a
21

18

2s
+b

12
W
ls

2a„,0„
=3 " "21'2. a21+8blAs



6a
21«2s

= 2a„0
21 2s ~ a

21
+8b

12 ls
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a
21
+8b

12 ls

(F-4)
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CHAPTER 4

PRESSURE FLUCTUATIONS IN A GAS-SOLID FLUIDIZED BED WITH A SCREEN

To enhance the fundamental understanding of the effect of screen

packings on the performance of the gas-solid fluidized bed in terms of

pressure fluctuations, the simplest configuration, a single screen in-

stalled across the entire section of the bed, was investigated in this

chapter. The effect of the screen insertion on the performance of the

bed was determined qualitatively by calculating on-line statistical

parameters of the pressure fluctuations.
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4.1. EXPERIMENTAL

The experimental facilities and procedures are presented in this section.

Facilities

The arrangement of equipment is shown in Fig. 4-1. The fluidized

bed employed consisted of a bed proper, a distributor and a plenum column.

The bed proper and plenum, were fabricated from "plexiglas" to permit visual

observation. Their diameter was 0.203 m (8 in) and their heights were 0.61

m (24 in) and 0.17 m (6.7 in), respectively. The layout of holes in the

distribution is shown in Fig. 4-2. The bed proper consisted of four bed

columns connected by flanges; each was 0.15 m (6 in) long. A stainless

steel wire screen was inserted between two columns 0.15 m above the perforated

distributor so that the screen could be changed easily for testing on the

pressure fluctuations. The fluidized particles were 0.000491 m in diameter

within a narrow cut of the U.S. Stantdard Sieve No. -30 * +40. The density

3
of the sand was 2620 kg/m . Air with a temperature of approximately 40+5 C

served as the fluidizing medium.

A pressure tap was installed on the wall of the bed column

immediately above the distributor. The inside opening of the tap was

covered with a screen to prevent the sand from entering the tap. The

outside opening of the tap was connected to one of the two input

channels of a differential pressure transducer (Enterprise Model CJ3D)

,

which produced an output voltage proportional to the pressure difference

between two channels. The remaining channel was exposed to the atmos-

phere, and thus, the fluctuations of pressure drop across the entire bed

were measured. The working capacity of the transducer was +6.90 KPa

(+ 1 psi) .
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The calculating and recording assembly Included a correlation and

probability analyzer (Honeywell Model SAI-43A) , a Fourier transform

analyzer (Honeywell Model SAI-470) , a strip chart recorder, an X-Y

plotter and two oscilloscopes.

All the components of the calculating and recording assembly were

calibrated extensively prior to the experiments. The pressure probe

was disconnected from the fluidized bed and connected to a manometer as

shown in Fig. 4.1. The manometer served as a standard pressure signal

source. Manipulating it varied pressure signals transmitted to the

strip chart recorder and correlation and probability analyzer from the

pressure transducer (see Appendix A for details)

.

After calibration, the pressure probe was detached from the mano-

meter and connected to the fluizied bed. A test run was made to deter-

mine the minimum fluidization velocity. It was found to conform to the

value calculated by the Ergun equation (also see Appendix A)

.

Procedure

For each run of the experiment, the pressure fluctuations of the

bed with or without the screen were detected by connecting the tap to

the pressure transducer. The voltage-time signal (corresponding to the

pressure-time signal) from the transducer was sent to both the strip

chart recorder and the correlation and probability analyzer; the former

registered the pressure-time signal, and the latter calculated on-line

the auto-correlation and probability distribution functions of the

signal. The sampling interval for calculation was selected to be 10

and a total of 64 x 1024 points were sampled. The Fourier transfo

ms ,

Drm
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analyzer transformed the auto-correlation function in the time domain

into the corresponding power spectral density function in the frequency

domain [see Eqn. (B-6) in Appendix B ]. The calculated results were

observed on the oscilloscopes and also recorded on the X-Y plotter.

From these calculations, the mean of pressure fluctuations and

the variance and major frequency of pressure fluctuatuians, which were

considered as indices of instability of the bed, were recovered. The

probability distribution function, calculated using DC coupling mode

of the correlation and probability analyzer, was employed to determine the

mean of pressure fluctuations. It was accomplished by reading the X-axis

value of the F . .(0.5) point, since the pressure fluctuations are
X(t )

assumed to be normally distributed. The auto-correlation function of the

pressure fluctuation signal at the zero time shift gave its variance.

The major frequency of pressure fluctuations was determined from locating

the maximim peak of their power spectral density function.

4. 2 RESULTS AND DISCUSSION

Experimental results, both without screen and with a single screen,

are summarized in Tables 4-1 and 4-2 as well as Fig. 4-3.

Qualitative Observation

Figures 4-4 through 4-7 show examples of pressure-time curves without

screen and with a single screen of 8x8, 12x14 or 20x20 mesh. The case

without a screen corresponds to the very large ratio of the screen open-

ing to the average diameter of particles. The screen with a size of 8 x 8,

12 x 14, or 20 x 20 mesh corresponds to the ratio of 5, 3, or 2.

Examples of their auto-correlation functions and power spectral density

functions are. illustrated in Figs. 4-8 and 4-9 , respectively , in which
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the minimum £ luidizat ion velocity, U _ , the corresponding bed height,
mi

H , and the normalized velocity, U/U ,, were 0.25 m/sec, 0.11 m and
mf nt

3.0, respectively. Recall that the location of the screen, installed

across the entire section of the bed, was 0.15 m above the distributor

A example of the pressure-time curve without a screen is presented

in Fig. 4-4; its corresponding auto-correlation function and power

spectral density are presented in Figs. 4-8 and 4-9, respectively. The

auto-correlation function has a damped sinusoidal shape and the power

spectral density function exhibits a sharp peak. Both are relevant for

identifying a periodic component in the fluctuations (Lirag and Littman,

1971; Fan et al. , 1981).

An example of the pressure fluctuations in the bed with an 8 x 8

mesh screen CR = 5) is shown in Fig. 4-5; the corresponding auto-correlation

function and power spectral density are also presented in Figs. 4-8 and 4-9,

respectively. The pressure-time curve appears to contain relatively small

fluctuations of a high frequency with momentary jumps superimposed on

them. A visual observation shows the screen is completely immersed in the

bed and no segregation is observed. The bed expansion is reduced as shown

in Fig. 4-10. The amplitude of fluctuations is smaller than that in Fig.

4-4. It means that the stability of the bed has been improved. The

evidence of enhanced stability can also be seen from the auto-correlation

function and power spectral density function; the amplitudes of the auto-

correlation function are smaller than those for the bed without screen

(Fig. 4-8). Also, the major frequencies increase slightly compared to the

case without screen.
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The momentary jumps probably can be attributed to the wall effect of

the screen. The mobility of particles is reduced by the walls of the screen

openings leading alternatively to local blockage of opening and spurting at

the top of the bed. As the screen openings become finer, the screen effect

will vary in response to the velocity change on the behavior of the fluidized

bed.

Figure 4-6 illustrates typical pressure fluctuations at a moderate

fluidizing velocity (U/U =3) with a screen of the size 12 x 14 mesh (R = 3).

The pressure-time curve appears to contain relatively small fluctuations

of a high frequency, ca 3.8Hz, with momentary jumps superimposed on them as

in the case in Fig. 4-5. However, the amplitude of the jumps is appreciably

greater than that in Fig. 4-5, but the frequency of the jumps, ca 0.35 Hz,

is much lower than that in Fig. 4-5. It was observed that a very thin layer

of packed section was formed momentarily beneath the screen followed by its

gradual migration through the screen. When the packed section was suddenly

formed, the fluctuations jumped to a high pressure level; when the packed

section gradually moved across the screen, the fluctuations slid back to the

original level until the next jump occurred. A shallow fluidized section

existed above the screen and spurting happened frequently at the top part of

the bed while the packed section was not formed beneath the screen. The

momentary jumps probably can be attributed to appreciable wall effect of the

screen openings, thus leading to the formation of the packed section across

the entire cross-section of the bed beneath the screen.
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At a relatively high air velocity (U/U > 3) , the mean pressure drop

across the bed with a screen of the size of 12 x 14 mesh drops significantly

as shown in Fig. 4-3. This was due to the fact after the air broke through

locally the packed section beneath and the shallow fluidized section above

the screen, the packed section would disappear but a fairly substantial

amount of sand would remain on the screen. Hereafter, the fluidizing air

would continue to "by-pass", and thus the sand remained on the screen

would not contribute to the pressure drop across the entire bed.

As shown in Fig. 4-7, a 20 x 20 mesh screen (R = 2) generates a high

pressure drop, fluctuating with a high frequency and a small amplitude.

Though the openings of this screen were still larger than the average di-

ameter of the fluidized sand, they would be easily blocked by the sand due

to the non-uniformity in particle size or bridging. A packed section was

thus formed, which in turn increased the pressure drop. The packed section

became thicker as the air velocity increased, similar to the operation of a

semi-fluidized bed. The pressure drop then increased correspondingly.

This phenomenon can be observed in Fig. 4-3.

Another interesting phenomenon worth noting in the case of a 20 x 20

mesh screen occurred at a certain air velocity. Figure 4-11 shows that

a screen of 20 x 20 mesh (R 2) generates a pressure-time signal of an

almost periodic wave of a low frequency and a large amplitude, superim-

posed on essentially random fluctuations of a high frequency and a low

amplitude. It was observed that a packed section was formed gradually

beneath the screen, followed by its gradual collapse; a shallow fluidized

section was always present above the screen and no spurting was observed.

The period of the relatively low frequency wave was approximately 3.7 min.

;

-3
this is equivalent to a frequency of 4.50 x 10 Hz. This frequency was
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tot) low to be recovered in the power spectral density function calculated on

line because it was beyond the range of the Fourier transform analyzer in use.

This phenomenon probably can be explained as follows: When the screen

openings are reduced, the wall effect is enhanced. Consequently, a relatively

stable fluidlzed bed is formed above the screen, and the particles are ex-

changed slowly between the fluidlzed section above the screen and the packed

section beneath the screen. Furthermore, the gas velocity distribution is

rendered uniform by the screen, the packed section beneath it and the fluidized

section above it.

Figure 4-8 shows that a decrease in the size of screen openigns reduces

the amplitudes of the auto-correlation functions of pressure fluctuations.

Fig. 4-9 shows that peaks of the power spectral density functions shift

slightly to the right with the decrease in the screen openings. Both results

indicate that the stability of the bed has been improved. Furthermore, we

see that a small hump appears in the low frequency side near the main peak

when a screen with relatively small openings, e.g., 12 x 14 mesh or 20 x 20

mesh, was inserted across the bed. This can probably be attributed to the

formation of a relatively stable fluidized section above the screen; this

section redistributes the bubbles.

Screen Effect on the Bed Performance

It has been noticed that the statistical properties of pressure fluctua-

tions, such as the major frequency and the inverse of the amplitude, can be

employed as indices of bed performance (Song et. al. , 1984). A bed with pressure

fluctuations of high frequency is considered to have numerous fast-moving

bubbles which improve the bed quality, e.g., increase the heat and mass transfer

rates. A bed with pressure fluctuations of small variance is. considered to have
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a stable flow pattern which enhance the bed stability (Winter, 1968).

The major frequency and variance of pressure fluctuations are plotted as

functions of the normalized gas velocity in Figs. 4-12 and 4-13, respectively.

The parameters is these figures are the screen size and the ratio of the

screen opening to the average diameter of particles. We see that under

full fluidization (without a screen), the variance of pressure fluctuations

is a monotonic increasing function of the normalized gas velocity while

the major frequency remained constant.

As stated previously, a single screen was installed across the

entire cross-section of the bed at 0.15 m above the distributor. The

bed reached this position of the screen approximately at U/U
mf

=2.2.

As expected, the screen did not appreciably influence the two indices

of the bed performance when the normalized velocity was smaller than

this value. When the normalized air velocity exceeded the threshold

value of U/U =2.2, the bed expansion reached the screen. Under this
mf

condition, the variance of pressure fluctuaions increased with an increase

in the normalized air velocity at a much smaller rate than that of the

bed without screen. Meanwhile, the major frequency of pressure fluctua-

tions increased with an increase in the air velocity, thereby indicating

the enhancement of the bed quality as well as stability. This eventually

resulted in fluctuaitons with a relatively small amplitude and a high

frequency. In other words, for a given particle size, the smaller the

size of screen openings, the lower the variance value and the higher the

major frequency.

The screen effect on the bed performance can be explained as followed:

(a) The screen breaks up the bubbles, thus diminishing the pressure

fluctuations.
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(b) Due to the wall effect of screen openings, the mobility of

particles will be reduced when the openings are small

(Kang et al. , 1967; Winter, 1968); this should result in

variation in the dense phase porosity.

(c) The gas velocity distribution is rendered uniform not only

by the screen but also by the packed section beneath the

screen and the fluidized section above the screen when the

screen opening are relatively small (12 x 14 mesh and

20 x 20 mesh)

.

In addition to its contribution to bed quality as well as stability,

the insertion of a screen in the fluidized bed causes other effects, such

as reduced bed expansion, segregation of the bed into a fluidized section

and a packed section above it, and formation of a shallowed fluidized bed

above the screen. These concomitant effects can be advantages or dis-

advantages to the fluidized-bed operation depending on its application.

Hence, caution must be exercised in selecting the screen size for the

purpose of improving the performance of a gas-solid fluidized bed.
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NOTATION

2
A = cross sectional area of a fluidlzed bed, cm

d = average diameter of the fluidized particles, cm
P

D » diameter of the fluidized bed, cm
b

f . (x) = proability function
X( t

)

F . (x) = cumulative probability distribution function
A t t )

, 2
g = gravitational constant, cm/sec

G = variable defined in eqn. (A-l) , V

H = bed expansion height, m

H = bed expansion height at the minimum fluidization velocity, m
mf

k = constant in eqn. (A-l)

K = settling criterion defined in eqn. (A-3)

L, h = readings from the X-Y plotter, cm

P = pressure drop, KPa

R = ratio of the screen opening to the average diameter of

particles

Re = particle Reynolds number
P

R (t) = auto correlation function
xx

S = sensitivity setting of the X-Y plotter, mV/cm

S (W) = power spectral density function
xx

T = time, sec

U = linear air velocity, m/sec

U r
= minimum fluidization velocity, m/sec

mf

W = total weight of the fluidized particles, g



]i
= mean

y - viscosity of the fluidizing gas, g/cm sec

8
. 3

p = density of the fluidizing air, g/cm
8

3
p = density of the fluidized particles, g/cm
P
2

4-12

= variance
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Table 4-1. Experimental results showing the screen effect on the

major frequency of pressure fluctuations in the

fluidized bed.

1.4

1.5

! . 1

2.2

2.4

2.6

2.9

3.1

3.3

Major Frequency (Hz )

U Without 8x8 mesh 12x14 mesh 20x20 mesh

U-, screen screen screen screen

3.85 3.9 3.9 3.85

3.75 3.9 3.8 3.75

3.75 3.9 3.8 3.75

3.65 3.9 3.7 3.65

3.65 3.9 3.7 3.65

3.65 3.9 3.7 3.65

3.65 3.9 3.7 .0005/4.0

3.65 3.8 0.35/3.,75 4.55

3.65 4.5 0.35/4 .0 4.5
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Table 4-2. Experimental results showing the screen effect on the

variance of pressure fluctuations in the fluidized bed,

3 2
Variance x 10 (KPa)

u Without 8x8 mesh 12x14 mesh 20x20 mesh

SLj screen screen screen screen

1.4

1 .5

1.7

2.2

2.4

2.6

2.9

3.1

3.3

0.2 0.3 0.1 0.09

0.5 0.7 0.3 0.3

1.6 1.5 1.4 1.3

11.1 11.6 9.9 9.5

16.3 14.5 13.5 6.8

30.0 17.6 13 6.6

38.1 21.4 13.3 6.1

45.2 25 13.5 5.9

57.0 26.6 13.8 3.7
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1.0 2.0 3.0

Normalized air velocity, u /u mf (-)

Fig. 4-3. Screen effect on the average pressure drop through the

fluidized bed.
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-10 12
Time shift, t (sec.)

Fig. 4-8. Auto-correlation functions of the pressure fluctuation
signals from the fluidized bed at U/U , = 3.1.

mi

(a) wi tliout screen

(b) with a 8x8 mesh screen

f c) with a 1 2x14 mesh screen

(d) with a 20x20 mesh screen

(Reproduced from the X-Y plotter; CPA attenuation = I > dh .

)
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3.65

Mojor Frequency (Hz)

3.8

Major Frequency(Hz)

3 75
Mapr Frequency (Hz)

4.55
Major Frequency (Hz)

Fig. 4-9. Power spectral density functions of the pressure fluctua-

tion signals from the fluidized bed bed at 11/11 , = 3.1 .

(a) without screen

(b) with a 8x8 mesh screen

(c) with a 12x14 mesh screen

(d) witli a 20x20 mesh screen

(Reproduced from the X-V plotter with peak values determined

by the oscilloscope cursor.)
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Fig. 4-10. Screen effect on the fhiidized bed expansion.
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Fig. 4-12. Screen effect on the major frequency of pressure fluctua-
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APPENDIX A

PRE-EXPERIMENTAL CALIBRATION AND TEST RUN

Before conducting the experiment, each component in the calculation

assembly was calibrated by following the instructions given in their

technical manuals. In addition, the strip chart recorder and the

correlation and probability analyzer needed additional calibration to

correlate the results given by them in terms of voltage to those in

terms of pressure

Strip Chart Recorder

In calibrating the strip chart recorder, a manometer served as a

standard pressure source. Upon manipulating the manometer, the strip

chart recorder recorded the signal in terms of voltage transmitted

from the pressure transducer. Each voltage thus corresponded to a

known pressure value. The result is shown in Fig. 4-A.l, in which the

range of the strip chart recorder is set on 10V; the plot indicates

that one volt on the strip chart recorder represents a pressure of

0.34 KPa.

X-Y Plotter Correlation and Probability Analyzer

The X-Y plotter plots the calculated results from the correlation

and probability analyzer (CPA) in terms of voltage. A calibration

procedure to interpret the plot in voltage into that in pressure is

given below.
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1. Set CPA into DC mode.

2. Use a zero pressure drop condition to decide the base

line on the X-Y plotter.

3. Select a pressure drop by manipulating the manometer.

4. Adjust the attenuation to a value on which the OVERLOAD

light on the CPA just flashes; Record the attenuation.

5. Run the CPA, and plot the calculated auto-correlation

function, which should be a flat line, on the X-Y plotter.

The line will be L cm above the base line.

6. Multiply L (cm) by S (mV/cm) , the sensitivity of the

X-Y plotter. Throughout this study, the sensitivity

was set at 50 mV/cm.

7. Calculate the G value by the equation

- k (LS)
(A" 1}

where k is a constant whose value can be found in the

CPA technical manual for different attenuations.

8. Plot the pressure reading from the manometer against R .

The results are shown in Table 4-A.l and Fig. 4-A.2.

To use the calibration result in determining the variance of

pressure fluctuations, we must follow the procedure given below.

1. Read the function 'value at zero time shift of an auto-

correlation function plotted by the X-Y plotter. The

value, R (0) , is h cm.
xx

2. Multiply h by S.

3. Calculate the G value.

C - [kGiS)]*
8
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4. Use the calibration curve in Fig. 4-A.2 to obtain a

pressure value corresponding to C.

5. Evaluate the variance by squaring the pressure value.

Test Ru n

A preliminary test run was carried out to determine the minimum

fluidization velocity and mean pressure drop through the bed after it

was fully fluidized. The result is shown in Fig. 4-A.3, illustrating

that l' is 0.25 m/sec and the mean pressure drop under full fluidlza-
mf

tion is 1.35 KPa.

The data and parameters pertaining to this experiment include

D, = 20.3 cm
b

d = 0.049 cm (-30- +40 mesh)
P

p = 2.6 g/cm
P

-3 3
p = 1.16 xlO g/cm (air at 35°C)
g

u = 0.00018 g/cm sec (air at 35°C)
g

W = 5100 g

A theoretical value of the minimum fluidization velocity can be

calculated by the Ergun equation based on the data given above (see,

e.g., McCabe and Smith, 1960).

For small particles in this study, the particle Reynolds number

at the onset of fluidization is

Re = (33. 67
2
+ 0.0408 K

3 )'" - 33.67 (A " 2 >

P

= 5.97

where K is the settling criterion defined by



K = d_ [ —
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gP
B
(P p' P

S
} i (A-3)

ii.

22.06

For small particles with Ke
p
<20, the minimum fluidization velocity is

determined approximately by the Ergun equation as

nf ,theo.

The experimentally obtained value is 19% greater than this estimated

value

.

Also, the mean pressure drop can be estimated based on the assump-

tion that the pressure drop across the bed can mainly be attributed to

the effective weight of the fluidized particle, i.e.,

effect ive weight of fluidized particle

cross-sectional area of the bed

W
~ A

=1.51 KPa

The experimentallv obtained value is 15% smaller than this estimate value.

Note that 15% of the fluidized particles usually rest on the dead zone

Immediately above the grids of the distirbutor, thereby not contributing

to the pressure drop.
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Table 4-A.l. Pre-experimental calibration data for prssure-voltage

conversion in using CPA and X-Y plotter (X-Y plotter

sensitivity setting = 50 mV/em).

Manometer CPA .—-

reading Attenuation I. IS k G=k(LS) /G

Run t P(KPa) (db) (cm) (V) (V?) (V)

10 0.008

2 0Q08 o 2.4 0.12 0.008 0.00096 0.031

8 0.4 0.008 0.0032 0.057
3 0.019

4 . 24 5 4.25 0.2125 0.02529 0.00537 0.073

5 _ 020 1 8.0 0.4 0.01007 0.00403 0.063

6 .o20 9.6 0.48 0.008 0.00384 0.062

7 .o23 2 8.3 0.415 0.01268 0.00526 0.073

8 Q.033 6 5.45 0.2725 0.03185 0.00868 0.093

9 o.04 5 8.45 0.423 0.02529 0.0107 0.103

10 .04 4 10.8 0.54 0.01009 0.01085 0.10

u Q.04 4 10.75 0.538 0.02009 0.0108 0.104

12 .06 7 12.2 0.61 0.04009 0.02445 0.16

13 o.066 8 9.75 0.488 0.05048 0.213 0.146

u .073 10 7.8 0.39 0.08 0.312 0.177

15 Q.09 9 12.3 0.615 0.06355 0.03908 0.20

16 o.lO 10 12.6 0.63 0.08 0.0504 0.22

17 .11 12 10.5 0.525 0.1268 0.0666 0.258

18 o.21 15 16.5 0.82.5 0.2529 0.2086 0.46

19 o.26 18 13.1 0.655 0.5048 0.331 0.575

2 Q.26 17 16.25 0.813 0.4009 0.326 0.571
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Fie. 4-A.l. Calibration curve of the strip chart recorder.
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Fig. 4-A.2. Calibration curve of the X-Y plotter.
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APPENDIX B

AUTO-CORRELATION FUNCTION AND POWER SPECTRAL DENSITY FUNCTION

The pressure fluctuations in a fluidized bed have been empirically

verified as an ergodic process and analyzed using statistical methods by

many investigators (see, e.g., Kang et al., 1967; Lirag and Littman,

1971; Fan et al., 1981). For a continuous, stationary, random process,

X(t), its probability function r w
t )(

x ) can be calculated as

£v/^(x)Ax lira -Z(AT)

T-**>

where E(AT) is the total time interval in which X(t) falls within the

narrow amplitude window (Ax) centered at a given amplitude x, and its

ulative probability distribution function is defined ascumul

F
x(t)

(x> ' i Wx)dx (B '2)

2

Under the assumption of ergodicity, the mean u and the variance o of

X(t) can be computed, respectively, as

.ind

T

1

+
2

u = lia-i- / x(t)dt (B-3)

T-*» T

1
2

o
2

- lim -i- / (x(t) -l.)
2
dt (B-4)

T-w _ T

2

The auto-correlation function of X(t) is given by



xx " _>m
T

T
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R (t) lira -|~ ; x(t)x(t+t)dt (B-5)

T

2

an R (0) defines the variance of
xx

X(t). The power spectral density function s
xx

( u > of K(0 is the

Fourier transform of its auto-correlation function, i.e.,

S (a.) = /*R (T)e-J2
™T

dt ( B - 6 >

xx xx
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CHAPTER 5

STATISTICAL ANALYSIS OF TEMPERATURE EFFECTS ON

PRESSURE FLUCTUATIONS IN A GAS-SOLID FLUIDIZED BED

The hydrodynamic properties of fluidized beds have attracted

considerable attention in recent years. A thorough knowledge of the

hydrodynamic properties is recognized as a prerequisite for complete

mastery of fluidization as a process technology. Most of the industrial

fluidized beds are operated at temperatures higher than ambient; how-

ever, research effort in the temperature effect on the f luidized-bed

hydrodynamics is relatively meager (see, e.g., Svoboda e_t al. , 1981a, b;

1983). The hydrodynamics of a gas-solid fluidized bed are characterized

by random bubbling of the fluidizing gas interacting with the turbulent

motion of fluidized solids. Although the behavior of bubbles and that

of solids affected by it are complex and stochastic in nature, they

can be described through analysis of pressure fluctuations in the bed.

It has been known (Fan e_t al. , 1981) that such fluctuations are a

fairly clear manifestation of behavior of bubbles and solids.

The objective of this chapter is to present the results of analyses

of pressure fluctuations in a fluidized bed reactor over a wide tem-

perature range (from room temperature to 1000K) . Based on the online

analysis of fluctuating signals from a pressure probe, the temperature

effect on the hydrodynamics of a fluidized bed are described in detail

and semi-quanti tatively

.
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5.1 EXPERIMENTAL

The experimental facilities and procedures are presented in this

section.

Facilities

Figure 5-1 is a schematic diagram of the experimental setup con-

sisting of a fluidized bed reactor assembly, a measuring assembly and

a calculating/recording assembly. The f luidized-bed reactor was

originally designed to study pyrolysis and gasification of various

carbonaceous material, e.g., coal, at atmospheric pressure and over a

temperature range of 650K to 1450K. The reactor comprised four zones:

the disengaging, the f luidized-bed , packed-bed and gas inlet zones.

The reactor was constructed from a 10.16 cm (4 in.) I.D. by 55 cm

(21.6 in.) length schedule 40 Inconel 600 pipe. Inconel 600 alloy was

used because of its high temperature resistance and capability to with-

stand rapid heating and cooling. It was fitted on top with a 15.24 cm

(6 in.) I.D. by 20 cm (7.9 in.) length pipe of the same material. The

upper section of the reactor served as the disengaging zone or the

freeboard section of the reactor.

The bottom 25 cm (9.84 in.) of the bed served as the gas distributor

and preheater. The top 15 cm (5.9 in.) of this zone was packed with

aluminum oxide pellets (0.5 cm in diameter). This packed-bed section

allowed the fluidizing gas to be distributed uniformly in the fluidized-

bed zone. The inlet zone was separated from the packed-bed zone by a

60 mesh 316 stainless steel screen (opening width =0.23 mm; open area =

30.5%). The packed-bed and f luidized-bed zones were also separated by

an identical screen. This screen prevented the filtering oi the bed

material into the packed-bed zone; it also influenced significantly
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Che characteristics of the distributor assembly.

The fluidized inert matrix was composed approximately of a mixture

of 25% by weight of limestone and 75% by weight silica sand. The lime-

stone prevented bed agglomeration which often occurs in a bed composed

of sand (Walawender et al. , 1981). The limestone particle size was -7

to +50 mesh (2.82 to 0.287 mm); the sand particle size ranged from -30

to +50 mesh (0.595 to 0.287 mm). The bulk density of the moxture was

2.6 g/cc. The static bed height was 8^10 cm. Air was used as the flui-

dizing gas.

The reactor was heated by means of ten quarter cyclindrical elec-

trical resistance heaters, each capable of delivering up to 1200 watts

of power with a maximum sustained operating temperature of 1500K.

Voltage to each heater was controlled by three-mode, PID controllers

(Omega model 49K-814) . There were five chromel-alumel type thermo-

couples installed in the reactor. One of them, a sliding thermocouple,

measured the temperature profile inside the reactor. The others were

located at the freeboard , fluidized-bed section, and preheating ?:one

and in the middle of the reactor inserted through the side wall.

Three controllers recorded the temperature from these thermocouples

and activated the heaters to maintain the temperature in the reactor

at a pro-set value.

Figure 5-2 shows the configuration of the dliding pressure probe.

It was fabricated from a hollow stainless steel pipe with a 0.32 cm I.D.

and had a 0.32 x 0.64 cm
2

(1/8 x 1/4 in
2

) side hole drilled at 1.27 cm

from one end. This probe had the advantage of maximally excluding the

dynamic pressure from affecting the static pressure measurement. The
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sliding pressure probe was installed vertically along the bed. The

inside opening of the side hole, located directly above the screen dis-

tributor, was covered with a screen to prevent the fluidized particles

from entering the probe. The outside opening of the probe was connected

to a differential pressure transducer (Enterprise Model CJ3D, natural

frequency around 5KHz) , which had two input channels and produced an

output voltage proportional to the pressure difference between the

two input channels. In measuring the pressure fluctuations at a

specific temperature, the probe was connected to the positive input

channel while the other channel was left exposed to the atmosphere.

The pressure transducer had a working capacity of ±6.90 KPa (±3 psi)

.

The calculating/recording assembly included a correlation and

probability analyzer (Honeywell Model SAI-43A) , a Fourier transform

analyzer (Honeywell Model SAI-470) , a strip chart recorder, an X-Y

plotter, and two oscilloscopes.

Procedure

For each experimental run, the probe was placed immediately above

the screen distributor; the opening of the probe was approximately 1.3

cm above the distributor. At a chosen temperature, the fluctuating

signal from the probe was recorded by means of a strip chart recorder,

and its auto-correlation function was calculated on-line by means of the

correlation and probability analyzer. The sampling interval for this cal-

culation was selected to be 10 ms , and a total of 16 x 1024 points was

sampled. Thij led to an operating time of 164 seconds per run. The
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Fourier transform analyzer transformed the auto-correlation function

in the time domain into its corresponding power spectral density

function in the frequency domain. The calculated results were observed

on the oscilloscopes and recorded on an X-Y plotter. Experiments were

repeated by changing the bed temperature, from low to high and vice

versa. At a given temperature, the minimum fluidization velocity was

determined graphically from the pressure vs. velocity curve obtained

from the strip chart recorder.

Figure 5-3 shows an example of continuous recording of the pressure

drop across the fluidized bed on the strip chart recorder; note that

the fluidizing air velocity was increased stepwisely. The minimum

fluidization velocity is located at point A, where the pressure drop

suddenly decreases; hereafter, the pressure drop fluctuates around an

essentially constant value with an increase in the air velocity. At

point A, direct reading on the rotameter gives the inlet volumetric

minimum fluidization velocity in standard cubic feet per minute (SCFM)

.

Pressure fluctuations at different normalized inlet air velocities,

u /u r , of 1, 1.5, 2, 2.5, and 3 were recorded at various temperatures.
mf

Each datum presented is an average of those from four experimental runs

with relatively small dispersion. This fact indicates that the ergodic

hypothesis is validated in the present statistical analysis.

5.2 RESULTS AND DISCUSSION

Table 5-1 shows the minimum fluidization velocities, u^^ , under

different operating bed temperatures. TaK e 5-2 presents the major
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frequencies of pressure fluctuations in the fluidized bed (in short,

the major frequencies) , f , at different bed temperatures T and

normalized inlet fluidizing air velocities, u_/u
f

. Table 5-3 pre-

sents the variation of the amplitude of pressure fluctuations (in

short, the amplitude), Amp, with T and u /u .

Minimum Fluidization Velocity

A number of equations for predicting the minimum fluidization

velocity, the air velocity at which the bed first fluidized, have

been proposed (e.g., Wen and Yu , 1966). The general form of these

suggested equations is

2
kd P (p -p )

G = P a P g (i)
mf y

g

Assuming that the temperature effects on the particle diameter and

density are negligible compared to those of the gases, eqn. (1) would

predict V „ and temperature to have a relationship (Desai et al . , 1977).
r mf

In V „ = a In T + b (2)
mf

where 'a' is a parameter reflecting the combined temperature effects

on the density and viscosity of the fluidizing air; it is known that

(e.g. , Bird et al. , 1960)

p « T"
1

(3)

g

u
g
«T°'

5 (A)

from which 'a' is determined to be approximately -1.5.
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Figure 5-4 shows the present experimental results in which a linear

relationship of the type suggested by eqn. (2) between minimum fluidiza-

tion velocity in terms of standard cubic meter per second (SCMS) and

temperature (K) is observed. The slop of the line is -1.7, which is

only 13% smaller than the estimated value of -1.5. Furthermore, Fig. 5-5

plots the same data in terms of linear minimum fluidization velocities

at their respective temperatures. A similar trend, showing a significant

temperature effect on the minimum fluidization velocity, was observed by

Svoboda et al. , (1983) , who conducted experiments using a fluidized bed

with a perforated distributor.

Major Frequency of the Pressure Fluctuations

Figure 5-6 plots the major frequency given in Table 5-2 against the

bed temperature with u./u . as the parameter. The same data are also
U mi

plotted in terms of f vs. un /u , with T as the parameter in Fig. 5-7 for
v m mr

the low temperature range and Fig. 5-8 for the high temperature range.

These plots indicate that the major frequency, normalized inlet air velo-

city, and bed temperature are functionally related. The following

plausible mechanism can be deduced to interpret the effect of the bed

temperature on the pressure fluctuations.

At a relatively low air velocity, e.g., u
Q
/u

m£
• 1, the major

frequency observed tends to increase first with temperature and then

to decrease as seen in Fig. 5-6. This increase in the major frequency

is expected because the increase in the bed temperature reduces the gas

density and, therefore, the momentum of the air jets generated at the
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distributor. The height of jet penetration thus becomes smaller and

the major frequency becomes higher. Comparing this result with that

reported by Knowlton and Hirsan (1980) on their study of the pressure

effect on the jet penetration in a fluidized bed, we see that the

response of the air jet behavior to a temperature increase is similar

to that to a pressure decrease. This is a direct consequence of the

property of gas. While the density of air decreases, its viscosity

increases with the temperature as described in eqn. (4). When the

temperature is further elevated, the decrease in the major frequency

with the increase in the bed temperature can be attributed to the

resultant increase in the air viscosity, thereby enhancing the stability

of the flow pattern.

In contrast, at a relatively high air velocity, e.g., ug/ umf
= 3 '

the major frequency tends to decrease first and then increase with the

bed temperature as seen in Fig. 5-6. Notice that the velocity of u /u
mf

= 3 is greater than the onset velocity of slugging according to the

familiar criterion (Stewart and Davidson, 1967)

(u - u .) > 0.2(0.35/g"D) (5)
ms mf —

Thus, the decrease in the major frequency at this velocity can be

attributed to the decrease in the slugging frequency; this is in line

with what was observed by Yamazaki et al. (1984) in their study of the

temperature effect on the fluidized bed behavior up to 560°C. However,

when the temperature exceeds this value, it is expected that the slug

of air will eventually break up due to the decrease in the air density

and the consequent decrease in the momentum of the slugs. The breakage

of slugs results in the increase in the major frequency.
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The functional relationship between the major frequency of pressure

fluctuations and the bed temperature undergoes a fairly smooth transition

between the two extreme cases of u
Q
/u

f
- 1 and Ug/u^ = 3 explained in

the preceding paragraphs.

Figures 5-7 and 5-8 show that the major frequency of pressure fluc-

tuations is enhanced as the air velocity increases at different tempera-

tures. The increasing tendency of the major frequency in response to the

air velocity increase was also observed by Lirag and Littman (1971) at

ambient temperature. Note that in both studies, a screen-type distributor

was used.* The increase in the major frequency in these studies can be

attributed to the fact that the rate of bubble generation at the distri-

butor is enhanced by the increase in the air velocity. However, the

major frequency can not increase without bound as the viscosity of the

air in the bed increases with temperature elevation. It can be seen in

Fig. 5-8 that the tendency for the major frequency to increase levels

off at a certain velocity.

Amplitude of Pressure Fluctuations

The amplitude of pressure fluctuations can be regarded as an index

of instability of a fluidized bed (see, e.g., Song et al. , 1984). Generally

*In contrast, the major frequency of pressure fluctuations in a fluidized

bed with a perforated distributor was found to decrease with the increase

in the air velocity as described in Chapter 4 as well as in various other

studies (see, e.g., Fan et al. , 19.1; Svoboda et al. , 1983).
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speaking, a high air velocity tends to intensify the churning in a

fluidized bed that impoverishes the bed stability. This prevalent trend

is shown in Fig. 5-9. It is also shown in the same figure that as tempera-

ture is elevated, the rate at which the amplitude increases with the air

velocity is reduced. This is due to the fact that high viscosity at an

elevated temperature enhances the stability in f luidization

.

Figure 5-10 plots the same data as those in Fig. 5-9 in terms of

Amp vs. T with u
Q
/u

mf
as the parameter. At a low u

Q
/u

mf , e.g., Ug/^f

= 1, the amplitude increases as temperature increases due to a reduction

in fluidizing air density. On the other hand, at a high u
Q
/u

mf . e-g->

u /u = 3, the amplitude decreases with the increase in the temperature
mf

because of the increase in the viscosity.

Based on the preceding analysis, the temperature affects the

fluidized-bed hydrodynamics in two major respects, namely, changing

the air density and the viscosity. Moreover, it appears that the air

density is a predominant factor controlling the hydrodynamic properties

in the lower temperature range (e.g., temperature below 300°C) and the

air viscosity becomes the prevailing factor in the higher temperature

range (e.g., temperature above 300°C) . This mechanism explains the

concavity or convexity in Fig. S-u, the frequency leveling-off in

Fig. 5-8, the sudden slope reduction in Fig. 5-9, and the change in

the slope in Fig. 5-10.

Furthermore, examination if the figures, e.g., Fig. 5-6, indicated

that the discrepency between the data and the regression lines, by

fitting the polynominal curves, can not be entirely attributed to

measurement error. Instead, this simply reflects the stochastic nature
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of fluidized-bed hydrodynamics. It is, therefore, justifiable that

only a serai-quantitative mechanism be proposed here to illucidate the

effect of temperature on the fluidized-bed behavior.
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NOTATION

a, b = constants in eqn. (2)

d = diameter of fluidized particles, cm
P

D = diameter of the fluidized bed, cm

f = major frequency of pressure fluctuations, Hz
m

. 2

g = gravitational constant, g/cm

G - minimum fluidization velocity, cm/sec
mf

2
k = constant in eqn. (1), cm/sec

T = temperature, °C

= linear inlet air velocity, cm/sec

= minimum fluidization velocity, cm/ sec

= minimum slugging velocity, cm/sec

u
mi

V = minimum fluidization velocity, SCMS
mf
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CREEK LETTERS

p
g

= gas viscosity, g/cm sec

p
g

3
= gas density, g/cm

p
p

3
= particle density, g/cm
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Table 5-1. Temperature effect on minimum fluldization velocity.

V
mf

u (m/s)
mrT (°C)

(SCFM) (10-4SCMS)

25 1.95 9.2 0.114

52 2.0 9.4 0.126

75 1.7 8.02 0.116

115 1.58 7.43 0.118

150 1.4 6.61 0.114

163 1.25 5.9 0.106

185 1.1 5.2 0.107

270 0.8 3.78 0.085

306 0.7 '3
. 3 0.078

400 0.5 2.36 0.069

445 0.46 2.17 0.063

530 0.43 2.03 0.067

620 0.25 1.18 0.045

700 0.25 1.18 0.049

750 0.25 1.18 0.047
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Table 5-2. Temperature effect on the major frequencies of pressure

fluctuations at different air velocities.

T(°C)
Maj or frequency (H z)

u„/u - 1
mf Vv 1.5 Vv - 2 u

o /u , - 2.
mf

5 Vv 3

25 3.13 4.42 4.72 5.15 —
52 3.54 4.1 4.57 4.68 —
75 3.85 4.68 4.05 5.41 4.78

115 3.83 4.53 4.6 5.1 4.98

185 4.1 4.33 4.55 4.12 3.95

270 4.35 4.41 4.7 4.33 4.1

306 3.78 4.98 4.4 4.45 4.2

400 3.85 4.23 4.7 4.78 4.58

445 3.05 4.08 4.6 4.33 4.6

530 3.62 4.6 4.7 4.6* 4.48

620 2.98 4.35 4.9 4.68 4.15

700 2.88 4.32 4.9 4.8 4.73

* ,

mf
= 2.8
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Table 5-3. Temperature effect on the amplitudes of pressure

fluctuations at different air velocities.

Amp] it ihK' (KPa)

T (°C)
u_ /u _ = 1

mf Vv l - 5 U /u , = 2
mf

u./u . - 2.5
mf

u /u = 3
mf

25 0.0333 0.176 0.397

52 0.0182 0.145 0.357 0.520

75 0.0329 0.173
'

0.316 0.482 0.608

115 0.0367 0.221 0.334 0.542 0.614

306 0.0512 0.182 0.214 0.268 0.364

445 0.0703 0.189 0.309 0.274 0.244

620 0.144 0.210 0.250 0.226 0.307
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Fig. '5-2. Configuration of the pressure probe.
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CHAPTER 6

CONCLUSIONS AND RECOMMENDATIONS

The present study has yielded the following significant conclus-

ions:

1. The master equation formulation has been demonstrated to be

an effective approach for modeling the bubble coalescence and

and breakage phenomena in a dispersed system including a

fluidized bed.

2. Expansion of the resultant master equation yields a set of

population balance equations (PBE's) and a set of Fokker-

Planck equations (FPE's). Solution of the PBE's gives a

macroscopic bubble size distribution. Equations of various

moments of random variables representing fluctuations in the

bubble numbers can be generated from the FPE's, from which the

fluctuating components of the bubble size distribution are

recovered.

3. The on-line correlation and analysis of pressure fluctuations

have been shown to reveal significant stochastic features of

a fluidized bed.

4. The insertion of a screen in a fluidized bed tends to stabilize

the bed. In other words, the bed with a screen exhibits

pressure fluctuations with a higher frequency and a smaller

amplitude than an equivalent bed without a screen.

5. The insertion of a screen may cause undesirable concomitant

effects such as an increase in the pressure drop and segregation

of the bed. Thus, caution should be exercised in using a screen

for bed stabilization.
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6. When temperature increases, the density of the fluidizing

air decreases, and its viscosity increases. While the

resultant high viscosity tends to stabilize the bed, the

reduced density tends to distabilize it. Generally, the

density effect dominates at a lower temperature, e.g.,

temperature below 300°C, and the viscosity effect prevails

at a higher temperature, e.g., temperature above 300°C.

The recommendations for future works are listed below.

1. Extension of the master equation to a f luidized-bed modeling .

A fluidized bed can be modeled as a series of compartments;

each compartment is an agitated dispersed system with an

overall inflow from a lower compartment and outflow to an

upper one. The master equation formulation developed should

be extended to this compartment model.

2. Numerical solution for the master equation . Analytical solu-

utions are difficult to obtain for the general PBE's and FPE's

resulted from the master equation expansion. It is desirable

to solve them numerically.

3. Cross-correlation between signals from different positions

and/or types of probes . Signals detected from different

positions and/or types of probes can be cross-correlated.

Examples are pressure signals across a screen and pressure

signals against capacitance signals. The information obtained

will provide us with a better understanding of the behavior of

a fluidized bed.
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Fluldized bed hydrodynamics are extremely complex and have yet

to be fully understood because of the limitation in the available

techniques and facilities to study them. It appears that the techniques,

both theoretical and experimental, described in this thesis are especially

suitable to study the stochastic phenomena of f luidized-bed hydrodynamics.
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ABSTRACT

The objective of this work is to study statistically and stochastically

the hydrodynamics of gas-solid fluidized bed. The emphases are on the

phenomena of bubble coalescence and breakage as well as the effects of the

screen and the temperature on the bed performances. The master equation

formulation followed by its expansion technique have been demonstrated

to be an effective approach for modeling the bubble coalescence and breakage

phenomena in a dispersed system including a fluidized bed. The on-line

correlation and analysis of pressure fluctuations have been shown

to reveal significant stochastic features of a fluidized bed including

its behavior as affected by insertion of a screen or elevation of temperature.


