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MATRIX SOLUTION FOR INFLUENCE LINES
By Bhalchandra S. Mehtal

SYNOPSIS

The application of matrix algebra has made it possible for
a structural engineer to analyze complex or highly redundant
structures more easily, logically, and systematically. The prob-
lem of influence lines for portal frames is formulated in matrix
form, using the principle of virtual work with displacements or
forces as unknowns.

The application of the principle of virtusl work is a con-
venlent method to analyze a linear staticelly indeterminate
structure. There are two maln methods for analyzing it. The
first method involves determining certain redundant forces or
moments by solving the elastic compatlbility equations. All
elastic characteristics of the structure are contained in a flex-
ibility matrix which consists of an ordered array of the flexi-
bility influence coefficients. This method is known as the
"force method' of analysis. In the second method of analysis,
which is known as the "displacement method", joint rotation: or
displacements are considered as unknowns and a solution of the
simultaneous joint equilibrium equations is to be performed.
These equations relate the redundant forces in terms of the as-

sumed deflections. They are represented by the stiffness msatrix

lgraguate student, Department of Civil Engineering, Kansas
State University, Manhattan, Ksnsas.



composed of an ordered array of the stiffness influence coeffi-
cients. Civil engineering structures can be analyzed conveniently

by the stiffness matrix technique.

INTRODUCTI ON

The matrix form of the equations of plane redundant struc-
tures by the displacement and force methods 1is based upon ideas
developed and discussed by J. H. Argyris (1)2 and by making an
adaptation from the equations deduced by that author for plane
structures composed of rigid joints and straight bars with con-
stant transverse section. As the matrix formulation of structural
theory was pioneered and was given a very thorough eand effective
treatment by Argyris, the matrix equations are sometimes known as
Argyris matrix equations for analyzing of stresses and deflections
of various types of beam and frame systems.

The application of a matrix procedure to the analysis of
structures consisting of flexural members 1s presented herein.

The usual and standard procedures of structural analysis, such as
the virtual work method or dummy unit load method, provide very
convenient means for evaluating deflections or stresses under
static conditions (2). The method presented herein consists of a
matrix systematizing of the virtual work procedure. The numerical

operations which are done correspond exactly to those which are

2Numerals in parentheses, thus (1), refer to corresponding
it ms in the Reading References.



usually performed in the standard virtual work solution. The di-
rect results of usual matrix procedure are two influence coeffi-
clent matrices. The first of these, the stress matrix, represents
the forces in each of the members of the structure due to succes-
sive applications of unit values of the external loads, while the
second, the flexibility matrix, represents the deflections at the
points of loading due to unit velues of the external loads. When
these two matrices have been evaluated, it is a simple operation
to obtain stresses or deflections due to any system of externally
applied concentrated loads.

Matrix methods are convenient methods to solve linear simul-
taneous equations. As the equations are solved by matrix methods,
the final results, that is, the different ordinates, required for
drawing influence lines corresponding to the different positions
of moving load, are in the form of a matrix.

The development of the electronic digital computer has
helped 1n analyzing highly indeterminate structures which pre-
viously had been difficult and laborious to analyze by the hand
method of calculation (3). The application of matrix theory to
structural analysis thus becomes more logical and permits the con-
cise formulation of large problems and control of the data re-
quired for feeding to the electronic digital computer. It has
therefore stimulated an intense interest in the use of matrix

methods to formulate structural theory.



VIRTUAL WORK

The most general and direct method for computing the deflec-
tions of structures i1s ____ eth d of virtual wor . The princlple
of virtual displacement 1s used to develop the basls for the
method of virtual work for computing the deflection of a struc-
ture. The theorem of virtual work may be stated as follows:

"If a body which is in equilibrium under a system

of external loads 1s glven any small (virtual) deforma-

tion, then the work done by the external loads during

this virtual deformation 1s equal to the increase 1n

internal strain energy stored in the body." (4)

Consider the beam of Flg. 1. It 1s deslired to know the de-

flection at point "a" in the beam caused by the external loads

Fig. 1. VIRTUAL WORK.



Py, P2, and Pz. If the loads were removed from the beam and a
unit load placed at "a", small stresses and deformations would be
developed in the flibers of the beam, and a small deflection would
occur at "a". The external loads are now replaced on the beam.
Due to these loads the fiber stresses and deformations will be
increased, and the unit load at "a" would deflect an additional
amount @ . The internsl work performed by the unit load stresses,
as they are carried through the additiongl fiber deformations,
equals the external work performed by the unit load as it is car-
ried through the additional deflection $ (5). By using the
Ilexural formula,
my
Unit stress in dA = ;—
where m 1s the moment at any section due to the unit load.
my
Total stress in dA = ;— dA
When the external loads are returned to the structure,
Deformation of dx length = € dx
b

- dx
E

1}

My
— dx
EI

where M 1s the moment at any section in the beam due to the ex-
ternal loads.
Work done in dA = (total stress in dA)

(deformation of dx length)



m My
- (2 aa) (= ax)
I EI

Mmy?

® ——- diA dx

EI2
The total work performed on the cross section is expressed by
2 ¢
6t  Mmy Mm
-—é—dAdxn-—-z-/ y° dA dx (1)
/cb EI EI cp

Since the expression JygdA 1s the moment of inertia of the sec-
tion, equation (1) becomes
Mm
Work = — dx (2)
EI
By integrating from O to‘Q of thils expression, the internal work
performed in the entire beam can be obtained. Then equation (2)

becomes
Mm
0 El

The external work performed by the unit load as it is carried
through the distance S1s81xo. By applying the law of con-
servation of energy, namely,
"If a structure and the external loads acting

on it are isolated so that these neither receive nor

give out energy, then the total energy of this system

remains constant." (4)
This implies that for a body in static equilibrium, the variation
in internal energy must equal to the variation in external energy.

Therefore the following expression may be written.



(3)

It should be noted that the derivation for the theorem of
virtual work is based entirely on energy principles. This implies
that the principle of virtual work i1s applicable to non-Hookean
materials as well as materlials which are linearly elastic.

It will be seen that this concept of energy principles is

readlly adaptable to matrix formulation and analysis.

INFLUENCE COEFFICIENTS

Some systematic order of computations is adopted in meny
methods of analyzing a statically indeterminate structure. First,
the redundants and corresponding statically determinate primary
structure are selected. These redundants are considered as forces
and/or moments. They are computed by solving an equal number of
simultaneous equations. Each equation expresses a known deflec-
tion condition for the primary structure in terms of the redun-
dants. Once the redundants are known, then the stresses and de-
flections for the entire structure may be computed as in the case
of a statically determinate structure. Such a method of strue-
tural analyslis is referred to as a force method of structural

enalysis (6).



Conslder a three-span continuous beam on rigid supports, as
shown in Fig. 2(a). Assume the temperature of the material re-
mains constant. This beam 1s statically indeterminate to the
second degree. The intermediate support reactions B and C are
chosen as redundants x; and X5 The structure 1s made staticselly
determinate by removing the two intermediate supports.

As only flexural straln energy is considered, the total bend-
ing moment M will be all that is required to find the strain
energy of the statically indeterminate structure. By the princi-
ple of superposition, the total moment can be considered as com-
posed of three parts: (a) The moment "m," due to the applied
loads only acting on the released structure (residual structure),
thet 1s, x; = 0 and x5 = 0, Fig. 2{(b). Call this the "particular
solution"” of this problem. It satisfies the conditions of equi-
librium but not the boundary conditions of the problem. 1In this
case the continuilty of the intermediate supports are the boundary
conditions. (b) The moment “mlxl“ due to the action of the re-
dundant xj; alone on the residual structure, that is, the loads
are removed and xp = O. Here my 1s the moment due to xy = 1 act-
ing along. See Fig. 2(c). (c) The moment "mox," due to the
action of the redundant xo alone on the residual structure, that
1s, the loads are removed and x3 = 0. Here mo is the moment due
to xo = 1 acting alone. See Fig. 2(d).

Call the parts (b) and (c¢) "complementary functions". These
represent the effects of the redundants whose function is to
satisfy the boundary conditions (7). Thus the following equation

for strain energy "U" may be written.



L

Fig. 2. MOMENT DIAGRAMS DUE TO APPLIED LOAD
AND UNIT VALUES OF REDUNDANTS.
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r M2
U= 1+ —— ds (4)

/g 2EI
with the region of integration extended over the whole length
of the beam. The equation (4) may be rewritten by putting the
moment M in terms of its components so that
1 )2 a (5)
' —— (m, + myxq + x s

—_ 1%1 ¥ MaXp

U-»

Applying the theorem of least work, — = 0, the two equa=~
ax

tions for the determination of x; and x5 can be computed.

— e e - 0

). 9xq 2EI
7 1 ( )2
m, + myx, + x ds =0
g 7x, 28I ° 1 17 ete
e ml
— (my + myxq + mpxp)ds = O (6)
Jg EI
and similarly
20
= ) — (my, + myx; + mgxy)ds = O (7)
7 x2
These two equations (6) and (7) may be expanded as follows
2 :
m rm mam
X ( 1 ds + xg | 1 ds + f- 1o ds =0 (8a)
Jg EI }s EI g EI
mgml ‘/ m22
x1 ds + xg | —— ds + | ds = 0 (8b)
)s EI J EI /g EI

Considering now Castigliano's second theorem, namely,
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and applying it to the deflection 51 at the position and in the

direction of Xy,

20 ~ My 7 myMo mam
B-=—-—-=x1)—-]-'—-ds+x2) ds+/ lods (9)
J x1 g BEI a EI s Bl

If the two redundants are zero, that is, x3 = 0 and xp = 0, equa-

tion (9) becomes

ds = ¢
EI 10

where f i1s the deflection of the released structure at the po-
sition and in the directlion of x; due to the applied loads
(Fig. 3(a)). If the applied load is removed, my = O, &nd the re-
dundant xg = 0. Then equation (9) becomes
.2
(

where f 1s the deflection of the released structure at the
position and in the direetion of xy for a unit value of X, acting
alone (Fig. 3(b)).

If the applied load is removed, then mj = 0, and the redun-

dant xy = O. Then equation (9) becomes

= X ds = xo T
2 ‘L = 2 T2

where fl2 i1s the deflection of the relessed structure at the
position end in the direction of x; for a unit value of Xxo acting
alone (Fig. 3(c)).
Equation (8a) can be rewritten in the form
f11 X3 + T30 xp + £ =0 (10)

where it is now seen that it is an expression of the fact that



Fig. 3.

DEFLECTION DUE TO APPLIED LOAD
AND REDUNDANTS.

12
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the displacements due to the seversl separate effects must sum to
Zzero to produce the required boundary condition of a rigid sup-
port B (Fig. 2(a)). Similarly, equation (8b), which relates to
the support C, can be rewritten in the form
fg1 X1 + fop Xp + foq = 0 (11)
where
by = the deflection of the released structure at the
position and in the directlon of x5 for a unit value
of x; actlng alone
by = the deflection of the released structure at the
position and in the direction of X2 for a unit value
of x5 acting alone
by = the deflectlion of the released structure at the
position end in the direction of x5 due to the
applied loads.

The equations (10) and (11l) are alternative arrangements of
equations (6) and (7) and are equivalent in all respects. It is
to be noted that f = f . This follows from the forms of f
and £ ,

end also from Maxwell's law of reclprocal deflections, which
states:
"In any structure the material of which is elastic
and follows Hooke's law and in which the supports are
unyielding and the temperature constant, the deflection

at one point A In a structure due to a loed applied at
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another point B 1s exactly the same as the deflection at

B 1f the same load is applied at A." (5, 6)

The example, discussed above, 1s one in which there are two
redundants, x; and x3. 1In general the solution of a structure
with n redundants will lead to a set of n simultaneous linear
algebraic equations in which there will be n? terms involving in-
fluence coefficients of the type Ty (1, §J=1,2, ..., n) and n
quantities of the type fy, (1, o= 1, 2, ..., n), where f's and
f,'s are formed in exactly the same way as discussed in the above

example. Thus

—_— (12)

and

(13)

where rij = the deflection at point 1, in the direction of 1load
i, due to unit load at J, with all other farces
removed
fi1o0 = the deflection at point 1, in the direction of load
i, due to the external loads applied.
In the general case, the meanings of the f's and f,'s remain
as displacements which may include deflections and rotations ac-
cording to whether the corresponding redundants are forces or

moments. The equations to be solved will then be
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fllxl + f12x2 + .. fljxj + . flnxn + flo = 0

f21x1 + f2212 + . fszJ + .o f2nxn + f20 = Q0
.o .a (14)

filxl + fy0x0 + ... fijxj + .. fypxXp + £40 =0

fnlxl + fn2X2 + e + e fnnxn + fno = 0
The matrix formulation of equation (14) gives
fin fig -« T+ 1np | T T10
f2; fa2 - - *+  ‘2n x2 f20
47 L4342 . - iy fin X3 |+ | 40 (15)
Lfnl The - - *++ Tnn Xn Tho

or in the generallzed form as
FX+Fy=0
The maetrix F in the above equation is commonly referred to as the

It 1s seen that this matrix is made up of

R —

the influence deflection coefficients fij for the structure. X
1s a colurm vector, the elements of which are the redundant
forces or moments. The column vector Fo is made up of the dis-
placements and rotations computed for the determinate structure
(Fig. 2(b)) caused by the

It is easily observed that the matrix F 1s a square matrix
and also a symmetric one. Therefore the inverse of F exists.

The solution can be written in the form

X = -F-1F,

where F:i/is the inverse of flexibllity matrix F and is known as

matrix. It will be discussed later.
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In other cases of statically indeterminate structures, the
order of computation discussed in a force method is completely
Inverted. Such a method of analysis 1s called a displacement
method of structural analysis. In this msthod, first the internal
forces and couples are expressed in terms of the key displacement
components of the structure. Such expressions are substituted
into the key equilibrium equations of the structures. A system of
linear simultaneous equations involving the key displacements sas
the unknowns csn be obtained. The values of the displacements
obtained from the solution of these equations are then substi-
tuted into the original expressions for the internal forces and
couples to obtain the values of the latter. Once all the in-
ternal forces and couples are known, it 1s possible to compute
the reactions of the structure.

Consider any structure which 1is loaded by the forces P1s
Pgs e++s Pys e++y Py (3). The temperature of the material re-
mains constant and the supports are rigid. Applying Castigliano’s
First Theorem,

U
Py = —— (16)
where U is the strain energy stored within a structure, and b L]
1s the deflection of the point of application of the load p; in
the direction of Py -
Equation (16) may be expanded if the strain energy is

evaluated in terms of the loads py. It may be written as



remaining fixed.

20U

p4 I —

77V
+

Py 2731 7Py 7 V2

ee *+ A4

21
z (=) (—)
1,3=1,2,...,n 7Py

From Castigliano's Second Theorem,

Yy = —

17

JU  7py

7 Py ZREN

(17)

(18)

Substituting equation (18) into equation (17),

= 2 ¥4 (——
Ly =L2,00en 9

IPa

(19)

The partial derivative —= represents the force developed

Equation (19) then becomes

Py = - Ta 844

at point j due to a unit deflection of point 1, all other points
This force is represented by the symbol 841

The subscript j represents the point at which the force acts and
the subscript 1 the point at which the unit deflection 1s imposed.

(20)

By Maxwell's law of reciprocal deflections,

31T %1y

and hence

Py = C— Js 84

(21)
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Equation (21) may be written for different loads in a system

of simultaneous equations.

pl = Sllyl + Slzyz 4+ 4 s e + Slnyn
Pg = 827¥1 + 822¥2 + - - o * 8on¥p
(22)

Matrix formulation of equation (22) gives

P1 811 832 + - - 8n 1
P2 821 822 -+ - - 8o Y2
. -

Pn 871 %2 - - 8nn yn

or in general form

P=3SY
where P 1s a column vector made up of the load components P1s Pos
«ess Pys o+, Ppe Y 18 also a column vector but it consists of
the deflection components yj, yg2, cces ¥ys coo, Yoo S is a
square matrix consisting of an ordered array of the stiffness in-
fluence coefficlents 134 of the structure. Matrix S 1s referred
to as the "stiffness" matrix of the structure. As S is a sym-
metrical matrix, its inverse exists.

The solution may be written in the form

Y = s-1p

where S1 1s the inverse of stiffness matrix S and is the flexi-

bllity matrix F as shown before.



The following relationship between the two mastrices F and S
may be shown.
F=51gnas=p1
That 1s, the stiffness matrix is the inverse of the flexibllity
matrix, and vice versa. It has been proved also that if the pro-
duct of these two matrices F and S is formed, the 1dentity matrix

can be obtsalned (4).

INPLUENCE LINES

Many structures are subjected to moving loads. It should
therefore be clear that i1t 1s essential for a structural analyst
to understand the methods by which the position of live load which
causes the maximum stress at any polnt may be determined. Thils
may be done convenlently by means of diagrams or curves that show
the effect of moving a unlit load across the structure. Such
curves gre commonly known as "influence lines" (8).

An Influence line, then, may be defined as a curve which
shows for a particular section or polnt the variation in shear,
moment, reaction, or other dirsct function due to a unit load mov-
ing across the structure. For a particular function it can there-
fore be constructed by placing a unit load at varlous points on a
structure. For each of these positions of the unit load, the
value of the function at a partlcular section of the structure
can be determined. Thus an Influence llne for reactlon, shesar,
or moment shows the variation of reaction, shear, or moment at a

particular section of the structure due to a unit load placed
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anywhere along the structure.

Influence lines may be used for two very important purposds:

l. To determine wnat position of live loads will lead to a
maximum value of the particular function for which an influence
line has been constructed.

2. To compute the value of that function with the loads so
placed or for any loading condition (6).

In plotting the influence lines for a statically determinant
structure, the resulting diagrams are composed of stralight-line
segments. In this case, the ordinates for a few controlling
points are computed, and these values are connected with a set of
straight lines. Influence lines for indeterminate structures are
not as simple to draw as they are for determinate structures. In
this case, the computation of ordinates at a large number of
points is required because the diagrams are either curved or made
up of a series of chords.

The problem of preparing the dlagrams is not as difficult as
it might first appear. A large percentage of the work may be
eliminated by applying Mazwell's law of reciprocal deflections,
as discussed before.

Influence lines obtalned are sketched by two methods, namely,
(1) quantitatively, and (2) qualitatively. Influence lines ob-
talned by actual computation of ordinates are sald to be quanti-
tative influence lines.

Consider a beam shown in Fig. 4(a). It is statically inde-
terminate to first degree. It 18 required to find the influence
line for Ry,.



Fig. 4.

INFLUENCE SOLUTION FOR Ry.
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Let Xy = Ry
then P Ada 4+ Xl 511 =0
im
- = - (24)
S

If P =1, equation (24) 1s the equation for the ordinste of
the influenced line at point "m", or

X1 = = —"-"—“. (25)
511

Considering Maxwell's law,

21m = Sm
then equation (25) becomes
oml
Xy = _m
311

It 1s now evident that the unit load need only be placed at
B, and the deflections at various points across the beam are then
computed. Dividing each of these values by 511 glves the ordl-
nates for the influence line. The deflections at verlious polnts
may be computed by the conjugate beam method or any other method.

Influence lines obtained by mere sketching are said to be
qualitative influence lines. Muller-Breslau's principle is con-
veniently applied in determining the qualitstive lnfluence lines.
This principle may be stated as follows.

"The deflected shape of a structure represents the

influence line for & function such as stress, shear,

moment, or reaction component if the function is allowed

to act through a unit distance." (5)

This principle is applicable to both statically determinate and
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indeterminate beams, frames, and trusses. It 1s thus possible to
roughly sketch the diagram with sufficlent accuracy to locate the
critical positions for live load for various functions of the

structure.

DISCUSSION

The two general methods of compatibility, leading to & flex-
ibility matrix, and equilibrium, leading to a stiffness matrix,
form the framework of the dliscussion of this report.

The first method consists of removing the redundant reac-
tions or internsl forces and finding the amount by which the com-
patibility conditions (which express the continuity of the strue-
ture) are violated under the action of external load. Next, the
effects of iIndeterminate reactions on this displacement or rota-
tion differences are found. The final step 1s the determination
of the indeterminate forces or moments from a set of simultan-
eous equations which express the conditions of compatibility.

At every step in the procedure, the equilibrium conditions have
been satisfied and the fingl set of equations insures that the
compatibility relations also hold. The number of simultaneous
equations to solve is, in general, the number of redundancles.
Thus for the frame shown in Fig. 5(a), the four statically de-
terminate structures, nsmely, 5 (b, ¢, d, and e), may be analyzed
by finding in each case the horizontal and vertical displacements
and the rotation of the base of the right column of the free end.

Then three simultaneous equations, which have H, V, and M as



(a) Frame

(b) Applied Load
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(¢) Redundant H

Fig. 5. FRAME WITH APPLIED LOAD

AND REDUNDANTS.

\'f

(d) Redundant V

M

(e) Redundant M



unknowns, may be set up to express the conditions of fixity of
the base of the right column.
The name usually given to this general method of attack is

the method of compatibility, because the equations which are

solved are compatibility equations. In the methods of compati-
bility, the unknowns are the indeterminate forces and moments.
The matrix form of the simultaneous equations which arise in
solutions by the method of compatibility 1is
AF = X,

where A is the matrix of the structure, and F is a column vector,
the elements of which are the redundant forces or moments. The
column vector X, is made up of the displacements and rotations
computed for the determinate structure (Fig. 6(b)) caused by the
external loading. Since the equations have a solution the de-
terminant of the matrix A does not vanish, and hence its inverse
exists. If the matrix A~l 15 computed, one can find the inde-
terminate reactions immediately for any loading of the structure
merely by solving part of Fig. 6(b) again and forming the matrix
product A‘lxo. The symmetry of the matrix A follows from the
reclprocal theorem. It can be shown that the inverse of a sym-
metric matrix is symmetric, or A=l can be shown to be symmetric
directly in this case.

In this method, the symmetric matrix A is usually called the
flexibility matrix of the structure (actually a flexibility ma-

trix for the structure, as there are many choices of unknowns).
The reason for the name is not hard to explain. Consider

AF = X,
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If all the elements of A were multiplied by a number greater than
unity, the displacement vector X, would be large for the same set
of forces F; in other words, the 'size' of A (in some vague
sense) is a measure of the flexibility of the structure. By
doubling A, one describes a structure which is twice as flexible
as the original one.

In the second general method of analysis in which the stiff-
ness matrix is used, constraints are added instead of being re-
moved. The 'slope-~deflection' method of analysis is an example
of this method (9). For the same frame in Fig. 6(a), fixed-end
moments are found in Fig. 6(b) due to the load on the left column.
Then fixed-end moments are found in Fig. 6 (¢, d, and e) due to
the imposed rotations ©. and 85 and the side sway A . The
equations which are written are equations of moment equilibrium
of the Jjoints at the top of the frame and of horizontal equilib-
rium of the beam. The unknowns in these equations are values of
the joint rotations and the side sway. It 1s reasonable to call
this procedure the method of equilibrium since the equations
which are solved are equations of equilibrium. The compatibility
relations are automatically satisfied at every step. In this
case the number of simultaneous equations is the same by both
methods.

In general this is not so, and one method or the other 1is
often better sulted to a specific problem. By this method, the
equetions ere of form

BX = F

o

X being the vector of the joint rotations and sway, snd F, the



(e) Side Sway A

Fig. 6. FRAME WITH APPLIED LOAD,
ROTATIONS, AND SIDE SWAX.
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vector whose slements are fixed-end moments or horizontal forces
on the beam (none in this case). The set of equations can be
Inverted and given a similar interpretation to B-1. Both B and
B~1 are symmetric. It 1s natural to call the matrix B s stiff-
ness matrix of the structure, for by doubling B a structure be-
comes twice as stiff as the original one.

In recent years the matrix formulation of static structural
problems has been encouraged by the presence of digital computers

in many design offices.
EXAMPLE PROBLEMS
Force Method Example

Given: A frame as shown in Fig. 7(a).

Required: Influence lines for Hp, Vp, and Mp.

The given frame 1s statically indeterminate to the third de-
gree. It 1s made determinate and stable by removing the fixed-
end D, that is, making the end D free. The redundants will be

and xz, as shown in Fig. 7 (b, ¢, and d). At thils stage,

a matrix of the structure may be defined as

£11 fai2 £13 |

’f21 fao f23
f31 faz T3
This matrix is independent of the load system on the struc-

ture but depends upon the redundants chosen and the dimension of

the structure. Due to this, a work for the calculation of
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redundants for various load positions on the structure 1is re-
duced considerably.
For the load position marked as (1) in Fig. 7(a), the elas-
tic equations are
£10%) *+ T1a%p + f13%3 + £1§Y= 0
fa1% + Lop%p + fozxg + fa(¥= 0
fa1X] + fao0Xg + fazxz + f2A2/= 0
For the load position marked as (2) in Fig. 7(a), the elastic
equations are
£11%1 + f1pXp + 13Xz + I 0
fa1x) + fooxp + fa3x3 + ToA¥ =0
£31%) + L3a%p + Ta5%5 + £30D= 0
Here it 1s seen that the matrix of the given structure does
not change with the position of one kip load, but it is the same
for all positions of the load. It is to be noted carefully that
the constant column vectors F;, do change. With the one kip load

in positions (3), (4), ..., to (@6 , the column vectors will be

10
| 20
\

£ 30

Such 16-column vectors are to be solved. This is best done

by the matrix method. By this method, the matrix of the struc-
ture is augmented by the constant column vectors, and also by a
check vector on the right (10). This check vector gives a check
on calculations at any stage. On the left, the matrix is aug-
mented by an identity matrix Iz. (See Table 1.)

By elementary row operations, the matrix of the structure
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is changed to its canonical form, which happens to be identity
matrix. When the same row operations are carried on constant
vectors, they are transformed into solution vectors. Each solu-
tion vector is the solution for Xy, X9, and Xz for the load po-
sition considered. When the same row operations are carried out
on the augmented identity matrix, it is transformed into the in-
verse of the matrix (Table 1).

Ordinates required for drawing influence lines for Hp, Vp,
and Mp are shown in Table 2. The influence lines are shown in
Fig. (9).

The following values for the mastrix of the structure are
obtained by use of "Tafel der Werte" (11).

£17 = +4950
1o = £y = -2430

]
[¥]]
w

(]

+

»

N

The matrix will be

£1, f1o f13) 4950 -2430 -405
F=|fp fgp fp3| = |-2430 2736 252
ST S -405 252 42
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(a) Moving Load Positions Marked

As(l)...

(b) Redundant xj = 1 |

(d) Redundant
(c) Redundant Xp =1 Xz = 1

Fig. 7. FRAME WITH REDUNDANTS.



Fig. 8.

MOMENT DIAGRAMS DUE TO UNIT VALUE OF
REDUNDANTS AND MOVING LOAD.
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Fig. 8.

MOMENT DIAGRAMS DUE TO UNIT VALUE OF
REDUNDANTS AND MOVING LOAD.
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Fig. 8.

MOMENT DIAGRAMS DUE TO UNIT VALUE OF
REDUNDANTS AND MOVING LOAD.
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Values

10

flolz

35

of constant vectors for the load position indicated

= +4.5

= +36

= +121.5

= +288

= +562.5

=0

= +405
+895

= +1620
= 42430

= -562.5

= +1278

£1014 = +3006
£101% = +3964.5

f20
f20
f20
f20

-54
-216
-486
-864
~-1350
0
-589. 5
-1260
-1984.5
-2736
+1350
+5984
-162
-918

= -1674

-2430

£..2

f30

I30
f”ﬂ

130

3
4
5

£_.13 =

f30
f30
T30

14
15

16

'405



Table 1.

Positions of Moving Load.

36

Elementary Row Operations in Finding Out
Values of Unknown Redundants at Various

Row
operations
Ry 4950 -2430 -405 1 0 0
Ro -2430 2736 252 0 1 0
Rz -405 252 42 0 0 1
Ry 1 -0.4909 -0.0818 0.0002 0 0
— -2430 2736 252 0 1 0
4950 -405 252 42 0 0 1
Rg+2430R; 1 -0.4909 -0.0818 0.0002 0 0
Rat405H 0 1543.113 53.226 0.486 1 0
S 1 0 53.186 8.871 0.081 0 1
Rg 1 -0.4909 -0.0818 0.0002 0 0
_— 0 1 0.03449 0.00315 0.000648 0
1543.113 0 53.186 8.871 0.081 0 1
R+ + 1 0 -0.06487 0.000355 0.000318 0
5.4909R2 0 1 0.03449 0.000315 0.000648 0
Rz - 0 0 7.0366 0.06425 -0.03447 1
53.186Rg
1 0 .0.06487 0.000355 0.000318 0
— 0 1 0.03449 0.000315 0.000648 0
7.0366 0 0 1 0.009131 -0.004899% 0.14211
Rl +
0.06487R~ 1 0 0 0.000947 0 0.009219
Ry - 0 1 0 0 0.000817 -0.004901
0.03449Rz O 0 1 0.0098131 -0.004899 0.14211
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Table 1 (cont.).

Row : Load positions
operations : () & :+ & @
Ry 4.5 36 121.5 288 562.5
® -54.00 -216 ~486.0 -864 -1350.0
Ry -4.5 -18 -40.5 -72 -112.5
Ry 0.0009 0.0072  0.0243  0.0576 0.1125
-54 -216 -486 -864 -1350
4950 -4.5 -18 -40.5 -72 -112.5
0.0009 0.0072  0.0243  0.0576 0.1125
§2+igggnl _51.813 -198.504 -426.951 -724.032 -1076.625
3+ 1 -4.136 -15.084 -30.159 -48.672 -66.938
Rg 0.0009 0.0072  0.0243  0.0576 0.1125
-0.0335 -0.1286 -0.2767 -0.4692 -0.6977
1543.113 -4.136 -15.084 -30.159 -48.672 -66.938
Ry + -0.0074 -0.0559 -0.1115 -0.1727 -0.2300
0+4909R -0.0835 -0.1286 -0.2767 -0.4692 -0.6977
R3-53.186R, -2.3468 -8.2428 -15.4442 -23.719 -29.8326
Ry -0.0074 -0.0559 -0.1115 -0.1727 -0.2300
-0.0335 -0.1286 -0.2767 -0.4692 -0.6977
7.0366 -0.3339 -1.1714 -2.1948 -3.3707 -4.2395
-0.0291 -0.1319 -0.2539 -0.3914 -0.5050
R1+0.08487R3 _5 0000 -0.0882 -0.2010 -0.3529 -0.5514
R2-0.03449Rz _0.3339 -1.1714 -2.1948 -3.3707 -4.2395



Table 1 (cont.).

Row

operations

4950

Ro+2430R,
Ry+405R,

Ry
1543.113

R1+0.4909Rg
Rz-53. 186Ry

Rz
7.0366

R1+0.06487Rz
Rg-0.03449Rz

e

OO0 OO0 000 OO0 000 OO0 O©Oo0Oo

)

405
-589.5
-49.5

0.0810
-589.5
-49.5

0.0810
-392.67

0.0810
-0.2545
-16.695

-0.0439
"00 2545
-3.1619

-0.0439
-O. 2545
-0.4493

-0.0730
-0.2390
-0.4493

L.oad positions

895
-1260
-108

0.1790
-1260
-108

0.1790
-825.03
-35.505

0.1790
-0.5346
-35.505

-0.0834
-0.5346
-7.071

-0.0834
-0.5346
-1.0049

-0.1487
-0.5000
-1.0049

®

1620
-1984.5
-175.5

0.3240
-1984.5
-1756.5

0.3240
-1197.18
-44.27

0.3240
-0.7758
-44.27

-0.0568
0.7758
-3.0103

—00 0568
0.7758

-0.0845
-0.7610
-0.4278

@

2430
-2736
-252

0.4860
-2736
-252

0.4860
-1555.02
-55.17

0.4860
-1.0076
-55.17

_00 0086
-1.0076
-1.5776

-0.0086
-1.0076
-0 . 2242

-0.0232
-0.9999
-0.2242



Table 1 (cont.

Row
operations :

R
R2
R3
Ry
4950

Ro+2430Rq

R3+4 05R1
Ro

1543.113

Rq+0.4909Rg
Rz-53.186Rg

Ra
7.0366

R1+0.06487R3
R2-0.03449R3

1350.0
112.5

-0.112%
1350
112.5

-0.1125
1076.625
66.938

-001125
0.6977
66.938

0.2309
0.6977
29.8327

0.2300
0.6977
4.2395

0.5050
0.5514
4.2395

Load positions

@

+1278
594.0
27.0

0.2556
594
27

0.2556
1215.108
130.518

0.2556
0.7874
130. 518

0.6421
0.7874
88.6393

0.6421
0.7874
12.5965

1.4592
0.3529
12.5965

-
-

)

2101.5
-162
-67050

0.4203
-162
-6705

0.4203
859.329
102.722

0.4203
0.5569
102.722

0.6937
0.5569
73.1027

0.6937
0.5569
10. 3886

1.3676
0.19858
10. 3886

9

3006
-918.0
-171.0

0.6012
-918
-171

0.6012
542.916
72.486

0.6012
0.3518
72.486

0.7739
0.3518
53.7752

0.7729
0.3518
7.6420

1.2696
0.0882
7.6420
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Table 1 (concl

Row H Load positions s Check
operations : @ : @ : column
3964.5 4950 23216.00
Ry -1674 -2430 -12221.00
R3 -283.5 -405 -1730.00
R, 0.7929 1 4.69010
—_— -1674 -2430 -12221.0
4950 -283.5 -405 -1730.00
0.7929 1 4.6901
SQIEgggnl 252.747 0 -824.057
3 1 37.625 0 169.4905
Ro 0.7929 1 4.6901
—_— 0.1638 0 -0.5340
1543.113 37.625 0 169.4905
R~40. 0.8733 1 4.4280
Rl_gs4ggggz 0.1638 0 -0.5340
379V 2 28.9131 0 197.8918
Rz 0.8733 1 4.4280
—_— 0.1638 0 -0.5340
7.0366 4.1088 0 28.1232
Ro0. 03449R 0.0221 0 -1.5040
2=V 3 4.1088 0 28.1232




Table 2.
Different Positions of Moving Load.

Position
or
unit load

® GOPPLPEEPRIEPEP®®E o

¥ ——p—

-
3

Ordinates for Unknown Redundants for

0
+0.0291
+0.1319
+0.2539
+0.3914
+0. 5050

0
+0.0730
+0.1487
+0.0845
+0.0232
-0.5050
-1.4592
-1.3676
-1.2696
-1.1398
-1.0000

Ordinates for

=
L

xg = Vp
0
+0.0220
+0.0882
+0.2010
+0.3529
+0.5514
0
+0.2390
+0. 5000
+0.7610
+0.9999
-0.5514
-0.3529
-0.1985
-0.0882
-0.0221
0

Xz = My
0
+0. 3339
+1.1714
+2.1948
+3. 3707
+4.2395
0
+0.4493
+1.0049
+0.4278
+0.2242
-4.2395
-12. 5965
-10. 3886
-7.6420
-4.1088
0

41



Fig. 9.

INFLUENCE LINES FOR Hp, Vp, AND Mp.
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Displacement Method Example

Required: Influence lines for 6p and 8.

The slope deflection equations are as follows (EI = con-

stant).
2EI P
Mpp = — (264 + 6p) - Mpp
2
(0 + eg) - MygF (1)
15
2EI
2
= — (20g) + Mg, (11)
s B BA
2EI
Mpc = — (20g + 6¢) - MpcF
2
(20 + 6p) - Mg-~F (111)
12
2EI
2
=z — (29C + eB) + MCBF (1v)
12
2EI

Mcp = —— (26¢ + €p) - MgpF

2
= — (20p) - Mapf (v)
= c cD v

2E1
Mpe = — (29D + Gc) + IDCF



= e (QC) + MDCF
15

Considering joint B,

Mpc") = 0

Mcp

solumn vector

4 4 2
Therefore -~— Op + — 6 + — 8¢ + (Mpy-
15 12 12
5 1 F F
Therefore =— O + — 8¢ + (Mgy~ - Mg ) =
5 6
Considering joint C,
Mce + Mcp = O
4 4 2 F
Therefore — 8~ + — O¢ + — 6p + (Mcp
12 15 12
Therefore — 8pg + — 65 + (MCBF - MCD”) =
6 5
Putting in matrix form,
EI 6p Mg ¥
=
EI 6 MggF
BX=F(
where
3/5 1/6
B = = stiffness matrix
1/6 3/5
EI 6p
X = = unknown vector
EI 6¢
- Mg F
FO= =

I?
Mcp' - McB

44

(vi)

(vii)

(viti)



3/5 1/6 3/5 =1/86
= Adj B =
11/6 3/5 ‘-1/6 3/5
Bl 3/5x3/5- |(-1/6)(-1/6)
9 1 299
25 36 900
l3/5 -1/51 540
, =2adlB -1/6 3/5] 299
Therefore B”
Bl 299 150

900 L 299

1507
299i
540 |

299



Fig. 10.

FRAME WITH MOVING LOAD ON
DIFFERENT SPANS.
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Table 3. Fixed-end Moments Due to Different
Loed Positions.

l : 2 : 3 : 4 : 5 : 6
Load :Dis- : MygF = MppF = : Mot = : MgpF
posi- stance: 1K(15-K)2  1K(15-K)? : 1K(12-K)* | 1K(12-K)?

: 225 228 . 144 . 144
tion : 'K' ¢ in ft-kips in ft-kips : in ft-kips ; in ft-kips
Load in Span AB:

0 0 0 0 0 0

Q) 3 .92 0.48 0 0

©) 6 2.16 1.44 0 0

® 9 1.44 2.16 0 0

® 12 0.48 1.92 0 0

(8) 15 0 0 0 0

Load in Span BC:

® o 0 0 0 0

@ 3 0 0 1.6875 0.5625

6 0 0 1. 5000 1.5000

9 0 0 0. 5625 1.6875

12 0 0 0 0
Load in Span CD:
a3 0 0 0 0 0
@ 3 0 0 0 0
a3 6 0 0 0 0
9 0 0 0 0
12 0 0 0 0
@ 15 0 0 0 0



Table 3 (conecl. ).

1 : 2 :
Load :Dis- :
posi-:tance:
tion : 'K' -

Load in

0 0

@ 3
® s
® 9
®» 12
® 15
Load in

® 0
@ 3
® 6

9

12

7
F
Mcp

1K (15-K)2
225

in ft-kips
Span AB:

o O o o o o

Span BC:

O O O O o

Load in Span CD:

as

Lo © O LU O

-

0
1.92
2.16
1.44
0.48

(1]

.
-
.
-
[
.
*
.

8

MDCF =
1K(15-K)2
525

in ft-kips

o O o O o o

o O O o o

0.48
1.44
2.16
1.92

s 3

9

F
Mpc

-MBA

48

10

F P
¥ Mcp -McB

in ft-kips in ft-kips

-0.48
-1.44
-2.16
-1.92

0

1.6875
1.5000
0.5625

0

O O O O O

o © o o O©O o

0
-0.5625
-1.5000
-1.6875

0

1.92
2.16
1.44
0.48



Posi-
tion
of
load

(8)

oy

LA Y]

Table 4.

Ordinates of Elég and EIGC at

Different Load Positionsl.

‘Mg
FO =

1.6875
-0.5625

1.5000
1.5000_

0.5625
-1.6875

-~

C

-

T
1.92

2.16

P .
Mcp MCBFJ .

3=1 Fy
Eleg

_EIeg
0

-0.8669
+0.2408
T-2.6006
_+0.7225

-3.9010
_+1.0837

-3.4675
_+0.9633

0

0
0

3.3208
-108625‘
T 3.4616
_-3.4616_

+1.8625
-303298_

0
0.

0
0

-0 9633
+3.4675

-1 0837
+3 9010

EI8p

0

-0.8669

-2.6006

-3.32010

-3.4675

+3.3298

+3.4616

+1.8625

-0.9633

-100837

El€g

0

+0.2408

+0.7225

+1.0837

+0.9633

-1.8625

-35.4616

-3.3298

+3.4675

+3.9010

49



Table 4 {(conecl.).

Posi- F F X=581F
M - M 0 *

tlon  p, . BC BA EI8z : EIeg @ EIeg
load Mep® - Mg _EI8¢
C@ 1.44 +2.6006 0 6008
@ 0 -0.2408 -0.2408  +0.8669

0.48 _+0.8669

o0 0
C§ 0 0 ° °

-

1The influence lines for EIf®p and EI8~ are shown in
FPig. 11.

50



Fig.

11.

INFLUENCE LINES FOR EI®g AND EIS;.
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CONCLUSIORS

It is seen that for the structure analyzed, in terms of
the matrix formulation, the dlsplacement method has a great ad-
ventage over the force method. The advantage of the mstrix
formulation lies in the faet that &1l other similar problems
may be treated by an efficient standerdized procedure. More-
over, the mathemastical operatlions necessary after the original
matrices have been established are of such routine nature that
they can be carried out by an electronic digitel computer, or
by persons having no knowledge of structural asnalysis. A major
drawback to the application of high-speed digital computers is,
however, the initial difficulty of getting a given type of
problem set up and coded.

The extension of the method described here to structures
with variable transverse sectlon is feasible and practical.

The application of this technique to the solution of Civil
Engineering problems presents no greater difficulty than those

already surmounted for the analysis ol alrcraft structures.
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The maln advantage of the matrix approach 1s the method of
notation and the ease of speaking about general problems. The
equations for plane redundant structures obtained by the dis-
rlacement and force method are formulated in the matrix form.

The development of the high-speed electronic digital computer
inspired structural engineers to analyze highly indeterminate
structures without much labor. The matrix formulation 1s a sys-
tematic procedure to be adopted in the programming of the
solution.

There are two principal methods of sttack for analyzing a
linear statically indeterminate structure. The first method in-
volves the determination of certaln redundant forces or moments
by solving the elastic compatibllity equations. The flexibility
matrix consisting of an ordered array of the flexibility influ-
ence coefficlents or deflectlion influence coefficlents is used
in this method, which is known as the "force method" of analysis.
The second method of analysis, which 1s very similar to the force
method, 1s known as the "displacement method". This method, how-
ever, assumes the jolnt rotations or displacements as unknowns
and 1nvolves the solutlion of the simultaneous joint equilibrium
equations. These equations relate the redundant forces in terms
of the assumed deflections. They are represented by the stiff-
ness matrix composed of an ordered array of the stiffness in-
fluence coefficients.

While discussing these methods, the concepts of the first
and second theorems of Castigliano, the theorems of virtual work

and Maxwell's law of reclprocal deflectlions are used.



As many structures are subjected to moving loads, it is
essential to understand the methods by which the position of
live load which causes the maximum stress at any point may be
determined. This is convenlently done and shown by influence
lines. In showing for a particular section the variation in
shear, moment, reaction, or other direct function due to a unit
load moving across the structure, the influence lines are con-
structed by plsacing a unit load at various points on a structure.
The different ordinates for a few controlling points, required
for drawing influence lines corresponding to the different posi-
tions of a moving load, are shown in the form of a matrix. The
matrix solution for final results, that is, the different ordi-
nates required for influence lines, is thus a convenient,

systematic, and efficient method.



