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MATRIX SOLUTION FOR INFLUENCE LINES 
By Bhalchandra S. Mehta^ 

SYNOPSIS 

The application of matrix algebra has made it possible for 
a structural engineer to analyze complex or highly redundant 
structures more easily, logically, and systematically. The prob-
lem of influence lines for portal frames is formulated in matrix 
form, using the principle of virtual work with displacements or 
forces as unknowns. 

The application of the principle of virtual work is a con-
venient method to analyze a linear statically indeterminate 
structure. There are two main methods for analyzing it. The 
first method involves determining certain redundant forces or 
moments by solving the elastic compatibility equations. All 
elastic characteristics of the structure are contained in a flex-
ibility matrix which consists of an ordered array of the flexi-
bility influence coefficients. This method is known as the 
"force method' of analysis. In the second method of analysis, 
which is known as the "displacement method", joint rotations or 
displacements are considered as unknowns and a solution of the 
simultaneous joint equilibrium equations is to be performed. 
These equations relate the redundant forces in terms of the as-
sumed deflections. They are represented by the stiffness matrix 

^Graduate student, Department of Civil Engineering, Kansas 
State University, Manhattan, Kansas. 
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composed of an ordered array of the stiffness influence coeffi-
cients. Civil engineering structures can be analyzed conveniently 
by the stiffness matrix technique. 

INTRODUCTION 

The matrix form of the equations of plane redundant struc-
tures by the displacement and force methods is based upon ideas 
developed and discussed by J. H. Argyris (1)^ and by making an 
adaptation from the equations deduced by that author for plane 
structures composed of rigid joints and straight bars with con-
stant transverse section. As the matrix formulation of structural 
theory was pioneered and was given a very thorough and effective 
treatment by Argyris, the matrix equations are sometimes known as 
Argyris matrix equations for analyzing of stresses and deflections 
of various types of beam and frame systems. 

The application of a matrix procedure to the analysis of 
structures consisting of flexural members is presented herein. 
The usual and standard procedures of structural analysis, such as 
the virtual work method or dummy unit load method, provide very 
convenient means for evaluating deflections or stresses under 
static conditions (2). The method presented herein consists of a 
matrix systematizing of the virtual work procedure. The numerical 
operations which are done correspond exactly to those which are 

^Numerals in parentheses, thus (1), refer to corresponding 
items in the Reading References. 
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usually performed in the standard virtual work solution. The di-
rect results of usual matrix procedure are two influence coeffi-
cient matrices. The first of these, the stress matrix, represents 
the forces in each of the members of the structure due to succes-
sive applications of unit values of the external loads, while the 
second, the flexibility matrix, represents the deflections at the 
points of loading due to unit values of the external loads. When 
these two matrices have been evaluated, it is a simple operation 
to obtain stresses or deflections due to any system of externally 
applied concentrated loads. 

Matrix methods are convenient methods to solve linear simul-
taneous equations. As the equations are solved by matrix methods, 
the final results, that is, the different ordinates, required for 
drawing influence lines corresponding to the different positions 
of moving load, are in the form of a matrix. 

The development of the electronic digital computer has 
helped in analyzing highly indeterminate structures which pre-
viously had been difficult and laborious to analyze by the hand 
method of calculation (3). The application of matrix theory to 
structural analysis thus becomes more logical and permits the con-
cise formulation of large problems and control of the data re-
quired for feeding to the electronic digital computer. It has 
therefore stimulated an intense interest in the use of matrix 
methods to formulate structural theory. 



VIRTUAL WORK 

The most general and direct method for computing the deflec-
tions of structures is the method of virtual work. The principle 
of virtual displacement is used to develop the basis for the 
method of virtual work for computing the deflection of a struc-
ture. The theorem of virtual work may be stated as follows: 

"If a body which is in equilibrium under a system 
of external loads is given any small (virtual) deforma-
tion, then the work done by the external loads during 
this virtual deformation is equal to the increase in 
internal strain energy stored in the body." (4) 
Consider the beam of Fig. 1. It is desired to know the de-

flection at point "a" in the beam caused by the external loads 

Fig. 1. VIRTUAL WORK. 
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Pl, Pg, and Pg. If the loads were removed from the beam and a 
unit load placed at "a", small stresses and deformations would be 
developed in the fibers of the beam, and a small deflection would 
occur at "a". The external loads are now replaced on the beam. 
Due to these loads the fiber stresses and deformations will be 
increased, and the unit load at "a" would deflect an additional 
amount The internal work performed by the unit load stresses, 
as they are carried through the additional fiber deformations, 
equals the external work performed by the unit load as it is car-
ried through the additional deflection 5(5). By using the 
flexural formula, 

my 
Unit stress in dA = — 

I 
where m is the moment at any section due to the unit load. 

my 
Total stress in dA = — dA 

I 
When the external loads are returned to the structure, 

Deformation of dx length = ^ dx 
f = - dx E 
My 

= — dx 
EI 

where M is the moment at any section in the beam due to the ex-
ternal loads. 

Work done in dA = (total stress in dA) 
(deformation of dx length) 



my My 
= ( — dA) ( — dx) 

I EI 
Mmy^ 

ts dA dx 
El2 

The total work performed on the cross section is expressed by 
^ct Mmy2 Mm (°t 

— — dA dx = — - y2 dA dx (1) 
/cb ElS Ei2 ^ 

Since the expression Jy^dA is the moment of inertia of the sec-
tion, equation (1) becomes 

Mm 
Work = — dx (2) 

EI 
By integrating from 0 to ̂  of this expression, the internal work 
performed in the entire beam can be obtained. Then equation (2) 
becomes 

Mm 
W'i = / — dx 

0 EI 
The external work performed by the unit load as it is carried 
through the distance ^ is 1 x J . By applying the law of con-
servation of energy, namely, 

"If a structure and the external loads acting 
on it are isolated so that these neither receive nor 
give out energy, then the total energy of this system 
remains constant." (4) 

This Implies that for a body in static equilibrium, the variation 
in internal energy must equal to the variation in external energy. 
Therefore the following expression may be written. 

6 
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(3) 

It should be noted that the derivation for the theorem of 
virtual work is based entirely on energy principles. This implies 
that the principle of virtual work is applicable to non-Hookean 
materials as well as materials which are linearly elastic. 

It will be seen that this concept of energy principles is 
readily adaptable to matrix formulation and analysis. 

Some systematic order of computations is adopted in many 
methods of analyzing a statically indeterminate structure. First, 
the redundants and corresponding statically determinate primary 
structure are selected. These redundants are considered as forces 
and/or moments. They are computed by solving an equal number of 
simultaneous equations. Each equation expresses a known deflec-
tion condition for the primary structure in terms of the redun-
dants. Once the redundants are known, then the stresses and de-
flections for the entire structure may be computed as in the case 
of a statically determinate structure. Such a method of struc-
tural analysis is referred to as a force method of structural 
analysis (6). 

INFLUENCE COEFFICIENTS 
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Consider a three-span continuous beam on rigid supports, as 
shown in Fig. 2(a). Assume the temperature of the material re-
mains constant. This beam is statically indeterminate to the 
second degree. The intermediate support reactions B and C are 
chosen as redundants x^ and Xg. The structure is made statically 
determinate by removing the two intermediate supports. 

As only flexural strain energy is considered, the total bend-
ing moment M will be all that is required to find the strain 
energy of the statically indeterminate structure. By the princi-
ple of superposition, the total moment can be considered as com-
posed of three parts: (a) The moment "m^" due to the applied 
loads only acting on the released structure (residual structure), 
that is, x^ = 0 and Xg *= 0, Fig. 2(b). Call this the "particular 
solution" of this problem. It satisfies the conditions of equi-
librium but not the boundary conditions of the problem. In this 
case the continuity of the intermediate supports are the boundary 
conditions. (b) The moment "m^x^" due to the action of the re-
dundant x^ alone on the residual structure, that is, the loads 
are removed and Xg = 0. Here m^ is the moment due to x^ = 1 act-
ing along. See Fig 2(c). (c) The moment "mgXg" due to the 
action of the redundant xg alone on the residual structure, that 
is, the loads are removed and x^ = 0. Here mg is the moment due 
to Xg ^ 1 acting alone. See Fig. 2(d). 

Call the parts (b) and (c) "complementary functions". These 
represent the effects of the redundants whose function is to 
satisfy the boundary conditions (7). Thus the following equation 
for strain energy "U" may be written. 
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Fig. 2. MOMENT DIAGRAMS DUE TO APPLIED LOAD 
AND UNIT VALUES OF REDUNDANTS. 
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r M '2 
U = ds (4) 

7s 2EI 
with the region of integration extended over the whole length 
of the beam. The equation (4) may be rewritten by putting the 
moment M in terms of its components so that 

r i 2 U - (m + miXi + nipXp) ds (5) 
2EI ° ^ ^ ^ ^ 

Applying the theorem of least work, = 0, the two equa-
^x 

tions for the determination of x^ and Xg can be computed. 

— ( / — n J. 2BI 

^ I i2 (m^ + m^Xi + mgXg) ds = 0 
s 3xi 2EI 
r m^ 

— (mtQ + m^xi + mgXg)ds = 0 (6) 
4 EI 

and similarly 
^ U 

= ^ — (m^ + m^x^ + mgXg)ds = 0 (7) 
^ *2 

These two equations (6) and (7) may be expanded as follows 
2 ^ iRl / ^1^2 r 1̂*̂ 0 Xn ds + xg ds + t ds = 0 (8a) 

/s EI A EI Js EI 
, p mgmi / m2^ ^ x^ ds + xg ! ds + ds = 0 (8b) 

Js EI EI /g EI 
Considering now Castigliano's second theorem, namely, 
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and applying it to the deflection ^ at the position and in the 
direction of x^, 

^U mi /- m^ng ^ m^mp a = s xi 1 ds + xg ( da + j ds (9) 
<? *1 Js SI 4 EI /g EI 

If the two redundants are zero, that is, xi s= o and xg = 0, equa-
tion (9) becomes 

= ds = fiQ EI 
where f10 is the deflection of the released structure at the po-
sition and in the direction of x^ due to the applied loads 
(Fig. 3(a)). If the applied load is removed, mp =* 0, and the re-
dundant xg = 0. Then equation (9) becomes 

.2 r 's 
where f11 is the deflection of the released structure at the 
position and in the direction of xi for a unit value of x^ acting 
alone (Fig. 3(b)). 

If the applied load is removed, then mg = 0, and the redun-
dant Xi = 0. Then equation (9) becomes 

= *2 ds = xg fig 
/g EI 

where f^g is the deflection of the released structure at the 
position and in the direction of Xi for a unit value of Xg acting 
alone (Fig. 3(c)). 

Equation (8a) can be rewritten in the form 

fil *1 + 1*12 *2 + 1*10 = 0 (10) 
where it is now seen that it is an expression of the fact that 
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Fig. 3. DEFLECTION DUE TO APPLIED LOAD 
AND REDUNDANTS. 
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the displacements due to the several separate effects must sum to 
zero to produce the required boundary condition of a rigid sup-
port B (Fig. 2(a)). Similarly, equation (8b), which relates to 
the support C, can be rewritten in the form 

f21 = the deflection of the released structure at the 
position and in the direction of Xg for a unit value 
of x^ acting alone 

f22 = the deflection of the released structure at the 
position and in the direction of Xg for a unit value 
of xg acting alone 

f20 =s the deflection of the released structure at the 
position and in the direction of xg due to the 
applied loads. 

The equations (lO) and (11) are alternative arrangements of 
equations (6) and (7) and are equivalent in all respects. It is 
to be noted that f12 = f21. This follows from the forms of f12 
and f21. 

and also from Maxwell's law of reciprocal deflections, which 
states: 

"In any structure the material of which is elastic 
and follows Hooke's law and in which the supports are 
unyielding and the temperature constant, the deflection 
at one point A in a structure due to a load applied at 

fgl xi + fgg xg + fgQ = 0 (11) 

where 
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another point B is exactly the same as the deflection at 
B if the same load is applied at A." (5, S) 
The example, discussed above, is one in which there are two 

redundants, x^ and Xg. In general the solution of a structure 
with n redundants will lead to a set of n simultaneous linear 
algebraic equations in which there will be n^ terms involving in-
fluence coefficients of the type fjj (i, j = 1, 2, ..., n) and n 
quantities of the type f^Q (i, o = 1, 2, ..., n), where f's and 
fp's are formed in exactly the same way as discussed in the above 
example. Thus 

where f^j = the deflection at point i, in the direction of load 
1, due to unit load at j, with all other farces 
removed 

f^o = the deflection at point i, in the direction of load 
1, due to the external loads applied. 

In the general case, the meanings of the f's and fo's remain 
as displacements which may include deflections and rotations ac-
cording to whether the corresponding redundants are forces or 
moments. The equations to be solved will then be 

(12) 

and 
(13) 
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fll*l + 1*12*2 + 
^21*1 + 1*22*2 + 

?il*l + I*i2*2 + 

I*nl*l + ^n2*2 + 
The matrix formulation 

f 
f->i f 

of 

fil **12 
21 *22 

fil fi2 

[fnl fn2 

ij 

flj*j + 
f2j*j + 

fij*j + 
+ 

fln*n + flO = 0 
f2n*n + f20 = ° 

fin*n + fiO = 0 

fnn*n + fnO = ° 

(14) 

equation (14) gives 

In 
2̂n 

fin 

. f nn 

*1 fio 
*2 f20 

*i + fiO 

*n fnO 

(15) 

or in the generalized form as 
F X + Fp = 0 

The matrix F in the above equation is commonly referred to as the 
It is seen that this matrix is made up of 

the influence deflection coefficients f^j for the structure. X 
is a column vector, the elements of which are the redundant 
forces or moments. The column vector Fg is made up of the dis-
placements and rotations computed for the determinate structure 
(Fig. 2(b)) caused by the external loading 

It is easily observed that the matrix F is a square matrix 
and also a symmetric one. Therefore the inverse of F exists. 

The solution can be written in the form 
X = -F"3-FQ 

where F^^is the inverse of flexibility matrix F and is known as 
"stiffness matrix. It will be discussed later. 
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In other cases of statically indeterminate structures, the 
order of computation discussed in a force method is completely 
inverted. Such a method of analysis is called a displacement 
method of structural analysis. In this method, first the internal 
forces and couples are expressed in terms of the key displacement 
components of the structure. Such expressions are substituted 
into the key equilibrium equations of the structures. A system of 
linear simultaneous equations involving the key displacements as 
the unknowns can be obtained. The values of the displacements 
obtained from the solution of these equations are then substi-
tuted into the original expressions for the internal forces and 
couples to obtain the values of the latter. Once all the in-
ternal forces and couples are known, it is possible to compute 
the reactions of the structure. 

Consider any structure which is loaded by the forces p^, 
Pg, ..., p^, ..., p^ (3). The temperature of the material re-
mains constant and the supports are rigid. Applying Castigliano's 
First Theorem, 

U 
P< = (16) 

where U is the strain energy stored within a structure, and y^ 
is the deflection of the point of application of the load p^ in 
the direction of p^. 

Equation (16) may be expanded if the strain energy is 
evaluated in terms of the loads p^. It may be written as 
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p u p = 
^ Yi 
<5?U <ypi <?U ^pg FU pi 

— — . . — — . + — — . — — . . , + — — . . — — . 

Pi 2 Pa ^Pi ^Yi 

,.. + ——— . 

IE (^-L) (17) 
i,j=l,2,...,n J7pj 

From Castigliano's Second Theorem, 

y = (18) 

Substituting equation (18) into equation (17), 

Pi = Z- yj( (19) 
i,jssl,2,...,n 

^Pi The partial derivative *- represents the force developed 

at point j due to a unit deflection of point i, all other points 
remaining fixed. This force is represented by the symbol Sji< 
The subscript j represents the point at which the force acts and 
the subscript i the point at which the unit deflection is imposed. 
Equation (19) then becomes 

Pi = yi s,i (20) 

By Maxwell's law of reciprocal deflections, 
Sji = Sij 

and hence 

Pl = Yi Si, (21) 
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Equation (21) may be written for different loads in a system 
of simultaneous equations. 

Pl = snyi + sigy2 + - - * + sinyn 
P2 = 32171 + 32272 + * * * + S2nPn 

(22) 

Pn = Sniyi + 3ngy2 + * - ' + SnnYn 

Matrix formulation of equation (22) gives 
[- - — 

Pl 311 312 * * * 3in yi 
P2 321 322 ' * * 3gn 72 

- S3 

Pn 3nl 3n2 ' ' * 3 ^ / n 
or in general form 

P = S Y 
where P is a column vector made up of the load components p^, pg, 
..., p^, ..., p^. Y is also a column vector but it consists of 
the deflection components y^, yg, ..., y^, ..., y^. S is a 
square matrix consisting of an ordered array of the stiffness in-
fluence coefficients s^j of the structure. Matrix S is referred 
to as the "stiffness" matrix of the structure. As S is a sym-
metrical matrix, its inverse exists. 

The solution may be written in the form 
Y = S-lp 

where S"1 is the inverse of stiffness matrix S and is the flexi-
bility matrix F as shown before. 
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The following relationship between the two matrices F and S 
may be shown. 

F = S'l and S = F'l 
That is, the stiffness matrix is the inverse of the flexibility 
matrix, and vice versa. It has been proved also that if the pro-
duct of these two matrices F and S is formed, the identity matrix 
can be obtained (4). 

INFLUENCE LINES 

Many structures are subjected to moving loads. It should 
therefore be clear that it is essential for a structural analyst 
to understand the methods by which the position of live load which 
causes the maximum stress at any point may be determined. This 
may be done conveniently by means of diagrams or curves that show 
the effect of moving a unit load across the structure. Such 
curves are commonly known as "influence lines" (8). 

An influence line, then, may be defined as a curve which 
shows for a particular section or point the variation in shear, 
moment, reaction, or other direct function due to a unit load mov-
ing across the structure. For a particular function it can there-
fore be constructed by placing a unit load at various points on a 
structure. For each of these positions of the unit load, the 
value of the function at a particular section of the structure 
can be determined. Thus an influence line for reaction, shear, 
or moment shows the variation of reaction, shear, or moment at a 
particular section of the structure due to a unit load placed 
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anywhere along the structure. 
Influence lines may be used for two very important purposes: 
1. To determine what position of live loads will lead to a 

maximum value of the particular function for which an influence 
line has been constructed. 

2. To compute the value of that function with the loads so 
placed or for any loading condition (6). 

In plotting the influence lines for a statically determinant 
structure, the resulting diagrams are composed of straight-line 
segments. In this case, the ordinates for a few controlling 
points are computed, and these values are connected with a set of 
straight lines. Influence lines for indeterminate structures are 
not as simple to draw as they are for determinate structures. In 
this case, the computation of ordinates at a large number of 
points is required because the diagrams are either curved or made 
up of a series of chords. 

The problem of preparing the diagrams is not as difficult as 
it might first appear. A large percentage of the work may be 
eliminated by applying Maxwell's law of reciprocal deflections, 
as discussed before. 

Influence lines obtained are sketched by two methods, namely, 
(1) quantitatively, and (2) qualitatively. Influence lines ob-
tained by actual computation of ordinates are said to be quanti-
tative influence lines. 

Consider a beam shown in Fig. 4(a). It is statically inde-
terminate to first degree. It is required to find the influence 
line for Rb* 



21 

Fig. 4. INFLUENCE SOLUTION FOR R^. 
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Let X^ = R^ 
then P + X^ ̂ ^^ = 0 

X- = - — ± B (24) 
^11 

If P = 1, equation (24) is the equation for the ordinate of 
the influenced line at point "m", or 

X, = - (25) 
^11 

Considering Maxwell's law, 

^lm = ^ml 
then equation (25) becomes 

^ml X*} = 
^11 

It is now evident that the unit load need only be placed at 
B, and the deflections at various points across the beam are then 
computed. Dividing each of these values by ^^^ gives the ordi-
nates for the influence line. The deflections at various points 
may be computed by the conjugate beam method or any other method. 

Influence lines obtained by mere sketching are said to be 
qualitative influence lines. Muller-Sreslau's principle is con-
veniently applied in determining the qualitative influence lines. 
This principle may be stated as follows. 

"The deflected shape of a structure represents the 
influence line for a function such as stress, shear, 
moment, or reaction component if the function is allowed 
to act through a unit distance." (5) 

This principle is applicable to both statically determinate and 
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indeterminate beams, frames, and trusses. It is thus possible to 
roughly sketch the diagram with sufficient accuracy to locate the 
critical positions for live load for various functions of the 
structure. 

DISCUSSION 

The two general methods of compatibility, leading to a flex-
ibility matrix, and equilibrium, leading to a stiffness matrix, 
form the framework of the discussion of this report. 

The first method consists of removing the redundant reac-
tions or internal forces and finding the amount by which the com-
patibility conditions (which express the continuity of the struc-
ture) are violated under the action of external load. Next, the 
effects of indeterminate reactions on this displacement or rota-
tion differences are found. The final step is the determination 
of the indeterminate forces or moments from a set of simultan-
eous equations which express the conditions of compatibility. 
At every step in the procedure, the equilibrium conditions have 
been satisfied and the final set of equations insures that the 
compatibility relations also hold. The number of simultaneous 
equations to solve is, in general, the number of redundancies. 
Thus for the frame shown in Fig. 5(a), the four statically de-
terminate structures, namely, 5 (b, c, d, and e), may be analyzed 
by finding in each case the horizontal and vertical displacements 
and the rotation of the base of the right column of the free end. 
Then three simultaneous equations, which have H, V, and M as 
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(a) Frame (b) Applied Load 

77ZT H 
(c) Redundant H (d) Redundant V 1 v ! 

M 

(e) Redundant M 

Fig. 5. FRAME WITH APPLIED LOAD 
AND REDUNDANTS. 
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unknowns, may be set up to express the conditions of fixity of 
the base of the right column. 

The name usually given to this general method of attack is 
the method of compatibility, because the equations which are 
solved are compatibility equations. In the methods of compati-
bility, the unknowns are the indeterminate forces and moments. 
The matrix form of the simultaneous equations which arise in 
solutions by the method of compatibility is 

AF = Xo 
where A is the matrix of the structure, and F is a column vector, 
the elements of which are the redundant forces or moments. The 
column vector X^ is made up of the displacements and rotations 
computed for the determinate structure (Fig. 6(b)) caused by the 
external loading. Since the equations have a solution the de-
terminant of the matrix A does not vanish, and hence its inverse 
exists. If the matrix A**l is computed, one can find the inde-
terminate reactions immediately for any loading of the structure 
merely by solving part of Fig. 6(b) again and forming the matrix 
product A"3-x,3. The symmetry of the matrix A follows from the 
reciprocal theorem. It can be shown that the inverse of a sym-
metric matrix is symmetric, or A"1 can be shown to be symmetric 
directly in this case. 

In this method, the symmetric matrix A is usually called the 
flexibility matrix of the structure (actually a flexibility ma-
trix for the structure, as there are many choices of unknowns). 
The reason for the name is not hard to explain. Consider 

AF = Xo 
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If all the elements of A were multiplied by a number greater than 
unity, the displacement vector X<-, would be large for the same set 
of forces F; in other words, the 'size' of A (in some vague 
sense) is a measure of the flexibility of the structure. By 
doubling A, one describes a structure which is twice as flexible 
as the original one. 

In the second general method of analysis in which the stiff-
ness matrix is used, constraints are added instead of being re-
moved. The 'slope-deflection' method of analysis is an example 
of this method (9). For the same frame in Fig. 6(a), fixed-end 
moments are found in Fig. 6(b) due to the load on the left column. 
Then fixed-end moments are found in Fig. 6 (c, d, and e) due to 
the imposed rotations and 9g and the side sway A . The 
equations which are written are equations of moment equilibrium 
of the joints at the top of the frame and of horizontal equilib-
rium of the beam. The unknowns in these equations are values of 
the joint rotations and the side sway. It is reasonable to call 
this procedure the method of equilibrium since the equations 
which are solved are equations of equilibrium. The compatibility 
relations are automatically satisfied at every step. In this 
case the number of simultaneous equations is the same by both 
methods. 

In general this is not so, and one method or the other is 
often better suited to a specific problem. By this method, the 
equations are of form 

BX = Fo 
X being the vector of the joint rotations and sway, and Fo the 
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(e) Side Sway ^ 
Fig. 6. FRAME WITH APPLIED LOAD, 

ROTATIONS, AND SIDE SWAY. 
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vector whose elements are fixed-end moments or horizontal forces 
on the beam (none in this case). The set of equations can be 
inverted and given a similar interpretation to B'^. Both B and 
B*1 are symmetric. It is natural to call the matrix B a stiff-
ness matrix of the structure, for by doubling B a structure be-
comes twice as stiff as the original one. 

In recent years the matrix formulation of static structural 
problems has been encouraged by the presence of digital computers 
in many design offices. 

EXAMPLE PROBLEMS 

Force Method Example 

Given: A frame as shown in Fig. 7(a). 
Required: Influence lines for Hp, Vp, and Mp. 
The given frame is statically indeterminate to the third de-

gree. It is made determinate and stable by removing the fixed-
end D, that is, making the end D free. The redundants will be 

snd xg, as shown in Fig. 7 (b, c, and d). At this stage, 
a matrix of the structure may be defined as 

I'll 1*12 1*13 
1*21 1*22 1*23 
1*31 1*32 1*33 

This matrix is independent of the load system on the struc-
ture but depends upon the redundants chosen and the dimension of 
the structure. Due to this, a work for the calculation of 
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redundants for various load positions on the structure is re-
duced considerably. 

For the load position marked as (l) in Fig. 7(a), the elas-
tic equations are 

1*11*1 + ?12*2 + fl3*3 + I*1(P= 0 
1*21*1 + 1*22*2 + 1*23*3 + 1*2^ = 0 
1*31*1 * 1*32*2 + 1*33*3 * ^ 

For the load position marked as (§) in Fig. 7(a), the elastic 
equations are 

1*11*1 + 1*12*2 + 1*13*3 + **1 0 

1*21*1 + ?22*2 + 1*23*3 + = ° 
^31*1 + *32*2 + 1*33*3 + I*3(^= ° 

Here it is seen that the matrix of the given structure does 
not change with the position of one kip load, but it is the same 
for all positions of the load. It is to be noted carefully that 
the constant column vectors F^^ do change. With the one kip load 
in positions (3), (4), ..., to @ , the column vectors will be 

f. 

lO 
20 

30 
Such 16-column vectors are to be solved. This is best done 

by the matrix method. By this method, the matrix of the struc-
ture is augmented by the constant column vectors, and also by a 
check vector on the right (lO). This check vector gives a check 
on calculations at any stage. On the left, the matrix is aug-
mented by an Identity matrix Ig. (See Table 1.) 

By elementary row operations, the matrix of the structure 
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is changed to its canonical form, which happens to be identity 
matrix. When the same row operations are carried on constant 
vectors, they are transformed into solution vectors. Each solu-
tion vector is the solution for x^, Xg, and Xg for the load po-
sition considered. When the same row operations are carried out 
on the augmented identity matrix, it is transformed into the in-
verse of the matrix (Table 1). 

Ordinates required for drawing influence lines for Hp, Vp, 
and Mp are shown in Table 2. The influence lines are shown in 
Fig. (9). 

The following values for the matrix of the structure are 
obtained by use of "Tafel der Werte" (11). 

I'll s: +4950 

1*12 ss *21 = -2430 

1*13 = 1*31 = -405 

1*22 =s +2736 

1*23 ?32 = +252 

1*33 = +42 
The matrix will be 

I'll 1*12 1*13 4950 -2430 -405 
F = 1*21 1*22 1*23 ss -2430 2736 252 

1*31 1*32 1*33 -405 252 42 



31 

12 
r J 

3' 3' 3' 3' @ & A @ 
to 

to 
I 

LO <-4 to 

tO 

to 

B 

A^ 

13)1. 
to 

to 
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to 

D 
(a) Moving Load Positions Marked 

As (1) . . . @ 

(b) Redundant x^ = 1 
(c) Redundant Xg = 1 

x g = l 

(d) Redundant 
xg = 1 

Fig. 7. FRAME WITH REDUNDANTS. 
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Fig. 8. MOMENT DIAGRAMS DUE TO UNIT VALUE OF 
REDUNDANTS AND MOVING LOAD. 
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Fig. 8. MOMENT DIAGRAMS DUE TO UNIT VALUE OF 
REDUNDANTS AND MOVING LOAD. 
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Fig. 8. MOMENT DIAGRAMS DUE TO UNIT VALUE OF 
REDUNDANTS AND MOVING LOAD. 
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Values of constant vectors for the load position indicated 

flO^ = +4.5 ^20^ = -54 -4.5 
f* 2 _ iio " +36 1*20̂  = -216 f 2 -18 
<10° = +121.5 f2oS = -486 f30S = -40.5 

flO* = +288 1*20* = -864 ISO* = -72 
?ioS = +562.5 1*20̂  = -1350 f 5 a: -112.5 
fio" = 0 f 6 _ ^20 = 0 f- 6 =: 0 
fio? - +405 1*20̂  = -589.5 ^30 = -49.5 

+895 f2oS = -1260 f 8 *30 -108 
f 9 -*10 = + 1620 feo^ = -1984.5 = -175.5 

= +2430 120 -2736 =: -252 
^10^ = -562.5 i*20^ = + 135Q = +112.5 
fio^s = + 1278 +594 -̂ 30 +27 
fl0l3 = +2101.5 f20lS = -162 f- 13 = -67.5 
fio" = +3006 1*20^ = -918 1*30^ = -171 
fio^s = +3964.5 f20^S = -1674 r 15 *30 = -283.5 
fio^s = +4950 faois = -2430 f- 16 ^30 s: -405 
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Table 1. Elementary Row Operations in Finding Out 
Values of Unknown Redundants at Various 

Positions of Moving Load. 

Row 
operations 

Ri 
R2 
33 

Ri 
4950 

R2+2430Ri 
R3+405R1 

R2 
1543.113 

Rl + 0.4909R2 
R3 -
53.186R2 

4950 -2430 -405 1 0 0 
-2430 2736 252 0 1 0 
-405 252 42 0 0 1 
1 -0.4909 -0.0818 0.0002 0 0 

-2430 2736 252 0 1 0 
-405 252 42 0 0 1 
1 -0.4909 -0.0818 0.0002 0 0 
0 1543.113 53.226 0.486 1 0 
0 53.186 8.871 0.081 0 1 
1 -0.4909 -0.0818 0.0002 0 0 
0 1 0.03449 0.00315 0 .000648 0 
0 53.186 8.871 0.081 0 1 
1 0 -0.06487 0.000355 0.000318 0 
0 1 0.03449 0.000315 0.000648 0 
0 0 7.0366 0.06425 -0.03447 1 

7.0366 
1 
0 
0 

0 
1 
0 

-0.06487 0.000355 0.000318 0 
0.03449 0.000315 0.000648 0 

1 0.009131 -0.004899 0.14211 
R^ + 
0706487R* 
Rg -0.03449Rg 

1 
0 
0 

0 
1 
0 

0 0.000947 0 0.009219 
0 0 0.000817 -0.004901 
1 0.009131 -0.004899 0.14211 



Row : Load positions 
operations : @ = (2) : @ : ( 4 ) : 

gl 
3 3 

4 . 5 
- 5 4 . 0 0 
- 4 . 5 

3 6 
- 2 1 6 
- 1 8 

1 2 1 . 5 
- 4 8 6 . 0 
- 4 0 . 5 

2 8 8 
- 8 6 4 
- 7 2 

5 6 2 . 5 
- 1 3 5 0 . 0 
- 1 1 2 . 5 

3l 
4 9 5 0 

0 . 0 0 0 9 
- 5 4 
- 4 . 5 

0 . 0 0 7 2 
- 2 1 6 
- 1 8 

0 . 0 2 4 3 
- 4 8 6 
- 4 0 . 5 

0 . 0 5 7 6 
- 8 6 4 
- 7 2 

0 . 1 1 2 5 
- 1 3 5 0 
- 1 1 2 . 5 

R a + 2 4 3 0 R i 
R 3 + 4 0 5 R i 

0 . 0 0 0 9 
- 5 1 . 8 1 3 
- 4 . 1 3 6 

0 . 0 0 7 2 
- 1 9 8 . 5 0 4 
- 1 5 . 0 8 4 

0 . 0 2 4 3 
- 4 2 6 . 9 5 1 
- 3 0 . 1 5 9 

0 . 0 5 7 6 
- 7 2 4 . 0 3 2 
- 4 8 . 6 7 2 

0 . 1 1 2 5 
- 1 0 7 6 . 6 2 5 
- 6 6 . 9 3 8 

3g 
1 5 4 3 . 1 1 3 

0 . 0 0 0 9 
- 0 . 0 3 3 5 
- 4 . 1 3 6 

0 . 0 0 7 2 
- 0 . 1 2 8 6 
- 1 5 . 0 8 4 

0 . 0 2 4 3 
- 0 . 2 7 6 7 
- 3 0 . 1 5 9 

0 . 0 5 7 6 
- 0 . 4 6 9 2 
- 4 8 . 6 7 2 

0 . 1 1 2 5 
- 0 . 6 9 7 7 
- 6 6 . 9 3 8 

R ^ + 
0 . 4 9 0 9 R g 
R3-53.I86R2 

- 0 . 0 0 7 4 
- 0 . 0 3 3 5 
- 2 . 3 4 9 8 

- 0 . 0 5 5 9 
- 0 . 1 2 8 6 
- 8 . 2 4 2 8 

- 0 . 1 1 1 5 
- 0 . 2 7 6 7 
- 1 5 . 4 4 4 2 

- 0 . 1 7 2 7 
- 0 . 4 6 9 2 
- 2 3 . 7 1 9 

- 0 . 2 3 0 0 
- 0 . 6 9 7 7 
- 2 9 . 8 3 2 6 

3 3 

7 . 0 3 6 6 

- 0 . 0 0 7 4 
- 0 . 0 3 3 5 
- 0 . 3 3 3 9 

- 0 . 0 5 5 9 
- 0 . 1 2 8 6 
- 1 . 1 7 1 4 

- 0 . 1 1 1 5 
- 0 . 2 7 6 7 
- 2 . 1 9 4 8 

- 0 . 1 7 2 7 
- 0 . 4 6 9 2 
- 3 . 3 7 0 7 

- 0 . 2 3 0 0 
- 0 . 6 9 7 7 
- 4 . 2 3 9 5 

R l + 0 . 0 6 4 8 7 R 3 
R 2 - O . O 3 4 4 9 R 3 

- 0 . 0 2 9 1 
- 0 . 0 2 2 0 
- 0 . 3 3 3 9 

- 0 . 1 3 1 9 
- 0 . 0 8 8 2 
- 1 . 1 7 1 4 

- 0 . 2 5 3 9 
- 0 . 2 0 1 0 
- 2 . 1 9 4 8 

- 0 . 3 9 1 4 
- 0 . 3 5 2 9 
- 3 . 3 7 0 7 

- 0 . 5 0 5 0 
- 0 . 5 5 1 4 
- 4 . 2 3 9 5 
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Table 1 (cont.). 
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Table 1 (cont.). 

Row : Load positions 
operations : @ : @ : @ = @ 

R i 
Rr) 
R 3 

0 
0 
0 

4 0 5 
- 5 8 9 . 5 
- 4 9 . 5 

8 9 5 
- 1 2 6 0 
- 1 0 8 

1 6 2 0 
- 1 9 8 4 . 5 
- 1 7 5 . 5 

2 4 3 0 
- 2 7 3 6 
- 2 5 2 

R i 

4 9 5 0 

0 
0 
0 

0 . 0 8 1 0 
- 5 8 9 . 5 
- 4 9 . 5 

0 . 1 7 9 0 
- 1 2 6 0 
- 1 0 8 

0 . 3 2 4 0 
- 1 9 8 4 . 5 
- 1 7 5 . 5 

0 . 4 8 6 0 
- 2 7 3 6 
- 2 5 2 

R g + 2 4 3 0 R i 
R g + 4 0 5 R i 

0 
0 
0 

0 . 0 8 1 0 
- 3 9 2 . 6 7 
- 1 6 . 6 9 5 

0 . 1 7 9 0 
- 8 2 5 . 0 3 
- 3 5 . 5 0 5 

0 . 3 2 4 0 
- 1 1 9 7 . 1 8 
- 4 4 . 2 7 

0 . 4 8 6 0 
- 1 5 5 5 . 0 2 
- 5 5 . 1 7 

R2 

1 5 4 3 . 1 1 3 

0 
0 
0 

0 . 0 8 1 0 
- 0 . 8 5 4 5 
- 1 6 . 6 9 5 

0 . 1 7 9 0 
- 0 . 5 3 4 6 
- 3 5 . 5 0 5 

0 . 3 2 4 0 
- 0 . 7 7 5 8 
- 4 4 . 2 7 

0 . 4 8 6 0 
- 1 . 0 0 7 6 
- 5 5 . 1 7 

R l + 0 . 4 9 0 9 R g 
R g — 5 3 . 1 8 6 R g 

0 
0 
0 

- 0 . 0 4 3 9 
- 0 . 2 5 4 5 
- 3 . 1 6 1 9 

- 0 . 0 8 3 4 
- 0 . 5 3 4 6 
- 7 . 0 7 1 

- 0 . 0 5 6 8 
0 . 7 7 5 8 
- 3 . 0 1 0 3 

- 0 . 0 0 8 6 
- 1 . 0 0 7 6 
- 1 . 5 7 7 6 

Rg 

7 . 0 3 6 6 

0 
0 
0 

- 0 . 0 4 3 9 
- 0 . 2 5 4 5 
- 0 . 4 4 9 3 

- 0 . 0 8 3 4 
- 0 . 5 3 4 6 
- 1 . 0 0 4 9 

- 0 . 0 5 6 8 
0 . 7 7 5 8 

- 0 . 4 2 7 8 

- 0 . 0 0 8 6 
- 1 . 0 0 7 6 
- 0 . 2 2 4 2 

R l + 0 . 0 6 4 8 7 R g 
R g - 0 . 0 3 4 4 9 R g 

0 
0 
0 

- 0 . 0 7 3 0 
- 0 . 2 3 9 0 
- 0 . 4 4 9 3 

- 0 . 1 4 8 7 
- 0 . 5 0 0 0 
- 1 . 0 0 4 9 

- 0 . 0 8 4 5 
- 0 . 7 6 1 0 
- 0 . 4 2 7 8 

- 0 . 0 2 3 2 
- 0 . 9 9 9 9 
- 0 . 2 2 4 2 



Table 1 (cont. 

Row i Load posi tions 
operations : @ : @ : - 0 

Hi Ri 
35 

-562.5 
1350.0 
112.5 

+1278 
594.0 
27.0 

2101.5 
-162 
-67.50 

3006 
-918.0 
-171.0 

Hi 
4950 

-0.1125 
1350 
112.5 

0.2556 
594 
27 

0.4203 
-162 
-67.5 

0.6012 
-918 
-171 

Rg+2430Ri 
R3+405Ri 

-0.1125 
1076.625 
66.938 

0.2556 
1215.108 
130.518 

0.4203 
859.329 
102.722 

0.6012 
542.916 
72.486 

32 
1543.113 

-0.1125 
0.6977 
66.938 

0.2556 
0.7874 
130.518 

0.4203 
0.5569 
102.722 

0.6012 
0.3518 
72.486 

Rl+0.4909Rg 
R3-53.I86R2 

0.2300 
0.6977 
29.8327 

0.6421 
0.7874 
88.6393 

0.6957 
0.5569 
73.1027 

0.7739 
0.3518 
53.7752 

33 
7.0366 

0.230C 
0.6977 
4.2395 

0.6421 
0.7874 
12.5965 

0.6937 
0.5569 
10.3886 

0.7739 
0.3518 
7.6420 

R1+0.06487R3 
R3-O.O3449R3 

0.5050 
0.5514 
4.2395 

1.4592 
0.3529 
12.5965 

1.3676 
0.1985 
10.3886 

1.2696 
0.0882 
7.6420 

39 
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Table 1 (concl 

Row : Load positions : Check 
operations : @ : @ : column 

Rg R3 
3964.5 
-1674 
-283.5 

4950 
-2430 
-405 

23216.00 
-12221.00 
-1730.00 

Ri 
4950 

0.7929 
-1674 
-283.5 

1 
-2430 
-405 

4.69010 
-12221.0 
-1730.00 

Rg+2430Ri 
Rg+405Ri 

0.7929 
252.747 
37.625 

1 
0 
0 

4.6901 
-824.057 
169.4905 

Rg 
1543.113 

0.7929 
0.1638 
37.625 

1 
0 
0 

4.6901 
-0.5340 
169.4905 

Rl+0.4909R2 
Rg-53.186R2 

0.8733 
0.1638 
28.9131 

1 
0 
0 

4.4280 
-0.5340 
197.8918 

R3 
7.0366 

0.8733 
0.1638 
4.1088 

1 
0 
0 

4.4280 
-0.5340 
28.1232 

R1+0.06487R3 
R2-0.03449R3 

1.1398 
0.0221 
4.1088 

1 
0 
0 

6.2523 
-1.5040 
28.1232 



Position : Ordinates for 
01 * — 

unit load : = Hp t *2 = Vp : xg = Mp 

0 0 0 0 

@ +0.0291 +0.0220 +0.3339 

@ +0.1319 +0.0882 +1.1714 

@ +0.2539 +0.2010 +2.1948 

@ +0.5914 +0.3529 +3.3707 

@ +0.5050 +0.5514 +4.2395 

@ 0 0 0 

@ +0.0730 +0.2390 +0.4493 

@ +0.1487 +0.5000 +1.0049 

@ +0.0845 +0.7610 +0.4278 

@ +0.0232 +0.9999 +0.2242 

o -0.5050 -0.5514 -4.2395 

@ -1.4592 -0.3529 -12.5965 

@ -1.3676 -0.1985 -10.3886 
-1.2696 -0.0882 -7.6420 

e -1.1398 -0.0221 -4.1088 
-1.0000 0 0 
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Table 2. Ordinates for Unknown Redundants for 
Different Positions of Moving Load. 



Fig. 9. INFLUENCE LINES FOR Hp, Vp, AND Mp. 

42 
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Displacement Method Example 

Required: Influence lines for 9g and 83. 
The slope deflection equations are as follows (EI s= con-

stant). 
2EI 

MAB = — <26A + 63) - MART 

2 
' ''B' - "AB 15 

(0 + 6-) - MAR^ (i) 

2EI 
MBA = — (29n + OA) + M^F 

2 _ 
= — (26-) + MRA^ (ii) 

15 B 
2B!I 

MBC = — (20s + 0c) - MgcP 

(26. + On) - MR-F (iii) 
2 
12 
2EI 

MCB = — (29c + 63) + McgF 

2 c = — (29c + 63) + McgP (iv) 
12 
2EI 

McD = -Tr (26c + Op) - McD^ 

2 = — (26c) - McD^ (v) 
15 

2EI 
MDC = " (29D + eg) + Mpc* 
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= — (Qc) + Mpc* 15 

Considering joint B, 

MBA + Mac = 0 
4 4 2 

Therefore — 9g + — 6g + — 6c + (MgR - Mgg^) = 0 
15 12 12 

3 1 , F Ft Therefore - 9g + - 6c + (Mg^ - Mgg ) = 0 5 6 
Considering joint C, 

McB + Men = 0 
4 4 2 

Therefore — + — Op + — 6g + (M^g^ - M^p^) 
12 15 12 

(vi) 

(vii) 

Therefore - 9g + - eg + (M^g^ - M ^ ) = 0 
6 5 

Putting in matrix form, 
EI Qg 

s; -
EI 9c 

MBA*' - Mac*' 
MCB^ - McD^ 

BX = F, 

(viii) 

where 

B = 

X = 

Fo = 

3/5 1/6 
1/6 3/5 
EI 6g 
EI 9c 

" MRA 

= stiffness matrix 

= unknown vector 

F* 

McD^ * McB^ 
= column vector 



Therefore 

B = 

3 

3/5 
1/6 

1/6 
3/5 

Adj B = 
5/5 -1/6 
-1/6 3/5 

3/5 x 3/5 - (-1/6)(-1/6) 
9 
25 

1 
36 

299 
900 

B -1 
adj B 
)Bi 

! 3/5 -i/el 

,-1/6 3/5] 
299 
900 L 

540 150 
299 299 
150 540 
299 299 

1 

45 
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Fig. lO. FRAME WITH MOVING LOAD ON 
DIFFERENT SPANS. 



1 : 2 : 3 : 4 : 5 : 6 
Load 
posi-
tion 

:Dis- : 
:tance: 
: 'K' i 

MAB^ = 
1K(15-K)2 

225 
in ft-kips 

MRA^ = : 
1K(15-K)2 ; 
' 225 ' : 

in ft-kips J 

Mgc^ = : 
1K(12-Kr ; 

144 ; 
in ft-kips : 

McB^ 
1K(12-K)2 

144 
in ft-kips 

Load in Span AB: 
0 0 0 0 0 0 

g> 3 1.92 0.48 0 0 

@ 6 2.16 1.44 0 0 

@ 9 1.44 2.16 0 0 

@ 12 0.48 1.92 0 0 

(8) 15 0 0 0 0 
Load in Span BC: 

@ 0 0 0 0 0 

@ 3 0 0 1.6875 0.5625 

@ 6 0 0 1.5000 1.5000 

@ 9 0 0 0.5625 1.6875 
12 0 0 0 0 

Load in Span CD: 

O 0 0 0 0 0 

@ 3 0 0 0 0 

@ 6 0 0 0 0 
9 0 0 0 0 
12 0 0 0 0 

@ 15 0 0 0 0 

47 

Table 3. Fixed-end Moments Due to Different 
Load Positions. 
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Table 3 (concl.). 

1 : 2 : 7 : 8 t 9 10 
Load 
posi-
tion 

:Dls- : 
:tance: 
: 'K' * 

McD^ = : 
1K(15-K)2 i 

225 ; 
in ft-kips ; 

MDC^ = i 
1K(15-K)2 j 

225 ; 
in ft-kips : 

MBC^-MBA^ 
in ft-kips 

F F 
McD "MCB 
in ft-kips 

Load in Span AB: 

0 0 0 0 0 0 

(D 3 0 0 -0.48 0 

@ 6 0 0 -1.44 0 

@ 9 0 0 -2.16 0 

@ 12 0 0 -1.92 0 

@ 15 0 0 0 0 
Load in Span BC: 

@ 0 0 0 0 0 

@ 3 0 0 1.6875 -0.5625 

@ 6 0 0 1.5000 -1.5000 
9 0 0 0.5625 -1.6875 
12 0 0 0 0 

Load in Span CD: 

0 0 0 0 0 
3 1.92 0.48 0 1.92 
6 2.16 1.44 0 2.16 

@ 9 1.44 2.16 0 1.44 
(î  12 0.48 1.92 0 0.48 

15 0 0 0 0 



Posi- : 
tion : p = 
of : 0 
load : 

'Msc^ 
F M^D 

MBA^! * 
McB^j : 

X = 
= 

3-1 F, 
"Eieg 
.Eiec_ 

3 : 
; EI9B ; RISC 

: 
0 0 0 0 0 

@ -0.48 
0 _ 

-0 
+0 

.8669 

.2408 -0.8669 +0.2408 

@ -1.44* 
0 

'-2 
-+0 

.6006' 

.7225 -2.6006 +0.7225 

@ -2.16* 
0 _ 

-3 
_+l 

.9010 

.0837 -3.9010 +1.0837 

-1.92 
0 ^ 

-3 
.+0 

.4675 

.9633^ -3.4675 +0.9633 

" 0 * 
- 0. 

0 0 0 

' 0 
_ 0_ 

0* 
0 0 0 

^ 1.6875* 
r0.5625_ 

3 
-1 
.3298 
.8625^ +3.3298 -1.8625 

(8) 1.5000* 
_ 1.5000, 

' 3 
.-3 

.4616 

.4616_ +3.4616 -3.4616 

0.5625 
-1.6875 

+ 1 
-3 
.8625 
.3298^ +1.8625 -3.3298 

' 0 - 0 
0. 0 0 

(9 _ 0 
0 ' 
0 0 0 

ro -
_1.92 

-0 
+3 . 9633 4675 -0.9633 +3.4675 

" 0 
^2.16 

"-1 
-+3 

0837 
9010 -1.0837 +3.9010 
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Table 4. Ordinates of E19g and EIBg at 
Different Load Positions^. 
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Table 4 (concl. ). 

3-The influence lines for E19g and ElOn are shown in 
Fig. 11. 

Posi-
tion 
of 
load 

Fo = Mg(f 
McD^ 

- MsA^ 
- McB^ 

X = 6-1 F, 
Eieg 
_EI9c 

3 
! EI9B i E19c 

@ 0 
i.44 

-0.7225 
.+2.6006 -0.7225 +2.6006 

@ ' 0 
0.48 

"*-0 
_+0 

.2408* 

.8669 -0.2408 +0.8669 

@ 'o* 
0 

0* 
.Oj 0 0 
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Fig. 11. INFLUENCE LINES FOR ElOg AND Eie^. 
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CONCLUSIONS 

It is seen that for the structure analyzed, in terms of 
the matrix formulation, the displacement method has a great ad-
vantage over the force method. The advantage of the matrix 
formulation lies in the fact that all other similar problems 
may be treated by an efficient standardized procedure. More-
over, the mathematical operations necessary after the original 
matrices have been established are of such routine nature that 
they can be carried out by an electronic digital computer, or 
by persons having no knowledge of structural analysis. A major 
drawback to the application of high-speed digital computers is, 
however, the initial difficulty of getting a given type of 
problem set up and coded. 

The extension of the method described here to structures 
with variable transverse section is feasible and practical. 
The application of this technique to the solution of Civil 
Engineering problems presents no greater difficulty than those 
already surmounted for the analysis of aircraft structures. 
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The main advantage of the matrix approach is the method of 
notation and the ease of speaking about general problems. The 
equations for plane redundant structures obtained by the dis-
placement and force method are formulated in the matrix form. 
The development of the high-speed electronic digital computer 
inspired structural engineers to analyze highly indeterminate 
structures without much labor. The matrix formulation is a sys-
tematic procedure to be adopted in the programming of the 
solution. 

There are two principal methods of attack for analyzing a 
linear statically indeterminate structure. The first method in-
volves the determination of certain redundant forces or moments 
by solving the elastic compatibility equations. The flexibility 
matrix consisting of an ordered array of the flexibility influ-
ence coefficients or deflection influence coefficients is used 
in this method, which is known as the "force method" of analysis. 
The second method of analysis, which is very similar to the force 
method, is known as the "displacement method". This method, how-
ever, assumes the joint rotations or displacements as unknowns 
and involves the solution of the simultaneous joint equilibrium 
equations. These equations relate the redundant forces in terms 
of the assumed deflections. They are represented by the stiff-
ness matrix composed of an ordered array of the stiffness in-
fluence coefficients. 

While discussing these methods, the concepts of the first 
and second theorems of Castigliano, the theorems of virtual work 
and Maxwell's law of reciprocal deflections are used. 
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As many structures are subjected to moving loads, it is 
essential to understand the methods by which the position of 
live load which causes the maximum stress at any point may be 
determined. This is conveniently done and shown by influence 
lines. In showing for a particular section the variation in 
shear, moment, reaction, or other direct function due to a unit 
load moving across the structure, the influence lines are con-
structed by placing a unit load at various points on a structure. 
The different ordinates for a few controlling points, required 
for drawing influence lines corresponding to the different posi-
tions of a moving load, are shown in the form of a matrix. The 
matrix solution for final results, that is, the different ordi-
nates required for influence lines, is thus a convenient, 
systematic, and efficient method. 


