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Abstract

For a polynomial F = F (x) ∈ C[x], the logarithmic Mahler measure of F is defined by

m(F ) =

∫ 1

0

log |F (e2πix)| dx.

Lind viewed [0, 1] as the group R/Z and extended the concept of the Mahler measure

to arbitrary compact abelian groups. In this thesis we study the additive group G :=

Zp×Zp×· · ·×Zp, where Zp = Z/(p). For F ∈ Z[x1, x2, . . . , xn] the logarithmic Lind-Mahler

measure of F over G is given by

mG(F ) :=
1

pn

p−1∑
j1=0

p−1∑
j2=0

...

p−1∑
jn=0

log |F (e2πij1/p, e2πij2/p, ..., e2πijn/p)|.

Analogous to the classic Lehmer problem one can ask what is the smallest nonzero Lind-

Mahler measure, that is, what is the value of the Lind-Lehmer constant of G defined as

follows:

λ(G) := inf{mG(F ) | F ∈ Z[x1, x2, . . . , xn],mG(F ) > 0}.

Lind found the Lind-Lehmer constant for many groups of the form Zn. Lind also conjec-

tured the value of λ(Zn2 ). Here we verify the Lind conjecture and more generally evaluate

λ(Znp ) for arbitrary primes p and n ∈ N, obtaining for any p ≥ 3,

λ(Znp ) =
1

pn
log(Mn)

where

Mn := min{apn−1

(mod pn) | 2 ≤ a ≤ p− 1}.

We will also show how bounds on Mn can be obtained from bounds on Heilbronn type

exponential sums Hpn(y), where Hpn(y) :=

p−1∑
x=0

epn(yxp
n−1

) with epn(x) := e2πix/p
n
.
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Chapter 1

Introduction

The primary goal of this thesis is the study of the Lind-Lehmer constant for groups of the

form Znp . As we discover, the value of the Lind-Lehmer constant can be expressed in terms

of the quantity

Mn := min{apn−1

(mod pn) | 2 ≤ a ≤ p− 1}.

Thus, the second part of the thesis is devoted to the estimation of Mn.

The results in the first part of the thesis have been accepted by the Proceeding of the

AMS [1].

1.1 Mahler Measure and the Lind-Lehmer Constant

For a polynomial F = F (x) ∈ C[x], with factorization

F (x) = an

n∏
i=1

(x− αi) , αi ∈ C,

the Mahler measure of F is defined by

M(F ) := |an|
n∏
i=1

max{1, |αi|},

and the logarithmic Mahler measure is defined by

m(F ) := logM(F ).

1



Plainly if F ∈ Z[x] then M(F ) ≥ 1. For any cyclotomic polynomial F, M(F ) = 1. The

classic Lehmer problem asks whether for any ε > 0 there is a polynomial F ∈ Z[x] such that

1 < M(F ) < 1 + ε. Currently the smallest known value larger than 1, found by Lehmer is

M(F ) = 1.176280818... for the polynomial

x10 + x9 − x7 − x6 − x5 − x4 − x3 + x+ 1.

Lind [2] generalized Lehmer’s problem to an arbitrary compact abelian group by making

use of the following formula for the logarithmic Mahler measure,

m(F ) =

∫ 1

0

log |F (e2πix)|dx;

see Section 2.1 for a proof of the formula. Now let G be a compact abelian group with

normalized Haar measure µ, Ĝ denote its (multiplicative) dual group of characters, and Z[Ĝ]

be the ring of integral combinations of characters. For f ∈ Z[Ĝ] we define the logarithmic

Mahler measure of f over G to be

m(f) = mG(f) =

∫
G

log |f |dµ.

The Lind-Lehmer constant of G is defined by

λ(G) := inf{mG(f) : f ∈ Z[Ĝ],mG(f) > 0}.

Then the classic Lehmer problem asks whether λ(T) = 0, where T is the abelian group

T = R/Z under addition, and µ is Lebesgue measure normalized so that µ(T) = 1.

Lind [2] established the following upper bound on λ(G) for any finite abelian group:

Lemma 1.1.1. (Lind [2]) Let G be a finite abelian group with cardinality |G| ≥ 3. Then

λ(G) ≤ 1

|G|
log(|G| − 1).

As we shall see in the next section, sometimes this upper bound is attained.
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1.2 Lind-Lehmer Constant for Zm

We start by considering the cyclic group

Zm := Z/mZ

under addition for m ∈ N. In this case the character group Ẑm is a cyclic group generated

by the character χ given by

χ(j) := ωj,

for j ∈ Zm, where ω := e
2πi
m . Thus a typical element of Z[Ẑm] is of the form F (χ) where

F (x) ∈ Z[x]. We define the logarithmic Mahler measure m(F ) = mZm(F ) of F (x) with

respect to Zm to simply be the logarithmic Mahler measure of F (χ). It is easy to see in this

case (see Section 2.2) that

m(F ) =
1

m
log |M(F )|,

where

M(F ) =
m−1∏
j=0

F (ωj).

The Lind-Lehmer constant for Zm is thus given by

λ(Zm) =
1

m
logM(m),

where

M(m) := min{|M(F )| : F ∈ Z[x], |M(F )| > 1}.

As we show in Proposition 2.9.2, M(F ) is always an integer, and thusM(m) ≥ 2. Therefore

we have the lower bound

λ(Zm) ≥ 1

m
log 2. (1.1)

By Lemma 1.1.1 we have λ(Zm) ≤ 1
m

log(m − 1), for m ≥ 3. Indeed, in this case the

upper bound is achieved by the polynomial

(
xm − 1

x− 1

)
− 1; see Section 2.12 for a proof.
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Lind [2] obtained the following improvement. Let ρ(m) denote the smallest prime that

does not divide m,

ρ(m) := min
p prime
p-m

p.

Denote p does not divide m by p - m.

Theorem 1.2.1. (Lind [2]) For any integer m ≥ 2 we have that

λ(Zm) ≤ 1

m
log ρ(m).

Lind in fact showed that this upper bound is achieved for the polynomial
xρ(m) − 1

x− 1
. Since

we know that λ(Zm) ≥ 1
m

log 2 by (1.1), we get the following corollary.

Corollary 1.2.1. (Lind [2]) If m is odd, then

λ(Zm) =
1

m
log 2.

Equivalently we have that

M(m) = 2

if m is odd. Lind [2] further conjectured that λ(Zm) = 1
m

log ρ(m) for all m ≥ 2, but this

was proven to be false by Kaiblinger [3].

Kaiblinger extended Lind’s result and obtained the following bounds. Let

ρ1(m) := min

 min
p prime
p-m

p, min
p prime
pk‖m

pk+1

 ,

and

ρ2(m) := min

 min
p prime
p-m

p, min
p prime
pk‖m

pp
k

 .

Theorem 1.2.2. (Kaiblinger [3]) For M(m) ≥ 2 we have M(m) - m and

ρ1(m) ≤M(m) ≤ ρ2(m).

Consequently, for all m with 420 - m,

M(m) = ρ1(m) = ρ2(m).
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Equality in these lower and upper bounds gives the following:

M(m) = 3 if m = 2k, 3 - k,

M(m) = 4 if m = 2 · 3k, 2 - k,

M(m) = 5 if m = 22 · 3k, 5 - k,

M(m) = 7 if m = 22 · 3 · 5k, 7 - k.

From Theorem 1.2.2 we get that

M(420) ∈ {8, 9, 11}.

Pigno and Pinner[4] showed that

M(420) = 11.

More generally, they extended Kaiblinger’s result and came up wih the following:

Theorem 1.2.3. (Pigno and Pinner [4]) For m ∈ N we have,

M(m) = 11 if m = 22 · 3 · 5 · 7k, 11 - k,

M(m) = 13 if m = 22 · 3 · 5 · 7 · 11k, 13 - k,

M(m) = 16 if m = 22 · 3 · 5 · 7 · 11 · 13k, 2 - k,

M(m) = 17 if m = 23 · 3 · 5 · 7 · 11 · 13k, 17 - k,

M(m) = 19 if m = 23 · 3 · 5 · 7 · 11 · 13 · 17k, 19 - k,

M(m) = 23 if m = 23 · 3 · 5 · 7 · 11 · 13 · 17 · 19k, 23 - k.

Therefore the first unresolved case is now

M(23 · 3 · 5 · 7 · 11 · 13 · 17 · 19 · 23) ∈ {25, 27}.
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1.3 The Lind-Lehmer Constant for Finite Abelian Groups

The formulation

m(F ) =

∫ 1

0

log |F
(
e2πix

)
| dx

allows one to generalize the concept of Mahler measure to a more general setting. For

F ∈ C[x1, x2, ..., xn] we define

m(F ) :=

∫ 1

0

· · ·
∫ 1

0

log |F
(
e2πix1 , e2πix2 , . . . , e2πixn

)
| dx1 · · · dxn.

A theorem of Lawton [5] states that

m (F (x1, x2, . . . , xn)) = lim
k→+∞

m(F (x, xk, xk
2

, . . . , xk
n−1

)),

and thus the infimum of the multidimensional measures greater than one of polynomials with

integer coefficients can be reduced to studying the measure of polynomials in one variable.

Here we study the case of the finite abelian group

G := Znp = Zp × Zp × · · · × Zp,

where p is a prime and n is any positive integer. In this case, for F ∈ Z[x1, x2, . . . , xn] the

logarithmic Mahler measure of F over G is given by

m(F ) = mG(F ) =
1

pn

p−1∑
j1=0

p−1∑
j2=0

· · ·
p−1∑
jn=0

log |F
(
ωj1 , ωj2 , . . . , ωjn

)
|,

where ω = e
2πi
p ; see Section 2.3. The Lind-Lehmer constant of G is given by

λ(G) := inf{mG(F ) : F ∈ Z[x1, x2, . . . , xk],mG(F ) > 0}.

For F ∈ Z[x1, . . . , xn] we define

M(F ) = MG(F ) :=

p−1∏
j1=0

· · ·
p−1∏
jn=0

F (ωj1 , . . . , ωjn).

6



Observing that m(F ) = 1
pn

log |M(F )| we see that

λ(G) =
1

pn
inf{log |M(F )| : |M(F )| > 1}.

Thus, since M(F ) is always an integer it is plain that λ(Znp ) ≥ 1
pn

log 2. Moreover, for the

polynomial F =
n∏
k=1

(
xpk − 1

xk − 1

)
− 1, we have m(F ) = 1

pn
log(pn − 1) as shown in Proposition

2.13.1. Thus we have the trivial bounds

1

pn
log 2 ≤ λ(Znp ) ≤ 1

pn
log(pn − 1). (1.2)

Lind further conjectured that for all n ≥ 2 we have

λ(Zn2 ) =
1

2n
log(2n − 1).

Here we prove Lind’s conjecture, and give an extension of it valid for any prime p.

1.4 Main results

Here we establish the following theorem.

Theorem 1.4.1. For n ≥ 2,

λ(Zn2 ) =
1

2n
log(2n − 1).

For n ≥ 1 and any prime p ≥ 3,

λ(Znp ) =
1

pn
log(Mn),

where Mn is defined by

Mn := min{apn−1

(mod pn) | 2 ≤ a ≤ p− 1}.

Therefore calculating λ(Znp ) reduces to finding the smallest non-trivial positive integer

solution to the congruence xp−1 ≡ 1 (mod pn). For example if 2 satisfies this congruence,

that is 2p−1 ≡ 1 (mod pn), then we would achieve the lower bound in (1.2). For n = 2,

7



such primes are called Wieferich primes, and the only known examples are p = 1093 and

p = 3511. Thus for any Wieferich prime we have λ(Z2
p) = 1

p2
log 2. On the other hand,

Theorem 3.0.1 also shows that we achieve the upper bound in (1.2) when p = 2 and p = 3;

see Corollary 3.0.1. The proof of Theorem 3.0.1 is given in Section 3.3.

Regarding the estimation ofMn we will obtain the following estimate, relating it to the

estimation of the n-th order Heilbronn sum

Hpn(y) :=

p−1∑
x=0

epn
(
yxp

n−1
)
,

where epn(x) := e2πix/p
n
. Put

Hpn := max
p-y
|Hpn(y)|.

Then we have the following theorem.

Theorem 1.4.2. For any prime p and positive integer n we have

Mn � pn−1Hpn .

The trivial estimate for Mn is pn, and the trivial estimate for Hpn is p. Thus we see

that any nontrivial estimate of Hpn leads to a corresponding nontrivial estimate for Mn.

In Chapter 4 we prove Theorem 1.4.2 and give a discussion of the current best available

estimates for Hpn . For example, when n = 2, we have

Hp2 � p31/36 log1/6 p,

by the recent work of Shkredov [6], and so we obtain

M2 � p67/36 log1/6 p

and

λ(Z2
p) =

1

p2
log(M2) ≤

67

36
· log p

p2
+O

(
log log p

p2

)
.

8



Chapter 2

Background Material

2.1 Proof of the Integral Formulation of Logarithmic

Mahler Measure

We begin the chapter by deriving the integral formulation for the logarithmic Mahler mea-

sure. Recall, that for non zero F (x) ∈ Z[x], with

F (x) = an

n∏
i=1

(x− αi) , αi ∈ C,

the classical Mahler measure of F is defined by

M(F ) := |an|
n∏
i=1

max{1, |αi|},

and the logarithmic Mahler measure is defined by,

m(F ) := logM(F ).

The integral formulation follows from the following well known formula of Jensen.

Theorem 2.1.1. (Conway [7, page 280]) Let F be an analytic function on the disk |z| ≤ r,

F (0) 6= 0 and α1, . . . , αk be the zeros of F in |z| < r counted with multiplicity. Then∫ 1

0

log |F
(
re2πiθ

)
|dθ = log |F (0)|+

k∑
j=1

log

∣∣∣∣ rαj
∣∣∣∣ . (2.1)

9



Theorem 2.1.2. For any nonzero F (x) ∈ Z[x] we have

logM(F ) =

∫ 1

0

log |F
(
e2πiθ

)
|dθ.

Proof. Let F (x) = an

n∏
i=1

(x− αi). Putting r = 1 in (2.1) we get

∫ 1

0

log |F (e2πiθ)|dθ = log |anα1 · · ·αn| −
∑
|αi|<1

log |αi|

= log |an|+
∑
|αi|≥1

log |αi|

= log

(
|an|

n∏
i=1

max{1, |αi|}

)
= logM(F ).

2.2 Logarithmic Mahler Measure on Zm

In the next two sections we derive the formula for the logarithmic Mahler measure on a

finite abelian group. First, lets recall Lind’s definition for a more general compact abelian

group. Let G be a compact abelian group with normalized Haar measure µ, Ĝ denote its

(multiplicative) dual group of characters, and Z[Ĝ] be the ring of integral linear combinations

of characters. For f ∈ Z[Ĝ] we define the logarithmic Mahler measure of f over G to be

m(f) = mG(f) =

∫
G

log |f |dµ.

This definition was motivated by the integral formulation of the classical logarithmic Mahler

measure. The Lind-Lehmer constant of G is defined by

λ(G) := inf{mG(f) : f ∈ Z[Ĝ],mG(f) > 0}.

In the classical case, the compact abelian group is just the torus T := R/Z under

addition, together with the normalized Lebesgue measure. The characters on T are functions

10



χk : T → C, k ∈ Z, given by χk(x) := e2πikx. A typical element of f ∈ Z[T̂] is given by

f =
∑
k∈I

akχk, ak ∈ Z, for some finite index set I ⊆ Z. Then for x ∈ T,

f(x) =
∑

akχk(x) =
∑

ak
(
e2πix

)k
= F

(
e2πix

)
,

where F (x) =
∑
k∈I

akx
k. Thus Lind’s definition of logarithmic Mahler measure says m(f) =∫

T log |f |dµ =
∫ 1

0
log |F

(
e2πikx

)
|dx, which coincides, in the case of polynomial F , with the

classical logarithmic Mahler measure of F by Theorem 2.1.2.

For the purpose of this thesis, we are only interested in the Haar measure for finite

abelian groups. Being translation invariant the Haar measure must assign the same mass

to every point of the group, and thus being countably additive, if the measure is normalized

so that µ(G) = 1 we must have µ({g}) = 1/|G| for any point g ∈ G, and µ(S) = |S|/|G|

for any subset S ⊆ G. Such a measure is also called the discrete measure on G. Thus,

for the case of an additive group Zm we let µ be the discrete measure normalized so that

µ(Zm) = 1. For any subset S ⊆ Zm, we have µ(S) = |S|/m, and for any real valued function

h : Zm → R, the integral of h on Zm with respect to µ is given by∫
Zm
h(x) dµ :=

1

m

∑
x∈Zm

h(x) =
1

m

m−1∑
x=0

h(x),

where in the latter sum we have identified Zm with the set of integer representatives

{0, 1, . . . ,m− 1}. For 0 ≤ k < m we let χk denote the additive character on Zm,

χk : Zm → C, χk(x) = e2πikx/m,

and Ẑm denote the group of characters on Zm,

Ẑm := {χk : 0 ≤ k < m}.

Let Z[Ẑm] denote the set of all integer linear combinations of characters on Zm. Then

for any f ∈ Z[Ẑm], the logarithmic Mahler measure of f is given by

m(f) = mZm(f) :=

∫
Zm

log |f | dµ =
1

m

m−1∑
x=0

log |f(x)|. (2.2)

11



Now f =
∑m−1

k=0 akχk for some integers ak, 0 ≤ k < m, and so for x ∈ Zm,

f(x) =
m−1∑
k=0

akχk(x) =
m−1∑
k=0

ake
2πikx/m =

m−1∑
k=0

ak
(
e2πix/m

)k
.

Putting

F = F (X) :=
m−1∑
k=0

akX
k ∈ Z[X],

(where X is an indeterminate symbol) we see that for x ∈ Zm, f(x) = F (e2πix/m) and

m(f) =
1

m

m−1∑
x=0

log |F
(
e2πix/m

)
| = 1

m
log

∣∣∣∣∣
m−1∏
x=0

F
(
e2πix/m

)∣∣∣∣∣ .
Setting

M(F ) = MZm(F ) :=
m−1∏
x=0

F
(
e2πix/m

)
,

we see that the logarithmic Mahler measure of f is given by

m(f) =
1

m
log |M(F )| .

Note that M(F ) = 0 if and only if F vanishes at an m-th root of unity, in which case

the corresponding logarithmic Mahler measure of f(x) = F (e2πix/m) is undefined (or taken

to be −∞.) Thus we restrict our attention to polynomials F not vanishing at any m-th

root of unity. We also note that M(F ) is an algebraic integer contained in Q and therefore

an ordinary integer. It takes on the value ±1 if and only if F (x) is a unit in the quotient

ring Z[X]/(Xm − 1) as shown by Pinner and Vaaler [8]. The same authors observed that

one can say M(F ) = 0 if and only if F is a zero divisor in Z[X]/(Xm − 1).

In the Lehmer problem, the goal is to determine the minimum value of |M(F )| over all

polynomials F with |M(F )| ≥ 2, the polynomials that are neither units nor zero divisors in

Z[X]/(Xm − 1).The Lind-Lehmer constant for Zm is defined by

λ(Zm) := inf{mZm(f) : f ∈ Z[Ĝ],mG(f) > 0}

=
1

m
inf{log |M(F )| : F (x) ∈ Z[x], deg(F ) < m, |M(F )| > 1}. (2.3)

12



We note that the infimum would not change if we allowed polynomials F of arbitrary degree

in the preceding formula.

To get the reader better acquainted with the Lind-Lehmer constant, we show how to

compute it directly in the simplest cases m = 1, 2 and 3; see also Lind [2] for the same

examples.

Example 2.2.1. Trivially we have λ(Z1) = log 2. Here M(F ) = F (1) so the smallest possible

value for |M(F )| is 2, since M(F ) ∈ Z. This can be achieved by polynomials such as

F (x) = 2 or F (x) = x+ 1.

Example 2.2.2. Let G = Z2 and F (x) = a+ bx ∈ Z[x]. Letting ω2 = e2πi/2 = −1, we have

M(F ) =
1∏
j=0

F
(
ωj2
)

= F (1)F (−1)

= (a+ b)(a− b)

= a2 − b2.

Thus, we need to find the minimum value of |a2 − b2| for a, b ∈ Z. Observing that

a2 − b2 ≡ {0, 1} − {0, 1} ≡ {0, 1,−1} (mod 4),

we see that the equation

a2 − b2 = ±2

has no solutions. So the minimum possible value for |M(F )| is 3 which in fact is attained

by the polynomial F (x) = 2 + x. Therefore λ(Z2) = 1
2

log 3.

Example 2.2.3. Let G = Z3 and F (x) = a+bx+cx2 ∈ Z[x]. Letting ω3 = e2πi/3, and making

13



use of the identity 1 + ω3 + ω2
3 = 0, we obtain

M(F ) =
2∏
j=0

F (ωj3)

= F (1)F (ω3)F (ω2
3)

= (a+ b+ c)(a+ bω3 + cω2
3)(a+ bω2

3 + cω4
3)

= (a+ b+ c)[a2 + b2 + c2 + (ab+ bc+ ac)(ω3 + ω2
3)]

= (a+ b+ c)[a2 + b2 + c2 − (ab+ bc+ ac)]

= a3 + b3 + c3 − 3abc.

Letting a = b = 1 and c = 0 we get the value 2 for M(F ). Therefore 2 is the smallest

possible value greater than 1, since a, b, c are all integers. So λ(Z3) = 1
3

log 2.

2.3 Lind-Lehmer Constant for Finite Abelian Groups

Now let G be any finite abelian group. Then G is isomorphic to a direct sum of cyclic

groups, and so we may assume that

G = Zm1 × Zm2 × · · · × Zmn ,

for some positive integers mi, 1 ≤ i ≤ n. A typical character on G has the form

χe1,...,en(x1, . . . , xn) := e2πe1x1i/m1 · · · e2πenxni/mn

for (x1, . . . , xn) ∈ G, where the ei are integers with 0 ≤ ei < mi, 1 ≤ i ≤ n.

Our interest here is the case of Znp , in which case, letting ω = e2πi/p we have

χe1,...,en(x1, . . . , xn) = ωe1x1 · · ·ωenxn .

A typical element of the ring Z[Ẑnp ] has the form

f =

p−1∑
e1=0

· · ·
p−1∑
en=0

ae1,...,enχe1,...,en ,
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for some integers ae1,...,en . Evaluated at (x1, . . . , xn) ∈ Znp , we have

f(x1, . . . , xn) =

p−1∑
e1=0

· · ·
p−1∑
en=0

ae1,...,enχe1,...,en(x1, . . . , xn)

=

p−1∑
e1=0

· · ·
p−1∑
en=0

ae1,...,enω
e1x1 · · ·ωenxn

= F (ωx1 , . . . , ωxn),

where F (X1, . . . , Xn) is a polynomial over Z of degree less than p in each variable given by

F (X1, . . . , Xn) =

p−1∑
e1=0

· · ·
p−1∑
en=0

ae1,...,enX
e1
1 · · ·Xen

n .

Letting µ denote the discrete measure on G we see that∫
G

log |f | dµ =
1

pn

p∑
x1=1

· · ·
p∑

xn=1

log |f (x1, . . . , xn)|

=
1

pn

p∑
x1=1

· · ·
p∑

xn=1

log |F (ωx1 , . . . , ωxn)|

=
1

pn
log

∣∣∣∣∣
p−1∏
x1=0

· · ·
p−1∏
xn=0

F (ωx1 , . . . , ωxn)

∣∣∣∣∣ .
Thus, defining M(F ) to be

M(F ) :=

p−1∏
x1=0

· · ·
p−1∏
xn=0

F (ωx1 , . . . , ωxn) ,

we see that the logarithmic Mahler measure of f is given by

m(f) :=
1

pn

∫
G

log |f | dµ =
1

pn
log |M(F )|.

Our goal is to determine the minimum value of |M(F )| over all integer polynomials with

|M(F )| > 1.

2.4 Early Calculations

In order to gain an understanding of the size of M(F ) we wrote a program in C++ to

calculate M(F ) for polynomials F with small coefficients. The program is given in Appendix

15



B. The following are some examples of the record breaking polynomials we discovered doing

this search.

Example 2.4.1. For the group Z2
5, we got |M(F )| = 7, for the polynomial

F = − (1 + x)
(
1 + y + y2 + y3 + y4

)
+ x3y2

(
1 + y + y2

)
.

As we show later in Theorem 3.0.1, the value |M(F )| = 7 is the minimal possible value for

|M(F )| for this group.

Example 2.4.2. For the group Z2
7, we got |M(F )| = 19, for the polynomial

F = −
(
1 + x4

) (
1 + y + y2 + y3 + y4

)
− x

(
1 + x2

) (
1 + y + y3 + y4

)
− x2

(
1− y2 + y4

)
.

In Theorem 3.0.1, we show that the minimal value of |M(F )| is actually |M(F )| = 18.

2.5 Field Extensions and Isomorphisms

Definition 2.5.1. a) A field K is said to be an extension field of a field L if L is a subfield

of K. In this case, K is a vector space over L. The dimension of the L-vector space K will

be denoted by [K : L].

b) An element α ∈ K is said to be algebraic over L if α is the zero of a nonzero polynomial

with coefficients in L.

c) The field K is said to be algebraic over L if every element of K is algebraic over L.

d) If α ∈ K is algebraic over L, then the minimal polynomial for α is the monic poly-

nomial of smallest degree over L that α is a zero of. In this case we say α is algebraic of

degree d over L, where d is the degree of the minimal polynomial.

e) If α ∈ K, we let

L[α] = {p(α) : p(x) ∈ L[x]},

L(α) = {p(α)
q(α)

: p(x), q(x) ∈ L[x], q(α) 6= 0}.

The following is a standard theorem on the dimension of an algebraic extension.
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Theorem 2.5.1. If K is an extension field of L and α ∈ K is algebraic of degree d over L,

then L(α) is a field extension of L of dimension d over L.

Next let us recall the definition of a field isomorphism.

Definition 2.5.2. Let K1, K2 be fields containing a field L. A mapping η : K1 → K2 is called

an isomorphism fixing L (or relative to L) if

i) η(xy) = η(x)η(y) for all x, y ∈ K1,

ii) η(x+ y) = η(x) + η(y) for all x, y ∈ K1,

iii) η(x) = x for all x ∈ L,

iv) η is one to one and onto.

If K1 = K2 then η is called an automorphism of K1.

We note that properties i), ii) and iii) imply property iv). We have the following standard

theorem from Field Theory.

Theorem 2.5.2. Let K be a finite extension of Q of dimension n. Then there exist n

isomorphisms of K into C.

Next, we recall the notion of an “integer” in an algebraic extension of Q.

Definition 2.5.3. a) An element α ∈ C is called an algebraic integer if α is a zero of a monic

polynomial over Z.

b) If K is an algebraic extension of Q, then the set of algebraic integers in K is called

the ring of integers in K.

We note that the ring of integers in K is in fact a ring. In particular, it is closed under

addition and multiplication. We also have the following well known theorem.

Theorem 2.5.3. Let α ∈ C be algebraic over Q. Then α is an algebraic integer if and only

if the minimal polynomial for α over Q has integer coefficients.
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2.6 The Cyclotomic Field Q(ω)

Let ω = e2πi/p. The field Q(ω) is called a cyclotomic extension of the rationals. It is well

known that the minimal polynomial of ω is

Φ(x) = 1 + x+ x2 + · · ·+ xp−1,

called a cyclotomic polynomial, and thus

[Q(ω) : Q] = p− 1.

The automorphisms of Q(ω) fixing Q are given by σk : Q(ω) → Q(ω), 1 ≤ k ≤ p − 1,

where

σk(ω) = ωk.

Finally, we observe that the ring of integers in Q(ω) is a particularly nice looking set.

Theorem 2.6.1. The ring of integers in the cyclotomic field Q(ω) is just

Z[ω] = {a0 + a1ω + · · ·+ ap−2ω
p−2 : ai ∈ Z, 0 ≤ i ≤ p− 2}.

2.7 Norms, Units and Irreducibles

Definition 2.7.1. Let K be a finite extension of Q of degree n, with isomorphisms σk,

1 ≤ k ≤ n, from K into C. For any α ∈ K, we define the norm of α over Q to be

NK/Q(α) :=
n∏
k=1

σk(α).

We note that the norm of any element of K is always a rational number. If α is an

algebraic integer, then so is every conjugate of α, (since it has the same minimal polynomial)

and thus so is NK/Q(α). But the only algebraic integers in Q are just rational integers and

so we have the following proposition.

Proposition 2.7.1. If α is an algebraic integer in K, then NK/Q(α) ∈ Z.
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Next, lets return to the cyclotomic number field K = Q(ω) with ω = e2πi/p. For any

α ∈ K we have

N(α) = NQ(ω)/Q(α) :=

p−1∏
k=1

σk(α).

with the σk being the automorphisms as defined above.

Proposition 2.7.2. Let π := 1− ω. Then N(π) = p

Proof. Let Φ(x) be the minimal polynomial for ω,

Φ(x) = xp−1 + · · ·+ 1 =

p−1∏
k=1

(x− ωk).

Then we have

N(π) = N(1− ω) =

p−1∏
k=1

(1− ωk) = Φ(1) = p.

Definition 2.7.2. An element u ∈ Z[ω] is called a unit in Z[ω] if u−1 ∈ Z[ω].

Proposition 2.7.3. For p > 2 an element u ∈ Z[ω] is a unit in Z[ω] if and only if N(u) = 1.

Proof. Suppose u ∈ Z[ω] is a unit in Z[ω]. Let v ∈ Z[ω] be such that u · v = 1. Then

N(u)N(v) = N(1) = 1 and since u and v are algebraic integers N(u), N(v) ∈ Z. Since

conjugates come in complex conjugate pairs, N(u) > 0 and thus N(u) = 1.

Conversely, suppose N(u) = 1. Then 1 = N(u) =

p−1∏
k=1

σk(u) = u

p−1∏
k=2

σk(u). Now since

p−1∏
k=2

σk(u) ∈ Z[ω], we get that u is a unit in Z[ω].

Proposition 2.7.4. For 1 ≤ a ≤ p− 1, 1 + ω + · · ·+ ωa−1 is a unit in Z[ω]. In fact we have

N(1 + ω + · · ·+ ωa−1) = 1.

Proof. We have

1 + ω + · · ·+ ωa−1 =
ωa − 1

ω − 1
.
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Now N(ωa − 1) = N(ω − 1) since these are conjugate values, and so we get

N(1 + ω + · · ·+ ωa−1) =
N(ωa − 1)

N(ω − 1)
= 1,

whence we deduce from Proposition 2.7.3 that 1 + ω + · · ·+ ωa−1 is an unit.

Definition 2.7.3. An element α ∈ Z[ω] is said to be irreducible in Z[ω] if whenever α = uv

for some u, v ∈ Z[ω], either u or v is a unit in Z[ω].

Proposition 2.7.5. If α ∈ Z[ω] and |N(α)| is a prime in Z, then α is an irreducible in Z[ω].

Proof. Suppose that α = u ·v, with u, v ∈ Z[ω]. Then |N(α)| = |N(u)||N(v)| is prime. Thus

N(u) or N(v) is a unit in Z. Therefore N(u) = ±1 or N(v) = ±1. Now by Proposition 2.7.3

we get that u or v is a unit in Z[ω]. Hence α is a prime in Z[ω].

Proposition 2.7.6. Let π = 1− ω. Then π is irreducible in Z[ω].

Proof. The result is immediate from Propositions 2.7.2 and 2.7.5. Indeed, N(π) = p, a

prime.

2.8 Projective n-space Pn(Zp)

We start by defining an equivalence relation on Znp\{0} by setting u ∼ v for u,v ∈ Znp\{0},

if u = λv for some nonzero λ ∈ Zp. This partitions Znp\{0} into I := pn−1
p−1 equivalence

classes. Projective n-space Pn(Zp) is just the set of these equivalence classes. We shall

denote an element u ∈ Pn(Zp) by

u = (u1 : u2 : · · · : un).

A standard set of representatives for these equivalence classes can be chosen so that the

leading nonzero coordinate of each representative is equal to 1. Thus there are pn−1 repre-

sentatives of the form (1 : u2 : · · · : un), pn−2 representatives of the form (0 : 1 : u3 : · · · : un),

. . . , and one representative of the form (0 : 0 : · · · : 0 : 1), giving altogether

pn−1 + pn−2 + · · ·+ 1 =
pn − 1

p− 1
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representatives.

2.9 Expressing M(F ) as a Product of Norms

We observe that if j = (j1 : · · · : jn) ∈ Pn(Zp) then the quantity

N(F
(
ωj1 , ωj2 , . . . , ωjn

)
) =

p−1∏
k=1

σk(F
(
ωj1 , ωj2 , . . . , ωjn

)
)

=

p−1∏
k=1

F
(
σk
(
ωj1
)
, σk

(
ωj2
)
, . . . , σk

(
ωjn
))

=

p−1∏
k=1

F (ωj1k, ωj2k, . . . , ωjnk)

is well defined, as the n-tuple of exponents on ω in the final product just runs through the

set of representatives for the equivalence class j. This leads us to the following expression

for M(F ).

Proposition 2.9.1. Let F ∈ Z[x1, . . . , xn], G = Znp and Mn(F ) = MG(F ). Then we have

Mn(F ) = F (1, 1, . . . , 1)
∏

j∈Pn(Zp)

N
(
F
(
ωj1 , ωj2 , . . . , ωjn

))
.

Proof. By definition,

Mn(F ) : =

p−1∏
j1=0

p−1∏
j2=0

· · ·
p−1∏
jn=0

F
(
ωj1 , ωj2 , . . . , ωjn

)
.

We pull off the term F (1, 1, . . . , 1) and then partition the remaining nonzero n-tuples j into

the I equivalence classes comprising Pn(Zp). The product of the F (ωj1 , . . . , ωjn) over a given

equivalence class j is just N (F (ωj1 , . . . , ωjn)) as shown above, and so we obtain the desired

formula.

Thus we can write

Mn(F ) = F (1, 1, . . . , 1)N1N2 · · ·NI , (2.4)

where the Ni are norms of the type Ni := N (F (ωj1 , ωj2 , . . . , ωjn)), with the (j1, . . . , jn)

running through a set of representatives for Pn(Zp). In particular, since by Proposition

2.7.1 the norm of any algebraic integer is in Z, we have the following proposition.
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Proposition 2.9.2. For any polynomial F ∈ Z[x1, . . . , xn], we have Mn(F ) ∈ Z.

The decomposition of Mn(F ) in (2.4) is one of the key ideas in proving our main theorem.

We also employ a similar decomposition in Section 2.12 to give a new proof of Theorem

2.12.1.

2.10 p-adic Absolute Value

Definition 2.10.1. Fix a prime number p ∈ Z. The p-adic valuation on Z is the function

νp : Z\{0} → R

defined as follows: for each integer n ∈ Z, n 6= 0, let νp(n) be the unique positive integer

satisfying

n = pνp(n)n′ with p - n′.

We extend νp to the field of rational numbers as follows: if x = a/b ∈ Q\{0}, then

νp(x) = νp(a)− νp(b).

Definition 2.10.2. For any x ∈ Q, we define the p-adic absolute value of x by

|x|p = p−νp(x)

if x 6= 0, and set |0|p = 0.

Note that for any x ∈ Z we have |x|p ≤ 1. It is called an absolute value because it

satisfies the familiar properties of our ordinary absolute value.

Proposition 2.10.1. For any a, b ∈ Q we have,

|a · b|p = |a|p|b|p.

Proposition 2.10.2. The Triangle Inequality. For any a, b ∈ Q we have

|a+ b|p ≤ max{|a|p, |b|p} ≤ |a|p + |b|p.
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We note that the p-adic absolute value on Q has a unique extension to an absolute value

| · |p on the cyclotomic field Q(ω) since the ideal (p) in Z factors in the manner (p) = (π)p−1

in Z[ω], where π = 1 − ω; see proof of Proposition 2.10.4. The extension satisfies the

standard properties given in the preceding two propositions. From Proposition 2.10.2 if α

is an algebraic integer in Q(ω), that is, α ∈ Z[ω] then |α|p ≤ 1.

Proposition 2.10.3. If u is a unit in Z[ω], then |u|p = 1.

Proof. If u is a unit then uv = 1 for some v ∈ Z[ω]. Then |uv|p = |1|p = 1 and so |u|p|v|p = 1.

However, since u, v are algebraic integers we must have |u|p ≤ 1 and |v|p ≤ 1. Therefore we

must have |u|p = |v|p = 1.

Proposition 2.10.4. Let π = 1− ω. Then |π|p = p
−1
p−1 < 1.

Proof. First note that for any k ∈ N we have (1− ωk) = (1 − ω)uk for some uk = 1 + ω +

· · ·+ ωk−1 ∈ Z[ω], and so by the multiplicative property of norms,

N(1− ωk) = N(1− ω)N(uk).

But if p - k, then N(1− ωk) = N(1− ω) = p, and so we deduce that N(uk) = 1. Thus uk is

a unit, and we have p =

p−1∏
k=1

(1− ωk) = (1− ω)p−1 · u, for some unit u = u1u2 · · ·up−1. That

is, p = πp−1u. Taking absolute values gives

1
p

= |p|p = |π|p−1p |u|p = |π|p−1p ,

and the result follows.

Proposition 2.10.5. If a, b ∈ Z and a ≡ b (mod π) then a ≡ b (mod p).

Proof. We have πx = a − b for some x ∈ Z[ω]. Thus |a − b|p = |π|p|x|p < 1 and so

p | (a− b).

Proposition 2.10.6. For any polynomial F (x) ∈ Z[x], N (F (ω)) ≡ F (1)p−1 (mod p).
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Proof. Now π = 1− ω. Therefore we have ω ≡ 1 (mod π) and so ωj ≡ 1j ≡ 1 (mod π) for

j ∈ N. Thus we get F (ωj) ≡ F (1) (mod π), which implies

p−1∏
j=1

F (ωj) ≡ F (1)p−1 (mod π).

Finally we have N(F (ω)) ≡ F (1)p−1 (mod π), which implies that N(F (ω)) ≡ F (1)p−1

(mod p), by Proposition 2.10.5. Here F (1) ∈ Z and N (F (ω)) ∈ Z since F (ω) is an algebraic

integer.

Proposition 2.10.7. For any prime p and n, L, j ∈ N with 1 ≤ L < n and 1 ≤ j ≤ pL we

have

νp

((
pn−L

)j (pL
j

))
≥ n.

Proof. We first observe that νp

((
pL

j

))
≥ L− νp(j) since

(
pL

j

)
= pL

j

(
pL−1
j−1

)
. Thus,

νp

((
pn−L

)j (pL
j

))
= j(n− L) + νp(

(
pL

j

)
)

≥ j(n− L) + L− νp(j)

= jn− L(j − 1)− νp(j)

≥ jn− (n− 1)(j − 1)− νp(j) since L ≤ n− 1

= n− 1 + (j − νp(j))

≥ n.

The latter step follows by the fact that j − νp(j) ≥ 1 for j ≥ 1.

2.11 Congruence Identities

We first recall the test for determining when an integer is a k-th power (mod pn), where

p is an odd prime. Let U(pn) denote the group of units (mod pn), a cyclic group of order

φ (pn) = pn− pn−1. For any positive integer k, the set of k-th powers in U(pn) is a subgroup

of order φ (pn) / (φ (pn) , k), and thus an element a ∈ U(pn) is in this subgroup if and only

aφ(p
n)/(φ(pn),k) = 1. This yields the following proposition.
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Proposition 2.11.1. Let p be an odd prime and n ∈ N. An integer a relatively prime to p is

a k-th power (mod pn) if and only if

a
φ(pn)

(φ(pn),k) ≡ 1 (mod pn).

In the course of our proofs in the next chapter we shall appeal to the following well

known identity.

Proposition 2.11.2. Let p be a prime. For any integers x, y or variable symbols x, y we have

(x+ y)p ≡ xp + yp (mod p).

More generally, for integers (or variable symbols) x1, . . . , xn we have

(x1 + · · ·+ xn)p ≡ xp1 + · · ·+ xpn (mod p).

Proof. Now, since p |
(
p
j

)
for 1 ≤ j ≤ p− 1 we have

(x+ y)p =

p∑
j=0

(
p

j

)
xp−jyj

= xp + yp + p(xp−1y + · · ·+ xyp−1)

≡ xp + yp (mod p).

To prove the general case we use induction on n. Suppose that

(x1 + · · ·+ xn)p ≡ (xp1 + · · ·+ xpn) (mod p), (2.5)

for a given n ∈ N. Then we have

(x1 + · · ·+ xn + xn+1)
p = [(x1 + · · ·+ xn) + xn+1]

p

≡ (x1 + · · ·+ xn)p + xpn+1 (mod p),

the latter step following from the n = 2 case. Then using the induction assumption (2.5)

we get

(x1 + · · ·+ xk + xk+1)
p ≡ (xp1 + · · ·xpk) + xpk+1 (mod p),

proving the induction step.
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Proposition 2.11.3. If p is a prime and a, b ∈ Z with a ≡ b (mod p), then for any k ≥ 1,

ap
k−1 ≡ bp

k−1

(mod pk).

Proof. We prove by induction on k. When k = 1 the result is trivial. Assume the result for

k, so that

ap
k−1

= bp
k−1

+mpk

for some m ∈ Z. Then, since p |
(
p
j

)
for 1 ≤ j ≤ p− 1 we have

ap
k

=
(
ap

k−1
)p

=
(
bp
k−1

+mpk
)p

=

p∑
j=0

(
p

j

)(
bp
k−1
)p−j (

mpk
)j

=
(
bp
k−1
)p

+
(
p(bp

k−1

)p−1mpk + · · ·+ (mpk)p
)

= bp
k

+ pk+1
(

(bp
k−1

)p−1m+ · · ·+mppk(p−1)−1
)

≡ bp
k

(mod pk+1),

proving the induction step.

2.12 Polynomials with Small Mahler Measure over Zm

In this section we digress from our main target of studying the group Znp in order to recover

Lind’s upper bound on λ(Zm) for arbitrary m. For F (x) ∈ Z[x], we let

M(F ) = MZm(F ) =
m−1∏
k=0

F (ωkm),

where ωm = e2πi/m. First, we obtain an example with |M(F )| = m− 1.

Proposition 2.12.1. For any m ∈ N and F (x) = xm−1
x−1 − 1, we have |M(F )| = m− 1.

Proof. Note that

F (x) =
xm − 1

x− 1
− 1

= xm−1 + xm−2 + · · ·+ x.
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Now we have

M(F ) =
m−1∏
k=0

F (ωkm)

= F (1)
m−1∏
k=1

F (ωkm)

= (m− 1)
m−1∏
k=1

(
ωkmm − 1

ωkm − 1
− 1

)

= (m− 1)
m−1∏
k=1

(−1)

= (−1)m−1(m− 1).

Therefore |M(F )| = m− 1.

Next, we give the following improvement.

Theorem 2.12.1. For any positive integer a with (a,m) = 1 and

F (x) = 1 + x+ x2 + · · ·+ xa−1 − k
(
xm − 1

x− 1

)
=
xa − 1

x− 1
− k

(
xm − 1

x− 1

)
,

we have M(F ) = a− km.

In order to minimize |M(F )| with |M(F )| > 1, we would just take k = 0 and let a be the

minimal positive integer relatively prime to m, which of course is just the minimal prime

not dividing m, denoted ρ(m). Thus, for this choice of F we have M(F ) = ρ(m) and we

recover Lind’s upper bound

λ(Zm) ≤ 1

m
log ρ(m).

Proof. The proof here is quite different from the proof of Lind, and exploits the decomposi-

tion of M(F ) as a product of norms. Because m is allowed to be composite here, we need to

generalize some of the notions we discussed earlier in this chapter. For any positive divisor

d of m, let ωd = e2πi/d and Φd(x) denote the cyclotomic polynomial of order d,

Φd(x) =
d∏
j=1

(j,d)=1

(x− ωjd).
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In particular,

(xm − 1) =
∏
d|m

Φd(x).

By definition, for any polynomial F we have

M(F ) =
m−1∏
i=0

F (ωim) =
∏
d|m

d∏
j=1

(j,d)=1

F (ωjd) =
∏
d|m

Nd,

where Nd = NQ(ωd)/Q(F (ωd)).

Now, let F (x) = xa−1
x−1 − k(xm − 1). Then for d = 1, N1 = F (1) = a. For d|m, d > 1 we

have F (ωd) =
ωad−1
ωd−1

, an element of norm 1, that is, Nd = 1. This follows in the same manner

as Proposition 2.12.1 since (a, d) = 1 and therefore ωad − 1 is a conjugate of ωd − 1, whence

they have the same norm. Thus we obtain M(F ) = a · 1 · · · 1 = a.

2.13 Polynomials with Small Mahler Measure over Znp

Proposition 2.13.1. For any prime p, n ∈ N and F (x1, . . . , xn) =
n∏
k=1

(
xpk − 1

xk − 1

)
− 1 =

n∏
k=1

Φ(xk)− 1, we have |M(F )| = pn − 1.

Proof. We have

M(F ) =

p−1∏
j1=0

p−1∏
j2=0

· · ·
p−1∏
jn=0

F (ωj1 , ωj2 , . . . , ωjn)

=

p−1∏
j1=0

p−1∏
j2=0

· · ·
p−1∏
jn=0

(
Φ(ωj1) · · ·Φ(ωjn)− 1

)
.

Now if all ji = 0 then the term is Φ(1)n − 1, while if some ji 6= 0 then the term is −1, and

so we get

M(F ) = (Φ(1)n − 1) (−1)p
n−1

= (pn − 1) (−1)p
n−1.

28



Therefore we get that,

|M(F )| = pn − 1.
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Chapter 3

Main Result

In this chapter we discuss and prove the main result of our work. We define, for any odd

prime p and n ∈ N,

Mn := min{apn−1

(mod pn) | 2 ≤ a ≤ p− 1}. (3.1)

We may restrict a to a value less than p, since if a ≡ b (mod p) then ap
n−1 ≡ bp

n−1
(mod pn),

by Proposition 2.11.3. Let us first observe that one can also define Mn in the following

equivalent manner.

Proposition 3.0.2. For any odd prime p and n ∈ N, we have

Mn = min{x ∈ Z : x > 1, xp−1 ≡ 1 (mod pn)}.

Proof. Let 2 ≤ a ≤ p− 1. Then ap
n−1 6≡ 1 (mod pn), since ap

n−1 ≡ a 6≡ 1 (mod p). Also,

(ap
n−1

)p−1 ≡ aφ(p
n) ≡ 1 (mod pn),

by Euler’s Theorem.

Conversely, if x > 1 and xp−1 ≡ 1 (mod pn) then

x
φ(pn)

(φ(pn),pn−1) ≡ xp−1 ≡ 1 (mod pn),

and therefore x is a pn−1-th power (mod pn) by Proposition 2.11.1. Since x 6≡ 1 (mod pn)

it follows that x ≡ ap
n−1

(mod pn) for some 2 ≤ a ≤ p− 1.
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Recall the definition,

λ(Znp ) =
1

pn
{log |M(F )| : |M(F )| > 1}.

Recall also the trivial bound

1

pn
log(2) ≤ λ(Znp ) ≤ 1

pn
log(pn − 1). (3.2)

Our main theorem is the following.

Theorem 3.0.1. For n ≥ 2

λ(Zn2 ) =
1

2n
log(2n − 1).

For n ≥ 1 and any prime p ≥ 3,

λ(Znp ) =
1

pn
logMn,

where Mn is defined as in (3.1).

Corollary 3.0.1. For n ≥ 1 we have

λ(Zn3 ) = 1
3n

log(3n − 1).

Proof. In view of the preceding proposition, Mn is the minimal solution of the congruence

x2 ≡ 1 (mod 3n) with x > 1. Since the solutions of this congruence are x ≡ ±1 (mod 3n),

it is plain that the minimal solution with x > 1 is x ≡ 3n − 1, and thus Mn = 3n − 1. The

corollary now follows from the main theorem.

In particular we see that the trivial upper bound in (3.2) is attained for p = 2 and p = 3.

3.1 The Congruence Lemmas

Let us recall that for F ∈ Z[x], and G = Zp, we define

MG(F ) =
n∏
j=0

F (ωj),

where ω = e2πi/p.
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Lemma 3.1.1. For F ∈ Z[x], p a prime, and G = Zp, we have

MG(F ) ≡ F (1) (mod p). (3.3)

Proof. We have

MG(F ) =

p−1∏
j=0

F (ωj) = N (F (ω))F (1).

Then by Proposition 2.10.6 we get that MG(F ) ≡ F (1)p (mod p). Hence by Fermat’s Little

Theorem we have MG(F ) ≡ F (1) (mod p).

This lemma generalizes to n-dimensions as follows.

Lemma 3.1.2. For n ∈ N, F ∈ Z[x1, . . . , xn] and G = Znp , we have

MG(F ) ≡ F (1, . . . , 1)p
n−1

(mod pn). (3.4)

Proof. The proof is by induction on the dimension n. For convenience we put Mn(F ) =

MG(F ) for G = Znp . The case n = 1 is just the preceding lemma. Suppose now that

Mt(F ) ≡ F (1, . . . , 1)p
t−1

(mod pt),

for all t < n, and any polynomial F in t-variables over Z. We define a polynomial G(x) ∈

Z[x1, . . . , xn] by

G(x) = G(x1, . . . , xn) :=

p−1∏
k1=0

· · ·
p−1∏
kn=0

F (xk11 , . . . , x
kn
n ). (3.5)

By expanding the product and gathering like monomials, we can write

G(x) =
∑

`1<C1,...,`n<Cn

b(`1, . . . , `n)x`11 · · ·x`nn ,

for some positive integers C1, . . . , Cn, and coefficients b(`1, . . . , `n) ∈ Z.

Now xpr ≡ 1 (mod xpr − 1) for 1 ≤ r ≤ n, and so we can write

G(x) =
∑

0≤`1,...,`n≤p−1

a(`1, . . . , `n)x`11 · · ·x`nn + J1(x1, . . . , xn)(xp1 − 1) + . . .

+ Jn(x1, · · · , xn)(xpn − 1), (3.6)
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for some integers a(`1, . . . , `n) and polynomials J1(x1, . . . , xn), . . . , Jn(x1, . . . , xn) over Z.

Now, consider the evaluation of

G(ωj1 , . . . , ωjn)

where jr ∈ Z and 0 ≤ jr ≤ p− 1 for 1 ≤ r ≤ n. First we observe that by (3.6) we have

G(ωj1 , . . . , ωjn) =

p−1∑
l1=0

· · ·
p−1∑
ln=0

a(l1, . . . , ln)ωj1l1 · · ·ωjnln . (3.7)

Next we go back to the Definition 3.5 to evaluate the same quantity.

Case i: Suppose that jr = 0 for 1 ≤ r ≤ n. Then we have by 3.5,

G(1, . . . , 1) = F (1, . . . , 1)p
n ≡ F (1, . . . , 1)p

n−1

(mod pn), (3.8)

by Euler’s Theorem.

Case ii: Suppose that jr 6= 0 for 1 ≤ r ≤ n. Then

G(ωj1 , . . . , ωjn) =

p−1∏
k1=0

· · ·
p−1∏
kn=0

F (ωj1k1 , . . . , ωjnkn)

=

p−1∏
k1=0

· · ·
p−1∏
kn=0

F (ωk1 , . . . , ωkn)

= Mn(F ) (3.9)

Case iii: Suppose that jr = 0 for exactly L values of r, for some L with 1 ≤ L < n.

Without loss of generality say that

j1 = · · · = jL = 0, jL+1 6= 0, . . . , jn 6= 0.

Then

G(1, . . . , 1, ωjL+1 , . . . , ωjn) =

p−1∏
k1=0

· · ·
p−1∏
kn=0

F (1, . . . , 1, ωjL+1kL+1 , . . . , ωjnkn)

=

 p−1∏
kL+1=0

· · ·
p−1∏
kn=0

F
(
1, . . . , 1, ωkL+1 , . . . , ωkn

)pL

= Mn−L (F (1, . . . , 1, xL+1, . . . , xn))p
L

.
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Now by the induction hypothesis we have,

Mn−L (F (1, . . . , 1, xL+1, . . . , xn)) = F (1, . . . , 1)p
n−L−1

+ kpn−L

for some integer k. Therefore

G(1, . . . , 1, ωjL+1 , . . . , ωjn) =
(
F (1, . . . , 1)p

n−L−1

+ kpn−L
)pL

= F (1, . . . , 1)p
n−1

+ kpnF (1, . . . , 1)p
n−1−1 + · · ·

≡ F (1, . . . , 1)p
n−1

(mod pn),

the latter step following from Proposition 2.10.7. In summary, we have seen that

G(ωj1 , . . . , ωjn) ≡ F (1, . . . , 1)p
n−1

(mod pn), if some ji ≡ 0 (mod p), (3.10)

and

G(ωj1 , . . . , ωjn) = Mn(F ), if no ji ≡ 0 (mod p). (3.11)

By (3.7) we have,

S : =

p−1∑
j1=0

· · ·
p−1∑
jn=0

G(ωj1 , . . . , ωjn)

=

p−1∑
`1=0

· · ·
p−1∑
`n=0

a(`1, . . . , `n)

p−1∑
j1=0

· · ·
p−1∑
jn=0

ωj1`1 · · ·ωjn`n

= a(0, . . . , 0)

p−1∑
j1=0

· · ·
p−1∑
jn=0

1 +
∑

(`1,...,`n) 6=(0,...,0)

a(`1, . . . , `n)

p−1∑
j1=0

ωj1`1 · · ·
p−1∑
jn=0

ωjn`n .

Thus, since

p−1∑
ji=0

ωji`i = 0 for 0 < `i < p, we obtain

S = a(0, . . . , 0)pn ≡ 0 (mod pn). (3.12)

On the other hand, by (3.5) we have

S =
∑

some ji=0

G(ωj1 , . . . , ωjn) +
∑

no ji=0

G(ωj1 , . . . , ωjn),
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and so by (3.10) and (3.11) we get,

S ≡ F (1, . . . , 1)p
n−1

(pn − (p− 1)n) +Mn(F )(p− 1)n (mod pn)

≡ (p− 1)n(Mn(F )− F (1, . . . , 1)p
n−1

) (mod pn).

Since S ≡ 0 (mod pn) by (3.12) we get,

F (1, . . . , 1)p
n−1 ≡Mn(F ) (mod pn),

since gcd (p− 1, pn) = 1.

3.2 Construction of a Polynomial F with Given Mahler

Measure

In the previous section we showed that for any polynomial F ∈ Z[x1, . . . , xn], Mn(F ) is

congruent to a pn−1-th power (mod pn). Here we show conversely, that given any pn−1-th

power (mod pn) that is relatively prime to p, there exists a polynomial F with Mn(F )

taking on this value.

Lemma 3.2.1. For any prime power pn and integers k, a with p - a, a > 0, there exists a

polynomial F (x1, . . . , xn) ∈ Z[x1, . . . , xn] with

Mn(F ) = ap
n−1 − kpn. (3.13)

Proof. Let p be a prime, n, a ∈ N and k ∈ Z. We shall generate a sequence of polynomials

H1(x), . . . , Hn−1(x) ∈ Z[x] such that

(1 + x+ · · ·+ xa−1)p
l ≡ ap

l−1

+ plHl(x) (mod xp − 1), (3.14)

for 1 ≤ l ≤ n− 1.

Since xp ≡ 1 (mod xp − 1) we have for some H1(x) ∈ Z[x],

(1 + x+ x2 + · · ·+ xa−1)p = 1p + xp + x2p + · · ·+ xp(a−1) + pH1(x) (3.15)

≡ (1 + 1 + · · ·+ 1) + pH1(x) (mod xp − 1)

≡ a+ pH1(x) (mod xp − 1),
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thus establishing (3.14) for the case l = 1. Now by raising both sides to the p-th power we

generate H2(x) ∈ Z[x] as follows:

(1 + x+ x2 + · · ·+ xa−1)p
2 ≡ (a+ pH1(x))p (mod xp − 1)

≡ ap + p2
(
H1(x)ap−1 + · · ·

)
(mod xp − 1)

≡ ap + p2H2(x) (mod xp − 1),

for some H2(x) ∈ Z[x]. We generate the remaining Hj(x) in the same manner. Suppose

that H1(x), . . . , Hj(x) have been constructed to satisfy (3.14). Then

(1 + x+ x2 + · · ·+ xa−1)p
j+1 ≡

(
ap

j−1

+ pjHj(x)
)p

(mod xp − 1)

≡ ap
j

+ pj+1
(
Hj(x)ap

j−1 + · · ·
)

(mod xp − 1)

≡ ap
j

+ pj+1Hj+1(x) (mod xp − 1),

for some Hj+1(x) ∈ Z[x].

From (3.14) we immediately obtain the identity

(1 + x+ · · ·+ xa−1)p
l

= ap
l−1

+ plHl(x) + Jl(x)(xp − 1), (3.16)

for some Jl ∈ Z[x]. Putting x = 1 in (3.16) yields

ap
l

= ap
l−1

+ plHl(1). (3.17)

Putting l = j + 1, x = ω in (3.16) yields

(1 + ω + · · ·+ ωa−1)p
l

= ap
l−1

+ plHl(ω). (3.18)

We define

F (x1, . . . , xn) := (1 + x1 + · · ·+ xa−11 ) +
n−1∑
j=1

Hj(xj+1)

j∏
i=1

Φ(xi)− k
n∏
i=1

Φ(xi), (3.19)

where Φ(x) = 1 + x+ · · ·+ xp−1. We claim that for this choice of F we have

Mn(F ) = ap
n−1 − kpn,
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thus establishing the lemma. To prove the claim, recall that by Proposition 2.9.1, Mn(F )

can be expressed as a product

Mn(F ) = F (1, 1, . . . , 1)N1N2 . . . NI , (3.20)

where the Ni are norms of elements of the form F (ωj1 , . . . , ωjn) with the ji not all 0. We

turn to the evaluation of F (ωj1 , . . . , ωjn) for different choices of ji. Suppose first that j1 is

not zero. Then, by the definition of F we have

F (ωj1 , . . . , ωjn) = 1 + ωj1 + · · ·+ ωj1(a−1), (3.21)

which, by Proposition 2.7.3, is an element of norm 1, that is

N(F (ωj1 , . . . , ωjn)) = 1. (3.22)

Next, suppose that j1 = 0 but not all ji are zero. Say j1 = j2 = · · · = jl = 0, jl+1 6= 0,

for some l, 1 ≤ l < n. Then, using the definition of F we have,

F (ωj1 , . . . , ωjn) = F (1, 1, . . . , 1, ωjl+1 , . . . , ωjn)

= a+
l−1∑
j=1

Hj(1)

j∏
i=1

Φ(1) +Hl(ω
jl+1)

l∏
i=1

Φ(1)− k · 0

= a+ pH1(1) + · · ·+ pl−1Hl−1(1) + plHl(ω
jl+1).

Now, by (3.17), we have pjHj(1) = ap
j − apj−1

, and so the latter sum is a telescoping sum

that simplifies to

ap
l−1

+ plHl(ω
jl+1) =

(
1 + ωjl+1 + · · ·+ ωjl+1(a−1)

)pl
,

the latter equality following from (3.18). We see again by Proposition 2.7.3, that the latter

quantity is a unit in Z[ω] of norm 1 and thus we again have (3.22). We now can conclude

that all of the Ni in (3.20) are equal to 1.

Finally, if all of the ji are zero, then we just have

F (1, . . . , 1) = a+ pH1(1) + · · ·+ pn−1Hn−1(1)− kpn

= ap
n−1 − kpn (3.23)
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by (3.17). Therefore, by (3.20) we conclude that

Mn(F ) = ap
n−1 − kpn.

Example 3.2.1. For the case a = 1, the polynomial constructed in the proof is just

F (x1, . . . , xn) = 1− k
n∏
i=1

Φ(xi),

since the Hi are all zero in this case. We see that for this polynomial we have

Mn(F ) = 1− kpn.

By taking k = 1, we get a polynomial with |Mn(F )| = pn − 1.

Example 3.2.2. Let us find the polynomial that gives the minimal value for |M(F )| for the

group Z5 × Z5. First we figure out a and k values. So for M2 and p = 5 the minimum 5-th

power (mod 25) is attained by 25 ≡ 7 (mod 25). Therefore take a = 2. Next we choose

k = 1 so that 25 − k · 52 = 7, and thus |M(F )| = 7 for the polynomial F defined in (3.19).

To obtain F we plug in p = 5 and a = 2 in (3.15) to get

(1 + x)5 = 1 + x5 + 5H1(x).

Therefore we get

H1(x) = x+ 2x2 + 2x3 + x4

Finally by (3.19) we get,

F (x1, x2) = 1 + x1 +H1(x2)Φ(x1)− 1 · Φ(x1)Φ(x2)

= 1 + x1 +
(
x2 + 2x22 + 2x32 + x42

) (
1 + x1 + x21 + x31 + x41

)
−
(
1 + x1 + x21 + x31 + x41

) (
1 + x2 + x22 + x32 + x42

)
= 1 + x1 −

(
1 + x1 + x21 + x31 + x41

) (
x22 + x32 − 1

)
.

We see that this polynomial is different than what we got using the computer in Example

2.4.1.
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3.3 Proof of Theorem 3.0.1

First we consider the case p = 2. By Lemma 3.1.2 we have that for any F ∈ Z[x1, . . . , xn],

Mn(F ) ≡ a2
n−1

(mod 2n) for some integer a. Now if a is even, then a2
n−1 ≡ 0 (mod 2n)

since 2n−1 ≥ n for any n ∈ N. Thus, the minimal possible nonzero value for |Mn(F )| is 2n.

If a is odd, then a2
n−1 ≡ 1 (mod 2n) by Proposition 2.11.3, and thus the minimal possible

value for |Mn(F )| is |1− 2n| = 2n− 1. In Example 3.2.1 we saw that this minimal value was

actually attained by the polynomial

F (x1, . . . , xn) = 1− (x1 + 1) · · · (xn + 1).

Next we consider the case of odd p. Now if p | Mn(F ) then p | Nr for some r or p |

F (1, . . . , 1), since Mn(F ) = F (1, . . . , 1)
I∏
i=1

Ni. Now since ω ≡ 1 (mod π) for any (j1, . . . , jn)

we have F (ωj1 , . . . , ωjn) ≡ F (1, . . . , 1) (mod π), which implies Ni ≡ F (1, . . . , 1)p−1 (mod p)

for any i. So we get that p | F (1, . . . , 1) and p | Ni for all i. Therefore p
pn−1
p−1

+1|Mn(F ), hence

Mn(F ) ≥ p
pn−1
p−1

+1. Therefore we can ignore these values of Mn(F ) which are divisible by p

since those values are larger than the trivial upper bound pn − 1.

By Lemma 3.1.2 we have that for any polynomial F ∈ Z[x1, . . . , xn], Mn(F ) is a pn−1-th

power (mod pn). On the other hand, Lemma 3.2.1 shows that given any integer relatively

prime to p that is a pn−1-th power (mod pn), there exists a polynomial F ∈ Z[x1, . . . , xn]

with Mn(F ) equal to that value. Thus the minimal value of |Mn(F )| > 1 is just the minimal

pn−1-th power (mod pn) greater than 1. (We note that since p is odd, the pn−1-th powers

are symmetric about 0, and so we can restrict our attention to the minimal positive pn−1-th

power.)
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Chapter 4

Heilbronn sums and the Estimation
of Mn

The second part of my thesis is devoted to the estimation of the quantity Mn defined in

(3.1),

Mn := min{apn−1

(mod pn) | 2 ≤ a ≤ p− 1}.

Putting this estimate together with Theorem 3.0.1 yields an explicit bound for λ(Znp ). Let

K be the group of pn−1 powers (mod pn) viewed as integers between 1 and pn − 1. The

first approach to estimating Mn is to let I be an interval I := [2, · · · , N ] ⊆ Znp , and to

count the number of points in K ∩ I using a classic method of exponential sums. Let

epn(x) := exp
(

2πix
pn

)
, for x ∈ Zpn , Hpn(y) denote the n-th order Heilbronn exponential sum

Hpn(y) :=

p−1∑
x=0

epn
(
yxp

n−1
)
,

and

Hpn := max
y∈Zpn\{0}

|Hpn(y)| .

We prove the following estimate:

Theorem 4.0.1. For any prime power pn and interval I = [2, · · · , N ] we have

|K ∩ I| = N

pn−1
+O (Hpn log(pn)) .
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In particular we deduce that if N � pn−1Hpn log pn, then |K ∩ I| > 0. We can remove

the log(pn) factor by using a weighted count. In this manner we will establish Theorem

4.3.1 below and deduce that |K ∩ I| > 0, provided N ≥ pn−1Hpn . In particular we obtain

Theorem 4.0.2. For any odd prime power pn,

Mn ≤ 2pn−1Hpn . (4.1)

The first nontrivial estimate for Hpn was made by Heath-Brown [9] for the case n = 2,

where he established Hp2 � p11/12 log p. Subsequent improvements were made in the n = 2

case by Heath-Brown & Konyagin [10], Hp2 � p7/8; Shkredov [11], Hp2 � p59/68 log5/34 p;

and Shkredov [6], Hp2 � p31/36 log1/6 p. Using the latter bound, we deduce from Theorem

4.0.2 that M2 � p67/36 log1/6 p.

For n ≥ 3 Malykhin [12] showed that Hpn � p1−
1

32·5n−3 . Using Malykhin’s estimate [12]

for the higher order Heilbronn sums we get that

Mn � pn−
1

32·5n−3 ,

for n ≥ 3. Thus by the conclusion of Theorem 3.0.1, for n = 2, we have that for any odd

prime power pn,

λ(Z2
p) =

1

p2
log(M2) ≤

67

36
· log p

p2
+O

(
log log p

p2

)
,

and for n ≥ 3,

λ(Znp ) =
1

pn
log(Mn) ≤

(
n− 1

32 · 5n−3

)
log p

pn
+O

(
1

pn

)
.

4.1 Proof of Theorem 4.0.1

Let I be the interval

I := [b+ 1, b+ 2, . . . , b+B] ⊆ Zpn
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of cardinality |I| = B, and 1I denote the characteristic function of I. Then 1I has a Fourier

expansion

1I(x) =

pn−1∑
y=0

a(y)epn(yx) (4.2)

where for y ∈ Zpn ,

a(y) =
1

pn

pn−1∑
x=0

1I(x)epn(−yx), (4.3)

the formula for a(y) following from the basic identity:

pn−1∑
x=0

epn(yx) =

{
pn, if y ≡ 0 (mod pn);

0, if y 6≡ 0 (mod pn).

In particular

a(0) =
1

pn
B (4.4)

and for y 6= 0,

|a(y)| = 1

pn

∣∣∣sin(πyB
pn

)
∣∣∣∣∣∣sin(πy

pn
)
∣∣∣ .

We observe that

pn−1∑
y=1

|a(y)| =
∑

0<|y|≤ pn−1
2

1

pn

∣∣∣sin(πyB
pn

)
∣∣∣∣∣∣sin(πy

pn
)
∣∣∣ � 1

pn

∑
0<|y|≤ pn−1

2

1

|y|/pn
� log(pn).

Then

|K ∩ I| : = |{xpn−1

: 1 ≤ x ≤ p− 1, xp
n−1 ∈ I}|

=

p−1∑
x=0

1I(x
pn−1)

=

p−1∑
x=0

pn−1∑
y=0

a(y)epn
(
yxp

n−1
)

= a(0)p+

pn−1∑
y=1

a(y)

p−1∑
x=0

epn
(
yxp

n−1
)

=
B

pn−1
+

pn−1∑
y=1

a(y)

p−1∑
x=0

epn
(
yxp

n−1
)
.
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Now to estimate the quantity

pn−1∑
y=1

a(y)

p−1∑
x=0

epn
(
yxp

n−1
)
, we write

∣∣∣∣∣
pn−1∑
y=1

a(y)

p−1∑
x=0

epn
(
yxp

n−1
)∣∣∣∣∣ ≤

pn−1∑
y=1

|a(y)| max
y∈Zpn\{0}

∣∣∣∣∣
p−1∑
x=0

epn
(
yxp

n−1
)∣∣∣∣∣

= max
y∈Zpn\{0}

|Hpn(y)|
pn−1∑
y=1

|a(y)|

= Hpn

pn−1∑
y=1

|a(y)|

= Hpn log(pn). (4.5)

So we get that

|K ∩ I| = B

pn−1
+O (Hpn log(pn)) , (4.6)

which establishes Theorem 4.0.1.

4.2 Weighted Counting

The same proof given in the previous section can work just as well for any weighted function

α(x) on I. Indeed, we shall prove the following.

Theorem 4.2.1. For any function α : Zpn → C with Fourier coefficients a(y) we have

p−1∑
x=0

α
(
xp

n−1
)

=
1

pn−1

pn−1∑
x=0

α(x) + Error (4.7)

where |Error| ≤ Hpn

pn−1∑
y=1

|a(y)|.

Proof. Now α(x) has Fourier expansion,

α(x) =

pn−1∑
y=0

a(y)epn(yx),

where for y ∈ Zpn ,

a(y) =
1

pn

pn−1∑
x=0

α(x)epn(−yx).
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In particular,

a(0) =
1

pn

pn−1∑
x=0

α(x). (4.8)

So using the Fourier expansion of α(x) we get that,

p−1∑
x=0

α(xp
n−1

) =

p−1∑
x=0

pn−1∑
y=0

a(y)epn
(
yxp

n−1
)

= a(0)p+

pn−1∑
y=1

a(y)

p−1∑
x=0

epn
(
yxp

n−1
)

=
1

pn−1

pn−1∑
x=0

α(x) + Error,

where Error :=

pn−1∑
y=1

a(y)

p−1∑
x=0

epn
(
yxp

n−1
)
. So

|Error| ≤ max
y∈Zpn\{0}

∣∣∣∣∣
p−1∑
x=0

epn
(
yxp

n−1
)∣∣∣∣∣

pn−1∑
y=1

|a(y)|

= max
y∈Zpn\{0}

|Hpn(y)|
pn−1∑
y=1

|a(y)|

= Hpn

pn−1∑
y=1

|a(y)| .

Letting α = 1I and using the estimate

pn−1∑
y=0

|a(y)| � log(pn) gives us the result of the

previous section:

|K ∩ I| = 1

pn−1
B +O (Hn log(pn)) .

4.3 The Weighted Count 1J ∗ 1J

We recall that for any complex valued functions, β, γ on Znp , the convolution of β and γ,

denoted β ∗ γ, is defined by

(β ∗ γ)(x) :=

pn−1∑
u=0

pn−1∑
v=0

u+v=x

β(u)γ(v).
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Observe that I ∗I = 0 outside [2, 2N ]. In this section we apply Theorem 4.2.1 to the function

1J ∗ 1J where J = [1, 2, . . . , N ] ⊆ Zpn , with N < pn

2
. Then 1J ∗ 1J has Fourier expansion

(1J ∗ 1J)(x) =

pn−1∑
y=0

a(y)epn(yx), (4.9)

where the coefficients a(y) are determined by using the following lemma.

Lemma 4.3.1. If β, γ : Znp → C with Fourier coefficients aβ(y), aγ(y) respectively, then the

Fourier coefficients of β ∗ γ are given by a(y) = pnaβ(y)aγ(y).

Proof.

(β ∗ γ)(x) : =

pn−1∑
u=0

pn−1∑
v=0

u+v=x

β(u)γ(v)

=
∑
u+v=x

(
pn−1∑
y1=0

aβ(y1)epn(uy1)

)(
pn−1∑
y2=0

aγ(y2)epn(vy2)

)

=

pn−1∑
y1=0

pn−1∑
y2=0

aβ(y1)aγ(y2)
∑
u+v=x

epn(uy1 + vy2)

=

pn−1∑
y1=0

pn−1∑
y2=0

aβ(y1)aγ(y2)

pn−1∑
u=0

epn (uy1 + (x− u) y2)

=

pn−1∑
y1=0

pn−1∑
y2=0

aβ(y1)aγ(y2)epn(xy2)

pn−1∑
u=0

epn (u (y1 − y2))

= pn
pn−1∑
y1=0

pn−1∑
y2=0

y1=y2

aβ(y1)aγ(y2)epn(xy2)

=

pn−1∑
y=0

pnaβ(y)aγ(y)epn(xy)

by taking y = y1 = y2. Thus we see that the Fourier coefficients of β ∗ γ are given by

a(y) = pnaβ(y)aγ(y).

Thus for the function 1J ∗ 1J we have a(y) = pna2J(y). Now by Parseval’s Identity, we

have
pn−1∑
y=0

|a(y)| = pn
pn−1∑
y=0

|aJ(y)|2 = pn

(
1

pn

pn−1∑
x=0

|1J |2(x)

)
=

pn−1∑
x=0

1J(x) = |J |.
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Thus we have established the following: If α = 1j ∗ 1J , with Fourier coefficients a(y), then

pn−1∑
y=0

|a(y)| = |J |. (4.10)

Theorem 4.3.1. For any odd prime power pn and interval J = [1, · · · , N ] we have

p−1∑
x=0

(1J ∗ 1J)
(
xp

n−1) =
N2

pn−1
+ Error, (4.11)

where |Error| < NHpn .

We will deduce this from Theorem 4.2.1.

Proof. By letting α(x) = (1J ∗ 1J)(x) in Theorem 4.2.1 we get

pn−1∑
x=0

(1J ∗ 1J)(xp
n−1

) =
1

pn−1

pn−1∑
x=0

1J ∗ 1J(x) + Error

=
1

pn−1

pn−1∑
x=0

∑
u∈J

∑
v∈J

u+v=x

1 + Error

=
1

pn−1
N2 + Error

=
1

pn−1
N2 + Error,

where

|Error| = Hpn

pn−1∑
y=1

|a(y)| < Hpn

pn−1∑
y=0

|a(y)| = NHpn

the latter step following from (4.10).

Proof of Theorem 4.0.2. We conclude from Theorem 4.3.1 that (1J ∗1J)(xp
n−1

) > 0 for some

x ∈ Zpn , and consequently xp
n−1 ∈ [2, . . . , 2N ] for some x ∈ Zpn , if

N

pn−1
≥ Hpn ,

that is

N ≥ pn−1Hpn .
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Hence

Mn ≤ 2N ≤ 2pn−1Hpn .

Table 4.1 below gives the smallest non-trivial positive solutions to xp−1 ≡ 1 (mod pn),

for p < 100 and n ≤ 6. Values in this table were calculated using Maple. The code for the

program is given in Appendix A.

Table 4.1: Sample Mn values for small p and n
p n = 2 n = 3 n = 4 n = 5 n = 6

3 8 26 80 242 728
5 7 57 182 1068 1068
7 18 18 1047 1353 34967
11 3 124 1963 27216 284995
13 19 239 239 109193 861642
17 38 158 4260 15541 390112
19 28 333 2819 133140 333257
23 28 42 19214 495081 2818778
29 14 1215 2463 1115402 42137700
31 115 513 15714 2754849 8078311
37 18 691 51344 1353359 33518159
41 51 1172 20677 649828 92331463
43 19 3038 3038 3228564 21583010
47 53 295 224444 2359835 138173066
53 338 1468 189323 4694824 8202731
59 53 2511 11550 7044514 390421192
61 264 15458 397575 28538377 1006953931
67 143 3859 201305 1111415 77622331
71 11 6372 15384 77588426 270657300
73 306 923 840838 16178110 5915704483
79 31 1523 1372873 2553319 522911165
83 99 5436 1576656 9571390 2507851273
89 184 1148 278454 158485540 1329885769
97 53 412 1721322 18664438 2789067613
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Appendix A

Program 1

f o r r from 2 to 6 do
n:= r :
p :=2:
f o r q from 1 to 24 do

p:= nextprime (p ) :
d:=pˆn :
y:=pˆn−1:

f o r j from 2 to (p−1) do
v:= j ˆ(pˆ(n−1)) mod pˆ(n ) :
d:=min (v , d ) :
y:=min (d , y ) :
end do ;

l p r i n t (p , d ) ;
d:=pˆn :

end do :
end do :
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Appendix B

Program 2

#inc lude ” s tda fx . h”
#inc lude <iostream>
#inc lude <cmath>
#inc lude <math . h>
#inc lude <iomanip>

const double PI = std : : atan ( 1 . 0 ) ∗ 4 ;

c l a s s complex
{

p r i v a t e :
double r e a l ; // Real Part
double imag ; // Imaginary Part

pub l i c :
complex ( double , double ) ;
complex ( complex &);
complex operator +(complex ) ;
complex operator −(complex ) ;
complex operator ∗( complex ) ;
complex operator /( complex ) ;

complex operator ˆ( i n t ) ;
complex ge tcon jugate ( ) ;
complex g e t r e c i p r o c a l ( ) ;
double getmodulus ( ) ;
void se tdata ( double , double ) ;
void getdata ( ) ;
double g e t r e a l ( ) ;
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double get imaginary ( ) ;
bool operator ==(complex ) ;
void operator =(complex ) ;
f r i e n d std : : ostream& operator <<(std : : ostream &s , complex &c ) ;

} ;

//{{NO DEPENDENCIES}}
// Mic roso f t Visua l C++ generated inc lude f i l e .
// Used by app . rc

// s tda fx . h : i n c lude f i l e f o r standard system inc lude
// f i l e s , or p r o j e c t s p e c i f i c i n c lude f i l e s that are
// used f r equent ly , but are changed i n f r e q u e n t l y
//

#pragma once

// TODO: r e f e r e n c e a d d i t i o n a l headers your program
// r e q u i r e s here

#inc lude ” s tda fx . h”

us ing namespace System ;
us ing namespace System : : R e f l e c t i o n ;
us ing namespace System : : Runtime : : Compi l e rServ i ce s ;
us ing namespace System : : Runtime : : I n t e r o p S e r v i c e s ;
us ing namespace System : : Se cu r i ty : : Permiss ions ;

//
// General In format ion about an assembly i s c o n t r o l l e d
// through the f o l l o w i n g s e t o f a t t r i b u t e s . Change
// these a t t r i b u t e va lue s to modify the in fo rmat ion
// a s s o c i a t e d with an assembly .
//
[ assembly : AssemblyTit l eAttr ibute (” Test4 ” ) ] ;
[ assembly : AssemblyDescr ipt ionAttr ibute ( ” ” ) ] ;
[ assembly : AssemblyConf igurat ionAttr ibute ( ” ” ) ] ;
[ assembly : AssemblyCompanyAttribute (” Mic ro so f t ” ) ] ;
[ assembly : AssemblyProductAttribute (” Test4 ” ) ] ;
[ assembly : AssemblyCopyrightAttr ibute (” Copyright ( c ) Mic ro so f t 2 0 1 1 ” ) ] ;
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[ assembly : AssemblyTrademarkAttribute ( ” ” ) ] ;
[ assembly : AssemblyCultureAttr ibute ( ” ” ) ] ;

//
// Vers ion in fo rmat ion f o r an assembly c o n s i s t s o f the
// f o l l o w i n g four va lue s :
//
// Major Vers ion
// Minor Vers ion
// Build Number
// Revi s ion
//
// You can s p e c i f y a l l the value or you can d e f a u l t the Rev i s ion
// and Build Numbers by us ing the ’∗ ’ as shown below :

[ assembly : AssemblyVers ionAttr ibute ( ” 1 . 0 . ∗ ” ) ] ;

[ assembly : ComVisible ( f a l s e ) ] ;

[ assembly : CLSCompliantAttribute ( t rue ) ] ;

[ assembly : Secur i tyPermi s s i on ( Secur i tyAct ion : : RequestMinimum ,
UnmanagedCode = true ) ] ;

// s tda fx . cpp : source f i l e that i n c l u d e s j u s t the standard i n c l u d e s
// Test4 . pch w i l l be the pre−compiled header
// s tda fx . obj w i l l conta in the pre−compiled type in fo rmat ion

#inc lude ” s tda fx . h”

#inc lude ” s tda fx . h”
#inc lude ”complex . h”

us ing std : : c in ;
us ing std : : cout ;
us ing std : : endl ;
us ing std : : ostream ;
us ing std : : i o s ;
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// CONSTRUCTOR

complex : : complex ( double r =0.0 f , double im=0.0 f )
{

r e a l=r ;
imag=im ;

}

// COPY CONSTRUCTOR
complex : : complex ( complex &c )
{

th i s−>r e a l=c . r e a l ;
th i s−>imag=c . imag ;

}

void complex : : operator =(complex c )
{

r e a l=c . r e a l ;
imag=c . imag ;

}

complex complex : : operator +(complex c )
{

complex tmp ;
tmp . r e a l=th i s−>r e a l+c . r e a l ;
tmp . imag=th i s−>imag+c . imag ;
re turn tmp ;

}

complex complex : : operator −(complex c )
{

complex tmp ;
tmp . r e a l=th i s−>r e a l − c . r e a l ;
tmp . imag=th i s−>imag − c . imag ;
re turn tmp ;

}

complex complex : : operator ∗( complex c )
{

complex tmp ;
tmp . r e a l =( r e a l ∗c . r e a l )−( imag∗c . imag ) ;
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tmp . imag=( r e a l ∗c . imag)+( imag∗c . r e a l ) ;
r e turn tmp ;

}

complex complex : : operator /( complex c )
{

double div=(c . r e a l ∗c . r e a l ) + ( c . imag∗c . imag ) ;
complex tmp ;
tmp . r e a l =( r e a l ∗c . r e a l )+( imag∗c . imag ) ;
tmp . r e a l /=div ;
tmp . imag=(imag∗c . r e a l )−( r e a l ∗c . imag ) ;
tmp . imag/=div ;
r e turn tmp ;

}

/∗
complex complex : : operator ˆ( i n t power )
{

complex tmp ;
double modulus = getmodulus ( ) ;
double ang le ;

i f ( r e a l == 0)
ang le = PI /2 ;

e l s e
ang le = atan ( imag/ r e a l ) ;

tmp . r e a l = modulus∗ cos ( ( double ) power∗ ang le ) ;
tmp . imag = modulus∗ s i n ( ( double ) power∗ ang le ) ;

r e turn tmp ;
}
∗/

complex complex : : operator ˆ( i n t power )
{

complex tmp ( 1 , 0 ) ;
i n t i ;

i f ( power == 0)
re turn complex ( 1 , 0 ) ;

e l s e
{

i f ( power > 0)
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{
f o r ( i =0; i<power ; i++)

tmp = tmp∗complex (∗ t h i s ) ;
}
e l s e
{

double modulus = getmodulus ( ) ;
double ang le ;

i f ( r e a l == 0)
ang le = PI /2 ;

e l s e
ang le = atan ( imag/ r e a l ) ;

tmp . r e a l = modulus∗ cos ( ( double ) power∗ ang le ) ;
tmp . imag = modulus∗ s i n ( ( double ) power∗ ang le ) ;

}
}

r e turn tmp ;
}

complex complex : : ge t con jugate ( )
{

complex tmp ;
tmp . r e a l=th i s−>r e a l ;
tmp . imag=th i s−>imag ∗ −1;
r e turn tmp ;

}

complex complex : : g e t r e c i p r o c a l ( )
{

complex t ;
t . r e a l=r e a l ;
t . imag=imag ∗ −1;
double div ;
div=( r e a l ∗ r e a l )+( imag∗ imag ) ;
t . r e a l /=div ;
t . imag/=div ;
r e turn t ;

}

double complex : : getmodulus ( )
{
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double z ;
z=( r e a l ∗ r e a l )+( imag∗ imag ) ;
z=s q r t ( z ) ;
r e turn z ;

}

void complex : : s e tdata ( double r , double i )
{

r e a l=r ;
imag=i ;

}

void complex : : getdata ( )
{

cout<<”Enter Real : ” ;
c in>>th i s−>r e a l ;
cout<<”Enter Imaginary : ” ;
c in>>th i s−>imag ;

}

double complex : : g e t r e a l ( )
{

r e turn r e a l ;
}

double complex : : get imaginary ( )
{

r e turn imag ;
}

bool complex : : operator ==(complex c )
{

r e turn ( r e a l==c . r e a l )&&(imag==c . imag ) ? 1 : 0 ;
}

ostream& operator <<(ostream &s , complex &c )
{

// s<<”Real Part = ”<<c . r ea l<<endl
// <<”Imaginary Part = ”<<c . imag<<endl ;

s<<c . r ea l<<s e t i o s f l a g s ( i o s : : showpos )
<<c . imag<<”i”<<endl<<r e s e t i o s f l a g s ( i o s : : showpos ) ;
r e turn s ;
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}

#inc lude ” s tda fx . h”

us ing namespace System ;
us ing namespace System : : R e f l e c t i o n ;
us ing namespace System : : Runtime : : Compi l e rServ i ce s ;
us ing namespace System : : Runtime : : I n t e r o p S e r v i c e s ;
us ing namespace System : : Se cu r i ty : : Permiss ions ;

//
// General In format ion about an assembly i s c o n t r o l l e d through the
// f o l l o w i n g s e t o f a t t r i b u t e s . Change these a t t r i b u t e va lue s to
// modify the in fo rmat ion a s s o c i a t e d with an assembly .
//
[ assembly : AssemblyTit l eAttr ibute (” Test4 ” ) ] ;
[ assembly : AssemblyDescr ipt ionAttr ibute ( ” ” ) ] ;
[ assembly : AssemblyConf igurat ionAttr ibute ( ” ” ) ] ;
[ assembly : AssemblyCompanyAttribute (” Mic ro so f t ” ) ] ;
[ assembly : AssemblyProductAttribute (” Test4 ” ) ] ;
[ assembly : AssemblyCopyrightAttr ibute (” Copyright ( c ) Mic ro so f t 2 0 1 1 ” ) ] ;
[ assembly : AssemblyTrademarkAttribute ( ” ” ) ] ;
[ assembly : AssemblyCultureAttr ibute ( ” ” ) ] ;

//
// Vers ion in fo rmat ion f o r an assembly c o n s i s t s o f the f o l l o w i n g
// four va lue s :
//
// Major Vers ion
// Minor Vers ion
// Build Number
// Revi s ion
//
// You can s p e c i f y a l l the value or you can d e f a u l t the
// Revi s ion and Build Numbers
// by us ing the ’∗ ’ as shown below :

[ assembly : AssemblyVers ionAttr ibute ( ” 1 . 0 . ∗ ” ) ] ;

[ assembly : ComVisible ( f a l s e ) ] ;

[ assembly : CLSCompliantAttribute ( t rue ) ] ;
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[ assembly : Secur i tyPermi s s i on ( Secur i tyAct ion : : RequestMinimum ,
UnmanagedCode = true ) ] ;

// Test4 . cpp : main p r o j e c t f i l e .

#inc lude ” s tda fx . h”
#inc lude <iostream>
#inc lude <s t r i ng>
#inc lude ”Complex . h”
#inc lude <math . h>
//#inc lude <complex>

#d e f i n e USE MATH DEFINES

us ing namespace System ;

us ing std : : c in ;
us ing std : : cout ;
us ing std : : endl ;

i n t main ( )
{

cout<<”h e l l o world ”
}
// pause ( ) ;
r e turn 0 ;

}

void pause ( )
{

c in . i gno r e ( ) ; / / Ignore s prev ious input , get c in . get
// working even with new l i n e inputs .

c in . get ( ) ;
}
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