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Abstract 

Cancer prevention by weight control via dietary calorie restriction (DCR) 

and/or exercise has been demonstrated in animal models. To understand the 

underlying mechanisms, we compared phorbol ester (TPA)-induced gene expression 

profiles in DCR- or exercise-treated mouse skin tissues. SENCAR mice were 

randomly assigned to one of the following four groups: ad libitum-fed sedentary 

control, ad libitum-fed exercise (AE), exercise but pair-fed at the amount of the 

control (PE), and 20% DCR. After 10-weeks, both body weight and fat composition 

significantly decreased in DCR and PE groups when compared with the controls. 

Weight loss was not observed in AE due to, at least in part, increased food intake. 

Among 39,000 transcripts with 45,101 probe sets measured by Affymetrix microarray, 

we identified TPA-induced 411, 110, and 67 genes that showed ≥ 1.5-fold and 

significant changed by DCR, AE, and PE, respectively. Of these significantly 

changed genes, gene ontology annotation showed a profound impact on gene 

expression by DCR in 21 biological process categories. Although PE and AE showed 

moderate impact on gene expression, the similarity of gene expression pattern altered 

by PE was relatively closer to DCR, while AE was closer to the control. The results 

of 22 cancer related gene expression pattern, especially for certain oncogenes, further 

supported that PE appeared to be a better alternative than AE to DCR-like cancer 

prevention. The impact on gene expression profile was associated with the effect on 

weight loss, i.e., DCR >> PE > AE. Overall, this study demonstrated for the first time 

that weight control via decreasing energy intake or increasing energy expenditure 

resulted in the different modes of gene expression. Furthermore, DCR showed 

profound inhibitory impact on the expression of genes relevant to cancer risks. 



Furthermore, exercise along with limited dietary calorie intake appears to be a better 

method for reducing weight and cancer risk when compared to exercise alone. 
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Introduction 

The National Health and Nutrition Examination Survey in 1999-2000 

indicates growing obesity rates in American adults over the past 20 years [1]. Case-

control and prospective cohort studies have identified obesity as a risk factor for 

many types of cancer including colon, breast, endometrial, kidney, and esophageal 

cancers [2]. High prevalence of overweight and obesity can be explained by a 

lifestyle characterized with over-consumption of calorie combined with low physical 

activity [3]. There is ample evidence that weight control via decreasing calorie intake 

and increasing physical activity reduces cancer risk. International Agency for 

Research in Cancer of the World Health Organization convened an International 

Working Group in 2001 and concluded that limiting weight gain during adult life 

reduces the risk of a number of different types of cancer and increasing physical 

activity prevents cancer [4].  

Studies conducted in animal models indeed demonstrated cancer prevention 

by weight control via dietary calorie restriction (DCR2) or exercise. DCR conducted 

in lean rodents was found to prevent many types of cancers, including mammary, 

liver, colon, skin, pancreas, and leukemia [5-10]. Exercise with or without DCR was 

also reported to have a potential protection against tumor incidence [11-14]. However, 

it was noted that exercise alone might not consistently result in cancer prevention [15-
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17]. 

Although the mechanisms of DCR and/or exercise for cancer prevention are 

not clear, some explanations such as alterations of hormone metabolism, hormone-

related cellular signaling, oxidation status, DNA repair, apoptosis and oncogene 

expression, etc. have been postulated [18-20]. Microarry analysis has been applied to 

cancer prevention experiments by DCR to explore the plausible mechanisms [21-28]. 

However, relative few data have been published regarding the comparison of gene 

expression between DCR and exercise, and to date there is no information concerning 

the gene expression profiles in the combination of dietary calorie intake and energy 

expenditure for cancer prevention. 

To determine the mechanisms underlying such complex relationships between 

body weight, calorie intake, physical activity, and cancer risk, we applied a genomic 

microarray analysis to the skin tissues of mice that were controlled in body weight by 

DCR, exercise, and exercise combined with limited calorie intake. The gene 

expression profiling was compared and certain phorbol ester-induced cancer-related 

genes were further exploited. 

 

Materials and Methods 

Animal and Animal Treatment: Fifty-two female SENCAR mice at 8 weeks 

of age with body weights averaged at 30±2 g were purchased from NIH (Frederick, 

MD). Mice were randomly assigned to one of the following four groups: ad libitum-

fed sedentary control, ad libitum-fed exercise (AE), exercise but pair-feeding at the 

amount as ad libitum-fed sedentary counterpart (PE), and 20% DCR. The 20% DCR 
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diet was formulated by the Harlan Teklad (Madison, WI), containing 20% less total 

calorie from carbohydrates and fat in comparison with the basal AIN-93 diet, and 

having extra protein and essential micronutrients to maintain a same level as the basal 

diet. The amount of the food that each control mouse consumed was recorded weekly 

and averaged to determine the amount of the following week for DCR and pair-

feeding consumption. A zero-grade, motor-driven, adjustable-speed rodent treadmill 

(Boston Gears, Boston, MA) was used to exercise the mice at 0.5 mph for 60 min per 

day, 5 days per week for 10 weeks. To take into account the biological clocks of 

nocturnal mice, we adjusted the light cycle to run nighttime exercise at 0400 to 0500 

h. The mice were put on a progressive training program starting at 10% of target 

exercise duration time and progressing to 100% of the target time by the end of the 

2nd week. Mice were housed individually in an environmentally controlled room 

maintained at 24 ± 0.6 ºC and 80% relative humidity with a 12 h light/12 h dark cycle 

starting at 1200 h. Body weights were recorded weekly. Body composition was 

monitored in the last week by a dual-energy X-ray absorptiometer scan (DXA) using 

small animal software (v5.6, Prodigy, Lunar-General Electric, Milwaukee, WI). At 

the end of the experiment when mice were about 20 weeks of age, the dorsal skin of 

the mice was shaved and topically treated once with TPA at 3.2 nmol. Mice were 

sacrificed two hours after TPA treatment. The 2-hr period of TPA treatment was 

selected based on a time course study reported previously by Przybyszewski et al. 

(29). The dorsal skin samples were snap-frozen in liquid nitrogen and kept at -80 ºC 

until further analyses. 

Microarray Analysis:  Microarray analysis was processed by the Microarray 
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Core of the Mental Retardation Research Center at the University of Kansas Medical 

Center (Kansas City, KS). Four mice from each treatment group were used to obtain 

mouse skin tissues. Each mouse skin tissue (0.4 µg) was homogenized in 1 mL 

TRIZOL reagent and the total RNA was extracted and precipitated by chloroform and 

isopropanal. Pellet RNA was dissolved in DEPC water and further purified by using 

the RNeasy cleanup kit (Qiagen, Valeacia, CA). The quantity and quality of RNA 

were measured by using the Agilent 2100 Bioanalyzer (Agilent Technologies, Palo 

Alto, CA). Ten µg of total RNA were then annealed with 100 pmol of T7(dT)24 at 70 

ºC for 10 min. The annealed mRNA was reverse transcribed into cDNA using the 

Superscript Choice System kit (Invitrogen Corp., Carlsbad, CA). Biotinylated 

antisense cRNA was prepared using the Enzo BioArray High Yield RNA Labeling kit 

(Enzo Diagnostics, Farmingdale, NY). After purification of labeled cRNA using 

RNeasy RNA Purification Mini kit (Qiagen, Valencia, CA), 20 µg biotin labeled 

cRNA was incubated in fragmentation buffer (40 mM of Tris-Acetate, 100 mM of 

potassium acetate, 30 mM of magnesium acetate, pH 8.1) at 94 ºC for 35 min. The 

labeled cRNA then was applied to a GeneChipP

R
P Mouse Genome 430 2.0 Array 

(Affymetrix, Santa Clara, CA), containing 39,000 transcripts with 45,101 probe sets. 

The GeneChip was hybridized, washed, and scanned using Affymetrix equipment and 

protocols.  

Microarray Data Analysis: Microarray images were quantified by using 

GeneChip operating software 1.0 (GCOS 1.0, Affymetrix, Santa Clara, CA). The 

detection calls of the probe sets were determined using default settings (α1, 0.04; α2, 

0.06; δ, 0.015; scale factor, 1.0; norm factor, 1.0). GeneSpring software (TAgilent 



Technologies, Palo Alto, CA) and Access Database (Microsoft Windows) were used 

to do data analysis. Scatter plot and condition trees are analyzed by the GeneSpring 

Software, and distance of gene expression profile were obtained from GeneSpring 

and compared among groups. Data were first scaled to the same average intensity 

among all chips to allow fair comparison. Two-step Normalizations were used, 

including per chip normalization (normalization to 50  percentile) and per gene 

normalization from which the signal intensity in a given chip is divided by the 

average intensity of the same gene across all chips. According to their expression 

levels, a discrimination score of a given probe set was calculated based on: R = (PM-

MM)/(PM+MM), while R is discrimination scare, PM is perfect match, and MM is 

mismatch. The distance between the discrimination score and the given 

discrimination threshold were tested using One-sided Wilcoxon’s Signed Rank test. 

Probe sets with p-value lower than 0.04 were considered present (P); those with p-

value greater than 0.06 were absent (A); and those with p-value in between 0.04 and 

0.06 were marginal (M). Furthermore, some microarray data as marked with _x _at 

suffixes are not unique probe sets or not identical probes among multiple transcripts. 

Therefore, we excluded all the A, M, and _x _at probe data to increase the data 

accuracy and reliability. Fold change at 1.5 was used as a cut off to filter 

experimental data compare with control group. Then ANOVA with Dunnett’s’ 

adjustment was applied to assess gene expression difference between the treatment 

and the control groups. Finally, gene ontology (GO) Slims 

(http://www.geneontology.org/GO.slims.shtml) were applied to classify the 

differentially expressed genes into 21 GO categories based on the major biological 

th
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processes. The categories of TPA-induced cancer related genes including tumor 

suppressor, apoptosis inducer, apoptosis inhibitor, and oncogene were further 

presented. 

RT-PCR Confirmation: RT-PCR reaction was carried out by using purified 

total RNA obtained as described above. The cDNA was synthesized by RT-PCR 

using one-step RT-PCR kit (Qiagen, Valeacia, CA). The primers are derived from 

published gene sequences as follows: MAPK1: sense primer 5'-TCT CCC GCA CAA 

AAA TAA GG-3', antisense primer 5'-TCG TCC AAC TCC ATG TCA AA-3'; H-ras: 

sense primer 5’-TGT TAC CAA CTG GGA CGA CA-3’, antisense primer 5’-TCT CAG 

CTG TGG TGG TGA AG-3’; PI3Kca: sense primer 5'-TGT TTG CAA AGA AGC TGT 

GG-3', antisense primer 5'-TAT GAC CCA GAG GGA TTT CG-3'; IGFBP3: sense 

primer 5’-AAG TTC CAT CCA CTC CAT GC-3’, antisense primer 5’-AGC TCT GCT 

TTC TGC CTT TG-3’; lepr: sense primer 5'-AGG CCC AGA CAT TTT TCC TT-3', 

antisense primer 5'-TCC TGG AGG ATC CTG ATG TC-3'; β-actin: sense primer 5’-

TGT TAC CAA CTG GGA CGA CA-3’, antisense primer 5’-TCT CAG CTG TGG TGG 

TGA AG-3’. Fifty µL of PCR reaction were run with a final concentration of 200 µM 

of dNTP mix, 1 x PCR buffer, 1 µM of each primer, and 1.0 U of Taq polymerase. 

Thermal cycling conditions, following an initial denaturation at 94 °C for 4 min, were 

as follows: 30 sec at 95 °C, annealing at 55 °C for 30 sec, and extension at 72 °C for 

1 min. Then samples were incubated at 72 °C for 7 min. Amplified products at 8 µL 

were loaded and separated on a 1.5% agarose gel. The RT -PCR products were 

visualized under UV light by the FluorChemP

TM
P 8800 Advanced Imaging System 

(Alpha Innotech, San Leandro, CA). The relative density of the target band was 
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normalized to the loading control β-actin and then expressed as a percentage of the 

controls. 

Statistic Analysis: The overall effects of treatments on body weight, fat 

composition, and RT-PCR expression levels were analyzed by one-way ANOVA, and 

then Dunnett’s method and least significant difference (LSD) were used to assess the 

differences between the treatment groups and the control group. The statistical 

significance of difference was set at P ≤ 0.05. 

 

Results 

Impact on body weight and body fat composition: Lean adult SENCAR 

mice in the control group gradually gained weight throughout the experimental period, 

while mice at 20% DCR or exercise with pair-feeding consistently lost weight. By the 

end of the experiment, the weights of DCR and PE mice were significantly lower than 

the control mice (Figure 1A). Exercise with ad libitum feeding (AE) did not lower 

weight significantly when compared with the sedentary counterparts, which might be, 

at least in part, due to the increased food intake (4.0 ± 0.2 g/day for the control mice 

vs. 4.3 ± 0.4 g/day for AE mice). Consequently, percent fat composition, as shown in 

Figure 1B, significantly decreased in PE and DCR groups but not AE group when 

compared with the controls. No significant change of bone density was found among 

groups (data not shown). 

TPA-induced gene expression profiles in response to DCR and exercise 

treatments: We measured 45,101 gene probe sets expressed in the skin tissues of the 

DCR-fed or exercise-treated mice. We compared the distribution of the scatter plots 
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among AE, PE, and DCR and found that DCR treatment produced the most extensive 

range of the gene expression levels. A condition tree by using Hierarchical clustering 

method further displayed the similarity of gene profiles as indicated by a distance 

between two groups. The smaller the distance is, the closer the gene expression 

profiling between two groups. Since the results showed a distance at 0.27 between 

DCR and PE, 0.69 between AE and the control, and 0.96 between DCR and AE, we 

were convinced that the gene expression pattern of PE group was relatively similar to 

that of DCR, while AE was closer to the control. 

TPA-induced expression of genes regulated by DCR or exercise 

treatments: We identified 559 genes that showed at least 1.5-fold significant change 

(P ≤ 0.05) by either DCR or exercise treatment when comparing with the control. As 

shown in Figure 2, we recognized that 411 genes (97 suppressed and 314 over-

expressed) were altered by DCR, 110 genes (71 suppressed and 39 over-expressed) 

were changed by AE, and 67 genes (22 suppressed and 45 over-expressed) were 

regulated by PE, respectively. It should be noted that two genes relating to RIKEN 

cDNA (AK009351) and plasmalemma vesical associated protein (NM032398) were 

down-regulated in both AE and DCR groups, and 6 genes including RIKEN mRNA 

sequence (BB143476), MARCKS-like protein (NM010807), major urinary protein 3 

(M27608), sortilin 1 (AV247637), endothelin receptor B (BB770914), and ATPase 

(BC001995) were down-regulated in both PE and DCR groups. It was interesting that 

only one gene corresponding to sequence AA407809 was over-expressed in both AE 

and PE groups, but 20 genes such as casein kinase II (BG070990), forming binding 

protein 2 (BB817145), adenylate cyclase 1 (AI848263), sperm associated antigen 1 
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(NM012031), sialyltransferase 10 (NM018784), SH3 domain protein D19 

(NM012059), cystathionine beta-synthase (BC026595), galactosylceramide 

sulfotransferase (AK002510), and proline dehydrogenase (NM011172) were over-

expressed in both PE and DCR groups.  

Functional over-representation analysis: Functional over-representation 

analysis by GO annotation was performed to identify major biological processes 

potentially impacted by the treatments. Figure 3 shows 21 GO categories that were 

significantly impacted by either calorie restriction or exercise with the percentage of 

each treatment-induced gene expression frequency. Of the significantly changed 

genes, DCR showed considerable impact for account of ~ 80% when compared with 

PE or AE that was usually less than 20%. Specifically, the most genes identified in 

our study are involved in cell growth/maintenance and cell communication categories, 

following by DNA binding, transcription factor activity, and transcription categories. 

A list of all the genes that significantly changed by either DCR or exercise treatment 

with GO category classification has been provided as a supplementation file. 

RT-PCR confirmation: the microarray data were further validated by using 

RT-PCR for five randomly selected genes in cancer-related categories. As shown in 

Figure 4, five representative gels respectively showed the expression patterns of five 

genes in comparison with β-actin as a loading control. Given these RT-PCR data, we 

found the gene expression of MAPK1, PI3Kca and IGFBP3 was significantly 

decreased in DCR group in comparison with the control group. Both H-ras and lepr 

were not significantly changed between experimental groups. The RT-PCR 



confirmation rate to the microrray data set, as estimated by using a Bayesian 

statistical method, is about 93.3%.  

Impact on TPA-induced cancer-related genes: Apart from the genes 

relevant to nutrient metabolisms and other biological processes, we further identified 

22 genes related to TPA-induced cancer risk by using the GO Slims. As shown in 

Table 1, we found that DCR induced over-expression of 3 tumor suppressor genes, 4 

apoptosis inducers, and one apoptosis inhibitor. DCR also induced down-expression 

of two apoptosis inducers and 8 oncogenes. In comparison with DCR, the impact of 

PE on expression of these genes is moderate, which induced down-regulation of one 

apoptosis inducer gene and 4 oncogenes and up-regulation of one apoptosis inducer 

gene. In contrast, AE was associated with down-expression of one apoptosis inducer 

gene and one oncogene, but up-expression of one apoptosis inhibitor gene and one 

oncogene. 

 

Discussion 

Weight control can be achieved by either reducing energy intake such as DCR 

or enhancing energy expenditure like exercise. While 20% DCR reduced body weight 

significantly, which corresponded to decreased fat composition, the treadmill exercise 

under this experimental condition demonstrated only a modest weight loss. Exercise 

alone with ad libitum feeding was not sufficient for decreasing body weight due to, at 

least in part, the corresponding increase in diet intake. If the food intake of the 

exercised mice was limited by pair-feeding with their sedentary counterpart, then 

body weight and fat composition were modestly but significantly reduced. It should 
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be noted that the interaction of dietary and physical activity upon energy expenditure 

and homeostasis is complicated. In addition to dietary energy intake and physical 

activity, for example, the thermogenesis responsible to dietary change and the energy 

expenditure required for performance of cellular function may also play an interactive 

role in weight change [30]. 

By using our established strategies to control body weight in SENCAR mice, 

we measured the genomic gene expression in TPA-promoted skin tissues and 

compared the TPA-induced gene expression profiles among AE, PE, and DCR 

treatments. Of the 39,000 transcripts with 45,101 probe sets measured, we identified 

559 genes that showed at least 1.5-fold significant change by DCR and/or exercise 

treatments in comparison with the controls. The 1.5-fold significant change was 

selected since it showed a consistent result with a relatively large expression and 

conservative level [22, 31]. However, the cut off line at 1.5-fold change may exclude 

genes with <1.5 fold but significantly altered their expression by the treatments. 

Of these 559 genes, 411 genes (97 down-expression and 314 over-expression) 

were altered by DCR, 110 genes (71 down and 39 over) were changed by AE, and 67 

genes (22 down and 45 over) were changed by PE, respectively. It is interesting to 

note the function of some specific genes that were co-regulated significantly by both 

DCR and PE groups. For example, the gene encoding MARCKS (Myristoylated 

Alanine-Rich C Kinase Substrate) protein was down-expressed significantly in both 

PE and DCR groups but not AE group. MARCKS protein is a widely distributed 

substrate for protein kinase C [32] and activation of protein kinase C has been well 

recognized as an initial signal in TPA-induced tumor promotion in mouse skin 
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carcinogenesis [33]. In addition, an up-regulation of histone deacetylase 11 gene 

(BC016208), one of the large family of sirtunis including SIRT1, by DCR group is in 

agreement with the published reports by Cohen et al. [34]. Furthermore, SIRT1 has 

been found to be required for the increased physical activity that is typically observed 

in calorie restricted mice [35]. 

When compared with DCR treatment that provides a profound impact on gene 

expression, the number of gene expression altered by PE and AE are moderate. 

However, the similarity of gene expression pattern altered by PE and AE appears 

considerably different. The results by condition tree analysis indicate that the gene 

expression pattern altered by PE treatment is relatively closer to DCR, while AE is 

closer to the control. This suggests that moderate exercise alone without diet control 

may have little effect on DCR-like gene expression pattern. The combination of 

aerobic exercise with diet control, however, not only lowered body weight but also 

provided a DCR-like impact on gene expression pattern. This observation is further 

supported by the results of GO annotation analysis. 

By using GO annotation, we identified all the altered genes in 21 GO 

categories for major biological processes. Specifically, we listed 22 genes that are 

classified into four TPA-induced cancer-related categories. It is not unexpected that 

DCR provides an overwhelming impact on the expression of these cancer-related 

genes, generally in favor of cancer prevention by inducing over-expression of tumor 

suppressor and apoptosis inducer genes as well as down-expression of oncogenes. It 

is interesting that PE induced a moderate, but similar impact as DCR on oncogene 

expression, especially in down-regulating the oncogenes. In contrast, AE showed the 
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least impact on these cancer related genes. Considering the impact on body weight 

and fat composition as well as the similarity of gene expression pattern, we may 

deduce that PE could be a better alternative than AE to DCR-like cancer prevention 

via modifying gene expression pattern such as down-regulation of certain oncogenes. 

Frankly speaking, it is challenging and ambitious to specify all the 

significantly changed genes and their potential roles accounted for cancer prevention. 

Although microarray analysis is useful for identifying potential gene expression and 

enhance our understanding of the cancer prevention by weight control, future studies 

by incorporating gene expression data with proteomics may provide more insights. 

Nevertheless, this pilot study reports the altered mRNA expression of certain 

genes in weight control mice via either reduced dietary energy intake or increased 

energy expenditure. DCR treatment provided substantial weight loss and significantly 

modified the gene expression profile. PE induced a modest impact on both weight 

loss and gene expression. In contrast to PE, AE was not associated with reduced body 

weight and its effect on gene expression pattern was more similar to the controls. The 

data suggest that the degree of weight loss may be the critical indicator in reducing 

cancer risks. 
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Figure legends: 

Figure 1: Effects of DCR and exercise-treatment on body weight and fat composition. A: 

body weight; B: fat composition. Results are means ± SE, n=8-12. Means with different 

alphabetical letters differ significantly, p ≤ 0.05. 

Figure 2: Venn diagram with number of genes altered in each group, shared across two 

groups, and shared across all three groups. Left: Genes that are 1.5-fold significantly down-

expressed in comparison with the control, Right: Genes that are 1.5-fold significantly over-

expressed in comparison with the control.  

Figure 3: Functional over-representation analysis of gene expression altered by DCR and 

exercise treatments. Gene ontology Slims were used to show the percentage of TPA-induced 

gene expression altered by AE, PE, and DCR, respectively, with a given gene ontology category. 

Each gene category shown is the combined genes that are significantly altered (p<0.05) at greater 

than 1.5 fold change. The number of genes for each category is shown in parenthesis. 

Figure 4: Confirmation of microarray data by RT-PCR. Five genes were randomly chosen 

from cancer-related categories, and their expression pattern in comparison with the microarray 

data was validated by RT-PCR. Identical results were obtained with MAPK1, PI3Kca, and 

IGFBP3 genes that down-expressed significantly in DCR group. The expression of β-actin gene 

was used as a loading control. 

 



 

 
 
 
 
 
 
 

Figure 1 

 23



 
 
 

 
 
 
 
 

 
 
 

 
 
 
 
 
 
 

Figure 2 

 24



 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3 

 25



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4

 26



Table 1. Identified phorbol ester-induced cancer related genes altered by DCR, PE, and AE 
treatments, respectively. 

Fold Change (p value)* Ontology 
Category 

Probe Gene Name 
DCR PE AE 

1429418_at RIKEN cDNA A530086E13 gene +1.52 
(p<0.036) 

  

1418146_a_at retinoblastoma-like 2 +1.61 
(p<0.030) 

  Tumor 
Suppressor 1454867_at Mus musculus transcribed sequence with 

moderate similarity to protein sp:Q10571 
(H.sapiens) MN1_HUMAN Probable tumor 
suppressor protein MN1 

+1.70 
(p<0.024) 

  

1449317_at CASP8 and FADD-like apoptosis regulator -2.91 
(p<0.002) 

-1.62 
(p<0.002) 

 

1418011_a_at SH3-domain GRB2-like B1 (endophilin) +1.52 
(p<0.029) 

  

1450731_s_at tumor necrosis factor receptor superfamily, 
member 21 

+1.96 
(p<0.026) 

+1.80 
(p<0.026) 

 

1433938_at transformation related protein 53 binding 
protein 2 

+1.72 
(p<0.025) 

  

1449591_at caspase 4, apoptosis-related cysteine 
protease 

+1.59 
(p<0.014) 

 -1.81 
(p<0.045) 

Apoptosis 
Inducer 

1426184_a_at Programmed cell death 6 interacting protein -2.12 
(p<0.042) 

  

1449033_at tumor necrosis factor receptor superfamily, 
member 11b (osteoprotegerin) 

+2.31 
(p<0.031) 

+1.98 
(p<0.031) 

 
Apoptosis 
Inhibitor 1435024_at nucleolar protein 3 (apoptosis repressor 

with CARD domain) 
  +1.58 

(p<0.035) 
1422687_at neuroblastoma ras oncogene -1.98 

(p<0.034) 
  

1451715_at v-maf musculoaponeurotic fibrosarcoma 
oncogene family, protein B (avian) 

 -1.64 
(p<0.008) 

 

1427783_at v-erb-a erythroblastic leukemia viral 
oncogene homolog 4 (avian) 

-3.34 
(p<0.033) 

-2.47 
(p<0.033) 

-1.69 
(p<0.033) 

1417155_at neuroblastoma myc-related oncogene 1 -3.31 
(p<0.008) 

-1.93 
(p,0.008) 

 

1424332_at Rab40c, member RAS oncogene family -2.64 
(p<0.010) 

  

1417656_at myeloblastosis oncogene-like 2 -2.18 
(p<0.001) 

-1.64 
(p<0.001) 

 

1422087_at lung carcinoma myc related oncogene 1 -2.02 
(p<0.007) 

  

1450194_a_at myeloblastosis oncogene -1.95 
(p<0.040) 

 +1.67 
(p<0.040) 

1422119_at RAB5B, member RAS oncogene family -1.88 
(p<0.035) 

  

1448885_at RAP2B, member of RAS oncogene family -1.70 
(p<0.006) 

  

Oncogene 

1416591_at RAB34, member of RAS oncogene family -1.52 
(p<0.035) 

  

 
* The fold change is a ratio of the gene expression in the treatment group to the controls, which 

is denoted as increased (+) or decreased (-) if the treatment group is greater or less than the 
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control, respectively. Only the data that are greater or less than 1.5-fold with a significant change 

(p < 0.05) are present (n = 4 per group). 
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