Design and Implementation of a ?ortable
Interactive Graphics Language Interpreter

by

MARY CATHERINE NEAL
B.S. Iowa State University, 1973

A MASTER®S REPORT
submitted in partial fulfillment of the

requirements for the degree

MASTER OF SCIENCE
Department of Computer Science

Kansas State University
Manhattan, Kansas

1978

Approved by:

a jor Profegsor

Ibtﬁmen§*

LD
26t 8

B ¥

197F%

N+2

C . ‘Table of Contents

Cﬁapterl Introduction-IOlI.O‘.I...'.'...............-..onl
RBlatEd Literature. % 2% S F 40 O SF S P P FET A4S S8 SN -.--o-----oz

ESP3--..-"--.'--...-'.-.-'......."....'....'.'...-‘.D.-T

Motivation for the Development Of PIGLI:..cccescasssocessll

PIGLI..I..II.O..-.- " e .D.l..-.I.O..‘....-'-.‘.C-..-....-.lz

Chapter 2 PIGLI Command Language Description..csscscscee..15
Programming CommandS. se es ssssesossssssasssasassssssssnsssl
Picture Construction CommandS...csscesossssssnsscsasscesaslB
Picture Display CommandS. s sscscscsessscsssnrsscnsascanssssld
Special Utility CommandS..ceceeoscssscssscvscscssssnnassll
A Sample Terminal SeS5SiONcccccccccsesssrcoscsessecnsasneall

Chapter 3 Operating System ConsiderationS.c«ccecccessseeecs3b

The SOLO system.--------.------..-.-o--.------..-.----o-oss
GRAPHSOLO.I'I.D........D...".l---II‘l"..l...'l...39

Chapter 4 Implementation ConsiderationsS.sccecsscsaccscnscecdd
This SEATHETY MOGULES ¢ & va b wn 06 5w ais 558 500 0 5 % Wi 58 % 5y w9 5 ¥ o »45
Scanning ProCeSS.csssssssscsrsnsscssnssssnssnnsacssssasssdd
Scanner Data StruCtuUreS..c.cscsccsscescsscsscssescssssassesdd
The Parser MOAUle..ccsssssvssnsssssanssesanscnsnnscnsaessesdd
Parsing ProCeSS..ecercccsssscscsssscssarsvsscscsccsnsoessdd
Parser Data StructureS..ccesesscevesscsccsnrcsscsnoansssesed?d
The Internal Command StruCtuUre....ccccecessesccsssesbl

The Free Data Space Structure...ccescecescceccssscsald

The Symbol Tablec:ccccssosescssssnasosssssscscsnsssalh

The Executor MoAule. cccscesosssrcsnsssesscanssansesnssessB
Executing ProCeSS...csscscssssasacsccccssssessscnnssesslB
Executor Data StrucCtureS.csesssccccssssacsscscncsnsscscsasBl
The synlml Table-..Q..I....l'l......Dll.......l..---sl
Variables------.-..............................-..83
Extemal Files.--.II..-...Q......I...C..lll..-....aa
PilotUreS. ccceccenasssscasanscssasssssosssasnsssnsa8l
PrimitiveSeecsceccecssscecsscnssnscssssanenscasessssesBd
TransformationS. coesececersesasssearvsnsnccscscncsssases8D
Command Execution AlgorithmS..secsscececscccccccscnnessBb
Evaluating Expressions and PointS.cceccecccscsssssssaBb
BUILD COMmMand.s ececevescsssasesasnssassasscsssssssssasdd
DELETE Command. cc cs ccssssesnsssnssscsssssnssasssnsnsadb
DRAW and ERASE COMMANdSes es seossscanacascssscssasasad?
HTEXT and VTEXT COmMManNAdS . .ccesccacssoscsesccncanssscaedlB
SETSCREEN COMMANGA e+ ssss sssaasansnssscsnsncsscnssscescasdI9
BEGIN BIOCkS. .'I..l..O.'.'...O....I.ll..-‘-.-l-Outilgg
IF_THEN_ELSE COmMmand..sceocecsosccasscscsasssvsesssal00
WHILE DO Command..css eccscssosvscscasnssacsescscsasscsassl00
Assignment COMMANA s 55 vs v pis 5k o0 & s a8 wn wnesseeveas sl

-ji-

THIS BOOK
CONTAINS
NUMEROUS
PAGES WITH
THE ORIGINAL
PRINTING ON
THE PAGE BEING
CROOKED.

THIS IS THE
BEST IMAGE
AVAILABLE.

THIS BOOK
CONTAINS
NUMEROUS PAGES
WITH DIAGRAMS
THAT ARE CROOKED
COMPARED TO THE
REST OF THE
INFORMATION ON
THE PAGE.

THIS IS AS
RECEIVED FROM
CUSTOMER.

HALT COMMANAis o0 00 0 ais o a6 w0 50 20 4 6 % 5w o5 s's 0w arw win o s ow ol 01
NULL Command..-o....-............................-.lﬂi
EXECUTE, LOGON, and LOGOFF CommandS: :cssssssosessess101
LOAD Commandc S8 & 8 6 B8 L8 A8 S e BE e AN B-...--.---.-102
LIST COMMAands s ws uow e e o a0 508 o8 000 908 59 % o0 e v o e s w s w102

Chapter 5 Output Device Drivers....cceescecssssscscscessl05
Device Driver InpUt.c..cosesssossssssennsasassansssnsssesl0S
PIGLI / Device Driver Interface...ccceecescececsscsaneall?
ComputEk 300 GT DeVice Driver..‘......l..‘..Ill'......llog

Chapter 6 Conclus!oON....cccsaesacsscsssscsssssnsnneacaaalld

Referencés.---.-.---.-'.....Il."ll..I.I..Il..-.“...l...lls

Appendix A Syntax and SemanticCS...cecececscecsssscssessesl2l

Appendix B GRAPHSOLO PIEfix-----o..--.--..---..o-o..----146

Appendix C Computek Device Driver...cccscesccsassssssnssl154

-fji-

List of Figures and Tables

Figure 2.1 - The specification attributes for picture.....20
primitives.

Figure 2.2 - The effects of changes of the SETSCREEN......28
parameters on picture displays.

Figure 2.3 - Drawing of the plotted output produced by....35
the sample terminal session.

Figure 3.1 - The SOLO envircnment with information........38
passing channels.

Figure 3.2 - PIGLI system under GRAPHSOLO showing..eseees.41
peripherals.

Figure 4.1 - PIGLI modules under GRAPHSOLO..:ccsesssoasss<d5

Figure 4.2 - Closeup of Scanner module activity...ecseses.45

Table 4.1 - Starting character sets for PIGLI tokens......48

Table 4.2 - Token codes for all keywords, tokens, and.....50
special symbols.

Table 4.3 - Parameters for passing tokens to the parser...51

Table 4.4 - Possible values of the system statuS.....cs.-.58
indicator.)

Figure 4.3 - The first two levels of variation of the.....61
internal command structure.

Figure 4.4 ~ Internal structure of an expression record...64

Figure 4.5 - Internal structure of a point record.........64

Figure 4.6 - Internal structures of each type of command..66

Figure 4.7 - An example of the internal structure of an...75
IF_THEN_ELSE command.

Figure 4.8 - The organization of the free data space€.....:77
structure.

Figure 4.9 = The variations of the GRAPH_NODE data........82
structure.

Figure 4.10 - A summary of the execution algorithms of....90
all PIGLI commands-.

Figure 5.1 - Input commands to the output device driver..l108
generated by each display producing PIGLI command.

Table 5.1 - The decimal and binary equivalents of the....1l1ll
ASCII characters used to control the Computek 300/GT.

Table A.1 - PIGLI keywords and special symbolS..c.ccce2..,122

Figure A.l1 - The specification attributes for picture....133
primitives.

Table A.2 - Legal definitions of all PIGLI picture.......135
primitives.

Figure A.2 - An illustration of SETSCREEN parameters.....l43

=-iii-

ACKNOWLEDGEMENT

In anticipation of the successful conclusion of the work
required to complete the Master’s degree in Computer
Science, I would 1like +to thank my advisor, Dr. Linda G.
Shapiro, for.all the guidance and encouragement which she
gave to me. The members of my committee, Dr. Tom L.
Gallagher and Dr. William J. Hankley, were also helpful in
their academic support and their suggestions for improvement
in this project. I would also 1like to thank my husband,
David, for his timely assistance, especially.in the areas of

emotional and system support.

-y y—-

Chapter 1 Introduction

Introduction

PIGLI {Portable Interactive Graphics Language
Interpreter) is a high-level interactive graphics system.
The PIGLI language allows the programmer to construct
two-dimensional line drawings in terms of picture
primitives, to apply transformations to‘existing pictures,
and to display pictures and text on a variety of graphics
devices. The language also includes general purpose
programming commands including type declarations for real or
integer variables, assignment statements, IF_THEN_ELSE
statements, DO_WHILE statements, and BEGIN_END blocks.
Another useful feature is the ability to access external
files of PIGLI commands to perform tedious or frequently
needed tasks, as well as to accept commands interactively
from a console device. PIGLI also provides a general
purpose debugging command.

Many of the features of PIGLI are based on concepts
taken from ESP3 (Extended SNOBOL Picture Pattern Processor,
Shapiro, 1974), a high-level language for two-dimensional
gréphics and picture pattern recognition. ESP3 was designed
to allow users to accomplish two major functions:

1) creating two-dimensional line drawings and
manipulating them using transformations, and
2) defining picture patterns and 1locating subpictures

in line drawings that match these pétterns.

-1-

Chapter 1 Introduction

F

PIGLI is an interactive implementation of the first

function. 1In this chapter, we will briefly describe the

ESP3 graphics language and introduce the PIGLI system.

Related Literature

Historically SKETCHPAD (Sutherland, 1965) was the €first
widely recognized general purpose graphics system. The
SKETCHPAD system consists of a collection of subroutines
called interactively through a menu selection process. The

system allows pictures to be constructed hierarchically from

other pictures and is noted for its use of a ring data

structure to store picture descriptions. Kulsrud (1968),

Williams (1972), and Giloi (1975) presented models for the
definition of a general purpose graphics language. Kulsruﬁ
suggested that the first version of the proposed language
have written commands and that it later be adjusted to
accept input from graphic devices such as light pens and
trackballs. The language she described was capable of
picture description, manipulation, and analysis. Although
it could be wused to implement interactive applications
programs, it was not an interactive language.

Williams described a language that provided 1) data

types with related operations particularly suited to

graphical applications, and 2) the ability to add new data

types and operations. For example, a "point" could be a

-

Chapter 1 Introduction

data type, and a specially defined addition operator would
operate on that data type. The language was thus highly
extensible, but it was not interactive. Giloi proposed a
model to be used in constructing either subroutine packages
for graphic display applications or graphical extensions to
existing languages. In his model, pictures were described
as a hierarchy of subpictures and picture primitives.
Primitives were defined as anything for which there was a
hardware generator in the display processor, placing limits
on the device independence of a language developed from his
model. An interactive version of the model was developed by
extending APL to include graphics capabilities, and a
non-interactive version was developed as a FORTRAN
subroutine package.

The general purpose graphics systems presented in recent
years can be classif%ed as 1) subroutine packages for
graphics applications, 2) graphics extensions to existing
languages, and 3) new languages possessing graphics
capabilities. Graphics subroutine packages are most widely
distributed, particularly by manufacturers of graphics
display hardware. Some example packages are GINO-F (1975),
GPGS (Caruthers, 1977), GRAF (Hurwitz, 1967), DISSPLA
(1970), and EXPLOR (Knowlton, 197¢). Most packages are
limited to the manipulation of picture displays with few

pProgramming control or storage capabiliéies. Where such

-3

Chapter 1 Introduction

abilities are available, they often serve specialized
purposes as in WAVE (Robbins, 1975), a package for waveform
analysis. An exception is the VIP system (Streit, 1969)
where the wuser is able ¢to combine the available system
function subrcoutines into special purpese functions which
can then be used in the same way that the original system
functions were used.

Extensions.of an existing language, such as Euler-G
(Newman, 1971), IMAGE (O °Brien, 1975), APLBAGS (Bassman,
1973), APLG (Gileoi, 1974), and PENCIL (van Dam, 1967),
provide a programmer with graphics capabi%ities as well as
general programming features. Euler-G has excellant data
structure definition facilities. IMAGE, an extension of
FORTRAN, cannot provide the data structure description
capabilities that are available in Euler-G, but it has the
advantage of being based on the most widely distributed host
language available. APLBAGS and two versions of APLG, three
extensions of APL, and PENCIL, an extension of the MULTILANG
on-line programming system (Wexeblat, 1967), are truly
conversational languages. GRASP, a PL/1l extension (Wallace,
1974), is a compiled language but it allows dynamic
interaction. GRASP also allows the definition of modéls
from which complex pictures can be created hierarchically.
ESP3 (Shapiro, 1974), an extension of SNOBOL4, is a

non-interactive language from which many of the high-level

-—f=-

Chapter 1 Introduction

concepts found in PIGLI are drawn. ESP3 will be described
in more detail later in this section. Language extensions
are found mainly in research installations.

Two complete graphics languages developed recently are
METAVISU (Boullier, 1972) and GLIDE (Eastman, 1977). Bath
take characteristics from a base language (PL/1 and ALGOL,
respectively) and add capabilities for defining, diSpiaying,
and manipulating pictures. Full 1languages are less widely
distributed than subroutine packages or language extensions.

PIGLI is a general purpose graphics language. Its
strong points include 1) interactive programming
capabilities, 2) simple, but rich syntax and semantics for
general purpose graphical programming, 3) hierarchical
generation of pictures from a set of desirable primitives,
4) built-in functions for referencing points and values
asspciated with pictures, 5) interactive debugging
facilities for exploring (reviewing) the structure of
pictures, 6) extensibility through the use of exec files, 7)
output device independence, an@ 8) a high degree of
portability.

Graphics extensions of existing languages provide the

best computation and programming facilities for the user.

PIGLI contains only a small number of such facilities but
they were carefully chosen to provide a rich assortment of

programming capabilities. PIGLI is interactive in the same

-5 -

Chapter 1 Introduction

sense as the graphies languages that are extensions of
conversational languages, APLBAGS, APLG, and PENCIL, but
PIGLI concentrates on providing graphics capabilities with
programming support rather than the opposite. The other
languages, extensions, or subroutine packages mentioned are
useful for writing interactive applications but are not
interactive languages.

Pictures are defined hierarchically in PIGLI in a manner
similar to the methods used in GRASP, GRIP, and the model
described by Williams. Pictures are also constructed from
picture primitives as was done in GRASP and GRIP. However
PIGLI primitives more closely resemble the primitive graphic
objects described by Wallace than the hardware display
primitives discussed by Giloi. The hierarchical nature of
the picture data structure provides the basis for
interactive debugging facilities and built=-in functions for
retrieving (referencing) the point and value attributes of
constructed pictures. These facilities are not offered in
most of the languages developed récently.

In the model described by Williams and in the VIP system
discussed by Streit, . a premium was plac=eCd on the

extensibility of data types and their related operations.

Taking PIGLI primitives to belong in the category of data
types and picture transformations to be the related

operations, PIGLI is extensible using the provided exec file

-f=-

Chapter 1 Introduction

facilities. Files of PIGLI commands which describe complex
objects and operations may be constructed and stored for use
later in the same PIGLI programming session or in a
different session.

Output device independence is achieved in PIGLI by
describing pictures to be drawn in terms of a device
independent picture display c¢ommand 1language. This method
is used by most languages which possess output device
independence. The portability of PIGLYI relies on the
portability of its base operating system and its output

device independence.

ESP3
The ESP3 language (Shapiro, 1975, 1977) was described as
an extension of the SNOBOL4 programming language. Some of

the important graphics features of ESP3 include the PICTURE

and POINT data types, picture valued expressions which
evaluate to PICTUREs, built in referencing functions, and
user-defined referencing :-capabilities. An experimental
version of ESP3 was implemented under the SPITBOL (Dewar,
1971} compiler on an IBM 360/65 computer with CALCOMP
plotger output. In the SPITBOL implementation, the ESP3

commands are implemented as SNOBOL4 functions. Thus a

programmer may use ESP3 commands, as well as all the

features of SNOBOL4, to accomplish a progrdmming task. The

s

Chapter 1 Introduction

following is a brief summary of the functions and operators
used in the SPITBOL implementation of ESP3.

BUILD is a function which accepts a description of a
two-dimensional line drawing and constructs a data structure
representing that line drawing. DRAW is a subfunction of
BUILD used to define the following primitive picture
components:

1) LINE a straight line,
2) CIRCLE a circle,
3) ARC a portion of a circle,
4) FIGURE a set of points connected by straight
.lines, and
5) CURVE a set of points connected by curved
lines. _ %
The character “¢” is a composition operator used in a BUILD

command for combining more than one primitive component in a

single picture. Primitive components of a picture may be

3
2

associated with an identifier by wusing the assignment

operator “:°. The following is an example of the

construction of a simple picture.

A_LINE_AND_A_CIRCLE = BUILD("A_LINE : DRAW("
4 " ‘LINE", START=PNT(1.0,1.0);END=PNT(4.0,5.0);7)"
+ " ¢ A_CIRCLE:DRAW(CIRCLE”, CENTER=PNT(1.0,1.0);"

+ ®"RADIUS=.5;7)")

Chapter 1 Introduction

The above statement causes the creation of a picture named

A_LINE_AND_A_CIRCLE. The picture is composed of a straight

line, called A_LINE and a circle called A_CIRCLE. A_LINE is
defined by the position of its start and end points and
A_CIRCLE by the position of its center point and the length
(in inches) of its radius. ESP3 also allows several other

standard ways to define these primitives.

There are three other subfunctions of BUILD for

performing picture transformations; TRANSPIC for

translation, TURNPIC for rotation, and SCALEPIC for scaling.

The following example illustrates the use of TRANSPIC..

NEW_LINE_AND_A_CIRCLE = BUILD(
+ “NEW_LINE : TRANSPIC(A_LINE, PNT(1.0,1.0)=>"

+ “PNT(1.0,1.5):7) ¢ A_CIRCLE")

The picture NEW_LINE_AND_A CIRCLE is similar to
A_LINE_AND_A_CIRCLE, but the 1line component is translated

such that the point (1.0,1.0) moves to the point (1.0,1.5).

POINT and VALU are functions for returning defined

points and values, respectively, £from the picture data

structure. A point (PNT) is a defined data type in ESP3,

consisting of an x-coordinate and a y-coordinate. Examples

of PNTs are the start and end of a line, and the center of a

-9

Chapter 1 Introduction

circle. A VALU is a number or character string associated

with a picture. Examples of VALUs are the radius of a

circle, the length of a line, and the direction of an arc.

ADDREF 1is a function which allows association of
user-defined reference names with subpictures, points, or
values of a picture. REFERENCE is a function for retrieving

the subpictures, points, or values associated with a

reference name. For example, in the statements

ADDREF (A_LINE_AND_A_CIRCLE, “INCLINE®,
VALU(A_LINE, "ANGLE"))
SLOPE = REFERENCE (“INCLINE® #

A_LINE_AND_A_CIRCLE)

the reference name INCLINE is associated in the picture

A_LINE_AND_A_CIRCLE with the angle of the line A_LINE, and
the variable SLOPE is assigned the (retrieved) value of the
INCLINE of A_LINE_AND_A_CIRCLE. The reference operator “#°
indicates the picture from which the wvalue is <to be
returned. A value for INCLINE can also be retrieved for any

transformations of A_LINE_AND_A_ CIRCLE.

Graphic output from an ESP3 program is performed by the

function PLOT which produces plotted output of a picture.

-10-

Chapter 1 Introduction

Assignment of a picture to the variable PLOTT causes the

Picture to be plotted. For example, the statement

PLOTT = NEW_LINE_AND_A_CIRCLE

Causes the picture NEW_LINE_AND_A_CIRCLE to be plotted. In
the SPITBOL implementation of ESP3, PLOT produces the

corresponding plotter commands for NEW_LINE_AND_A_CIRCLE.

Motivation for the Development of PIGLI

Several features found in ESP3 are very desirable in a
general purpose graphics language. The language has
excellent general programming constructs, a benefit derived
from the fact that ESP3 is embedded in SNOBOL4. It also has’
easily defined primitive units for picture construction and
powerful combination facilities. A third major feature is
the inclusion of the built-in reference functions POINT and
VALU which are especially useful for constructing picture
segments relative to other picture segments. Finally, the
user defined reference functions ADDREF and REFERENCE give
an even greater flexibility to the programmer.

There are other features of ESP3 that are a hindrance to
the user of a graphics language, primarily the fact that the
existing implementation of ESP3 is a batch processing

language with graphical output limited to a pen and ink

-11-

Chapter 1 Introduction

plotter. 1In this situation the wuser is required either to
produce extremely accurate programs in terms of picture
constr#ction or to be prepared to submit the program, with
its required adjustments, a number of times. The amount of
time needed to correct the program might be very large,
particularly if there are limits on the availability of the
plotter. Because of these drawbacks, the emphasis in the
ESP3 language 1is on picture data structure construction
rather than on picture display or picture manipulation.

Another drawback to the current implementation of ESP3

is that it does not provide any convenient means of
interrogating the data structure. There is no method for
reviewing information that has already been stored in the
data structure representing a picture, a capability that
would be very useful as a debugging tool in an interactive
implementation. Nor is there a method of saving the data
structure for future use except by reconstructing it from
the original ESP3 program. A final drawback to the SPITBOL
implementation of ESP3 is the verj complex syntax of its

commands which is a result of the SNOBOL4 embedding process.

PIGLI
This paper will present a graphics language designed to
correct the inadequacies of ESP3 while retaining the

desirable features. The chief difference between ESP3 and

-12-

Chapter 1 _ Introduction

PIGLI is that PIGLI is interactive. It is implemented on an
Interdata 8/32 minicomputer as an interpreter written in
seguential PASCAL. PIGLI is a stand-alone language and
includes a much smaller set of programming constructs than
ESP3 embedded in SNOBOL4. The language constructs included
are:

l) two declaration statements for real and integer

variables.

2) an arithmetic assignment statement,

3} an if-then-else statement,

4) a while-do statement, and

S} a begin-end block.
This small number of constructs provides a fairly powerful

base for picture manipulation programs.

The graphics commands included in PIGLI can be divided
roughly into two groups,- data structure creation commands
and display commands. The primary data structure creation
command is the BUILD command which corresponds very closely
to the BUILD function of ESP3. There are also five commands
in the picture display category:

1) the SETSCREEN command which controls clipping and
viewport boundaries.,

2) the DRAW command for picture display.,

3) the ERASE command for picture removal,

-13~

Chapter 1 Introduction

4) the HTEXT command for horizontal display of text

material, and
5) the VTEXT command for vertical display of text

material.

Five utility commands are included in PIGLI as special
help for the interactive user. The LIST command is a
general query command for reviewing information stored in
the picture data structure. The LOAD command is used for
dynamically activating output device drivers. The EXECUTE
command allows the user to execute previously defined exec

files containing sets of PIGLI commands. The LOGON and

LOGOFF commands establish a 1log file of all interactive

commands for future use.

The remainder of this paper will describe the PIGLI
system in detail. Chapter two contains a description of the
language. Chapter three discusses the operating system
environment under which PIGLI is implemented. Chapter four
discusses the process of implementing PIGLI. Chapter five
explains the structure of.the various output device drivers

that are available in the system.

=14

Chapter 2 Language Description

PIGLI Command Language Description

This chapter describes the PIGLI command language. The

first section provides a general overview of the language

with short explanations of the purpose of each command. The
second section gives an example of a PIGLI terminal session.
Appendix A contains a discussion of the precise syntax and
semantics of the PIGLI language. The notation used to
describe commands in this chapter is similar to that used in
the syntax appendix.

A user of PIGLI communicates with the computer by
issuing commands from a console device. The commands are
‘processed by the computer, providing feedback to the user in
most cases. Information requested by the user and status
and error messages are displayed on the console device.
Picture displays are produced on a graphics device that is

separate from the console device.

A PIGLI command is an ordered seguence of identifiers,

keywords, numeric values, and strings, punctuated with

special symbols, and terminated by a'peri0d. Commands fall
into four categories; programming commands ., picture

construction commands, picture display commands, and special

utility commands.

Programming Commands

There are six commands that provide programming

-15...

Chapter 2 Language Description

capabilities for the PIGLI | user. Arithmetic variable
identifiers must be declared before they may be used. The
two commands provided for this purpose are

REAL <variable list> and

INTEGER <variable list>
where <variable list> is a list of identifiers separated by

commas . Identifiers for pictures and named picture

components do not need to be declared.

Example: REAL A.
INTEGER M, MA, MB.

The assignment command has the form
<variable> := <expression>

where <variable> 1is an identifier and <expression> is an
arithmetic expression consisting of identifiers, numeric
values, and operators. An identifier used in an assignment
command must have been previously declared and, if used in
an expression, it must have a defined value. All the
elements of the expression must agree in type (real or
integer). Legal operations are addition, subtraction,
multiplication, and division. Integer division may result
in a truncated value or a remainder value. Explicit
conversion func*ions ére provided for situations that
require type mixing. Multiplication and division operations

-16~

Chapter 2 Language Description
take precedence over addition and subtraction operations.

Example: M := (MA + MB) * TRUNC(A)-.

PIGLI provides two control constructs. The first is an

IF-THEN-ELSE command. The general form is

IF <boolean expression> THEN <command> ELSE <command>.

The boolean expression is made up of one or more logical
expressions and the boolean operators AND, OR, and NOT. A
logical expression is made up of two numeric expressions of
the same type (real or integer) compared by one of the
logical operators <, >, =, <=, >=, <> (not equal). The
commands following THEN and ELSE may be any PIGLI command
except declaration commands. A special utility command NULL
is provided for branches of the IF-THEN-ELSE command where

no operation is desired.
Exahple: IF MA < MB THEN NULL ELSE M := MB.

The WHILE-DO command provides looping capabilities for

the programmer. The general form is

WHILE <boolean expression> DO <command>.

The commands that are allowed in the branches of the
IF-THEN-ELSE command are also allowed in the WHILE-DO
command.

-]

Chapter 2 Language Description

Example: WHILE MA < MB DO MA := MA + 1.

Because it is desirable to be able to execute several
commands in either branch of the IF-THEN-ELSE command or in
the body of the WHILE=-DO 1loop, PIGLI includes a compound

statement of the form

BEGIN
<command>;

<command>;
END.

The entire block of one or more commands is treated as a

‘'single command by the PIGLI interpreter.

Example: WHILE MA < MB DO d
BEGIN
M := MB * TRUNC(A):
MA := MA + 1;
END..

Picture Construction Commands

The single most important pictﬁre construction command
is the BUILD command. The BUILD command is used to define a
picture. Execution of the BUILD command does not create or
alter any graphical output. The interpreter converts a
picture definition to a standard format and retains the
information in a picture data structure.

Pictures are defined by combining primitive components,

-18~

Chapter 2 Language Description

previously defined pictures, and transformations of
Previously defined pictures. There are five types of
picture primitives:

l. LINE a straight line,

2. CIRCLE a circle,

3. ARC a portion of a circle,

4. FIGURE a set of points connected by straight

lines, and
5. CURVE a set of points connected by curved
lines.

Each of these primitives has a finite set of attributes.
For example, the start point, the midpéint, and the end
point are attributes of a LINE. Figure 2.1 shows all the
specification attributes for each type of picture primitive.
To define a primitive, a PIGLI programmer states the values
to be assigned to certain of the attributes. In the
straight line example, é line could be defined by the start
point and the end point, the start point and the midpoint,
or the midpeoint and the end point. The line could also be
defined by the values of all three attributes, but the third
point would be redundant at best and possibly not consistent
with the other two points. For these reasons only the
minimum amount of information necessary to define a
primitive is accepted. All the allowable definitions of the

five picture primitives are given in .the syntax and

-19-

Chapter 2

Language Description

LINE LENGTH
‘\ANGLE
POINTS VALUES
CIRCLE TOP
7/
£ 0%
LEFT &% _ 4 riGHT
CENTER ——
BOTTOM
POINTS VALUES
apc PDEG(D2, ENDPT)
TODEG
MID
DIR = CW
PDEG (D1, 2. 0 it
MINOR
POINTS VALUES KEYWORDS
FIGURE KNOT
~ KNOT KNOT
N xwor
FORM = OPEN
KNOT KNOT CLOSED
KNOT
POINTS KEYWORDS
CURVE KNOT
KNOT KNOT
[}
* 1
i
KNOT kyor ¢ KNOT FORM = OPEN
CLOSED
POINTS EHEE KEYWORDS

Figure 2.1:
for Picture Primitives

-20=

The Specification Attributes

Chapter 2 Language Description

semantics appendix.

Attributes may take on values of three different types,
point values, numeric values, and keyword values. Some
points are fixed with regard to the picture primitive. For
example, the MID point of a LINE is always equidistant from
the two end points, and the TOP point of a CIRCLE is the
point on the circle with the largest y coordinate value.
Other points are defined relative to the fixed points. For
example, for a CIRCLE, PDEG(D) refers to a point on the

CIRCLE a distance of D degrees in the counter clockwise

direction from the RIGHT point of the CIRCLE, and for a

. LINE, PDIS(START,L) is a point on the LINE a distance of L

units from the START point. Thus, a LINE may be described
by its ENDPT point and a point that is known to be a
specific distance from the START point.

Numeric values, such as the LENGTH of a LINE or the

RADIUS of a CIRCLE or an ARC, are also used to define

picture primitives. Keyword values may be wused' in the

definition of ARCs, CURVEs, and FIGUREs. For example, the

DIRection of an ARC can be specified as CCW ({(counter

clockwise) or CW (clockwise). The FORM of FIGUREs and

CURVEs may be either OPEN or CLOSED.

- F]e

Chapter 2 Language Description
Examples:
BUILD ALINE:=LINE(START=PNT(1,1),ENDPT=PNT(5,2)).

BUILD ACIRCLE := CIRCLE(CENTER=PNT(3,3),RADIUS=1).

BUILD AN_ARC := ARC(START=PNT(5,8),RADIUS=1,
ENDPT=PNT(3,5) ,DIR=CW, FORM=MINOR) .

BUILD A_FIGURE := FIGURE(KNOTS(PNT(1l,1),PNT(2,5),
PNT(3,3) ,PNT(5,8) ,PNT(3,5)) .,
FORM=CLOSED) .

BUILD A _CURVE := CURVE(KNOTS(PNT(1,1).,PNT(2,5).,

PNT(3,3),PNT(5,8) ,PNT(3,5)).
FORM=0QOPEN) .

Previously defined pictures, used as components of other
pictures, are referred to by the identifier to which they
were assigned when initially defined. Previously defined
pictures can be used as the bases for transformations.
There are three picture transformations:

1. TRANS to translate a picture,

2. TURN to rotate a picture, and

3. SCALE to increase or decrease the size of a

picture.

Each transformation is defined .by specifying the base
picture plus certain other information. - For TRANS the
necessary information includes the coordinates of a point in
the base picture and the new coordinates of the same point

in the translated picture. For TURN, the regquired
information includes the coordinates of a point about which

to rotate the picture, the number of degrees of rotation

-22-

Chapter 2 Language Description

desired, and the direction (clockwise or counter clockwise)
of the rotation. For SCALE, the point about which the
scaling is to be done, and the factor by which the picture
should be scaled must be supplied. The factor is greater
than one for increasing size and 1less than one for

decreasing.

Examples:
BUILD NEWLINE := TRANS(ALINE,PNT(4, .5)=>PNT(4,1)).

BUILD NEWCIRCLE := SCALE(ACIRCLE,FACTOR=2,
ABOUT=PNT(3,3)).

BUILD NEWARC := TURN(AN_ARC,DEG=15,DIR=CCW,
ABOUT=PNT(3,5)).

Pictures may be composed of several primitive and
non-primitive elements. The BUILD command can be used to
construct a picture made up of several components. The
components specified in the BUILD command are separated by
the operator ‘&~ indicéting composition. When several
primitive elements or transformations are defined within one
BUILD command, each element may be assigned a distinct name
to allow later access to that element. This is done by
preceding the definition of the primitive or the
transformation by a unique identifier followed by the
immediate assignment operator “:7, If an element is not
named, it cannot be referenced individually at a later time.

The general form of the BUILD command is

-23-

Chapter 2 Language Description

BUILD <picture identifier> := <picture element>
{ & <picture element> }.

Picture elements may be named or unnamed picture primitives,
named or unnamed transformations, or the identifiers of
previously defined pictures.
Example:

BUILD BARBELL := ACIRCLE &

LINE (START=PNT(3,3) ,ENDPT=PNT(7,3)) &
TRANS (ACIRCLE ,PNT(3,3)=>PNT(7,3)).

To change the definition of a picture it is only
necessary to rebuild that picture. However, unless the old
definition of the picture is included in the new definition,
the old definition will be 1lost. Pictures that were based
on the original picture are based on the new picture after
it is defined. Care should be taken to avoid redefining a
picture in terms of another picture that is based on the
first. This could <create a circular definition that is
impossible to draw. The following example assumes that a
picture called SPOTS has been constructed. In this BUILD
command, the picture SPOTS is translated from point (2,1) to
point (3,1). Then the original picture SPOTS is composed
with the translated picture, which is left wunnamed, to

become the new picture SPOTS.

Example:
BUILD SPOTS :
SPOTS.

TRANS(SPOTS,PNT(2,1)=>PNT(3,1)) &

-24-

Chapter 2 Language Description

Deleting picture descriptions after they are no longer

wanted is done using the DELETE command, which has the form
DELETE <picture identifier>.

Deleting a picture removes the definition of that picture

from the picture data structure where it was stored. This

command does not initiate any checking to prevent removing

pictures on which other pictures are based.

Picture Display Commands

There are five PIGLI commands for manipulating a
graphics display device. Four are for displaying text and
pictures. One is for specifying clipping and viewport
boundaries. |

HTEXT and VTEXT display character strings horizontally
and vertically, respectively. The general form of the HTEXT
and‘VTEXT commands is

HTEXT

<orientation point> , <text list>.
VTEXT

The orientation point indicates the position of the first
character of the text to be displayed. Following the
orientation point are one or more text items. Each item may

be a character string enclosed in single quotes or an

integer or real valued expression.

25

Chapter 2 Language Description

Example:
HTEXT PNT(3,.5), EXAMPLES OF “,5,° PRIMITIVES .

The DRAW and ERASE commands are used for displaying and

erasing pictures, respectively. The form of these commands

is

DRAW
<picture identifier>.
ERASE

DRAW causes a two-dimensional 1line drawing that represents

the picture ¢to be transmitted to the display device. A

sequence of DRAW commands may be wused to cause several

pictures to be displayed together. For display devices with
a selective erase feature, ERASE removes the portions of the

line drawing display corresponding to the picture named in

the command. The command

" ERASE SCREEN

clears the entire display.

The fifth picture display command is used feor

specifying viewports and clipping boundaries. The SETSCREEN

command sets display conditions for all DRAW and ERASE
commands until those conditions are changed by another

SETSCREEN command. The general form of the command is

-26-

Chapter 2 Language Description

SETSCREEN <orientation point>, XLEN=<expression>,
YLEN=<expression>.

The orientation point is the picture point that will be
mapped to the lower lefthand corner of the output device
when a picture is displayed. The XLEN and YLEN values
establish clipping boundaries based on the orientation
point. _If the crientation point has the coordinates (A,B).
then all displayed points will be clipped between A and
A + XLEN for x wvalues, and between B and B + YLEN for y
values. As an example, consider the triangle in Figure
2.2-a. If the triangle is drawn after issuing the command

SETSCREEN PHNT{(2,1), XLEN=8, YLEN=8.
then the entire triangle is drawn with the lower left corner
of the triangle at the origin of the display screen, (Figure'
2.2-b). 1f it is drawn after issuing the command

SETSCREEN PNT(3,1), XLEN=4, YLEN=4.

then only portions of the three sides are visible on the

display screen, (Figure 2.2-c).

Special Utility Commands

PIGLI has several commands which fall intc the category
of utility commands.

The HALT command is wused to terminate the PIGLI
interpreter at the end of a programming session. This

command is implemented primarily to insure that all the

-27 =

Chapter 2

Language Description

(5,6)

(8,3) a. Triangle in the
real world

b. Viewport after SETSCREEN
PNT(2,1), XLEN = 8,
YLEN = 8

c. Viewport after SETSCREEN
PNT(3,1), XLEN = 4,
YLEN = 4

Figure 2.2: The Effects of Changes of the SETSCREEN
Parameters on Picture Displays

-28=-

Chapter 2 Language Description

actions are taken for normally terminating a program under
the SOLO operating system. The form of the command is

simply

HALT.

The command
NULL

mentioned earlier in conjunction with the IF_THEN_ELSE
command, is wused in branches of that command where no
operation is desired.

The LOAD command is used to replace the display- device
driver that is <currently executing with another device

driver. Each implemented device driver is an independent

program available to the SOLO operating system. The general

form is
LOAD <device driver identifier>.

The LOAD command c¢loses and unloads the running device

driver and 1loads and initializes the device driver

specified. (Chapter five will discuss individual device

drivers.)

One of the desirable features of an interactive language
that were discussed in chapter one was the ability to gquery

=209

Chapter 2 Language Description

the picture data structure to recall information processed

earlier in the programming session. The LIST command is

used for retrieving this information. There are several

variations of LIST designed to retrieve different types of

desired information. The simple command

LIST

retrieves and displays on the programming console all the
symbol table entries which are the names of pictures. The

command
LIST SCREEN

retrieves the identifiers that name the pictures that are

currently visible on the graphics display device. The

comma nd

LIST <primitive or transform>

where primitive or transform may be LINE, CIRCLE, ARC,
FIGURE, CURVE, TRANS, TURN, or SCALE, returns the

identifiers of all the picture elements of the desired type.

The command
LIST DEF <picture identifier>

retrieves information about the definition of the picture

named by the picture identifier. If the picture identifier

-30~-

Chapter 2 Language Description

names a picture of more than one component, then the
information returned is a 1list of the names of the
components of that picture. If the picture identifier names

a primitive or a transformation, the information listed is

the definition of that element. Using the LIST commands,

the programmer may retrace the structure of any picture that

has been defined.

Another feature that is desirable in an interactive

language is the ability to construct and access files of

commands which perform tasks that are needed frequently or

tasks that are tedious. For special implementations, these

exec files can also be used to increase the number of

picture primitives. To create an exec file from an ongoing

PIGLI programming session, the command
LOGON <file identifier>

is used. This command causes all subsequent commands to be
recorded in an external file. To stop the logging of PIGLI

commands the command
LOGOFF

is used. The LOGON command loads and opens an existing file

with the desired file name and the LOGOFF command closes it.

Only one LOGON command may be in effect at a time.

_31-

Chapter 2 . Language Description

To access exec files, PIGLI wuses the EXECUTE command

which has the form
EXECUTE <file identifier>.

This command causes the PIGLI interpreter to stop accepting
command input from the &onsole device and instead accept
commands from the external file named by the file
identifier. Commands will be accepted from the exec file
until the file is exhausted. All the commands in the exec
file are executed exactly as if they were issued
interactively at the programming console. However, the

EXECUTE command is not allowed in an exec file.

A Sample Terminal Session
In this example there is a simple exec file called
TRIPIC which is composed of the following PIGLI command.

BUILD TRI = QL1 H LINE (START = PNT
(TRITOPX, TRITOPY), ANGLE = 240, LENGTH =

TRILENGTH) & QL2 : LINE (START = POINT (QL1l,
ENDPT), ANGLE = 0, LENGTH = TRILENGTH) & QL3

LINE(START = POINT {(QL2, ENDPT), ENDPT = POINT
(QL1, START)).
The user is aware of this exec file and proceeds to
interactively execute the following PIGLI program.

(Responses to the user from the PIGLI system are marked by

asterisks.)

PIGLI
REAL TRITOPX, TRITOPY, TRILENGTH, CENTX, CENTY.
TRITOPX := 3.0. TRITOPY := 3.0.

-32=-

Chapter 2 Language Description

TRILENGTH := 2.0.
EXECUTE TRIPIC.

BUILD THISTRI := TRI.
CENTX := TRITOPX.

CENTY := (1.0 / 1.73) + YVAL(QLl, ENDPT).

BUILD BIGTRI := SCALE (THISTRI, ABOUT = PNT
(CENTX, CENTY), FACTOR = 20.0).

BUILD SMALLTRI := SCALE (THISTRI, ABOUT = PNT

(CENTX, CENTY), FACTOR = 0.5).
BUILD TRIS := SMALLTRI & BIGTRI.
DRAW TRIS.
"NOTE THAT THE PICTURE EXTENDED OFF THE SCREEN!"
LIST SCREEN "TO SEE WHAT WAS DRAWN" .

*TRIS PICTURE

LIST DEF TRIS "TO GET ITS DEFINITION" .
*NAME TYPE DEFINITION
*SMALLTRI SCALE

*BIGTRI SCALE

LIST DEF BIGTRI.

*NAME TYPE DEFINITION

* SCALE BASE=TRIS,

* ABOUT=PNT(3.0,1.85),
. FACTOR=20.0

"NOTE THE FACTOR WAS TOO BIG"
BUILD BIGTRI := SCALE (THISTRI, ABOUT = PNT(3.0.
1.85), FACTOR = 2.0)}.
ERASE SCREEN.
DRAW TRIS.
®"THIS IS THE RIGHT PICTURE" ERASE SCREEN.
INTEGER I. I := 0 .
WHILE I < 5 DO
BEGIN ,
BUILD TEMPTRIS := TURN (TRIS, ABOUT
(CENTX, CENTY), DEG = I ¥ 72):
DRAW TEMPTRIS:
I :=1 + 1;
END.
LOAD PLOTTER. I := 0 .
WHILE I < 5 DO
BEGIN
BUILD TEMPTRIS := TURN (TRIS, ABOUT
(CENTX, CENTY), DEG =1 * 72
DRAW TEMPTRIS;
I :=1 + 1;
END.
HALT.
*NORMAL TERMINATION

PNT

PNT

In the preceding PIGLI terminal session the user

-33_

Chapter 2 Language Description

declared and initialized the information needed by the exec
file and invoked it in the first four lines of the program.
Then the picture produced by the exec file was stored in the
picture THISTRI. In the next five commands, the wuser
calculated the center of THISTRI, built two transformed
pictures from the original, and composed those pictures in
the picture TRIS. When TRIS was drawn the user noted that
the image was too large for the display screen and therefore
used the LIST debugging facilities to determine exactly what

should be corrected. BIGTRI was rebuilt and, after erasing

the display screen, TRIS was redrawn with no distortion.

The user then attempted to draw multiple copies of the

original with each <copy being a unigque rotation of TRIS.
Notice the use of a BEGIN_END block to allow the presence of

more than one statement in the WHILE_DO command. After

interactively constructing the picture, the wuser loaded a

new output device driver called PLOTTER and repeated the

WHILE_DO command to produce a hard copy of the picture.

Figure 2.3 is a representation of the plot produced by the

sample terminal sessicn.

-34~

Chapter 2 Language Description

Figure 2.3: Drawing of the Plotted Output Produced
by the Sample Terminal Session

-35=

Chapter 3 Operating System

Operating System Considerations
The PIGLI interpreter must accomplish two major tasks.
It must accept user input commands and perform the actions
specified in those commands. Accepting commands includes
receiving command input, scanning the input for tokens, and
parsing the command. Performing commands involves several
different types of execution including expression
evaluation, data storage and retrieval, and picture and text
display. PIGLI is implemented in sequential PASCAL under
the SOLO operating system which provides the support
necessary to accomplish these tasks.
Three aspects of SOLO are particularly helpful in
implementing an interpreter.
1) The system was designed to be portable.
2) The virtual machine environment provided by
the system promotes modular design.
73) The system has flexible input and output

procedures and inter-module communication.

The SOLO System

The SOLO operating system was designed to be an easily
portable system for compiler writing (Brinch Hansen, 1976) .
It was developed and written in Concurrent PASCAL on a PDP
11/45 at the cCalifornia Institute of Technology by Per

Brinch Hansen. Its portability has been shown to be

-36-

Chapter 3 Operating System

possible and relatively simple, even to machines with very
different architectures (Neal, 1977). The system is
currently running on an Interdata 8/32 minicomputer at
Kansas State University. It supports several online users,
providing each user with a virtual machine in which to work.
By implementing PIGLI under a portable operating system, it
is hoped that the task of porting PIGLI will be minimal.

Under SOLO, each user’s virtual machine is composed of
three process partitions; one for a job process and two
smaller ones for input and output processes. (See Figure
3.1) The input and output processes are designed to handle
input and output data manipulation such. as blocking and
unblocking, while the job process is used for relatively
complex processing. The SOLO system loads artser's task in
the job process partition and general input and output tasks
in the input and output process partitions. Thereafter the
job process may load other tasks in the input and output
partitions or invoke other tasks to run in the job process
partition in its place.

Tasks running in any of the three partitions provided by
SOLO must be written in PASCAL and begin with a standard

prefix. The prefix contains constant definitions, type

definitions, and interface routine definitions. These
definitions are the basis for interface routine reference

checking that is done by the compiler. The interface

3T~

Operating System

Chapter 3

sTauuey) bursseg uorjzPWIOIFUI

U3TH4 JUSWUOITAUT OTOS 9YL

1€ 2Inbta

HALNIYJd dOIATA JTOSNOD WHILSAS dIaAvEa
dINIT ‘SEDIAEA 'IVIDAAS b; SHTIA TYNJIILXH aayo
] _H+| |
t i+ i ; V
<
syagand SS3D0Yd sggd4and
d0¥d d9vd
o mmm#mzﬁmmm 20
SSAD0Md LNFWNDYY LNIWNOYY SSAD0dud
s T I ot
SsHEDOud
LOdLNO dor LOINT
010S

-38-

Chapter 3 Operating System

routines are procedures available to the user tasks which

allow the task to communicate with tasks in other partitions

and with external files and devices. For example, the job

process may receive informgtion from and send information to
both the input process and the output process. This
information may be passed one byte (a character), twelve
‘bytes (an argument), or 512 bytes (a page) at a time. The
input process may receive data from a cardreader and
similarly the output process may send data to a printer.
All processes can communicate with external files, special
devices such as graphics devices, and the user’s virtual

machine consocle device.

GRAPHSOLO
To adapt the operating system to the requirements of the

PIGLI system, three changes were made to SOLO. Normally,

the input and output process partitions are the same size
and fairly small. For -GRAPHSOLO. the size of the input
process partition was iﬂcreased. Due to this change, the
scanner module, which is solely responsible for command
input, fits completely in the input process partition. The
second change is in the combined size of all three process
partitions. Normally, SOLO runs in 82K bytes of memory
(under OS 32 MT on the Interdata 8/32). However, to

accommodate the larger input process partition and to allow

-39 =

Chapter 3 Operating System

for sufficient data space for internal command storage and
picture storage it is necessary to run GRAPHSOLO in 110K
bytes of memory. Finally, the standard SOLO prefix has been
expanded to include constant definitions and type
definitions for the data structures shared by the parser and
the executor. (These shared data structures will be
discussed more fully 4in chapter four.) Adding these
definitions to the prefix made passing the shared
information between the two modules much simpler. The
expanded version of the prefix is given in Appendix B.

The PIGLI system is divided into four modules; the
Scanner, the parser, the executor, and the cutput device
driver. It resides in the GRAPHSOLO operating system
environment as s;own in Figure 3.2. The scanner portion of
the interpreter is placed in the input partition. The
scanner uses system procedures to accept commands either
froﬁ an external exec file or from the console device, to
record commands in an external 1log file, and to echo exec
file commands on the console device.if desired. When tokens
are isolated, the scanner passes them to the job process
using the argument buffer.

Both the parser and the executor reside in the job
process partition, although both do not necessarily occupy
that partition at one time. The parser receives its foken

input from the scanner via the argument buffer. If a

-40-

sTexoydrtasg butmoys

OTOSHAVYD Iopun we3skS ITOIA :z°¢ oanbrd

OTOSHAYYD

$S300¥d IN4LNO S5I00dd €00 SSHO0Yd INdNI

Operating System

Chapter 3

7
/
[

7
/

govd "939 ‘ETId SOUY + ¥
: — -
HIATHA A | oS vornoayg | NERIOS THIEVL | oy NEOL MANNYOS
L0 L04IN0 , HEEHAS, - SHILL -1 /10o0z08a [T
~DMILS ANYHWOD

HIJISNYHL | 0/1

dOIAHA
AYIdSIA

d1Id
JANS

{
OHDH DIXH +J I
SHOYSSEW
SANYWWOD | Dad 90T

JO0IAHA
dTOSNOD

SHTIJ
OdFXd

-4]1-

Chapter 3 Operating System

command is completely parsed, error free, then the parser
calls the executor to run in the job process partition using
the RUN procedure and parameter passing capabilities. For
implementations with ample machine size both the parser and
the executor may reside in the job process partition at the
same time, but for smaller systems these two procedures may
be overlayed.

When either the parser or the executor encounters an
error, or when a command is completed, a message is
displayed on the console device using SOLO system
procedures. When a picture display command is executed, the
executor produces a sequence of device ihdependent output
commands which are sent to the output process partition
using the page buffer. The output précess partition
contains a device dependent output device driver to
translate the display commands into gréphic display commands

for a particular device.

Splitting the PIGLI interpreter into three partitions
provides benefits in flexibility and portability. The
modularity of the interpreter will aid in future expansion
and revision by reducing the impact on static modules of
changes in updated modules. For instance, the scanner may
be expanded to allow different command sources without

affecting the parser. Additional commands and graphics

-42-

Chapter 3 Operating System

capabilities may be added ¢to the parser and the executor,
such as three-dimensional and perspective transformations,
without making major changes to the input or output
processes. It is especially easy to adapt the output
process to dif ferent graphics devices. These
considerations, added to the relative ease with which the
VSOLO operating may be ported, makes PIGLI a highly portable

system.

-43-

Chapter 4 Implementation

Implementation Considerations

The two basic functions of the PIGLI interpreter are 1)
to accept user input commands and 2) to perform the actions
specified by those commands. These tasks are-accomplished
by three modules: the parser, the scanner, and the
executor. The parser parses commands using a top-down,
recursive approach, and requests the scanner to provide
tokens as required. The ex=2cutor executes commands, calling
on the display device driver when necessary.

When the PIGLI interpreter is initiated, the parser is
loaded in the job process partition. (See Figure 4.1) The
_ parser initializes the scanner and the Computek . device
driver in the input process partition and the output process
partition, respectively. These two modules are said to run
éoncurrently with the parser, although protocol in the
interpreter prevents the parser and the scanner from
exeéuting concurrently most of the time.

When the parser has parsed a syntactically correct
command, it invokes the executor td run in the job process
partition in place of the parser. After the executor has
finished executing the command, control of the job process
partition returns to the parser. The parser is then ready
to begin parsing another command.

In this chapter, the implementation of the interpreter

will be discussed. Each of the major modules will be

—44_

Chapter 4

Implementation

INITIALIZE .~ PARSER \\\\\iﬁi?IALIZE

SCANNER

o]

OUTPUT
DEVICE
DRIVER

EXECUTOR

INPUT PROCESS

JOB PROCESS

OUTPUT PROCESS

GRAPHSOLO

Figure 4.1: PIGLI Modules under GRAPHSOLO

CONSOLE
DEVICE

(DR

- INI
or
Character
Input
or
| -—————Comand | SCANNER
or Echo
NO ECHO

TIALIZE

PARSER

To

quest

Token

INPUT PROCESS

JOB PROCESS

GRAPHSOLO

Figure 4.2: Closeup of Scanner Module Activity

-45-

Chapter 4 Implementation

described, with emphasis on data structures and algorithms.

The Scanner Module
Scanning Process

The scanner resides in the input process partition under
the SOLO operating system (Figure 4.2). It is invoked by
the parser during the initialization procedure. After the
scanner is invoked, it Dbegins its own initialization
process, primarily to create and initialize the name table.
After initialization, the scanner enters a loop and
identifies tokens on request until the interpreter
terminates execution. The activity within the loop is
summarized by the following steps.

1) Wait for a token request from the parser.

2) Analyze the token request to determine whether
or not to HALT scanning.

3} Scan the charaéter input and construct a
token.

4) Return the token to the parser.

Each time the parser needs a new token, it sends a
request for a token to the scanner. The request indicates
where the token is to be found, either at the PIGLI system
console or in an external exec file. It indicates where the
token is to be written; to an external logging file, to the

system console in the case of exec file input, or to no

-46-

Chapter 4 Implementation

special place. The request also indicates control functions
for error handling or system termination. When the parser
encounters a syntax error, the scanner bypasses all tokens
until it locates the command terminator, a period. When the
parser request specifies that the scanner should halt, it
exits the 1loop to perform wrap up activities before
terminating.

The method used to scan for tokens generally follows the
method used in the first pass of the Concurrent PASCAL
compiler written by A. C. Hartmann (1976). Tokens fall into
five categories; comments, identifiers, strings, numbers,
and special symbols. Each category has a character or set
of characters with which tokens in that category may start
and which determines the subsequent scanning activity. For
example, encountering a digit as the first character of a
token indicates that the token is a number token.
Thereafter, only digits and a decimal point are expected
characters. Any other character encountered stops the
scanning of the number token. Any ASCII character which is
not a member of one of the token starting sets is ignored as
an invalid character when it is encountered at the beginning
of a token. Table 4.1 shows the starting character sets for
each category of token.

After a token has been found, it 1is passed to the

parser. Tokens are represented by an integer token code

-47-

‘Chapter 4

Implementation.
TOKEN CHARACTER SET
Comments "
Strings '
Numbers 01234567829
Identifiers ABCDEFGHIJKLMN

OPQRSTUVWXYZ _

L]
M
v

Special Symbols . =() , ;i */ +-&

Table 4.1: Starting Character Sets
for PIGLI Tokens

-

Chapter 4 Implementation

accompanied by information which is dependent upon the type
of token. The token code is always passed to the parser
first so that the method of receiving the rest of the
information may be determined. There are unique token codes
for all special symbols, for all keywords, and for integer
numbers, real numbers, new identifiers, old identifiers, and
strings. Table 4.2 shows the codes for each kind of token.
For keywords and special symbols, the token code is
sufficient information to be passed to the parser. For new
identifiers, that is, identifiers that have not been
encountered previously, the scanner passes the token code
representing "new identifier", the spelling index (a unique
integer by which the identifier will be known), and the
string of characters that make up the identifier. For old
identifiers the scanner passes the token code répresenting
"old identifier"” and the spelling index for that identifier.
For.integer and real numbers, the token code and the value
of the number are passed. Strings require more complex
information because they may havé variable lengths. The
scanner passes the token code, the length of the string. and
the characters of the string. Strings are divided into
blocks of twelve characters to decrease the amount of
parameter passing needed. Table 4.3 summarizes the

information passed to the parser for each type of token.

=49~

Chapter 4 Implementation

KEYWORD TOKEN CODES

BEGIN 0 SAVE 22 CIRCLE 72 DEG 93
REAL 1 LOAD 23 ARC 73 ANGLE 94
INTEGER 2 NOT 24 FIGURE 74 FRDEG 95
IF 3 AND 25 CURVE 75 TODEG 96
WHILE 4 OR 26 TRANS 76 FORM 97
EXECUTE 6 DIV 37 TURN 77 OPEN 98
ENTER 7 MOD 38 SCALE 78 CLOSED 99
EXIT 8 CONV 40 START 79 DIR 100
LOGON 9 TRUNC 41 MID 80 CW 101
LOGOFF 10 VALU 42 ENDPT 81l CCW 102
NULL 11 XVAL 43 CENTER 82 POINT 103
HALT 12 YVAL 44 TOP 83 PNT 104
BUILD 13 THEN 50 BOT 84 LTCP 105
CHANGE 14 ELSE 51 LEFT 85 RTOP 106
DELETE 15 DO 52 RIGHT 86 LBOT 107
SETSCREEN 16 END 53 PDIS 87 RBOT 108
DRAW 17 XLEN 65 PDEG 88 TRIGHT 109
ERASE 18 YLEN 66 ABOUT 89 BRIGHT 110
LIST 19 DEF 68 LENGTH 90 TLEFT 111
HTEXT 20 SCREEN 69 RADIUS 91 BLEFT 112
VTEXT 21 LINE 71 FACTOR 92
SYMBOL TOKEN CODES
> 27 - 33 - 49) 60
< 28 + 34 EOM 54 . 61
>= 29 / 35 . 55 => 62
<= 30 * 36 (56 : 63
= 31 UMINUS 39 = 59 & 67
<> 32
OTHER TOKEN CODES

OLD_IDENTIFIER 5 REAL_NUMBER 45

NEW_IDENTIFIER 47 INTEGER_NUMBER 46

STRING 48

Table 4.2: Token Codes for all Keywords,
Tokens, and Special Symbols

-50-

<hapter 4

TOKEN

Implementation

PASSING PARAMETERS

KEYWORDS TOKEN CODE
SPECIAL SYMBOLS TOKEN CODE
OLD IDENTIFIER TOKEN CODE
NEW IDENTIFIER TOKEN CODE

INTEGER TOKEN CODE

REAL TOKEN CODE

STRING TOKEN CODE
Table 4.3:

SPELLING INDEX

SPELLING INDEX NAME

INTEGER VALUE

REAL VALUE

INTEGER LENGTH STRING BLOCKS

Parameters for Passing Tokens
to the Parser

-51-

Chapter 4 Implementation

Scanner Data Structures

The only data structure used by the scanner is the name
table. There is an entry in the name table for every PIGLI
keyword and for every new identifier encountered during the
course of a PIGLI programming session. Each entry consists
of the name of the keyword or identifier and the spelling
index, an integer which uniquely identifies the keyword or
identifier.

Two methods are used to determine the spelling indices
which will be associated with identifiers; one method for
keywords and one method for ordinary identifiers. For a
keyword, the spelling index is found by négating the token
code for that keyword making the spelling indices for all
keywords unigue negative integers. For example, the token
code for the keyword BUILD is 13, (see Table 4.2) therefore
the spelling index for the keyword BUILD is -13. For
ordinary identifiers, lthe spelling indices are unigque
positive integers. The first identifier encountered in a
PIGLI programming session is assigned integer 1 as the
spelling index. Each new identifier found thereafter is
assigned the next consecutive positive integer as the
spelling index. For example, if the first command of a
PIGLI program is

REAL X, ¥, Z.

the three new identifiers X, ¥, and Z are assigned integers

—52_

Chapter 4 Implementation

1, 2, and 3, respectively, as spelling indices.
Keywords are entered into the name table during the

scanner’s initialization process. To determine where to

enter a keyword, the following hashing procedure is used.

PROCEDURE HASH_KEY(ID):
*"ID IS AN ARRAY OF AT MOST MAX_ID_LENGTH CHARACTERS"
BEGIN
HASH_KEY := 1;
FOR CHAR_INDEX := 0 TO MAX_ID_LENGTH DO
IF ID[CHAR_INDEX] <> ° -
THEN BEGIN

NUM_EQUIV := (ORD(ID[CHAR_INDEX])
MOD NUMBER_POSSIBLE_CHARS + 1);
HASH_KEY := HASH_KEY * NUM_EQUIV

MOD HASH_MAX_PRIME;
END:;
WHILE NAME_TABLE[HASH_KEY] <> EMPTY DO
HASH_KEY := (HASH_KEY + 1)
MOD HASH_MAX PRIME;
END;

This procedure calculates the HASH_KEY which is the
index into the name table. The NUM_EQUIV, an integer in the
range of 1 to 27, is obtained for each character in the
identifier; 1 is equivalent to an A, 2 is equivalent to a B,
and so on. The function ORD returns the ordinal equivalent
of its argument, in this case a character of the identifier.
The numeric equivalents for all the characters are
multiplied together, and the product is modded with the
maximum number of entries allowed in the table
(HASH_MAX_PRIME), to produce the initial HASH_KEY. If the
entry indicated by HASH_KEY is not empty, succeeding entries

are tried until an empty entry is found.

-53=-

Chapter 4 Implementation

When an identifier is encountered during the scanning
process, the hashing function is wused to determine the
appropriate entry in the name table to begin searching for
that identifier. If the entry is empty, the identifier is a
‘new identifier. It is inserted in the empty entry of the
name table and given a spelling index. If the entry
contains an identifier which does not match the current
token, the scanner looks at the next consecutive entry until
it locates the correct identifier or an empty entry. If the
entry does match the current token, the spelling index is
used to classify the token as a keyword or an old

identifier.

The Parser Module
Parsing Process
The major processing of the parser can be described by
thé following steps.
1) Parse a command
2) If the command is synfactically correct,
invoke the executor; otherwise identify the
error for the programmer.
3) Reinitialize to begin processing a new
command.

4) If the command was HALT, terminate the system.

PIGLI uses the method of recursive descent to parse a

-54-

Chapter 4 Implementation

command. Each command is distinguished by a unique keyword.

After a command keyword is found, a procedure for that
specific command is invoked to continue the parsing process.
Whenever a new token 1is needed, a scanning procedure
requests a tecken from the scanner module and interprets the
returned information. At each step in the parse, there are
a finite number of tokens which may legally be encountered
and which determine the subsequent direction of the parsing
process.

Encountering an unexpected token indicates a syntax
errcr and causes the parsing to stop. Error recovery
.consists of recording the illegal token énd the token type
expected, and requesting the scanner to begin error
processing. The scanner bypasses all tokens in the
remainder of the command up to the command termination
symbol. The parser displays an appropriate message on the
PIGLI system console idéntifying the error and prepares to
accept a new command.

If a complete, syntactically correct command is
identified, the parser passes an internal representation of
the command and control of the job process partition to the
executor module, using the PASCAL statement

RUN(EXECUTOR *,LIST,LINE,RESULT) .

=55=

Chapter 4 Implementation

The parameters of the RUN statement are defined as follows:

1) °‘EXECUTOR ® the twelve character

identifier, enclosed in quotes, of the pfocess

to be run.

2} LIST, an array of up to ten arguments to be
passed to or returned from the process,

3) LINE, the returned line number of an erroneous
statement, if the process does not terminate
normally, and

4) RESULT, the return code for the process.

(LINE and RESULT are used to indicate failure of the SOLO
operating system to ?roperly execute the RUN statement. In
the event of such failure, the PIGLI system crashes.)

The PIGLI parser passes six arguments to the executor.

The first argument is a return code that indicates whether
or not the executor encountered an execution error. The
second argument is a pointer to the Dbeginning of the
structure which holds the internal representation of a
command. The third argument is a pointer to the beginning
of the screen file, which is a list of the identifiers of
the pictures that are being displayed at a given time. The
fourth argument is a pointer to the location of the symbol
table. The symbol table contains the stored definitions of

all pictures and variables. The fifth argument is a pointer

to the free area left in the data space. Free spaces are

-56=-

Chapter 4 Implementation

needed by the parser when it constructs the internal command

structure and by the executor when it builds the definition
of a picture. The sixth argument is a pointer to a record
which contains the system status indicator and several
miscellaneous data items which are shared by both the parser
and the executor. The system status indicator may take on
integer values between 0 and 5 to indicate command input
location, changes in logging, or execution of a HALT
command. (Table 4.4 gives the meaning of the six possible
system status values.) Shared data items include indices
into the symbol table bounding the unused portion of the
table.

The arguments passed between the parser and the executor
serve two purposes. The first and last arguments contain
command execution status information; one informs the parser
of incomplete or incorrect execution of the previous
comﬁand, and the second provides information which the
parser needs after the execution of a HALT, LOGON, LOGOFF,
or EXECUTE command. After one of these commands, the parser
may need to know where to locate the next command input,
where to echo that input, or whether or not it should
terminate the system. The othér four arguments pass the
locations of information shared by both the parser and the
executor, (the internal command structure, the symbol table,

and free data space) and the locations of data structures

B

Chapter 4 Implementation

VALUE MEANING
0 Input from console - no logging desired
1 Input from console - commands logged
2 Input from exec file - no logging desired
3 Input from exec file - commands logged
4 HALT processing
5 Error processing

Table 4.4: ©Possible Values of the
System Status Indicator

-58 ~

Chapter 4 Implementation

that must remain intact through the entire PIGLI programming
session (the symbol table and the screen file).

When the executor has finished processing the command.
control of the job process partition returns to the parser.
If one of the commands LOGON, LOGO¥:, or EXECUTE was
executed, the parser resets its status indicator to the
appropriate condition. For example, after the execution of
LOGOFF, the parser will no longer need to request the
scanner to log PIGLI commands, and will change the request
indicator to reflect this. The parser next dismantles the
internal representation of the executed command and returns
the data space it occupied to the free daté space structure.
Finally, if a HALT command was executed, the parser
terminates the modules in the input and output process
partitions and ends. If HALT was not executed the parser

begins parsing a new command.

Parser Data Structures

The parser makes use of three data structures in its
processing, the internal command structure, the free data
space structure, and, to a lesser degree, the symbol table.
(The PASCAL definitions of these three data structures are
given in Appendix B.) The internal command structure is
constructed by the parser as it parses a command. It

contains all the information which the executor needs to

=59 -

Chapter 4 Implementation

execute that command. The free data space structure
contains linked lists of all free data space. The symbol
table is the primary structure for retaining information
about variables, pictures, and external files.

The Internal Command Structure

The internal command structure is implemented in PASCAL
as a statement record pointed to by a statement record
pointer called COMMAND. The statement record has a
definjition variant for each of eighteen types of command.
Since PASCAL only allows sixteen variants of a given record,
the eighteen c¢ommands are first divided into two groups.,
picture statements and programming statements, and then
subdivided into dindividual commands. Picture statements
include variants for the BUILD, DELETE, DRAW, ERASE, HTEXT,
VTEXT, and SETSCREEN commands. Programming statements
include variants for the BEGIN, IF, WHILE, assignment, HALT,
NULL, LOGOFF, LOGON, LOAD, EXECUTE, and LIST commands.
Figure 4.3 shows the first two 1levels of variation in the
internal command structure.

The basic components of the internal structure for each
command type are variant tags, keywords, identifiers,
expressions, and points. A variant tag identifies which
case of two or more possible cases is to be used to
construct the internal representation of a particular

command. For example, PIC_STMT and PROG_STMT are tags to

=60-

Chapter 4

First Level of
Variation

COMMAND /

Implementation

Second.Level of
Variation

—{ BUILD

DELETE

1 DRAW

PICTURE STATEMENT

ERASE

STATEMENT RECORD

—] HTEXT

— VTEXT

— SETSCREEN

— BEGIN

WHILE

— ASSIGN

— HALT

PROGRAM STATEMENT

NULL

Figure 4.3: The First Two Levels of
Variation of the Internal
Command Structure

-61~-

—1 LOGOFF.

— LOAD

— LOGON

—] EXECUTE

-— LIST

Chapter 4 Implementation

distinguish between the two major groups of commands
represented in a statement record. There is also a special
tag for each type of command within each group.

Internal command structure keywords are a subset of the
keywords of the PIGLI command language. They are used to
indicate which of several items or values are appropriate
for a particular part of the internal command structure.
For example, the FORM of a FIGURE may be OPEN or CLOSED.
(See Appendix A) It is convenient to represent the value of
the FORM specification of a FIGURE by the keywords OPEN or
CLOSED. |

Identifiers are the names of wvariables, pictures,
picture components, and external files that have been stored
in the symbocl table. Identifiers used in the internal
command structure, for example, to ;ndicate the target of an
assignment command, are representeé by the symbol table
indéx for that identifier entry.

Expressions are sequences of operators and operands
representing numeric or boolean - values which may be
encountered in several commands. As an expression is
parsed, it is converted from infix notation to postfix
notation. Each operator and operand is stored in a linked
list called an expression record. Whenever an expression is

encountered while parsing a command, an expression record

for that expression is constructed. Each element of the

-f2=

Chapter 4 Implementation

linked list of the expression record may be one of two
variants, an operator defined by the keyword associated with
it, (including arithmetic and boolean operators) or an
operand. An operand is defined by one of three variants, a
variable identifier, a numeric constant or a system value
reference definition. A constant may be either real or
integer. A system value reference is defined by two
keywords to indicate which value reference is desired and an
identifier to indicate which picture or picture component is
to be referenced. After the expression record is
constructed, a pointer to the record is added to the
internal command structure. Figure 4.4 is a graphical
representation of the general structure of an expression
record.

Points are encountered during the parsing of a BUILD
command. When a point is parsed, the parser constructs a
point record to define ﬁhe point and adds a pbinter to the
point record to the internal command structure of the BUILD
command. A point record, which has two variants, consists
of either pointers to two expressions, one each for the x
coordinate and the y coordinate of the point, or a system
point reference. A system point reference includes a
keyword to indicate which point reference is desired, and an
identifier to indicate which picture or picture component is

to be referenced. Figure 4.5 is a graphical representation

-53~

Chapter ¢ Implementation

Expression Record Element

EXPRESSION_ POINTER EXPRESSION ELEMENT DEFINITION

Expression Element Definition

[OPERATOR
OPERAND OPERAND DEFINITION

Operand Definition

CONSTANT CONSTANT DEFINITION

VARIABLE

SYSTEM VALUE REFERENCE

Constant Definition

REAL CONSTANT

INTEGER CONSTANT

Figure 4.4: Internal Structure of an Expression Record

Point Record

[: POINT X EXPRESSION POINTER Y EXPRESSION POINTER

SYSTEM POINT REFERENCE

Fiqure 4.5: Internal Structure of a Point Record

-.64_

Chapter 4 Implementation

of the general structure of a point record.

The values in each statement record are defined as the
command is parsed and pertinant information is collected.
The command keyword that begins each command determines a)
whether the command structure will use the programming
statement variant or the picture statement variant, and b)
which particular command variant will be used. Two tags in
the internal command structure are set to the appropriate
values and, while the remainder of the command is parsed,
the information specific to each type of command is stored
in the internal command structure. Figure 4.6 shows a
graphical representation of the internal command structure
of each command.

The internal form of the BUILD command includes the
picture identifier to be defined and a pointer to a chain of
picture component definitions. New elements of the picture
chain are constructed as the parser encounters new
components of the picture being built. Each element of the
picture chain defines one component of the picture. The
definition includes the component’s identifier, if one was
specified, a pointer to the next element in the picture
chain, and one of three component definition variants,
depending on how the component is described. One possible

variant (SCREEN) indicates that the c¢omponent is the

combination of all the pictures in the current display file.

65—

Chapter 4 Implementation

BUILD Command

BUILD PICTURE IDENTIFIER PICTURE CHAIN POINTER

Picture Chain Element

COMPONENT IDENTIFIER PICTURE CHAIN POINTER
COMPONENT DEFINITION

Component Definition

SCREEN OLD PICTURE IDENTIFIER

OLD PICTURE OLD PICTURE IDENTIFIER

PRIMITIVE | PRIMITIVE TAG | PRIMITIVE SPEC CHAIN POINTER

Primitive Spec Chain Pointer

SPEC TAG | PRIMITIVE SPEC CHAIN POINTER | SPEC DEFINITION

Spec Definition

— SPEC POINT POINT POINTER-

SPEC PARM KEYWORD

|

— SPEC PICTURE PICTURE IDENTIFIER

SPEC VALUE EXPRESSION POINTER

DELETE Command

DELETE PICTURE IDENTIFIER

Figure 4.6: Internal Structures of each
Type of Command

-66=—

Chapter 4

DRAW Command

Implementation

DRAW PICTURE IDENTIFIER

ERASE Command

ERASE PICTURE IDENTIFIER

HTEXT and VTEXT Commands

HTEXT HV_POINT

TEXT CHAIN POINTER

VTEXT HV_POINT T

EXT CHAIN POINTER

Text Chain Element

TEXT CHAIN POINTER

TEXT DEFINITION

Text Definition

STRING TEXT

STRING

VALUE TEXT

VALUE E

XPRESSION POINTER

SETSCREEN Command

SETSCREEN

SS_POINT

X LENGTH EXPRESSION POINTER

Y LENGTH EXPRESSION

POINTER

(Figur

e 4.6, Continued)

-67-

Chapter 4 ' Implementation

BEGIN Command

BEGIN STATEMENT CHAIN POINTER

Statement Chain Element

STATEMENT CHAIN POINTER STATEMENT POINTER

IF_THEN_ELSE Command

IF IF BOOLEAN EXPRESSION POINTER

IF_TRUE STATEMENT POINTER IF_FALSE STATEMENT POINTER

WHILE DO Command

WHILE WHILE BOOLEAN EXPRESSION POINTER
WHILE_TRUE STATEMENT POINTER

Assignment Command

ASSIGN | TARGET IDENTIFIER | SOURCE EXPRESSION POINTER

HALT, NULL, and LOGOFF Commands

HALT

NULL

LOGOFF

(Figure 4.6, Continued)

-68 =

Chapter 4 Implementation

LOAD, LOGON, and EXECUTE Commands

LOAD FILE IDENTIFIER

LOGON FILE IDENTIFIER

EXECUTE FILE IDENTIFIER

LIST Command

LIST LIST SPEC

List Spec

NULL

— PRIMITIVE TAG

— PICTURE IDENTIFIER

— SCREEN

(Figure 4.6, Continued)

-69 -

Chapter 4 Implementation

The second variant (OLD_PIC) indicates that the component is
a single, previously defined picture. The third variant
(PRIMITIVE) defines the component as a picture primitive or
a transformation of a previously defined picture. The
definitions of the first and second variants are pointers to
entries in the symbol table £for the SCREEN file or the
appropriate picture identifier. The definition of the third
variant includes a keyword to distinguish which kind of
Primitive or transformation the component is, and a pointer
to a chain of primitive or transformation specifications.
Each element of the specification chain includes a tag
indicating which specification item 1is being defined, a
pointer to the next element of the specification chain, and
one of four variants that may define the specification item,
either a point (SPEC_POINT), a keyword (SPEC_PARM), a
picture identifier (SPEC_PIC), or a numeric value
(SPEC_VALUE).

The internal forms of the DELETE, DRAW, and ERASE
commands are all similar and much Asimpler than that of the
BUILD command. The definitions include only the picture
identifier of the picture, or named picture component, to be
deleted, drawn, or erased. The identifier is represented by
the symbol table index of the appropriate symbol table
entry.

The internal form of the HTEXT and VTEXT commands are

-70-

Chapter 4 Implementation

also similar to one another. Their definitions include a
pointer to the definition of the orientation point, and a
pointer to a chain of text items. Each text item includes a
pointer to the next element in the text chain, and one of
two variant definitions of a text item, either a string of
characters (STRING_TEXT)., or a numeric value (VALUE_TEXT).
The numeric value 1is represented by a pointer to an
expression record.

The SETSCREEN command is represented internally by a
pointer to the definition of the orientation point, and two
numeric values, XLEN and YLEN. Both values are represented
by a pointer to an expression record.

The internal form of the BEGIN block is a chain of
statement records within the original BEGIN statement
record. Each element of the chain contains a pointer to a
separate statement record for one of the commands in the
BEGIN block and a poinfer to the next element of the
statement record chain. After the BEGIN keyword |is
encountered by the parser, it parses a compound statement,
that is, it recursively parses more commands, building an
element of the statement record chain for each command, and
linking them together in the statement chain.

The internal representation of the IF command includes a
pointer to a boolean expression and two pointers to

statement records, one for the command to be executed when

-71-

Chapter {4 Implementation

the boolean expression evaluates to true, and one for the
command to be executed when it evaluates to false. After
both keywords, THEN and ELSE, are encountered, the parser
recursively begins to construct a new statement record for
the commands in the branches. The WHILE command is similar
to the IF command. Its internal representation also
includes a pointer to a boolean expression record, but it
contains a pointer to only one statement record, for the
command encountered after the keyword DO, which will be
executed repeatedly while the booclean expression evﬁluates
to true.

The internal form of the assignment command is composed
of an identifier (represented by the index of the symbol
table entry for that identifier), which is the target of the
assignment, and a pointer to an expression record whose
value will be assigned to the target.

The HALT, NULL, and LOGOFF commands are similar to one
another. They do not include any information in their
internal forms other than the tag indicating the type of the
command .

The LOAD, LOGON, and EXECUTE commands are also similar
to one another. Each command includes the identifier of an
external file, represented by the index to the symbol table
entry for that identifier.

The LIST command is defined internally by one of three

i

Chapter 4 Implementation

variant definitions. One variant (PIC_LIST) requires no
information. It is wused when the simple command LIST is
issued to retrieve from the symbol table the names of all
pictures composed of more than one picture element. The
second variant (PRIM_LIST) includes a keyword to indicate
that the identifiers of all the named picture elements, of
the type specified by the keyword, are to be retrieved £from
the symbol table. The keyword may also indicate that the
names of displayed pictures be 1listed. The keyword may be

LINE, CIRCLE, ARC, FIGURE, CURVE, TRANS, TURN, SCALE, or

SCREEN. The third variant (DEF_LIST) includes the
.identifier of a symbol table entry, either a variable, an
external file, a picture, or a named picture component.
This form is used when the definition of an identifier is
desired.

After a syntactically correct command has been parsed
and étored in the internal command structure, it is passed
to the executor to be executed. To pass the command, the
pointer COMMAND, which points to fhe beginning' of the

statement record, is passed to the executor as the third

argument of the argument list. The command is organized in

such a manner that the executor, receiving a pointer to that

structure, can locate all pertinant data as it is needed to

execute the command. Consider the following example. 1In

the command

-73-

Chapter 4 Implementation

IF A=B THEN A := A+l ELSE NULL.

the keyword IF indicates an IF_THEN_ELSE command, therefore
two tags in the statement record are set to show that the
command is a programming statement and that the IF variant
of the record will be used. (See figure 4.7) In the IF
variant of a statement record there are three data items,
IF_BOOL, IF_TRUE, and IF_FALSE. IF_BOOL is a pointer to the
internal representation of a boolean expression. IF_TRUE
and IF_FALSE are pointers ¢to the internal forms of the
statements to be executed if the booclean expression
evaluates to true or false respectively.

Parsing the remainder of the command includes parsing
the boolean expression, A=B, and two statement clauses,
THEN A := A+l and ELSE NULL. The boolean expression is
converted to postfix notation and stored in an expression
record pointed to by IF_BOOL. Each branch of the
IF_THEN_ELSE command ié parsed recursively and two
additional statement records are created. IF_TRUE points to
a2 new statement record for the assignment statement A := A+l
and IF_FALSE points to a statement record for a NULL
statement.

The Free Data Space Structure

The free data space structure is used to economically

manage the data space allocated to the PIGLI interpreter by

the SOLO operating system. Dynamic space allocation is

T

Chapter 4 Implementation

Command

il
e

Statement Record
K PROG_STMT | IF { IF_BOOL / IF_TRUE / IF_FALSE /

Expression Record
™ - OPERAND VARIABLE / A

OPERAND VARIABLE / B

A OPERATOR / =

Statement Record
PROG_STMT ASSIGN TARGET / A SOURCE /

Expression Record
OPERAND VARIABLE / A

"

</ OPERAND CONSTANT INTEGER / 1

A OPERATOR / +

Statement Record
N PROG_STMT NULL

Figure 4.7: An Example of the Internal Structure
of an IF_THEN_ELSE Command

-75...

Chapte. ¢ Implementation

required to construct an internal representation of a
command, or to define a new entry in the symbol table. The
space allocation method provided by SOLO is the NEW
procedure. The NEW procedure locates free space in the heap
of system data space for a specific type of record. Once
allocated, this space may not be used to hold any other type
of record. When data space is released, by a DELETE command
or by dismantling the internal forms of executed commands,
the freed space is stored, by record type, in the free data
space structure. This structure is a record which contains
a pointer for each ¢type of record to the beginning of a
linked list that holds the free areas for that fecord type.
When space is needed to hold a record of a particular type,
the free data space structure is checked. If an appropriaté
space exists, it is removed from the structure. If such a
space does not exist, the NEW procedure is used to obtain
it. Figure 4.8 shows a graphical representation of the free
data space structure.
The Symbol Table

The symbol table is wused primarily by the executor.
However the parser inserts variables _from declaration
commands and picture identifiers from BUILD statements into
the symbol table. This allows identifiers in the internal

command structure to be defined in terms of entries in the

symbol table. The parser also identifies variables as real

-76=-

Chapter 4

Free Data Space Structure

Implementation

GRAPH_NODE POINTER

EXPRESSION RECORD POINTER

POINT RECORD POINTER

STATEMENT RECORD POINTER

PICTURE PART POINTER

SPECIFICATION CHAIN POINTER

PICTURE CHAIN POINTER

TEXT RECORD POINTER

STATEMENT CHAIN POINTER

KNOT CHAIN POINTER

Figure 4.8:

The Organization of the

Free Data Space Structure

-77-

Chapter 4 Implementation

or integer. Since declaration commands do not require any

other action, they are not passed to the executor module for
processing. Thus, they are not executable and cannot be

included in complex commands such as the IF_THEN_ELSE

command and the DO_WHILE command.

The Executor Module
Executing Process
The processing done by the executor is summarized by the

following steps.

1) Initialize.

2) Execute the command.

3) Wrap up loose ends.
When the executor is invoked by the parser to run in the job
process partition, it receives an argument list containing
pointers to the data structures it shares with the parser.
The.first step of initialization is to use those pointers to

map the executor’s definition of the data structures onto
the appropriate data space. Since' the data structures are
defined identically in both the parser and the executor (see
appendix B), this mapping process is fairly simple. The

second step involves initializing PASCAL sets of information

used during the execution of some commands. The set
handling capabilities of PASCAL permit the executor to check

the validity of a complex set of data against those standard

.

Chapter 4 Implementation

Sets defined during initialization.

To execute a command, the executor uses the information
stored in the internal c¢ommand structure by the parser.
There is a procedure in the executor module to execute each
command. A summary of the actions performed for each
command is given later in this chapter.

Execution of a command may terminate in one of three
ways: 1) the command may be executed normally to completion,
2) the command may be terminated before completicn due to an
execution error, or 3) the command may be terminated before
completion by the execution of a HALT command in a BEGIN_END
block. When execution terminates normally: control of the
job process partition is returned to the parser and the
argument list that was passed to the executor is passed back
to the parser. The first argument is set to indicate that
the command completed normally. When an execution error is
encountered, execution 6f the command stops. The cause of
the error is recorded and the first argument is set to
indicate an execution error. An appropriate message is
displayed at the system console identifying the error. Then
control is passed back to the parser. When a HALT command
is encountered, execution of the command stops. No error

message is generated, and the first argument is set to show
normal termination of the command. Control is returned to

the parser with all the information received when the

-79 -

Chapter 4 Implementation

executor was invoked. In this case the parser will
term%nate the entire PIGLI system when it regains control of
the job process partition.

The actions performed by the executor and the parser
could have been performed in a single module. That
alternative would have provided advantages by removing the
initialization step for all but the first command and by
eliminating the overhead of parameter passing between the
parser and the executor. However, by splitting the activity
between two modules, the total memory space required by the
running module is cut in half, increasing the memory space

available for picture data storage, and the scope of each

module is reduced to manageable proportions.

Executor Data Structures

To execute a command the executor makes use of three
data structures, the internal command structure, the free
data space structure, and the symbol table. (The PASCAL
definitions of these three data structures are given in
Appendix B.) The internal command structure is constructed
by the parser and passed to the executor when it is invoked.

This structure holds an internal form of a command .,

organized so that the executor can determine what command is

to be executed, and how and where to retrieve the

informatibn needed to execute that command. The free data

-80-

Chapter 4 Implementation

Space structure is used to economically manage the data
space allocated to the PIGLI interpreter by the SOLO
operating system. It contains a set of linked lists of free
data space, one list for each type of record that may be
freed. Both the internal command structure and the free
data space structure were described in the section on parser
data structures.
The Symbol Table

The symbol table is wused in PIGLI to retain dynamic
information defining variables, external files, and
pictures. To define a symbol table entry, the executor
constructs a record (GRAPH_NODE) which describes all the
pertinant characteristics of the entity identified in the
symbol table entry. The symbol table is implemented in
PASCAL as an array of symbol table entries. The array index
is the spelling index that is associated with an identifier
wheh it is first encountered by the scanner. Each symbol
table entry consists of two items, the identifier associated
with the variable, file, or pictﬁre defined by the entry,
and a pointer to the GRAPH_NODE record containing the
definition. The definition of an entry may be one of
thirteen variants of the GRAPH_NODE record, each of which
contains an appropriate variant tag and a canonical
definition of the entity defined by the symbol table entry.

Figure 4.9 shows a graphical representation of each variant

-8]1-

Lhapter {4

GRAPH NODE Variants

REAL Value

INTEGER Value

FILE

UNDEFINED

PICTURE PIC PART_CHAIN POINTER

Picture Part Chain

Implementation

BASE PICTURE | PIC_PART_CHAIN POINTER

LINE START ENDPT

CIRCLE CENTER RADI

Us

ARC START ENDPT

CENTER DIRECTION FORM

FIGURE KNOT CHAIN PO

INTER FORM

CURVE KNOT CHAIN POI

NTER FORM

Knot Chain

KNOT KNOT CHAIN

POINTER

TRANS DESTAX DELTAY

BASE PICTURE

TURN ROTATION POINT

ROTATION ANGLE BASE PICTURE

SCALE SCALE POINT

SCALE FACTOR

BASE PICTURE

Figure 4.9: The Variations of the GRAPH_NODE
Data Structure

-82-

Chapter 4 Implementation

of the GRAPH_NODE record.
variables

Numeric variables may be either real or integer
depending on how they were initially declared. When the
executor defines a variable, one of the variant tags REAL or
INTEGER, and the current value of the variable are used. 1If
the programmer attempts to use a declared variable before it
has been defined, the variable is arbitrarily assumed to
have a value of negative one (-1 or ~1.0) to prevent an
execution error.
External Files

External files, used to name log files,.exec files, and
display device drivers, are defined by the variant tag FILE
and no other information. Picture identifiers may also be
defined by the tag UNDEFINED with no other.information. A
picture identifier is undefined from the time it is first
encountered by the paréer until it is defined by the
executor.
Pictures

Picture entries in the symbol table which are composed
of more than one picture primitive, picture transformation,
or previously defined picture, are defined by the PICTURE
variant. This variant includes a pointer to a picture
chain. Each element of the <chain c¢onsists of a pointer to

the entry in the symbol table that describes one component

-83-

Chapter 4 Implementation

of the picture, and a pointer to the next element of the
chain. Pictures that are composed of only one instance of a
Picture primitive or a picture transformation, or an
individual element of a picture, are defined by the
appropriate primitive or transformation variant. Since it
is not necessary for all elements of a compound picture to
have identifiers associated with them, some elements are
given symbol table entries with dummy identifiers. This
allows them to be treated the same way as named picture
components, but does not permit subsequent references to
those individual elements by the user.
Primitives

The LINE variant describes an instance of a straight
line primitive using the values of the x and y coordinates
of the start point and the end point of the line. The
CIRCLE variant includes the x and y coordinates of the
center point of the circle and the value of-its radius. The
ARC variant is described by the x and y coordinates of the
start point, the end point, and the center point, the
direction of the arc (counter clockwise or clockwise), and
the form of the arc (major or minor). The FIGURE and CURVE
variants are similar. They include a pointer to a chain of
the points used to define the figure or curve and a keyword
value to indicate whether the FORM of the figure or curve is

OPEN or CLOSED. Each element of the point chain contains

-84~

Chapter 4 Implementation

the values of the x and y coordinates of the point and a
pointer to the next element of the chain.
Transformations

There are three transformation definition variants. The
TRANS variant includes values for the change in the x and vy
directions, due to the translation, and a pointer to the
entry in the symbol table of the picture to be translated.
The TURN variant consists of the values of the x and y
coordinates of the point about which the picture is to be
rotated, the value of the anble through which it is to be
rotated, and a pointer to the entry in the symbol table of
_the picture to be rotated. The SCALE variant is composed of
the values of the x and y coordinates of the point about
which the picture is to be scaled, the value of the factor
by which it is to be scaled, and a pointer to the entry in

the symbol table of the picture to be scaled.

Information is entered in the symbol table by the parser
during the declaration of real and iﬁteger variables; and by
the executor during the execution of assignment commands.
The information stored in the symbol table is referenced
during the exeéution of several commands. The values of
arithmetic variables may be used in arithmetic expressions.

Value attributes of pictures may be used in expressions, and

point attributes of pictures may be wused to define other

-85=-

Chapter 4 Implementation

points. Picture definitions are referenced by the DRAW
Ccommand, the ERASE command, and the LIST command. The
command execution algorithm section includes a description

of how each command uses thée symbol table.

Command Execution Algorithms
Evaluating Expressions and Points

Expressions and points are two structures that are found
in the internal representations of several commands. An
expression is stored in the internal command structure as a
linked list of operands and operators in postfix order (see
Figure 4.4). When an expression is evaluatéd, the executor
steps through the list, processing each operator and operand
as it is encountered.

The executor processes the values of operands by pushing
them on a temporary expression evaluation stack. Constant
values are immediately a#ailable in the internal expression
record. Values of variables are retrieved from the symbol
table using the symbol table index for the appropriate entry
that is included in the expression record. For values that
the user has neglected to define prior to using them in an
expression, the executor substitutes arbitrary values (-1 or
=1.0). System reference functions must be evaluated before
they can be stacked. For every attribute that may be used

to describe a picture primitive, there .is an executor

-86~

Chapter 4 Implementation

procedure that will calculate that attribute using the
canonical definition of the picture primitive. For example,
either the length of a line or the mid point of a line may
be calculated wusing the end points that make up the
canonical definition of that 1line. The picture primitive
which is being referenced is located using its symbol table
index, and the value attribute which is desired for that
primitive, indicated by a keyword, is checked for validity
against the type of the referenced primitive. If the
desired value is valid, it is calculated. Values that are
used in the canonical definition of a primitive are simply
extracted from the definition (see Figure 4.9). For other
values the executor calculates the proper value.

Whenever operators are encountered during evaluation of
an expression, one or two operands are popped from the
expression evaluation stack, depending on whether it is a
unary or a binary operator and the operation is performed on
them. Unary operations are the type conversion functions,
the boolean negation, and arithmetic negation (CONV, TRUNC,
NOT, UMINUS). Binary operators are all logical comparison
operators (<, >, =, <=, »>=, <>), boolean operators for
conjunction and disjunction (AND and OR), and arithmetic
'operators for addition, subtraction, multiplication, and
division (+, -, *, /, DIV, and MOD).

Evaluation of operators is simplified by the fact that

. 1

Chapter 4 Implementation

the parser checks for type compatibility in expressions.
For binary arithmetic operators, the second value popped
from the stack is operated on by the first value, that is,
the second value is divided by the first value for the 7/7,
‘DIV°, and °MOD” operators, and the- first value |is
subtracted from the second value for the =" operator. For
logical comparison operations and binary boolean operations,
the same ordering is |used. When two numeric values are
compared using logical operators, the result is a boolean
value, which is represented by integer zerc for false and
integer one for true. After the specified operation is
performed, the result is pushed back onto the stack. When
there are no more operators or operands in the expression
record, the result is popped off the stack and command
execution continues using thatlvalue,

Point records are found in the internal c¢ommand
struéture of a BUILD command (see Figure 4.5). A point is
defined by two expressions for its x and y coordinates or by
a system point reference function. | System point reference
functions are evaluated by ¢the method used to evaluate
system value reference functions in expression records. The
picture primitive which is being referenced is located using

its symbol table index, and the point attribute which is
desired for that primitive, indicated by a keyword, is

checked for wvalidity against the type of the referenced

-88~-

Chapter 4 Implementation

primitive. If the desired point attribute is valid, its x
and y coordinates are calculated. Points that are used in
the canonical definition of a primitive are simply extracted
from the definition (see Figure 4.9). For other points the
executor calculates the proper value.

To execute a command, the executor first determines from
the internal command structure which c¢ommand is to be
executed. For each command a sepﬁrate procedure is used to
traverse the c¢ommand structure and perform the necessary
actions. Figure 4.10 is a summary of the steps followed to
execute each command. Figures 4.6 and 4.7 are helpful in
understanding the following descriptions of the process of
evaluating each command.

BUILD Command

Executing a BUILD command may require 1) building a new
picture composed of one, unnamed picture primitive or
transformation, 2) building a new picture composed of more
than one picture component, or 3) rebuilding a previously
defined picture.

The first type of BUILD command constructs a definition
of a picture primitive or a transformation that is pointed
to directly by the symbol table entry for the target of the
command. There are four steps for building this primitive
or transformation. First, all the specifications are

collected and evaluated. The values of the specifications

-89~

Chapter 4 Implementation

BUILD Command

Algorithm for type one: Constructing a new picture

composed of one, unnamed picture primitive or transforma-
tion component.

. Collect and evaluate all the specifications of the
component definition.

. Analyze the specifications for completeness and
correctness.

Calculate the canonical definition, if necessary.
Construct the definition record and link it to the
symbol table entry being defined.

=W NN

Algorithm for type two: Constructing a new picture composed
of more than one component. Note: Components may not be
redefinitions of previously defined pictures.

For each component:

1. If the component is a new primitive or transforma-
tion: :

1.1. For unnamed components, construct a dummy
symbol table entry.

1.2. Construct the component definition as if it
were a type one BUILD command.

1.3. Construct a picture chain element pointing to
the symbol table entry just defined.

2. If the component is a previously defined picture:

2.1. Construct a picture chain element point to
the symbol table entry of that picture.

Algorithm for type three: Rebuilding a previously defined
picture. Note: Previously defined pictures and components
may be redefined only as targets of a build statement.

1. Move the original definition to a dummy symbol table
entry.

2. Set a flag to show that no reference to the original
definition has been made.

Figure 4.10: A Summary of the Execution Algorithms
of all PIGLI Commands

-90-

Chapter 4 Implementation

‘DELETE

1.

Build_a picture definition using algorithm one or
two with the following addition:

3.1. If reference is made to the original picture
definition, then reset the flag and refer to
the dummy symbol table entry.

If the flag shows no references were made to the old
definition, then delete it.

Command

Return each record of the symbol table entry
definition to the appropriate list in the free
data space structure.

DRAW and ERASE Commands

Send DRAW or ERASE code to the output device driver.
For each component of the picture specified:

2.1. If the component is itself a picture, then
recursively draw or erase the picture.

2.2. If the component is a transformation of a
picture:

2.2.1. Stack the definition of the
transformation.

2.2.2. Recursively draw or erase the picture
which is the base of the transforma-
tion.

2.2.3. Unstack the transformation definition.

2.3. If the component is a picture primitive:

2.3.1. Evaluate the transformation stack.

2.3.2. Calculate line segments to represent
the primitive from its canonical
definition.

2.3.3. Adjust the endpoints of the line
segments according to the transforma-
tion stack and the current SETSCREEN
definition.

(Figure 4.10, Continued)

-9]1-

Chapter {4

HTEXT
1.
2.
3.

4,

Implementation

2.3.4. Translate the adjusted line segments
to MOVE and VECTOR command codes and
send them to the output device driver.

and VTEXT Commands

Compress all text items into one line of text.

Send HTEXT or VTEXT code to the output device driver.
Send a command to the output device driver to MOVE
to the orientation point.

Send the text line to the output device driver.

SETSCREEN Command

l.

Update the definition of the orientation point and
the clipping bounds.

BEGIN Command

1.

For each element of the BEGIN block statement chain,
recursively execute the command.

IF-THEN-ELSE Command

1.
2.

3.

Evaluate the boolean expression.

If the expression is true, execute the THEN branch
of the command.

If the expression is false, execute the ELSE branch
of the command.

WHILE-DO Command

1.
2.

3.

Evaluate the boolean expression.

If the expression is true, recursively execute the
DO command and return to step one of this algorithm.
If the expression is false, stop executing the WHILE
command.

(Figure 4.10, Continued)

-Q2-

Chapter 4 Implementation

Assignment Command
1. Evaluate the expression that is the source of the

assignment.
2. Put the RESULT in the target of the assignment.

HALT Command

1. Reset the status indicator to show that HALT was
commanded.

NULL Command

1. No execution is required.

LOGOFF Command
1. If a log file is open, then close the log file.

2. Reset the status indicator to show that logging of
input commands is no longer desired.

LOGON Command
1. Open the specified file.

2. Reset the status indicator to show that logging of
input commands is desired.

LOAD Command
1. Terminate the output device driver that is currently
running.

2. Initialize the output device driver specified by the
LOAD command.

(Figure 4.10, Continued)

-0 3=

Chapter 4 Implementation

EXECUTE Command

1. If no exec file is open, then open the file
specified in the EXECUTE command.

2. Reset the status indicator to show that input
commands will be found in the exec file until
that file is exhausted.

L.IST Command

Algorithm for type one: Listing the identifiers of all
composed pictures, or of the named instances of a specified
type.

1. Search the symbol table for named entries of the
specified type and print their names and type.

Algorithm for type two: Listing the definition of a
specific symbol table entry.

1. List the name and type of the desired entry.

2. If the type of the entry is not PICTURE, then
list its canonical definition.

3. If the type of the entry is PICTURE, then traverse
the definition chain.

3.1. If the element is named, then list the name
and its type.

3.2, If the element is unnamed, then list its type
and its canonical definition.

(Figure 4.10, Continued)

-94-

Chapter 4 Implementation

may be points, expressions, keywords, or picture references.
Then the collection of specifications is analyzed for
completeness and correctness to be sure that the definition
is adequate and unambiguous. Next the definition is
adjusted to canonical form if it is not already in that
form. Finally the appropriate form of a GRAPH_NODE record
is constructed using the canonical definition and the record
is linked to the symbol table entry being defined.

The second type of BUILD command constructs a picture by
defining several components and linking them together in a
chain that defines the BUILD target. An element of the
picture chain is constructed for each component of the
picture as it is encountered in the internal representation
of the BUILD command. If the new component is unnamed, the
executor constructs a dummy symbol table entry for it; if
the component is named, there is already an entry for it.
When the executor has located an entry for a primitive
picture component, the defiqition_ is constructed by the
method that was described for the first type of BUILD
command. Then a picture chain element pointing to the
symbol table entry is constructed and added to the chain.
If the component is a previously defined picture, a picture
chain element for that component, containing a pointer to
the symbol table entry which defines the picture, is added

to the chain. Finally, the <c¢hain is linked to the symbol

-95-

Chapter 4 Implementation

table entry for the target.

The third type of BUILD command builds a new definition
for a previously defined picture. In some cases the new
picture may have the old picture as one of its components.
The first step in executing this type of build command is to
save the original picture in an accessable location so that
it is not lost. To do this the executor constructs a dummy
symbol table entry and sets a flag that will indicate
whether the original picture has been referenced by the new
picture. Then the executor constructs a definition of the
new picture. If a component is a reference to, or a
transformation of, the original picture, it is defined as a
reference to the dummy symbol table entry where the original
was saved, and the flag is reset to show that the original
picture was referenced. b & - the original is never
referenced, the dummy symbol table entry is deleted after
thé new picture is <completely defined. All pictures that
were based on the original definition are thereafter based
on the new definition.

DELETE Command

To execute a DELETE command, the executor returns each
record in the definition of the symbol table entry of the
specified identifier to the appropriate 1list in the free
data space structure. The symbol table entry itself is not

deleted.

-§6~

Chapter 4 Implementation

DRAW and ERASE Commands

The DRAW command translates the definition of a picture
stored in the symbol table into a sequence of commands to
the output device driv;r. There are two output commands for
picture display, MOVE(X,Y) and VECTOR(X,Y). The first may
be interpreted as a command to move (the display cursor) to
the start point of a 1line segment and the second as a
command to draw a vector from the start point to the end
point of a 1line segment. The picture to be drawn is

approximated by a set of straight line segments and the
sequence of output commands is composed of a MOVE command
and a VECTOR command for each line segmént. In practice,
when the start point of a line segment is the same as the
end point of the preceding segment, the intervening MOVE
output command may be omitted. ’

The ERASE command makes similar use of the information
stored in the symbol table. The executor produces an output
command which indicates that a picture is to be erased
rather than displayed. It then retraces the picture and
issues the same sequence of MOVE and VECTOR commands as for
drawing.

The same algorithm is used to execute both DRAW and

ERASE commands. The first step is to send a code to the

output device driver indicating whether the picture

specified is to be drawn or erased. Then each component

Y

Chapter 4 Implementation

that is encountered as the executor traverses the structure

defining the picture is ¢translated to MOVE and VECTOR
commands for the output device driver. A component may be a
reference to another picture, a transformation of another
picture, or a picture primitive. If the component that is
encountered is itself a picture, it is recursively drawn or
erased. If the component is a transformation of a picture,
three steps are necessary. First the definition of the
transformation is pushed onto a transformation stack; Next
the picture is drawn or erased recursively. Finally the
transformation definition is popped off the transforﬁation
.stack. If the component is a picture primitive, four steps
are performed. All the transformation definitions on the
transformation stack are evaluated to produce a composiﬁe
transformation. Next a set of line segments which represent
the primitive is calculated from its canonical definition.
Then the end points of the 1line segments are adjusted
according to the composite transformation and clipped to the
bounds specified by the most recent SETSCREEN command.
Finally the adjusted 1line segments are translated to a

sequence of MOVE and VECTOR commands and sent to the output
device driver. When all the components have been processed
the command is complete.
HTEXT and VTEXT Commands

The HTEXT and VTEXT commands are both executed by one

-98~=

Chapter 14 Implementation

procedure. The first step is to compact all the text items
to be displayed into one text line. Text strings are placed
in the ¢text 1line character by character. Values to be
displayed are converted to a character string of appropriate
digits then placed in the text line. The decimal precision
of real values is arbitrarily limited to four digits. After
the text line has been constructed, the executor sends to
the ocutput device driver 1) the code for HTEXT or VTEXT, 2)
a command to move to the orientation point, and 3) the text
line.

The output commands for drawing and erasing pictures and
- for text display are buffered and sent to the output . device
driver. The output device driver runs concurrently with the
executor, but in the output process partition. It is
responsible for receiving and translating the device
independent output commands from the executor and for
prodﬁcing the corresponding device dependent commands for
driving a specific device.
SETSCREEN Command

To execute the SETSCREEN command, the exegcutor evaluates
the expressions defining the o}ientation point and the
¢lipping bounds and stores their values in a special entry
of the symbol table for that purpose.
BEGIN Blocks

The BEGIN block is represented internally by a statement

-90 =

Chapter 4 Implementation

chain where each element of the chain points to a single
statement record. To execute the BEGIN block, the executor
steps through the statement chain and recursively executes
the statement record pointed to by each element of the chain
as it is encountered.
IF_THEN_ELSE Command

There are two steps in the execution of an IF_THEN_ELSE
command . First the executor evaluates the boolean
expression pointed to by IF_BOOL. Then the appropriate
branch of the command is executed. If the boolean value is
true the statement record pointed to bf IF_TRUE is
. recursively executed. Otherwise, if the boolean expression
is false, the statement record pointed to by IF_FALSE is
executed.
WHILE DO Command

Execution of the WHILE_DO command involves repetition of
two steps. The first step 1is to evaluate the boolean
expression pointed to by WHILE_BOOL. If that value i§ true,
the executor recursively executes the command pointed to by
WHILE_TRUE and then repeats the evaluation of the boolean
expression. These two steps are repeated until the value of
the boolean expression becomes false.
Assignment Command

The assignment command is executed in two steps. First

the expression pointed to by SOURCE is evaluated. Then the

=100~

Chapter 4 Implementation

result of the evaluation is added to the symbol table entry
for the target of the assignment.
HALT Command

When the HALT command is executed, the executor sets the
status indicator to show that a HALT has occurred. If the
' HALT command was embedded in a BEGIN block, the remaining
commands are ignored. Control of the job process partition
is returned immediately to the parser which is responsible
for terminating the PIGLI system.
NULL Command

A NULL command is represented by a keyword in the
internal command structure. When it is encountered, usually
in one of the branches of an IF_THEN_ELSE command, no
execution is performed.
EXECUTE, LOGOFF, and LOGON Commands

The EXECUTE., LOGOFF, and LOGON commands require similar
processing. If an EXECUTE or LOGON command is executed, the
executor opens and initializes the file specified by the
identifier in the command structure. These files, either
log files or exec files, exist under the SOLO operating
system. If a LOGOFF command is executed, the executor
clﬁses the log file that is open. Only one log file or one
exec file may be open at a time so there is no ambiguity as
to which file is meant to be closed. After the appropriate

file has been opened or closed, the executor sets the status

-101-

Chapter 4 Implementation

indicator to reflect the desired changes in command source
or output destination.
LOAD Command

The LOAD command is wused to replace the device driver
that resides in the - output process partition. The first
step in executing this command is to terminate the output
device driver that is currently running. Then the executor
loads and initializes the new output device driver that is
specified in the LOAD command.
LIST Command

There are two different methods for executing a LIST
command, depending on whether the identifiers of a specific
type of symbol table entry are requested, or whefher the
definition of a particular identifier is desired. To obtain
a list of composed pictures or of the named instances of a
specific type of symbol table entry, the executor steps
thréugh the symbol table one entry at a time. If the entry
is of the requested type (PICTURE, LINE, CIRCLE, FIGURE,
CURVE, ARC, TRANS, TUDXN, or SCALE),.and it is a named entry,
the name is displayed on the system console. To list the
definition of a particular entry, the executor must first
locate that entry in the symbol table. If the entry is a
type other than PICTURE, the executor displays its type and
its canonical definition on the system console, labeled to

be easily understood. If the type of the identifier is

-102-

Chapter ¢ Implementation

PICTURE, the executor must traverse the chain of picture
definition components. If an element of the chain is a
named component, the executor 1lists the name of the
component and its type. If the component is unnamed, the
executor displays the type and the canonical definition of
the element. The display produced by a LIST command may be
larger than can be displayed at one time on the system
console device. To prevent the 1loss of necessary data the
executor keeps track of the number of lines being displayed
and does not fill more than a standard display screen (20

lines). To retrieve a subsequent section of displayed

information, the user enters a continue prompt and carriage

return.

To illustrate the process of executing a command,
consider the example given in the parser section of this
chapter. The command tag indicates an IF_THEN_ELSE
statement is to be executed (see Figure 4.7).

Execution begins by evaluating the expression pointed at
by the IF_BOOL pointer. As operands of the expression are
encountered, their values are pushed onto a temporary
evaluation stack. As operators of the expression are
encountered, two values are popped from the stack, the
indicated operation is performed, and the result is pushed

back ontoc the stack. When there are no more operators or

-103-

Chapter 4 Implementation

operands to be evaluated, the result is popped off the
stack. In this case the result is a boolean value to be
used to determine the next course of action.

If the wvalue of the boolean expression is true, the
executor executes the statement pointed to by IF_TRUE, in
this case an assignment statement. For the assignment
statement, the expression pointed to as the source is
evaluated in the same manner as for IF_BOOL and the result
is inserted in the symbol table for the entry indicated as
the target. If the value. of the boolean expression is
false, the IF_FALSE statement is executed. 1In this example,

the NULL statement pointed to by IF_FALSE requires no

execution.

=-104-

Chapter 5 Output‘Device Drivers

Output Device Drivers

As discussed in chapter three, PIGLI is implemented
under the SOLO operating system. The parsing/executing
functions of PIGLI run in SOLO"s job process partition and
the output device driver runs in the output process
partition. Separating the execution and output functions
made it possible to take advantage of the SOLO system’s
capability of changing output drivers. The PIGLI command
LOAD, discussed in chapter two, allows the programmer to
change output devices dynamically.

When a PIGLI command is dissued fhat produces graphical
display output, it 1is translated into a sequence of input
commands to the device driver. The driver then issues a
sequence of output commands to the device. The input
commands are uniform for all devicgs and will be discussed
in the first section of this chapter. The output commands

are device dependent and will be discussed in the second

section.

Device Driver Input

Input for a graphical output device is produced during
the execution of four PIGLI commands, DRAW, ERASE, HTEXT,
and VTEXT. The DRAW command is translated into a sequence
of input commands, each of which can be a MOVE command or a

VECTOR command. Both MOVE and VECTOR are absolute commands;

-105-

Chapter 5 Output Device Drivers

that is, they indicate movement of the display device cursor
from its current position to a new absolute position, rather
than to a position obtained by adding an increment to the
former cursor position. The parameters passed to MOVE and
VECTOR are two real values representing the x=coordinate
and y-coordinate of a point in two-space. The point is
interpreted as a position on the output device, relative to
an origin at the lower 1left corner and measured in inches.
MOVE(x,y) specifies that the cursor should be positioned at
the point (x,y) on the display device. VECTOR(x.,¥y)
specifies that a straight 1line should be drawn from the
current position of the cursor to the ﬁoint (x,y). A
sequence of MOVE and VECTOR commands causes a picture to
appear on the screen.

On a display device that allows selective erasure,
removing a portion of a display is accomplished by retracing
the drawn picture while the display device is in the erase
mode. To change the mode of the device, status commands are
used; WRITE for drawing a picture and ERASE for erasing a
picture. When it is necessary to erase an entire display.
it is more efficient to clear the device than to retrace all
the displayed pictures. The CLEAR command is used to erase
the entire display surface.

Text can be displayed both horizontally, left to right,

and vertically, top to bottom, wusing the PIGLI commands

-106-

Chapter 5 OQutput Device Drivers

HTEXT and VTEXT. These same commands are used as input

commands to the display device driver. The input commands

HTEXT and VTEXT have as a parameter the string of text

characters to be displayed. A general form of the device

driver input from each PIGLI display command is given in

figure 5.1.

PIGLI / Device Driver Ihterface

The device driver input commands are buffered intoc pages
of information before being sent to the output process.
Each page used to communicate with the output process is a

block of integers 512 bytes 1long (256 integers). Every

command is assigned a unique integer value as follows:

ERASE status 0
WRITE status 1
MOVE 2
VECTOR 3
HTEXT 4
VTEXT 5
CLEAR screen 6

End Of Transmission 7

The two real-valued coordinates of points for MOVE and

VECTOR commands are each packed into four integer blocks (8

=107~

Chapter 5 Output Device Drivers

PIGLI
Command Device Driver Input Commands
DRAW WRITE; MOVE (x1l,yl); VECTOR(x2,v2); ...
. MQVE (0,0) ; EOT.
ERASE ERASE; MOVE (xl,yl); VECTOR(x2,y2); ...
MOVE (0,0) ; EOT.
HTEXT WRITE; MOVE(x1l,yl); HTEXT(string);:
MOVE(0,0); EOT.
VTEXT WRITE; MOVE (x1l,yl); VTEXT(string);
MOVE (0,0) ; EOT.
ERASE CLEAR; MOVE(0,0); EOT.
SCREEN

Figure 5.1: Input Commands to the Output Device Driver
Generated by each Display Producing PIGLI
Command '

=108~

Chapter 5 Output Device Drivers

bytes). The character string parameter of HTEXT and VTEXT,
normally 132 characters 1long, is packed into 66 integer
blocks (two characters per integer block). A page is sent
to the output process as soon as it is full, and processing

begins on a new page. The SOLO system maintains

synchronization between the job process and the output
process so that no data is lost during page transfers. When
all the device driver input commands have been generated for
the PIGLI command requiring display, the End Of T?ansmission
command is added to the current page and the page is
transmitted to the output device driver. |

The output process receives its input page of commands
as an array of 256 integers., It then processes the
commands, breaking out command parameters as necessarye.
Commands ERASE status. WRITE status, CLEAR screen and End Of
Transmission (integers 0,1,6, and 7 respectively) do not
haveraccompanying parameters. Commands MOVE, VECTOR, HTEXT,
and VTEXT are followed in the array _by parameters as

described above. The following section discusses the device

drivers for specific output devices.

Computek 300 GT Device Driver

PIGLI was originally implemented with graphical output
limited to a COMPUTEK 300 GT CRT. The Computek is a storage

tube, thus eliminating the need for a refresh cycle in the

-109-~

Chapter 5 Output Device Drivers

output driver. It has three display modes, alphanumeric
mode for character display, four byte absolute mode for
absolute vector generation, and one byte incremental mode
for incremental vector generation. The Computek terminal
allows selective erasure or total screen erasure. Selective
erasure is accomplished by putting the terminal in erase
status and retracing the lines to be erased.

Normally the terminal is in character mode. When a
printable ASCII character is sent to the terminal while it
is in character mode, the character is displayed at the
current cursor position. When certain wunprintable ASCII
characters are sent to the terminal whilé it is in character
mode, they are interpreted as control characters and produce
special actions. Table 5.1 shows the decimal and binary
equivalents of each of the ASCII control characters and the
functions they specify.

The Computek terminai must be in character mode to
execute the input commands WRITE, ERASE, CLEAR, HTEXT, and
VTEiT. To execute the commands WRITE, ERASE, or CLEAR, the
appropriate ASCII character, as shown in Table 5.1, is
transmitted to the terminal. To execute HTEXT or VTEXT, the
characters of the text string are transmitted. 1In the case
of VTEXT, between each text character the ASCII characters
for LINEFEED and BACKSPACE are transmitted.

The terminal must be in four byte absolute mode to

-110-

Chapter 5

Decimal

10
12
14
15
28

Table 5.1:

Binary

00001000
00001010
00001100
00001110
00001111
00011100

Output Device Drivers

Task Specified

BACKSPACE

LINEFEED

HOME / ERASE

ERASE STATUS

WRITE STATUS

FOUR BYTE ABSOLUTE MODE

The Decimal and Binary Equivalents

of the ASCIT

Characters Used to

Control the Computek 300/GT

~111=

Chapter 5 Output Device Drivers

execute the input commands MOVE and VECTOR. To execute
either MOVE or VECTOR, four ASCII characters are
transmitted. The decimal equivalents of these four
characters are computed by the output device driver using
the coordinate values of the point parameter of the command,
the type of the command (MOVE or VECTOR), and other details
that are unique to the Computek terminal.

When it is necessary to change the términal mode from
character to four byte absolute, the ASCII character
represented by decimal value 28 jis transmitted. When the
change is from four byte absoclute to characfer, four ASCII
characters, corresponding to decimal 64, decimal 0, decimal
0, decimal 0, are transmitted.

The Computek driver uses the SOLO IOTRANSFER facility to
transmit data to the Computek terminal. For this procedure,
the ASCII characters produced by executing the display
device driver input commands are buffered into a page array
(512 characters). The transfer takes place when the page is
completely full or when thé End Of Transmission command is

encountered.

-1l1l2=~

Chapter 6 Conclusion

Conclusion

This report presents the design o¢f an interactive
-graphics language and aspects of its implementation as a
portable interpreper. The strong points of the PIGLI system
include interactive capabilities, general purpose
programming capabilities, hierarchical generation of
pictures from primitives, built-in referencing functions,
debugging facilities, exec files, output device
independence, and portability. There are three final areas
to be discussed in the chapter; the elements of the
described language that were not included in the initial
implementation, the desirable additions éo the initial
design, and the relationship of the initial design to the
recently published standards for a core graphics system.

The system, as initially implemented, does not contain
all the elements that were discussed in this paper.
Specifically, those unimpiemented items are

1) the building and drawing of curve and arc
primitives,
2) the LIST debuggiiy facilities,
3) the SETSCREEN command and clipping facilities.,
and
4) part of the built-in reference functions.
These features were not implemented at the time this report

was completed but will hopefully be added in the near

-113-

Chapter 6 Conclusion

future.

Several aspects of the PIGLI language and its
implementation are sufficient for a preliminary design but
should be reworked in the future in the interests of
elegance and efficiency.

Currently, the exec file facilities offer the user
access to predefined files of PIGLI commands. Any variable
information needed within the file to accomplish the desired
task must be assigned to the variable used in the exec file
before the exec file is invoked. This requires a deeper
knowledge of the contents of the exec file than should be
needed. A more reasonable method to permit the use of
variable information 1in an exec file 1is to provide a
parameter list for passing information when invoking an exec
file. Exec files are also restricted in that they cannot

invoke another exec file, although situations are easily

imagined where this ability would be an advantage.

PIGLI includes only two-dimensional line drawing
capabilities and transformations for scaling, translating,
and rotating pictures. The language should be expanded to
include three~-dimensional picture descriptions, as well.

Three dimensions require changes in the transformations that

already exist and the addition of perspective viewing

transformations and hidden line removal. Further work might

also be desirable to add wire network sur face

-114-

" Chapter 6 Conclusion

representations.

In designing this language, no emphasis was placed on
supplying input facilities other than keyboard command
input, primarily because sﬁch devices were not available.
The commands themselves are often verbose and the parser
requires the syntax to be perfect before accepting a
command. The parser should be revised to allow
abbreviations of keywords. Incomplete commands should
result in a prompt to supplf the missing information. Error
handling should allow the user to build on what was correct
rather than repeat the entire command. Command punctuation
is currently ignored after the command is parsed. Future
.revision should make punctuation optional. These additional
features would help both the novice wuser who is prone to
errors and the expérienced user who qants shortcuts.

A complication arises in the design of hierarchic
pictﬁre constructiﬁn facilities when a picture is redefined
in terms of itself. An arithmetic analogy would be the
evaluation of the assignment statemént A :=A +1. In the
assignment, the value of the variable A is redefined in
terms of its previous value. For pictures, the analogy
holds unless there is another picture defined in terms of
the original definition of picture A. The decision had to
be made regarding the effects of the redefinition of a

component of a picture in PIGLI. It was arbitrarily decided

=115~

Chapter 6 Conclusion

that changes in a component would also change previously
defined pictures based on that component. It would be
advantageous to allow the user to specify that a picture
definition is static and cannot be changed if the definition
of a component of that picture changes. Other aspects of
assignment of picture data types are discussed by Schrack
(1976).

One of the strong points of PIGLI is the ease with which
the system may be adapted to new output devices. As
graphics devices are acquired, drivers should be added to
the system.

In the past few years there has been increasing
discussion of the need for. graphic standards as a guide to
graphic language designers. The design. of the PIGLI
language was completed prior to the final report of the
committee engaged in restablishing the proposed graphic
standards (Status, 1977). Their report distinguishes
between two types of graphics systems, a graphic viewing
system and a graphié modelling system. The graphic viewing
system 1is primarily concerned with the mechanics of
displéying a graphic object on some hardware device, that
is, picture generation. The graphic modelling system is
concerned with the necessary functions for constructing and

manipulating objects to be displayed. The PIGLI language

focuses on the modelling aspects of picture construction and

-116-

Chapter 6 Conclusion

manipulation, and contains only a small portion of the

display generation facilities described in the standards
report. Consequently, the graphic standards presented apply
only to the area of PIGLI where the execution of commands

requiring graphical output interfaces with the output device

driver.

-117-

REFERENCES

Bassman, M.J., "APLBAGS - An APL Basic Graphics Subroutine
Package for Tektronix 4013 Storage Tube Terminal",
_Computer Graphics, Veol. 7, No. 4, 1973.

Boullier, P., J. Gros, P. Jancene, A. Lemaire, F. Prusker,
E. Saltel, "METAVISU -~ A General Purpose Graphic
System", Graphic Languages, Proc. of IFIP Working Conf.
on Graphic Languages, North-Holland Press, 1972.

Brinch Hansen, P., "The SOLO Operating System", Software =

Practice and Experience, Vol. 6, No. 2, April - June,
1976.

caruthers, L.C., J. van der Bos, A. van Dam, "A Device
Independent General Purpose Graphic System for
Stand-Alone and Satellite Graphics", Proc. of SIGGRAPH
“77, Computer Graphics, Vol. 11, No. 2, 1977.

Dewar, R.B.K., SPITBOL, Version 2.0, Chicago, Illinois,
Illinois Institute of Tecxhnology, 1971.

DISSPLA Beginners/Intermediate Manual, Integrated Software
Systems Corp., San Diego, California, 1970.

Eastman, C., M. Henrion, *"“GLIDE - A Language for Design
Information Systems",Proc. of SIGGRAPH °77, Computer
Graphics, Vol. 11, No. 2, 1977.

Giloi, W.K., "On High-Level Programming Systems for
Structured Display Programming®, Proc. of SIGGRAPH “75,
Computer Graphics, Vol. 9, No. 1, 1975.

Giloi, W.K., J. BEncarnacao, “"APLG - An APL Based System for
Interactive Computer Graphics", Proc. of AFIPS NCC,
1977.

GINO-F, The General Purpose Graphics Package Refegence
Manual, Computer Aided Design Centre, Cambridge,

England, 1975.

Gries, D., Compiler Construction for Digital Computers, Johm
Wiley and Sons, Inc., New York, 1971.

Hartman, A.C., A Concurrent PASCAL Compiler for
Minicomputers, Thesis, California Institute of
Technology, Pasadena, California, 1976.

Hurwitz, A., J.P. Citron, J.B. Yeaton, “GRAF - GRaphic

-118-

Addition to FORTRAN", Proc. AFIPS SJCC, Thompson Books,
Washington, D.C., 1967.

Knowlton, K.C., "EXPLOR - A Generator of Images from
Explicit Patterns, Local Operations, and Randomness",
Proc. of UAIDE Annual Meeting, Stromberg Datagraphix,
1970.

Kulsrud, H.E., "A General Purpose Graphic Language", CACM,
Vol. 11, No. 4, 1968. _ S

Neal, D., G. Anderson, J. Ratliff, V. Wallentine, KSU
Implementation of Concurrent PASCAL = A Reference
Manual, Tech. Rep. 76-16, Kansas State University Dept.
of Computer Science, 1977. _

Newman, W.M., "Display Procedures", CACM, Vol. 14, No. 10,
1971.

O°Brien, C.D., H.G. Bown, "IMAGE - A Language for the
Interactive Manipulation of a Graphic Environment",
Proc. of SIGGRAPH “75, Computer graphics,. Vol. 9, No. 1,
1975. R

Robbins, F.E., W.G. Green, "WAVE = Interactive Color
Graphics for Waveform Analysis", Proc. of SIGGRAPH °75,
Computer Graphics, Vol. 9, No. 1, 1975.

Schrack, G.F., "On the Semantics of the Assignment Statement
of High Level Graphical Languages®", Proc. of SIGGRAPH
“76, Computer Graphics, Vol. 10, No. 2, 1976.

Shapiro, L.G., "ESP3 - A High-Level Graphics Language”,
Proc. of SIGGRAPH 75, Computer Graphics, vol. 9, No. 1,
1975.

Shapiro, L.G., R.J. Baron, "ESP3 - A Language for Pattern
Description and a System for Pattern Recognition", IEEE

Transactions on Software Engineering, Vol. SE-3, No. 2,
1977.

“Status Report of the Graphic Standards Planning Committee
of ACM/SIGGRAPH®", Computer Graphics, Vol. 11, No. 3,
1977. -

Streit, E., "VIP - A Conversational System for Computer
Aided Graphics", Pertinent Concepts in Computer
Graphics, Proc. of Second University of Illinois Conf.
on Computer Graphics, University of Illinocis Press,
1969.

-119-

Sutherland, I.E., SKETCHPAD - A Man-Machine Graphical

Communication System, MIT Lincoln Laboratory, Tech. Rep.
296, 1965.

van Dam, A., D. Evans, "A Compact Data Structure for
Storing, Retrieving, and Manipulating Line Drawings",
Proc. AFIPS SJCC, Thompson Books, Washington, D.C.,
1967.

Wallace, V.L., GRASP = A PL/1 Oriented Machine Independent
Graphics Structure Handler, Tech. Rep., University of
North Carolina Dept. of Computer Science, Chapel Hill,
N.C., 1974. ‘

Wexeblat, R.L., H.A. Freedman, “The MULTILANG On-Line
Programming System", Proc. of AFIPS SJCC, Thompson
Books, Washington, D.C., 1967.

Williams, R., "A General Purpose Graphical Language",
Graphic Languages, Proc. of IFIP Working Conf. of
Graphic Languages, North-Holland Press, 1972.

-120-

Appendix A Syntax and Semantics

Syntax and Semantics

This appendix discusses the precise syntax and semantics
of PIGLI commands. The syntax diagrams use an extended
Backus-Naur form as discussed by Gries (1971). 1In each
syntactic construct the terminals are keywords and special
symbols. (PIGLI keywords and special symbols are shown in
Table A.l1.) Non-terminals are enclosed in angular brackets,
< and >. Constructs that may be repeated an indefinite
number of times are enclosed in metabrackets, { and }.
Superscript and subscript numbers on the right metabracket
indicate the upper and lower bounds allowed for repeated
constructs. Where the upper bound is theoretically
infinitely large, it may in fact be constrained by the
limits of a particular hardware configuration. When a
non-terminal may produce one of several possible constructs,
the alternatives are separated by ..

Identifiers, strings, and real and integer numbers are
elements of several constructs. Identifiers may name
arithmetic variables, pictures, bicture components, or
external files (for EXEC files, saved picture display files,
and alternate display device drivers). Identifiers may be
one to twelve characters long, beginning with an alphabetic
character and containing only alphabetic and numeric
characters. Keywords are reserved identifiers, which may be

used only for their special purposes.

=121~

Appendix A

BEGIN
REAL
INTEGER
IF
WHILE
EXECUTE
ENTER
EXIT
LOGON
LOGOFF
NULL
HALT
.BUILD
CHANGE
DELETE
SETSCREEN
DRAW
ERASE
LIST
HTEXT
VTEXT

no"v Ay
i u

Table A.1l:

KEYWORD TOKEN CODES

SAVE
. LOAD
NOT
AND

OR
DIV
MOD
CONV
TRUNC
VALU
XVAL
YVAL
THEN
ELSE
DO
END
XLEN
YLEN
DEF
SCREEN
LINE

SYMBOL TOKEN

A aso+ 1

Syntax and Semantics

CIRCLE
ARC
FIGURE
CURVE
TRANS
TURN
SCALE
START
MID
ENDPT
CENTER
TOP
BOT
LEFT
RIGHT
PDIS
PDEG
ABOUT
LENGTH
RADIUS
FACTOR

CODES

o8 o, ne [~a
o
=

DEG
ANGLE
FRDEG
TODEG
FORM
OPEN
CLOSED
DIR
CW
CcCw
POINT
PNT
LTOP
RTOP
LBOT
RBOT
TRIGHT
BRIGHT
TLEFT
BLEFT

e | o
v

PIGLI Keywords and Special Symbols

-122-

Appendix A Syntax and Semantics

<identifier> ::= <letter> {<letter_or_digit>}

<letter_or_digit> ::= <letter> ;| <digit>

<letter> ::= A | B{ C {DI{E F!{G I H'II:!J
¢ KL IiM NJOJP Q. . R, ST, U,
ViW i XY | 2Z2, _

<digit> ::= 0 ; 1 ;2 ;3 { 4,5, 6,7 ;8,09

A string is a sequence of eighty or fewer characters

enclosed in single quotes. In the current implementation of

PIGLI, any ASCII <character may be in a string. If the

string is to contain a single quote, it must be written as

LA -

two single quotes, ° .

-

<gtring>» ::= ° <character> {<character>}
Numbers are unsigned integer or real values.

<integer> ::= <digit> {<digit>}
<real> ::= <integer> . <integer>

A comment is a sequence of characters enclosed in double

gquotes. They may be inserted between any two keywords,

identifiers, numbers, strings, or special symbols. Comments

cannot contain double gquotes as part of the body of the

comment. No action is associated with a comment.

<comment> -::= " <character> {<character>} "

A PIGLI program is a sequence of PIGLI commands issued
interactively at a programming console. Each command is
terminated by a period. The commands fall into four general
categories; programming commands, pictﬁre construction

-123-

Appendix A Syntax and Semantics

commands, picture display commands, and special utility

commands.

<program> ::= <command> . {<command>
<command> ::= <programming_commands>

<picture_construction_commands>
]

<picture_display_commands> ,
<special_utility_ commands>

Programming Commands
Programming commands are for type declaration and

assignment of arithmetic variables, and for program control.

<programming_commands> ::= <declaration> ,
<assignment> | <IF_THEN_ELSE>

<WHILE_DO> | <BEGIN_END>

Identifiers to be wused as variables in arithmetic,

assignment commands must be declared to be of type real or
type integer before they are used. Once a variable has been

declared, its type is fixed so it may not be used in any

other capacity. Identifiers to be used to name pictures are

declared by the context in which they appear.

<declaration> ::= REAL <variable_list> ,
INTEGER <variable_list>

<variable_list> ::= <identifier> {, <identifier>}

The assignment command is used to replace the current
value of a variable by a new value represented as an
expression. The target variable and all variables and
constants in the expression must agree in type.

-124-

Appendix A Syntax and Semantics

Expressions are sequences of operands (variables and
constants), operators, and functions. Each operator or
function indicates a specific action on one or more operands
which produces a value. Rules of precedence determine the
order in which operators and functions are evaluated. The
highest precedence 1is given to parenthetical expressions,
conversion functions, and value reference functions.
Expressions in parentheses are evaluated recursively
according to all precedence rules. The conversion functions
CONV and TRUNC are for converting integer values to real and
real values to integer, respectively. Value reference
functions are built-in functions wused to retrieve the
numeric values of the attributes of pictures. The value
reference functions VALU, XVAL, and YVAL will be more
completely discussed below with the picture construction
commands.

The second level of precedence includes multiplication
and division operators. Real and integer multiplication are
indicated by the “*° operator. Réal divisiop is performed
by the °“/° operator. Integer division is done by two
operators; DIV produces the integer quotient of integer
division and MOD produces the remainder of integer division.

The lowest level of precedence includes addition and

subtraction operators. The “+° operator indicates addition

-’ L4

for both real and integer values. The - operator

-125-

\

Appendix A Syntax and Semantics

indicates subtraction when used with two operands and as a

unary minus when used with one operand. When several
operations have the same precedence level they are evaluated

from left to right.

<assignment> ::= <identifier> := <expression>
<expression> ::= = <term> {<aop> <term>} |
<term> {<aop> <term>} -
<aop> ::= T -
<term> ::= <factor> {<mop> <factor>}
<mop> ::= * | / | DIV , MOD
<factor> ::= <conversion_function> |
<value_reference_function> |
(<expression>) | <identifier> |
<real> , <integer>
<conversion_function> ::= TRUNC (<expression>)
) CONV (<expression>)
<value_reference_function> ::= ’
VALU (<identifier> , <value_reference>)
XVAL (<identifier> , <point_reference>
YVAL (<identifier> , <point_reference>

T

Boolean expressions are wused to determine execution
alternatives in program control commands . A boolean
expression is made of 16gica1 expressions and the operators
AND, OR, and NOT. Logical expressions are parenthetical
boolean expressions or two arithmetic expressions separated
by one of the 1logical operators <, >, =, <=, >=, <>. The
arithmetic expressions must be of the same type real or
integer. Logical operators have higher precedence than
boolean operators. 0f the boolean operators, AND and OR

have higher precedence than NOT.

-126~

Appendix A Syntax and Semantics

<boolean_expression> ::=
NOT <logical_expression>
{<bop> <logical_expression>} |
<logical_expression>
{<bop> <logical_expression>}

<bop> ::= AND ,; OR ;

<logical_expression> ::= (<boolean_expression>) |
<expression> <lop> <expression>

<lop> ::= < |, > | = | <= | >= | <>

PIGLI has two programming control c¢ommands, the
conditional IF_THEN_ELSE command and the repetitive WHILE_DO
command. The IF_THEN_ELSE command contains a boolean
expression and two alternate command c¢lauses. If <the
evaluation of the boolean expression 1is true, the THEN
clause of the command is executed. If it is false, the ELSE
clause is executed. Both command clauses must be present to
avoid a syntax error.

<IF_THEN_ELSE> ::= IF <boolean_expression> THEN
<command> ELSE <command>

The repetitive WHILE DO c¢ommand contains a boolean

expression and a command clause. If the evaluation of the

boolean expression is true the command clause is executed

until the boolean expression becomes false. It is possible

that the command <c¢lause is never executed or that it is
executed infinitely within the 1limits of the computer on

which PIGLI is implemented.

<WHILE_DO> ::=
WHILE <boolean_expression> DO <command>

-127-

Appendix A Syntax and Semantics

The command clauses of the IF_THEN_ELSE command and the

WHILE_DO command may not contain a declaration command.

The BEGIN_END command is wused to compound several

commands to be used as -a single PIGLI command. Each PIGLI

command within the compound command 1is terminated by a

»

semicolon, “:°.

<BEGIN_END> ::=
BEGIN <command> ; {<command> : } END

Picture Construction Commands

Picture construction c¢commands are used to define

two-dimensional line drawings and to delete them when they

are no longer wanted.

<picture_construction_commands> ::=
<BUILD> | <DELETE>

A pPicture may be made of several picture elements. To

BUILD the definition of a picture, the description of

elements of the picture is associated with a picture

identifier. The “&° operator indicates the composition of

two or more picture elements.

<BUILD> ::= BUILD <identifier> :=
<picture_element> { & <picture_element> }

There are three general types of picture elements. Each

-128-

Appendix A Syntax and Semantics

element may be a picture that is already defined; a
transformation of a picture that is already defined, or a
Picture primitive, that is, a generalized building block of
PIGLI pictures. To use a previously defined picture as an
element of a new picture, the identifier to which the first

picture was assigned is specified in the definition of the

new picture. Transformations of pictures and picture

primitives are specified by precise definitions. The unit

of measure used to describe transformations and picture

primitives is inches. Transformations and picture

primitives may optionally have individual names apart from

the name o©f the whole picture. These names permit the

individual elements of the picture to be referenced. Names

are assigned to picture elements by preceding the definition

of the element with the desired identifier and the immediate

Ed

assignment operator “:7.

<picture_element> ::= <picture_identifier> ;
L]

<transformation> .
<identifier> := <transformation> |

<primitive> | <identifier> := <primitive>
<picture_identifier> ::= <identifier>

A transformation is based on a picture that was

previously defined. A keyword indicates which

transformation is desired (translation, rotation, or

scaling), followed by the definition of that transformation

enclosed 1in parentheses. The definition includes the

-129-

Appendix A Syntax and Semantics

picture to be transformed, specified by its picture

identifier, followed by specific parameters for each type of
transformation. For translation (TRANS), the parameters are
two points, separated by the operator “=>°, which define the
translation. The first point indicates the point in the
base picture that will be mapped to the second point after
translation. Rotation (TURN) has three parameters: ABOUT
{(a point in the base picture about which to rotate the
picture), ANGLE or DEG {(the amount of rotation in degrees to
rotate the picture), and DIR (the direction to rotate the
picture, either clockwise or counterclockwise (CW or CCW)).
Scaling has two parameters: ABOUT (a point in the base
picture about which to scale the picture) and FACTOR (the
factor by which to scale the picture). Scaling factors may
be greater than one to increase picture size or less than
one to decrease size. A scaling factor egual to one does
not affect the size of the picture.

For rotation and scaling, the parameters are keyword
parameters. They do not need to be in any fixed order; they
are identified by the keyword, not by pqsition in the
parameter list. Keyword parameters are separated from each

other by commas.

=130~

Appendix A Syntax and Semantics

<transform> ::= TRANS (<picture_identifier> ,
<point> => <point>) |

TURN (<picture_identifier>

{ . <TURN_parameters> }) ;|

SCALE (<picture_identifier>

{ , <SCALE_parameters> })

<TURN_parameters> ::= ABOUT = <point> |

ANGLE = <expression>
DEG .
CW
DIR = CCW

<SCALE_parameters> ::= ABOUT = <point> |
FACTOR = <expression>

The values that are assigned to transformation
parameters may be points, expressions or keywords. When a
parameter requires a point as its assigned value it may be
defined explicitly using the keyword PNT and the x and y
‘coordinates of the point represented by expressions. -Or it
may be defined by a point reference function. A point
reference function is a built-in function used to retrieve
the coordinates of point attributes of picture primitives.
(The point reference function POINT will be discussed
later.) Expressions usgd as values of transformation
parameters follow the same rules as expressions used in
arithmetic assignment commands. When the value of a
parameter is a keyword the possible choices are those given

in the syntax diagrams.

<point> ::= PNT (<expression> , <expression>) |

<point_reference_function>
<point_reference_function> ::=
POINT (<identifier> , <point_reference>)

-131~-

Appendix A Syntax and Semantics

Picture primitives are the building blocks of the
pictures constructed using PIGLI. They are descriptions of
simple two-dimensional line drawings from which more complex
two-dimensional drawings may be composed. There are five
picture primitives in PIGLI; a straight LINE, a CIRCLE, an
ARC of a circle, a FIGURE made of points connected by
straight lines, and a CURVE made of points connected by
curved lines. An instance of a picture primitive is defined

by the primitive keyword followed by a parameter list
enclosed in parentheses.
<primitive> ::= LINE { <LINE_parameters>) |
"CIRCLE (<CIRCLE_parameters>)
ARC (<ARC_parameters>) |

FIGURE (<FIGURE-CURVE_parameters>)
CURVE

The parameter list of a PIGLI picture primitive defines
the sife and position of the primitive. There is a finite
set of keyword parameterér that may be specified for each
type of picture primitive (See Figure A.l). These keyword
parameters do not need to be in any fixed order within the
parameter list. Each parameter defines an attribute of the

primitive. LINEs, CIRCLEs, and ARCs have several
attributes. Different subsets of these attributes may be
used to define a particular instance of a LINE, a CIRCLE, or
an ARC. To avoid specification redundancy, only the

attributes of one accepted subset may be used to define an

-132-

Appendix A Syntax and Semantics

ENDPT

LINE o LENGTH
PDIS(D2, ENDPT)
MID
Dl/" PDIS (D1, START) \
ANGLE
POINTS VALUES
CIRCLE ToP
FJ
¥ (o)
LEFT J—"B- RIGHT
REDRIES RADIUS
BOTTOM
POINTS VALUES
apc PDEG(D2, ENDPT)
~SENDPT TODEG
MID .
DIR = CW
PDEG (D1, -;..yc:ENTER f’;').. _———— e
ST FRDEG FORM = MAJOR
START MINOR
POINTS VALUES KEYWORDS
FIGURE ENOT
KNOT KNOT
X KNOT '
FORM = OPEN
KNOT KNOT : _ CLOSED
KNOT .
POINTS KEYWORDS
KNOT

[}

KHOL xnor § XNOT FORM = OPEN

: CLOSED
KNOT

POINTS KEYWORDS

Figuré A.l: The Specification Attributes
for Picture Primitives

=133~

Appendix A Syntax and Semantics

instance of a picture primitive and all of the attributes in
that subset must be used. The accepted attribute subsets
that may be wused to define LINEs, CIRCLEs, and ARCs are
given in Table A.2.

The values that are a#signed to the attributes of
picture primitives Gill be points, arithmetic expressions,
or keywords. These values are specified for picture
primitives the same way that they are specified for
transformation parameters.

The values of LINE attributes are points and
expressions. The START point, the MID point, and the ENDPT
point correspond to physical points on a LINE. The LENGTH
of a LINE is the distance between the START point and the
ENDPT point. The ANGLE or DEG of a LINE is the number of
degrees in the counterclockwise direction from a horizontal
line through the START point of the LINE. PDIS is a point

on the LINE defined by giving the length from either the

START point or the ENDPT point.

<LINE_parameters> ::= <LINE_keyword_parameter>

{ + <LINE_keyword_parameter> }
<LINE_keyword_parameter> ::=

START

MID = <point> |

ENDPT START

PDIS (<expression> , ENDPT) = <point> |

ANGLE = <expression> ,

DEG

LENGTH = <expression>

The values assigned to CIRCLE attributes are also points

-134-

Appendix A Syntax and Semantics

LINEs are defined by the following attribute
combinations:
1) START, END
2) START, MID
3) END, MID
4) START, PDIS(D, END)
5) END, PDIS(D, START)
6) MID, PDIS(D, END)
7) MID, PDIS(D, START)
8) START, ANGLE, LENGTH .
9) MID, ANGLE, LENGTH
10) END, ANGLE, LENGTH
11) PDIS(D, START), ANGLE, LENGTH
12) PDIS(D, END), ANGLE, LENGTH

A CIRCLE point is one of the following six attributes:
TOP, BOT, LEFT, RIGHT, CENTER, PDEG(D)

A CIRCLE is defined by
any CIRCLE point, RADIUS

An ARC point is one of the following:
START, MID, END, CENTER, PDEG(D, START), PDEG (D, END)

Arcs are defined by one of the following attribute
combinations:
1) any ARC point, TODEG, FRDEG, RADIUS, DIR
2) any ARC point, TODEG, DEG, RADIUS, DIR
3) any ARC point, FRDEG, DEG, RADIUS, DIR
4) START, END, RADIUS, DIR, FORM
5) START, MID, RADIUS, DIR, FORM
6) END, MID, RADIUS, DIR, FORM
7) END, PDEG(D, START), RADIUS, DIR, FORM
8) START, PDEG(D, END), RADIUS, DIR, FORM
9) MID, PDEG(D, START), RADIUS, DIR, FORM
10) MID, PDEG(D, END), RADIUS, DIR, FORM
11) PDEG(D1l, START), PDEG(D2, END), RADIUS, DIR, FORM

FIGUREs and CURVEs are defined by a set of points called
KNOTS and an attribute called FORM that may be either OPEN
or CLOSED:

1) EKNOTS, FORM

Table A.2: Legal Definitions of all PIGLI
Picture Primitives

=135~

Appendix A Syntax and Semantics

and expressions. CENTER, TOP, BOT, LEFT, and RIGHT

correspond to physical points on or in a CIRCLE. RADIUS is
the distance between the CENTER point and any point on the
CIRCLE. PDEG is a point on the CIRCLE defined by giving the
disiance in degrees in the counterclockwise direction from

the RIGHT point.

<CIRCLE_parameters> ::=
<CIRCLE_keyword_parameters>

{ ., <CIRCLE_keyword_parameter> }
<CIRCLE_keyword_ parameter> ::=

CENTER
TOP
BOT = <point> |
LEFT
RIGHT
PDEG (<expression>) = <point> |
RADIUS = <expression>

The values of ARC attributes are points, expressions,
and keywords. The START point, the_MID point, and the ENDPT
point correspond to physical points on the ARC. The CENTER
point is the c¢enter of the circle of which the ARC is a
part. PDEG is a point on the ARC defined by giving the
distance in degrees from either the START point or the ENDPT
point of the curve. The values FRDEG, TODEG, and DEG are
angles measured in degrees in the counterclockwise
direction. FRDEG measures the distance of the START point
from the horizontal line extending from the CENTER point of

the ARC to the right. TODEG measures the distance of the

ENDPT point from the same horizontal line. DEG measures the

-136-

Appendix A Syntax and Semantics

distance from the TODEG point to the FRDEG point, that is

the length of the ARC in degrees. The RADIUS value is the

distance from the CENTER point of the ARC to a point on the

ARC. The DIR is the direction from the START point to the

ENDPT point of the ARC. The keyword values of DIR may be CW

for clockwise or CCW for counterclockwise.

<ARC_parameters> ::= <ARC_keyword parameter>
{ ., <ARC_keyword_parameter> }
<ARC_keyword_parameter> ::=
START
MID = <point> |
ENDPT
CENTER START
PDEG (<expression> , ENDPT) = <point> ;
TODEG
FRDEG = <expression> |
DEG
RADIUS = <expression> |
DIR = CW
CCW

The values of FIGURE and CURVE attributes are points,

and keywords. KNOTS are the nodes of the FIGURE or CURVE
listed in the order they are encountered when tracing the
FIGURE or CURVE. The FORM of a FIGURE or CURVE may be
either OPEN or CLOSED. When the FORM is OPEN, there is no
connecting line between the last KﬁOT and the first KNOT of

the FIGURE or CURVE.

-137-

Appendix A Syntax and Semantics

<FIGURE-CURVE parameters> ::=
<FIGURE-CURVE_keyword_parameter>
{ , <FIGURE-CURVE_keyword_parameter> }

<FIGURE-CURVE_keyword_parameter> ::=
FORM = OPEN :
CLOSED
KNOTS (<point> { , <point> })

Reference functions are built-in functions for
retrieving some of the attributes of picture primitives that
have already been defined. 1In any production where a point
Oor an expression may be wused, PIGLI allows point reference
functions and value reference functions, respectively, to be
used. Since points may be specified by the values of their
x and y coordinates, represented by expressions, value
reference functions may be used in the definition of points
also. Reference functions have as parameters the idEntifier'
of the picture primitive and the attribute of that picture
primitive whose value is to be returned. If the picture
primitive is a component of a complex picture, it must be a
named component in order to have attributes retrieved for
it.

The POINT reference function is wused to return the
values of both the x coordinate and the y coordinate of
points from the stored description of a picture primitive,
The value of any legal, point-valued attribute of aa picture
primitive may be retrieved by the POINT reference function
rather than just the attributes that were actually used.
For example, if a circle has been defined by the position of

-138-

Appendix A Syntax and Semantics

its TOP point and the value of its RADIUS, any of the points
TOP, BOT, LEFT, RIGHT, and CENTER may be retrieved using the
POINT reference function. XVAL and YVAL are value reference
functions which retrieve the x coordinate and the Y
coordinate, respectively, of points from the stored
description of a picture primitive.

The VALU reference function returns the values of
picture primitive attributes that were defined by
expressions. Again, the attributes to be retrieved do not
need to be the same as the attributes used to describe the
picture primitive, but they do need to be legal attributes
of the definition of the desired picture primitive. For

example, it is not correct to retrieve the value of RADIUS

from a picture primitive of type LINE.

<point_reference_function> ::=
POINT (<identifier> , <point_reference>)
<point_reference> ::= START | MID | ENDPT ,
TOP | BOT | LEFT ; RIGHT ; CENTER

<value_reference_function> ::=
XVAL (<identifier> , <point_reference>
YVAL (<identifier> , <point_reference>
VALU (<identifier> , <value_reference>)
<value_reference> ::= LENGTH | ANGLE | DEG ; \

RADIUS |, FRDEG ; TODEG

i
-

The DELETE command is used to remove a description of a

picture referenced by its picture identifier, from the data

structure where it was stored. There is no checking done to

insure that other picture descriptions do not depend on the

-139-

Appendix A Syntax and Semantics
picture to be deleted.

<DELETE> ::= DELETE <picture_identifier>

Picture Display Commands

Picture display commands are for drawing and erasing
pictures, for displaying text, and for adjusting window and
clipping boundaries.

<picture_display_commands> ::=
<DRAW> ! <ERASE>
<HTEXT> | <VTEXT> .,
<SETSCREEN>

To draw or erase a picture, the name af the picture is
specified in a DRAW or ERASE command. Picture elements with
individual names may be drawn or erased also. An
accummulated picture display may be obtained by issuing
several DRAW commands in succession.

The picture identifiér of a picture is entered in the
SCREEN file when it is drawn and removed from the file when
it is erased. ERASE SCREEN clears the display device and
empties the SCREEN file. DRAW SCREEN is designed to allow
the programmer to reproduce a set of drawn pictures. For
example, piétures may be interactively constructed on a

gfaphics CRT, then redrawn using the DRAW SCREEN command

after changing the output device with the LOAD command.

<DRAW> ::= DRAW <identifier> | DRAW SCREEN

-140-

Appendix A Syntax and Semantics

<ERASE> ::= ERASE <identifier> | ERASE SCREEN

The HTEXT and VTEXT commands are for displaying text
material either horizontally or vertically. The text
commands are followed by an orientation point for the
beginning of the text to be displayed and a list of text
items. Text items are strinqs or arithmetic expressions.
Precision of real values is arbitrarily 1limited to four
decimal digits.

<HTEXT> ::= HTEXT <point> , <text_list>
<VTEXT> ::= VTEXT <point> , <text_list>

<text_list> ::= <text_item> { , <text_item> }

<text_item> ::= <string> , <expression>

The SETSCREEN command is used to specify the window and
clipping boundaries for displaying pictures. A SETSCREEN
command will also clear the picture display screen without
resetting the SCREEN file. SETSCREEN has three parameters
which may be given in any order. It is not necessary to
specify all three parameters. Initially the parameters
default to PNT(0,0), XLEN=8, and YLEN=7. After a SETSCREEN
command has been issued those éarameters specified are used
as defaults. An orientation point indicates which picture
point is to be mapped to the 1lower left hand corner of the
display screen. Two keyword' parameters give the values
needed to calculate the <¢lipping boundaries based on the

orientation point. XLEN is the width of the area within the

-141-

Appendix A Syntax and Semantics

clipping bounds and YLEN is the height of that area. Figure
A.2 illustrates the three parameters.

<SETSCREEN> ::= SETSCREEN <point> ,
XLEN = <expression> , YLEN = <expression>

' Special Utility Commands

Utility commands perform several varied functions.

<special_utility_commands> ::= <HALT> ,
<NULL> | <LOAD>» , <LIST> ;
<LOGON> | <LOGOFF> | <EXECUTE>
The HALT command terminates execution of the PIGLI
interpreter. The NULL command performs no operation. It is
intended to be used in branches of the IF_THEN_ELSE command
where no operation is desired.

<HALT> :
<NULL> :

The LOAD command is wused to dynamically change the
display output device driver during a programming session.
The LOAD command has one parameter, the identifier by which
the SOLO operating system knows the device driver.
(Specific information concerning device drivers is given in

chapter five.)
<LOAD> ::= LOAD <identifier>

The LIST command is wused to retrieve information about

=142~

Appendix A Syntax and Semantics

‘ XLEN :

8
(a + XLEN, b + YLEN)

ZEHx

- *®(a,b)

Figure A.2:~ An Illustration of SETSCREEN Parameters

-143-

Appendix A Syntax and Semantics

Pictures processed in the programming session. There are
four variations of LIST for reviewing different information.
One form (LIST) may be used to 1list the identifiers of
pictures. A second form (LIST <primitive_or_transform>) may
be used for 1listing the identifiers of picture elements
according to the type of the element. These two forms do
not sﬁow any of the relationships between pictures and
picture elements. The second form does not list any unnamed
picture elements.

The third form (LIST DEF <identifier>) has one parameter
which is the identifier of a picture or a picture element.
The LIST DEF command returns the definitién of the picture
or element identified by the parameter. For components of
pictures that are pictures or named ﬂransforms and picture
primitives, LIST DEF 1lists the identifier naming that
element. For unnamed transforms and picture primitives, the
canonical definition of the picture element is listed. The
fourth form (LIST SCREEN) returns the identifiers of all the
pictures currently being displayed.

<LIST> ::= LIST ; LIST <primitive_or_transform> |
LIST DEF <identifier> | LIST SCREEN

<primitive_or_transform> ::= LINE ; CIRCLE ; ARC ,;
FIGURE , CURVE | TRANS ,; TURN ; SCALE

The LOGON and LOGOFF commands are used to make a record
of PIGLI programming sessions as they are in progress. The
LOGON c¢command has one parameter to specify the name of the

=144~

Appendix A Syntax and Semantics

external disk file where the commands that are issued are to
be recorded. The LOGOFF command closes the log file. Two
LOGON commands may not be issued in a programming session
without an intervening LOGOFF command.

<LOGON> ::= LOGON <identifier>

<LOGOFF> ::= LOGOFF

The EXECUTE command is used to direct the interpreter to
an exec file or a 1log file to execute commands from the
file. The EXECUTE command has one parameter, the identifier
by which the SOLO operating system knows the file to be
executed. The interpreter executes commands from the exec
file until the file is exhausted at which time it will begin

to accept commands from the console device again. The exec

file may not contain an EXECUTE command.

<EXECUTE> ::= EXECUTE <identifier>

~145-

Appendix B GRAPHSOLO Prefix

AR R
PREFIX
iS22 5

couszuL)= “{(:10:)7; FF = “(:12:)°; CR = “(:13:)°; EM
= “(:25:)":

CONST PAGELENGTH = 512;:-
TYPE PAGE = ARRAY (.1..PAGELENGTH.) OF CHAR:;

CONST LINELENGTH = 132;
TYPE LINE = ARRAY (.l1l..LINELENGTH.) OF CHAR:;

CONST IDLENGTH = 12;
TYPE IDENTIFIER = ARRAY (.l1..IDLENGTH.) OF CHAR:

TYPE FILE = 1..2;

(EMPTY, SCRATCH, ASCII, SEQCODE, CONCODE);

(]

TYPE FILEKIND

RECORD

KIND: FILEKIND;

ADDR: INTEGER;

PROTECTED: BOOLEAN;

NOTUSED: ARRAY (.l..5.) OF INTEGER
END;

TYPE FILEATTR

TYPE IODEVICE |
(TYPEDEVICE, DISKDEVICE, TAPEDEVICE, PRINTDEVICE,
CARDDEVICE) ;

TYPE IOOPERATION = (INPUT, OUTPUT, MOVE, CONTROL):

TYPE IOARG = (WRITEEOF, REWIND, UPSPACE, BACKSPACE):

TYPE IORESULT =
(COMPLETE, INTERVENTION, TRANSMISSION, FAILURE,
ENDFILE, ENDMEDIUM, STARTMEDIUM);

TYPE IOPARAM = RECORD
OPERATION: IOCOPERATION:
STATUS: IORESULT;
ARG: IOARG
END;

TYPE TASKKIND = (INPUTTASK, JOBTASK, OUTPUTTASK):

TYPE ARGTAG =
(NILTYPE, BOOLTYPE, INTTYPE, IDTYPE, PTRTYPE, STAPTR,

-1l46-

Appendix B GRAPHSOLO

SCRPTR, SHVPTR, FDSPTR, SYMPTR, REALTYPE):;
TYPE POINTER = @BOOLEAN;

TYPE STMT_PTR = € STMT_RECORD;

TYPE SCREEN_PTR = @ SCREEN_FILE;

it

TYPE SYMBOL_PTR € SYMBOL_TABLE;

TYPE FREE_PTR = @ FREE_SPACE;

il

TYPE SHARED_PTR @ SHARED*DATA:
TYPE ARGTYPE = RECORD

CASE TAG: ARGTAG OF
NILTYPE, BOOLTYPE: (BOOL: BOOLEAN) ;
INTTYPE: (INT: INTEGER);
IDTYPE: (ID: IDENTIFIER):
PTRTYPE: {(PTR:POINTER);
STAPTR: (STMT: STMT_PTR) ;
SCRPTR: (DISPLAYS: SCREEN_PTR):
SHVPTR: (SHARE: SHARED_PTR):
FDSPTR: (FREE: FREE_PTR):
SYMPTR: (SYMB: SYMBOL_PTR):
REALTYPE: (RL: REAL)
END; '

CONST MAXARG
TYPE ARGLIST

10;
ARRAY (.l1..MAXARG.) OF ARGTYPE;

TYPE ARGSEQ = (INP, OUT);

TYPE PROGRESULT =
(TERMINATED, OVERFLOW, POINTERERROR, RANGEERROR,
VARIANTERROR,

Prefix

HEAPLIMIT, STACKLIMIT, CODELIMIT, TIMELIMIT, CALLERROR);

CONST

" SYMBOLS"

BEGINZ2=0; KREAL2=1; KINTEGER2=2:
WHILE2=4; ID2=5; EXECUTE2=6;
ENTER2=7;

EXIT2=8; LOGON2=9; LOGOFF2=10;
NULL2=11; '

HALT2=12; BUILD2=13; CHANGE2=14;

DELETE2=15;

-147-

IF2=3;

Appendix B

SETSCREEN2=16;
LIST2=19:
HTEXT2=20;
PLOT2=23;
NOT2=24;
GT2=27;
LT2=28;
EQ2=31;
NE2=32;
SLASH2=35;
STAR2=36;
UMINUS2=39;
CONV2=40;
XVAL2=43;
YVAL2=44;
NEW_ID2=47;
STRING2=48;
ELSE2=51;
DO2=52;
COMMA2=55;
CLOSE2=56;
BECOMES2=59;
OPEN2=60;
I1S2=63;
WITH2=64;
ADD2=67;
DEF2=68;
LINE2=71;
CIRCLE2=72;
CURVE2=75;
TRANSZ-=76;
START2=79;
MID2=80;
TOP2=83;
BOT2=84;
PD1S2=87;
PDEG2=88;
RADIUS2=91;
FACTOR2=92;
FRDEG2=95;
TODEG2=96;
CLOSED2=99;
DIR2=100;
POINT2=103;
PNT2=104;
LBOT2=107;
RBOT2=108;
TLEFT2=111;
BLEFT2=112;

DRAW2=17;
VTEXT2=21;
AND2=25;
GE2=29;
MINUS2=33;
DIV2=37; .
TRUNC2=41;
REAL2=45;
SEMICOLON2=49;
END2=53;
AT2=57;
PERIOD2=61;
XDIS2=65;
SCREEN2=69;
ARC2=73;
TURN2=77;
ENDPT2=81;
LEFT2=85;
ABOUT2=89;
DEG2=93;
FORM2=97;
CCW2=101;
LTOP2=105;

TRIGHT2=109;

=148~

GRAPHSOLO Prefix

ERASE2=18;
SAVE2=22;
OR2=26;
LE2=30;
PLUS2=34;
MOD2=38;
VALU2=42;
INTEGER2=46;
THEN2=50;
EOM2=54;
OF2=58;
MAPSTO02=62;
YDIS2=66;
KNOTS2=70;
FIGURE2=74;
SCALE2=78;
CENTER2=82;
RIGHT2=86;
LENGTH2=90;
ANGLE2=94;
OPENED2=98;
CwW2=102;
RTOP2=106;

BRIGHT2=110;

Appendix B GRAPHSOLO Prefix

ID_PIECE_LENGTH = 11 "TWELVE CHARS PER PIECE";
NULL=32767;

SPAN=26 “NUMBER OF DISTINCT ID CHARS";

MIN_ORD=0; MAX_ORD=127; MAX_INTEGER=32767;
MAX_EXPONENT=38;

MAX_STRING_LENGTH = 80;

MAX_SYMBOLS=501;

TEXT LENGTH = 12;
INFILE = 1; OUTFILE = 2;
TYPE
TEXT_TYPE = ARRAY (.l..TEXT_LENGTH.) OF CHAR;

PIECE=ARRAY(.0..ID_PIECE_LENGTH.) OF CHAR:

STRING_TYPE = ARRAY (.l..MAX_ STRING_LENGTH.) OF CHAR:

SYMBOL_INDEX=0..MAX_SYMBOLS:

GRAPH_TYPE= (REALP, INTEGERP,LINEP,PICTUREP,CIRCLEP, .
ARCP,FIGUREP,CURVEP,TRANSP, TURNP,SCALEP,
FILEP, UNDEFP) ;

PART PTR = @ PICTURE_PART;
PICTURE_PART = RECORD
THIS_PART : SYMBOL_INDEX;:
NEXT_PART : PART_PTR
END; "PICTURE PART"

KNOT _CHAIN PTR = @ KNOT;
KNOT = RECORD

KNOTX ,KNOTY : REAL;

NEXT _KNOT : KNOT_CHAIN_PTR
END; "KNOT"

GRAPH_PTR=€ GRAPH_NODE:
GRAPH_NODE = RECORD
CASE GRAPH_TAG:GRAPH_TYPE OF
REALP : (RVAL:REAL);
INTEGERP : (IVAL : INTEGER);
LINEP : (STARTX,STARTY,ENDX,ENDY : REAL);
- PICTUREP : (FIRST_PART : PART_PTR):
CIRCLEP : (CIRCENX,CIRCENY,RADIUS : REAL):
ARCP : (ARCSTARTX,ARCSTARTY,ARCENDX,ARCENDY,
ARCCENX ,ARCCENY : REAL;
ARCDIR,ARCFORM : INTEGER);
FIGUREP, CURVEP : (KNOT_CHAIN : KNOT_CHAIN_PTR:

-149-

Appendix B GRAPHSCLO Prefix

F_C_FORM : INTEGER) ;
TRANSP : (DELTAX,DELTAY : REAL;
TRANSBASE : SYMBOL_INDEX);
TURNP,SCALEP : (POINTX,POINTY,FACTOR : REAL:
PICBASE : SYMBOL_INDEX) :
FILEP,UNDEFP : (DUM1 : INTEGER)
END; "GRAPH NODE"

SYMBOL_ENTRY = RECORD
NAME : PIECE:;
DEF : GRAPH_PTR
END;:; "SYMBOL ENTRY"

EXP_PTR = @ EXP_RECORD;
EXP_VALU_TYPE = (OPERATOR,OPERAND) ;
OPTYPE = NOT2..YVAL2;
CONST_TYPE = (REALC, INTEGERC) ;
OPAND_TYPE = (VARIABLE,CONSTANT,SYS_VALUE_REF);
EXP_RECORD = RECORD
NEXT_EXP : EXP_PTR;
CASE EXP_VALU_TAG : EXP_VALU_TYPE OF
OPERATOR : (OPTOR : OPTYPE):;
OPERAND :
CASE OPAND : OPAND_TYPE OF
VARIABLE : (VAR_INDEX : SYMBOL_INDEX);
CONSTANT : (
CASE CONST_TAG : CONST_TYPE OF
REALC: {RL : REAL);
INTEGERC: (INT : INTEGER)):;
SYS_VALUE_REF : (VALUE_REF : INTEGER))
END "EXP_RECORD";

DISP_TEXT_TYPE = (STRING_TEXT,VALUE_TEXT) ;
DEF_TYPE = (SPEC_POINT,SPEC_PARM, SPEC_PIC, SPEC_VALUE) ;

POINT_TYPE = (POINT,SYS_POINT_REF) ;

POINT_PTR = @ POINT_RECORD;
POINT_RECORD = RECORD
CASE POINT_TAG : POINT_TYPE OF
POINT : (XCOORD,YCOORD : EXP_PTR);
SYS_POINT_REF : (POINT_REF : INTEGER)
END; "POINT RECORD"

SPEC_CHAIN_PTR = @ SPEC_CHAIN;
SPEC_CHAIN = RECORD
SPEC_TAG : INTEGER;
NEXT_SPEC : SPEC_CHAIN_PTR;
CASE DEF_TAG :DEF_TYPE OF
SPEC_POINT : (POINT_DEF:POINT_PTR) ;.
SPEC_PARM : (PARM_DEF :INTEGER);

=150~

Appendix B GRAPHSOLO

SPEC _PIC : (PIC_DEF:SYMBOL_INDEX) ;
SPEC_VALUE : (VALUE_DEF:EXP_PTR)
END; “"SPEC CHAIN"

PIC_DEF_TYPE = (SCREEN,OLD_PIC,PRIMITIVE)

PIC_CHAIN_PTR = @ PICTURE_CHAIN;
PICTURE_CHAIN = RECORD
COMPONENT_ID : SYMBOL_INDEX;
NEXT_PIC : PIC_CHAIN_PTR;
CASE PIC_DEF_TAG:PIC_DEF_TYPE OF
SCREEN,OLD_PIC : (OLD_PIC_ID : SYMBOL_INDEX):
PRIMITIVE : (PRIM_TAG : INTEGER:
_ PRIM_DEF : SPEC_CHAIN_PTR)
END; "PICTURE CHAIN"

W n

BREAK_TYPE = (PIC_STMT,PROG STMT):;
PROG_TYPE = (BEGINS ,IFS, INTEGERS, REALS,

WHILES ,ASSIGNS,HALTS,NULLS) ;
PIC_TYPE = (BUILDS,DRAWS,ERASES,HTEXTS,VTEXTS):;

TEXT_CHAIN_PTR = @ TEXT_RECORD;
TEXT_RECORD = RECORD
NEXT_TEXT : TEXT_CHAIN_PTR;
CASE TEXT_TAG : DISP_TEXT_TYPE OF
STRING_TEXT : (STRING : STRING_TYPE;
STRING_LENGTH : INTEGER);
VALUE_TEXT : (VALUEXP : EXP_PTR)
END; "TEXT RECORD" -

STMT_CHAIN_PTR = @ STMT_CHAIN;
STMT_CHAIN= RECORD

STMT : STMT_PTR;

STMT_CH : STMT_CHAIN_PTR
END; "STMT_CHAIN"

STMT_RECORD = RECORD
CASE BREAK_TAG : BREAK_TYPE OF
PIC_STMT : (
CASE PIC_TAG:PIC_TYPE OF
BUILDS : (PIC_ID : SYMBOL_INDEX:
PIC_CHAIN : PIC_CHAIN_PTR);

ERASES,DRAWS : (DRAW_ID : SYMBOL_INDEX);

HTEXTS,VTEXTS : (HVPNT : POINT_PTR;
HVTEXT_CHAIN : TEXT_CHAIN_PTR));

PROG_STMT : (
CASE PROG_TAG : PROG_TYPE OF
BEGINS : (B_CHAIN : STMT_CHAIN_PTR);
IFS : (IF_BOOL : EXP_PTR;

=151~

Prefix

Appendix B GRAPHSOLO Prefix

IF_TRUE : STMT PTR:
IF_FALSE : STMT_PTR});

WHILES : (WHILE_BOOL : EXP_PTR;
WHILE_TRUE : STMT_PTR);

ASSIGNS : (TARGET : SYMBOL_INDEX;
SOURCE : EXP_PTR);

HALTS : (DUM2 : INTEGER);

NULLS : (DUM3 : INTEGER))

END; "STMT RECORD"

FREE_SPACE = RECORD
FREE_GRAPH_NODE : GRAPH_PTR;
FREE_EXP : EXP_PTR;
FREE_POINT : POINT_PTR;
FREE_STMT : STMT_PTR;
FREE_PART : PART PTR;
FREE_SPEC : SPEC_CHAIN_PTR;
FREE_PIC_CHAIN : PIC_CHAIN_PTR;
FREE_TEXT : TEXT_CHAIN_PTR;
FREE_STMT_CH : STMT_CHAIN_PTR;
FREE_KNOT : KNOT_CHAIN_PTR;
FREE_SCREEN : SCREEN_PTR

END; "FREE SPACE"

SHARED_DATA = RECORD

OLD_IND : INTEGER;

MAX_SYMB, MIN_DUMMY : SYMBOL_INDEX
END; "SHARED DATA"

SCREEN_FILE = RECORD
NEXT_SCREEN : SCREEN_PTR;
. THIS_SCREEN : SYMBOL_INDEX
END; "SCREEN FILE"

SYMBOL_TABLE = ARRAY [SYMBOL_INDEX] OF SYMBOL_ENTRY;

PROCEDURE READ (VAR C: CHAR):
PROCEDURE WRITE(C: CHAR);

PROCEDURE OPEN(F: FILE:; ID: IDENTIFIER; VAR FOUND: BOOLEAN) ;
PROCEDURE CLQSE(F: FILE);

PROCEDURE GET(F: FILE; P: INTEGER; VAR BLOCK: UNIV PAGE};
PROCEDURE PUT(F: FILE; P: INTEGER; VAR BLOCK: UNIV PAGE):
FUNCTION LENGTH(F: FILE): INTEGER;

PROCEDURE MARK(VAR TOP: INTEGER):
PROCEDURE RELEASE(TOP: INTEGER);

PROCEDURE IDENTIFY(HEADER: LINE):;

=152~

Appendix B GRAPHSOLO Prefix
PROCEDURE ACCEPT(VAR C: CHAR):

PROCEDURE DISPLAY (C: CHAR):

PROCEDURE READPAGE(VAR BLOCK: UNIV PAGE:; VAR EOF: BOOLEAN);

PROCEDURE WRITEPAGE (BLOCK: UNIV PAGE; EOF: BOOLEAN);
PROCEDURE READLINE(VAR TEXT: UNIV LINE);

PROCEDURE WRITELINE{(TEXT: UNIV LINE):

PROCEDURE READARG(S: ARGSEQ: VAR ARG: ARGTYPE):
PROCEDURE WRITEARG(S: ARGSEQ; ARG: ARGTYPE);

PROCEDURE LOOKUP(ID: IDENTIFIER:; VAR ATTR: FILEATTR: VAR
FOUND: BOOLEAN) ;

PROCEDURE IOTRANSFER

(DEVICE: IODEVICE; VAR PARAM: IOPARAM; VAR BLOCK: UNIV
PAGE) ;
PROCEDURE IOMOVE(DEVICE: IODEVICE: VAR PARAM: IOPARAM) ;
FUNCTION TASK: TASKKIND;

PROCEDURE RUN(ID: IDENTIFIER; VAR PARAM: ARGLIST;
VAR LINE: INTEGER; VAR RESULT: PROGRESULT);

PROGRAM P(VAR PARAM: ARGLIST) ;

CONST

- =153=-

Appendix C Computek Device Driver

"thidbeei i
¢ PREFIX #
i Si2EEXEZ22 0

CONST NL = “(:10:)"; FF = “(:12:)7; CR = “(:13:)°; EM
= “(:25:)7;

CONST PAGELENGTH = 512;
TYPE PAGE = ARRAY (.l..PAGELENGTH.) OF CHAR;

CONST LINELENGTH = 132;
TYPE LINE = ARRAY (.l..LINELENGTH.) OF CHAR;

CONST IDLENGTH = 12;
TYPE IDENTIFIER = ARRAY (.l..IDLENGTH.) OF CHAR;

TYPE FILE = 1..2;

TYPE FILEKIND (EMPTY, SCRATCH, ASCII, SEQCODE, CONCODE) ;

RECOQRD

KIND: FILEKIND:

ADDR: INTEGER;

PROTECTED: BOOLEAN;

NOTUSED: ARRAY (.l..5.) OF INTEGER
END;

TYPE FILEATTR

TYPE IODEVICE
{TYPEDEVICE, DISKDEVICE, TAPEDEVICE, PRINTDEVICE,
CARDDEVICE.,
A,B,COMPUTEK) ;

TYPE IOOPERATION = (INPUT, OUTPUT, MOVE, CONTROL) ;
TYPE IOARG = (WRITEEOF, REWIND, UPSPACE, BACKSPACE);

TYPE IORESULT =
(COMPLETE, INTERVENTION, TRANSMISSION, FAILURE,
ENDFILE, ENDMEDIUM, STARTMEDIUM):

TYPE IOPARAM = RECORD
OPERATION: IOOPERATION;
STATUS: IORESULT;

COUNT: INTEGER
END;

TYPE TASKKIND = (INPUTTASK, JOBTASK, OUTPUTTASK):
TYPE ARGTAG =

-154~-

Appendix C

(NILTYPE,
TYPE POINTER

TYPE ARGTYPE

CONST MAXARG
TYPE ARGLIST

TYPE ARGSEQ =

Computek Device Driver

BOOLTYPE, INTTYPE, IDTYPE, PTRTYPE);
= @BOOLEAN;
= RECQORD
CASE TAG: ARGTAG OF
NILTYPE, BOOLTYPE: (BOOL: BOOLEAN) :
INTTYPE: (INT: INTEGER):
IDTYPE: (ID: IDENTIFIER);
PTRTYPE: (PTR: POINTER)
END;
= 10;

ARRAY (.l..MAXARG.) OF ARGTYPE;

(INP, OUT);

TYPE PROGRESULT =

(TERMINATED,

OVERFLOW, POINTERERROR, RANGEERROR,

VARIANTERROR;,

HEAPLIMIT,

PROCEDURE
PROCEDURE

PROCEDURE
PROCEDURE
PROCEDURE
PROCEDURE

FUNCTION LENGTH(F:

PROCEDURE
PROCEDURE

PROCEDURE
PROCEDURE
PROCEDURE

PROCEDURE
PROCEDURE
PROCEDURE
PROCEDURE
PROCEDURE
PROCEDURE

PROCEDURE

STACKLIMIT, CODELIMIT, TIMELIMIT, CALLERROR);

READ(VAR C: CHAR):
WRITE(C: CHAR);

OPEN(F: FILE; ID:
CLOSE(F: FILE):;
GET(F: FILE; P: INTEGER:; VAR BLOCK: UNIV PAGE):
PUT(F: FILE; P: INTEGER; VAR BLOCK: UNIV PAGE);
FILE): INTEGER;

IDENTIFIER; VAR FOUND: BOOLEAN);

INTEGER) ;
INTEGER) ;

MARK(VAR TOP:
RELEASE(TOP:

IDENTIFY(HEADER: LINE);
ACCEPT(VAR C: CHAR);
DISPLAY (C: CHAR):

READPAGE (VAR BLOCK: UNIV PAGE;
WRITEPAGE(BLOCK: UNIV PAGE: EOF:
READLINE(VAR TEXT: UNIV LINE);
WRITELINE(TEXT: UNIV LINE):
READARG(S: ARGSEQ; VAR ARG: ARGTYPE):;
WRITEARG(S: ARGSEQ; ARG: ARGTYPE);

VAR EOF: BOOLEAN):;
BOOLEAN) ;

LOOKUP(ID: IDENTIFIER; VAR ATTR: FILEATTR; VAR

FOUND: BOOLEAN) ;

PROCEDURE
(DEVICE

IOTRANSFER

: IODEVICE; VAR PARAM: IOPARAM; VAR BLOCK: UNIV

=155-

Appendix C Computek Device Driver

PAGE) :
PROCEDURE IOMOVE(DEVICE: IODEVICE; VAR PARAM: IOPARAM) ;
FUNCTION TASK: TASKKIND;

PROCEDURE RUN(ID: IDENTIFIER; VAR PARAM: ARGLIST;
VAR LINE: INTEGER; VAR RESULT: PROGRESULT) :

PROGRAM P (VAR PARAM: ARGLIST);

CONST
HOME_ERASE = “(
ERASE_STATUS
WRITE_STATUS =
LINE_FEED = “(:1
BACKSPACE = ° (:8

]

LY
L= R

FOUR_BYTE_ABS =
AT_SIGN = “(:64
NULL_BYTE = ~(:

"INPUT COMMANDS"™
ERASE 0:
WRITE L

MOVE = 2;

VECTOR =

HTEXT

VTEXT =

CLEAR =

EOT = 7;

3;
4;

6;

TYPE

PACKED_LINE
PACKED_REAL

_ARRAY [l1..66) OF INTEGER;
ARRAY [l..4] OF INTEGER;

PAGE_INDEX = 0..256;
SEND_INDEX = 0..512;:
LINE_INDEX = 0..132;

CH_HWD = ARRAY[1l..2] OF CHAR:
VAR
HEX : ARRAY [0..15] OF CHAR;
DISPLAY PAGE : ARRAY [1..256) OF INTEGER;
OUTPAGE : PAGE:
PAGE_CNTR : PAGE_INDEX;

-156-

Appendix C Computek Device Driver

SEND_CNTR : SEND_INDEX:
TEXT_LINE : LINE;
EOF,CHAR_MODE,VISIBLE : BOOLEAN;

PROCEDURE BUMP_PAGE_CNTR;

“INCREMENT INDEX OF INPUT PAGE
WHEN ONE PAGE IS EXHAUSTED GET A NEW PAGE

AND INITIALIZE THE PAGE INDEX"®

BEGIN
IF PAGE_CNTR = 256 THEN BEGIN
READPAGE (DISPLAY_PAGE,EQF) ;

* PAGE_CNTR := 0;
END;
PAGE_CNTR := SUCC(PAGE_CNTR) ;

END;

PROCEDURE GET_LINE (VAR INTLINE : UNIV PACKED_LINE);

"UNPACK THE CHARACTER LINE PARAMETER FOR
HTEXT AND VTEXT COMMANDS"

VAR I:INTEGER:
BEGIN
FOR I := 1 TO 66 DO BEGIN
BUMP_PAGE_CNTR;
INTLINE[I] := DISPLAY_ PAGE[PAGE_CNTR]:
END;
END;

PROCEDURE GET_POINT(VAR X,Y: UNIV PACKED_REAL);

"UNPACK POINT PARAMETER FOR MOVE
OR VECTOR COMMANDS"

VAR I:INTEGER;

BEGIN
FOR I := 1 TO 4 DO BEGIN
BUMP_PAGE_CNTR;
X[I] := DISPLAY_PAGE[PAGE_CNTR];
END;

FOR I := 1 TO 4 DO BEGIN
BUMP_PAGE_CNTR;
Y[I] := DISPLAY_PAGE[PAGE_CNTR];
END;
END;

PROCEDURE CET_TERMINAL_POINT(VAR XINT,YINT: INTEGER) ;

-157~=

Appendix C Computek Device

“COMPUTE COMPUTEK POINT COORDINATE
EQUIVALENTS OF REAL WORLD POINT COORDINATES"

VAR X,Y:REAL;

BEGIN
GET_POINT(X,Y);
XINT := TRUNC(X * 32.0) MOD 256;
YINT := TRUNC(Y * 36.57) MOD 256;
END; .

PROCEDURE GETBYTES(VAR HIGH,LOW,HALFWD: UNIV CH_HWD) ;
BEGIN

HIGH[1] := "(:0:)";

HIGH[2] := HALFWD[1l]:

LOW([l] := “(:0:)";

LOW[2] := HALFWD([2];
END:

PROCEDURE PRINTABS(ARG:UNIV INTEGER);
"DEBUGGING PROCEDURE"

“CALCULATE AND DISPLAY HEX EQUIVALENTS OF
ASCII CHARACTERS TO BE TRANSMITTED TO
COMPUTEK TERMINAL"

VAR T:ARRAY[1l..4)] OF CHAR;
LOW,HIGH, REM,DIGIT,I:INTEGER;

BEGIN

REM := ARG;

GETBYTES (HIGH, LOW, REM) ;

T[1]:= HEX[HIGH DIV 16]:

T{2] := HEX[HIGH MOD 16];
T[3] := HEX[LOW DIV 16];
T{4) := HEX[LOW MOD 16];

DISPLAY(T[1]); DISPLAY(T[2]); DISPLAY(T[3]):;
DISPLAY(T([4]); DISPLAY (" 7):
END;
PROCEDURE SEND;

"TRANSMIT ASCII CONTROL CHARACTER PAGE
TO COMPUTEK TERMINAL"

VAR ARG:IOPARAM; CH:CHAR; I : INTEGER;

BEGIN
FOR I := 1 TO SEND_CNTR DO BEGIN
CH := OUTPAGE([I]:

PRINTABS(CH) ;
IF I MOD 10 = 0 THEN DISPLAY (NL):;

-158-

Driver

Appendix C Computek Device Driver

END:;
DISPLAY (NL) ;
WITH ARG DO BEGIN

OPERATION := OUTPUT;

COUNT := SEND_CNTR;
END;
IOTRANSFER({COMPUTEK, ARG, OUTPAGE) ;
"IF IORESULT <> COMPLETE THEN BOMB;"

END;

PROCEDURE BUMP_SEND_CNTR;
* INCREMENT INDEX OF THE OUTPUT PAGE.

WHEN PAGE IS FULL TRANSMIT AND
BEGIN NEW OUTPUT PAGE"

BEGIN
IF SEND_CNTR = 512 THEN BEGIN
SEND;
SEND_CNTR := 0;
END;
SEND_CNTR := SUCC(SEND_CNTR) ;
END;

PROCEDURE SEND_BYTE(CH:CHAR) ;

"ADD A SINGLE ASCII CHARACTER TO THE OUTPUT PAGE"

BEGIN

BUMP_SEND_CNTR;

OUTPAGE {SEND_CNTR] := CH:
END; .

PROCEDURE SEND_AT_SIGN:

“"ADD THE ASCII CHARACTERS TO THE OUTPUT PAGE

WHICH WILL CHANGE THE COMPUTEK TERMINAL
FROM FOUR BYTE ABSOLUTE MODE TO

CHARACTER MODE"“

VAR I:INTEGER;
BEGIN

SEND_BYTE (AT_SIGN) ;

FOR I := 1 TO 3 DO SEND_BYTE(NULL_BYTE) ;
END;

PROCEDURE SEND_4_BYTE(X,Y:INTEGER: VISIBLE:BOOLEAN):;

" COMPUTE THE FOUR ASCII CHARACTERS THAT
EXECUTE A MOVE OR VECTOR COMMAND.

=159~

Appendix C Computek Device Driver

X AND Y ARE INTEGER COORDINATES OF
THE TARGET POINT. VISIBLE = TRUE FOR
VECTOR. VISIBLE = FALSE FOR MOVE"

VAR ACCUM:INTEGER;

BEGIN
ACCUM := 2;
IF (Y MOD 2) = 1 THEN ACCUM := ACCUM + 16;
IF ({(y DIV 2) MOD 2) = 1 THEN ACCUM := ACCUM + 32
ELSE ACCUM := ACCUM + 64;
IF VISIBLE THEN ACCUM := ACCUM + 1;

SEND_BYTE (CHR(ACCUM)) ;
ACCUM := Y DIV 4;

IF ({(AcCCUM DIV 32) MOD 2) = 0 THEN ACCUM := ACCUM + 64:
SEND_BYTE(CHR(ACCUM)):

ACCUM := 0;

IF (X MOD 2) = 1 THEN ACCUM := ACCUM + 16;

IF ({(X DIV 2) MOD 2) = 1 THEN ACCUM := ACCUM + 32

ELSE ACCUM := ACCUM + 64:;

SEND_BYTE (CHR(ACCUM)) ;
ACCUM := X DIV 4;
IF ((ACCUM DIV 32) MOD 2) = 0 THEN ACCUM := ACCUM + 64;
SEND_BYTE (CHR(ACCUM)) ;
END;

PROCEDURE PROCESS_DRAW(KEY:INTEGER) ;

"PUT COMPUTEK IN FOUR BYTE ABSOLUTE MODE.

UNPACK AND TRANSLATE TO COMPUTEK

COORDINATES THE TARGET POINT.

COMPUTE AND TRANSMIT A FOUR BYTE ABSOLUTE COMMAND"

VAR X,Y: INTEGER;
BEGIN
IF CHAR_MODE THEN BEGIN
SEND_BYTE (FOUR_BYTE_ABS) ;
CHAR_MODE := FALSE;
END;
GET_TERMINAL_POINT(X,Y);
IF KEY = VECTOR THEN VISIBLE := TRUE ELSE VISIBLE :=
FALSE;
SEND_4_BYTE(X,Y,VISIBLE);
_END;

PROCEDURE PROCESS_TEXT(KEY:INTEGER) ;

"pPUT COMPUTEK IN CHARACTER MODE.
UNPACK TEXT PARAMETER. TRANSMIT TEXT
CHARACTERS. FOR VERTICAL TEXT,
TRANSMIT LINEFEED AND BACKSPACE

=160~

Appendix C Computek Device Driver

BETWEEN TEXT CHARACTERS"

VAR VERTICAL:BOOLEAN; I:LINE_INDEX;
BEGIN
IF NOT CHAR_MODE THEN BEGIN
SEND_AT_SIGN;
CHAR_MODE := TRUE;
END;
IF KEY = VTEXT THEN VERTICAL := TRUE ELSE VERTICAL :=
FALSE;
GET_LINE{TEXT_LINE);
I :=1;
REPEAT

SEND_BYTE(TEXT_LINE([I]) ;

I := SUCC(I);

IF VERTICAL THEN BEGIN
SEND_BYTE(LINE_FEED) ;
SEND_BYTE(BACKSPACE);

END;

UNTIL TEXT_LINE[I] = EI;
END;

PROCEDURE PROCESS_PAGE;

"INITIALIZE COUNTERS AND FLAGS.
PROCESS COMMANDS UNTIL EOT.
LEAVE TERMINAL IN CHARACTER MODE
FOR NEXT TRANSMISSION"

VAR EOTRANSFER: BOOLEAN; KEY:INTEGER;
BEGIN
- SEND_CNTR
PAGE_CNTR
EOTRANSFE
REPEAT
BUMP_PAGE_CNTR; .
KEY := DISPLAY_PAGE[PAGE_CNTR];
CASE KEY OF
MOVE,VECTOR: PROCESS_DRAW(KEY) ;
CLEAR, WRITE ,ERASE : BEGIN
IF NOT CHAR_MODE THEN SEND_AT_SIGN;
CASE KEY OF
CLEAR: SEND_BYTE(HOME_ERASE) ;
WRITE: SEND_BYTE (WRITE_STATUS) ;
ERASE: SEND_BYTE(ERASE_STATUS)
END; "CASE"

R := FALSE; CHAR_MODE := TRUE;

END;
HTEXT,VTEXT: PROCESS_TEXT(KEY);
EOT: EOTRANSFER := TRUE

END; "CASE"

-161~

Appendix C

UNTIL

SEND;

END;

BEGIN

"INITIALIZE

HEX[0]
HEX[1]
HEX [2]
HEX[3]
HEX[4]
HEX [5]
HEX[6]
HEX[7]
HEX[8]
HEX[9]

-
-

(L] e a8
nnu

HEX{10]:
HEX[11]:
HEX[12]):
HEX[13]:
HEX [14]:
HEX[15]):=

Computek Device Driver

EQTRANSFER;
IF NOT CHAR_MODE THEN SEND_AT_SIGN:

nmnun

nn

A B

LY A } L
LY LY L) LY A]
e We Wy Wo W

LY A3
. LY
e We Wa W

LY L LY 1Y L Y
MmO OWY OOV B WNE O
L Y LY LY LY LY
wa R e N

LY
*

LI}
LY L]
LT}

*“INITIALIZE COMPUTEK TERMINAL BY
CLEARING SCREEN AND HOMING THE CURSOR.
READ INPUT COMMAND PAGES AND PROCESS
UNTIL PAGE MARKED EOF IS RECEIVED.
SEND NORMAL TERMINATION MESSAGE TO
INITIATING PROCESS"

SEND_CNTR
CHAR_MODE

-
.
*

0;
TRUE;

-

SEND_AT_SIGN;
SEND_BYTE(HOME_ERASE) ;
SEND;
REPEAT
READPAGE (DISPLAY_ PAGE, EOF) ;
IF NOT EOF THEN PROCESS_PAGE;
UNTIL EOF;
"WRAPUP; "
PARAM[1]

.BOOL := TRUE;

END.

-lé62-

Design and Implementation of a Portable
Interactive Graphics Language Interpreter

by

MARY CATHERINE NEAL
B.s. Iowa State University, 1973

AN ABSTRACT OF A MASTER"S REPORT

submitted in partial fulfillment of the

requirements for the degree

MASTER OF SCIENCE

Department of Computer Science

Kansas State University
Manhattan, Kansas

1978

Design and Implementation of a Portable
Interactive Graphics Language Interpreter

ABSTRACT
PIGLI (Portable,‘ Interactive Graphics Language
Interpreter) is a new high-level graphics system. The PIGLI
command language allows the programmer to construct

two-dimensional pictures in terms of picture primitives, to
apply transformations to existing pictures, .and to display
pictures and text on a variety of vector graphics devices.
The language also c¢ontains general purpose programming
constructs, including type declarations, assignment
statements, if-then-else statements, do-while statements,
and begin-end blocks. PIGLI also provides, as a debugging
aid, a general purpose LIST command which gives the
programmer access to 1) the definitions of pictures,
primitives, and variables, 2) the relationships between
pictures and their components, and 3) the identifiers
associated with displayed pictures. Another useful feature
is the ability of the system to access external files of
PIGLI commands that perform tedious or frequently needed
"tasks, as well as to accept commands interactively from a
console device. :

PIGLI is implemented in PASCAL on an Interdata 8/32
minicomputer under SOLO, a single-user PASCAL operating
system that was designed to be portable and is currently
running on several different machines. PIGLI is a two-pass
interpreter and is implemented with an overlay structure in
order to provide more space for storage of data structures.
Data structures representing pictures are translated into a
sequence of device independent output commands that are
executed by output device drivers. An output device driver
must be written for each device to be used. The structure
of SOLO and the design of PIGLI allows the programmer to
dynamically activate any of the output device drivers during
a programming session.

