
'INTERNETWORK SHARING OF LICENSED SOFTWARE''

by

LINDA S. NEEL

B.S.,Kansas State University, 1983

A REPORT

submitted in partial fulfillment of the

requirements for the degree

MASTER OF SCIENCE

Department of Computing & Information Sciences

KANSAS STATE UNIVERSITY
Manhattan.Kansas

1987

A112D7 3037D1

All terms mentioned in this report that are known to be trademarks or ser-

vice marks are listed below.

C86 is a trademark of Computer Innovations, Inc.

OPTIMIZING C86 is a trademark of Computer Innovations, Inc.

MS-DOS is a trademark of Microsoft Inc.

IBM a registered trademark of Intemation Business Machines.

Zenith is a registered trademark of Zenith Electronics Corporation.

Z-150 & Z-158 are trademarks of Zenith Data Systems Corporation.

PC6300 is a trademark of AT&T.

NATIONAL SEMICONDUCTOR is a registered trademark of National Semicon-

dutor Corporation.

3COM is a registered trademark of 3Com Corporation.

Intel is a registered trademark of Intel Corporation.

TURBO PROLOG is a registered trademark of Borland International Inc.

ACKNOWLEDGEMENTS

I wish to thank Dr. Virgil Wallentine for all the help and support he has provided me
throughout my project and report. Special thanks to Dr. Maarten Van Swaay for his un-

limited patience, guidance and knowledge of operating systems. Additional thanks go to

my fellow graduate students for their constant encouragement and support. Last, but

most importantly, thanks to my parents, not only for their love and support, but for

helping me realize the importance of an education.

Table of Contents

Chapter 1 : Introduction 1

1.1 Introduction 1

1.2 Background 2

1.3 Overview 4

Chapter 2: Existing Environment and

Specifications of Enhancements 6

2.1 Introduction 6

2.2 Existing Hardware 6

2.2.1 Ethernet 6

2.2.2 Personal Computer Hardware 7

2.2.2.1 National Semiconductor 8250 UART 7

2.2.2.2 Intel 8259A Programmable

Interrupt Controller 8

2.2.3 RS-232 9

2.3 Existing Software 10

2.3.1 Optimizing C86 C Compiler 10

2.3.2 MS-DOS 1

1

2.4 Specification of Enhancements 1

1

2.4.1 Communication Driver 11

2.4.2 File Server Software 12

Chapter 3: Design and Implementation 14

3.1 Communication Driver _ „ „ 14

3.1.1 Interrupt Rountines 15

3. 1 .2 Supervisor Calls 16

3.1.2.1 GETJSTRING 17

3.1.2.2 SEND_STRING 18

3.1.2.3 Buffer Initialization 18

3.1.2.4 Interrupt Control 19

3.1.3 Initialization and Installation 19

3.2 File Server Software 20

3.2.1 Main Program Loop 22

3.2.2 Initialization of Product Table 23

3.2.3 License Request „ 25

3.2.4 License Return „ 27

3.2.5 Message Protocol _ 29

3.2.6 Interfaces 31

Chapter 4: Results and Future Work 32

4.1 Results and Conclusions „ 32

4.2 Future Work 32

4.2.1 Scheduler 33

4.2.2 Software Allocation 33

4.2.3 Additional File Servers 34

Bibliography 35

Appendix A - Added/Modified Source Code 36

Figures

Figure 1 Existing System 4

Figure 2 New System 5

Figure 3 Communication Driver 14

Figure 4 File Server Software 21

Figure 5 Message Protocol 30

CHAPTER 1

INTRODUCTION

1.1 Introduction

Since 1981, microcomputers have become an important tool in the work-

place. Businesses, both large and small, recognized that workers who perform

routine tasks increase their productivity when aided by microcomputers. In

1985, the U.S. Bureau of Labor estimated that 56 percent of all technical work-

ers, 27 percent of managers, and 29 percent of professional workers had micro-

computers. By 1990, the corresponding figures are projected to be 76 percent, 64

percent, and 64 percent, respectively [GOLD87].

One problem arising from the popularity of microcomputers is copy protec-

tion of software. The capability to duplicate software easily has led to

software piracy, the illegal copying or using of copyrighted or licensed software

without the permission of the copyright owner.

The most common method of protecting microcomputer software is the

license agreement, which dictates the conditions under which a user or group of

users can run a program. The typical license requires that the license holder run

the program on only one computer at a time and that any copies made or pro-

vided with the software are for backup purposes only and may not be copied or

transferred to another party.

With the increased use of microcomputers, ways have been found to

increase their efficiency and productivity. One way to make microcomputers

more efficient and economical is to connect them to a local area network. A local

- 1

area network consists of a group of computers and peripheral devices connected

by data communication hardware and software in a way that allows all com-

puters and peripheral devices on the network to share information, files, and

peripherals.

Because most software licenses require that the program run on only one

computer at a time, a way was needed to control the use of licensed software on

local area networks. Because local area networks can share files and programs,

most software products could not be legally placed on networks because no

guarantee could be made that the product would only be used on one machine at

a time.

Several forms of agreement have been developed to define the legal use of

licensed software on local area networks. One of these is known as a site

license. A site license allows a product to be used legally on a specified number

of machines or on an unspecified number of machines located in a specified area.

In the Computing & Information Sciences department, there is a local area

network that grants a request for a product if there is a licensed copy available.

When individual copies of a software product are purchased, the number of

copies of the product purchased is recorded on the network server. The server

keeps track of the number of copies currently being used on the network. This

ensures that each copy purchased is only being used on one computer at a time.

1.2 Background

For several years, a computer network has been functioning in the Comput-

ing & Information Sciences Department at Kansas State University. This net-

work system is a combination of Ethernet's 3COM Local Area Network and in-

house code. Brick Verser of the Computing Activities Center and Robert Young

-2-

of the Computer Science Department developed the system and wrote the addi-

tional code. The 3COM code was disassembled before changes were made and

then reassembled. Additional features and functions were coded in Optimizing

C86C.

One feature added to the 3COM code was the facility to use licensed copy-

righted programs legally on the file server. The file server on each network has

rights to a specified number of copies of licensed software. When a request is

made for a licensed program, the file server is responsible for making sure the

request is granted only if there are legal copies available. If all copies for a

licensed program have been allocated, a message is sent to the requester stating

all legal copies are in use and to try later. All legal obligations to software ven-

dors are met by this strategy.

Each network file server contains a file containing names of licensed pack-

ages and the number of licenses available for each package. An entry must be

made in this file for every licensed product installed on the network.

The system licensing was Implemented on each network, therefore each

network had a specific number of licensed products to allocate. The strategy has

a drawback for packages for which a small number of licenses are available,

because the number of licenses on each network cannot be closely matched to

the demand on that network.

This report documents the changes that were made to the existing network

software to allow the sharing of licensed software between two networks. An

RS-232 link allows the file servers to communicate with each other. Whenever

a file server receives a request for a licensed software product it cannot grant,

that server sends a request to the other file server to borrow a license for the

-3-

product. This way all licensed products are available for both networks.

1.3 Overview

The existing network system was designed to share licensed software

among user machines on individual networks. Each network had a set of

software that could be used. Figure 1 shows the flow when a user machine

requests a licensed software product.

1 . request

software pkg

2. stub pgm w/same

name is started and

sends request across

network

4. stub pgm receives

response--iF license

granted, loads pgm
file, else prints error

message

3. receives &

processes request

5. user machine finishes

and returns to pgm stub-

pgm stub sends a license

return

6. receives &

processes return

4-

The goal of this project is to expand the sharing of licensed software

between two file servers on otherwise independent networks. Flow for the

expanded system is shown in Figure 2.

1 .
request

software pkg

user

machine

2. stub pgm w/same

name is started and

sends request across

network

5. stub pgm receives

response-if license
^~

granted, loads pgm
file, else prints error

message

3. receives &

processes request

If rqst cannot

be granted, msg

sent

4. receives &

process msg
& sends response

6. user machine finishes

and returns to pgm stub-

pgm stub sends a license

return

7. receives &
processes return

Figure 2

8. receives &

processes return

Chapter 2 describes the existing software and hardware and defines the

specifications of the expansion. Chapter 3 details the design and implementation

of the software. Finally, Chapter 4 describes the performance of the implemen-

tation and lists additional features to add at a later date.

-5-

CHAPTER 2

EXISTING ENVIRONMENT AND SPECIFICATIONS OF ENHANCEMENTS

2. 1 Introduction

The following is a description of the hardware and software used to imple-

ment sharing of licensed software between two networks. Specifications for the

expanded license sharing are also detailed.

2.2 Existing Hardware

All hardware existed at the beginning of this implementation and changes

were not considered. The existing hardware is described in the following sec-

tions.

2.2.1 Ethernet

Ethernet network hardware is used to connect the Zenith personal comput-

ers. Ethernet is a local area network topology with all machines connected to a

shared communication bus consisting of coaxial cable. The Ethernet architecture

makes a major division between the physical layer and the data link layer,

corresponding to the lowest two levels in the OSI model. The data link layer

defines a medium-independent link level communication facility, built on the

medium-dependent physical channel provided by the physical layer. Ethernet

uses carrier-sense multiple access with collision detection (CSMA/CD) for chan-

nel access.

CSMA/CD gives all stations equal access probability to the network. Any

station that wants to transmit a message first listens to the network to see if

any other station is transmitting. If not, the station can send a packet. As the

packet is sent, the station also listens to see if the packet was garbled by

another transmitting station. If so, the station "backs off" a random period of

time and then retransmits the message. As the network gets busier, collisions

become more frequent and transmission overhead increases.

2.2.2 Personal Computer Hardware

The current network system is composed of Zenith 150 series personal

computers for user machines. The file servers are either Zenith 150 series or

AT&T 6300 personal computers. The file servers each have a 20 megabyte hard

disk where the licensed software and file server programs are located. The fol-

lowing sections describe components of the file servers which are relevant to the

implementation.

2.2.2.1 National Semiconductor 8250 UART

The National Semiconductor 8250 UART controls asynchronous serial com-

munication. The 8250 will generate all standard rates up to 19200 baud and

will generate four kinds of interrupts. The 8250 appears to the CPU as seven

consecutive ports as summarized by the following:

7-

PORT REGISTER

3F8h transmit data

3F8h receive data

3F8h baud rate divisor L byte

3F9h baud rate divisor H byte

3F9h interrupt enable

3FAh interrupt ID

3FBh line control

3FCh modem control

3FDh line status

3FEh modem status

The MS-DOS ROM BIOS contains software routines to initialize the port, to

receive and transmit data, and to inquire on the serial port status.

2.2.2.2 Intel 8259A Programmable Interrupt Controller

The 8259A PIC (programmable interrupt controller) is the circuit responsi-

ble for coordinating interrupt requests made by various hardware devices.

Because communication between the file servers is asynchronous, a way is

needed to alert the machine that service is needed. An interrupt is generated by

a hardware device when service is needed. The 8259 recognizes the interrupt

and places a byte on the data bus indentifying the vector. The vector points to

the service code. The service code saves the current machine state, services the

-8

device, and then returns to the interrupted process by restoring all flag and

register values.

The 8259A PIC coordinates eight independent channels and prioritizes

interrupts in order as they happen. IRO (timer) is the highest and IR7 (parallel

printer interface) the lowest. The interrupt mask register determines which

devices may generate a request. When the 8259A is initialized during a cold

boot, the ROM BIOS disables five of the interrupt lines leaving IR6 (disk), IR1

(keyboard), and IRO (timer) enabled. Setting its respective bit to zero enables

an interrupt. The interrupt mask register can be changed or reconfigured

dynamically at any time during program execution. Interrupts can also be dis-

abled by execution of the CLI (clear interrupt flag) instruction and reenabled by

execution of the STI (set interrupt flag) instruction.

The Ethernet hardware uses IR3 and IR5 to signal network requests. Inter-

rupts IR3 and IR5 are enabled by the network install program (send60i.asm).

IR4 is the hardware Interrupt used for serial communications (COM1) and han-

dles communication between file servers.

2.2.3 RS-232

RS-232 is the most common serial communication standard used today.

RS-232 is a voltage level convention set by the Electronic Industries Association.

It is often used for terminal-modem and terminal-computer connections and in

this project as a computer-computer connection. Since 8250 UART serial output

cannot be sent reliably over distances of more than a few feet, the TTL signals

generated by the 8250 must be converted to RS-232 signals. The RS-232 stan-

dard is specified for distances up to 50 feet but in practice can go at least 100

feet at 9600 baud and farther at slower speeds. The computer-computer con-

nection requires the use of a RS-232 line with two male connectors (DB-25P).

Connectors are connected to COM1 of each file server.

2.3 Existing Software

The software used for development and implementation is described in the

following sections.

2.3.1 OPTIMIZING C86 C Compiler

The Optimizing C86 C compiler by Computer Innovations, Inc. supports all

C language features as defined by Kernighan and Richie. The library includes all

standard library functions mentioned in Kernighan and Richie, a selection of

UNIX V7 routines, and a set of functions that is specific for its host machine

and operating system.

The compiler runs on an 8086 or 8088 processor under DOS version 2.0+

and later versions. 128K of internal memory including an allowance of 16K of

memory for the operating system is needed on the machine. At least 256K of

disk space is needed to store the compiler and utility programs and to provide

working disk space.

The C86 compiler produces object files that are compatible with the regular

DOS linker. LINK version 2.20 was used for development and implementation

-10-

of this project.

2.3.2 MS-DOS

MS-DOS is the operating system used on the Zenith and ATT 6300 per-

sonal computers. MS-DOS is a Microsoft product and is currently an industry

standard for the IBM personal computer family and compatibles. MS-DOS is

designed as a single-user operating system. It provides an interface between the

user and the various devices attached to the computer and supervises the execu-

tion of utility and application programs.

2. 4 Specification of Enhancements

Sharing licensed software between two networks requires communication

between the two file servers as well as changes to the existing file server

software. The following describes the requirements of the communications

driver and file server software.

2.4.1 Communication driver

MS-DOS has service routines designed to handle some limited functions for

the manipulation of the serial port. These routines do not support asynchro-

nous data traffic via the serial port. For that reason, the communication driver

must be able to manipulate the serial port registers directly.

- 11 -

The communication driver must be able to place characters into a transmit

queue, transmit the characters asynchronously, receive characters asynchro-

nously, and store them in a receive queue. The driver will be associated with a

set of supervisor calls that supports user access to the receive and transmit

queues. These calls will be responsible for getting characters (strings) from the

receive queue, sending characters to the transmit queue, for initialization of the

receive and transmit queues, for the initialization of the serial port, and for the

control of its hardware interrupt signals.

Because the communication driver will run as a kernel task, it has to be

memory resident. MS-DOS provides a way to place a program in memory

without it being overwritten with later programs. Using the

HX_IN_MEMORY service at INT 27H makes the program and its data a per-

manent part of DOS.

2.4.2 File server software

Allocation of licensed software had previously been implemented on a sin-

gle file server. The main goal of this project is to expand the allocation of

licensed software to allow sharing of licensed software between two separate

file servers on two networks. Legally, a licensed software product can be simul-

taneously used on a number of machines that is not larger than the number of

licenses owned. To ensure that a product is used only when a license is avail-

able, the file server must keep track of the number of licenses owned and the

number of copies in use. The file server increments the number of copies in use

12-

whenever a request for a licensed product is made and granted, and decrements

the count when the copy is returned. The user machine sends verifications to

the file server indicating that its user is using the licensed product. If the file

server does not receive a verification within a specified time, it assumes that the

user machine has been turned off and the copy is returned.

If one Me server cannot grant a request for a software product because all

licensed copies are currently in use, or if it doesn't own any copies for the

specified product, a request is made to the second file server. The second file

server returns a message specifying whether it can grant the request. The

requesting machine waits for this response. If the responding file server does not

respond in the specified time, the file server does not grant the request. Each file

server must now keep track of the number of licenses owned and in use but also

of the number of copies it has lent/borrowed.

The number of licenses lent/borrowed becomes important when a file

server fails. On reinitialization of the failed file server, the number of licenses

that it can allocate must be known to ensure that the file servers do not allocate

more copies than the number of licenses owned by both servers.

13-

CHAPTER 3

DESIGN AND IMPLEMENTATION

3. 1 Communication Driver

The communication driver used for message passing between file servers is

shown in figure 3 and described in the following sections.

Communication Driver

GETSTRING p.

SENDSTRING—

»

o
TO
—1

I
>
TO
o

%
m

FLUSH »

SVCs

Xmt

Queue

Async

Xmt
XON »

Recv

Queue

Async

Recv

STATUS^—

DATA

NON SVC

ENTRY
* INSTALL

Exit Resident

Figure 3

14-

3.1.1 Interrupt Routines

Communication between the file servers is asynchronous. Whenever the

serial input port receives a character, it generates an interrupt request that is

routed to the interrupt controller. The PIC is controlled by the CPU through a

set of I/O ports and, in turn, signals the CPU via the INTR pin and places the

interrupt type as an 8-bit pattern on the system bus. The CPU multiplies this

number by 4 to find the memory address of the interrupt vector.

The interrupt vector OCH is used for asynchronous communication port

controller 0. Installation of the receive and transmit functions was done by

means of MS-DOS facilities. INT21H function 35H retrieves the segment and

offset of the current service routine and places them in the ES and BX registers

respectively. After loading AL with the interrupt number and DS:DX with the

segment:offset of the new interrupt handling routine, INT21H function 25H sets

the interrupt vector.

The asynchronous interrupt routine begins by saving register values and

reading the interrupt identification register of the serial port. This register con-

tains the interrupt type and reflects whether the interrupt was caused by an

input event or an output event. A jump table chooses either the transmit or

receive function.

The transmit function verifies that the transmitter holding register is

empty. If it is, then processing continues, else the transmit portion of the inter-

rupt handler is exited. The transmit routine checks to see if there are any char-

acters to send. If so, the transmit function sends the current character and

updates the queue pointer. If no characters are left to send, the transmit routine

-15-

disables the transmitter interrupt and exits.

The receive function first verifies that a character has been received. If so,

the receive function reads the character, places it in the queue and updates the

queue pointer. If the character was an end-of-message indicator C04H), the func-

tion increments the number of complete messages and sets a flag to indicate that

at least one complete message is available. The receive function then exits.

The asynchronous interrupt routine exit restores register values, sends an

end-of-interrupt (EOI) to the PIC to indicate that interrupt processing is com-

plete, and executes an IRET instruction that restores the original state of the

CPU flags, the code segment register, and the instruction pointer.

3. 1.2 Supervisor Calls

A set of supervisor calls is associated with the communication driver to

support user access to the input and output queues. Specific functions of these

calls include retrieving of character strings from a queue, placing character

strings in a queue, initializing the queue and queue pointers and controlling

hardware interrupt signals. The supervisor calls (also known as software inter-

rupts) are triggered synchronously by a program executing an INT instruction.

Interrupt vector 4FH contains the segment and offset of the supervisor calls.

The supervisor calls have a common entry point and the function value is

passed using standard MS-DOS protocol. The entry code saves register values

and jumps to the desired function. The supervisor calls also exit via shared code

that restores the register values.

16-

Description and implementation details of the supervisor calls are given in

the next sections.

3.1.2.1 GETJSTRING

GETJSTRING retrieves a string of characters from a queue if a complete

message is present. This Is the queue in which the receive interrupt places char-

acters. This call will return a status of -1 If there is no message available and a

status of for a successful retrieval.

If a message Is available, GETJSTRING retrieves the character string by

reading the first character from the queue. This character is the length of the

message. Since the length is in character form, it must be converted to an

integer. Clearing the upper four bits of a character converts the character into

an Integer. After the length has been converted, GETJSTRING copies characters

from the queue into a character string location. The location of the character

string is established before the supervisor call is made and is pointed to by the

ES:[DI] register pair. The MOVSB Instruction copies the characters from the

queue to the string variable. This instruction transfers the memory operand

addressed by DS:[SI] into the address pointed to the ES:[DI]. After all characters

have been copied, GETJSTRING updates the pointer indicating the beginning of

the next message, decrements the number of complete messages currently pend-

ing and exits.

17-

3.1.2.2 SEND_STRING

SEND_STRING places a character string into the send queue for transmis-

sion. The transmit interrupt uses this queue to send characters to the other

machine. Like the GETJSTRING function, SEND_STRING copies the character

string into the queue using MOVSB plus the LODSB instruction. Because the

source string is located outside the current data segment, the DS and ES registers

must be manipulated to point to the correct source and destination locations.

The interface between the file server software and the communication driver

passes the address of the character string to SEND_STRING in the ES register.

SEND_STRING moves the ES register into the DS register and the ES register is

set to point to the queue. SEND_STRING then copies the string into the queue,

enables the transmit interrupt, and exits.

3.1.2.3 Buffer Initialization

To initialize the queues used for receiving and transmitting character

strings, the pointers are set to the beginning of the queue. The message_count

variable is set to zero. This function is used during the initialization of a file

server to ensure that the queues do not contain old messages.

18

3.1.2.4 Interrupt Control

Supervisor call XON and procedure XOFF control the serial hardware

interrupt. Whenever the receive function calculates the receive queue is greater

than 75% full, it makes a call to XOFF. XOFF sends a control-Q across the line

to tell the sending machine to stop transmission. GETJSTRING reestablishes

transmission when a XOFF has been sent and the receive queue space becomes

less than 50% full. A call is made to XON and XON places a control-S in the

transmit queue to be sent to the sending machine to restart transmission.

3. 1.3 Initialization and Installation

The behavior of the 8250 UART is controlled by the values placed in

several housekeeping registers. Because of the length of the RS-232 line, com-

munication parameters of 1200 baud, no parity, one stop bit, and 8 bit charac-

ters were chosen. The initialization portion of the communication handler

establishes these values by using the MS-DOS service function 14H. The inter-

rupt enable register is set to the value 1 enabling the received data available

interrupt. The modem control register is set to the value OBH. This sets the

data terminal ready (DTR), request to send CRTS) and OUT2.

After the 8250 UART is initialized, the interrupt mask register of the

8259A PIC is read and interrupt 4 is enabled. The new mask pattern is written

back to the 8259A.

The vector to the software interrupt service routines is installed at inter-

-19

rupt vector 4FH and the vector to the asynchronous service routine is installed

at OCH with the MS-DOS 21H function 25H. At that time, the queues and

queue pointers are initialized and the functions are made memory resident by

means of the MS-DOS service routine 21H function 31H. This function ter-

minates a process without releasing its memory. The length of the program in

paragraphs must be specified in register DX.

3.2 File Server Software

Sharing licensed software between two networks required changes to the

existing file server software. Previously, software had been implemented to

regulate the use of licensed software on a single network. The terms of the

license require that the number of active users of a software product must not

exceed the number of licenses owned for the product. To meet this requirement,

the original file server software keeps track of the number of licenses currently

being used. Requests for a product are not granted if a license is not available.

This same concept was expanded to share licensed software between two

networks. Each file server keeps a product table containing the number of

licenses owned for a product, the number of licenses in use, and the number of

licenses over which the server has control. If the number of licenses controlled

by a server is greater than the number of licenses owned, the server has bor-

rowed licenses from the other network. If the number of licenses controlled by

a server is less than the number of licenses owned, the server has lent licenses to

the other server.

20-

Each file server must have every executable program file that exists in the

product table on its hard disk. The product tables for both networks should be

identical except for the number of licenses each file server owns. This number is

determined by splitting the number of licenses between the file servers

appropriately. For example, because Turbo Prolog is used most by graduate stu-

dents, most or all licenses should be placed on the file server the graduate stu-

dents use. The system administrator is reponsible for the allocation of licenses

to each file server.

To incorporate the concept of sharing licenses between two file servers into

the existing software, changes had to be made to existing routines as well as

creating new routines. These changes include revisions to the main program

loop, license request routines, license return routines, and the creation of product

table initialization routines. Figure 4 shows the interaction of the routines and

messages.

— proc can— data

A rqilliB

A! - rquriiptao

1 qtue
bi - UcrcNlraap

relfc

CI ItllCUip

Q«l_nrlnq [SVC)

•21 -

3.2.1 Main Program Loop

The main program consists of two parts: Initialization routines and the

main program loop.

The initialization routines are responsible for establishing the type of moni-

toring, initializing the product and user tables, and setting up the boot files.

The main program loop is responsible for processing network requests. It

checks to see if there is a network request. If so, checks are made to see if the

request is error-free; then a procedure determined by the request type is

invoked. If there is no network request, the file server performs some house-

keeping routines and again checks for a network request.

The main program loop was modified so that after each network request is

processed the file server checks to see if any messages have arrived from the

other file server. If there are messages, they are read and served. If no message

is present, the loop is started again with the checking for a network request.

An algorithm of the main program follows:

Main Program

Initialization

While true

Get network request
If network request

service request
else

housekeeping
endif

Get server request
If server request
service request

Endif
Endwhile

-22-

3.2.2 Initialization of Product Table

As stated earlier, it is important that each file server knows the number of

licenses it has under its control. The product table is initialized during the ini-

tialization process of a file server. The initialization requires two procedures,

TABLE_UPDATE and INIT_TABLE.

When the file server software is started, it goes through a series of initiali-

zation procedures. One of these procedures is INTT_TABLE. INIT_TABLE

clears the receive and send queues of any old messages and sends a request to

the second file server asking for information on the number of licenses that the

second server has borrowed from the requesting server. The second server

responds through TABLE_UPDATE by sending one message for each product

for which it currently has borrowed licenses. As the requesting server receives

these messages, it updates the product table to reflect the current distribution of

licenses. This process Is terminated when the second server sends an end-of-list

message recognizable by a blank field for the product name.

If both file servers are initialized at the same time, the first server will time

out during the product table initialization. This does not cause a problem

because if both servers have been down, neither can have active borrowed

licenses. If one server has been down, the initialization process will update the

product table correctly.

INrT_TABLE and TABLE_UPDATE use two message types: RQSTTAB

and RQSTRESPTAB. These messages have the following format:

23

RQSTTAB RQSTRESPTAB

length length

checksum checksum

message type - 'A' message type - 'B'

end-of-msg - 04H product name[8]

number borrowed[3]

end-of-msg - 04H

The algorithms for the procedures TABLE_UPDATE and INIT_TABLE are

described below:

Table Update

While products
if no_of_prod_owned < no_of_prod_have_use
sendmsg to requesting server

endif

get next product
Endwhile
sendmsg with blank license name

End Table Update

24-

Init Table

Clear queue
Send request for table update
While not done
Get message
If no message
print error message

else

If message type - RQSTRESPTAB
If product name - blanks
done

else

update table entry
endif

endif

endif

Endwhile

End Init Table

3.2.3 License Request

When a user makes a request for a product, a program stub of the same

name as the product is executed. This program generates and sends a license

request to the file server. The file server receives the request, and checks to ver-

ify that it is a known product. After this verification, the server checks to see

if the user is already licensed. If the user is not licensed, the procedure LICIDLE

is called. LICIDLE looks to see if there are allocated copies of software not

being used. If there are, the license permit is returned. To see if a license can be

granted to the requester, the number of licenses in use is compared to the

number of licenses that it can use. The number of licenses that can be used

differs from the number of licenses owned by the number of licenses

lent/borrowed. If the server has available licenses, the server grants the request.

If the server has no licenses available, it generates and sends a request to the

-25-

other file server. That file server checks to see if it can grant the request and

sends back a response. If the second server grants the request, it decrements the

number of licenses it currently has indicating it has lent a license and the

requesting file server increments the number of licenses it currently has indicat-

ing it has borrowed a license. If the requesting machine does not receive a

response in a specified time, the request is not granted.

LCNSREQ and REQUESTLICENSE use two message types: RQSTLIC and

LICRQSTRESP. These messages have the following format:

RQSTLIC LICRQSTRESP

length length

checksum checksum

message type - 'C message type - 'D'

product name[8] product name[8]

end-of-msg - 04H license grant

end-of-msg =- 04H

The following algorithms are for the license request routines.

26

Lcnsreq

Find product in product table

Unlicense idle users
If file server does not have a license to allocate
send license request to other file server
get response

If no response

print error message
else

if license is granted
increment number of licenses file server has

else

print message
goto end

endif

endif

endif

update user table

update product table

End Lcnsreq

Rqstlicense

Find product in product table
Unlicense idle users
If file server has license to grant
license granted

else

license not granted
endif

Send response to requesting file server

End rqstlicense

3.2.4 License Return

A user of a licensed product returns a license to the file server in one of

three ways:

-27-

1) The user exits the licensed program normally; control returns to the pro-

gram stub. The program stub sends a license return request to the file

server.

2) The user exits the licensed program with a Control-C. The stub program

again sends a license return request to the file server.

3) The file server expects a license verification every two minutes from the

user. This license verification is generated by the stub program. If the file

server does not receive a license verification during the specified interval,

the file server assumes that the user machine has been shut off and any

licenses belonging to the user are returned.

When the file server receives a license return, it looks for the entry in the

product table and removes it. The server decrements the number of licenses in

use and checks to see if the license was borrowed. If it was a borrowed license,

the file server decrements the number of products it can use and sends a message

to the other file server to return the license.

When the second file server receives the license return message, it incre-

ments the number of licenses it can use and replies with a return license

response to the originating file server.

LCNSRET and RETURNLICENSE use two message types: RETLIC and

RETLICRESP. These messages have the following format:

•28

RETLIC RETLICRESP

length length

checksum checksum

message type - 'C message type - 'D'

product name[8] product name[8]

end-of-msg - 04H end-of-msg - 04H

The algorithms for the license return routines are given below:

Lcnsret

Find product in product table

Decrement number of license in use
if license was borrowed
send license return to other file server

endif

update product table

update user table

End lcnsret

Returnlicense

Find product in product table
Increment number of licenses file server has
Send response to other file server

End returnlicense

3.2.5 Message Protocol

The above routines use the SENDMSG and GETMSG procedures to exchange

messages with the other file server. SENDMSG receives the information to be

-29-

sent from one of the service routines and builds a message. The first field of

every message is the length. The length is calculated from the string sent from

the service routine and is converted into a character type. The second field of the

message is a checksum. The SENDMSG generates a checksum by using the

"exclusive or" operator on the message string. The rest of the message is variable

depending on the message type. After the message has been assembled,

SENDMSG calls an interface procedure to place the message in the transmit

queue. The interface procedure is written in assembler language.

GETMSG uses an assembler language interface to retrieve a message from

the receive queue. It then verifies that the message arrived correctly using the

length and checksum fields. After verification, the message string is passed to

the requesting service routine.

The following illustrates how messages are passed between servers.

timed
wait

Response

•30

3.2.6 Interfaces

The file server routines are written in C. Supervisor calls are placed from

these routines by means of interface procedures written in assembler language.

The SENDBUF procedure initializes the SI register to point to the character

string to be copied to the send queue and calls the SEND_STRING supervisor

call.

The RECVBUF procedure first calls the settime supervisor call to start the

timeout process. It then initializes the DI register to point to the character

string to copy the message in the receive queue and calls the SVC GETJSTRING.

If the message was copied successfully, the timeout process is cancelled through

the SVC CANTIME.

The FLUSH procedure calls the software interrupt INIT_QUEUE

-31 -

CHAPTER 4

RESULTS AND FUTURE WORK

4. 1 Results and Conclusions

Sharing licensed software between two file servers has been implemented

and is in operation. Performance testing shows that the new network system

operates with a slightly slower response speed. Login time for the old system

requires approximately 10 seconds compared to the login time of approximately

12 seconds for the new system.

Request response time is approximately 5 seconds for both the old and new

system if the original server can grant the request. However, if the server

requests a copy of a license program from the other server, response time nearly

triples to approximately 15 seconds. Even with this response time, the new

system has advantages over the old system because the old system would have

issued a message to "try later" and the user would have to wait for a copy to

become available.

With the implementation of shared licensed software between two file

servers, users should find using the networks easier. Users of the networks will

not have to remember which software is located on what network; all software

will be available to both networks.

4.2 Future Work

Additional features that could be added at a later date include adding a

scheduler to the network, optimizing software allocation among file servers, and

adding additional file servers to share licenses.

-32

4.2.1 Scheduler

The present network file server acts on each network request sequentially

and carries the request to completion before executing the next request. By

adding a scheduling mechanism to the network, a request that currently uses a

busy wait to wait for an event could be blocked and another request started.

This would decrease the request response time on the network.

The timeout process used for the communication of messages between file

servers is based on the system clock. The clock hardware interrupt signals the

waiting process when a specific time has elapsed. This concept would easily fit

into a scheduled environment.

4.2.2 Software Allocation

The number of licenses each file server owns is established by the system

administrator. A feature which would optimize the number of licenses each file

server owned would help the network perform more efficiently. The servers

would keep track of the number of licenses borrowed/lent. If trends showed a

particular software product was being borrowed/lent often, the file servers

would update their product tables with the server who had been borrowing the

licenses increasing the number it owned, and the server lending the licenses

decreasing the number it owned by the same number. This would decrease

license request response time since requests for a copy of a license software pro-

duct granted by its own server are faster than requests granted from the other

server.

33

4.2.3 Additional File Servers

The sharing of licensed software is currently implemented to share licenses

between two hie servers. Additional servers could be added with minor changes

to the file server software.

One change would be to add an address field to the messages so that they

could be distinguished between file servers. A single byte address would be able

to address 256 different file servers.

Another change would be to determine the next file server to route a

request If the current file server could not grant the request.

-34-

BIBLIOGRAPHY

[ANGE86]Angermeyer J., Jaeger K., "MS-DOS Developer's Guide", Howard "W.

Sams & Co., 1986.

[DUNC86]Duncan R.,"Advanced MSDOS", Microsoft Press,1986.

[GOLD8 7] Goldstein L.J.,"Mlcrocomputer Applications", Addison-Wesley Pub-
lishing Company ,Inc, 1987, p. 487-488.

[NATI86] "National Semiconductor Corporation Series 32000 Databook", 1986,
p. 4.97-4.101.

[OPTI84] "Optimizing C86 User's Manual", Computer Innovatlons.Inc, 1984

[ROLL85] Rollins D.,"8088 Macro Assembler Programming", Macmillan Publish-
ing Company, 1985.

[SARG86] Sargent M. in, Shoemaker R.L.,"The IBM PC from the Inside Out",
Addison-Wesley Publishing Company.Inc., 1986.

-35

APPENDIX A

Added/Modified Source Code

/* LSNSRV5.C - added routines for two servers */

#include <stdio.h>
#include <enet.h>
#include <sysint.h>
#include <bootrec.h>
#include <dosblks.h>
#define EXTERN extern

#include <lsnmdef.h>
#include <bavserv.h>

table_updateO

/ttaBanimmuixnmmmBtMmwtmntniiwantwitunnoit

Table update is called when the second file server requests information

on the number of licenses the file server has belonging to the second
server. If the current product limit is less than the number of products
the file server has. then a message is sent to the requesting server that

name of the product and the number of licenses it is borrowing. The last

message sent has a blank product name, which signals the second file

server that the table update is complete.

******tt*M***«***/

{

struct prod_tab *p;

struct info_tab_upd *sm - (struct info_tab_upd *) smbuf

:

int number.i.len;

/* pointer to start of prod tab */

p - prodbase:

/* message type to be sent */

sm-> ltui_msg_type - RQSTRESPTAB:
/* search product table */

while (p I- NULL){
/* are we borrowing a lie? */

if (p- > prod_lim < p->prod_have)(
/* send message to second server •/

len - strlen(p->prod_nam):
/* copy product name */

for (i-0: i<len; i++)

sm->ltui_name[i] - p->prod_nam[i]:

36-

/* pad with blanks */

for (i-len: i<8; i++)

sm- > ltui_name[i] - ' ';

/* calc number borrowed */

number — p-> prod_have - p-> prod_lim;
/* convert to character V
sprintf(sm- > no_have."%d".number):

sendmsgCsmbuf. sizeof(struct info_tab_upd)):

)

/* get next product V
p - p-> prod_prd:

)

/* termination message */

for (i-0: i<8; i++)

sm-> ltui_name[i] - ' ':

sm- > no_have[l] - ' ':

sm- > no_have[0] -
-

0';

sendmsgCsmbuf. sizeof(struct info_tab_upd)):

init_table()

{

/US**

Init table is called during the initialization process

of a file server. A message is sent to the other file

server requesting information on the number of licenses

it second server is currently borrowing. This procedure
terminates when the second server sends a message with a
blank product name.

WW**/

struct info_tab_upd *rm - (struct info_tab_upd *) rmbuf;
struct rqst_tab_upd 'sm - (struct rqst_tab_upd *) smbuf

:

struct prod_tab *pt;

int done;

int rmstat.rmlen;

int number:

/* flush buffer V
flushO;

/* message type to be sent */

sm -> tr_msg_type - RQSTTAB:
sendmsgCsmbuf.sizeof(struct rqst_tab_upd))

:

done - 0;

/* do for each product server has borrowed V
while (!done){

37-

rmstat - getmsg(rmbuf.timeout):
if (rmstat — -1) { /* timeout V
log("TIME*Timeout in Init_tableO):

done - 1;

) /« if V
else if (rmstat — 0){ /* process message V
/* this is the response */

if (rm -> Hui_msg_type — RQSTRESPTAB){
/* terminate? */

if (rm -> ltui_name[l] — '

')

done - 1:

else (

/* update product table V
pt - findprod(rm -> ltui_name):

if (pt — NULL)
/* don't have product */

log("PROD»Product not foundO):
else)

sscanf(rm-> no_have."%d".&number);
pt->prod_have - pt->prod_have - number;

) I* else V
) /* else V

} /« if »/

else log("UNRT*Unexpected request typeO);

(/« else V
) /» while V

}: /* init_table V

sendmsg(buf)

UCHAR »buf:

int smlen:

I

/MMMMMMUMMnHMIMMIBwomanamnwna*•*»*«***>

This procedure assembles the message. The checksum and length are
calculated and added to the message. A call is then made to the
assembly language routine sendbuf to place the message on the transmit
queue.

inti;

char checksum:
char len:

/* initialize buffer */

buf[0] - •(>•;

buffi] - (>:

38-

/* initialize checksum */

checksum - ' ';

/* get length */

smlen - strlen(buf):

/* calc checksum V
for (i-2;i<smlen;i++)

checksum *- buf[i]:

buf[l] - checksum:
/* initialize length */

len-
- -

;

/* convert to character */

if (smlen < 16)

len - smlen + 0x30:

else

printfCOnvalid message length");

buf[0] - len:

buftsmlen++] - 0x04:

buf[smlen++] - ' ';

if (pmflag)(

printfCOacket in sendmsg"):

print_pkt(buf,0xl4);

)

sendbuf(buf);

I

getmsg(rmbuf.tout)

UCHAR *rmbuf

;

int tout:

{

/***

This procedure requests a message from the receive buffer. The length
and checksum are verified.

mt stat:

int i;

int len,buf_len:

char checksum:

UCHAR b_len:

/* clear buffer V
for(i-0;i<20;i++)

rmbufti] - ' ';

stat - recvbuf(rmbuf.tout):

if (stat)

stat - -1:

else{

39-

if (pmflagM

print_pkt(rmbuf,0xl4);

) /« if V
b_len - rmbuf[0];
/* convert to number */

buf_len - b_len - '0';

/* check length V
if ((len - strlen(rmbuf)) I- buf_len)

stat - -1:

checksum - ' ':

/* calc checksum V
for(i-2;i<len:i++)

checksum * rmbuf[i];

/* check checksum V
if (checksum I- rmbuf[l])

stat - -1:

)

return(stat);

):

rqstlicense(rmbuf)

struct rqst_lic *rmbuf

;

I

Zee***

This procedure is called from the main program loop when a rqst license

message is received. Rqstlicense sends a response indicating to the

requesting server whether a license can/cannot be granted.

*******************/

int i:

struct rqst_lic *rm - (struct rqst_lic *) rmbuf

;

struct rqst_lic_resp *sm - (struct rqst_lic_resp *) smbuf

;

struct prod_tab *pt:

sprintf(logstr."LREQ2 %Ss0.rm-> lrl_name):

logdogstr):

pt - findprod(rm- > lrl_name);
/* clear buffer V
for(i-0:i<20;i++)

smbuf[i] - ' ';

/* copy product name V
for(i-0;i<8;i++)

sm->lrlr_name[i] - rm-> lrl_name[i]:

sm->msg_type - LICRQSTRESP;
if (pt — NULL))
sprintf(logstr."LREQ2*Request for unknown productO);
log(logstr):

•40-

sm- > lic_grant - '0';

) /* if V
else{

licidle(pt):

if (pt->prod_use >-pt-> prod_have)(

sm- > lic_grant - '0':

sprintf(logstr."LREQ2*Request not granted for %s".sm-> lrlr_name);

log(logstr):

) /» if V
else{

pt-> prod_have—

:

sm- > lic_grant - '1':

sprintf(logstr."LREQ2,Request granted for %s".sm-> lrlr_name);

log(logstr):

) I* else V
) /* else V
sendmsg(smbuf):

) /* rqstlicense V

retumlicense(rmbuf)

struct ret_lic *rmbuf

:

(

This procedure is called from the main program loop when a return license

message is received. Retumlicense sends a response indicating to the
requesting server the message was received.

int i;

struct ret_lic *rm - (struct ret_lic *) rmbuf

;

struct resp_ret_lic 'sm - (struct resp_ret_lic *) smbuf

;

struct prod_tab *pt:

pt - flndprod(rm- > rl_name);

if (pt — NULL) {

sprintf(logstr."0RET2 %8s Unknown productO,rm->rl_name);
log(logstr);

) /» if «/

else {

pt-> prod_have++:
sprintf(logstr."0RET2 %8s retumedO,rm-> rl_name);
log(logsu):

/* clear buffer */

for(i-0:i<20:i++)

smbuf[i] - ' ';

/* copy product name */

41-

for(i-0;i<8;i++)

sm- > rlr_name[i] - rcn->rl_name[i];

sm->msg_type - RETLICRESP;
sendmsg(smbuf);

} /* returnlicense */

/* LSNSRV1.C and LSNSRV2.C—modified routines for two servers V

/* (C) Copyright 1985. Brick A Verser and Robert A Young »/

/* Network Server V
I* BAVSRV1.C - initialization routines V

main(argcargv)

int argc:

char **argv:

int rlen.rstat.ijc;

int rmlen.rmstat;

int watchfig;

char c;

char *p:

struct user_tab *u;

struct ph_hdr *php;

struct gen_msg *rm:

segread(&rv);

lfiag.conlog - 1;

logflag - 0;

statlflg - 0:

watchfig - 0;

pmflag - 1:

userbase.user_fre - 1:

userbase.user_ftp - -1;

I* normally log to console only */

/* no watchdog timer by default */

I* initial user entry is available V
/* no FTP file open V

for (i-0: i<6; i++) bcastid[i] - Oxff; /* ethernet broadcast addr */

mcastid[0] - 0x80; mcastid[l] - 0; mcastid[2] - 0;

mcastid[3] - 'K'; mcastid[4] - 'S'; mcastid[5] - 'U';

argv++; argc—;

while ((argv) && (*(p - *argv)

p++;
while (*p) switch(*p++) {

case 'p':

pflag++;

break;

case 'd':

)){

break;

42-

case T:

lflag.disklog - llflag.disklog: /* log to disk V
break:

case V:
lllag.conlog - Hflag.conlog; /* log to console */

break;

case 'w':

watchflg++; /* Use software watchdog timer */

break:

default:

fprintf(stderr,"invalid optionO);

break:

)

argv++; argc—

;

)

printfCKSU 3COM serverO):

printf("CS-%04x DS-%04xO,rv.scs,rv.sds);

printf("TRACSTRT-%04x TRACEND-%04x &TRACCURR=%04xO.
tracstrt.tracend.&traccurr);

if ((rc-open60(locid))!-0) {

abort("open60 errorO):

1:

bootinitO; /* go open boot disk image files */

initcach(lOO); /* allocate disk cache V
bpb_init(): I* go read BPB from shared disk */

initlO; /* go read licensed product file V
init_table(): /* see if other file server has products */

loginitO; /* go open log file */

if (watchflg) {

watchini(WATCHTIM): I* Start reset timer V
printf("Watchdog timer startedO):

printf("Server waiting for workO):

for(::){

bavtrace(0xl001,timestam.hour,timestam.min.timestam.sec);

rstat-recv60(rbuf^izeof(rbuf).0xl00O,&rlen):

if (watchflg) watchokO: /* Throw Fido a bone V
/•qtimeO:*/ I* Get the time V
bavtrace(Oxl 101 ,timestam.sec,timestam.hnd.rstat);

if (rstat— -1) { /* check for timeout V
logflushO; I* checkpoint log file V
statlogO: /• get statistics into log V
c - getconO: /* check for console command */

if (cl-EOF) switch(c) {

case 3:

goto fini:

break:

•43-

case 'S': /* print statistics */

printfOCache hits - %ld Disk reads - %ldO.

stt_chit,stt_drd);

printfCPacket reads - %ld Packet writes - %ldO,

stt_pkrd,stt_pkwr);

printf("Boot reads - %ld Coreleft - %xhO,
stt_brd.coreleft()):

printf("CS-%04x DS-%04xO.rv.scs.rv.sds):

printf("TSTRT-%04x TEND-%04x &TCURR-%04xO,
tracstrt.tracend.&traccurr):

break:

case 'P': /• toggle packet trace */

pflag - Ipflag:

break:

case 'D': /* toggle disk trace */

dflag - Idflag;

break:

case 'C: /* toggle console logging V
lflag.conlog - llflag.conlog:

break:

case "W': /* toggle watchdog timer V
watchflg - iwatchflg:

if (watchflg) (

watchiniCWATCHTIM);
printf("Watchdog tinier startedO);

)else{

watchfinO;

printf("Watchdog timer removedO):

break;

default:

printfCl hear you knocking.

but you can't come inO):

break:

} /* end switch */

)

else if (rstat — 0) { /* receive worked V
php - (struct ph_hdr *) rbuf

;

if (php->ph_type !- ENET_KSU) continue:

stt_pkrd++;

if (pflag)

print_pkt(rbuf,rlen);

if ((php->ph_msgsz>0x3c) ?

(php->ph_msgsz !- rlen) : (rlenl-0x3c)) {

log("PKLE0): /* packet length error V
continue:

)

/* destaddr isn't ours */

if (compn(locid.php->ph_dest.6) !- 0) {

/* not broadcast */

44-

if (compn(bcastid,php->ph_dest,6)!-0 &&
compn(mcastid,php->ph_dest.6)!-0) {

logClNDEO); I* invalid destination V
continue;

)

if ((php->ph_req!-REQLOGON) &&
(php-> ph_req!-REQLOGOF)) {

logClNDEO); /* invalid destination */

if (php->ph_req I- REQLOGON) {

u - finduserCrbuf);

if (u—NULL) {

if (php->ph_req — REQLOGOF) continue:

logCUNKUO): /* unknown user */

continue:

I

/* duplicate pktseq V
if (u->user_seq — rbuf->ph_seqno) {

sprintf(logstr,"DUPP %16s %4xh0.
u->user_uid,u->user_seq):
log(logstr);

u->user_seq - rbuf->ph_seqno;

switch(php->ph_req) {

case REQLOGON:
logon(rbuf);

break:

case REQLOGOF:
logoff(rbuf.u):

break;

case REQRDDSK:
case REQWRDSK:

rdwrdisk(rbuf.u):

break:

case REQLINK:
linkdisk(rbuf.u);

break:

case REQLCNS:
lcnsreq(rbuf.u);

break:

case REQLRET:
lcnsret(rbuf.u):

break:

case REQLVER:
lcnsver(rbuf.u):

break:

case REQOPEN: /* FTP */

45-

rmtopen(rbuf.u);

break;

case REQCLOSE:
rmtclose(rbuf,u):

break:

case REQCOPY:
rmtcopy(rbuf,u);

break:

case REQERASE:
rmterase(rbuf.u);

break:

case REQBOOT:
rmtboot(rbuf.u);

break;

case REQSWAP:
rmtswap(rbuf,u):

break:

case REQRMDIR:
rmtrmdrKrbuf.u);

break:

case REQMKDIR:
rmtmkdir(rbuf.u);

break:

default:

logOlNRTO): /* invalid request type V
break;

}

)

else { /* receive failed V
sprintf(logstr."RCVF %x0.rstat):

log(logstr); /* receive failed V

rmstat - getmsg(rmbuf.OxOl);
if (rmstat — 0){

rm - (struct gen_msg *) rmbuf

;

switch (rm->msg_type){
case RQSTTAB:
table_update();

break;

case RQSTLIC:
rqstlicense(rmbuf);

break:

caseRETLIC:
returnlicense(rmbuf):

break:

default:

sprintf(logstr,"Onvalid request");

log(logstr);

break:

I

•46-

}

else if (rmstat !- -1)

printf("Onvalid rmstat");

)

lini: close60();

return 0:

/* (C) Copyright 1985, Brick A Verser and Robert A Young V
/* Network Server V
I* BAVSRV2.C - main routines */

lcnsreq(rbuf.u)

struct lic_req *rbuf

:

struct user_tab *u;

{

int i.rmstat.len;

struct lic_req *r - (struct lic_req •) rbuf

:

struct lic_resp *s - (struct lic_resp *) sbuf

;

struct resp_rqst_lic *rm - (struct resp_rqst_lic *) rmbuf

;

struct rqst_lic *sm - (struct rqst_Iic *) smbuf

:

struct prod_tab *pt:

struct uprd_tab *ut;

bavtrace(0x200 1 .0.0.0):
bldrsp(sbufjbuf);

sprintf(logstr."LREQ %16s %8s0.u->user_uid.r->lic_name);
log(logstr);

pt - findprod(r-> lic_name): /* go look for product table entry */

if (pt — NULL) { /* no such thing */

log("LREQ*Unknown product nameO):
sprintf(s-> lic_msg,"Unknown product nameO):
s-> licr_ph.ph_rcode - 2; /• RC - 2 */

goto lcr_srsp: /* go send response V

ut - finduprd(u.pt): /* go see if user is already licensed V
if (ut !- NULL) (

log("LREQ*Duplicate license req grantedO):

goto lcr_dup:

licidle(pt); /* go check for idle users of product V
if ((pt->prod_use >- pt->prod_have) &&

!(u-> user_flgc&USRF_SU)) { /* already reached limit V
for (i-0;i<20;i++)

smbuf[i] - ' ':

sm->lrl_msg_type - RQSTLIC;
len - strlen(r->lic_name):

for (i-0:i<len;i++)

sm-> lrl_name[i] - r-> lic_name[i];

for (i-len:i<8;i++)

-47.

sm-> lrl_name[i] - ' ':

sendmsg(smbuf):

rmstat - getmsg(rmbuf.timeout);

if (rmstat — -1){

sprintf(logstr."Timeout from getmsg in license requestO);

log(logstr):

sprintf(logstr,
,,

LREQ*Disallowed due to license limitO);

log(logstr):

sprintf(s- > lic_msg."License denied—all licenses are in useO);

s->licr_ph.ph_rcode - 1: /* RC - 1 V
goto lcr_srsp; /* go send response */

else if (rmstat — 0){

if (rm-> lrlr_msg_type— LICRQSTRESP)(
if (rm-> lic_grant — 'l'){

pt- > prod_have++:

goto lcr_grant;

else{

sprintf(logstr."LREQ2*DisaUowed due to license limitO);

log(logstr);

sprintf(s-> lic_msg,"License denied—all licenses are in useO);

s-> licr_ph.ph_rcode - 1; /* RC - 1 V
goto lcr_srsp; /* go send response V

else switch (rm-> lrlr_msg_type){

case RQSTLIC:
rqstlicense(rmbuf);

break:

caseRETLIC:
returnlic(rmbuf):

break;

case RQSTTAB:
table_update():

break:

default:

sprintf(logstr,"Invalid message type in rqst licenseO):

log(logstr):

rmstat - getmsg(rmbuf.timeout):
if (rmstat— -1){

sprintf(logstr.'Time out in lcnsrqstO):

log(logstr):

else if (rm->lrlr_msg_type — LICRQSTRESP){
if (rm-> lic_grant — 'l')(

pt->prod_have++;
goto lcr_grant:

•48-

}

else)

sprintf(logstr."LREQ2*Disallowed due to license limitO);

log(logstr);

sprintf(s- > lic_msg."License denied—all licenses are in useO):

s-> licr_ph.ph_rcode - 1

:

/« RC - 1 V
goto lcr_srsp: /* go send response V

}

}

for (i-0: i< UPRDMAX: i++) { /* need to chain from user_tab */

if (u-> user_prd[i]—NULL) break:

if (i—UPRDMAX) { /* user has limit */

log("LREQ*Disallowed due to user limitO);

sprintf(s->lic_msg,"License denied—you have %d products in useO.

UPRDMAX):
s->licr_ph.ph_rcode-3: /«RC-3V
goto lcr_srsp: I* go send the bad news V

/* grant the license for a new user V
lcr_grant:

ut - (struct uprd_tab *) alloc(sizeof (struct uprd_tab));
ut->uprd_upr - pt->prod_upr; I* insert new entry at front V
pt-> prod_upr - ut:

ut-> uprd_usr - u: I* point back to user uble entry V
ut-> uprd_prd - pt: /* and point to prod_tab entry */

pt-> prod_use++; /* one more license is in use */

u->user_prd[i] - pt: /* point user_tab to prod_tab V
lcr_dup:

qtimeO: /* query the current time V
ut->uprd_hg — timestam.hour: /* remember time we granted license */

ut->uprd_mg - timestam.min;

ut-> uprd_sg - timestam.sec:

ut-> uprd_hv - timestam.hour; /* remember time of last verification V
ut->uprd_mv - timestam.min;

ut->uprd_sg - timestam.sec:

ut->uprd_hu - timestam.hour: /* remember time of last use */

ut->uprd_mu - timestam.min;

ut->uprd_su - timestam.sec:

sprintf(s-> lic_msg."License grantedO);

lcr_srsp:

sendrsp(sbuf,sizeof (struct lic_resp)):

bavtrace(0x2002 .0.0.0):

):

lcnsret(rbuf.u)

struct lrt_req •rbuf

:

struct user tab *u;

-49-

int i:

struct lrt_req *r - (struct lrt_req *) rbuf;

struct lrt_resp *s — (struct lrt_resp *) sbuf

:

struct prod_tab *pt:

struct uprd_tab *ut;

bavtrace(0x210 1 ,0,0,0);

bldrsp(sbuf,rbuf);

pt - findprod(r-> lrt_name); I* go look for product table entry V
if (pt — NULL) { /» no such thing V

sprintf(logstr,"LRET %16s %8s Unknown productO.

u-> user_uid.r-> lrt_name);

log(logstr);

sprintf(s->lrt_msg."Unknown productO):

s-> lrt_ph.ph_rcode -2; /» RC - 2 V
goto lcr_srsp: /* go send response */

qtimeO:
intunlic(u.pt): /* go do work of unlicensing V

lcr_sok:

sprintf(sbuf-> lrt_msg."License successfully returnedO):

lcr_srsp:

sendrsp(sbuf.sizeof (struct lrt_resp));

bavtrace(0x2102,0,0,0);

intunlic(u.pt) /* unlicense product *pt from user *u V
struct user_tab *u;

struct prod_tab *pt:

int i.rmstat.len;

struct uprd_tab *ut.*out;

struct resp_ret_lic *rm - (struct resp_ret_lic *) rmbuf

;

struct ret_lic *sm - (struct ret_lic •) smbuf

;

bavtrace(0x260 1 .0.0,0);

sprintf(logstr."LRET %16s %8s0, u->user_uid, pt->prod_nam);
log(logstr);

ut - pt-> prod_upr; /* point to first uprd_tab in chain V
out - NULL:
while (ut!-NULL) {

if (ut- > uprd_usr — u) break: /* got our entry */

out - ut; /* remember previous entry */

ut - ut-> uprd_upr;

if (ut — NULL) {

•50-

log("LRET»Not licensedO);

goto intunxit; /* Return as if nothing is wrong V

/* ungrant the license V
if (out--NULL) I* ours was first in chain V
pt-> prod_upr - ut-> uprd_upr; /* unchain our uprd_tab entry */

else I* ours wasn't first in chain */

out-> uprd_upr - ut-> uprd_upr; /* rechain without our entry */

free(ut): /* give back the storage V
pt-> prod_use—

;

/* one less license is in use V
for (i-0: KUPRDMAX; i++) { /* need to unchain from user_tab */

if (u->user_prd[i]—pt) {

u-> user_prd[i]-NULL;
break:

)

}

if (pt->prod_have > pt->prod_lim){
pt-> prod_have—

:

for(i-0;i<20:i++)

smbuffi] - ' ';

sm->rl_msg_type - RETLIC;
len - strlen(pt- > prod_name);
for (i-0;i<len:i++)

sm->rl_name{i] - pt->prod_nam[i]:
for(i-len:i<8;i++)

sm->rl_name[i] - '

';

sendmsg(smbuf):
rmstat - getmsg(rmbuf.timeout):

if (rmstat — -1)

printfCOime out from getmsg in intunlic");

else if (rmstat — 0)

if (rm-> rlr_msg_type - RETLICRESP)
return;

else

switch (rm->rlr_msg_type)(
case RQSTLIC:
rqstlicense(rmbuf);

break;

case RETLIC:
returnlic(rmbuf):

break:

case RQSTTAB:
Uble_update(rmbuf);
break;

default:

printfCOnvalid message type in intunlic"):

else

printfCOnvalid rmstat in intunlic"):

rmstat - getmsg(rmbuf.timeout);

-51-

if (rmstat — -1)

printfCOime out 2 from getmsg in intunlic");

else if (rmstat — 0)

if (rm->rlr_msg_type — RETLICRESP)
goto intunzit;

printf("Onvalid request or rmstat in intunlic"):

intunzit:

bavtrace(0z2602.0.0.0);

return:

52-

Asynchronous Serial Communication Driver

This communication driver is designed to handle asynchronous
communications between two machines connected by COM 1.

page .132 ; ask for wide listing format (132 columns)

cr equ Odh icarriage return

If equ Oah lline feed

eol equ 4ft ;end of line

int_mask equ lOh :int mask for irq #4
pic_mask equ 21h programmable interrupt controller

okay equ 4c00h :return code

com_Jnt equ Och :serial com #1
ser_br equ 03f8h ;serial

ier_ser equ 03f9h iinterrupt enable register

iir_ser equ 03fah iinterrupt identification register

ser_lcr equ 03fbh ;line control register

mod_cntl equ 03fch ;modem control register

ser_lsr equ 03fdh :line status register

mod_stat equ 03feh ;modem status register

v_numequ 4fh :vector number for SVC
intlc equ ICh ;timer interrupt

c_seg segment

assume cs:c_-seg

assume ds:c_seg

main proc far

org

seg_org equ $

org lOOh : for com file

start: jmp install

asc_int:

push ax

push bx : save registers

push CI

push dx
push si

push di

push es

push ds

mov ax.cs ;set up data segment
mov ds.ax

mov dx.iir ser

in al.dx

54-

test al.Olh

jz int_yes

jmp

int_yes:sub

mov
jmp

exit

bx.bi

bUl
intvect[bx]

modstat:jmp exit

xmt: mov
in

test

jnz

jmp
goahead:mov

cli

mov
cmp
je

sti

mov
out

inc

cmp
jb

mov
nowrap3:mov

jmp
disab: sti

mov
mov
out

jmp

dx,ser_lsr

al.dx

al.20h

goahead

exit

dx,ser_br

;is there an interrupt?

:yes, go service

:clear bx
;al contains interrupt id

;jump to correct service code

;no special processing for modem

;ser comm buffer register

bx.get_xmt where to start

bx,put_xmt ;is there anything to transmit?

disab ;no—disable interrupt

al.xmt_buf[bx]

dx.al

bx
bx,64

nowrap3
bx.O

get_xmt,bx

exit

dx.ier

al.l

dx.al

exit

;load byte to transmit

transmit

;point to next byte

:are we at the end?

;no—goto nowrapS
;yes—point to start of buffer

iupdate get pointer

•_ser ;int enable register

Idisable transmit interrupt

recv: mov
in

test

jnz

jmp
next: mov

in

cmp
jne

inc

mov
jmp

nomsgend:

cli

mov

dx.ser_lsr

al.dx

al.OlH

next

exit

dx.ser_br

al.dx

al,04h

nomsgend
nomsg
commsg.l
exit

bx,p_ptr

iline status reg

itest to see if char

;yes—there is a char

;no—exit
;ser comm buffer reg

;get char

;get put pointer

-55-

sti

mov buffer[bx].al ;add char to buffer

inc bx
cmp bx.64 ;are we at the end of the buffer?

jb nowrap ;no—go to nowrap
sub bx.bx lelear bx

nowrap: cli

mov p_ptr,bx ;update put pointer

sti

jmp exit

recvstat: ;not interested in recvstat

exit:

pop ds ;restore registers

pop es

pop di

pop si

pop dx
pop ex

pop bx

mov al.20h ;clear interrupt

out 20h,al

pop ax

iret

mylc_int:

cmp csxounter.O ;are we timing?

je notime ;no, go on
dec cs:counter ;decrement

jne notime ;has time expired?

mov cs:flag,l ;yes;set flag

notime: jmp cs:exit_int ;exit to other clock interrupts

svc_int:

push bx ;save registers

push ex

push dx

push si

push di

push es

push ds

mov bx,ax ;save value passed in ex

mov ax.es ;set up data segment
mov ds.ax

sal bx.l

add bx.offset dsplist

jmp cs:[bx] ;jump to procedure

•56-

;GETSTR function (call 0)

getstr:

mov ax.OFFFFh :init status to -1

tryagain:

cli :clear interrupts

cmp nomsg.O :is there a complete msg?
jne gotone

sti ;no;set interrupts

cmp counter.0 :are we timing?

je timeout

cmp flag.O :has time expired?

je tryagain ;no; try again

jmp timeout :yes

gotone:

sti Set interrupts

sub ax .ax :set status to

sub cx.cz iclear

mov bx.g_ptr ;get pointer

mov cl.[buffer+bx] ;get number of characters in msg
and cx.OFh :turn into an integer

lea si.[buffer+bx] ;load address
more: movsb ;get character

mov bx.si

sub bx.offset buffer:where are we in buffer?

cmp bx.64 ;are we at the end?

Jb notend :yes. no need to worry
lea si.buffer

notend:dec ex decrement number of char left

jnz more :yes. more chars to get

mov bx.si

sub bx.offset buffencalculate pointer

cli ;clear interrupts

mov g_ptr.bx ;update pointer

sti ;set interrupts

dec nomsg decrement number of msgs in buffer
timeout:

jmp exit2 :exit

:FLUSH function (call 1)

flush:

cli ;clear interrupts

mov g_ptr.O :clear get pointer

mov p_ptr,0 ;clear put pointer
sti set interrupts

mov nomsg.O ;clear number of messages in buffer
jmp exit2 ;exit

;0N function (call 2)

cli :clear interrupts

-57-

in al,pic_mask

or al.int_mask

xor al,int_mask

out pic_mask,al

sti ;set interrupts

jmp short exit2 ;exit

:OFF function (call 3)

off:

cli ;clear interrupts

in al.pic^mask
or al,int_;mask
out pic_mask,al

sti Set interrupts

jmp short exit2 ;exit

SENDSTR function (call 4)

sendstr:

sub ax.ax iclear register

push ds set up extra register

pop es

pop ds

lodsb ;get length of message

push ds

push es

pop ds

cli Xlear interrupts

mov bx.put._xmt ;load put pointer

sti Set interrupts

mov xmt_buf[bx].al store char

inc bx ;point to next

lea di.xmt._buf[bx] ;load address
mov ex,ax ;load length into register

and cx.OFh ;convert into integer

more2: push ds set up extra register

pop es

pop ds

movst I :move char

push ds

push es

pop ds

mov bx.di

sub bx .offset xmt _bufcalculate where we are in buffer

cmp bx.64 ;are we at end?
jb notend2
lea di.xmt._buf ipoint to beginning

notend2:

dec ex decrement number of char left

jnz more2
mov bx.di

•58-

sub bx.offset xmt_bufcalculate put pointer

cli ;clear interrupts

mov put_xmt,bx iupdate put pointer

sti :set interrupts

lenable transmit interrupt

mov dx.ier_ser interrupt enable register

mov al,3 :enable transmit register

out dx,al

overrun:jmp short exit2

SETTIME (ftmotion 5)

settime:

mov counter.dx Set time

mov flag.O iset flag

jmp short exit2

:CANCEL TIME (function 6)

cantime:

mov counter.O ;clear time

mov flag.O ;clear flag

jmp short exit2

exit2:

pop ds ;restore registers

pop es

pop di

pop si

pop dx
pop ex

pop bx

push iIX

mov al.20h ;clear interrupt

out 20h,al

pop ax

iret

main endp

dsplist dw getstr.getch,flush,test.init.on,off,sendstr,settime,cantime

intvect dw modstat.xmt.recv.recvstat

p_ptr dw
g_ptr dw
buf_end dw 64

buffer db 64 dup(O)
intc_seg dw
intc_offs dw
flag dw
counterdw
put_xmt dw
get_xmt dw
xmt_buf db 64 dup(O)

59-

nomsg dw
commsg dw
exit_int dd 7

rmstat label dword
rmstat_offs dw 7

rmstat_seg

first:

dw 7

install:

mov ah.35h

mov al.com int

int 21h
mov intc_seg,es

;get serial communication vector

mov intc_offs,bx

mov dx.offset asc_int ;point to our routine

mov al.com_int

mov ah,25h

int 21h ;set serial to our routine

mov dx.O initialize port to

mov al.lOOOOOHB ;1200 baud, no parity

mov ah.O :1 stop bit and 8 bit chars
int 14H

mov dx.mod_cntl ;modem controller

mov al.ObH

out dz.al

mov dx.ier_ser

mov al.l

out dx.al

:interrupt enable register

mov dx.mod
in al.dz

and al.llllOOOOb

out dx.al

_stat ;reset modem status register

in al.pic_mask ;8259 int. mask
and al.not int_mask ;enable irq 4
out pic_mask.al

mov dx.offset svc_int :load SVC address
mov al.v_num
mov ah,25h :set up SVC's
int 21h

mov ah.35h
mov al.intlc

:load timer interrupt vector

-60-

int 21h
mov word ptr exit_int+2,es Istore

mov word ptr exit_int.bx

mov dx.offset mylc_int ;add mine to theirs

mov al.intlc

mov ah.25h

int 21h

initialize buffers

mov p_ptr.O

mov g_ptr,0

mov buf_end.64

mov put_xmt.O
mov get_xmt.O

mov dx.offset ok ;print message
mov ah.09h

int 21 h

exit and stay resident

mov dx.Coffset first - seg_org + 15) shr 4

mov ah.31h

int 21h

ok db 'Serial communication routines have been installed',cr,lf,'$'

c_seg ends

end start

61

INTERNETWORK SHARING OF LICENSED SOFTWARE

by

LINDA S. NEEL

B.S..Kansas State University. 1983

AN ABSTRACT OF A REPORT

submitted in partial fulfillment of the

requirements for the degree

MASTER OF SCIENCE

Computer Science

KANSAS STATE UNIVERSITY
Manhattan .Kansas

19S7

The local area networks at Kansas State University in the Computing &

Information Sciences Department shared licensed software among user machines.

Licensed software was allocated to user machines on the basis of the availability

of licenses for the product. This report details the design and implementation

of an expanded network. Network functionality was expanded to share licensed

software between two file servers on otherwise independent networks. Sharing

licensed software between two file servers is accomplished by establishing asyn-

chronous communication between the file servers with an RS-232 link. By

allowing license tokens to be passed between file servers, all licensed software

can be used from either network.

