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Abstract

In this thesis, the author presents several numerical methods for solving scalar and elec-

tromagnetic wave scattering problems. These methods are taken from the papers of Professor

Alexander Ramm and the author, see [1] and [2].

In Chapter 1, scalar wave scattering by many small particles of arbitrary shapes with

impedance boundary condition is studied. The problem is solved asymptotically and nu-

merically under the assumptions a � d � λ, where k = 2π/λ is the wave number, λ is

the wave length, a is the characteristic size of the particles, and d is the smallest distance

between neighboring particles. A fast algorithm for solving this wave scattering problem

by billions of particles is presented. The algorithm comprises the derivation of the (ORI)

linear system and makes use of Conjugate Orthogonal Conjugate Gradient method and Fast

Fourier Transform. Numerical solutions of the scalar wave scattering problem with 1, 4, 7,

and 10 billions of small impedance particles are achieved for the first time. In these numer-

ical examples, the problem of creating a material with negative refraction coefficient is also

described and a recipe for creating materials with a desired refraction coefficient is tested.

In Chapter 2, electromagnetic (EM) wave scattering problem by one and many small

perfectly conducting bodies is studied. A numerical method for solving this problem is

presented. For the case of one body, the problem is solved for a body of arbitrary shape,

using the corresponding boundary integral equation. For the case of many bodies, the

problem is solved asymptotically under the physical assumptions a � d � λ, where a is

the characteristic size of the bodies, d is the minimal distance between neighboring bodies,

λ = 2π/k is the wave length and k is the wave number. Numerical results for the cases of

one and many small bodies are presented. Error analysis for the numerical method are also

provided.
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Chapter 1

Fast Algorithm for Solving Scalar

Wave Scattering Problem by Billions

of Particles

1.1 Introduction

Wave scattering is a natural phenomenon that happens in everyday life, for example, light

scattering in the atmosphere, light scattering by cosmic dust and by the dust in atmosphere,

sound wave scattering by packs of fish in the ocean, etc. Studying wave scattering is a

subject that has attracted much attention from scientists and engineers since it has many

practical applications, for example, in medical image processing, geophysical prospecting,

quantum theory, materials science, etc. The wave scattering theory gives insights into the

structure of the materials, see [3] and [4]. Wave scattering by small particles was studied by

Lord Rayleigh, see [5], who understood that the main term in the scattered field is the dipole

radiation. For particles of an arbitrary shape he did not give formulas for calculating the

induced dipole moment with a desired accuracy for bodies of arbitrary shapes. This was done

in [6] and [7]. Scalar wave scattering by small impedance particles, developed in [8], and used

in this paper, has practically important physical features: the field scattered by such particles
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is O(a2−κ), as a → 0, which is much larger than the field in Rayleigh scattering which is

O(a3). Here a is the characteristic size of small particles and it is assumed that the boundary

impedance of a particle is ζ = ha−κ, where h is a continuous function and κ ∈ [0, 1) is a

constant. The theory of wave scattering by many small impedance particles of an arbitrary

shape has been developed in [9] and [8], and is a basis for the computational results in this

paper. Our basic physical assumptions are a � d � λ, where λ is the wavelength and

d is the minimal distance between neighboring particles. The theory corresponding to the

assumptions a � λ � d is simple and has been used in many cases. It corresponds to the

assumption that the effective field in the medium is equal to the incident field. In quantum

mechanics it is called the Born approximation, and elsewhere the term weak scattering is

used, see [3] and [4].

We do not assume that the particles are distributed in the vertices of a fixed grid with

the step size d. They can be distributed randomly or not randomly. The small particles

can be described by the inequality ka � 1, where k is the wave number, k = 2π/λ. In [8]

one can find a detailed presentation of this theory. In [9] and [8] the developed theory has

been applied to materials science: it was proved that by distributing small particles with

prescribed boundary impedances in a given bounded domain, one can create materials with

any desired refraction coefficient, in particular, with negative refraction coefficient, which is

of interest for the theory of meta-materials, see [10].

Earlier numerical results on wave scattering by not more than one million particles, based

on the above theory, were reported in [11] and [12]. In this paper, for dealing with 1010 small

impedance particles, an essentially novel computational procedure which requires parallel

computations at a large scale is developed. The numerical solution of the wave scattering

problem with so many small particles, ten billions, is obtained, apparently, for the first time.

There are many papers on waves and static fields in the many-body systems. We mention

just a few papers [13],[14], [15], and [16]. In these and many other papers in this area the

theoretical basis for the computational results is quite different from ours, and there were

no computational results on scattering by billions of particles, to our knowledge. In Section

1.3 the computational difficulties that we have faced and the methods to overcome these are
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briefly described.

In Section 1.2 the theory, on which the computational results are based, is outlined. In

Section 1.3 a fast algorithm for solving wave scattering problem with many small impedance

particles of arbitrary shapes is described. The algorithm is based on 3D convolution, Fast

Fourier Transforms (FFT), and Conjugate Orthogonal Conjugate Gradient method (COCG),

see [17, 18] and [19]. It exploits the structure of the Green’s function of the Helmholtz equa-

tion in the wave scattering problem and drastically reduces the total number of operations

required for solving this problem. The fast computational methods, such as (FFT), have

been widely used in various computational problems, see [20, 21] and [22], but the scale of

the problem we deal with requires new computational techniques briefly described in 1.3.

Numerical examples are presented in Section 1.4 to illustrate the practical usage of the algo-

rithm. In these numerical examples the algorithm is implemented in parallel and the scalar

wave scattering problem is solved with one, four, seven, and ten billions of particles using

Gordon super computer at the Extreme Science and Engineering Discovery Environment

(XSEDE).

1.2 Scalar wave scattering by many small impedance

particles

Consider a bounded domain Ω ⊂ R3 filled with a material whose refraction coefficient is

n0(x). The assumptions on this coefficient are formulated below (1.2.5). Suppose there are

M small particles Dm distributed in Ω so that the minimal distance between neighboring par-

ticles, d, is much greater than the maximal radius of the particles, a = 1
2

max1≤m≤M diamDm,

and much less than the wave length, λ, a � d � λ. Let D be the union of Dm, D :=⋃M
m=1 Dm, D ⊂ Ω, and D′ := R3 \ D be the exterior domain. Suppose that the boundary

impedance of the mth particle is ζm, ζm = h(xm)
aκ

, where h(x) is a given continuous function

in D such that Im h ≤ 0 in D, and xm is a point inside Dm. This point gives the position

of the mth particle in R3. Let κ be a given constant, κ ∈ [0, 1). The scattering problem is

3



formulated as follows:

(∇2 + k2n2
0(x))u = 0 in D′, k = const > 0, ka� 1 (1.2.1)

uN = ζmu on Sm := ∂Dm, Im ζm ≤ 0, 1 ≤ m ≤M, (1.2.2)

u(x) = u0(x) + v(x), (1.2.3)

u0(x) = eikα·x, |α| = 1, (1.2.4)

vr − ikv = o(1/r), r := |x| → ∞. (1.2.5)

Here k is the wave number, k = 2π/λ, u0 is the incident plane wave, v is the scattered wave,

α is the direction of the incident wave, ~N is the outer unit normal to Sm, the refraction

coefficient n0(x) = 1 in Ω′ := R3 \ Ω. It is assumed that n0(x) is a Riemann-integrable

function and that Im n2
0(x) ≥ 0 in Ω. Equation (1.2.5) is called the radiation condition.

It was proved in [8] that if Im n2
0(x) ≥ 0 and Im h(x) ≤ 0, then the scattering problem

(1.2.1)-(1.2.5) has a unique solution and it can be found in the form

u(x) = u0(x) +
M∑
m=1

∫
Sm

G(x, t)σm(t)dt. (1.2.6)

Note that u in (1.2.6) satisfies (1.2.1) and (1.2.5) for any σm. Thus, one just needs to find

σm so that u satisfies (1.2.2).

In (1.2.6), G(x, y) is the Green’s function of the Helmholtz equation (1.2.1), G satisfies

the equation

[∇2 + k2n2
0(x)]G = −δ(x− y) in R3 (1.2.7)

and the radiation condition (1.2.5). The functions σm(t) are unknown continuous functions.

These functions are uniquely defined by the boundary condition (1.2.2), see [9]. If n2
0 = 1 in

R3, then

G(x, y) =
eik|x−y|

4π|x− y|
. (1.2.8)

The assumption n2
0 = 1 in R3 is not a restriction in the problem of creating materials with
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a desired refraction coefficient. In the general case, when n2
0 is a function of x, the Green’s

function G has to be computed.

From (1.2.6), one gets

u(x) = u0(x) +
M∑
m=1

G(x, xm)Qm +
M∑
m=1

∫
Sm

[G(x, t)−G(x, xm)]σm(t)dt, (1.2.9)

where

Qm :=

∫
Sm

σm(t)dt. (1.2.10)

It is proved in [8] that in (1.2.9)

|G(x, xm)Qm| �
∣∣∣∣∫
Sm

[G(x, t)−G(x, xm)]σm(t)dt

∣∣∣∣ , (1.2.11)

as a → 0 and |x − xm| ≥ a. Therefore, the solution to the scattering problem can be well

approximated by the sum

u(x) ∼ u0(x) +
M∑
m=1

G(x, xm)Qm. (1.2.12)

Thus, instead of finding the unknown functions σm(t) from a system of boundary integral

equations, as is usually done when one solves a wave scattering problem, we just need to find

the unknown numbers Qm to get the accurate approximation of the solution. This makes it

possible to solve problems with so large number of particles that it was not possible to do

earlier.

To find the numbers Qm, let us define the effective field ue(x). The effective field acting

on the jth particle is defined as follows

ue(xj) := u(xj)−
∫
Sj

G(xj, t)σj(t)dt, (1.2.13)

5



or equivalently

ue(xj) = u0(xj) +
M∑

m=1,m6=j

∫
Sm

G(xj, t)σm(t)dt, (1.2.14)

where xj is a point in Dj. The asymptotic formula for Qm is derived in [8]:

Qm = −cSa2−κh(xm)ue(xm)[1 + o(1)], a→ 0, (1.2.15)

where cS > 0 is a constant depending on the shape of the particle,

|Sm| = cSa
2, (1.2.16)

where |Sm| is the surface area of Sm. If Sm is a sphere of radius a, then cS = 4π. We assume

for simplicity that cS does not depend on m, that is, all the particles are of the same shape.

Let us derive a formula for the effective field. From (1.2.14)-(1.2.15) one gets

ue(xj) ' u0(xj)− cS
M∑

m=1,m 6=j

G(xj, xm)h(xm)ue(xm)a2−κ, (1.2.17)

as a→ 0 and 1 ≤ j ≤M .

Denote uj := ue(xj), u0j := u0(xj), Gjm := G(xj, xm), and hm := h(xm). Then (1.2.17)

can be rewritten as a linear algebraic system for the unknown numbers um:

uj = u0j − cS
M∑

m=1,m 6=j

Gjmhma
2−κum, as a→ 0, 1 ≤ j ≤M. (1.2.18)

In (1.2.18), the numbers uj, 1 ≤ j ≤ M , are unknowns. We call (1.2.18) the original linear

algebraic system (ORI). It was proved in [8] that under the assumptions

d = O
(
a

2−κ
3

)
, and M = O

(
1

a2−κ

)
, for κ ∈ [0, 1), (1.2.19)

the numbers uj, 1 ≤ j ≤ M, can be uniquely found by solving (ORI) for all sufficiently

small a. If the numbers um are known, then the numbers Qm can be calculated by formula

6



(1.2.15) and the approximate solution to the wave scattering problem (1.2.1)-(1.2.5) can be

computed by (1.2.12). This solution is asymptotically exact as a→ 0.

The method for solving many-body wave scattering problem, described above, differs in

principle from the Fast Multipole Method (FMM), used in many papers, of which we mention

just two: [13] and [14]. The FMM is one of the ten most important algorithms in scientific

computing discovered in the 20th century by Vladimir Rokhlin and Leslie Greengard. The

FMM is an efficient method to do matrix-vector multiplication. A problem involving N

degrees of freedom might be solved by using FMM in CN iterN logN operations, see [23].

Here C is a constant depending on the implementation of the method. The difference

between the FMM and our method briefly can be explained as follows: the theoretical basis

is different, our method is developed for scattering by small impedance particles of arbitrary

shapes and is based on the asymptotically exact formula for the field, scattered by one small

particle, and on the assumption d � a; and we derive an integral equation for the limiting

field in the medium consisting of many small particles as a → 0. We do not use multipole

expansions. One of the advantages of our method is in the asymptotic exactness of the

method as a→ 0.

Next, let us derive the reduced order linear system for solving the wave scattering prob-

lem. Let ∆ be an arbitrary subdomain of Ω. Assume that the distribution of particles in ∆

satisfies this law

N (∆) =
1

a2−κ

∫
∆

N(x)dx[1 + o(1)], as a→ 0. (1.2.20)

Here N(x) ≥ 0 is a given continuous function in Ω. The function N(x) and the number

κ ∈ [0, 1) can be chosen by the experimenter as he(she) desired. The number N (∆) is the

total number of the embedded particles in ∆.

Let Ω be partitioned into P non-intersecting sub-cubes ∆p of side b such that b� d� a,

where b = b(a), d = d(a), and lima→0
d(a)
b(a)

= 0. Here P � M , and each sub-cube contains

many particles. If the function N(x) in (1.2.20) is continuous and b� 1, then

N (∆p)a
2−κ = N(xp)|∆p|[1 + o(1)] = a2−κ

∑
xm∈∆p

1, as a→ 0, (1.2.21)

7



where |∆p| is the volume of ∆p and xp ∈ ∆p is an arbitrary point, for example, the center of

∆p. Thus, (1.2.18) can be rewritten as

uq = u0q − cS
P∑

p=1,p 6=q

GqphpNpup|∆p|, for 1 ≤ q ≤ P, (1.2.22)

where Np := N(xp) and xp is a point in ∆p, for example, the center of ∆p. We call (1.2.22)

the reduced linear algebraic system (RED). This system is much easier to solve since P �M .

Let |∆p| → 0. Then it follows from (1.2.22) that the limiting integral equation for

u = u(x) holds

u(x) = u0(x)− cS
∫

Ω

G(x, y)h(y)N(y)u(y)dy, for x ∈ R3, (1.2.23)

if the assumption (1.2.20) is satisfied. The sum in (1.2.22) is the Riemannian sum for the

integral in (1.2.23) which converges to this integral when maxp |∆p| → 0 (see [8] for the proof

of convergence).

Let

p(x) := cSN(x)h(x). (1.2.24)

Then (1.2.23) can be written as

u(x) = u0(x)−
∫

Ω

G(x, y)p(y)u(y)dy, for x ∈ R3. (1.2.25)

Here u = u(x) is the limiting field in the medium created by embedding many small

impedance particles distributed according to equation (1.2.20). We call (1.2.25) the lim-

iting integral equation (IE).

Now, applying the operator (∇2 + k2n2
0) to (1.2.25) and using the equation (∇2 +

k2n2
0)G(x, y) = −δ(x− y), one gets

(∇2 + k2n2
0)u(x) = p(x)u(x). (1.2.26)
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This implies

(∇2 + k2n2)u = 0, (1.2.27)

where

n2(x) := n2
0(x)− k−2p(x), (1.2.28)

and n(x) is the new refraction coefficient of the limiting medium. Since Im h(x) ≤ 0 and Im

n2
0(x) ≥ 0, one concludes that Im n2(x) ≥ 0. From (1.2.28), one gets

p(x) = k2[n2
0(x)− n2(x)]. (1.2.29)

By equation (1.2.24), h(x) can be computed as

h(x) =
p(x)

cSN(x)
. (1.2.30)

This gives a method for creating new materials with a desired refraction coefficient n(x) by

embedding many small impedance particles into a given material with the original refraction

coefficient n0 using the distribution law (1.2.20). These engineered materials are called meta-

materials which have not been found in nature and have many interesting applications such

as creating super-lens, cloaking devices, etc, see [24] and [25].

1.3 A fast algorithm for solving wave scattering prob-

lem by billions of particles

For solving the (RED) linear system, one can use any iterative method, namely GMRES,

see [26]. Since the order of (RED) can be made much smaller than that of (ORI), the com-

putation is very fast. Therefore, our remaining goal is to develop a fast algorithm for solving

(ORI) in order to get the solution of the scattering problem (1.2.1)-(1.2.5). Our algorithm is

a combination of the Conjugate Orthogonal Conjugate Gradient (COCG) method, 3D con-

volution, and FFT. When one solves a linear algebraic system using iterations, matrix-vector
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multiplications are carried out in the iterative process. These multiplications take most of

the computation time. If the linear system is very large, it takes a huge amount of time

to finish only one matrix-vector multiplication in a standard way, since this multiplication

is of the order O(n2). In some cases it is practically impossible to perform such computa-

tions, for example, when the system is dense and has more than one billion equations and

unknowns. In this section we present an algorithm that greatly reduces the total number

of operations (from O(n2) to O(n log n)) and decreases the overall computation time of the

iterative process by handling the matrix-vector multiplication by using 3D convolution and

FFT.

There are numerous methods which also employ FFT to solve different problems, for

example, Precorrected-FFT method for electrostatic analysis of complicated 3D structures

[16], or Particle mesh Ewald method for Ewald sums in large systems [15], etc. Nevertheless,

none of these papers deals with the scale that we face solving the scalar wave scattering

problem with ten billion particles, i.e., solving a 1010 × 1010 linear system. This is done

for the first time in our work. We have to develop a new algorithm that can solve two

major problems in our computing: memory and time. First, it is impossible to store a

1010 × 1010 dense matrix in any currently available super computer. Suppose we use only

single precision. Then it would take 800 million terabytes of memory to store only one matrix

to do the computation, since each complex number is 8 bytes. Furthermore, we will suffer

network latency and traffic jams which cause a halt in our computation if we use such an

amount of memory in any parallel cluster. Second, it is impossible to do the computation

at order O(n2) for a 1010 × 1010 linear system in a reasonable and permitted time. We deal

with the first computing problem, memory, by finding a way to store the n × n matrix in

a 3D cube which is equivalent to only one n × 1 vector in size and avoid moving terabytes

of data around. The second computing problem, time, is resolved by reducing the number

of operations from O(n2) to O(n log n). The details on how to deal with these two major

computing problems at our scale and how to set up the wave scattering problem in order to

solve it in parallel clusters are described in this section.

Consider the following summation in the original linear system (1.2.18) of the wave
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scattering problem
M∑

m=1,m 6=j

G(xj,xm)u(xm), (1.3.1)

where by bold letters vectors are denoted. G in equation (1.3.1) is the Green’s function of

the form

G(xj,xm) =
eik|xj−xm|

4π|xj − xm|
, (1.3.2)

where xj,xm are the positions of the jth and mth particles in R3, respectively. If we write

G(x− y) := G(x,y), the summation in (1.3.1) will be

M∑
m=1,m 6=j

G(xj − xm)u(xm), (1.3.3)

which is a discrete convolution of G and u, G ∗ u, if m 6= j is dropped.

In the linear system (1.2.18), G is an M ×M matrix, where M is the total number of

particles, and u is an M × 1 vector. When solving the linear system (1.2.18) using COCG

iterative algorithm, the matrix-vector multiplication in (1.3.3) needs to be executed. If we do

this matrix-vector multiplication in the standard way, it would take O(M2) operations. This

is very expensive in terms of computation time if M is very large, for example, M ≥ 106.

Therefore, we have to find a new way to do the matrix-vector multiplication.

The convolution in (1.3.3) can be carried out by using Convolution theorem as follows:

G ∗ u = F−1(F(G ∗ u)) = F−1(F(G) · F(u)), (1.3.4)

where the · stands for the component-wise multiplication of two vectors and its result is a

vector.

If particles are distributed uniformly, one can just use FFT to quickly compute this

convolution. Otherwise, one can use Nonequispaced Fast Fourier Transform (NFFT), see

[27], [28], and [29]. Our method is valid for variable N(x), see formulas (1.2.22) and (1.2.23).

Alternatively, one can just use the (RED) linear system or (IE) with much lower order to

solve the wave scattering problem without using FFT nor NFFT. The theory in Section 1.2
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shows that the solution to (RED) or (IE) yields a solution to (ORI) with high accuracy, the

error tends to zero as a→ 0.

To illustrate the idea, let us assume for simplicity that particles are distributed uniformly,

that is, N(x) =const in (1.2.20). Let m = (xm, ym, zm) be the position of the mth particle

in R3, where xm, ym, and zm are real numbers. We will assume our domain is a unit cube

(different domains can be treated similarly), this cube is placed in the first octant and the

origin is one of its vertices, then m can be rewritten as a product of the scalar factor d > 0

and a vector (m1,m2,m3):

m = d(m1,m2,m3), (1.3.5)

where d is the distance between neighboring particles, a scalar, (m1,m2,m3) is a vector

whose components m1,m2, and m3 are integers in [0, b), and b = M1/3 is the number of

particles on a side of the cube.

In the convolution (1.3.3) suppose that xj = d(j1, j2, j3) and xm = d(m1,m2,m3), one

can write (1.3.3) as

G ∗ u =
M∑

m=1,m 6=j

G(xj − xm)u(xm) (1.3.6)

=
b−1∑

m1,m2,m3 = 0

(m1,m2,m3) 6= (j1, j2, j3)

G(j1 −m1, j2 −m2, j3 −m3)u(m1,m2,m3). (1.3.7)

This is a 3D convolution of G and u.

In order to do this convolution, we need to store matrix G as a vector. This reduces

drastically the amount of memory for storing the original M ×M matrix to a much smaller

amount for storing an M × 1 vector, which is also denoted by G. Since this vector depends

on the three components, G = G(j1 −m1, j2 −m2, j3 −m3) where j1,m1, j2,m2, j3,m3 are

integers in [0, b) and (j1, j2, j3) 6= (m1,m2,m3), we can alternatively store it as a cube of

size b × b × b. Similarly, vector u(m1,m2,m3) is also stored as a cube of size b × b × b.

Each cube is a stack of planes which will be distributed across all machines in a cluster for
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Figure 1.1: Dividing a cube into a stack of planes for storing across machines.

parallelizing the computations and reducing moving data around to prevent traffic jam and

network latency, see Figure 1.1. Each machine will work on its local data. Information can

be shared among machines but as minimal as possible. Matrix-vector multiplication is done

via a function handle without storing any matrix.

When implementing the 3D convolution we need to pad the cubes G and u as follows:

• Pad in x-direction

• Pad in y-direction

• Pad in z-direction

Pad x−−−→ Pad y−−−→ Pad z−−−→

For each direction, the padding is illustrated by this example

For G:

1 2 3 4

5 6 7 8

9 10 11 12

13 14 15 16

Pad−−→

1 2 3 4 3 2

5 6 7 8 7 6

9 10 11 12 11 10

13 14 15 16 15 14
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For u:

1 2 3 4

5 6 7 8

9 10 11 12

13 14 15 16

Pad−−→

1 2 3 4 0 0

5 6 7 8 0 0

9 10 11 12 0 0

13 14 15 16 0 0

This means that we pad G using its entries and pad u with zeros. As described in the

example above, for padding G we copy all columns except the first and the last ones and put

them symmetrically through the last column. This will create a periodic signal G. In fact,

if one places padded G continuously, one can see a periodic signal. Since we only need to

perform linear convolution on M -length vectors, the result we need is an M -length vector.

All the entries after the M -th entry in the convolution will be discarded. So, we pad u

with zeros just to have the same length with the padded G to do the cyclic convolution in

computer. Cyclic convolutions allow us to compute linear convolutions by means of Discrete

Fourier Transforms (DFT). After padding G and u will have size (2b− 2)3.

The Fourier transform and inverse Fourier transform are of order O(n log n), and vector

pointwise multiplication is of order O(n) if the vectors are n×1. In our case the total number

of operations for computing G ∗ u = F−1(F(G) · F(u)) is

n log n+ n log n+ n+ n log n = O(n log n), n = (2b− 2)3, (1.3.8)

since the Fourier transforms F(G) and F(u) are of order O(n log n), the vector point-wise

multiplication F(G) · F(u) is of order O(n), and the inverse Fourier transform F−1(F(G) ·

F(u)) is of order O(n log n). If we compare this with the standard matrix-vector multi-

plication which takes M2 operations (M = b3), this is a huge reduction of the number of

operations and computation time, when M is very large, say M ≥ 109.

This algorithm is applicable not only to solving scalar wave scattering problems but also

to other PDE problems, for example, aeroacoustics, signal processing, etc.
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1.4 Experiments

The algorithm described in Section 1.3 is implemented in parallel using the Portable, Ex-

tensible Toolkit for Scientific Computation (PETSc) library developed at Argonne National

Laboratory (ANL), see [30]. For implementing FFT, Fastest Fourier Transform in the West

(FFTW) library is used, see [31]. The wave scattering problem is solved using Gordon super

computer at XSEDE. ”Gordon is a dedicated XSEDE cluster designed by Appro and SDSC

consisting of 1024 compute nodes and 64 I/O nodes. Each compute node contains two 8-core

2.6 GHz Intel EM64T Xeon E5 (Sandy Bridge) processors and 64 GB of DDR3-1333 mem-

ory”, see [32]. Table 1.1 shows the technical information of one compute node in Gordon.

”The network topology of Gordon is a 4x4x4 3D torus with adjacent switches connected by

Table 1.1: Compute node Intel EM64T Xeon E5.

System Component Configuration

Sockets 2
Cores 16
Clock speed 2.6 GHz
Flop speed 333 Gflop/s
Memory capacity 64 GB DDR3-1333
Memory bandwidth 85 GB/s
STREAM Triad bandwidth 60 GB/s

three 4x QDR InfiniBand links (120 Gbit/s). Compute nodes (16 per switch) and I/O nodes

(1 per switch) are connected to the switches by 4x QDR (40 Gbit/s). The theoretical peak

performance of Gordon is 341 TFlop/s”, see [32]. Table 1.2 shows information about the

network of Gordon.

Table 1.2: Network summary.

QDR InfiniBand Interconnect

Topology 3D Torus
Link bandwidth 8 GB/s (bidirectional)
MPI latency 1.3 µs

The program code is written in C & C++, compiled with Intel compiler, and linked with
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MPI library MVAPICH2. The code uses 64-bit integers and single precision. The relative

error tolerance used for the convergence of COCG iterations is 2× 10−5.

We assume that the domain Ω, which contains all the particles, is a unit cube, placed

in the first octant such that the origin is one of its vertices, and particles are distributed

uniformly in Ω. Suppose we want to create a new meta-material with the refraction coefficient

n(x) = −1 in Ω given a material with the refraction coefficient n0(x) = 1 by embedding many

small particles into the given material. We assume the particles are spheres, so cS = 4π.

The new refraction coefficient is computed by the following formula

n(x) = [n2
0(x)− k−2cSh(x)N(x)]1/2, (1.4.1)

where N(x) and h(x) are at our choices. For simplicity we choose N(x) = 1. The choice of

h(x) is subject to the physical condition Im h ≤ 0. If Im h(x) ≤ 0 and Im n2
0 ≥ 0, then Im

n2(x) ≥ 0. The square root in formula (1.4.1) is of the form

z1/2 = |z|1/2ei
φ
2 , φ := arg z, φ ∈ [0, 2π]. (1.4.2)

Formula (1.4.2) defines a one-valued branch of analytic function z1/2 in the complex plane

with the cut [0,+∞). If one wants to get n = Bei(π−ε), where B > 0 and ε > 0, then

n2 = B2ei(2π−2ε). When ε > 0 is very small, one gets practically negative refraction coefficient

n. In this experiment, we choose Im n = 0.001. This violates the assumption Im h(x) ≤ 0.

To justify this violation for very small values of Im h(x) we argue as follows. The integral

equation (1.2.23) is an equation with compact integral operator T

Tu := cS

∫
D

G(x, y)h(y)N(y)u(y)dy. (1.4.3)

It is of Fredholm type with index zero. It is proved in [8] that equation (1.2.23) has at most

one solution for Im h ≤ 0. Therefore, the inverse operator (I+T )−1 is bounded for Im h ≤ 0.

The set of boundedly invertible operators is open. Therefore the inverse operator (I + T )−1
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exists and is bounded also for sufficiently small Im h ≥ 0.

The radius a of the particles and the distance d between neighboring particles are chosen

so that

d =
1

M1/3
= a

2−κ
3 , and M =

1

a2−κ , (1.4.4)

where M is the total number of particles embedded in the domain Ω. To solve (IE), we

use a collocation method, dividing the domain into many sub-cubes, taking the collocation

points as the centers of these cubes, and then approximating the integral equation by the

corresponding Riemannian sum.

The following physical parameters are used to conduct the experiment:

• Speed of wave, v = 34400 cm/sec,

• Frequency, f = 1000 Hz,

• Wave number, k = 0.182651 cm−1,

• Direction of plane wave, α = (1, 0, 0),

• The constant κ = 0.5,

• Volume of the domain that contains all particles, |Ω| = 1 cm3,

• Distribution of particles, N = Ma2−κ/|Ω| = 1, i.e. particles are distributed uniformly

in the unit cube,

• Function h(x) = 2.65481E-09 + i5.30961E-06,

• Original refraction coefficient, n0 = 1+i0,

• Desired refraction coefficient, n = -1+i0.001

(n = [n2
0(x) − k−2cSh(x)N(x)]1/2 = [12 − 0.182651−24π(2.65481E-09 + i5.30961E-

06)1]1/2 = -1+i0.001),

• Number of small subcubes after partitioning the domain Ω for solving (RED), P =

8000.
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• Number of collocation points for solving (IE), C = 64000.

Table 1.3 and Figure 1.2 show the time usage in Gordon for solving the wave scattering

problem with 1, 4, 7, and 10 billion particles using the algorithm described in Section 1.3.

The computation time is measured by Service Unit (SU), 1 SU corresponds to 1 hour/core.

Table 1.4 and Figure 1.3 show the differences (errors) between the solutions of (ORI) vs.

Table 1.3: Time usage for solving the wave scattering problem.

Number of particles 1 billion 4 billions 7 billions 10 billions

Time usage (second) 103 1076 2082 1674
Node usage 8 28 49 74
Number of SUs 3.66 133.90 453.41 550.56

Figure 1.2: Time usage for solving the wave scattering problem.

(RED), (RED) vs. (IE), and (ORI) vs. (IE). Since the numbers of unknowns in (ORI),

(RED), and (IE) are different, M � P and P < C, we use interpolation procedure to

compare their solutions. For example, let x and y be the solutions of (ORI) and (RED),

respectively. We find all the particles xi that lie in the subcube ∆q corresponding to yq and

then find the difference |xi − yq|. Then, we compute

sup
yq

1

N (∆q)

∑
xi∈∆q

|xi − yq|, (1.4.5)
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where N (∆q) is the number of particles in the subcube ∆q. This gives the difference between

the solutions of (ORI) and (RED). The solution differences between (RED) vs. (IE) and

(ORI) vs. (IE) are computed similarly. The numbers in Table 1.4 are rounded to the nearest

ten-thousandths.

Table 1.4: Solution differences (errors).

Number of particles 1 billion 4 billions 7 billions 10 billions

(ORI) vs. (RED) 0.0045 0.0045 0.0045 0.0045
(RED) vs. (IE) 0.0022 0.0022 0.0022 0.0022
(ORI) vs. (IE) 0.0022 0.0022 0.0022 0.0022

Figure 1.3: Solution differences (errors).

For example, Figures 1.4, 1.5 and 1.6 display vertical slice planes of the solutions, scat-

tering fields, of (ORI), (RED), and (IE), respectively, at the center of the domain Ω, when

M = 109 particles, P = 8000 subcubes, and C = 64000 collocation points. The rela-

tive errors of the convergence of the solutions to (ORI), (RED), and (IE) are 1.72448E-05,

1.94613E-05, and 1.93914E-05, respectively. The relative errors are residual-based and com-

puted using this ratio ||r||
||RHS|| , where r is the residual vector and RHS is the right-hand-side

vector. The solution differences between (ORI) vs. (RED), (RED) vs. (IE), and (ORI)

vs. (IE) are 0.0045, 0.0022, and 0.0022, respectively. The color bars indicate the values of

the corresponding colors. The values used here are the real part and imaginary part of the
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scattering fields at the grid points on the slices.

For reference, Tables 1.5, 1.6, and 1.7 show the solutions of (ORI), (RED), and (IE),

respectively, at the grid points 5× 5× 5 in the unit cube Ω.

1.5 Conclusions

The numerical results in this paper allow one to solve (ORI) for 1 ≤ M ≤ 1010. These

results show that the solution by (RED) for M = 1010 agrees with the solution by (ORI)

with high accuracy (99.55 %), and agrees with the solution of (IE) also with high accuracy

(99.78%). Therefore, practically for solving problems with M ≥ 106 one may use (RED) or

(IE). For solving the scattering problem for M < 106 numerically one can use (ORI). The

accuracy of our numerical method is high if the quantity ka+ ad−1 is small. Furthermore, it

is important to note that this method is of the same order of number of operations as that

of Fast Multipole Method (FMM), O(n log n). However, we do not use multipole expansions

and our method is easier to implement compared to FMM. In addition, our method can give

an asymptotically exact solution to the wave scattering problem.
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Figure 1.4: Solution of (ORI) when M = 109.

Table 1.5: Solution of (ORI) at the grid points 5×5×5 in the cube.

0.999990+0.004392i 0.999990+0.004392i 0.999990+0.004392i 0.999990+0.004392i 0.999990+0.004392i
0.999990+0.004392i 0.999990+0.004392i 0.999990+0.004392i 0.999990+0.004392i 0.999990+0.004392i
0.999990+0.004392i 0.999990+0.004392i 0.999990+0.004392i 0.999990+0.004392i 0.999990+0.004392i
0.999990+0.004392i 0.999990+0.004392i 0.999990+0.004392i 0.999990+0.004392i 0.999990+0.004392i
0.999990+0.004392i 0.999990+0.004392i 0.999990+0.004392i 0.999990+0.004392i 0.999990+0.004392i

0.999163+0.040911i 0.999163+0.040911i 0.999163+0.040911i 0.999163+0.040911i 0.999163+0.040911i
0.999163+0.040911i 0.999163+0.040911i 0.999163+0.040911i 0.999163+0.040911i 0.999163+0.040911i
0.999163+0.040911i 0.999163+0.040911i 0.999163+0.040911i 0.999163+0.040911i 0.999163+0.040911i
0.999163+0.040911i 0.999163+0.040911i 0.999163+0.040911i 0.999163+0.040911i 0.999163+0.040911i
0.999163+0.040911i 0.999163+0.040911i 0.999163+0.040911i 0.999163+0.040911i 0.999163+0.040911i

0.997002+0.077375i 0.997002+0.077375i 0.997002+0.077375i 0.997002+0.077375i 0.997002+0.077375i
0.997002+0.077375i 0.997002+0.077375i 0.997002+0.077375i 0.997002+0.077375i 0.997002+0.077375i
0.997002+0.077375i 0.997002+0.077375i 0.997002+0.077375i 0.997002+0.077375i 0.997002+0.077375i
0.997002+0.077375i 0.997002+0.077375i 0.997002+0.077375i 0.997002+0.077375i 0.997002+0.077375i
0.997002+0.077375i 0.997002+0.077375i 0.997002+0.077375i 0.997002+0.077375i 0.997002+0.077375i

0.993511+0.113736i 0.993511+0.113736i 0.993511+0.113736i 0.993511+0.113736i 0.993511+0.113736i
0.993511+0.113736i 0.993511+0.113736i 0.993511+0.113736i 0.993511+0.113736i 0.993511+0.113736i
0.993511+0.113736i 0.993511+0.113736i 0.993511+0.113736i 0.993511+0.113736i 0.993511+0.113736i
0.993511+0.113736i 0.993511+0.113736i 0.993511+0.113736i 0.993511+0.113736i 0.993511+0.113736i
0.993511+0.113736i 0.993511+0.113736i 0.993511+0.113736i 0.993511+0.113736i 0.993511+0.113736i

0.988694+0.149945i 0.988694+0.149945i 0.988694+0.149945i 0.988694+0.149945i 0.988694+0.149945i
0.988694+0.149945i 0.988694+0.149945i 0.988694+0.149945i 0.988694+0.149945i 0.988694+0.149945i
0.988694+0.149945i 0.988694+0.149945i 0.988694+0.149945i 0.988694+0.149945i 0.988694+0.149945i
0.988694+0.149945i 0.988694+0.149945i 0.988694+0.149945i 0.988694+0.149945i 0.988694+0.149945i
0.988694+0.149945i 0.988694+0.149945i 0.988694+0.149945i 0.988694+0.149945i 0.988694+0.149945i
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Figure 1.5: Solution of (RED) when M = 109 and P = 8000.

Table 1.6: Solution of (RED) at the grid points 5×5×5 in the cube.

0.999999+0.000010i 0.999999+0.000010i 0.999999+0.000010i 0.999999+0.000010i 0.999999+0.000010i
0.999999+0.000010i 0.999999+0.000010i 0.999999+0.000010i 0.999999+0.000010i 0.999999+0.000010i
0.999999+0.000010i 0.999999+0.000010i 0.999999+0.000010i 0.999999+0.000010i 0.999999+0.000010i
0.999999+0.000010i 0.999999+0.000010i 0.999999+0.000010i 0.999999+0.000010i 0.999999+0.000010i
0.999999+0.000010i 0.999999+0.000010i 0.999999+0.000010i 0.999999+0.000010i 0.999999+0.000010i

0.999332+0.036532i 0.999332+0.036532i 0.999332+0.036532i 0.999332+0.036532i 0.999332+0.036532i
0.999332+0.036532i 0.999332+0.036532i 0.999332+0.036532i 0.999332+0.036532i 0.999332+0.036532i
0.999332+0.036532i 0.999332+0.036532i 0.999332+0.036532i 0.999332+0.036532i 0.999332+0.036532i
0.999332+0.036532i 0.999332+0.036532i 0.999332+0.036532i 0.999332+0.036532i 0.999332+0.036532i
0.999332+0.036532i 0.999332+0.036532i 0.999332+0.036532i 0.999332+0.036532i 0.999332+0.036532i

0.997331+0.073005i 0.997331+0.073005i 0.997331+0.073005i 0.997331+0.073005i 0.997331+0.073005i
0.997331+0.073005i 0.997331+0.073005i 0.997331+0.073005i 0.997331+0.073005i 0.997331+0.073005i
0.997331+0.073005i 0.997331+0.073005i 0.997331+0.073005i 0.997331+0.073005i 0.997331+0.073005i
0.997331+0.073005i 0.997331+0.073005i 0.997331+0.073005i 0.997331+0.073005i 0.997331+0.073005i
0.997331+0.073005i 0.997331+0.073005i 0.997331+0.073005i 0.997331+0.073005i 0.997331+0.073005i

0.993999+0.109381i 0.993999+0.109381i 0.993999+0.109381i 0.993999+0.109381i 0.993999+0.109381i
0.993999+0.109381i 0.993999+0.109381i 0.993999+0.109381i 0.993999+0.109381i 0.993999+0.109381i
0.993999+0.109381i 0.993999+0.109381i 0.993999+0.109381i 0.993999+0.109381i 0.993999+0.109381i
0.993999+0.109381i 0.993999+0.109381i 0.993999+0.109381i 0.993999+0.109381i 0.993999+0.109381i
0.993999+0.109381i 0.993999+0.109381i 0.993999+0.109381i 0.993999+0.109381i 0.993999+0.109381i

0.989341+0.145611i 0.989341+0.145611i 0.989341+0.145611i 0.989341+0.145611i 0.989341+0.145611i
0.989341+0.145611i 0.989341+0.145611i 0.989341+0.145611i 0.989341+0.145611i 0.989341+0.145611i
0.989341+0.145611i 0.989341+0.145611i 0.989341+0.145611i 0.989341+0.145611i 0.989341+0.145611i
0.989341+0.145611i 0.989341+0.145611i 0.989341+0.145611i 0.989341+0.145611i 0.989341+0.145611i
0.989341+0.145611i 0.989341+0.145611i 0.989341+0.145611i 0.989341+0.145611i 0.989341+0.145611i
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Figure 1.6: Solution of (IE) when M = 109, P = 8000, and C = 64000.

Table 1.7: Solution of (IE) at the grid points 5×5×5 in the cube.

1.000000+0.000010i 1.000000+0.000010i 1.000000+0.000010i 1.000000+0.000010i 1.000000+0.000010i
1.000000+0.000010i 1.000000+0.000010i 1.000000+0.000010i 1.000000+0.000010i 1.000000+0.000010i
1.000000+0.000010i 1.000000+0.000010i 1.000000+0.000010i 1.000000+0.000010i 1.000000+0.000010i
1.000000+0.000010i 1.000000+0.000010i 1.000000+0.000010i 1.000000+0.000010i 1.000000+0.000010i
1.000000+0.000010i 1.000000+0.000010i 1.000000+0.000010i 1.000000+0.000010i 1.000000+0.000010i

0.999332+0.036532i 0.999332+0.036532i 0.999332+0.036532i 0.999332+0.036532i 0.999332+0.036532i
0.999332+0.036532i 0.999332+0.036532i 0.999332+0.036532i 0.999332+0.036532i 0.999332+0.036532i
0.999332+0.036532i 0.999332+0.036532i 0.999332+0.036532i 0.999332+0.036532i 0.999332+0.036532i
0.999332+0.036532i 0.999332+0.036532i 0.999332+0.036532i 0.999332+0.036532i 0.999332+0.036532i
0.999332+0.036532i 0.999332+0.036532i 0.999332+0.036532i 0.999332+0.036532i 0.999332+0.036532i

0.997332+0.073005i 0.997332+0.073005i 0.997332+0.073005i 0.997332+0.073005i 0.997332+0.073005i
0.997332+0.073005i 0.997332+0.073005i 0.997332+0.073005i 0.997332+0.073005i 0.997332+0.073005i
0.997332+0.073005i 0.997332+0.073005i 0.997332+0.073005i 0.997332+0.073005i 0.997332+0.073005i
0.997332+0.073005i 0.997332+0.073005i 0.997332+0.073005i 0.997332+0.073005i 0.997332+0.073005i
0.997332+0.073005i 0.997332+0.073005i 0.997332+0.073005i 0.997332+0.073005i 0.997332+0.073005i

0.994000+0.109381i 0.994000+0.109381i 0.994000+0.109381i 0.994000+0.109381i 0.994000+0.109381i
0.994000+0.109381i 0.994000+0.109381i 0.994000+0.109381i 0.994000+0.109381i 0.994000+0.109381i
0.994000+0.109381i 0.994000+0.109381i 0.994000+0.109381i 0.994000+0.109381i 0.994000+0.109381i
0.994000+0.109381i 0.994000+0.109381i 0.994000+0.109381i 0.994000+0.109381i 0.994000+0.109381i
0.994000+0.109381i 0.994000+0.109381i 0.994000+0.109381i 0.994000+0.109381i 0.994000+0.109381i

0.989342+0.145611i 0.989342+0.145611i 0.989342+0.145611i 0.989342+0.145611i 0.989342+0.145611i
0.989342+0.145611i 0.989342+0.145611i 0.989342+0.145611i 0.989342+0.145611i 0.989342+0.145611i
0.989342+0.145611i 0.989342+0.145611i 0.989342+0.145611i 0.989342+0.145611i 0.989342+0.145611i
0.989342+0.145611i 0.989342+0.145611i 0.989342+0.145611i 0.989342+0.145611i 0.989342+0.145611i
0.989342+0.145611i 0.989342+0.145611i 0.989342+0.145611i 0.989342+0.145611i 0.989342+0.145611i
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Chapter 2

Numerical Method for Solving

Electromagnetic Wave Scattering by

One and Many Small Perfectly

Conducting Bodies

2.1 Introduction

Many real-world electromagnetic (EM) problems like EM wave scattering, EM radiation,

etc [33], cannot be solved analytically and exactly to get a solution in a closed form. Thus,

numerical methods have been developed to tackle these problems approximately. Computa-

tional Electromagnetics (CEM) has evolved enormously in the past decades to a point that

its methods can solve EM problems with extreme accuracy. These methods can be classified

into two categories: Integral Equation (IE) method and Differential Equation (DE) method.

Typical IE methods include: Method of Moment (MoM) developed by Roger F. Harring-

ton (1968) [34], Fast Multipole Method (FMM) first introduced by Greengard and Rokhlin

(1987) [13] and then applied to EM by Engheta et al (1992) [35], Partial Element Equivalent

Circuit (PEEC) method [36], and Discrete Dipole Approximation [37]. Typical DE methods
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are: Finite Difference Time Domain (FDTD) developed by Kane Yee (1966) [38], Finite

Element Method (FEM) [39], Finite Integration Technique (FIT) proposed by Thomas Wei-

land (1977) [40], Pseudospectral Time Domain (PSTD) [41], Pseudospectral Spatial Domain

(PSSD) [42], and Transmission Line Matrix (TLM) [43]. Among these methods, FDTD has

emerged as one of the most popular techniques for solving EM problems due to its simplicity

and ability to provide animated display of the EM field. However, FDTD requires the entire

computational domain be gridded [44], that results in very long solution times. Furthermore,

as a DE method, it does not take into account the radiation condition in exact sense [45, 46],

which leads to certain error in the solution. On the other hand, spurious solutions might

exist in DE methods [47–49]. Most importantly, most of DE methods are not suitable if the

number of bodies is very large.

In [8, 50–54], A. G. Ramm has developed a theory of EM wave scattering by many

small perfectly conducting and impedance bodies. In this theory, the EM wave scattering

problem is solved asymptotically under the physical assumptions: a � d � λ, where a is

the characteristic size of the bodies, d is the minimal distance between neighboring bodies,

λ = 2π/k is the wave length and k is the wave number. In this paper, the problem of

EM wave scattering by one and many small perfectly conducting bodies is considered. A

numerical method for solving this problem asymptotically based on the above theory is

presented. For the case of one body, the problem is solved for a body of arbitrary shape,

using the corresponding boundary integral equation. For the case of many small bodies, the

problem is solved under the basic assumptions a � d � λ and the assumption about the

distribution of the small bodies

N (∆) =
1

a3

∫
∆

N(x)dx[1 + o(1)], a→ 0, (2.1.1)

in which ∆ is an arbitrary open subset of the domain Ω that contains all the small bodies,

N (∆) is the number of the small bodies in ∆, and N(x) is the distribution function of the

bodies

N(x) ≥ 0, N(x) ∈ C(Ω). (2.1.2)
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In Sections 2.2 and 2.3, the theory of EM wave scattering by one and many small perfectly

conducting bodies is presented. The numerical methods for solving these problems are also

described in details. Furthermore, error analysis for the numerical methods of solving the EM

scattering problem are also provided. In Section 2.4 these methods are tested and numerical

results are discussed.

2.2 EM wave scattering by one perfectly conducting

body

Let D be a bounded perfectly conducting body, a = 1
2
diamD, S be its C2-smooth boundary,

and D′ := R3 \ D. Let ε and µ be the dielectric permittivity and magnetic permeability

constants of the medium in D′. Let E and H denote the electric and magnetic fields, respec-

tively, E0 be the incident field and vE be the scattered field. The problem of electromagnetic

wave scattering by one perfectly conducting body can be stated as follows

∇× E = iωµH, in D′ := R3 \D, (2.2.1)

∇×H = −iωεE, in D′, (2.2.2)

[N, [E,N ]] = 0, on S := ∂D, (2.2.3)

E = E0 + vE, (2.2.4)

E0 = Eeikα·x, E · α = 0, α ∈ S2, (2.2.5)

∂vE
∂r
− ikvE = o

(
1

r

)
, r := |x| → ∞, (2.2.6)

where ω > 0 is the frequency, k = 2π/λ = ω
√
εµ is the wave number, ka � 1, λ is the

wave length, E is a constant vector, and α is a unit vector that indicates the direction of the

incident wave E0. This incident wave satisfies the relation ∇ · E0 = 0. The scattered field

vE satisfies the radiation condition (2.2.6). Here, N is the unit normal vector to the surface

S, pointing out of D. By [·, ·] the vector product is denoted and α · x is the scalar product
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of two vectors.

The solution to problem (2.2.1)-(2.2.6) can be found in the form

E(x) = E0(x) +∇×
∫
S

g(x, t)J(t)dt, g(x, t) :=
eik|x−t|

4π|x− t|
, (2.2.7)

see [50]. Here, E is a vector in R3 and ∇×E is a pseudo-vector, that is a vector-like object

which changes sign under reflection of its coordinate axes. E0 is the incident plane wave

defined in (2.2.5) and J is an unknown pseudo-vector that is to be found. J is assumed to be

tangential to S and continuous. J can be found by applying the boundary condition (2.2.3),

or equivalently [N,E] = 0, to (2.2.7) and solving the resulting boundary integral equation

J

2
+ AJ :=

J(s)

2
+

∫
S

[Ns, [∇sg(s, t), J(t)]]dt = −[Ns, E0], (2.2.8)

or, equivalently

(I + 2A)J = F, (2.2.9)

where F := −2[Ns, E0]. Equation (2.2.9) is of Fredholm type since A is compact, see [51].

Once we have J , E can be computed by formula (2.2.7) and H can be found by the

formula

H =
∇× E
iωµ

. (2.2.10)

If D is sufficiently small, then equation (2.2.9) is uniquely solvable in C(S) and its solution

J is tangential to S, see [50]. The asymptotic formula for E when the radius a of the body

D tends to zero can be derived as follows, see [50]. Rewrite equation (2.2.7) as

E(x) = E0(x) + [∇g(x, x1), Q] +∇×
∫
S

[g(x, t)− g(x, x1)]J(t)dt, (2.2.11)

where x1 ∈ D, an arbitrary point inside the small body D, and

Q :=

∫
S

J(t)dt. (2.2.12)
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Since

|∇g(x, x1)]| = O

(
k

d
+

1

d2

)
, d = |x− x1|, (2.2.13)

|g(x, t)− g(x, x1)| = O

((
k

d
+

1

d2

)
a

)
, a = |t− x1|, and (2.2.14)

|∇[g(x, t)− g(x, x1)]| = O

(
ak2

d
+
ak

d2
+

a

d3

)
, (2.2.15)

the second term in (2.2.11) is much greater than the last term

|[∇g(x, x1), Q]| �
∣∣∣∣∇× ∫

S

[g(x, t)− g(x, x1)]J(t)dt

∣∣∣∣ , a→ 0. (2.2.16)

Then, the asymptotic formula for E when a tends to zero is

E(x) = E0(x) + [∇xg(x, x1), Q], a→ 0, (2.2.17)

where |x−x1| � a, x1 ∈ D. Thus, when D is sufficiently small, instead of finding J , we can

just find one pseudovector Q.

The analytical formula for Q is derived as follows, see [51]. By integrating both sides of

(2.2.8) over S, one gets

∫
S

J(s)

2
ds+

∫
S

ds

∫
S

dt[Ns, [∇sg(s, t), J(t)]] = −
∫
S

[Ns, E0]ds. (2.2.18)

This is equivalent to

Q

2
+

∫
S

dt

∫
S

ds∇sg(s, t)Ns · J(t)−
∫
S

dtJ(t)

∫
S

ds
∂g(s, t)

∂Ns

= −
∫
D

∇× E0dx. (2.2.19)

When a→ 0, this equation becomes

Q

2
+ ep

∫
S

dt

∫
S

ds
∂g(s, t)

∂sp
Nq(s)Jq(t) +

1

2

∫
S

dtJ(t) = −|D|∇ × E0, 1 ≤ p, q ≤ 3, (2.2.20)
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where in the second term, summations over the repeated indices are understood, ep, 1 ≤

p ≤ 3, are the orthogonal unit vectors in R3, |D| is the volume of D, |D| = cDa
3, and in the

third term we use this estimate

∫
S

ds
∂g(s, t)

∂Ns

'
∫
S

ds
∂g0(s, t)

∂Ns

= −1

2
, g0(s, t) :=

1

4π|s− t|
. (2.2.21)

Let

Γpq(t) :=

∫
S

ds
∂g(s, t)

∂sp
Nq(s), (2.2.22)

then equation (2.2.20) can be rewritten as follows

Q

2
+ ep

∫
S

dtΓpq(t)Jq(t) +
Q

2
= −|D|∇ × E0, (2.2.23)

or

Q+ ΓQ = −|D|∇ × E0, (2.2.24)

where Γ is a 3× 3 constant matrix and it is defined by

ΓQ = ep

∫
S

dtΓpq(t)Jq(t), (2.2.25)

in which summations are understood over the repeated indices. Thus, Q can be written as

Q = −|D|(I + Γ)−1∇× E0, a→ 0, (2.2.26)

where I := I3, the 3× 3 identity matrix. This formula is asymptotically exact as a→ 0.

2.2.1 Numerical method for solving EM wave scattering by one

perfectly conducting spherical body

In this section, we consider the EM wave scattering problem by a small perfectly conducting

spherical body. Instead of solving the problem (2.2.1)-(2.2.6) directly, we will solve its
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corresponding boundary integral equation (2.2.8) for the unknown vector J

J(s)

2
+

∫
S

[Ns, [∇sg(s, t), J(t)]]dt = −[Ns, E0]. (2.2.27)

Then the solution E to the EM wave scattering problem by one perfectly conducting body

can be computed by either the exact formula (2.2.7) or the asymptotic formula (2.2.17).

Scattering by a sphere has been discussed in many papers, for example [55] in which Mie

solves the EM wave scattering problem by separation of variables. The EM field, scattered

by a small body, is proportional to O(a3).

Suppose S is a smooth surface of a spherical body. Let S be partitioned into P non-

intersecting subdomains Sij, 1 ≤ i ≤ mθ, 1 ≤ j ≤ mφ, using spherical coordinates, where mθ

is the number of intervals of θ between 0 and 2π and mφ defines the number of intervals of

φ between 0 and π. Then P = mθmφ + 2, which includes the two poles of the sphere. mθ is

defined in this way: mθ = mφ + |φ− π
2
|6mφ. This means the closer it is to the poles of the

sphere, the more intervals for θ are used. Then the point (θi, φj) in Sij is chosen as follows

θi = i
2π

mθ

, 1 ≤ i ≤ mθ, (2.2.28)

φj = j
π

mφ + 1
, 1 ≤ j ≤ mφ. (2.2.29)

Note that there are many different ways to distribute collocation points. However, the

one that we describe here will guarantee convergence to the solution to (2.2.27) with fewer

collocation points used from our experiment. Furthermore, one should be careful when

choosing the distribution of collocation points on a sphere. If one chooses φj = j π
mφ
, 1 ≤ j ≤

mφ, then when j = mφ, φj = π and thus there is only one point for this φ regardless of the

value of θ as shown in (2.2.30). The position of a point in each Sij can be computed by

(x, y, z)ij = a(cos θi sinφj, sin θi sinφj, cosφj), (2.2.30)
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and the outward-pointing unit normal vector N to S at this point is

Nij = N(θi, φj) = (cos θi sinφj, sin θi sinφj, cosφj). (2.2.31)

For a star-shaped body with a different shape, only the normal vector N needs to be recom-

puted. Rewrite the integral equation (2.2.27) as

J(s)

2
+

∫
S

∇sg(s, t)Ns · J(t)dt−
∫
S

∂g(s, t)

∂Ns

J(t)dt = −[Ns, E0]. (2.2.32)

This integral equation can be discretized as follows

J(i) + 2
P∑
j 6=i

[∇sg(i, j)Ns(i) · J(j)− J(j)∇sg(i, j) ·Ns(i)]∆j = F (i), 1 ≤ i ≤ P, (2.2.33)

in which by i the point (xi, yi, zi) is denoted, F (i) := −2[Ns, E0](i), and ∆j is the surface area

of the subdomain j. This is a linear system with unknowns J(i) := (Xi, Yi, Zi), 1 ≤ i ≤ P .

This linear system can be rewritten as follows

Xi +
P∑
j 6=i

aijXj + bijYj + cijZj = Fx(i), (2.2.34)

Yi +
P∑
j 6=i

a′ijXj + b′ijYj + c′ijZj = Fy(i), (2.2.35)

Zi +
P∑
j 6=i

a′′ijXj + b′′ijYj + c′′ijZj = Fz(i), (2.2.36)

where by the subscripts x, y, z the corresponding coordinates are denoted, e.g. F (i) =

(Fx, Fy, Fz)(i), and

aij := 2[∇g(i, j)xNx(i)−∇g(i, j) ·N(i)]∆j, (2.2.37)

bij := 2∇g(i, j)xNy(i)∆j, (2.2.38)

cij := 2∇g(i, j)xNz(i)∆j, (2.2.39)
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for i 6= j; when i = j: aii = 1, bii = 0, and cii = 0,

a′ij := 2∇g(i, j)yNx(i)∆j, (2.2.40)

b′ij := 2[∇g(i, j)yNy(i)−∇g(i, j) ·N(i)]∆j, (2.2.41)

c′ij := 2∇g(i, j)yNz(i)∆j, (2.2.42)

for i 6= j; when i = j: a′ii = 0, b′ii = 1, and c′ii = 0,

a′′ij := 2∇g(i, j)zNx(i)∆j, (2.2.43)

b′′ij := 2∇g(i, j)zNy(i)∆j, (2.2.44)

c′′ij := 2[∇g(i, j)zNz(i)−∇g(i, j) ·N(i)]∆j, (2.2.45)

for i 6= j; when i = j: a′′ii = 0, b′′ii = 0, and c′′ii = 1.

2.2.2 Error analysis

Recall the boundary integral equation (2.2.8)

J(s)

2
+

∫
S

[Ns, [∇sg(s, t), J(t)]]dt = −[Ns, E0]. (2.2.46)

Integrate both sides of this equation over S and get

Q+ ΓQ = −|D|∇ × E0, (2.2.47)

see Section 2.2. Once J is found from solving (2.2.46), Q can be computed by Q =
∫
S
J(t)dt.

Then one can validate the values of J and Q by checking the following things

• Is J tangential to S as shown in Section 2.2? One needs to check J(s) ·Ns.
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• Is Q =
∫
S
J(t)dt correct? The relative error of Q can be computed as follows

Error =
|Q+ ΓQ−RHS|

|RHS|
, (2.2.48)

where RHS := −|D|∇ × E0. This will give the error of the numerical method for the

case of one body.

Furthermore, one can also compare the value of the asymptotic Qa in formula (2.2.26) with

the exact Qe defined in (2.2.12) by

Error =
|Qe −Qa|
|Qe|

, (2.2.49)

and check the difference between the asymptotic Ea in (2.2.17) and the exact Ee defined in

(2.2.7) by computing this relative error

Error =
|Ee − Ea|
|Ee|

. (2.2.50)

2.2.3 General method for solving EM wave scattering by one per-

fectly conducting body

In this section, we present a general method for solving the EM wave scattering problem by

one perfectly conducting body, whose surface is parametrized by f(u, v) = (x(u, v), y(u, v),

z(u, v)).

• Step 1: One needs to partition the surface of the body into P non-intersecting sub-

domains. In each subdomain, choose a collocation point. The position of the colloca-

tion points can be computed using f(u, v) = (x(u, v), y(u, v), z(u, v)), see for example

(2.2.28)-(2.2.30).

• Step 2: Find the unit normal vector N of the surface from the function f .

• Step 3: Solve the linear system (2.2.34)-(2.2.36) for Xi, Yi, and Zi, 1 ≤ i ≤ P . Then
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vector J in the boundary integral equation (2.2.8) is computed by J(i) := (Xi, Yi, Zi)

at the point i on the surface.

• Step 4: Compute the electric field E using (2.2.7).

2.3 EM wave scattering by many small perfectly con-

ducting bodies

Consider a bounded domain Ω containing M small bodies Dm, 1 ≤ m ≤ M , and Sm are

their corresponding smooth boundaries. Let D :=
⋃M
m=1Dm ⊂ Ω and D′ be the complement

of D in R3. We assume that S =
⋃M
m=1 Sm is C2-smooth. ε is the dielectric permittivity

constant and µ is the magnetic permeability constant of the medium. Let E and H denote

the electric and magnetic fields, respectively. E0 is the incident field and v is the scattered

field. The problem of electromagnetic wave scattering by many small perfectly conducting

bodies involves solving the following system

∇× E = iωµH, in D′ := R3 \D, D :=
M⋃
m=1

Dm, (2.3.1)

∇×H = −iωεE, in D′, (2.3.2)

[N, [E,N ]] = 0, on S, (2.3.3)

E = E0 + v, (2.3.4)

E0 = Eeikα·x, E · α = 0, α ∈ S2. (2.3.5)

where v satisfies the radiation condition (2.2.6), ω > 0 is the frequency, k = 2π/λ is the wave

number, ka � 1, a := 1
2

maxm diamDm, and α is a unit vector that indicates the direction

of the incident wave E0. Furthermore,

ε = ε0, µ = µ0 in Ω′ := R3 \ Ω. (2.3.6)
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Assume that the distribution of small bodies Dm, 1 ≤ m ≤ M , in Ω satisfies the following

formula

N (∆) =
1

a3

∫
∆

N(x)dx[1 + o(1)], a→ 0, (2.3.7)

where N (∆) is the number of small bodies in ∆, ∆ is an arbitrary open subset of Ω, and

N(x) is the distribution function

N(x) ≥ 0, N(x) ∈ C(Ω). (2.3.8)

Note that E solves this equation

∇×∇× E = k2E, k2 = ω2εµ, (2.3.9)

if µ =const. Once we have E, then H can be found from this relation

H =
∇× E
iωµ

. (2.3.10)

From (2.3.10) and (2.3.9), one can get (2.3.2). Thus, we need to find only E which satisfies

the boundary condition (2.3.3). It was proved in [50] that under the radiation condition

and the assumptions a � d � λ, the problem (2.3.1)-(2.3.5) has a unique solution and its

solution is of the form

E(x) = E0(x) +
M∑
m=1

∇×
∫
Sm

g(x, t)Jm(t)dt, (2.3.11)

where Jm are unknown continuous functions that can be found from the boundary condition.

Let

Qm :=

∫
Sm

Jm(t)dt. (2.3.12)
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When a→ 0, the asymptotic solution for the electric field is given by

E(x) = E0(x) +
M∑
m=1

[∇g(x, xm), Qm], a→ 0. (2.3.13)

Therefore, instead of finding Jm(t),∀t ∈ S, 1 ≤ m ≤ M , to get the solution E, one can just

find Qm. This allows one to solve the EM scattering problem with a very large number of

small bodies which is impossible to do before. The analytic formula for Qm can be derived by

using formula (2.2.26) and replacing E0 in this formula by the effective field Ee(xm) acting

on the m-th body

Qm = −|Dm|(I + Γ)−1∇× Ee(xm), 1 ≤ m ≤M, xm ∈ Dm, (2.3.14)

where the effective field acting on the m-th body is defined as

Ee(xm) = E0(xm) +
M∑
j 6=m

[∇g(xm, xj), Qj] 1 ≤ m ≤M. (2.3.15)

When a→ 0, the effective field Ee(x) is asymptotically equal to the field E(x) in (2.3.13) as

proved in [50] and [51].

Let Eem := Ee(xm), where xm is a point in Dm. From (2.3.14), and (2.3.15), one gets

Eem = E0m −
M∑
j 6=m

[∇g(xm, xj), (I + Γ)−1∇× Eej]|Dj|, 1 ≤ m ≤M. (2.3.16)

2.3.1 Numerical method for solving EM wave scattering by many

small perfectly conducting bodies

For finding the solution to EM wave scattering in the case of many small perfectly conducting

bodies, we need to find Eem in (2.3.16). Apply the operator (I + Γ)−1∇× to both sides of
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(2.3.16) and let Am := (I + Γ)−1∇× Eem. Then

Am = A0m − (I + Γ)−1

M∑
j 6=m

|Dj| (∇x × [∇g(x, xj), Aj]) |x=xm , 1 ≤ m ≤M, (2.3.17)

Solving this system yields Am, for 1 ≤ m ≤M . Then E can be computed by

E(x) = E0(x) +
M∑
m=1

[∇g(x, xm), Qm], (2.3.18)

where

Qm = −|Dm|Am, 1 ≤ m ≤M. (2.3.19)

Equation (2.3.17) can be rewritten as follows

Am = A0m −
M∑
j 6=m

τ [k2g(xm, xj)Aj + (Aj · ∇x)∇g(x, xj)|x=xm ]|Dj|, (2.3.20)

where 1 ≤ m ≤M , τ := (I + Γ)−1, and Am are vectors in R3.

Let Ai := (Xi, Yi, Zi) then one can rewrite the system (2.3.20) as

Xi +
M∑
j 6=i

aijXj + bijYj + cijZj = Fx(i), (2.3.21)

Yi +
M∑
j 6=i

a′ijXj + b′ijYj + c′ijZj = Fy(i), (2.3.22)

Zi +
M∑
j 6=i

a′′ijXj + b′′ijYj + c′′ijZj = Fz(i), (2.3.23)

in which by the subscripts x, y, z the corresponding coordinates are denoted, e.g. F (i) =

(Fx, Fy, Fz)(i), where F (i) := A0i and

aij := [k2g(i, j) + ∂x∇g(i, j)x]|Dj|τ(1, 1), (2.3.24)

bij := ∂y∇g(i, j)x|Dj|τ(1, 1), (2.3.25)
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cij := ∂z∇g(i, j)x|Dj|τ(1, 1), (2.3.26)

for i 6= j, here τ(1, 1) is the entry (1,1) of matrix τ in (2.3.20); when i = j: aii = 1, bii = 0,

and cii = 0;

a′ij := ∂x∇g(i, j)y|Dj|τ(2, 2), (2.3.27)

b′ij := [k2g(i, j) + ∂y∇g(i, j)y]|Dj|τ(2, 2), (2.3.28)

c′ij := ∂z∇g(i, j)y|Dj|τ(2, 2), (2.3.29)

for i 6= j; when i = j: a′ii = 0, b′ii = 1, and c′ii = 0;

a′′ij := ∂x∇g(i, j)z|Dj|τ(3, 3), (2.3.30)

b′′ij := ∂y∇g(i, j)z|Dj|τ(3, 3), (2.3.31)

c′′ij := [k2g(i, j) + ∂z∇g(i, j)z]|Dj|τ(3, 3), (2.3.32)

for i 6= j; when i = j: a′ii = 0, b′ii = 0, and c′ii = 1.

2.3.2 Error analysis

The error of the solution to the EM wave scattering problem by many small perfectly con-

ducting bodies can be estimated as follows. From the solution E of the electromagnetic

scattering problem by many small bodies given in (2.3.11)

E(x) = E0(x) +
M∑
m=1

∇×
∫
Sm

g(x, t)Jm(t)dt, (2.3.33)

we can rewrite it as

E(x) = E0(x) +
M∑
m=1

[∇g(x, xm), Qm] +
M∑
m=1

∇×
∫
Sm

[g(x, t)− g(x, xm)]Jm(t)dt. (2.3.34)
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Comparing this with the asymptotic formula for E when a→ 0 given in (2.3.13)

E(x) = E0(x) +
M∑
m=1

[∇g(x, xm), Qm], (2.3.35)

we have the error of this asymptotic formula is

Error =

∣∣∣∣∣
M∑
m=1

∇×
∫
Sm

[g(x, t)− g(x, xm)]Jm(t)dt

∣∣∣∣∣ ∼ 1

4π

(
ak2

d
+
ak

d2
+

a

d3

) M∑
m=1

|Qm|,

(2.3.36)

where d = minm |x− xm| and

Qm = −|Dm|(I + Γ)−1∇× Ee(xm), 1 ≤ m ≤M, xm ∈ Dm, a→ 0, (2.3.37)

because

|∇[g(x, t)− g(x, xm)]| = O

(
ak2

d
+
ak

d2
+

a

d3

)
, a = max

m
|t− xm|. (2.3.38)

2.4 Experiments

2.4.1 EM wave scattering by one perfectly conducting spherical

body

To illustrate the idea of the numerical method, we use the following physical parameters to

solve the EM wave scattering problem by one small perfectly conducting sphere, i.e solving

the linear system (2.2.34)-(2.2.36)

• Speed of wave, c = (3.0E + 10) cm/sec.

• Frequency, ω = (5.0E + 14) Hz.

• Wave number, k = (1.05E + 05) cm−1.

• Wave length, λ = (6.00E − 05) cm.

39



• Direction of incident plane wave, α = (0, 1, 0).

• Magnetic permeability, µ = 1.

• Vector E = (1, 0, 0).

• Incident field vector, E0: E0(x) = Eeikα·x.

• The body is a sphere of radius a, centered at the origin.

We use GMRES iterative method, see [26], to solve the linear system (2.2.34)-(2.2.36). For

a spherical body, matrix Γ in (2.2.24) can be computed analytically as follows. Recall that

Γpq(t) :=

∫
S

∂g(s, t)

∂sp
Nq(s)ds, 1 ≤ p, q ≤ 3, (2.4.1)

where

N = (cos θ sinφ, sin θ sinφ, cosφ) (2.4.2)

and
∂g(s, t)

∂sp
' ∂g0(s, t)

∂sp
= − sp − tp

4π|s− t|3
, g0(s, t) :=

1

4π|s− t|
. (2.4.3)

We choose a coordinate system centered at the center of the sphere such that t = (0, 0, a)

and s = aN . Then

Γpq(t) := − a
2

4π

∫ 2π

0

dθ

∫ π

0

dφ sinφ
(sp − tp)Nq

a38 sin3 φ
2

, 1 ≤ p, q ≤ 3. (2.4.4)

When

p = q = 1 : Γ11(t) = −1/3, (2.4.5)

p = q = 2 : Γ22(t) = −1/3, (2.4.6)

p = q = 3 : Γ33(t) = 1/6, (2.4.7)

p 6= q : Γpq(t) = 0. (2.4.8)
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Therefore, matrix Γ is

Γ '


−1/3 0 0

0 −1/3 0

0 0 1/6

 (2.4.9)

For example, Table 2.1 shows the exact and asymptotic vector Q when the radius of the

body is a = (1.0E − 09) cm and the number of collocation points used to solve the integral

equation (2.2.27) is P = 766. Note that a = (1.0E − 09) cm satisfies ka� 1. The point x1

in (2.2.17) is taken at the center of the body, the origin. Table 2.2 and 2.3 show the exact

and asymptotic vector E = (Ex, Ey, Ez), the electric field, at the point x outside of the body,

respectively. The distance |x− x1| is measured in cm in these tables.

Table 2.1: Vector Qe and Qa when P = 766 collocation points and a = (1.0E − 09) cm.

P=766, a=1.0E-09

1.0E-21 *
Qe 0.0000 + 0.0000i 0.0000 + 0.0000i 0.0000 + 0.3925i
Qa 0.0000 + 0.0000i 0.0000 + 0.0000i 0.0000 + 0.3760i

Table 2.2: Vector Ee for one perfectly conducting body with a = (1.0E−09) cm and P = 766
collocation points.

|x− x1| Ee(x)

1.73E-08 1.0000 + 0.0010i 0.0001 + 0.0000i 0.0004 + 0.0000i
1.73E-07 0.9999 + 0.0105i 0.0000 + 0.0000i 0.0000 + 0.0000i
1.73E-06 0.9945 + 0.1045i 0.0000 + 0.0000i 0.0000 + 0.0000i

Table 2.3: Vector Ea for one perfectly conducting body with a = (1.0E−09) cm and P = 766
collocation points.

|x− x1| Ea(x)

1.73E-08 1.0000 + 0.0010i 0.0000 + 0.0000i 0.0000 + 0.0000i
1.73E-07 0.9999 + 0.0105i 0.0000 + 0.0000i 0.0000 + 0.0000i
1.73E-06 0.9945 + 0.1045i 0.0000 + 0.0000i 0.0000 + 0.0000i

In this case, we also verify the following things:

a) Is J tangential to S?
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Table 2.4: Relative errors between the asymptotic and exact formulas for E when P = 766
collocation points and a = (1.0E − 09) cm.

|x− x1| Ee vs Ea

1.73E-08 4.67E-04
1.73E-07 4.67E-07
1.73E-06 4.70E-10

In fact, this vector J is tangential to the surface S of the body, J ·Ns = O(10−14).

b) How accurate is the asymptotic formula (2.2.26) for Q?

We check the accuracy of the asymptotic formula for Q in (2.2.26) by comparing it with

the exact formula (2.2.12), see Section 2.2.2, and the relative error is 4.21E − 02. The more

collocation points used, the little this relative error is.

c) How accurate is the asymptotic formula (2.2.17) for E?

The accuracy of the asymptotic formula for E in (2.2.17) can be checked by comparing it

with the exact formula (2.2.7) at several points x outside of the body, |x − x1| � a where

x1 is the center of the body, see the error analysis in Section 2.2.2. The relative errors are

given in Table 2.4.

Table 2.5: Relative errors of the asymptotic E and Q when P = 1386 collocation points.

P = 1386, |x− x1| = 1.73E − 05

a 1.00E-07 1.00E-08 1.00E-09 1.00E-10
Ee vs Ea 1.08E-06 1.08E-09 1.08E-12 1.12E-15
Qe vs Qa 1.96E-02 1.96E-02 1.96E-02 1.89E-02

Table 2.5 compares the asymptotic Qa versus exact Qe and asymptotic Ea versus exact

Ee, when P = 1386 collocation points, |x − x1| = 1.73E − 05 cm, and with various a. The

errors shown in this table are relative errors, see the error analysis in Section 2.2.2. As one

can see from this table, the smaller the radius a is, compared to the distance from the point

of interest to the center of the body, the more precise the asymptotic formulas of E and Q

are.

Furthermore, the numerical results also depend on the number of collocation points used.

The more collocation points used, the more accurate the results is.
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2.4.2 EM wave scattering by one perfectly conducting ellipsoid

body

In this section, we consider the EM wave scattering problem by a small perfectly conducting

ellipsoid body. The method for solving the problem in this setting is the same as that of

Section 2.2.1 except that one needs to recompute the unit normal vector N .

To get the solution of this problem, one can follow the steps in Section 2.2.1. In particular,

one needs to solve the linear system (2.2.34)-(2.2.36).

To illustrate the idea, we use the same physical parameters as described in Section 2.4.1,

except that the body now is an ellipsoid. Let S be its smooth surface. The way we partition

S into many subdomains Sij is the same as the way we partition a spherical body as described

in section 2.2.1. Then, the position of the collocation point in each subdomain Sij is defined

by

(x, y, z)ij = (a cos θi sinφj, b sin θi sinφj, c cosφj), (2.4.10)

where a, b, and c are the lengths of the semi-principal axes of the ellipsoid. The outward-

pointing normal vector n to S at this point is

nij = n(θi, φj) = 2

(
cos θi sinφj

a
,
sin θi sinφj

b
,
cosφj
c

)
, (2.4.11)

and the corresponding unit normal vector N is

Nij = N(θi, φj) = nij/|nij|. (2.4.12)

Table 2.6: Vector Ee for one perfectly conducting ellipsoid body with a = (1.0E − 08) cm,
b = (1.0E − 09) cm, c = (1.0E − 09) cm, and P = 1052 collocation points.

|x− x1| Ee(x)

1.01E-07 0.9998 + 0.0010i -0.0000 + 0.0000i -0.0000 - 0.0000i
1.01E-06 0.9999 + 0.0105i -0.0000 + 0.0000i -0.0000 - 0.0000i
1.01E-05 0.9945 + 0.1045i -0.0000 + 0.0000i -0.0000 - 0.0000i
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Table 2.7: Vector Ea for one perfectly conducting ellipsoid body with a = (1.0E − 08) cm,
b = (1.0E − 09) cm, c = (1.0E − 09) cm, and P = 1052 collocation points.

|x− x1| Ea(x)

1.01E-07 1.0000 + 0.0010i -0.0000 + 0.0000i 0.0000 - 0.0000i
1.01E-06 0.9999 + 0.0105i -0.0000 + 0.0000i 0.0000 - 0.0000i
1.01E-05 0.9945 + 0.1045i -0.0000 + 0.0000i 0.0000 - 0.0000i

For example, Tables 2.6 and 2.7 show the exact and asymptotic vector E = (Ex, Ey, Ez),

the electric field, got from solving this EM wave scattering problem with one perfectly

conducting ellipsoid body, when the semi-principle axes of the body are a = (1.0E− 08) cm,

b = (1.0E − 09) cm, c = (1.0E − 09) cm, and the number of collocation points is P = 1052.

Note that a, b, and c satisfy kmax(a, b, c) � 1. The point x1 in (2.2.17) is taken at the

center of the ellipsoid body. Each row in Tables 2.6 and 2.7 shows the exact and asymptotic

E = (Ex, Ey, Ez), respectively, at the point x outside of the body. The distance |x − x1| is

measured in cm in these tables.

As for the case of one body, we need to verify the following things:

a) Is J tangential to S?

In fact, this vector J is tangential to the surface S of the body, J ·Ns = O(10−13).

b) Are Q and J correct? We check the relative error described in Section 2.2.2, Error =

|Q+ΓQ−RHS|
|RHS| = 14%. The more collocation points used, the smaller this error is, for example,

with P = 1762 collocation points, this error is only 3.6%.

c) How accurate is the asymptotic formula (2.2.17) for E?

The accuracy of the asymptotic formula for E in (2.2.17) can be checked by comparing it

with the exact formula (2.2.7) at several points x outside of the body, |x−x1| � max(a, b, c)

where x1 is the center of the body. The relative errors are given in Table 2.8.

Table 2.9 shows the relative errors between the asymptotic E versus exact E, when

P = 1052 collocation points, |x− x1| = 1.73E− 07 cm, and with various semi-principle axes

a, b, and c. As one can see from this table, the smaller the semi-principle axes are, compared

to the distance from the point of interest to the center of the body, the more accurate the

asymptotic formulas of E is.
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Table 2.8: Relative errors between the asymptotic and exact formulas for E when P = 1052
collocation points, a = (1.0E − 08) cm, b = (1.0E − 09) cm, and c = (1.0E − 09) cm.

|x− x1| Ee vs Ea

1.01E-07 1.73E-04
1.01E-06 1.73E-07
1.01E-05 1.73E-10

Table 2.9: Relative errors of the asymptotic E when P = 1052 collocation points.

P = 1052, |x− x1| = 1.73E − 07

a 1.00E-07 1.00E-08 1.00E-09 1.00E-10
b 1.00E-08 1.00E-09 1.00E-10 1.00E-11
c 1.00E-08 1.00E-09 1.00E-10 1.00E-11

Ee vs Ea 2.65E-02 2.76E-05 2.76E-08 2.76E-11

2.4.3 EM wave scattering by one perfectly conducting cubic body

In this section, we consider the EM wave scattering problem by a small perfectly conducting

cubic body. Again, the method for solving the problem in this setting is the same as that of

Section 2.2.1 except that one needs to recompute the unit normal vector N .

One can follow the steps outlined in Section 2.2.1 to solve this problem. That means,

one needs to solve the linear system (2.2.34)-(2.2.36).

For illustration purpose, we use the same physical parameters as described in Section

2.4.1, except that the body now is a cube. Suppose the cube is placed in the first octant

where the origin is one of its vertices, one can use the standard unit vectors in R3 as the

unit normal vectors to the surfaces of the cube.

Table 2.10: Vector Ee for one perfectly conducting body with a = (1.0E − 07) cm and
M = 600 collocation points.

|x− x1| Ee(x)

1.73E-04 -0.5000 - 0.8660i -0.0000 + 0.0000i -0.0000 + 0.0000i
1.73E-05 0.5000 + 0.8660i 0.0000 + 0.0000i 0.0000 + 0.0000i
1.73E-06 0.9945 + 0.1045i 0.0006 + 0.0000i 0.0006 + 0.0000i

For example, Tables 2.10 and 2.11 show the exact and asymptotic vectorE = (Ex, Ey, Ez),

the electric field, got from solving this EM wave scattering problem with one perfectly con-
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Table 2.11: Vector Ea for one perfectly conducting body with a = (1.0E − 07) cm and
M = 600 collocation points.

|x− x1| Ea(x)

1.73E-04 -0.5000 - 0.8660i 0.0000 - 0.0000i 0.0000 + 0.0000i
1.73E-05 0.5000 + 0.8660i -0.0000 + 0.0000i -0.0000 - 0.0000i
1.73E-06 0.9945 + 0.1045i -0.0000 + 0.0000i -0.0000 - 0.0000i

ducting cubic body, when the half side of the body is a = (1.0E− 07) cm and the number of

collocation points is M = 600. Note that a = 1.0E − 07 cm satisfies ka � 1. The point x1

in (2.2.17) is taken at the center of the cubic body. Each row in Tables 2.10 and 2.11 shows

the exact and asymptotic E = (Ex, Ey, Ez), respectively, at the point x outside of the body.

The distance |x− x1| is measured in cm in these tables.

As before, for the case of one body, we need to verify the following things:

a) Is J tangential to S?

In fact, this vector J is tangential to the surface S of the body, J ·Ns = O(10−13).

b) How accurate is the asymptotic formula (2.2.26) for Q?

We check the relative error described in Section 2.2.2, Error = |Q+ΓQ−RHS|
|RHS| = 1.13%.

c) How accurate is the asymptotic formula (2.2.17) for E?

The accuracy of the asymptotic formula for E in (2.2.17) can be checked by comparing it

with the exact formula (2.2.7) at several points x outside of the body, |x − x1| � a where

x1 is the center of the body. The relative errors are given in Table 2.12.

Table 2.12: Relative errors between the asymptotic and exact formulas for E when M = 600
collocation points and a = (1.0E − 07) cm.

|x− x1| Ee vs Ea

1.73E-03 1.19E-08
1.73E-04 1.19E-07
1.73E-05 1.52E-06
1.73E-06 8.64E-04

Table 2.13 shows the relative errors between the asymptotic E versus exact E, when

M = 600 collocation points, |x − x1| = (1.73E − 06) cm, and with various a. From this

table, we can see that the smaller the side of the cube is, compared to the distance from the
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Table 2.13: Relative errors of the asymptotic E when M = 600 collocation points.

M = 600, |x− x1| = 1.73E − 06

a 1.00E-07 1.00E-08 1.00E-09
Ee vs Ea 8.64E-04 6.49E-07 6.32E-10

point of interest to the center of the body, the more accurate the asymptotic formula of E

is.

2.4.4 EM wave scattering by many small perfectly conducting

bodies

To illustrate the idea, consider a domain Ω as a unit cube placed in the first octant such

that the origin is one of its vertices. This domain Ω contains M small bodies. Suppose these

small bodies are particles. We use GMRES iterative method, see [26], to solve the linear

system (2.3.21)-(2.3.23). The following physical parameters are used to solve the EM wave

scattering problem

• Speed of wave, c = (3.0E + 10) cm/sec.

• Frequency, ω = (5.0E + 14) Hz.

• Wave number, k = (1.05E + 05) cm−1.

• Wave length, λ = (6.00E − 05) cm.

• Direction of incident plane wave, α = (0, 1, 0).

• Magnetic permeability, µ = 1.

• Volume of the domain Ω that contains all the particles, |Ω| = 1 cm3.

• The distance between two neighboring particles, d = (1.00E − 07) cm.

• Vector E = (1, 0, 0).

• Vector A0: A0m := (I + Γ)−1∇× E0(x)|x=xm = (I + Γ)−1∇× Eeikα·x|x=xm .
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Note that the distance d satisfies the assumption d � λ. The radius a of the particles is

chosen variously so that it satisfies the assumption ka � 1. For illustration purpose, the

problem of EM wave scattering by many small perfectly conducting bodies is solved with

M = 27 and 1000 particles.

Table 2.14: Vector E when M = 27 particles, d = (1.0E− 07) cm and a = (1.0E− 09) cm.

M = 27, d = 1.0E − 07, a = 1.0E − 09

1.00E+00+1.01E-14i 5.69E-17-1.01E-14i 0.00E+00+0.00E+00i
1.00E+00+1.19E-14i 0.00E+00+0.00E+00i 0.00E+00+0.00E+00i
1.00E+00+1.01E-14i -5.69E-17+1.01E-14i 0.00E+00+0.00E+00i
1.00E+00+1.05E-02i 1.24E-16-1.19E-14i -1.36E-29-5.20E-36i
1.00E+00+1.05E-02i 0.00E+00+0.00E+00i -4.80E-30-5.20E-36i
1.00E+00+1.05E-02i -1.24E-16+1.19E-14i -1.22E-30-5.20E-36i
1.00E+00+2.09E-02i 1.54E-16-1.01E-14i -3.40E-30-1.04E-35i
1.00E+00+2.09E-02i 0.00E+00+0.00E+00i -2.43E-30-1.04E-35i
1.00E+00+2.09E-02i -1.54E-16+1.01E-14i -1.20E-30-1.04E-35i
1.00E+00+1.19E-14i 6.63E-17-1.19E-14i 0.00E+00+0.00E+00i
1.00E+00+1.40E-14i 4.80E-30+0.00E+00i 0.00E+00+0.00E+00i
1.00E+00+1.19E-14i -6.63E-17+1.19E-14i 0.00E+00+0.00E+00i
1.00E+00+1.05E-02i 1.47E-16-1.40E-14i -4.80E-30-5.20E-36i
1.00E+00+1.05E-02i 2.61E-30+0.00E+00i -2.61E-30-5.20E-36i
1.00E+00+1.05E-02i -1.47E-16+1.40E-14i -9.24E-31-5.20E-36i
1.00E+00+2.09E-02i 1.82E-16-1.19E-14i -2.43E-30-1.04E-35i
1.00E+00+2.09E-02i 9.24E-31+0.00E+00i -1.85E-30-1.04E-35i
1.00E+00+2.09E-02i -1.82E-16+1.19E-14i -1.01E-30-1.04E-35i
1.00E+00+1.01E-14i 5.69E-17-1.01E-14i 0.00E+00+0.00E+00i
1.00E+00+1.19E-14i 2.43E-30+0.00E+00i 0.00E+00+0.00E+00i
1.00E+00+1.01E-14i -5.69E-17+1.01E-14i 0.00E+00+0.00E+00i
1.00E+00+1.05E-02i 1.24E-16-1.19E-14i -1.22E-30-5.20E-36i
1.00E+00+1.05E-02i 1.85E-30+0.00E+00i -9.24E-31-5.20E-36i
1.00E+00+1.05E-02i -1.24E-16+1.19E-14i -5.03E-31-5.20E-36i
1.00E+00+2.09E-02i 1.54E-16-1.01E-14i -1.20E-30-1.04E-35i
1.00E+00+2.09E-02i 9.98E-31+0.00E+00i -1.01E-30-1.04E-35i
1.00E+00+2.09E-02i -1.54E-16+1.01E-14i -6.54E-31-1.04E-35i

For example, Tables 2.14 show the result of solving the EM wave scattering problem with

M = 27 particles in the unit cube in which the distance between neighboring particles is

d = (1.0E − 07) cm and the radius of the particles is a = (1.0E − 09) cm. Each row in

Tables 2.14 is a vector E(i) = (Ex, Ey, Ez)(i) at the point i in the cube. The norm of this
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asymptotic solution E is 5.20E + 00 and the error of the solution is 8.16E − 10. This error

is computed using (2.3.36).

Table 2.15 shows the relative errors of E when there are M = 27 particles in the cube,

the distance between neighboring particles is d = (1.0E − 07) cm, and with various radius

a. Figure 2.1 shows the relative error of the asymptotic E. From this figure, one can see

that when the ratio a/d decreases from 1.0E − 01 to 1.0E − 04, the error of the asymptotic

solution decreases linearly and rapidly from 8.16E − 06 to about 8.16E − 18. The smaller

the ratio a/d is, the better the asymptotic formula (2.3.13) approximates E.

Table 2.15: Error of the asymptotic solution E when M = 27 and d = (1.0E − 07) cm.

M=27, d=1.0E-07

a 1.00E-08 1.00E-09 1.00E-10 1.00E-11
a/d 1.00E-01 1.00E-02 1.00E-03 1.00E-04

Norm of E 5.20E+00 5.20E+00 5.20E+00 5.20E+00
Error of E 8.16E-06 8.16E-10 8.16E-14 8.16E-18

Figure 2.1: Error of the asymptotic solution E when M = 27 and d = (1.0E − 07) cm.

Table 2.16 and Figure 2.2 show the results of solving the problem with M = 1000

particles, when the distance between neighboring particles is d = (1.0E − 07) cm, and with

different radius a. From these table and figure, one can see that the relative error of the

asymptotic solution in this case is also very small, less than 3.02E − 04, when the ratio

a/d < 1.0E − 01. In this case, the error of the asymptotic E is greater than that of the
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Table 2.16: Error of the asymptotic solution E when M = 1000 and d = (1.0E − 07) cm.

M=1000, d=1.0E-07

a 1.00E-08 1.00E-09 1.00E-10 1.00E-11
a/d 1.00E-01 1.00E-02 1.00E-03 1.00E-04

Norm of E 3.16E+01 3.16E+01 3.16E+01 3.16E+01
Error of E 3.02E-04 3.02E-08 3.02E-12 3.02E-16

Figure 2.2: Error of the asymptotic solution E when M = 1000 and d = (1.0E − 07) cm.

previous case when M = 27. However, this time, the error is also decreasing quickly and

linearly when the ratio a/d decreases from 1.0E−01 to 1.0E−04. Therefore, the asymptotic

formula (2.3.13) for the solution E is applicable when a� d.

2.5 Conclusions

In this paper, we present a numerical method for solving the EM wave scattering by one and

many small perfectly conducting bodies. One of the advantages of this method is that it

is relatively easy to implement. Furthermore, one can get an asymptotically exact solution

to the problem when the characteristic size of the bodies tends to zero. To illustrate the

applicability and efficiency of the method, we use it to solve the EM wave scattering problem

by one and many small perfectly conducting bodies. Numerical results of these experiments

are presented and error analysis of the asymptotic solutions for the case of one and many

bodies are also discussed. For the case of one small body, one can always find the exact
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solution using the described method. For the case of many small bodies, the accuracy of our

method is high if a� d� λ.
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