
THE EXISTENCE AND USEFULNESS OF EQUALITY CUTS IN THE

MULTI-DEMAND MULTIDIMENSIONAL KNAPSACK PROBLEM

by

LEVI DELISSA

B.S., Kansas State University, 2014

A THESIS

submitted in partial fulfillment of the
requirements for the degree

MASTER OF SCIENCE

Department of Industrial and Manufacturing Systems Engineering
College of Engineering

KANSAS STATE UNIVERSITY
Manhattan, Kansas

2014

Approved by:

Major Professor
Todd Easton

Abstract
Integer programming (IP) is a class of mathematical models useful for modeling and

optimizing many theoretical and industrial problems. Unfortunately, IPs are NP-complete,

and many integer programs cannot currently be solved.

Valid inequalities and their respective cuts are commonly used to reduce the effort re-

quired to solve IPs. This thesis poses the questions, do valid equality cuts exist and can

they be useful for solving IPs?

Several theoretical results related to valid equalities are presented in this thesis. It

is shown that equality cuts exist if and only if the convex hull is not full dimensional.

Furthermore, the addition of an equality cut can arbitrarily reduce the dimension of the

linear relaxation.

In addition to the theory on equality cuts, the idea of infeasibility conditions are pre-

sented. Infeasibility conditions introduce a set of valid inequalities whose intersection is

the empty set. infeasibility conditions can be used to rapidly terminate a branch and cut

algorithm.

Applying the idea of equality cuts to the multi-demand multidimensional knapsack prob-

lem resulted in a new class of cutting planes named anticover cover equality (ACE) cuts.

A simple algorithm, FACEBT, is presented for finding ACE cuts in a branching tree with

complexity O(m · n log n).

A brief computational study shows that using ACE cuts exist frequently in the MDMKP

instances studied. Every instance had at least one equality cut, while one instance had over

500,000. Additionally, computationally challenging instances saw an 11% improvement in

computational effort. Therefore, equality cuts are a new topic of research in IP that is

beneficial for solving some IP instances.

Table of Contents

List of Figures v

List of Tables vi

1 Introduction 1

1.1 Motivation . 3

1.2 Contributions . 3

1.3 Outline . 4

2 Background Information 5

2.1 Integer Programming . 5

2.1.1 Knapsack Problems . 9

2.1.2 Demand Constraint Problems . 10

2.1.3 Demand Knapsack Problems . 11

2.2 Polyhedral Theory . 12

2.2.1 Cutting Planes and Faces . 14

2.2.2 Covers . 17

3 Equality Cuts and Infeasibility Conditions 19

3.1 Equality Cuts . 19

3.2 Anticover Cover Equality Cuts . 23

3.2.1 Anticovers . 23

3.2.2 Anticover Cover Equality Cuts . 26

iii

3.2.3 Finding ACE Cuts in Branching Trees 29

3.2.4 Infeasibility Conditions . 33

4 Computational Results 37

4.1 Benchmark Instances . 37

4.2 Implementation . 38

4.3 Computational Results and Discussions . 40

5 Conclusions and Future Research 49

5.1 Future Research . 50

Bibliography 51

A Computational Results 54

iv

List of Figures

2.1 A Branch and Bound Tree . 8

2.2 Cutting Planes Example . 16

3.1 Branching Tree for Example 3.2.1 Without Equality Cut 30

3.2 Branching Tree for Example 3.2.1 with Equality Cut 31

3.3 Branching Tree without Equality Cut and Objective Min 5x1 + 2x2 + 2x3 +

5x4 + x5 . 32

3.4 Branching Tree with Equality Cut and Objective Min 5x1 +2x2 +2x3 +5x4 +x5 33

3.5 Branching Tree for Example 3.2.2 . 36

v

List of Tables

4.1 Cut Table for n = 100,m = 5, q = 5, z = 0 44

4.2 Cut Table for n = 250,m = 5, q = 5, z = 0 44

4.3 Cut Table for n = 100,m = 10, q = 10, z = 0 45

4.4 Nodes Evaluated for n = 100,m = 5, q = 5 46

4.5 Nodes Evaluated for n = 250,m = 5, q = 5 47

4.6 Nodes Evaluated for n = 100,m = 10, q = 10 48

A.1 Cut Table for n = 100,m = 5, q = 5, z = 0 55

A.2 Cut Table for n = 100,m = 5, q = 5, z = 1 55

A.3 Cut Table for n = 100,m = 5, q = 5, z = 2 56

A.4 Cut Table for n = 100,m = 5, q = 5, z = 3 56

A.5 Cut Table for n = 100,m = 5, q = 5, z = 4 57

A.6 Cut Table for n = 100,m = 5, q = 5, z = 5 57

A.7 Cut Table for n = 100,m = 10, q = 10, z = 0 58

A.8 Nodes Evaluated for n = 100,m = 5, q = 5, z = 0 59

A.9 Nodes Evaluated for n = 100,m = 5, q = 5, z = 1 60

A.10 Nodes Evaluated for n = 100,m = 5, q = 5, z = 2 61

A.11 Nodes Evaluated for n = 100,m = 5, q = 5, z = 3 62

A.12 Nodes Evaluated for n = 100,m = 5, q = 5, z = 4 63

A.13 Nodes Evaluated for n = 100,m = 5, q = 5, z = 5 64

vi

Chapter 1

Introduction

Integer Programming is a widely studied class of mathematical models. An Integer Program

(IP) is defined as, maximize cTx subject to Ax ≤ b and x ∈ Zn
+, where c ∈ Rn, A ∈ Rm×n,

and b ∈ Rm. This research develops new techniques to improve the time required to solve

integer programs by creating equality cuts and infeasibility conditions.

Integer programming has been used to model and solve many different problems in

many different fields. Some of the fields where IPs have been applied are genetic research5,

portfolio management3,17, transporting goods8,18,19,21, and fighting cancer11,12.

There are various classes of IPs and one of the most widely studied is called the Knapsack

Problem (KP). KP models the classical analogy of a camper packing his/her knapsack before

a trip. The camper can take items and each item has an associated benefit and weight. The

camper wants to pack the knapsack in such a way that he/she has the maximum benefit,

while still being able to carry the knapsack. The knapsack problem and variations of it, have

numerous real world applications. Some examples include Merkle Hellman cryptography14

and portfolio optimization9.

A problem closely related to KP is the Demand Constraint Problem (DCP). DCP models

a business deciding on a combination of marketing strategies. Each different strategy has a

1

known cost and benefit. DCP seeks to minimize the cost spent while meeting certain market

share requirements.

This thesis focuses on a particular class of IPs, called the Multi-Demand Multidimen-

sional Knapsack Problem (MDMKP). The Demand Knapsack Problem contains both a

knapsack and a demand constraint. Combining multiple demand constraints and multiple

knapsack constraints results in the MDMKP. Formally, MDMKP has the form maximize cTx

subject to Ax ≤ b,A′x ≥ b′, and x ∈ {0, 1}n, where c ∈ Rn, A ∈ Rm×n
+ ,A′ ∈ Rq×n

+ ,b ∈ Rm
+ ,

and b′ ∈ Rq
+. The MDMKP has numerous real world applications. Some examples are

project selection20, capital budgeting13, and cutting stock4.

Unfortunately, IPs and MDMKPs are NP-complete7 and thus solving them can require

exponential time. Some real world IPs still have no known solution . Additionally, even

small IP instances are not guaranteed to be solvable within a reasonable time frame. This

has motivated a significant amount of research into improving methods of solving IPs. The

two most common solution methods are Branch and Bound10 and cutting planes.

Branch and Bound, the primary method for solving IPs, works by solving the linear

relaxation of each IP within the branching tree. The linear relaxation is the IP without

the integer requirements. After solving a linear relaxation, branch and bound splits the

problem of the parent node into two separate problems. This process is repeated until all

the nodes have been fathomed. A node is fathomed if the solution at that node is integer,

the linear relaxation at that node is infeasible, or the objective value at that node is worse

than the objective value of the best integer solution found thus far. Once all nodes have

been fathomed the best integer solution found is the optimal solution for the problem. If all

the nodes have been fathomed and no integer solution was found, the problem is infeasible.

Solving IPs using cutting planes uses the idea of a valid inequality. The goal of a valid

inequality, αTx ≤ β, is to remove portions of the linear relaxation space without eliminating

a feasible integer point. The theoretical strength of a valid inequality can be measured by

2

its induced face. Facet defining inequalities are the strongest theoretical valid inequalities.

Much research has been done on finding cutting planes for KP instances. A popular

method to generate cuts is to use covers1,22 on a knapsack constraint. Cover cuts can be

facet defining, are easy to find and are commonly implemented in modern software.

1.1 Motivation

The following question motivated this research. Why are valid inequalities defined as

αTx ≤ β? Would it be possible to have a valid equality, αTx = β? This research an-

swers this latter question in the affirmative and demonstrates how to find such equality cuts

for some MDMKP instances.

1.2 Contributions

This thesis presents the idea of an equality set and corresponding valid equality. It is shown

that equality sets only exist when the IPs convex hull is not full dimensional. Additionally, it

is shown that although equality cuts can never be facet defining, the addition of an equality

cut can arbitrarily reduce the dimension of an IPs linear relaxation.

The idea of equality cuts is applied to MDMKP by utilizing covers and introducing

the concept of an associated anticover inequality. In certain instances, there exists an

anticover cover equality set. Several examples of equality cuts are presented. These examples

demonstrate the existence of equality sets and provide substantial discussion regarding their

potential benefit.

A third contribution of this research is a formal definition of infeasibility conditions in

general. If an infeasibility condition exists for an IP, then the IP is infeasible. Infeasibility

conditions using anticovers and covers for the MDMKP are presented. An example demon-

3

strates that although the linear relaxation may be full dimensional, an infeasibility condition

can exist. Thus, such an IP would not need to be solved by branch and bound.

The final contribution of this work is a computational study of both equality cuts and

infeasibility conditions for the MDMKP. Implementing anticover cover equality cuts and

anticover cover infeasibility conditions resulted in an average of about a 7% improvment on

small benchmark instances and an 11% gain on large benchmark instances.

1.3 Outline

Chapter 2 presents basic concepts of integer programming and polyhedral theory along with

other background information requisite for understanding the research presented in this the-

sis. Some of the topics covered in this chapter include the Integer Programming, Polyhedral

Theory, the Knapsack Problem, the Demand Problem, the Multi-Demand Multidimensional

Knapsack Problem, Cutting Planes, Branch and Cut, and Covers.

Chapter 3 contains the advancements of this research. The concept of an equality set

with corresponding valid equality is introduced along with results about their existence

and theoretical usefulness. An simple algorithm for finding anticover cover equality (ACE)

cuts on the MDMKP is presented with its running time. Finally the idea of infeasibility

conditions by combining cuts is introduced.

The computational results of applying ACE on MDMKP can be found in Chapter 4.

This chapter presents the results, an interpretation, and some discussions relating to the

implementation.

Chapter 5 summarizes this thesis and discusses several ideas for further research on valid

equalities. Additional topics are provided on both the theoretical and computational side.

4

Chapter 2

Background Information

This chapter provides a brief discussion of material prerequisite to understand this thesis.

Topics such as integer programming, the knapsack problem, polyhedral theory, cutting

planes and covers are discussed. To study this material in greater detail, refer to the classic

text by Nemhauser and Wolsey15.

2.1 Integer Programming

Integer programs (IP’s) are a class of mathematical models useful for solving optimization

problems. An IP is of the form:

Maximize cTx

Subject to Ax ≤ b

x ∈ Zn
+

where c ∈ Rn, A ∈ Rm×n, and b ∈ Rm.

An optimal solution to an IP takes the form z∗ and x∗, where z∗ = cTx∗. The set of

feasible solutions is denoted as P = {x ∈ Zn
+ : Ax ≤ b}. Furthermore, the set of indices is

5

N = {1, ..., n}.

Integer programming has been used to model and solve many different problems in

many different fields. Some of the fields where IPs have been applied are genetic research5,

portfolio management3,17, transporting goods8,18,19,21, and fighting cancer11,12. There are

numerous other applications for integer programs not mentioned here. Additionally, there

exist many problems where integer programming would be useful, but due to the IP’s size,

complexity and the lack of efficient methods for solving IPs, solutions are obtained using

other techniques with no guarantee of optimality.

Integer programs have been shown to beNP-hard7. Thus, no polynomial time algorithm

has yet been discovered to solve IPs and such an algorithm is unlikely to exist. IPs are

typically solved by utilizing the linear relaxation. The linear relaxation (LR) of an IP is the

IP without the integer constraint. Thus the LR takes the form

Maximize cTx

Subject to Ax ≤ b

x ∈ Rn
+

where c ∈ Rn, A ∈ Rm×n, and b ∈ Rm. The linear relaxation space is defined as

PLR = {x ∈ Rn : Ax ≤ b}. The optimal solution to the LR is denoted z∗LR and x∗LR,

where z∗LR = cTx∗LR.

Since no polynomial time algorithm has yet been discovered to solve IPs, much research

effort has been given to improving current solution techniques . The most common such

methods are branch and bound10 and cutting planes.

Branch and bound begins by solving the linear relaxation. If x∗LR ∈ Zn
+, then x∗LR, z∗LR

is an optimal integer solution and the algorithm terminates. Otherwise, the algorithm

selects some non-integer variable xi = q for branching. The original problem is considered

the parent node and each branch creates two child nodes. One child node contains the

6

original problem plus an additional constraint xi ≤ bqc; while the other child node is the

original problem plus the constraint xi ≥ dqe. The algorithm repeats this process until all

nodes have been fathomed.

A node is fathomed if the LR is infeasible, has an integer solution, or z∗LR at that node is

worse than the best integer solution found thus far. Once all the nodes have been fathomed

the best integer solution from any node is known to be the global optimal solution. If no

integer solution exists the IP is infeasible.

Consider the following branch and bound example.

Example 2.1.1. Given the following IP:

Minimize x1 + x2 + x3 + x4 + x5

Subject to 3x1 + 13x2 + 7x3 + 5x4 + 11x5 ≤ 23

5x1 + 2x2 + 7x3 + 11x4 + 3x5 ≥ 19

x1, x2, x3, x4, x5 ∈ {0, 1}

In this example Branch and Bound uses a depth first left search strategy. Solving the linear

relaxation at the root node (1) results in z∗ = 21
5

and x∗ = (1
5
, 0, 1, 1, 0). Since x∗ 6∈ Zn,

branching begins. Node (2) is formed by adding the constraint x1 ≤ 0. Following the depth

first left search strategy this process continues until node (4) which is infeasible. Thus the

node is fathomed. The algorithm then returns to node (3) to find any unfathomed nodes.

This logic is followed until all nodes have been fathomed. To see the full branching tree,

which requires solving 15 linear relaxations, refer to Figure 2.1.

7

F
ig

u
re

2
.1

:
A

B
ra

n
ch

an
d

B
ou

n
d

T
re

e

z
=

2
1 5

(1
)

(1 5
,0
,1
,1
,0

)

x
1
≤

0
(2

)

z
=

2
1 3

(0
,0
,1
,1
,
1 3
)

x
5
≤

0
(3

)

z
=

2
1 2

(0
,
1 2
,1
,1
,0

)

x
2
≤

0
(4

)

in
fe

as
ib

le

x
2
≥

1
(5

)

in
fe

as
ib

le

x
5
≥

1
(6

)

z
=

2
5 7

(0
,0
,
5 7
,1
,1

)

x
3
≤

0
(7

)

in
fe

as
ib

le

x
3
≥

1
(8

)

z
=

2
8 1
1

(0
,0
,1
,

8 1
1
,1

)

x
4
≤

0
(9

)

in
fe

as
ib

le

x
4
≥

1
(1

0
)

z
=

3

(0
,0
,1
,1
,1

)

x
5
≥

1
(1

1
)

z
=

2
3 7

(1
,0
,
3 7
,1
,0

)

x
3
≤

0
(1

2
)

z
=

3

(1
,0
,0
,1
,1

)

x
3
≥

1
(1

3
)

z
=

2
7 1
1

(1
,0
,1
,

7 1
1
,0

)

x
4
≤

0
(1

4
)

in
fe

as
ib

le

x
4
≥

1
(1

5
)

z
=

3

(1
,0
,1
,1
,0

)

8

2.1.1 Knapsack Problems

A widely studied class of IPs is the Knapsack Problem (KP). The classical analogy depicts a

camper packing his/her knapsack before a trip. There are n items that can be taken, every

item j is associated with a benefit, cj, and a nonnegative weight, aj. The camper wants

to pack the knapsack in such a way that he/she has the maximum benefit while still being

able to carry the knapsack, a total weight less than or equal to b.

To model KP as an IP, let xj = 1 if the camper selects item j; otherwise, xj = 0. The

IP formulation of the KP is,

Maximize cTx

Subject to aTx ≤ b

x ∈ {0, 1}n

where c ∈ Rn, a ∈ Rn
+, and b ∈ R+.

A knapsack problem with more than one constraint is referred to as a multidimensional

knapsack problem. Formally,

Maximize cTx

Subject to Ax ≤ b

x ∈ {0, 1}n

where c ∈ Rn, A ∈ Rm×n
+ , and b ∈ Rm

+ .

Define the set of feasible solutions of a knapsack as PKP = {x ∈ {0, 1}n : aTx ≤ b}.

Similarly, let PMK = {x ∈ {0, 1}n : Ax ≤ b} be the set of feasible solutions for the

multidimensional knapsack problem.

An important generalization is that no item i has a weight ai, such that ai > b. In

this case, the item can never be included so it is not allowed in the KP instance. This is

9

important to show that KP is full dimensional. A proof of this is shown in the section on

polyhedral theory.

The knapsack problem and variations of it, have numerous real world applications. Some

examples include Merkle Hellman cryptography14 and portfolio optimization9.

2.1.2 Demand Constraint Problems

A class of problems closely associated with the knapsack problem is the Demand Constraint

Problem (DCP). An analogy for the DCP depicts a business deciding on a combination

of marketing strategies. Each different strategy j has a known cost cj and an estimated

increase in demand a′j. The problem seeks to minimize the cost, while achieving a certain

minimum level of product demand, b′.

To model this problem as an IP, let xj = 1 if strategy j is used; otherwise, xj = 0. The

IP formulation is,

Minimize c′Tx

Subject to a′Tx ≥ b′

x ∈ {0, 1}n

where c′ ∈ Rn, a′ ∈ Rn
+, and b′ ∈ R+.

A demand problem with more than one constraint is referred to as the multidimensional

demand constraint problem (MDCP). Formally,

Minimize c′Tx

Subject to A′x ≥ b′

x ∈ {0, 1}n

where c ∈ Rn, A ∈ Rm×n
+ , and b ∈ Rm

+ .

Define the set of feasible solutions of a DCP as PDCP = {x ∈ {0, 1}n : aTx ≤ b}.

10

Similarly let PMDCP = {x ∈ {0, 1}n : Ax ≥ b}, be the set of feasible solutions for the

multidimensional demand constraint problem.

Observe that any DCP can be transformed into a KP by substituting (1 − x′i) for xi.

This substitution results in an objective function of Maximize c′Tx′ − c′T1. The demand

constraint becomes a′Tx′ ≤ a′T1 − b′. Thus, the DCP is equivalent to the KP. A demand

constraint formed using this substitution is called an associated demand constraint for the

knapsack instance. Likewise, a knapsack constraint can be formed from a demand constraint

using this substitution is called the associated knapsack constraint.

Due to this substitution, much less work has focused on DCP. Fortunately, results from

KP can be trivially extended to DCP instances. Thus, DCP has the same real world

applications as the KP and similar theoretical results. The converse is also true.

2.1.3 Demand Knapsack Problems

An extension of the KP and DCP is the Demand Knapsack Problem (DKP). A DKP is

formed by adding a demand constraint to a knapsack problem. Formally,

Maximize ctx

Subject to aTx ≤ b

a′Tx ≥ b′

x ∈ {0, 1}n

where c ∈ Rn, a, a′ ∈ Rn
+, and b, b′ ∈ R+.

Observe that the demand constraint in a DKP cannot be transformed into knapsack

constraint. This is because the variable substitution of (1 − x′j) for xj merely flips which

constraint is the demand constraint and which constraint is the knapsack constraint. Thus,

the DKP problem is different from either the KP or DCP. Consequently, results for either

11

KP or DCP cannot automatically be applied to DKP instances.

A DKP with more than one knapsack or demand constraint is referred to as the Multi-

Demand Multidimensional Knapsack Problem (MDMKP). The MDMKP is considered through-

out this thesis. MDMKP has the following IP,

Maximize ctx

Subject to Ax ≤ b

A′x ≥ b′

x ∈ {0, 1}n

where c ∈ Rn, A ∈ Rm×n
+ ,A′ ∈ Rq×n

+ ,b ∈ Rm
+ , and b′ ∈ Rq

+.

Define the set of feasible solutions as PDKP = {x ∈ {0, 1}n : aTx ≤ b, a′Tx ≥ b′}.

Similarly let PMDMKP = {x ∈ {0, 1}n : Ax ≤ b,A′x ≥ b′}. This thesis focuses on

PMDMKP .

The MDMKP has numerous real world applications. Some examples include topics

related to project selection20, capital budgeting13, and cutting stock4.

2.2 Polyhedral Theory

Polyhedral theory is an area of research in mathematical programming and is used to study

the feasible space for integer and linear programs. Relevant definitions from polyhedral

theory are discussed in this section.

A linear relaxation of an IP is a linear program. The feasible space PLP for a linear

program is defined by a finite set of linear inequalities, written PLP = {x ∈ Rn : Ax ≤ b},

where A ∈ Rm×n and b ∈ Rm. The solution space for an inequality is {x ∈ Rn :
n∑

j=1

aijxj ≤ bi},

and is called a halfspace. The set of all points P formed by the intersection of a finite num-

ber of halfspaces is a polyhedron. By definition, the feasible space of a linear program is a

12

polyhedron. A polyhedron P with some bound k such that |x| ≤ k for all x ∈ P is called a

polytope.

A set S ⊆ Rn is convex if and only if λx + (1 − λ)x′ ∈ S for all x,x′ ∈ S and λ ∈

[0, 1]. The convex hull of S, written SCH = conv(S), is the intersection of all convex

sets S ′ such that S ⊆ S ′. It can easily be seen that SCH is convex. This thesis focuses

on PCH
MDMKP = conv({x ∈ {0, 1}n : Ax ≤ b,A′x ≥ b′}). As such, results are also provided

relative to PCH
KP , PCH

DC and PCH
DKP .

The feasible space for a linear program is a convex set and has dimension defined as

the number of linearly independent vectors in PLP . The feasible region of an IP, P , is only

a collection of points so no vectors are feasible. Consequently, the dimension of PCH is

determined using affine independence. The intuition behind this is to take any one of the

affinely independent feasible points in P and make linearly independent vectors from this

point to the other affinely independent points that are also in P . Thus, these vectors must

be contained in PCH .

A collection of points p1,p2, ...pr ∈ Rn is affinely independent if
r∑

j=1

λjpj = 0,
r∑

j=1

λj = 0

is uniquely solved by the trivial solution λj = 0 for all j = 1, ..., r. The dimension of the

convex hull of an IP is defined as the number of affinely independent points minus one.

To identify points in Rn, define ei to be the ith identity point, the point that is translated

one unit from the origin in the ith dimension. Also let 0 and 1 be the vector of 0s and 1s,

respectively.

A polyhedron PLP ⊆ Rn is said to be full dimensional if dim(PLP) = n. If PLP is not

full dimensional, then dim(PLP) < n, and there is at least one inequality αjx ≤ βj that is

satisfied at equality by all points in P .

The following arguments demonstrate the concepts of the dimension of PCH
KP and PCH

DC .

These arguments require some standard assumptions that are used throughout this thesis.

Recall that Section 2.1.1 argued that each ai of a knapsack instance is less than or equal

13

to b or xi can be eliminated. In addition to this assumption, assume that the indices of all

KP instances are sorted in descending order according to their a coefficients. With these as-

sumptions, the dimension of KP is trivially bounded from above by n, due to the n variables.

To show that the dim(PCH
KP) is |N |, there must be |N |+ 1 affinely independent points. Con-

sider the points 0, e1, e2, ..., e|N| ∈ PCH
KP . These points are all affinely independent making

the dim(PCH
KP) = |N |.

For DC instances, assume that the indices are sorted in descending order according to

the a′ coefficients. If
∑n

i=2 a
′
i < b′, then x1 must equal to one for every feasible solution

and it can be eliminated from the problem with the proper adjustments to b′ and c. Thus,

assume that
∑n

i=2 a
′
i ≥ b′. With this assumption, dim(PCH

DC) = |N |. Consider the points

1 and 1 − ei for each i ∈ N . These points are affinely independent and clearly in PDC , so

dim(PCH
DC)= |N |.

Let M = {1, ...,m} be the set of inequalities defining PLP with the inequality set

M≤ = {j ∈M : αjx < βj for some x ∈ PLP} sometimes denoted as (A≤,b≤), and the

equality setM \M≤ = M= = {j ∈M : αjx = βj ∀ x ∈ PLP} sometimes denoted (A=,b=).

A common result is that dim(PLP) + rank(A=,b=) = n.

A fundamental result is that PCH is a polyhedron and can be exactly defined by a finite

number of inequalities. Furthermore, all of the extreme points of PCH are integer. Thus,

if a set of equalities is known that exactly defines PCH , an optimal integer solution can be

found in PCH by solving an LP. This is the motivation for cutting planes.

2.2.1 Cutting Planes and Faces

If PLR = PCH , then a solution to the IP can be found in polynomial time. Cutting planes

are used to remove points in PLR \PCH . An inequality
∑

j∈N αjxj ≤ β is said to be a valid

inequality for PCH if, and only if
∑

j∈N αjx
′
j ≤ β is satisfied for every x′ ∈ P .

The set of all points in a polyhedron that exactly satisfy a valid inequality is defined as

14

a face F = {x ∈ PCH :
∑

j∈N αjxj = β}. If F ⊆ PCH and F 6= ∅, then F is said to support

PCH . A face is said to be proper if F supports PCH and F 6= PCH .

A facet defining inequality of PCH defines a face of PCH with dimension exactly one less

than the dimension of PCH . A face defined by a facet defining inequality is called a facet.

All of the facets of PCH are necessary and sufficient to define PCH . The following example

helps to explain these concepts.

Example 2.2.1. Given the integer program:

Maximize x1 + 2x2

Subject to 3x1 + 2x2 ≤ 12

3x1 + 4x2 ≤ 15

x1, x2 ∈ Z+

The first constraint, 3x1 + 2x2 ≤ 12, passes through points (0, 6), C, and D. The second

constraint, 3x1 + 4x2 ≤ 15, passes through the points A, B, C, and (5, 0). The linear

relaxation space of the IP is defined by these two constraints, the x1 axis, and x2 axis. The

large circles represent the feasible integer points, P , of the problem as shown in Figure 2.2.

Clearly there is space within the linear relaxation that is outside the feasible integer

points. The aim of a cutting plane is to remove this non-integer solution space without

eliminating any of the feasible integer points. The dashed line represents the inequality

x1 + x2 ≤ 4 and passes through the points (0, 4), B, and D. This cutting plane eliminates

the region BCD of the linear relaxation space without cutting off any feasible integer points.

Thus, it is a valid inequality and a cutting plane.

By finding the dimension of PCH and the dimension of the cut’s faces, this cutting plane

can be classified as facet defining. The dimension of the polyhedron, PCH , is 2, because

it contains three affinely independent points (0, 0), (0, 1), and (1, 0). Next the dimension

of the cut’s face is found by listing affinely independent points that meet the inequality at

15

0 1 2 3 4 5

1

2

3

4

5

6

A

B

C

D

x1 + 2x2 ≤ 12

x1 + 4x2 ≤ 15
x1 + x2 ≤ 4

x1

x2

Figure 2.2: Cutting Planes Example

16

equality. In this case, (1, 3) and (0, 4) can be used as these points. Furthermore, it is evident

that the face does not define PCH . Consequently, x1 + x2 ≤ 4 is a facet defining inequality.

For this example, the other facet defining inequalities are x1 ≥ 0, x2 ≥ 0, and x2 ≤ 3. If

these inequalities are added, then PCH is defined. Notice that all corner points are integer.

This example shows the simplicity of finding the valid inequalities in a two dimensional

integer programming problem. As the number of variables increases, so does the complexity

of finding valid inequalities and facet defining inequalities.

Combining the concepts of cutting planes within a branch and bound algorithm results

in branch and cut16. Branch and cut follows the same idea as branch and bound. The

difference is that at any unfathomed node, cutting planes may be included instead of a

branch. If cutting planes are added, then only one child is created.

There are typically two classes of cutting planes, local and global cuts, added in branch

and cut. Local cutting planes are applied to any node that is a descendant of this node. A

global cut applies to all of the nodes of the tree. This research implements a branch and

cut algorithm when solving MDMKPs using local cuts.

2.2.2 Covers

One of the most commonly implemented and studied cutting planes is derived from a cover

on a knapsack constraint. A cover represents a collection of items that is too heavy for the

hiker to carry. Thus, a cover represents an infeasible point.

Formally, given a knapsack constraint, a cover is a set C ⊆ N such that
∑

i∈C aj > b.

Thus, setting xi = 1 for all i ∈ C is infeasible. A cover C has a corresponding valid inequality

of the form,
∑

i∈C xi ≤ |C| − 1.

There are various classes of covers. A cover is said to be minimal if
∑

i∈C\{j} ai ≤ b for

each j ∈ C. A cover is supporting if
∑

i∈C\{i1} ai ≤ b, where i1 is the first element in C.

Covers are also commonly called dependent sets and edges in a conflict hypergraph.

17

A cover inequality is typically strengthened by viewing its extension. An extended cover

E(C) is created by adding elements to C with coefficients larger than every other coefficient

associated with an index in the cover. Thus, E(C) = C ∪ {i ∈ N \ C : ai ≥ maxj∈C{aj}}.

Clearly, an extended cover induces a valid inequality of PCH
KP of the form

∑
i∈E(C) xi ≤ |C|−1.

The following example depicts these ideas.

Example 2.2.2. Given the knapsack constraint 3x1 + 5x2 + 6x3 + 7x4 + 4x5 ≤ 17, it

can easily be seen that C = {1, 2, 3, 5} is a cover because 3 + 5 + 6 + 4 = 18 > 17.

The corresponding valid inequality for C is x1 + x2 + x3 + x5 ≤ 3. This inequality is

a cutting plane because (1, 1, 5
6
, 0, 1) ∈ PLR and clearly violates this inequality. Since

a4 = 7 ≥ a3 ≥ a2 ≥ a5 ≥ a1, index 4 is in the extended cover, E(C) = {1, 2, 3, 4, 5},

with the valid inequality x1 + x2 + x3 + x4 + x5 ≤ 3. This extended inequality is facet

defining for PCH
KP because the 5 points, (0, 1, 1, 0, 1), (1, 0, 1, 0, 1), (1, 1, 0, 0, 1), (1, 1, 1, 0, 0)

and (1, 1, 0, 1, 0), are in PKP and are affinely independent.

18

Chapter 3

Equality Cuts and Infeasibility

Conditions

This chapter provides the theoretical advancement of this research. It begins by introducing

equality sets and their respective equality cuts along with several theoretical results related

to equality cuts. Some results on the existence of equality cuts are shown for the MDMKP

problem by finding anticovers and covers. The chapter concludes by discussing infeasibility

conditions and showing examples.

3.1 Equality Cuts

The primary contribution of this thesis is the introduction of the concept of a valid equal-

ity for an integer program. A valid equality is a hyperplane in Rn and takes the form∑
i∈N αixi = β. However, not all hyperplanes are valid equalities for an IP.

Formally, given an IP an equality tuple takes the form (S, α, β) where S ⊆ N , α ∈ R|S|

and β ∈ R. An equality tuple is valid if
∑

i∈N αix
′
i = β for all x′ ∈ P . The associated

equality
∑

i∈N αixi = β is said to be a valid equality of PCH .

19

At first glance, a valid equality may seem inherently defined by the linear relaxation,

but this is not always the case. A valid equality is defined as an equality cut if there exists

some x′ ∈ PLR such that
∑

i∈N αix
′
i 6= β. Thus, any equality constraint in an IP is always

a valid equality, but never an equality cut.

The idea of an equality cut may seem absurd to someone familiar with research in

IP. Recall from Chapter 2, that classical IP research only defines a valid inequality as∑
i∈N αixi ≤ β. Furthermore, only valid inequalities can define a facet, and thus an equality

cut can never be facet defining. Additionally, the face defined by the equality cut must

contain PCH . Consequently, any equality cut cannot induce a proper face and must therefore

be improper. Due to these reasons, valid equalities have not been pursued by the IP research

community and to the best of the author’s knowledge, this work provides the first extensive

endeavor into this realm of research.

There are surprisingly several theoretical results related to valid equalities. First, a valid

equality exists if and only if PCH is not full dimensional.

Theorem 3.1.1. Given an IP, PCH has a valid equality of the form
∑

i∈N αixi = β if and

only if dim(PCH) < n.

Proof: Assume PCH has a valid equality of the form
∑

i∈N αixi = β. Since every x′ ∈ P

satisfies
∑

i∈N αixi = β, this equality is contained in M= for PCH and the rank(M=) ≥ 1.

Because dim(PCH) + rank(M=) = n, dim(PCH) ≤ n− 1.

Conversely, assume that dim(PCH) < n. Since dim(PCH) + rank(M=) = n, the

rank(M=) ≥ 1. The definition of M= is a collection of hyperplanes that are satisfied by

every x ∈ P . Thus, there must exist at least one
∑

i∈N αixi = β such that every x ∈ P

satisfies this equality and (N,α, β) is a valid equality tuple.

Even though valid equalities exist, that does not imply that they could ever be useful.

The following theorem answers this question and demonstrates that adding an equality cut

20

to a linear relaxation space can arbitrarily decrease the dimension of the linear relaxation

space. Furthermore, such a cut must decrease PLR’s dimension by at least 1.

Theorem 3.1.2. If PCH has an equality cut of the form
∑

i∈N αixi = β, then including

this equality cut to the linear relaxation decreases the dimension of PLR by q ∈ Z where

1 ≤ q ≤ dim(PLR).

Proof: Assume that
∑

i∈N αixi = β is an equality cut for PCH . Since this is an equality cut

there exists an x′ ∈ PLR such that
∑

i∈N αix
′
i 6= β. Define P ′LR to be PLR ∩

∑
i∈N αixi = β.

Since x′ /∈ P ′LR, x′ is trivially affinely independent from every point in P ′LR. Therefore,

dim(P ′LR) ≤ dim(PLR)− 1.

To prove the second statement consider the integer program with N = {1, ..., q+ r} and

the feasible points, P , defined by the following constraints.

3x1 +
∑q

i=2 xi ≤ 3

2x1 + x2 ≥ 2∑r+q
i=q+1 xj ≤ 1

xi ∈ {0, 1} for i ∈ {1, ..., q + r}

Due to the construction of P , x1 = 1 is clearly a valid equality of PCH . Since the point

x′ = 2
3
e1 + e2 is in PLR and x′1 6= 1, x1 = 1 is an equality cut.

To demonstrate the arbitrary reduction in dimension, it is first necessary to find the

dimension of PLR. Clearly dim(PLR) ≤ q + r due to the number of variables. Consider the

following q+r+1 points, e1,
1
2
e1+e2,

1
2
e1+e2+ 1

2
ej for each j ∈ {3, ..., q}, 2

3
e1+ 2

3
e2+

q∑
j=3

1
3q

ej,

and e1 + ek for each k ∈ {q+ 1, ..., q+ r}. Each point is clearly in PLR. Furthermore, these

points are trivially affinely independent. Thus, PLR is full dimensional, dim(PLR) = q + r.

Let x′ be any point in P ′LR. Clearly x′1 = 1 and x′j = 0 for all j ∈ {2, ..., q} due to the

first constraint. Thus, the maximum dimension of P ′LR can be at most r. The points e1

and e1 + ek for each k ∈ {q + 1, ..., q + r} are in P ′LR, thus dim(P ′LR) = r. Consequently,

21

including the equality cut reduced the dimension of PLR by q where 1 ≤ q ≤ dim(PLR).

Theorem 3.1.2 provides some potential benefit of equality cuts. If an equality cut exists,

then including this cut to PLR reduces its dimension by at least one. Even if the equality cut

only reduces the dimension by 1, the maximum depth that could be achieved by a branch

and bound algorithm is decreased by one. Consequently, if a complete branch and bound

tree was required, slightly over 50% of the nodes are at the greatest depth and these nodes

would all be eliminated. Thus one would expect equality cuts to be quite useful.

Since finding a valid inequality is NP-complete7, finding a valid equality is also NP -

complete. A technique to find a valid equality is to find two opposite valid inequali-

ties and then combine them to form a valid equality. That is, if
∑

i∈N αixi ≤ β and∑
i∈N −αixi ≤ −β are valid inequalities of PCH , then

∑
i∈N αixi = β is a valid equality

of PCH as the following proposition shows.

Proposition 3.1.3. Given an IP, if
∑

i∈N αixi ≤ β and
∑

i∈N −αixi ≤ −β are valid

inequalities of PCH , then
∑

i∈N αixi = β is a valid equality of PCH .

Proof: Assume
∑

i∈N αixi ≤ β and
∑

i∈N −αixi ≤ −β are valid inequalities of PCH .

Multiplying the second inequality by a -1 results in
∑

i∈N αixi ≥ β being valid for PCH .

Thus,
∑

i∈N αixi = β is a valid equality of PCH .

The next section describes how to use Proposition 3.1.3 and the other results from this

section to obtain one class of equality cuts for MDMKP. This class of cuts uses both covers

and anticovers.

22

3.2 Anticover Cover Equality Cuts

The previous section introduced equality cuts in the general sense. Clearly, there are an

infinite number of possibilities to attempt to create equality cuts. This section describes

how to implement the theory of covers to create equality cuts. To achieve these outcomes,

anticovers are explained and then combined with a cover to create an equality tuple. This

section concludes with an example problem that demonstrates these ideas.

3.2.1 Anticovers

As shown in Chapter 2, a demand constraint is a knapsack constraint with the appropriate

substitution. This association enables a natural extension of the idea of a cover in a knapsack

constraint to an anticover in the associated demand constraint. This section provides some

of the basic definitions and properties of anticovers.

Given a demand constraint of the form
∑

i∈N a
′
ixi ≥ b′, a set AC ⊆ N is an anticover

if
∑

i∈N\AC a
′
i < b′. Throughout this section and without loss of generality, assume that

a′1 ≥ a′2 ≥ ... ≥ a′n and that AC = {i1, i2, ..., i|AC|} is listed in this order.

Similar to covers, anticovers can be used to generate valid inequalities. If x′i = 0 for all

i ∈ AC, then x′ can never satisfy the demand constraint. Thus, every anticover induces a

valid inequality of the form
∑

j∈AC xj ≥ 1.

Anticover inequalities can be strengthened as follows. An anticover has parameter p if∑p−1
j=1 a

′
ij

+
∑

i∈N\AC a
′
i < b′ and

∑p
j=1 a

′
ij

+
∑

i∈N\AC a
′
i ≥ b′. If an anticover has parameter

p, then
∑

j∈AC xj ≥ p is a valid inequality as the following proposition shows.

Proposition 3.2.1. Given a demand constraint and anticover AC ⊆ N with parameter p,

then
∑

j∈AC xj ≥ p is a valid inequality of PCH
DP .

Proof: Let AC = {i1, ..., i|AC|} ⊆ N be an anticover with parameter p ≤ |N |. For contradic-

tion, let x′ ∈ PDP such that
∑

j∈AC x
′
j ≤ p−1. Since x′ ∈ PDP ,

∑
i∈AC aix

′
i +

∑
i∈N\AC aix

′
i ≥ b′.

23

Thus, b′ ≤
∑

i∈AC aix
′
i +

∑
i∈N\AC aix

′
i ≤

∑p−1
j=1 aij +

∑
i∈N\AC ai ≤

∑p−1
j=1 aij +

∑
i∈N\AC ai.

Consequently, AC has a parameter of p−1 or less, a contradiction. Therefore
∑

j∈AC xj ≥ p

is a valid inequality.

Since KPs are associated with DC’s, it is not surprising that covers have an associ-

ated anticover in the associated demand constraint. The following theorem describes this

equivalence.

Theorem 3.2.2. Given a KP and its substituted DCP. Then C is a supporting cover of KP

if and only if AC is an anticover in DCP with parameter p where |AC| − |C| + 1 = p and

C ⊆ AC ⊆ E(C).

Proof: Given a KP,
∑

i∈N aixi ≤ b and its associated DCP,
∑

i∈N aixi ≥
∑

i∈N ai − b =

b′. Assume C ⊆ N is a supporting cover with extended cover E(C). Let AC ⊆ E(C)

such that AC ⊇ C. Since C is a cover,
∑

i∈C ai > b. Clearly
∑

i∈N\AC ai +
∑

i∈AC\C ai

=
∑

i∈N ai−
∑

i∈C ai <
∑

i∈N ai− b = b′. Thus, AC is an anticover. Due to the sorted order

of AC, setting |AC| − |C| elements to 0 can never be feasible and so AC’s parameter must

be at least |AC| − |C|+ 1.

Examine the point x′ =
∑

i∈N\C ei + ej where j is the first member of C. This point

must be in PKP because C is supporting. Substituting x′ into the DC constraints results in∑
i∈N\C ai + aj. Since C is a supporting cover,

∑
i∈C\{j} ai ≤ b. Thus, b′ =

∑
i∈N ai − b ≥∑

i∈N\C ai + aj −
∑

i∈C\{j} ai. Since
∑

i∈N\C ai + aj can be rewritten as
∑

i∈N\AC ai +∑|AC|−|C|+2
j=1 aij , AC’s parameter is strictly less than |AC| − |C|+ 2. These two conclusions

and the fact that p must be integer imply that AC’s parameter is |AC| − |C|+ 1.

Conversely, assume that AC = {i1, i2, ..., i|AC|} is listed in descending order and is an

anticover with parameter p in the DC instance. Let C be the last |AC| − p + 1 indices

of AC, C = {ip, ip+1, ..., i|AC|}. Since AC has parameter p,
∑p−1

j=1 aij +
∑

i∈N\AC ai < b′.

24

Since b′ =
∑

i∈N ai − b, one obtains
∑p−1

j=1 aij +
∑

i∈N\AC ai <
∑

i∈N ai − b. This implies∑|AC|
j=p −aij < −b. Thus,

∑|AC|
j=p aij > b or equivalently

∑
j∈C aj > b and C is a cover.

Since AC has parameter p = |AC| − |C| + 1,
∑p

j=1 aij +
∑

i∈N\AC ai ≥ b′. Since b′ =∑
i∈N ai− b, one obtains

∑p
j=1 aij +

∑
i∈N\AC ai <

∑
i∈N ai− b. This implies

∑|AC|
j=p+1−aij ≥

−b. Thus,
∑|AC|

j=p+1 aij ≤ b or equivalently
∑

j∈C\{ip} aj ≤ b. Thus, C is a supporting cover

of the KP .

Since covers and anticovers are now equivalent, it is simple to extend results between

the two. Common results such as facet defining properties and lifting can now easily be

applied. Here we provide the result on facet defining to aid the reader in making these

straightforward translations.

Theorem 3.2.3. Given a DP with constraint a′Tx ≥ b′, an anticover AC = {i1, i2, ..., i|AC|}

with parameter p is facet defining on DP if the following three conditions are met.

i)
∑p+1

j=2 a
′
j +

∑
i∈N\AC a

′
i ≥ b′

ii)
∑p−1

j=1 a
′
ij

+ a′i|AC|
+
∑

i∈N\AC a
′
i ≥ b′

iii)
∑p

j=1 a
′
ij

+
∑

i∈(N\AC)\{k} a
′
i ≥ b′ where k is the first index in N \ AC.

Proof: Given a demand constraint a′ixi ≥ b′, let AC = {i1, i2, ..., i|AC|} be an anticover with

parameter p such that
∑p+1

j=2 a
′
ij

+
∑

i∈N\AC a
′
i ≥ b′,

∑p−1
j=1 a

′
ij

+ a′i|AC|
+
∑

i∈N\AC a
′
i ≥ b′ and∑p

j=1 a
′
ij

+
∑

i∈N\AC\{k} a
′
i ≥ b′ where k is the first index in N \ AC. Let F = {x ∈ PCH

DC :∑
i∈AC xi = p}. For AC to be facet defining dim(F) must be one less than the dim(PCH

DC).

As shown in Chapter 2, dim(PCH
DC)=|N |. Now consider the set of points S ′ = {

∑p+1
i=1 ei +∑

i∈N\AC ei − ej for each j ∈ {1, ..., p + 1}}
⋃
{
∑p−1

i=1 ei + ej +
∑

i∈N\AC ei for each j ∈

{p + 2, ..., |AC|}}
⋃
{
∑

i∈{1,...,p} ei +
∑

i∈N\AC ei − ej for each j ∈ N \ AC}}. Each of these

points is in PDC , due to the assumptions and the fact that DC is sorted in descending

order. It can be seen that S ′ ⊆ F and |S ′| = |N |, making dim(F)≥ |N |−1. Since the point

25

x = 1 ∈ PCH
DC and is not in F , the dim(F)<dim(PCH

DC). Therefore dim(F)+1 = dim(PCH
DC)

and
∑

i∈AC xi ≥ p is a facet defining inequality.

With a formal understanding of anticovers, it is now possible to use both anticovers and

covers to create valid equalities. This idea is the topic of the next section.

3.2.2 Anticover Cover Equality Cuts

This section describes the existence of Anticover-Cover Equality cuts (ACE) in PCH
DKP . In

order for an ACE to be valid, there must exist a cover in the knapsack constraint coupled

with an anticover in the demand constraint such that the cover anticover pair meet the

conditions of Proposition 3.1.3. If such a situation exists, then a new set is created, which

is called an equality set (ES). This equality set coupled with 1 and |C| − 1 creates an valid

equality tuple (ES, 1, |C| − 1) with a corresponding valid equality of PCH
DKP .

Formally, given a DKP instance, a cover C in the knapsack constraint and an anticover

AC in the demand constraint. If C = AC and the anticover’s parameter has p = |C| − 1,

then the cover inequality is
∑

i∈C xi ≤ |C| − 1 and the anticover inequality is
∑

i∈AC xi ≥ p,

which is equivalent to
∑

i∈C xi ≥ |C| − 1. Thus
∑

i∈C xi = |C| − 1 is a valid equality of

PCH
DKP as shown in the following theorem.

Theorem 3.2.4. Given a DKP instance, a cover C for the knapsack constraint and an

anticover AC of the demand constraint. If C = AC and the anticover’s parameter has

p = |C| − 1, then C is an equality set and
∑

i∈C xi = |C| − 1 is a valid equality for PCH
DKP .

Proof: Let C be a cover for the knapsack constraint and AC be an anticover of the demand

constraint such that C = AC and AC’s parameter p = |C| − 1. By the definition of a cover

every point in PCH
DKP satisfies the inequality

∑
i∈C xi ≤ |C| − 1. Similarly by the definition

of an anticover with parameter p, every point in PCH
DKP satisfies the inequality

∑
i∈AC xi ≥ p.

26

Since C = AC and p = |C| − 1,
∑

i∈AC xi ≥ p can be rewritten as
∑

i∈C xi ≥ |C| − 1 by

substitution. Thus, every point in PCH
DKP satisfies the equality

∑
i∈C xi = |C| − 1. Thus, C

is an equality set with valid equality
∑

i∈C xi = |C| − 1.

Since a MDMKP is an extension of DKP, Theorem 3.2.4 trivially extends to PCH
MDMKP .

Additionally, an extended cover has a valid inequality of the form
∑

i∈E(C) xi ≤ |C| − 1.

Thus, Theorem 3.2.5 can be strengthened by expanding from covers to extended covers as

shown in the following corollary.

Corollary 3.2.5. Given a MDMKP instance, let C be a cover of a knapsack constraint

and AC be an anticover of a demand constraint. If C ⊆ AC ⊆ E(C) and the anticover’s

parameter has p = |C| − 1, then AC is an equality set and
∑

i∈AC xi = |C| − 1 is a valid

equality for PCH
MDMKP .

The following example demonstrates these concepts and shows how an anticover and

cover can be used to create equality cuts. Additionally, it will be shown that by introducing

the cut the dimension of the linear relaxation space decreases.

Example 3.2.1. Given a KDP instance with constraints K1 and D1

K1 : 3x1 + 13x2 + 7x3 + 5x4 + 11x5 ≤ 23

D1 : 5x1 + 2x2 + 7x3 + 11x4 + 3x5 ≥ 19

x1, x2, x3, x4, x5 ∈ {0, 1}.

Observe that C = {1, 3, 4, 5} is a cover on K1, with the corresponding inequality x1 +

x3 + x4 + x5 ≤ 3. The extended cover is C = {1, 2, 3, 4, 5} with a valid inequality of

x1 + x2 + x3 + x4 + x5 ≤ 3.

To establish an equality cut for this extended cover inequality, one needs an AC to be

either C or E(C). The set AC = {1, 3, 4, 5} is an anticover with parameter 2 because

27

a′2 +a′4 = 13 < 19 = b′ and a′2 +a′4 +a′3 = 20 ≥ 19 = b′. Even though there are 3 coefficients

being summed, a′2 does not contribute to the p parameter because 2 is not in AC. Thus, the

anticover inequality is x1 + x3 + x4 + x5 ≥ 2, which when coupled with the cover inequality

does not satisfy Proposition 3.1.1 and does not create a valid equality.

The set AC = {1, 2, 3, 4, 5} is an anticover with parameter 3 because a′4 + a′3 = 18 < 19

and a′4 + a′3 + a′1 = 23 ≥ 19 = b′. Thus, its valid inequality is x1 + x2 + x3 + x4 + x5 ≥ 3.

Since p is the same as |C| − 1, a valid anticover cover equality exists for PCH
DKP of the form

x1 + x2 + x3 + x4 + x5 = 3.

It has been shown that (AC,1, 3) is a valid equality tuple. However, the associated

valid equality cut must cut off linear relaxation solutions for it to be useful. Consider the

linear relaxation solution x′LR = (1
3
, 0, 1, 1, 0). Checking x′LR against K1 and D1, one gets

3(1
3
)+13(0)+7(1)+5(1)+11(0) = 13 ≤ 23 and 5(1

3
)+2(0)+7(1)+11(1)+3(0) = 192

3
≥ 19.

Thus x′LR is feasible. Checking this point against the valid equality, 1
3
+0+1+1+0 = 21

3
6= 3,

demonstrates that this is an equality cut. Since this is an equality cut, the dimension of the

linear relaxation decreases by at least one due to Theorem 3.1.2.

The x′ from above shows that the anticover cut eliminates points. Consider x′′LR =

(1, 0, 1, 1, 7
11

). Clearly x′′ is feasible in the linear relaxation. But, 1+0+1+1+ 7
11

= 3 7
11
6= 3.

Thus, the cover cut eliminates linear relaxation space. Consequently, using the equality cut

eliminates more linear relaxation space than either the cover or anticover cut individually.

To further emphasize the potential benefit of ACE equality cuts, consider solving this

problem using branch and bound. Branch and bound has a maximum depth of 5 in this

problem, with a total of up to 26 − 1 = 63 nodes. In contrast, adding the ACE equality

cut has a maximum depth of 4. Any branch after having branched on two 0s or 2 1s, must

have a linear relaxation that is integer or infeasible. Thus, a maximum number of nodes

evaluated is bounded by 25 − 1 = 31.

To show the benefit of the equality cut, consider solving this instance with branch and

28

bound. There are an infinite number of objective functions that could be considered. Here

let the objective function be equal to minimize
∑

i∈N xi. The branching tree requires 15

nodes and is given in Figure 3.1. In contrast, including the equality cut results in an integer

solution at the root node as shown in Figure 3.2.

Since numerous objective functions could be evaluated, another objective function, min-

imize 5x1+2x2+2x3+4x4+x5, was included to this set of constraints. Without the equality

cut, the branching tree required 13 nodes as shown in Figure 3.3. With the equality with

the branching tree is only 3 nodes as shown in Figure 3.4. This example also demonstrates

that equality cuts could be quite valuable.

3.2.3 Finding ACE Cuts in Branching Trees

In practice, it is unlikely that equality cuts are easy to find at the root node of a branching

tree. However, because each node in a tree represents an IP, equality cuts could exist at

nodes deeper in the branching tree. The branching forces variables to fixed values, which

increases the likelihood of finding ACE cuts. When found, these cuts are then applied as

local cuts at that node in a branch and cut algorithm.

During a branch and cut application, the algorithm has made various branches to arrive

at a particular node Tk. The linear relaxation at Tk has variables set at their upper and lower

bound as required by the branching structure. Let B1 = {i ∈ N : xi = 1 is a constraint in

T ′ks linear relaxation} and B0 = {i ∈ N : xi = 0 is a constraint in T ′ks linear relaxation}.

29

F
ig

u
re

3
.1

:
B

ra
n

ch
in

g
T

re
e

fo
r

E
xa

m
pl

e
3.

2.
1

W
it

ho
u

t
E

qu
al

it
y

C
u

t

z
=

2
1 5

(1
)

(1 5
,0
,1
,1
,0

)

x
1
≤

0
(2

)

z
=

2
1 3

(0
,0
,1
,1
,
1 3
)

x
5
≤

0
(3

)

z
=

2
1 2

(0
,
1 2
,1
,1
,0

)

x
2
≤

0
(4

)

in
fe

as
ib

le

x
2
≥

1
(5

)

in
fe

as
ib

le

x
5
≥

1
(6

)

z
=

2
5 7

(0
,0
,
5 7
,1
,1

)

x
3
≤

0
(7

)

in
fe

as
ib

le

x
3
≥

1
(8

)

z
=

2
8 1
1

(0
,0
,1
,

8 1
1
,1

)

x
4
≤

0
(9

)

in
fe

as
ib

le

x
4
≥

1
(1

0
)

z
=

3

(0
,0
,1
,1
,1

)

x
5
≥

1
(1

1
)

z
=

2
3 7

(1
,0
,
3 7
,1
,0

)

x
3
≤

0
(1

2
)

z
=

3

(1
,0
,0
,1
,1

)

x
3
≥

1
(1

3
)

z
=

2
7 1
1

(1
,0
,1
,

7 1
1
,0

)

x
4
≤

0
(1

4
)

in
fe

as
ib

le

x
4
≥

1
(1

5
)

z
=

3

(1
,0
,1
,1
,0

)

30

Figure 3.2: Branching Tree for Example 3.2.1 with Equality Cut

z = 3 (1)

(0, 0, 1, 1, 1)

The following simple algorithm, Finding ACE in Branching Trees, seeks for equality

cuts at a given node. This algorithm does not necessarily find any or all cuts at a node.

The algorithm requires a MDMKP instance. Let the first m constraints be the knapsack

constraints and let q be the number of demand constraints.

Finding ACE in Branching Trees (FACEBT)

ES ← ∅
c← |N |
ac← 0
for i := 1 to m do

k ← 0
s←

∑
j∈B1 aij

Ascending Sort(Ai·)
for j /∈ B0 ∪B1 do

s← s+ aij
if s ≤ bi then

k ← k + 1
end if

end for
c← min(k, c)

end for
for i := m+ 1 to q do

k ← 0
s←

∑
j∈B1 aij

Descending Sort(Ai·)
for j /∈ B0 ∪B1 do

if s < bi then
s← s+ aij
k ← k + 1

end if
end for

31

F
ig

u
re

3
.3

:
B

ra
n

ch
in

g
T

re
e

w
it

ho
u

t
E

qu
al

it
y

C
u

t
an

d
O

bj
ec

ti
ve

M
in

5x
1

+
2x

2
+

2x
3

+
5x

4
+
x
5

z
=

7
1 1
1

(1
)

(0
,0
,1
,

9 1
1
,1

)

x
4
≤

0
(2

)

in
fe

as
ib

le

x
4
≥

1
(3

)

z
=

7
1 3

(0
,0
,1
,1
,
1 3
)

x
5
≤

0
(4

)

z
=

8

(1 5
,0
,1
,1
,0

)

x
1
≤

0
(5

)

z
=

8

(0
,
1 2
,1
,1
,0

)

x
2
≤

0
(6

)

in
fe

as
ib

le

x
2
≥

1
(7

)

in
fe

as
ib

le

x
1
≥

1
(8

)

z
=

8

(1 5
,0
,1
,1
,0

)

x
3
≤

0
(9

)

in
fe

as
ib

le

x
3
≥

1
(1

0
)

z
=

12

(1
,0
,1
,1
,0

)

x
5
≥

1
(1

1
)

z
=

7
3 7

(1
,0
,1
,
5 7
,0

)

x
3
≤

0
(1

2
)

z
=

11

(1
,0
,0
,1
,1

)

x
3
≥

1
(1

3
)

z
=

8

(0
,0
,1
,1
,1

)

32

Figure 3.4: Branching Tree with Equality Cut and Objective Min 5x1 +2x2 +2x3 +5x4 +x5

z = 7 9
11

(1)

(8
33
, 2
33
, 1, 23

33
, 1)

x1 ≤ 0 (2)

z = 8

(0, 0, 1, 1, 1)

x1 ≥ 1 (3)

z = 10

(1, 0, 1, 1
2
, 1
2
)

ac← max(k, c)
end for
if c = ac and ac > 0 then

ES ← N \ (B0 ∪B1)
end if
report ES, c

The running time is on the order O((m + q)nlog(n)). However, A and A′ only need to

be sorted the first time the algorithm is run during branch and bound reducing the running

time at every subsequent node to O((m+ q)n).

3.2.4 Infeasibility Conditions

At times, applying the algorithm for finding an equality cut during the computational study

did not result in covers and anticovers that met the conditions of Theorem 3.2.5. As the

branching tree progressed, a parent node failed to create an equality set, but a child had

an anticover with parameter p that was at least as big as the number of elements in the

cover. Such a condition implies an infeasible IP. This section discusses results related to

infeasible conditions, extends the idea in general and demonstrates through an example that

the associated linear relaxation space may be full dimensional even when P = ∅.

Formally, given an IP instance such that P = ∅, then the IP is clearly infeasible. Since

33

the IP is infeasible, every inequality and equality is valid. Thus, such inequalities as x1 ≤ −1

and x ≥ 1 are valid. Including these two inequalities results in an infeasible linear relaxation,

which creates an infeasibility condition.

Given an IP, let Λx ≤ γ be a collection of valid inequalities of PCH where Λ ∈ Rs×n

and γ ∈ Rs×1. If {x ∈ Rn : Λx ≤ γ} = ∅, then Λx ≤ γ is called an infeasibility condition.

Clearly, including the cuts of an infeasibility condition is only helpful if PLR 6= ∅.

This infeasibility condition definition implies that the linear relaxation is infeasible only

due to the cuts added and is not based upon PLR. Certainly other definitions could be

pursued, one obvious choice would be PLR ∩ {x ∈ Rn : Λx ≤ γ} = ∅. The end goal of an

infeasibility condition is to label a node in the branching tree as infeasible when branching

would have occurred without the cuts.

During the computational study numerous anticover cover infeasibility conditions oc-

curred. Given a MDMKP instance along with a cover C from a knapsack constraint and an

anticover AC from a demand constraint such that AC ⊆ E(C) ⊆ N , |AC| ≥ |C| and AC’s

parameter has p ≥ |C|, then
∑

i∈AC xi ≤ |C| − 1 and
∑

i∈AC xi ≥ p ≥ |C|. Since
∑

i∈AC xi

cannot be both less than or equal to |C| − 1 and greater than or equal to |C|, AC implies

an anticover cover infeasibility condition and AC is called an anticover cover infeasible set

(ACIS).

It is simple to modify FACEBT to add an additional check for ACIS. These steps are

left for the reader. However, one naturally questions whether or not identifying an infeasible

condition could ever be computationally useful. The following example demonstrates the

potential power of ACIS.

Example 3.2.2. Given a pair of knapsack and demand constraints K1 and D1

K1 : 2x1 + 5x2 + 6x3 + 7x4 + 1x5 ≤ 17

D1 : 1x1 + 6x2 + 7x3 + 5x4 + 2x5 ≥ 17.

34

Observe that C = {2, 3, 4} is a valid cover on K1, with corresponding inequality x2+x3+

x4 ≤ 2. The set AC = {2, 3, 4} is an anticover with parameter 3 because a′1 +a′5 +a′3 +a′2 =

16 < 17 and a′1+a′5+a′3+a′2+a′4 = 21 ≥ 17. Thus, the valid anticover cut is x2+x3+x4 ≥ 3.

Coupling the anticover cut and the cover cut creates a set of cuts that can never be satisfied

by any point in Rn. Thus, this cover and anticover form an ACIS. Adding these two cuts to

PLR results in an infeasible LR, PKDP = ∅, and branch and bound terminates at the root

node.

To demonstrate that ACIS is useful, observe that PLR 6= ∅. In fact, PLR is full di-

mensional as shown by the following points.x1 = (0, 1
2
, 1, 1, 1), x2 = (1

8
, 1, 1, 4

5
, 0), x3 =

(0, 1, 1, 6
7
, 0), x4 = (1

4
, 1
2
, 1, 1, 7

8
), x5 = (0, 1, 1, 1

2
, 1), x6 = (1

2
, 1, 1

2
, 1, 1) Clearly, x1,x2,x3,x4,x5,x6 ∈

PLR. Furthermore, they are all affinely independent, so the dimension of PLR is 5. Notice

that by adding the cuts of the infeasibility condition, the dimension of PLR is reduced to

-1. Thus, these cuts fully reduce the dimension of PLR and terminate branch and bound

rapidly.

As further evidence of ACIS’s usefulness, Figure 3.2 presents the branching tree without

adding the infeasibility cuts. Again the objective function minimizes
∑

i∈N xi. Observe

that these infeasibility cuts saved 6 nodes. Alternatively, if the objective was minimize

5x1 + 2x2 + 2x3 + 5x4 + x5, one might expect a different number of nodes to be evaluated.

In this example that was not the case and the exact same branching tree was obtained,

resulting in a 6 node improvement with the addition of the infeasibility condition.

Now that both equality cuts and infeasibility conditions have been presented along with

some evidence that they could be helpful, the next chapter presents a computational study.

This computational study shows that this new theory can be useful.

35

Figure 3.5: Branching Tree for Example 3.2.2

z = 24
5

(1)

(0, 1, 1, 4
5
, 0)

x4 ≤ 0 (2)

infeasible

x4 ≥ 1 (3)

z = 3

(0, 3
4
, 1, 1, 1

4
)

x2 ≤ 0 (4)

infeasible

x2 ≥ 1 (5)

z = 3

(0, 1, 4
5
, 1, 1

5
)

x3 ≤ 0 (6)

infeasible

x3 ≥ 1 (7)

infeasible

36

Chapter 4

Computational Results

The purpose of this section is to provide computational results to support the usefulness of

equality cuts and infeasibility conditions in the MDMKP. The computational results show

that equality sets frequently exist and are easy to find in MDMKP instances. Additionally,

performance gains were achieved in some instances using the theory presented in this thesis.

The computational study was performed on an Intel(R) Core(TM) i7-3770 3.4 GHz

processor with 16.0 GB of RAM. All MDMKP instances were solved using CPLEX 12.5.

An important computational note is that CPLEX was set up to store the node file on the

hard drive instead of RAM due to the size of the instances. This setting changes the way

CPLEX explores the tree so even though the node files for small instances may have fit

completely in RAM, they were still stored on the hard drive for accurate comparisons.

4.1 Benchmark Instances

This computational study was performed on three sets of 15 MDMKP benchmark instances

from the OR-Library2. The instances were generated using the procedure suggested by6.

37

Each instance takes the form,

Maximize cTx

Subject to Ax ≤ b

A′x ≥ b′

x ∈ {0, 1}n

where c ∈ Rn, A ∈ Rm×n
+ ,A′ ∈ Rq×n

+ ,b ∈ Rm
+ , and b′ ∈ Rq

+. The A and A′ coefficients

are generated according to a uniform distribution between 0 and 1000. The RHS b for

a knapsack constraint i is bi = α
∑

j∈N aij. Similarly, b′ for a demand constraint i is

b′i = α
∑

j∈N a
′
ij. The alpha values for each set were .25, .5, and .75 for instances 1-5,

6-10, and 11-15 respectively. The objective coefficient for variable i is calculated as ci =∑m
j=1 aji + b500ric, where ri is a real number drawn from a continuous uniform distribution

U(0, 1).

Many of the MDMKP benchmark instances could not be solved. This computational

studied focused on problems with 100 variables and problems with 250 variables. These

instances had either 5 demand and 5 knapsack constraints or 10 demand and 10 knapsack

constraints. These instances are associated with files mdmkp ct1.txt, mdmkp ct2.txt , and

mdmkp ct4.txt from the OR-Library website. The OR Library website offers 6 objective

functions for each type of problem and this study only solved the first objective function for

the large instances, but all 6 were solved for the small instances. Thus, this study compares

a total of 120 IPs.

4.2 Implementation

To compare the usefulness of equality cuts, each instance was first solved using the default

CPLEX settings and then solved using three different conditions. The first added any

38

equality cuts found, another added only infeasibility cuts and the final added any equality

cut or infeasibility condition found. The results are then compared based upon the number

of nodes evaluated.

The implementation in CPLEX used the default MIP solver along with a user defined

cut callback routine. A cut callback routine is a user defined algorithm that is executed at

each node in the branching tree to look for cuts. If a cut is found, CPLEX adds the cut

forming a single child node with the IP from before the callback plus the added cut.

During the computational study, ACE cuts were not found until deep in the tree. Thus,

to save computational effort one might want to set a threshold depth that must be reached

before looking for ACE cuts. However, in this computational study no such threshold was

used in an attempt to try and understand where ACE exist in the branching tree. This

was accomplished by looking for ACE cuts and ACIS at every node and simply records the

minimum depth of cut (DOC) and minimum depth of an infeasibility condition (DOI).

The cut callback routine had no measurable effect on the runtime of CPLEX other than

the difference realized by exploring a different number of nodes. Therefore, it was not

relevant to report the runtime differences in the computation study. However, it may be of

some interest to know that the small instances n = 100,m = 5, q = 5 each took anywhere

between 1-5 minutes to solve. The instances where n = 100,m = 10, q = 10 each took

between 2-60 minutes and the instances where n = 250,m = 5, q = 5 each took between

10-120 minutes to solve.

This computation study implemented the simple algorithm presented in chapter 3. At

any node the algorithm only looks for equality sets containing all of the variables not in the

branching tree. If an equality set ES is present with parameter p a local cut is added of

the form
∑

i∈ES xi = p. If no equality set was found using all of the variables unbranched

at the current node, then no cut was added.

One of the important aspects of ACE cuts is where they are found in the branching tree.

39

One way to measure their location is with branching depth. In this thesis the depth is the

number of variables currently branched on, not the number of branches. This distinction is

only important when branching on sets is allowed. CPLEX sometimes uses branching on

sets, and it is important to note that the depth that CPLEX reports is different than the

depth reported in this thesis.

Several difficulties arose when trying to leverage infeasibility conditions for computation

improvement. The first challenge was telling CPLEX to fathom the node. Without drasti-

cally modifying the search, the author could not find a method of telling CPLEX to fathom

a node when an infeasibility condition was discovered. In order to solve this problem a series

of cuts were added to fathom the node. These cuts set every variable not in the branching

tree equal to .5. The intended effect was for CPLEX to fathom the node after the first

branch was evaluated. Sometimes this caused a significant increase in the number of nodes

evaluated when solving an IP. The author has no good explanation for why this happened,

but did find several online discussions/forums where other researchers were having similar

problems.

4.3 Computational Results and Discussions

One outcome of the computational study was the existence of numerous equality cuts and

infeasibility conditions. Another outcome describes the computational benefits and analysis

including ACE cuts and ACISs.

In the computational study, the minimum number of equality cuts found in an instance

was 85 when n = 100,m = 5, q = 5 and the maximum was 81,997 when n = 250,m =

5, q = 5. Every instances had at least two infeasibility conditions and one instance with

n = 100,m = 10, q = 10 had over 800 infeasibility conditions. This demonstrates that both

ACE and ACIS commonly exist and are easy to find in the benchmark MDMKP.

40

More specifically, the number of cuts, minimum DOC, infeasibility conditions and min-

imum DOI for the instances using the first objective row, where n = 100,m = 5, q = 5

are provided in Table 4.1. On average there were 4,767 equality cuts and 239 infeasibility

conditions. The majority of these equality cuts were obtained deep in the branch and bound

tree (on average depth 84). The variance on these instances was high and two instances

found over 15, 000 equality cuts while every instance found at least 400. The results for the

small instances using the other 5 objective functions are included in Appendix A.

When n = 250,m = 5, q = 5, the number of cuts, minimum DOC, infeasibility con-

ditions, and minimum DOI for the instances are provided in Table 4.2. On average there

were 184,832 equality cuts and 5325 infeasibility conditions. The majority of these equality

cuts were obtained deep in the branch and bound tree (on average depth 222). It is quite

surprising that CPLEX would obtain such a deep tree and indicates that these instances are

quite challenging. The variance on these instances was high and one instances found over

500, 000 equality cuts while every problem found at least 900.

For the final instances, the number of cuts, minimum DOC, infeasibility conditions and

minimum DOI, where n = 100,m = 10, q = 10, are provided in Table 4.3. On average there

were 13, 944 equality cuts and 320 infeasibility conditions. The majority of these equality

cuts were obtained deep in the branch and bound tree (on average depth 79). The variance

on these instances was high and one instance found over 49, 000 equality cuts while every

problem found at least 700.

In addition to demonstrating the existence of equality cuts a goal of this study was to

determine if the addition of equality cuts could improve the performance of commercial IP

solvers. This was accomplished by evaluating the number of nodes that had to be evaluated

to solve an instance with and without cuts. The number of ticks was also reported, but the

percent improvement was highly correlated with the number of nodes evaluated. Thus, the

percent of effort is measured in total nodes evaluated.

41

The number of nodes evaluated for the instances where n = 100,m = 5, q = 5 is provided

in Table 4.4. In total there were 42, 754 less nodes evaluated when using equality cuts and

infeasibility conditions than without the cuts. This is a 17% improvement in the total

number of nodes evaluated. However, using only equality cuts resulted in an increase of

only 12% in the number of nodes required and using only infeasibility conditions only 16%.

Even though the the average indicates a improvement, individual instances saw decreases

in performance as high as 29%.

The number of nodes evaluated for the instances where n = 250,m = 5, q = 5 is provided

in Table 4.5. On average there were 903, 688 fewer nodes evaluated when using equality cuts

and infeasibility conditions than without the cuts. This is an average decrease in the total

number of nodes evaluated by about 8%. Using only equality cuts resulted in an increase of

15% in the number of nodes required and using only infeasibility conditions saw an increase

of 4%. Individual instances saw improvements as high as 83% and as low as -31%.

The number of nodes evaluated for the instances where n = 100,m = 10, q = 10 is

provided in Table 4.6. In total there were 12, 491, 283 fewer nodes evaluated when using

equality cuts and infeasibility conditions than without the cuts. This is a decrease in the total

number of nodes evaluated of about 11%. Using only equality cuts resulted in an decrease of

9% in the number of nodes required and using only infeasibility conditions saw an increase

of 6%. On these instances there was an overall improvement in performance. One possible

reason for the improvement is the increase in the number of constraints. This potentially

allows for cuts to be found more often because there are more covers and anticovers explored

by the algorithm. Individual instances saw improvements as high as 32% and performance

decreases as low as 33%.

Some takeaways from this study is that equality cuts and infeasibility conditions exist

frequently in MDMKP instances. Additionally, performance gains as high as a 48% reduc-

tion in the number of nodes evaluated were seen. It was surprising that the introduction of

42

cuts significantly increased the number of nodes evaluated for some instances. This is be-

lieved to be a result of CPLEX’s dynamic branching scheme and a difficulty telling CPLEX

to fathom a node when an infeasibility condition was found.

Even though the use of equality cuts did not always improve the computational effort, it

is important to note that every instance solved contained at least one equality cut and every

instance had at least one infeasibility condition. Furthermore, ACE or ACIS was found on

every instance.

43

Table 4.1: Cut Table for n = 100,m = 5, q = 5, z = 0

Case # # Equality Cuts Min DOC # Infeasibility Conditions Min DOI
1 3703 83 154 90
2 1781 79 101 87
3 1957 84 78 90
4 442 85 12 91
5 4860 83 174 87
6 21162 80 1047 86
7 2773 80 132 84
8 6930 81 229 90
9 15767 80 940 87
10 944 84 38 91
11 1764 88 62 88
12 1177 89 80 89
13 3197 89 214 89
14 983 89 68 89
15 4058 82 250 82

Average 4767 84 239 88

Table 4.2: Cut Table for n = 250,m = 5, q = 5, z = 0

Case # # Equality Cuts Min DOC # Infeasibility Conditions Min DOI
1 188929 222 5183 231
2 24344 227 449 236
3 911 230 20 240
4 30811 225 913 233
5 117519 219 3020 229
6 289126 220 5927 232
7 118132 221 2548 233
8 284977 221 7215 226
9 589939 224 12857 231
10 139980 220 3620 232
11 152469 216 5432 227
12 42536 221 1735 232
13 5584 224 322 227
14 357881 217 12303 228
15 429337 222 18334 230

Average 184832 222 5325 231

44

Table 4.3: Cut Table for n = 100,m = 10, q = 10, z = 0

Case # # Equality Cuts Min DOC # Infeasibility Conditions Min DOI
1 8960 79 200 86
2 3969 77 147 82
3 43669 79 802 86
4 27531 77 449 85
5 1781 82 66 89
6 20827 80 365 86
7 49557 87 838 87
8 8113 87 133 87
9 8942 81 185 89
10 2103 82 38 87
11 7888 72 234 85
12 16637 77 313 86
13 5789 70 224 86
14 708 83 708 91
15 2691 79 105 81

Average 13944 79 320 86

45

T
a
b
le

4
.4

:
N

od
es

E
va

lu
at

ed
fo

r
n

=
10

0,
m

=
5,
q

=
5

N
o

C
u
ts

E
q
u
al

it
y

C
u
ts

an
d

In
f.

C
on

d
it

io
n
s

E
q
u
al

it
y

C
u
ts

In
f.

C
on

d
it

io
n
s

C
as

e
#

N
o
d
es

N
o
d
es

D
iff

er
en

ce
%

D
iff

er
en

ce
N

o
d
es

D
iff

er
en

ce
%

D
iff

er
en

ce
N

o
d
es

D
iff

er
en

ce
%

D
iff

er
en

ce
1

39
75

92
37

19
85

25
60

7
6%

43
83

58
-4

07
66

-1
0%

39
27

36
48

56
1%

2
90

48
3

90
87

2
-3

89
0%

83
58

9
68

94
8%

75
65

7
14

82
6

16
%

3
17

75
49

20
52

77
-2

77
28

-1
6%

18
33

27
-5

77
8

-3
%

18
78

60
-1

03
11

-6
%

4
21

25
2

23
55

0
-2

29
8

-1
1%

27
16

6
-5

91
4

-2
8%

20
91

0
34

2
2%

5
20

00
65

22
60

30
-2

59
65

-1
3%

20
57

02
-5

63
7

-3
%

25
07

00
-5

06
35

-2
5%

6
96

77
49

99
47

81
-2

70
32

-3
%

90
25

97
65

15
2

7%
11

22
55

6
-1

54
80

7
-1

6%
7

13
02

89
10

53
10

24
97

9
19

%
10

02
57

30
03

2
23

%
11

41
73

16
11

6
12

%
8

66
91

65
35

07
94

31
83

71
48

%
39

31
04

27
60

61
41

%
49

82
63

17
09

02
26

%
9

71
59

17
45

44
29

26
14

88
37

%
48

67
78

22
91

39
32

%
29

14
73

42
44

44
59

%
10

52
61

4
36

41
0

16
20

4
31

%
44

51
7

80
97

15
%

43
56

2
90

52
17

%
11

25
58

0
33

12
1

-7
54

1
-2

9%
24

61
8

96
2

4%
48

67
7

-2
30

97
-9

0%
12

40
30

0
27

73
0

12
57

0
31

%
30

66
4

96
36

24
%

36
61

6
36

84
9%

13
94

67
5

74
15

8
20

51
7

22
%

86
91

0
77

65
8%

93
04

7
16

28
2%

14
65

46
5

42
74

2
22

72
3

35
%

58
98

0
64

85
10

%
51

16
7

14
29

8
22

%
15

16
63

05
13

64
94

29
81

1
18

%
14

94
64

16
84

1
10

%
14

14
80

24
82

5
15

%

A
v
e
ra

g
e

2
5
4
3
3
3

2
1
1
5
7
9

4
2
7
5
4

1
7
%

2
1
4
4
0
2

3
9
9
3
1

1
6
%

2
2
4
5
9
2

2
9
7
4
2

1
2
%

46

T
a
b
le

4
.5

:
N

od
es

E
va

lu
at

ed
fo

r
n

=
25

0,
m

=
5,
q

=
5

N
o

C
u

ts
E

q
u

al
it

y
C

u
ts

an
d

In
f.

C
on

d
it

io
n

s
E

q
u

al
it

y
C

u
ts

In
f.

C
on

d
it

io
n

s
C

as
e

#
N

o
d

es
N

o
d

es
D

iff
er

en
ce

%
D

iff
er

en
ce

N
o
d

es
D

iff
er

en
ce

%
D

iff
er

en
ce

N
o
d

es
D

iff
er

en
ce

%
D

iff
er

en
ce

1
93

97
37

2
12

35
59

71
-2

95
85

99
-3

1
13

24
65

01
-3

84
91

29
-4

1%
12

47
38

07
-3

07
64

35
-3

3%
2

75
02

52
9

46
84

08
1

28
18

44
8

38
44

48
79

1
30

53
73

8
41

%
45

58
36

2
29

44
16

7
39

%
3

51
20

60
87

83
9

42
42

21
83

32
69

27
18

51
33

36
%

36
33

37
14

87
23

29
%

4
19

95
66

5
19

41
81

3
53

85
2

3
24

26
64

6
-4

30
98

1
-2

2%
20

57
90

4
-6

22
39

-3
%

5
74

01
78

6
84

40
22

5
-1

03
84

39
-1

4
89

70
60

4
-1

56
88

18
-2

1%
86

88
34

1
-1

28
65

55
-1

7%
6

24
48

21
57

21
66

17
61

28
20

39
6

12
22

19
62

85
22

85
87

2
9%

23
84

91
88

63
29

69
3%

7
94

47
34

8
82

13
37

4
12

33
97

4
13

80
84

60
8

13
62

74
0

14
%

88
42

50
6

60
48

42
6%

8
18

89
26

02
17

35
43

43
15

38
25

9
8

17
71

60
19

11
76

58
3

6%
18

75
65

10
13

60
92

1%
9

28
80

95
81

28
08

51
25

72
44

56
3

50
55

87
92

-2
17

49
21

1
-7

5%
32

54
72

42
-3

73
76

61
-1

3%
10

16
12

24
78

14
94

28
47

11
79

63
1

7
17

58
73

54
-1

46
48

76
-9

%
16

22
03

91
-9

79
13

-1
%

11
10

82
96

56
93

31
83

7
14

97
81

9
14

83
46

83
2

24
82

82
4

23
%

98
23

39
6

10
06

26
0

9%
12

27
50

58
2

17
75

38
8

97
51

94
35

23
15

04
3

43
55

39
16

%
24

12
89

9
33

76
83

12
%

13
22

47
78

20
75

43
17

23
5

8
21

11
88

13
59

0
6%

23
97

72
-1

49
94

-7
%

14
89

53
38

0
73

02
98

8
16

50
39

2
18

79
22

75
4

10
30

62
6

12
%

97
04

55
7

-7
51

17
7

-8
%

15
12

77
23

61
10

15
38

78
26

18
48

3
21

19
73

92
21

-6
96

68
60

-5
5%

16
11

75
89

-3
34

52
28

-2
6%

A
v
e
ra

g
e

1
0
6
7
2
9
5
6

9
7
6
9
2
6
8

9
0
3
6
8
8

8
1
2
2
7
3
1
7
1

-1
6
0
0
2
1
5

-1
5

1
1
1
1
0
3
8
7

-4
3
7
4
3
1

-4

47

T
a
b

le
4
.6

:
N

od
es

E
va

lu
at

ed
fo

r
n

=
10

0,
m

=
10
,q

=
10

N
o

C
u

ts
E

q
u

al
it

y
C

u
ts

an
d

In
f.

C
on

d
it

io
n

s
E

q
u

al
it

y
C

u
ts

In
f.

C
on

d
it

io
n

s
C

as
e

#
N

o
d

es
N

o
d

es
D

iff
er

en
ce

%
D

iff
er

en
ce

N
o
d

es
D

iff
er

en
ce

%
D

iff
er

en
ce

N
o
d

es
D

iff
er

en
ce

%
D

iff
er

en
ce

1
31

23
86

2
24

56
96

3
66

68
99

21
25

19
04

7
60

48
15

19
%

25
97

87
2

52
59

90
17

%
2

18
56

78
3

19
55

22
1

-9
84

38
-5

19
80

03
2

-1
23

24
9

-7
%

24
81

26
8

-6
24

48
5

-3
4%

3
56

95
66

32
53

19
37

85
37

62
84

7
7

56
34

54
71

61
11

61
1%

56
26

59
02

69
07

30
1%

4
28

50
21

92
24

84
18

06
36

60
38

6
13

25
20

47
35

32
97

45
7

12
%

28
69

50
30

-1
92

83
8

-1
%

5
17

98
02

9
14

08
33

2
38

96
97

22
14

62
79

4
33

52
35

19
%

15
63

77
7

23
42

52
13

%
6

20
84

17
36

13
48

12
18

73
60

51
8

35
13

64
59

26
71

95
81

0
35

%
13

83
81

08
70

03
62

8
34

%
7

35
06

62
59

30
17

02
56

48
96

00
3

14
30

00
58

51
50

60
40

8
14

%
39

10
95

98
-4

04
33

39
-1

2%
8

33
53

96
2

36
08

98
5

-2
55

02
3

-8
41

71
16

9
-8

17
20

7
-2

4%
37

40
38

2
-3

86
42

0
-1

2%
9

19
54

03
6

26
89

31
8

-7
35

28
2

-3
8

18
79

37
9

74
65

7
4%

19
56

11
7

-2
08

1
0%

10
11

86
69

6
13

75
70

0
-1

89
00

4
-1

6
15

22
04

1
-3

35
34

5
-2

8%
13

05
12

4
-1

18
42

8
-1

0%
11

32
72

56
3

28
64

45
3

40
81

10
12

34
28

54
4

-1
55

98
1

-5
%

32
44

36
4

28
19

9
1%

12
76

69
31

6
70

86
33

1
58

29
85

8
70

09
90

3
65

94
13

9%
72

33
07

1
43

62
45

6%
13

87
76

68
94

11
95

-6
35

27
-7

63
86

91
23

89
77

27
%

56
56

45
31

20
23

36
%

14
10

06
62

10
75

84
-6

92
2

-7
93

81
6

68
46

7%
92

16
2

85
00

8%
15

37
10

44
43

29
99

-6
19

55
-1

7
38

93
54

-1
83

10
-5

%
41

93
79

-4
83

35
-1

3%

A
v
e
ra

g
e

1
1
1
2
8
7
6
3

9
7
7
4
2
7
6

1
3
5
4
4
8
6

1
2

1
0
0
1
9
7
8
4

1
1
0
8
9
7
9

1
0

1
0
8
7
3
8
5
3

2
5
4
9
0
9

2
%

48

Chapter 5

Conclusions and Future Research

The goal of this thesis was to examine valid equality cuts. It was shown that valid equalities

do indeed exist for binary IPs and although they can never be facet defining it was shown

that an equality cut can reduce the dimension of search space by an arbitrary integer r,

where 1 ≤ r ≤ |N |.

After formally defining an anticover inequality, the idea of equality cuts was applied to

the MDMKP by utilizing covers and an anticover inequality. It was demonstrated through

an example that anticover cover equality cuts can significantly reduce the number of nodes

needed to solve an IP.

In this thesis a formal definition of infeasibility conditions was given for an IP. Along with

this definition infeasibility conditions for the MDMKP were presented. An example demon-

strated the potential usefulness of infeasibility conditions by showing that an infeasibility

condition can exist even if the linear relaxation space is full dimensional.

In addition to the theory, an algorithm was presented for finding equality cuts on

MDMKP instances in polynomial time. Using the algorithm on benchmark problems at

least one equality cut was found in every instance. Applying these equality cuts to bench-

mark instances improved the computational effort by about 7%.

49

5.1 Future Research

The validity of equality cuts for binary IPs was demonstrated in this thesis. Extending this

theory to general integer programs is one possibility for future work. If possible this would

significantly increase the number of applications for equality cuts.

Another theoretical extension of this work would be to develop new methods for finding

the existence of equality sets. One idea to pursue would be to calculate the distance between

two constraints at the linear relaxation solution. If the distance is below some threshold

value that may indicate the existence of an equality set or an infeasibility condition.

A final idea for theoretical extension of this work would be to try combine the lifting

and equality cuts. Lifting would allow a cut to be strengthened. Additionally, two cuts that

do not form an equality set could possibly be lifted to form an equality set.

One of the biggest shortcomings of the computational study presented was that the

equality cuts used contained all of the variables not in the tree. A major area of further

research would be the development of algorithms for finding equality sets on smaller subsets

of variables. These algorithms could also potentially identify infeasibility conditions.

Another applied extension of this work would be to perform a computational study

on many different problems to try and identify which types of problems typically contain

equality sets. This analysis could potentially be integrated into a commercial solver to

determine when to generate equality cuts.

50

Bibliography

[1] Balas, E. and Zemel, E. (1978). Facets of the knapsack polytope from minimal covers.

SIAM Journal on Applied Mathematics, 34(1):119–148.

[2] Beasley, J. The OR library. URL: http://people.brunel.ac.uk/ mastjjb/jeb/info.html.

[3] Bertsimas, D., Darnell, C., and Soucy, R. (1999). Portfolio construction through mixed-

integer programming at grantham, mayo, van otterloo and company. Interfaces, 29(1):49–

66.

[4] Caprara, A., Kellerer, H., Pferschy, U., and Pisinger, D. (2000). Approximation algo-

rithms for knapsack problems with cardinality constraints. European Journal of Opera-

tional Research, 123(2):333 – 345.

[5] Ferreira, C., de Souza, C., and Wakabayashi, Y. (2002). Rearrangement of {DNA}

fragments: a branch-and-cut algorithm. Discrete Applied Mathematics, 116(12):161 –

177.

[6] Frville, A. and Plateau, G. (1996). The 0-1 bidimensional knapsack problem: Toward

an efficient high-level primitive tool. Journal of Heuristics, 2(2):147–167.

[7] Karp, R. (1972). Reducibility among combinatorial problems. In Miller, R., Thatcher,

J., and Bohlinger, J., editors, Complexity of Computer Computations, The IBM Research

Symposia Series, pages 85–103. Springer US.

[8] Kaufman, D. E., Nonis, J., and Smith, R. L. (1998). A mixed integer linear programming

51

model for dynamic route guidance. Transportation Research Part B: Methodological,

32(6):431 – 440.

[9] Kremmel, T., Kubalk, J., and Biffl, S. (2011). Software project portfolio optimiza-

tion with advanced multiobjective evolutionary algorithms. Applied Soft Computing,

11(1):1416 – 1426.

[10] Land, A. H. and Doig, A. G. (1960). An automatic method of solving discrete pro-

gramming problems. Econometrica, 28:497–520.

[11] Lee, E., Fox, T., and Crocker, I. (2003). Integer programming applied to intensity-

modulated radiation therapy treatment planning. Annals of Operations Research, 119(1-

4):165–181.

[12] Lee, E. and Zaider, M. (2003). Mixed integer programming approaches to treatment

planning for brachytherapy application to permanent prostate implants. Annals of Op-

erations Research, 119(1-4):147–163.

[13] Lu, L. L., Chiu, S. Y., and Jr, L. A. C. (1999). Optimal project selection: Stochastic

knapsack with finite time horizon. The Journal of the Operational Research Society,

50(6):pp. 645–650.

[14] Merkle, R. and Hellman, M. (1978). Hiding information and signatures in trapdoor

knapsacks. Information Theory, IEEE Transactions on, 24(5):525–530.

[15] Nemhauser, G. L. and Wolsey, L. A. (1999). Integer and combinatorial optimization.

John Wiley and Sons, New York, New York, NY, USA.

[16] Padberg, M. and Rinaldi, G. (1991). A branch-and-cut algorithm for the resolution of

large-scale symmetric traveling salesman problems. SIAM Review, 33(1):60–100.

52

[17] Pinto, R. and Rustem, B. (1998). Solving a mixed-integer multiobjective bond portfo-

liomodel involving logical conditions. Annals of Operations Research, 81(0):497–514.

[18] Ruiz, R., Maroto, C., and Alcaraz, J. (2004). A decision support system for a real

vehicle routing problem. European Journal of Operational Research, 153(3):593 – 606.

{EURO} Young Scientists.

[19] S. Arunapuram, K. M. and Solow, D. (2003). Vehicle routing and scheduling with full

truckloads. Transportation Science, 37:170–182.

[20] Shih, W. (1979). A branch and bound method for the multiconstraint zero-one knapsack

problem. The Journal of the Operational Research Society, 30(4):pp. 369–378.

[21] Toth, P. and Vigo, D. (1997). An exact algorithm for the vehicle routing problem with

backhauls. Transportation Science, 31(4):372–385.

[22] Zemel, E. (1989). Easily computable facets of the knapsack polytope. Mathematics of

Operations Research, 14(4):760–764.

53

Appendix A

Computational Results

54

Table A.1: Cut Table for n = 100,m = 5, q = 5, z = 0

Case # # Equality Cuts Min DOC # Infeasibility Conditions Min DOI
1 3703 83 154 90
2 1781 79 101 87
3 1957 84 78 90
4 442 85 12 91
5 4860 83 174 87
6 21162 80 1047 86
7 2773 80 132 84
8 6930 81 229 90
9 15767 80 940 87
10 944 84 38 91
11 1764 88 62 88
12 1177 89 80 89
13 3197 89 214 89
14 983 89 68 89
15 4058 82 250 82

Average 4767 84 239 88

Table A.2: Cut Table for n = 100,m = 5, q = 5, z = 1

Case # # Equality Cuts Min DOC # Infeasibility Conditions Min DOI
1 1853 82 57 91
2 2111 75 55 90
3 1297 81 40 88
4 986 81 50 92
5 9077 80 196 89
6 8258 80 265 88
7 8558 80 309 84
8 2006 82 98 90
9 1407 84 74 86
10 5750 80 186 87
11 454 80 21 91
12 4615 79 302 86
13 2068 82 65 90
14 5953 78 413 83
15 400 82 20 90

Average 3653 80 143 88

55

Table A.3: Cut Table for n = 100,m = 5, q = 5, z = 2

Case # # Equality Cuts Min DOC # Infeasibility Conditions Min DOI
1 85 81 2 92
2 191 88 3 94
3 1769 81 80 90
4 1076 81 39 89
5 3247 82 100 88
6 10452 82 218 87
7 2715 83 47 89
8 901 78 51 88
9 3511 82 89 90
10 14910 81 491 87
11 2335 83 90 90
12 2732 81 111 89
13 4564 82 147 89
14 4712 78 165 87
15 2388 84 132 89

Average 3706 82 118 89

Table A.4: Cut Table for n = 100,m = 5, q = 5, z = 3

Case # # Equality Cuts Min DOC # Infeasibility Conditions Min DOI
1 5048 81 165 88
2 350 86 17 94
3 12811 77 536 86
4 19928 80 729 87
5 5519 79 138 89
6 7051 80 265 88
7 18269 74 633 88
8 8748 81 237 88
9 8109 82 254 89
10 8498 81 252 89
11 3299 80 171 87
12 4165 75 196 86
13 1390 82 65 87
14 3151 75 137 86
15 2009 79 92 87

Average 7223 79 259 88

56

Table A.5: Cut Table for n = 100,m = 5, q = 5, z = 4

Case # # Equality Cuts Min DOC # Infeasibility Conditions Min DOI
1 13159 79 365 87
2 1832 82 56 86
3 6602 83 138 88
4 6001 79 157 89
5 5655 80 189 89
6 10097 81 307 88
7 1320 84 46 89
8 1460 83 35 90
9 10684 81 242 89
10 2562 82 57 86
11 248 82 16 87
12 1632 83 56 90
13 1559 84 58 88
14 966 79 30 91
15 5476 82 240 89

Average 4617 82 133 88

Table A.6: Cut Table for n = 100,m = 5, q = 5, z = 5

Case # # Equality Cuts Min DOC # Infeasibility Conditions Min DOI
1 3158 82 93 90
2 390 86 14 92
3 4198 83 146 89
4 2790 83 66 91
5 3309 84 94 88
6 12774 83 305 88
7 1688 81 41 89
8 18051 81 554 88
9 1128 81 37 91
10 9246 85 177 87
11 575 82 14 89
12 299 82 10 91
13 1680 82 51 88
14 1373 81 55 89
15 308 84 7 92

Average 4064 83 111 89

57

Table A.7: Cut Table for n = 100,m = 10, q = 10, z = 0

Case # # Equality Cuts Min DOC # Infeasibility Conditions Min DOI
1 8960 79 200 86
2 3969 77 147 82
3 43669 79 802 86
4 27531 77 449 85
5 1781 82 66 89
6 20827 80 365 86
7 49557 87 838 87
8 8113 87 133 87
9 8942 81 185 89
10 2103 82 38 87
11 7888 72 234 85
12 16637 77 313 86
13 5789 70 224 86
14 708 83 708 91
15 2691 79 105 81

Average 13944 79 320 86

58

T
a
b

le
A

.8
:

N
od

es
E

va
lu

at
ed

fo
r
n

=
10

0,
m

=
5,
q

=
5,
z

=
0

N
o

C
u

ts
E

q
u

al
it

y
C

u
ts

an
d

In
f.

C
on

d
it

io
n

s
E

q
u

al
it

y
C

u
ts

In
f.

C
on

d
it

io
n

s
C

as
e

#
N

o
d

es
N

o
d

es
D

iff
er

en
ce

%
D

iff
er

en
ce

N
o
d

es
D

iff
er

en
ce

%
D

iff
er

en
ce

N
o
d

es
D

iff
er

en
ce

%
D

iff
er

en
ce

1
39

75
92

37
19

85
25

60
7

6%
43

83
58

-4
07

66
-1

0%
39

27
36

48
56

1%
2

90
48

3
90

87
2

-3
89

0%
83

58
9

68
94

8%
75

65
7

14
82

6
16

%
3

17
75

49
20

52
77

-2
77

28
-1

6%
18

33
27

-5
77

8
-3

%
18

78
60

-1
03

11
-6

%
4

21
25

2
23

55
0

-2
29

8
-1

1%
27

16
6

-5
91

4
-2

8%
20

91
0

34
2

2%
5

20
00

65
22

60
30

-2
59

65
-1

3%
20

57
02

-5
63

7
-3

%
25

07
00

-5
06

35
-2

5%
6

96
77

49
99

47
81

-2
70

32
-3

%
90

25
97

65
15

2
7%

11
22

55
6

-1
54

80
7

-1
6%

7
13

02
89

10
53

10
24

97
9

19
%

10
02

57
30

03
2

23
%

11
41

73
16

11
6

12
%

8
66

91
65

35
07

94
31

83
71

48
%

39
31

04
27

60
61

41
%

49
82

63
17

09
02

26
%

9
71

59
17

45
44

29
26

14
88

37
%

48
67

78
22

91
39

32
%

29
14

73
42

44
44

59
%

10
52

61
4

36
41

0
16

20
4

31
%

44
51

7
80

97
15

%
43

56
2

90
52

17
%

11
25

58
0

33
12

1
-7

54
1

-2
9%

24
61

8
96

2
4%

48
67

7
-2

30
97

-9
0%

12
40

30
0

27
73

0
12

57
0

31
%

30
66

4
96

36
24

%
36

61
6

36
84

9%
13

94
67

5
74

15
8

20
51

7
22

%
86

91
0

77
65

8%
93

04
7

16
28

2%
14

65
46

5
42

74
2

22
72

3
35

%
58

98
0

64
85

10
%

51
16

7
14

29
8

22
%

15
16

63
05

13
64

94
29

81
1

18
%

14
94

64
16

84
1

10
%

14
14

80
24

82
5

15
%

A
ve

ra
ge

25
43

33
21

15
79

42
75

4
17

%
21

44
02

39
93

1
16

%
22

45
92

29
74

2
12

%

59

T
a
b

le
A

.9
:

N
od

es
E

va
lu

at
ed

fo
r
n

=
10

0,
m

=
5,
q

=
5,
z

=
1

N
o

C
u

ts
E

q
u

al
it

y
C

u
ts

an
d

In
f.

C
on

d
it

io
n

s
E

q
u

al
it

y
C

u
ts

In
f.

C
on

d
it

io
n

s
C

as
e

#
N

o
d

es
N

o
d

es
D

iff
er

en
ce

%
D

iff
er

en
ce

N
o
d

es
D

iff
er

en
ce

%
D

iff
er

en
ce

N
o
d

es
D

iff
er

en
ce

%
D

iff
er

en
ce

1
82

13
5

10
50

91
-2

29
56

-2
8%

79
71

3
24

22
3%

59
47

4
22

66
1

28
%

2
10

91
79

17
20

28
-6

28
49

-5
8%

10
88

18
36

1
0%

13
02

89
-2

11
10

-1
9%

3
10

22
20

92
83

4
93

86
9%

81
53

5
20

68
5

20
%

10
09

11
13

09
1%

4
67

82
6

69
00

1
-1

17
5

-2
%

66
75

2
10

74
2%

64
01

6
38

10
6%

5
35

35
63

32
84

33
25

13
0

7%
34

10
08

12
55

5
4%

35
67

81
-3

21
8

-1
%

6
48

13
60

55
97

91
-7

84
31

-1
6%

58
02

85
-9

89
25

-2
1%

30
64

04
17

49
56

36
%

7
32

52
13

38
62

66
-6

10
53

-1
9%

36
76

20
-4

24
07

-1
3%

45
36

25
-1

28
41

2
-3

9%
8

81
28

2
65

27
1

16
01

1
20

%
64

84
6

16
43

6
20

%
77

72
1

35
61

4%
9

15
41

40
95

64
4

58
49

6
38

%
13

78
44

16
29

6
11

%
10

65
04

47
63

6
31

%
10

22
89

25
18

42
26

44
69

9
20

%
18

67
49

42
17

6
18

%
21

38
11

15
11

4
7%

11
15

34
3

15
16

3
18

0
1%

16
16

3
-8

20
-5

%
15

23
5

10
8

1%
12

15
46

74
13

93
34

15
34

0
10

%
13

96
52

15
02

2
10

%
14

67
17

79
57

5%
13

51
78

1
50

88
9

89
2

2%
51

09
8

68
3

1%
84

56
9

-3
27

88
-6

3%
14

18
14

59
15

47
36

26
72

3
15

%
16

38
33

17
62

6
10

%
17

71
41

43
18

2%
15

14
88

4
13

46
8

14
16

10
%

14
10

4
78

0
5%

13
96

5
91

9
6%

A
ve

ra
ge

16
02

66
16

21
45

-1
87

9
-1

%
16

00
01

26
4

0%
15

38
11

64
55

4%

60

T
a
b

le
A

.1
0

:
N

od
es

E
va

lu
at

ed
fo

r
n

=
10

0,
m

=
5,
q

=
5,
z

=
2

N
o

C
u
ts

E
q
u
al

it
y

C
u
ts

an
d

In
f.

C
on

d
it

io
n
s

E
q
u
al

it
y

C
u
ts

In
f.

C
on

d
it

io
n
s

C
as

e
#

N
o
d
es

N
o
d
es

D
iff

er
en

ce
%

D
iff

er
en

ce
N

o
d
es

D
iff

er
en

ce
%

D
iff

er
en

ce
N

o
d
es

D
iff

er
en

ce
%

D
iff

er
en

ce
1

10
40

2
10

24
2

16
0

2%
10

23
6

16
6

2%
10

39
6

6
0%

2
10

32
7

98
80

44
7

4%
97

80
54

7
5%

10
31

5
12

0%
3

11
29

18
10

04
23

12
49

5
11

%
10

03
63

12
55

5
11

%
11

12
50

16
68

1%
4

66
26

6
75

17
3

-8
90

7
-1

3%
90

72
6

-2
44

60
-3

7%
83

71
5

-1
74

49
-2

6%
5

25
95

66
21

05
45

49
02

1
19

%
22

49
79

34
58

7
13

%
26

70
56

-7
49

0
-3

%
6

12
36

13
4

14
72

37
5

-2
36

24
1

-1
9%

11
56

93
0

79
20

4
6%

12
91

63
0

-5
54

96
-4

%
7

26
77

12
31

20
12

-4
43

00
-1

7%
36

85
72

-1
00

86
0

-3
8%

32
49

40
-5

72
28

-2
1%

8
54

98
0

60
00

8
-5

02
8

-9
%

59
91

9
-4

93
9

-9
%

66
75

9
-1

17
79

-2
1%

9
37

44
50

29
67

02
77

74
8

21
%

40
11

23
-2

66
73

-7
%

33
43

26
40

12
4

11
%

10
10

93
57

0
10

07
01

8
86

55
2

8%
98

11
91

11
23

79
10

%
10

09
14

4
84

42
6

8%
11

11
87

76
10

76
21

11
15

5
9%

10
64

15
12

36
1

10
%

95
14

9
23

62
7

20
%

12
15

57
31

13
01

93
25

53
8

16
%

13
25

14
23

21
7

15
%

15
81

86
-2

45
5

-2
%

13
20

68
87

18
50

84
21

80
3

11
%

17
69

20
29

96
7

14
%

19
63

60
10

52
7

5%
14

27
18

65
27

43
24

-2
45

9
-1

%
41

41
75

-1
42

31
0

-5
2%

38
55

33
-1

13
66

8
-4

2%
15

10
01

43
98

77
5

13
68

1%
99

86
5

27
8

0%
10

24
94

-2
35

1
-2

%

A
ve

ra
ge

28
93

15
29

00
25

-7
10

0%
28

89
14

40
1

0%
29

64
84

-7
16

8
-2

%

61

T
a
b

le
A

.1
1

:
N

od
es

E
va

lu
at

ed
fo

r
n

=
10

0,
m

=
5,
q

=
5,
z

=
3

N
o

C
u
ts

E
q
u
al

it
y

C
u
ts

an
d

In
f.

C
on

d
it

io
n
s

E
q
u
al

it
y

C
u
ts

In
f.

C
on

d
it

io
n
s

C
as

e
#

N
o
d
es

N
o
d
es

D
iff

er
en

ce
%

D
iff

er
en

ce
N

o
d
es

D
iff

er
en

ce
%

D
iff

er
en

ce
N

o
d
es

D
iff

er
en

ce
%

D
iff

er
en

ce
1

31
76

99
29

40
90

23
60

9
7%

28
97

34
27

96
5

9%
31

14
79

62
20

2%
2

40
25

1
32

27
4

79
77

20
%

46
09

0
-5

83
9

-1
5%

40
19

2
59

0%
3

83
47

24
10

83
43

1
-2

48
70

7
-3

0%
56

61
56

26
85

68
32

%
57

78
93

25
68

31
31

%
4

11
18

16
2

12
94

51
8

-1
76

35
6

-1
6%

12
32

17
1

-1
14

00
9

-1
0%

12
01

08
6

-8
29

24
-7

%
5

46
68

12
31

39
85

15
28

27
33

%
36

81
42

98
67

0
21

%
38

82
47

78
56

5
17

%
6

43
71

16
34

21
62

94
95

4
22

%
37

31
93

63
92

3
15

%
35

05
25

86
59

1
20

%
7

79
21

64
66

25
35

12
96

29
16

%
71

93
26

72
83

8
9%

96
01

94
-1

68
03

0
-2

1%
8

12
06

64
2

71
67

61
48

98
81

41
%

71
75

94
48

90
48

41
%

13
67

57
5

-1
60

93
3

-1
3%

9
12

38
54

9
78

33
75

45
51

74
37

%
10

40
57

6
19

79
73

16
%

95
22

24
28

63
25

23
%

10
73

32
40

63
77

48
95

49
2

13
%

71
39

04
19

33
6

3%
75

07
32

-1
74

92
-2

%
11

12
88

69
12

07
96

80
73

6%
16

50
82

-3
62

13
-2

8%
11

60
39

12
83

0
10

%
12

88
44

9
89

02
7

-5
78

-1
%

70
18

8
18

26
1

21
%

89
98

8
-1

53
9

-2
%

13
92

02
0

87
57

2
44

48
5%

88
61

0
34

10
4%

98
07

9
-6

05
9

-7
%

14
12

60
58

12
43

67
16

91
1%

13
63

68
-1

03
10

-8
%

12
20

17
40

41
3%

15
98

18
7

98
79

1
-6

04
-1

%
77

10
6

21
08

1
21

%
91

00
5

71
82

7%

A
ve

ra
ge

51
45

96
44

54
29

69
16

7
13

%
44

02
83

74
31

3
14

%
49

44
85

20
11

1
4%

62

T
a
b

le
A

.1
2

:
N

od
es

E
va

lu
at

ed
fo

r
n

=
10

0,
m

=
5,
q

=
5,
z

=
4

N
o

C
u
ts

E
q
u
al

it
y

C
u
ts

an
d

In
f.

C
on

d
it

io
n
s

E
q
u
al

it
y

C
u
ts

In
f.

C
on

d
it

io
n
s

C
as

e
#

N
o
d
es

N
o
d
es

D
iff

er
en

ce
%

D
iff

er
en

ce
N

o
d
es

D
iff

er
en

ce
%

D
iff

er
en

ce
N

o
d
es

D
iff

er
en

ce
%

D
iff

er
en

ce
1

11
43

58
6

11
43

73
7

-1
51

0%
10

56
84

7
86

73
9

8%
14

51
03

1
-3

07
44

5
-2

7%
2

12
32

98
10

89
68

14
33

0
12

%
11

55
33

77
65

6%
11

35
04

97
94

8%
3

85
25

03
84

61
14

63
89

1%
83

68
42

15
66

1
2%

84
99

71
25

32
0%

4
34

55
12

46
87

87
-1

23
27

5
-3

6%
22

36
26

12
18

86
35

%
12

78
45

21
76

67
63

%
5

57
99

58
56

36
42

16
31

6
3%

55
76

53
22

30
5

4%
54

37
5

52
55

83
91

%
6

68
98

63
71

18
13

-2
19

50
-3

%
69

53
55

-5
49

2
-1

%
69

29
10

-3
04

7
0%

7
14

58
89

11
93

15
26

57
4

18
%

11
32

79
32

61
0

22
%

14
42

02
16

87
1%

8
10

44
62

12
65

34
-2

20
72

-2
1%

12
63

57
-2

18
95

-2
1%

11
52

38
-1

07
76

-1
0%

9
10

53
39

7
10

08
50

7
44

89
0

4%
10

19
19

6
34

20
1

3%
24

95
71

5
-1

44
23

18
-1

37
%

10
17

09
07

16
65

78
43

29
3%

18
41

60
-1

32
53

-8
%

18
52

05
-1

42
98

-8
%

11
12

32
3

11
31

9
10

04
8%

11
87

7
44

6
4%

10
87

1
14

52
12

%
12

71
51

5
69

48
3

20
32

3%
69

20
5

23
10

3%
70

28
6

12
29

2%
13

70
81

0
84

38
7

-1
35

77
-1

9%
93

18
9

-2
23

79
-3

2%
84

09
6

-1
32

86
-1

9%
14

68
12

4
69

26
0

-1
13

6
-2

%
78

41
1

-1
02

87
-1

5%
69

49
3

-1
36

9
-2

%
15

31
40

49
33

22
79

-1
82

30
-6

%
29

78
85

16
16

4
5%

36
79

65
-5

39
16

-1
7%

A
ve

ra
ge

38
30

80
38

87
15

-5
63

5
-1

%
36

52
94

17
78

5
5%

45
55

14
-7

24
34

-1
9%

63

T
a
b

le
A

.1
3

:
N

od
es

E
va

lu
at

ed
fo

r
n

=
10

0,
m

=
5,
q

=
5,
z

=
5

N
o

C
u
ts

E
q
u
al

it
y

C
u
ts

an
d

In
f.

C
on

d
it

io
n
s

E
q
u
al

it
y

C
u
ts

In
f.

C
on

d
it

io
n
s

C
as

e
#

N
o
d
es

N
o
d
es

D
iff

er
en

ce
%

D
iff

er
en

ce
N

o
d
es

D
iff

er
en

ce
%

D
iff

er
en

ce
N

o
d
es

D
iff

er
en

ce
%

D
iff

er
en

ce
1

39
64

75
45

42
66

-5
77

91
-1

5%
36

09
30

35
54

5
9%

40
75

40
-1

10
65

-3
%

2
34

61
7

31
44

6
31

71
9%

30
15

8
44

59
13

%
36

35
9

-1
74

2
-5

%
3

59
19

01
69

35
49

-1
01

64
8

-1
7%

70
95

34
-1

17
63

3
-2

0%
93

77
97

-3
45

89
6

-5
8%

4
10

64
02

6
71

23
17

35
17

09
33

%
87

12
99

19
27

27
18

%
79

60
03

26
80

23
25

%
5

43
52

01
55

32
97

-1
18

09
6

-2
7%

36
48

96
70

30
5

16
%

60
61

87
-1

70
98

6
-3

9%
6

27
88

51
0

23
64

40
3

42
41

07
15

%
24

04
36

1
38

41
49

14
%

25
32

03
6

25
64

74
9%

7
31

61
43

28
24

88
33

65
5

11
%

30
00

18
16

12
5

5%
31

02
63

58
80

2%
8

22
92

65
3

19
42

01
8

35
06

35
15

%
21

51
92

4
14

07
29

6%
27

19
09

7
-4

26
44

4
-1

9%
9

12
41

26
12

96
61

-5
53

5
-4

%
13

20
04

-7
87

8
-6

%
17

73
14

-5
31

88
-4

3%
10

20
98

38
4

19
89

20
3

10
91

81
5%

18
30

65
9

26
77

25
13

%
21

78
16

9
-7

97
85

-4
%

11
46

64
7

46
50

2
14

5
0%

85
60

5
-3

89
58

-8
4%

60
07

6
-1

34
29

-2
9%

12
32

78
9

30
10

8
26

81
8%

29
65

4
31

35
10

%
32

00
0

78
9

2%
13

10
64

67
10

65
73

-1
06

0%
10

83
81

-1
91

4
-2

%
10

67
85

-3
18

0%
14

12
35

45
14

52
71

-2
17

26
-1

8%
12

80
37

-4
49

2
-4

%
12

76
07

-4
06

2
-3

%
15

45
19

8
37

29
9

78
99

17
%

35
99

1
92

07
20

%
45

28
9

-9
1

0%

A
ve

ra
ge

69
97

79
63

45
60

65
21

9
9%

63
62

30
63

54
9

9%
73

81
68

-3
83

89
-5

%

64

	Abstract
	List of Figures
	List of Tables
	Introduction
	Motivation
	Contributions
	Outline

	Background Information
	Integer Programming
	Knapsack Problems
	Demand Constraint Problems
	Demand Knapsack Problems

	Polyhedral Theory
	Cutting Planes and Faces
	Covers

	Equality Cuts and Infeasibility Conditions
	Equality Cuts
	Anticover Cover Equality Cuts
	Anticovers
	Anticover Cover Equality Cuts
	Finding ACE Cuts in Branching Trees
	Infeasibility Conditions

	Computational Results
	Benchmark Instances
	Implementation
	Computational Results and Discussions

	Conclusions and Future Research
	Future Research

	Bibliography
	Computational Results

