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CHAPTER 1

INTRODUCTION

The first objective of this report is to develop an

algorithm for solving nonlinear multiple objective problems

using goal programming.

There are several classes of methods which can handle

multiobjective problems. Hwang et al. [3] discussed and

classified these methods into various major classes according

to the stage at which information is needed and the type of

information that is needed. The following three are the

most widely used analytical methods to solve multiple objective

problems

.

1. Interactive multiobjective programming [l, 13].

This technique allows the decision maker to trade off

one objective versus another in an interactive manner. In

this method a search procedure is used to find the prefered

solution with questions being asked of the decision maker at

each step of the search in order to determine a new estimate

of the solution.

2. Multiobjective programming with utility function [ll].

In this all the multiob jectives are reduced to a single

objective function by using utility functions.

j. Goal programming [2,10,12,9].



In this technique, all of the decision maker's targets

or goals may be incorporated into the achievement function.

The objectives of the goal programming need not be of a

single dimension. The set of physical conditions of the

problem must be satisfied before any goal is considered. The

set of feasible solutions which satisfies the physical condi-

tions is established. The optimal solution then is selected

from the feasible solution which best fulfills the decision

maker's stated goals.

The weakness of the first two methods is that they are

dependent upon the ability of the decision maker to conduct

sequence of communications about his preference to the model.

Hence the goal programming technique is an appropriate tool

in solving the general multiple objective problems.

The initial work on goal programming was done by Gharnes

and Cooper [2] in 1961. The work of Gharnes and Gooper,

Ijiri [10], and others [12,9,3] resulted in a systematic

methodology known as goal programming for solving multiob jective

problems

.

An iterative approach to solve goal programming problems

was developed by Dauer and Krueger [3]. An algorithm, using a

Hook and Jeeves pattern search, «vas presented by Ignizio l9J

for nonlinear goal programming problems. A new algorithm, which

integrates the iterative approach and the modified Hooke and

Jeeves pattern search, is developed. The iterative approach



used in the new algorithm follows closely to that of Dauer

and Xrueger. In chapter 2, the new algorithm and its appli-

cation is explained through a numerical example.

The second objective of this report is to apply nonlinear

goal programming technique to production planning problems

which have multiple objectives.

Aggregate production planning is extremely important for

any firm to achieve the most efficient utilization of available

resources while meeting the restrictions imposed by the envi-

ronment as well by organizational policies concerning employ-

ment, inventories, production, and the use of outside capacity.

The traditional approach to production planning problems

is to reduce multiple objectives into a single objective

function which usually requires obscure cost information.

Since no satisfactory method is available to determine costs

objectively, the procedure usually followed is to ask manage-

ment to provide its best estimate of costs. But it is hard

to find managers who can provide concrete estimates of these

costs. However, if we assume that the management can provide

an ordinal measure of various objectives, goal programming

can provide an improved model to solve the problem of aggregate

production planning.

Lee 12 applied goal programming technique to solve pro-

duction planning problems having linear multiple objectives.



However, it often may be the case that one or more objectives

may be nonlinear in nature. Goodman [>] applied goal program-

ming techniques to the Holt et al. [5] model by linearizing

the cost terms. However, it is not always possible to linear-

ize certain objectives. So a direct method, nonlinear goal

programming, is used to solve such problems.

In Chapter 3 , the production planning problem of

Holt et al. is modified by adding two more objectives. The

problem then is formulated as a goal programming model and

is solved using the iterative nonlinear goal programming

technique as discussed in Chapter 2 . In Chapter h
, a

general multiob jective aggregate production planning problem

is formulated as a goal programming model. The solution is

obtained by using the iterative nonlinear goal programming.



(1)

i

CHAPTER 2

NONLINEAR GOAL PROGRAMING METHOD (NLGP)

AN ITERATIVE APPROACH

The general mathematical representation of the multiple

objective decision problem is

Max [f
x
(X) r f

2
(X) f

k ( X) ^

subject to h.(X) < c., i = 1 m

where X is a n-dimensional decision variable vector. The

problem has k objectives which are to be maximized, m con-

straints and n decision variables. Any or all of the

functions -nay be nonlinear. In the goal programming (GP)

approach of solving the problem as posed by (1), the decision

maker (DM) is required to indicate his target or goals for

each of the k objectives. Let these goals be b., i = 1, . .., k.

The DM is also required to indicate the relative importance of

the achievement of these goals by giving an ordinal ranking of

the goals. More than one objective can be in one single

ranking provided their units are commensurable.

In the mathematical formulation of the problem, devia-

tional variables are attached (one negative and one positive

deviational variable) to each of the objective function

equations and constraint equations. Thus, the new converted

problem has two sets of equality constraints: one set is

called the 'absolute constraints' formed from the original



problem constraints, the other set is called 'goal constraints'

formed from the objective functions. So, for the problem

given in (1), the G? constraint set is given by (2):

Absolute constraints:

h^tX) + dT - d
i

= c
i

,

Goal constraints:

f i<x.)
+ a;

+i
- d*

+i
»b.,

i = 1, . . . , m

i = 1. .., k

\2)

The negative deviational variable, dT, indicates the under-

achievement of c or b. ; the positive deviational variable,

d . , indicates the overachievement ; and d~, d > 0, dT . d. = 0.

The next step of the formulation is to form the achieve-

ment functions. There is one achievement function for each

of the priority level of ranking of the goal as indicated by

the DM. These achievement functions are linear functions of

proper deviational variables for a particular level of ranking.

The complete achievement function is shown as

Min: C? 1
a
1
(d", d

+
), F

2
a
2
(d", d

+
) , P^a^d", d

+
)] (3)

where the preemptive priority weights, ?. *s, are such that no

number W, however, large it is, can make W.?.., >?•; that is,

P]_ »> ?
2

>>>
- - •

>>> p
j» • xt mu3t be noted that the first

priority level P, is associated with the achievement of the

absolute constraints; i.e., a, (dT,d.), where i = 1, ..., m.
j. j. i



The minimization of a is done iterative!// starting with

a,. Next a9 is minimised without increasing the value of a
1

achieved. And this process of minimization continue till

the last function a, has been minimised. The last result

is the final solution of the problem. The principal aim of

the GP approach is to attain the goals as closely as possible

but always satisfying the higher priority goals before the

lower level ones. Since the minimization of a takes place

in the order of priority, the preemptive weights, P^'s, can

be dropped from the final problem formulation. The complete

GP model formulation is given below:

To f ind X = (X,, X^ X
n )

T
so as to

.min a = [a,(d~, d ), a
2
(d~, d ), ..., a. (d~, d )|

subject to h. (X) + d~ - d
i

= c. , i = 1, . . . , m

f.(X) + d" , - d* . = b., i = 1, ,.., k
i m+i n^i x

d", d > 0, dT . d. = r.

W

Each achievement function, a. (d~, d ), is a linear

function of the appropriate deviation variables. Each

deviation variable is determined "independently* from the

corresponding constraint equation as follows;



d
i

where

or

d7 , if d7 >

, if d. <

dT » c. - h. (X)

dT = b. - f. (X)

Similarly

d
i

, if d. >

, if d. <-•

where dt = h.(X) -

or d. = f . (X) - b,ii l

(5)

(6)

Notice that in the process of determining "each"*

deviation variable, the corresponding absolute or goal

constraint, which is a function of the decision variables,

X = (X,, X , ..., X ), is utilized, so that the constraints
_ ~ n

in (4-) are no longer as constraints to the minimization

problem in the sense of constraints in single objective

nonlinear programming problems.



3y an iterative approach, the GP model can be decomposed

into ! number of single objective problems as follows:

Problem 1 : To find X - (X-^ X
2

, .... Xn ) so as to

+
min a, (d , d )

subject to h.(X) + d
i

" d
i

= c
i'

i " 1 ' 2 m

d", d
+

> and dT . dt = ^

(7)

Notice that the first priority level (Problem 1) is associated

with the achievement of the absolute constraints. The last

constraint, dT . d. =0, implies that only one deviation

variable, either positive or negative, exists in the solution.

Let a, be the optimal solution for problem 1, i.e.,

-£.
-f.

->

a, = min a,(d", d ). a, is usually zero, since the absolute

constraints must be satisfied. If so, there exists a solution

for the GP problem. If a, / 0, then the GF problem has no

solution, i.e., the feasible region formed by the absolute

objectives (constraints) is empty.

»
If a, =0, then the attainment problem for goal 1 is

equivalent to problem 2.

Problem 2: To find X so as to

L
2

min a ? (d~, d )

subject to h.(x) + dT - d. = c., i = 1,2, ..., ra (8)

^(d , d ) < a
1

a, (d", d
+

) < a* (9)
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M x) + d
m+l " Vl = b

l (10)

d", d
+

> and d* . d7 = T^

Notice that constraints (8) and (9) imply that in trying to

achieve goal 1 we will not sacrifice our previously determined

attainment of Problem 1.

Problem 3 : To find X so as to

min a-, (d~\ d )

subject to hj(X) + d~ - d. = c., i = 1,2, ..., m

a
1
(d", d

+
) < a*

f
x
(x) + d"+1 -<£+1 =b,

a
2
(d", d ) < a

£

f
2
(xi * d

;+2
- a

+

m+2
= b

2

d", d > and d. . dT = ¥%

#
Let a_ be- the solution for problem 3«

We can now write a general goal attainment problem (j*l)

for attaining goal j, < j < /-I as follow:

Problem ( .1+1) : To find X so as to

min a..
+1 (d-, d

+
)

subject to h, (X) +* dT - d, * c . , i = 1,2, ..., m
X 2. 1 X
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a.(d~ , d ) <a. , i = 1,2, . .., j

t
±m * d;

+i
- d*

+i
= b

i(
i = 1,2, ..., j

d~, d
+

> and dT. dT = Y-.

2.1 Computational Procedure

The preceeding Ht" single objective decision making

problems can be solved by any proper nonlinear programming

method. The iterative approach to the nonlinear goal pro-

gramming problem presented here follows closely to that of

Dauer and Krueger [_J~\. The computational procedures which

will be presented here for this iterative nonlinear goal

programming method will be a modified Hooke and Jeeves pattern

search. Using Hooke and Jeeves pattern search for nonlinear

goal programming is presented by Ignizio C9]. We will present

our computational procedures which integrate the iterative

approach and the modified Hooke and Jeeves pattern search

into an effective solution procedure.

One interesting feature of this procedure for solving

the iterative nonlinear goal programming problem is that the

problem is solved by traditional nonlinear search techniques

that are originally intended for solving the so called

"unconstrained* problem.

The original direct search method of Hooke and Jeeves

[6,7] is a sequential search routine for minimizing an
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"unconstrained" function g(X) of more than one variable

X = (X,, X
2

, .... X ). The argument X is varied until the

minimum of g(X) is obtained. The search routine determines

the sequence of values for X. The successive values of X

can be interpreted as points in an n-dimensional space.

The procedure consists of two types of moves: Exploratory

and Pattern.

A move is defined as the procedure of going from a given

point to the following point. A move is a success if the

value of g(X) decreases (for minimization); otherwise, it

is a failure . The first type of move is an exploratory move

which is designed to explore the local behavior of the obje-

ctive function, g(X). The success or failure of the explora-

tory moves is utilized by combining it into a pattern which

indicates a probable direction for a successful move [6].

Since the G? problem is associated with constraints and

deviation variables, the original Hooke and Jeeves pattern

search method can not be applied directly for solving the

problem. The method is modified. In the modified Hooke and

Jeeves pattern search for NLGP, the procedure is to minimize

an achievement function vector, a = (a,, a
2 , ..., a.). In

the iterative approach of the NLGP, solution to Problem (j+1)

is to find X = (X n , X„, ..., X_) so as to minimize the achieve-
j. c. n

ment function, a. +1 (d", d
+

) , such that the jth goal, f .(X) +

d
m+ j

- d~ + . = b., is satisfied and the previous attained
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achievement functions are not violated, that is,

a
t
(d", d

+
) < a*, t 1,2 j. Therefore,., the problem

is a constrained problem . However, checking of the constraints,

a.(d~, d
+

) < a*, t = 1,2, ..., j can be integrated in a move

of the modified Hooke and Jeeves pattern search.

A move is a success for the modified Hooke and Jeeves

pattern search if the value of a. +,(d~, d ) decreases and

+ #
a.(d", d ) < a., t = 1,2, ..., j are satisfied; otherwise,

it is a failure . The modifications are incorported into the

exploratory moves and pattern moves. The exploratory move

is performed as follows

:

1. Introduce a starting point X with a prescribed step

length 5- in each of the independent variables X^ f

X — i i c j • • • i xl •

2. Compute the achievement function, a. + , (d~, d ), where

d~ and d are functions of the decision variables,

X = (X1§ X
2

, ..., X
n ). Let a

j+1
(d", d

+
) = a

j+1
[X]

Set i = 1.

3. Compute ai +1 [X] . t=l,2, ..., j, at the trial point

X —
'. A.-|, Ap, • • • i A-. "*"

.: f •••» A).

k. Comcare a^.-,[xl with a.,, [xl :



(i) If aT+1[Xj<a. +1[X], and a£[X]<a* for t = 1,2,..., j,

set a
j+1

[X] = aJ+1 [X], X = (Xr X
2

, . . . , X
n ) =

( X-. , X-p » • * » aj o- , •••» -^ / »

and i = i + 1. Consider this trial point as a starting

point, and repeat from step 3-

(ii) If a^ +1 [X] > a
i+1

[X] and/or aj[X] >a
t

for any t=l,2, ..., j,

set X = (X, , X,, ..., X, -26,, ..., X„) . Compute ai ,, [X ],

t = 1,2 . j, and see if aJ +1 [X] < a .

+1 [X] and a^[X]<a*

for all t = 1,2, ..., j. If this move is a success the

new trial point is retained. Set a. +, £X] = a 4+iP0>

A \hy , Xp, • * . i X^, • . * , X } — (X-,,X2» •••» X^~2o.,

. . * ,. A.
r n

n ) and i = i+1, and repeat from step 3. If again

aL-,[X] > a, +1 [X] and/or aJ:[X]>a! for any t=l,2, ..., i,

then' the move is a failure and X. remains unchanged,
l °

una u is , a -
\ a-, , a« , ..., -A-^> •••» -X ,)

- (X,, X,, ..., X, + 5, , ..., X ) . Set i - i+1 and
x & x -l n

repeat from step 3.

The point Xg obtained at the end of the exploratory moves,

which is reached by repeating step 3 until i=,a is defined as

a base po int The starting point introduced in step 1 of the
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exploratory move is a starting base point or point obtained

by the pattern move

.

The pattern move is designed to utilize the information

acquired in the exploratory move, and executes the actual

minimization of the function by moving in the direction of

the established pattern. The pattern move is a simple step

from the current base to the point.

»
X = Xg + (X^ - Xq )

X„ is either the starting base point or the preceding base

point. Following the pattern move a series of exploratory

moves lis conducted • to further improve the pattern. If the

pattern move followed by the exploratory moves brings no

improvement, the pattern move is a failure. Then we return

to the last base which becomes a starting base and the process

'is repeated.

If the exploratory moves from any starting base do not

yield a point which is better than this base, the lengths of

all the steps are reduced and the moves are repeated. Conver-

gence is assumed when the step lengths, §., have been reduced

below predetermined limits.

A descriptive flow diagram for the modified Hooke and

Jeeves pattern search is given in Fig. 2.1.

After initializing a base point, the achievement functions

a-^LX], j = 1, 2, ..., are evaluated. In the process of evaluation,



START

INITIALIZE

BASE POINT, X

16

EVALUATE ACHIEVEMENT FUNCTIONS:

Fig. 2.1. Flow diagram for the iterative NLGP algorithm
with a modified Hooke and Jeeves pattern search,
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we start with J
= I and check if a, = 0. If so, a

2
is

calculated and checked if a- =0. This process will proceed

until j = K? when a^ / 0. If KP is greater than the total

number of the priorities, NPRIOR, then we get a solution.

If K? is. not greater than NPRIOR, then the modified Kooke

and Jeeves pattern search is used for searching the solution

for single objective decision problem, Problem X?. The

procedures will be applied until KP = NPRIOR.

2.2 Numerical gxample

The ABC company producas two similar, products A and 3.

Both products are equally important. The total profit, in

hundreds of dollars, can be approximated by the mathematical

product of the two products in tons (X-^), where X
1

and X
P

are

dialy production of A and 3 in tons, respectively. The

inprocess inventory costs of each product, in hundreds of

2 2
dollars per ton, are (X-,-4) and (x

2 ) for products A and 3,

respectively. The labor cost of production is $500/ton and

S^QO/ton for products A and 3, respectively.

The president of the company has set the following goals

in the order of their importance to the company.

(1) Limit the total cost of inprocess inventory to $1025/day.

(2) Achieve the profit of at least $300 per day, and limit the

total labor cost to $2,000 per day.
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(3) The sum of one half of the daily production of product A

and the daily production of product 3 should be more than

8 tons par day.

The problem may be formulated mathematically as follows:

Priority 1 : The absolute objectives (constraints) are:

h
±
(X) = X, >

h ? (X) = X
2

>

Priority 2 : The first goal is to limit the inprocess inven-

tory cost.

f
x
(X) = (X

1
-if)

2
+ (x

2 )

2 < 10.25

Priority 1 : To achieve the profit and to limit the total labor

cost are in the same priority level.

f
2
(x) = x

x
x
2

> 3

f
3
(X) = 5X

X
+ ^x

2
< 20

Priority k : The last priority is to achieve the daily produc-

tion goal.

f^(X) = X
x

+ 2X
2

> 8.

The NLGP problem in format of {k) will be:

To find X, and X
2

so as to

min £ = [a
1
,a

2
,a

3
,a^ = [(d~ + d"), (d*), (d£ + d*), (d^)]

subject to X, + d~ _ &+ -

X
2

+ d
2

- d
2

=
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(X-,-^)
2

+ (X
2 )

2
+ d~ - d* = 10.25

X
X
X
2

+ dj - d* = 3

5X
X

+ ^X
2

+ d~ - d* = 20

x
l * 2X

2
+ d

6 - d
6

= 8

d", d
+
> 0, d7 . d! = -f^

3y the iterative NIG? approach, the G? problem is decom-

posed into the following "'+" single objective problems.

Problem 1 ; To find X, and X so as to

min . a, = d~ + d
2

+
subject to xi

"*" d
l

" d
l

* °

x
2

+ d" - d, =

d , d > 0, d
4 . d

i
= ¥-.

Problem 2 : To find X, and X
2

so as to

rain aP = d,

subject to X-. + d7 - d, =

x
2

d" - < =

»
a- < a,
l - 1

(X^) 2 * (X
2 )

2
+ d~ - d* = 10.25

d", d
+
> 0, dT . d? = T,
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Problem 3 t To find X, and X
2

so as to

min a- = d^ + d-

.+
subject to X, + d, - d, *

X
2

+ d
i " d

2
=

°

(X.,-4)
2

+ (X
2 )

2 + d~ - d* = 10.25

a
i - a

i'
i * 1. 2

X
1
X2

+ da " dJ
= 3

5X
1

* ^X
2

+ d~ - d* = 20

d", d > 0, d? . d. =

Problem l*i To find Xn and X
2

so as to

min a
^

= d
6

subject to X, * d" - d, =
JL J. i.

X
2

+ d
2 ~ d

?
=

°

(X^) 2 + (X
2 )

2
+ d" - d* = 10.25

X
X
X
2

dj - d£ « 3

5X, + ^X + d" - dg = 20

*
a, < a. , i = 1, 2, 3

X, * 2X 7 + dj - d£ 8

d~, d
+
> 0, dT . dt = *t.— Li l
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The NLGP problem is solved by the algorithm, presented

in Fig. 2.1, which integrates the iterative approach and the

modified Hooke and Jeeves pattern search.

Let a starting base point be (X,, X
2 ) = (8, 6).

Then the achievement function of Problem 1, a, (d~, d ) = d" + d~,

is evaluated as follows (see (5) and (6))

:

Since dT c
x

- h
x

(X) = - X
]L

= -8 <

set d7 = •

Similarlv

dj = c
2

- h
2

(X) = - X
2

= -6 <

set d
2

= •

Therefore, a, (d7, d") = d7 + dZ = 0, which satisfies the

*
absolute constraints. Let a, = mm a, = . As shown m

x l

Fig. 2.2 a, any point in the first quadrant (the shaded area)

will satisfy the absolute constraints and gives a, = 0.

The value of achievement function of Problem 2 at the

base point, a
2

= d~ , is :

d* = f
x
(X} - b

x
= (X

x
- 4)

2
+ (X

2
)

2
- 10.25 = ^1.75 ?

Therefore, KP = 2, and the modified Hooke and Jeeves pattern

search is applied to find X so as to minimize

a
2

= d* = (X
]_

- 4)
2

+ (X
2 )

2
- 10.25
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To illustrate the modified procedure, the cost curve,

(X - ^)
2 +(Xp )

2 = 10.25, is drawn in Fig. 2.2 b. The numbers
1 *-

on the points indicate the sequence in which they are selected.

The number on each point also corresponds to the number of

functional values searched from the beginning of the problem 2

up to and including, that point. Table 2.2 b presents the step

by step results of applying the modified Hooke and Jeeves

procedure for NLG? to problem 2.

The point X
1 = (3, 6), is the starting base (32Q ) which

is also the last base point of problem 1. The stsp length is

= (8-,, 5
2

) = (0.5, 0.5). At the starting base point, X
,

exploratory moves are conducted first in X, direction. At the

point, X
2 = (3.5, 6.0), the values of achievement functions

ai[X
2
] and a*[X

2
] are compared with a^X1

] = M.75 and a
1

= ;

1
LX

2
] = ^6->a

2
[X

1
] s.-1.75 and a^[X

2
] = = a*. So the point

is. a failure. At X 3 = (7.5, 6.0), a3;[X 3
] = 38 < a^X1 ]^!.?:

and a^[X3 ]' = = a*. So the point X 3 is a success, because

both conditions are satisfied. Let a
2
[X] = a

2
£X^] = 33.0.

Again exploratory move3 are conducted in X
2

direction at the

point X-\ The point, X = (?.5, 6.5), is a failure because

a
2
[X

4
] = ^.25->a

2
[X3

] = 38 although a
2^] = = a*. The

a
2
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point, X-
3 = (7.5» 5.5)i is a success because agPC5 ]

=

32.25 < a
2
[X3 ] = 38 and a^ [X 5

] = = a*. X 5 = (?.5, 5.5)

is the end of the exploratory moves and since X-
7

is better

o _
point than X , X^ is set as a new base point (32

, ) . Point X

(7,5) is obtained by the pattern move based on equation (11).

From X = (7, 5) exploratory moves are performed again?

X = (6.5? ^.5) becomes new base point because a^pC u
] =

16.25 < a
2
[X 5 J = 32.25 and a^[X 10 ] = = a* .

Point X = {5.5, 3-5) is reached by the pattern move

according to equation (11) where the last base point X
a

is

* 10
X^ and the new oase point 13 X

Point, X * = (5.0,3.0) is the result of the exploratory

11 11 1*
moves starting from point X , where moves to X J and to X J

are successes because a^[X J
J < a-Lx J ^d z7\_jC

j
\ = a, and

a^Cx15 ] < aJ[X
13

] and a^[X15 ] = a*. Since a~[X15 ] < a^X10
!

and a,|_X~^J = a,, X J becomes a new oase point.

At this point, X * = (5,3). because a_ £ X *] = and

a
l C X 5

]]
= 0, it is a solution to problem 2.

Let a?
= a

2 [ X ^J =0 (minimum of a,,). As shown in
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Fig. 2.2 b f any point in the shaded area (II) will satisfy

priority levels 1 and 2 completely. Now we will set K? =

2 + 1 =3, and the problem 3, min a~ = d^ + d-, is solved by

starting at the last base point obtained in problem 2. i.e.,

letting starting base point (3~ ), X = (5. 3).

The st.ep by step results of problem 3 are presented in

table 2.1 c and Fig. 2.2 c. After series of pattern and

exploratory moves, point X"
1"-^ =(3.0,1.0) is obtained where

priorities 1, 2, and 3 are completely satisfied because at

this pcirt, a, =0, a« =0 and a., = . Let a-, = min a- = 0.

As shown in Fig. 2.2 c, any point in the shaded area (III)

satisfies the priority levels 1, 2, and 3.

The search procedure is again continued for solving the

orcblem ^, min a,, = d7; after setting X? = '3 + 1 = ** and
-+ o

starting base point, B^q, as the last base point obtained

in orobiem 3. i.e., 3»,„ = (3-0, 1.0),

The step by step results of problem b are presented in

table 2.1 d and in Fig. 2.2 d. Minimum value for a^ is

obtained at the point X ' = (2.0, 2.5) where su =0, ap = 0,

a- = and a^ = 1.0. All attempts to reduce the value of a^

from 1.0 have failed because a,, a
2 , and a~ are getting

increased at any other roint where a,, is les3 than 1.0,
-T
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which is highly undesirable. The shaded area (III) in

Fig. 2.2 d represents the feasible region for priorities

1, 2, and 3; shaded area (IV) represents the feasible region

for priority level k. It. is evident that we can not attain

priority level 4 (goal 3) completely because there is no

common region formed by the feasible regions (III) and (IV).

So the optimal solution for the GP problem is X
1

= 2, and

X =2.5. All absolute constraints are satisfied and goals

1 and 2 are completely achieved, but goal 3 is not achieved

fully.
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CHAPTER 3

APPLICATION OF NONLINEAR GOAL PROGRAMMING

TO PRODUCTION PLANNING

3.1 Introduction

For any firm, it is important to achieve the most

efficient utilization of "available resources while meeting

the restrictions imposed by the environment and by organi-

zational policies concerning employment, inventories, pro-

duction and subcontracting.

The most difficult problem encountered in aggregate

production planning is when the problem is dynamic, i.e.,

when the demand rate varies over time. The fluctuations

in demand can be absorbed by adopting one of or a combination

of the following strategies.

1. Adjusting the capacity by changing size of the work

force through hiring or laying off employees.

2. Using overtime in peak periods or idle time in

slack periods to vary output while maintaining constant

work force.

3. Use of subcontracting in peak periods.

k. .Adjusting the inventory level to absorb fluctuations

in demand.

In actual work settings, however, aggregate production
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planning is further complicated by other factors such as

variability of material costs according to the size,

employee's willingness to work overtime, accuracy in sales

forecasts, accuracy in the estimation of cost coefficients.

The aggregate production planning strategy, which is shown

in Fig. 3.1, is a dynamic process that relates demand and

shipment of goods.

Many methods for finding the optimal strategy have been

suggested, but none of these suggested methods has found any

widespread use in industry. One of the reasons seems to be

that the proposed models are gross oversimplifications of

reality, and moreover, they do not provide room to reflect

management's preferences or policies in the solution. There-

fore, an effective application of such methods may be possible

only at the expense of changing organizational policies.

The difficulty with the single objective model is not

so much in its inability to represent the complexities of

reality. Rather, the difficulty lies in the fact that its

application requires cost information that is often very

hard to estimate, for example, cost of hiring and layoff

work force, correct costs of carrying inventory, opportunity

costs of tying up capital in inventory, the actual costs of

stockouts. Goal programming technique can handle these

problems by considering with these costs as decision making

problem. There is no stipulation that all the units of the

objectives should be commensurable in the goal programming

approach.
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3.2 Application of Nonlinear Goal Programming: for Production

Planning;

Lee [12] applied linear goal programming technique for

solving aggregate production planning problems involving

linear multiple objectives. In practical applications of

aggregate production planning problems it may often be the

situation that one or more objectives are found to be nonlinear

in nature. Goodman [j+] reformulated the well known classic

model of Holt et al. [5] into a goal programming model by

linear approximation of the original objective function.

However, it may not be possible to linearize all the nonlinear

objective functions, even if it is done it may lead to sub-

optimal solutions.

In this chapter the nonlinear goal programming approach

as discussed in chapter II is applied for solving the non-

linear' aggregate production planning problem.

3.3 Numerical Sxample

The well known classical model of Holt et al. [5] is

modified. Two more objectives to the original objective of

minimizing the cost are added. The schematic representation

of the problem is shown in Fig. 3.2.

Let

n = a month in the planning horigon

N = the duration, in months
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W = work force level in the nth month (workers)
n

P = Production rate at the nth month (units/month).
n

Q = Sales rate at the nth month (units/month).
'n

I = Inventory level at the end of the nth month (units)
n

Inventory level at the end of each month is computed by

using the recursive relationship between sales, production

and inventory as follows:

Xn
= Vl +Pn- Qn •

n " 1 ' 2 N

The Holts model [5] to the paint factory problem considers

that the total operating costs consists of the following cost

terms:

1. Regular payroll cost

Regular payroll cost = C,W + G
2

($/month)

where C, is the payroll cost ($/man.month)

G
2

is the fixed cost ($/month)

2. Hiring and layoff costs

The hiring cost is normally proportional to the number

of workers hired. But certain random factors may affect the

cost of hiring; e.g., how much difficulty is experienced in

a particular case of hiring a man of desired qualifications

and similarly the efficiency of hiring, measured in terms of

quality of the employees hired, may fall when a large number
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of people are hired at one time. So, the hiring cost can be

approximated by a quadratic approximation can give a tolerable

approximation over a range. Hence,

Hiring cost = C,(W
n

- W^) 2
+ C^ ($/month),

W
n " W

n-1

= 0, if w
n
< w

n-1

n n-1 n n-1

where C~ is a constant ($/man .month)

C,, is a constant (Vmonth)

3. Layoff cost

The layoff cost is normally proportional to the number

of workers laid off. But certain random factors may affect

the cost of layoff; e.g., how much reorganization is required

in making a particular reduction in work force. The layoff

cost can be approximated by a quadratic equation over a range

as follows:

Layoff cost = C^(W - w
n_i^

+ G15 ($/month),

n n-1

= o. if w
n > Vl

X,n-Vr if V Vi
2

where G^ is a constant ($/man .month)

C, - is a constant ($/month)
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We can obtain a single equation for both hiring and

layoff costs, if we assume that C^ = C^ and C^ = C^. So,

2

hiring and layoff cost = C
3
(Wn

- W^) C^ ($/month)

U. Overtime cost

The overtime cost is dependant upon two decision variables,

the size of the workforce, W
n , and the production rate, P

n -

With a given workforce, W
n

, and an average worker productivity,

G
5
(units/man. month), the expression Q^n is the maximum number

of units that can be produced in a month without incurring

any overtime. In order to produce at higher rates than C^,

overtime is required, and its amount increases with increased

production. So,

Overtime cost = C
6
(P
n

- C^n ) ($/month)

where Cg is the overtime cost per unit.

The above relation holds good only if there are no random

disturbances in the production process. The estimated overtime

costs must depend on an estimate of the probabilities that

such disturbances will occur. The quadratic curve that appro-

ximates the expected cost of overtime for a given size, W
n ,

of workforce, and for different production rates is:

2
Expected cost of overtime = Zr,{?n - °^n ^

+ c
8
Pn

"

V„ + C
10

P
n
W
n ($/*™th}
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SJ.2
where C

?
is a constant ($. month/unit )

Co is a constant ($/unit)

GQ is a constant ($/man. month)

C,
Q

is a constant ($/man.unit)

In the above expected overtime cost equation if production

falls to a very low level relative to the workforce, the over-

time cost predicted by the quadratic curve rises and the

approximation to the original cost curve becomes poor. How-

ever, the quadratic may be quite adequate approximation in

the relevent range.

5. Inventory and back order costs

From lot size formulas it is known that both the optimal

batch size and the optimal safety stock increase roughly as

the square root of the order rate, Qn>
Thus the optimal

aggregate inventory must increase with increased aggregate

order rate, Q . The total expected back orders corresponding

to any given size of inventory also must increase with an

increased order rate. 3y combining these two relationships

it appears that optimal net inventory increases with the order

rate. The relationship between optimal net inventory and

aggregate order rate may be approximated over a limited range

by a function of the forms

optimal net inventory = C^ + C
12Qn

(units)

at the end of month
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where C,, is a constant (units)

C12
is a constant (months)

When actual net inventory deviates from the optimal net

inventory (Cn + C
12

Qn ) , in either direction, costs rise.

If net inventory falls below this optimal level, then the

safety stock and batch sizes must be reduced. The rise in

costs as net inventory declines can be estimated by costing

the increased number of machine setups, the increased back

orders and decreased inventory. Similarly, costs of inventory

can be calculated when the net inventory is above the optimal

level. Over a range, the curves of inventory-related costs

may be approximated by a quadratic aquation as follows:

Expected inventory costs = C-^ [
I
n - (C-q + G

]_2^n' '

*n " (G
11

+ G
12Qn }

0, if I„ < Cn G
12Qnr.

X
n " (G

11
+

°12Qn )
'

if Xr
:V "11 "12*n

Similarly,

Expected back order costs = C, c [ I
n

- (G-q + Gi2^n^

X
n " (G

11
+ G

12Qn )
=

- 0. if In > Gn + G
12

Qn

= V< G
11

+G12V' if V !!* ^
where G-, ^ is a constant ($/month.unit )
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2
C-jj, is a constant (o/month.unit )

If we assume that C,., = C,g, then

expected inventory and back order cost = C^~
H^n""^

C
ll

+C12^n^

Now we can obtain the total cost equation by adding the relevent

costs

Total cost = (payroll cost) + (Hiring and layoff costs) +

(overtime cost) + (Inventory and back order costs)

= [Clwn+ c
2 l

|c
3

(wn
- »n.i'

2 + <W +

I C
7

(P
n " °5'"n

)2 + C
8
P
n " V'n

+ "loVn 1
+

!C
13 I

J
n " (C

11
+ G

12
Qn

)
'

Zl

In the total cost equation, the constant cost terms, G^ and C,^

can be dropped because they will not affect the decision in

selecting the optimal decision variables, P and W .

The above model was set up by Holt et.al \5~\ and applied

to a paint factory problem. He evaluated the constants

after applying the model to the actual data.

C
1

= 3^0 ($/a»an. month) Cq = 231 ($/unit)

C^ =64.3 (Vman2
. month) C,

Q
=

C^ = 5.67 (units/man. month) Cn = 320 (units)

C
?

0.20 ($. month/unit 2
) C =

C
8

= 51.2 ($/unit) G
13

= 0.0825
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)

2
1

+

So, the total cost equation becomes

Total cost = [340 Wn ]
+ [64.3 (Wn - Wn_r

[0.2 (Pn
- 5.67Wn )

2 51.2Pn - 28iw
n;

[0.0825 (I - 320. 0)
Z

] ($/month)

In the total cost equation, the quadratic equation for

hiring and layoff is fitted to the actual data of the paint

factory problem in the range - 15 < Wn - w
n-1 < 15. The

equation for the Inventory and back log cost was fitted in

the range - 600 < I
n < 600.

The system then can be represented by the following

single objective model.

Min Z =
N

n=l
(3^0.0W

n
) + 64.3 (W

n
- W

n-1
)'

+ 0.2 (P
n
-5.67W

n )

2 + 51.2P
n

- 281. 0W
n

+ 0.0825 (In
- 320 )'

subject to

I =1 , + P - Q Z f n= 1,2, ..., N
n n-1 n n -

and 0.2(P
n
-5.67W

n )

2 + 51.2Pn
- 281. 0Wn > , n s 1,2 N
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The reason for considering the non-negative overtime

cost is due to the characteristics of its mathematical

formula. Taubert [1*0 found that minimizing the total cost

over the planning period by selecting a certain W
n

and ?
n

combination contributed negative overtime cost. Since the

negative overtime cost is illogical in the context of the

original paint factory example, the constraint of the non-

negative cost should be imposed. The above problem can be

solved by using any proper single objective optimization

technique

.

However, if the manager of the paint factory has some

additional goals to be achieved apart from minimizing the

cost, the problem becomes a multiob jective model. Let the

manager has the following goals to be achieved.

(1) Limit the average stocl-couts to 1%

(2) Limit the total cost to $127,000

(3) Limit the average employees laid off to 1%

Two models are considered here by interchanging the

priority of goals (2) and (3). The two models are formulated

into a goal programming model as shown below.

Model 1 :

(1) Absolute constraints :

0.2 (P
n
-5.67w

n )

2 51.2 P
n

- 281.0 w
n

d; - d+ =

n = 1,2, . . . , N
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where d~ and d
+

are negative overtime and positive overtime
n n

cost

.

( 2 ) Goal constraints :

(a) Average stockouts:

-

N— CI (
" I

n ) ]
+ d

N+l " d
N+l

= l «

I Qn n=l
n=l n

*n

= , if In >

= I if I <
n n

where d" , and d* , represent underachievement and over-

achievement of stockout goal, respectively.

(b) Total cost

N

X
n=l

(3^0.0W
n ) +6^.3 (W

n - Wn.x )

+ [ 0.20(P
n

-5.67W
n )

2
51.2 P

n
- 281.0 W

n]

0.0825 (In
- 320. 0)

2
]

d- +2 - dJ+2 = 127,000

where d" and d*+2
represent under utilization and over

utilization of budget, respectively.

(c) Percentage of average employees laid off:

100 N
V (W , - VM

I n=l ^ n
J

Wn-1 - W
n

=

N
y w
n-l

n

+ d
N+3 " d

N+3 " 1 '

= W , - w . if ww ,> tf

n-l n n-l n

= o , if w
n-1

< w
n

where &~~ and d*+~ represent under achievement and over

achievement of goal 3 respectively.
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(3) The production balance constraints are

n n-1 n n

In addition to the variables and constraints above,

the following preemptive priority factors are defined in

order to pursue the various stated goals.

P. : The highest priority is assigned to minimization

of the negative overtime cost (d~, n = 1,2, . . . ,
N)

P? : The second priority is assigned to minimization

of the over utilization of the allowed percentage

of average stock-outs.

P. : The third priority is assigned to minimizing the

over utilization of allowed budget.

P. : The fourth priority is assigned to minimizing the

over utilization of the percentage of employees

laid off.

The complete GP model is:

Choose the optimal values for production rate, P
n , and

work force level, W , at each month of the planning origin
n

so as to

Min a = [P, ( I dn ) , P
2

(dj+1 ) .
P3 (d^

2 )
.

+ Pu (
d
N+3^

n*l

subject to 0.20(P
n

- 5-6?W
n )

2
+ 51.2 Pn

- 281.0 W
n

+

d~-d*=0,n=l,2, . .., N
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100
N

N «

n=l

X S (-In ) + d
N+l

- dN+l " 1
'

Zn
"

n=i

= 0, if In >

= V if I
n
<

°

N

n=l

100
N

n=l

[3^0 Wn]
+ [64.3 (W

n
-W

n-1 )

2
] + [0.20 (P

n
-5.67 w

n ) *

51.2 P
n

- 281.0 W
n ] +[0.0825 (

I

n
-320)

2
] +

d'
+2 - d*+2 =

127,000

N +
X

- ^ 'VfV + d
N+3

d
N+3

n=l
n

n-1 n
Vl-V if Vl - W

n

°- if Vl < W
n

d~, d
+

> , dT . dt = ^

and the production balance constraints are given by

J
n

= Vl +Pn" Qn •
n = 1 ' 2 N

Model 2:

If in the Model 1 the goal of limiting the average

employees laid-off is much more important than that of limiting

the total cost, then the priority orders of P^ and P^ in the

Model 1 shall be reversed, and the achievement function

becomes

:

a = [Pa ( 2 «£). P
2

(dj+1 ). P-3 (d*
+3 ), P.

4
(d^

2 )]
n^l

and the other formulation is same as presented in Model 1.
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3.4 Results and Discussion

Both models 1 and 2 are solved by using the following

numerical data

N = 5

Qx
= 430, Q2

= 447, Q
3

440, Q^ = 316, Q
5

= 397-

Initial inventory, I = 263

Initial work force, W = 81

Starting point:

(Plt P
2

, P-, P^, ?e) = (400, 400, 400, 400, 400, 400)

(Wlf W
2

, Vy W^, W
5

) = (90, 90, 90, 90, 90)

Models 1 and 2 are solved by using the iterative non-

linear goal programming algorithm with the same starting point

The optimal solutions obtained from two models are presented

in Tables 3.1 and 3.2. The optimal goal achievements are as

follows.

Model 1 :

a* * 0.0, a* = 0.0, a* = 1533.1. a^ = 4.1

So,

(1) Priority P, , is achieved, that is, absolute constraints

are satisfied.

(2) Priority Pp, goal 1 is also satisfied, that is, there

are no stock-outs.
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(3) Priority P- , goal 2, is not completely satisfied. The

total cost is $127,000 + 1533-1 = $128,533-1 which is

slightly above the budget of $127,000.

(4) Priority P^, goal 3, is not completely satisfied. The

average percentage employees laid of is 1.0 + ^.1 = 5«1$<

This is more than the allowed percentage of 1%.

Model 2:

a* = 0.0, a* = 0.0, a~ = 0.0, a^ = 706U.1

So,

(1) Priority, P, , is achieved, that is, absolute constraints

are satisfied.

(2) Priority Pg, goal 1, is also satisfied, that is, there

are no stock-outs.

(3) Priority P~, goal 2, is also satisfied. The average

employees laid off is within 1%.

(k) Priority ?u, goal 3, is not satisfied. The total cost

is 3127,000 + 706^.1 = $13^,06^.1.

From models 1 and 2 we see that the cost is increased

by $5531.0 (13^,06^.1 - 128,533.1) "to reduce the average

employees laid off by b.1% (5.1 - 1)

.
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Table 3.1. Optimal results for model 1

Month

n

Demand

Qn

Production

Pn

Work
force

End of
period
inventory

Xn

1

2

3

4

5

430

iU+7

44-0

316

397

461.3

425.5

381.4

356.8

347.1

81

76.8

72.6

68.6

65.1

63.3

263

29^.3

272.8

214.2

255.0

205.1

Table 3.2. Optimal results for model 2.

Month Demand Production
Work
force

End of
period
inventory

n Qn
P
n

w
n X

n

81 263

1 430 423.1 77.3 256.1

2 447 422.7 77.1 231.8

3 440 422.6 77.1 214.4

4 316 422.6 77.1 321.0

5 397 422.6

1

77.1 346.6
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CHAPTER 4-

A MULT 103JSGTIVE, MULTISTAGE. MULTIPRODUCT, SINGLE FACILITY,

PRODUCTION PLANNING

Most firms manufacture a variety of products using a

single facility instead of a single product. So aggregate

production planning problems must deal with all products

at the same time. The problem is further complicated when

the problem is dynamic and the firm has multiple goals that

are to be attained. In this chapter a general aggregate

production planning problem with multiple objectives is

first formulated as goal programming model and its- application

is explained through a numerical example.

Variabl e s and Constants

b . = Sum of the. square of differences in production levels
J '

from period to period for the jth product.

C. = Normal operating capacity of the plant during the

ith period.

d~ = Vector of negative deviations from the desired goals.

d = Vector of positive deviations from the desired goals.

h. = Number of hours required to produce one lb of the

jth product.

1^ = Inventory of the jth product at the end of the ith

period.
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1°. = Initial inventory of the jth product.
J

m = Number of products to be produced,

n = Number of periods in planning horizon.

0. = Overtime operation of the plant during the ith

period.

S
3
: = Demand for the jth product during the ith period.
J

x* = Number of pounds of the jth product produced in
J

the ith period.

Goals ;

Let the following goal structure, in order of priority,

represents the managements policy in the aggregate production.

(1) Achieve the sales goals for all products in each period.

(2) Limit the final inventory of the jth product at the end

of planning period to q
1
) lbs.
J

(3) Avoid any underutilization of normal capacity in each

period.

(ij-) Limit the sum of the squares of differences in production

levels from period to period for the jth product to b..
J

(5) Limit overtime of operation of the plant to 0. in the

ith period.

(6) Minimize final inventory of each product, at the end of

the nth period, as much as possible.
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The above goals can be represented mathematically as follows:

(1) Sales Goals :

The sum of initial inventory at the begining of any

period and production during that period must meet the

anticipated demand during that period. Mathematically

this can be represented as

I*"
1 + x^ > S

1
. , i = 1,2 m

j J J

we can rewrite the above goal incorporating deviation variables

ji-i +
+ i

J
X

j

+ dn(j-l)+i " dn(M)+i
= S

i '

iul * 2 n

j =1,2, . . . , m

where 6", ,<> .- and d , . -.v.. represent shortage and closing

inventory (excess production) of the j.th product at the end

of the period i, respectively. And also

I •
= d / j -I \ +* » i = 1 » 2, ...» n , j ~ 1,2 1 ..., m.

(2) Desired final inventories !

The management desires to limit the final inventories

at the end of planning horizon (I
n

) to q
n

units for each
J j

product. So

1 a .. It » J
= 1 » 2 » • • •

»
m

introducing deviation variables to the above goal and rewriting
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I
1

?
+ <*;„ . .v - d? . - = q

1

? . J = 1.2, . • . ,
m

where dT ^.\ and d, ^.-v represent the shortage and excess
(m.n+j) (m.n+j;

of the jth product from the desired level of final inventory

(3) Normal capacity of the plant :

The manager wishes to have no idle capacity, i.e., the

required operating capacity must at least be equal to the

available capacity. The required capacity in any period

is equal to sum of hours required "by each product's production

during that period.

m
iy h.xt > C. , i = 1,2, . .., n

3-1

or T h.x
1
. * d-

(1+n) + . - d* (1+n)+i
= C. , i = 1,2. .... n

3*1

where d~/,^\ + . and d
m /

1+T^ +i
represent underutilization

and overutilization of production capacity respectively.

(4) Sum of the squares of differences in production levels

from period to period for each product :

The manager wants to limit sum of the squares of differ-

ences in production levels from period to period to b.,
J

n-1 • +1 • ~

I (x]
L

- xV < b. , i
= 1,2 m
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n~^ i+l i 2 - +
°r I < x i " x

j>
+ d (n+a+mn+j) " d

(n+m+mn+j)
b

j

i-1
3 3

j = 1,2, . . . , m

,

where d^^+j and 4^^^ represent under achievement

and over achievement from the desired goal for the jth product.

(5) Overtime operation of the plant ;

The fifth goal is to limit the overtime operation of the

plant to 0. hours in the ith period.

V h..x^ < 0. + 0. , i * 1,2 n

or rewriting

m . +
I (hrXj) + d;+2m+mn+i

- d
n+2rn+mn+i

= C. + 0. ,

J=l

X if^| • • • f ila

where d;+2m+mn+
. and d+

+2rn+mn+i
represent underutilization

and over utilization of overtime during the ith period.

(6) Final inventory of each product at the end of the nth period :

Finally, the manager wishes to minimize excess production, at

the end of the nth period, as much as possible. That is, he

does not want to produce any excess production by utilizing

allowed overtime capacity. This can be achieved by minimizing

the excess production over demand at the end of the nth period,

I
1
?

, j = 1,2, ..., m, at the last priority level.
J
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Non-negative constraints :

d" . d , x , I >

k.l A General GP Model

The general model for aggregate production planning can

now be formulated. The objective is the minimization of

deviations from certain goals with assigned preemptive

priority factors.

?4in a
m n m + XI

( i I
n

d
;(j _1)+i

).
< £ v+j^ ( £ di^w»

L .1=1 1=1 3=1 1=1

m +

4=t n+m+mn+j

n +
y
1*1

: I. dn+2m+mn+i ) ' ( ^ d
n( j-D+n 5

Subject to

j" + X
d

+ dn(j-l)+i " dn(j-l)+i
= S

1

j '

X

J =

j mn+j mn+j
.n
1^ » J =1,2, ..., ra

J

m
V h.xt + d - d

j=l j j mn+m+i mn+m+i
- o. i i — jL|jC( • • § n

n-1 . .

2 _ +

•- ^
X

j "
X
j^

+ dn+m+mn+j " d
n+m+mn+j

i=l
+ ^

= b ., j=l,2, . . . , m

m

jVl
1
!'

+ d
n+2m+mn+i " d

n +2^n+i =
C
i
+

°i-
i=1 ' 2 »

d" , d , x , I >
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The objective function indicates that the most important

goal of management is to achieve the sales goals. Hence, the

highest priority factor P, is assigned to the negative devia-

tion from the demands.

Secondly the management desires to limit the final

inventory (excess production) to q
1
? lbs. This is achieved
J

by assigning priority factor Pp to the minimization of positive

deviations (d + .
, 0=1,2, . .., m) from maximum desired final

inventory. The production of final inventory is to absorb

any underutilization of production capacity as far as possible

without producing too much.

The third goal is to avoid underutilization of normal

production capacity. In otherwords, the third goal is to

keep employment as close to the level set in long range plans

as possible. Therefore, P., is assigned to the negative devi-

ations (<Ol+n)+i '
i=1 »

2
' *•" n ^

frorn nor:nal capacities (C^).

The fourth goal is to limit the sum of squares of change

in production levels from period to period for each product.

In otherwards, the fourth goal is to have fairly a constant

production in all periods. This avoids costs due to changes

in production levels and to keep employment level fairly stable.

Therefore, Pi. is assigned to the positive deviations (d . . ,4 ° r n+m+mn+j '

j=l,2, ..., m) from allowable sum of squares of change in the

production levels (b.) .

J
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The fifth goal is to limit overtime operation of the

plant to 0. , i =l,2, . .., n. This is achieved by minimizing

the positive deviations (^n+O'n+mn+i '
^ =1 » 2 » •••» n )

fro^

the permissible limit of overtime.

Finally, the last goal is to minimize the final invento-

ries, (excess production). The management wishes to allow

limited excess production only to utilize any unutilized

normal production capacity. It does not want to produce

more by utilizing overtime. This is achieved by minimizing

positive deviation variables (d , . , * + , 3=1,2, ..., m) at

sixth priority level. This will eliminate any excess

production produced utilizing overtime, retaining excess

production, if any, produced utilizing idle capacity as we

are minimizing underutilization of normal production capacity

at a higher priority level.

The schematic representation of the problem is shown

in Fig .4.1.

4.2 Numerical Example

Assumption: Lost sales in any period can not be recovered,

Let n = Number of months in planning horigon = 3

m = Number of products = 2.
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s
i

— 55 lbs .

,

h
l

= 5 hours

,

A = o,
i

b
l

= 30, i

S^ = iJ-5 lbs •

,

S
2

= 60 lbs

.

S^ = 50 lbs., si; = 55 lbs.

S^ = 65 lbs.

hu = 6 hours.

I° =

b
2

= 30

q^ = 10 lbs., q\ = 10 lbs.

G
1

= 620 hrs., C
2

= 620 hrs . , G^ = 620 hrs

.

1
= 30 hrs.,

£
= 30 hrs., 0^ = 30 hrs.

Goals :

P, Achieve the sales goals for both products in each month.

P
2

Limit the final inventory (I£ and l|) of each product to

10 lbs.

P_ Avoid any under utilization of production capacity in

each period.

P^, Limit the sum of squares of the difference in production

levels from period to period for each product to 30.

Pj- Limit overtime operation of the plant to 30 hours in

each period.

P^ Minimize final inventories (excess production) of each

product, at the end of final period, as far as possible.
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(1) Sales Goals :

i° 4 + d- - < = S
1

b
l

= ^5

i
l

+ 4 * a
i

- 4 = s
2

b
l

= 50

4 + 4 + d
5

- <
3

+
= s 3b

l
= 55

4 * 4 d
;

- < = s
1

b
2

= 6o

ii + x
2 + d: - d* = S

2
= 55

•2
A
2

u
5 5 2

i + X
2

+ d
i - d

6
= S

2
= 65

First priority of achieving sales goals can be obtained by

minimizing d~ + d, + d~ + d^ + d^ + dj at priority level 1.

(2) Final Inventory :

The second priority is assigned to limit the final

inventory to 10 lbs. each.

I
3 + d~ - d* = q

3 = 10

4 + d
8 " d

8
= q2

= 10

The achievement function to minimized is: a^ s (d_ + dg)

.

(3) Normal Capacity :

5 x£ + 6 x\ + d~ - d* = 620 (Period 1)

5 x
2

+ 6 x
2 + d~

Q
- d*

Q
= 620 (Period 2)

5 *1 + 6 x2
+ d

ii
~ d*

x
= 620 (Period 3)

The achievement function is: a~ = (d~ + dT~ + dT,).
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(4) Sum of squares of difference in production levels

from period to period ;

(x? - x\)
Z (4 - x

2
)

2
+ d-

2
- i{

2 - b
x

- 30

(x| - xj)
2

(x| - x
2

)

2
+ d"

3
- d*

3
= b

2
= 30

The corresponding achievement function is: a^ = (d^
2

+ ^13)*

(5) Limit on overtime operation ;

5x^6x
2
1 + dJr d^ = h*°l' 62 ° + 3 °

= 65°

5 xj + 6 x^ + d~
5

- d*
5

= G
2

+
2

= 620 + 30 = 650

5 x? + 6 x| + d"
6

- d*
6

= G
3

+
3

= 620 + 30 = 650

The achievement function which is to be minimized is:

a
5

= (d^ + d^ + d*
6
).

Now the complete model can "be formulated as below.

Min a = (d~ + dj + d~ + d£ + d" + dj), (dj + dj>, (d^+d-Q+d^),

(d*
2

+ d^), (d^ + d*
5
+d+

6 ), ( d; + d+)

subject to

i°i
+ x

i
+ d

l

l£ + xf + d"

lZ
l

+ x
l

+ d
3

- d

- d

- d

45

50

55
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1° + x^ + d" - d+ = 60

4 + 4 + d ~5 - d
5

= 55

4 + 4 + d
6 - d

6
= 65

1^ + d~ - d* = 10

4 + d
8 - d

8
= 10

5x}+6x^d--d
9

+ = 620

5 4 + 6 x
2

+ d
Io - d

Io
= 620

5 x^ + 6 x?> + d^ - d^ = 620

(x
l " x

l
)2 + (x

l
' X

l
)2 + d

12 ~ d
12

= 3°

(x
2 - x

l) 2
(x3 - x

2
)

2
d"

3
- d^ = 30

5 4 + 6 x
2

+ di " d
l^ = 650

5 x
2

+ 6 x
2

d"
5

- d^
5

= 650

5 x
i

+ 6 4 + d
l6 - <6

= 65°

d~ , d , x >

The above problem is solved with an initial point as

(0,0,0,0,0,0) by computer using the iterative nonlinear

goal programming package. The results are tabulated in

tables U.l a to fy.l f.
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4.3 Results and Discussion

Our first priority is to achieve sales goals. At the

initial starting point (0,0,0,0,0,0), it is clear that goal 1

is not attained. Total lost sales is 330 Ids.

Any point which lies in the solution space (45 < x, < <» ,

60 < xj < =o , 50 < x* < * , 55 <
*l

< oo , 55 < xj < « , 65 < x3> <

satisfies goal 1. The problem is solved by computer using

iterative nonlinear goal programming algorithum and the results

are tabulated in table 4.1 a. From the table, we see that one

such point is {65,65,65,65,65,65) where goal 1 is completely

attained.

Our next priority is to limit the final inventories

(excess production) of both products to 10 lbs each. SO

our solution should lie in the common solution space I112
intersection of (45 < x£ < « , 60 < x

£
< « , 50 < x

1
< »,

55 < *\ < « , 55 < *\< » . 65 < x^ < « ) and (0 < ij < 10,

< l| < 10).

At our previous point (65, 65, 65, 65, 65, 65) which satisfies

goal 1 lies out side this common solution space I. We have

values of I£ = 45 and l| =15. In other words we have

d* = 35 (45-10) and dg = 5 (10-5). So in order to satisfy

goal 1 and 2, we should find a point within the common

solution space I. This is achieved by minimizing d„ and do

CO
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at priority level 2. The results are tabulated in table

4.1 b. The point (51,69,51,61,51,59) obtained, lies with-

in this common solution space I. So both goals 1 and 2

are satisfied. We have I£ = 3 and I| - 9, which are within

the limits specified.

Our third goal is to minimize underutilization of

production capacity. So our solution should lie in the

common solution space II, intersection of (k-5 < x, < «

,

60 < x3; < « , 50 < x^ < oo, 55 < x^ < « , 55 < r\ < °°
,

65 < x| < *
) , ( < I? < 10 , < l| < 10 ) , and ( 5 xJ +

6 x| > 620, 5 X2+ 6 x^ > 620, 5 x^ + 6 x^ > 620). The

previous point (51,69,51,61,51,59) does not lie in this

common solution space II, as we have, from the previous

results, table U- .1 b, 5 x^ + 6 xi - 609 which is less by

11 hours than the desired value of 620 hours. So in order

to satisfy third priority, we should move from our previous

point to the feasible common solution space II. The problem

is solved by minimizing negative deviations (d~ + d7
Q

+ ^7, )

from goals, with previous point as starting point, using

iterative nonlinear goal program. The results are presented

in table If. .1 c. The point (52, ?0, 52,60,52, 60) obtained lies

in the above common solution space and so it satisfies all

the three goals.
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The fourth goal is to limit each sum of squares of

changes in production levels from period to period to 30.

So our solution should lie in the common solution space III,112
the intersection of (1+5 < x£ < »

, 60 < x
2

< »
, 50 < x£ < «

,

55 < x| < «, 55 < x^ < * , 65 < x^ < * ), (0 < ij < 10,

< l| < 10), (5 x* + 6 xj > 620, 5 x
2

+ 6 x
2 > 620, 5 x] +

6 x^ > 620), and [(x
2

- x*)
2

+ x^ - x
2

)

2
< 30, (x

2
- x^)

2
+

(x| - x
2

)

2
< 30 ].

The previous point (52,70,52,60,52,60) does not lie within

this common solution space III, because at this point we have

(x
2

- x^)
2 + (x| - x

2
)

2
= 100, which exceeds by 70 (=100-30)

than the maximum permissible limit of 30. The minimization

of this excess is obtained by minimizing (d,p and cU^) a "t

fourth priority level, so that the solution also satisfies

the previously attained goals. So with previous point

(52,70,52,60,52,60) as starting point, the problem is solved

to satisfy fourth goal and also the firs-t three goals using

nonlinear goal programming algorithum. The results are

tabulated in Table k .1 d. We have obtained a point

(53.25, 67.25, 5L±'5, 62.5, 52, 60) which lies in the common

solution space and satisfies all goals.

The fifth goal is to limit the overtime utilized to

30 hours in each period. To satisfy this goal, the solution
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should lie in the common solution space IV, the intersection of

W - x!
K x

»
6o 5 x2

< °°
» 5° - x

i
< x

' 55 < Xg < oo ,

55 < x^ < x
, 65 < x| < oo ), (o < 1^ < 10, < l| < 10),

(650 > 5 x* + 6 x\ > 620, 650 > 5 x
2

+ 6 x
2

> 620, 650 >

5 x^ + 6 x^ > 620), and [(x
2

- xj)
2

+ (xj - x
2

)

2 < 30,

(x
2 - x^)

2
+ (x^ - x

2
)

2 < 30 ] . The previous point

(53, 25, 67.25, 5^-5, 62.5, 52, 60), which satisfied the

first four goals, does not lie in the present common solution

space IV, because 5 x.. + 6 x
2

= 669.8, which exceeds by 19.8

hours more than the desired value of 650. So the present

point should be moved into the common solution space IV

in order to satisfy all the five goals. This is achieved

by minimizing positive deviations from the allowable overtime

at fifth priority level without sacrificing the first four

goals that are satisfied. The problem is solved with the

previous point (53.25, 67.25, 5^.5, 62.5, 52, 60) as starting

point, using iterative nonlinear goal program, and the results

are tabulated in table 4-.1 e. From the results we see that,

the point (51.25, 65.25, 52.5, 6^.5, 5^, 60) lies in the

solution space IV and satisfies all the five goals.

Our final goal, the sixth goal, is to minimize final invento-

ries (excess production) as far as possible. To satisfy this goal

the solution should lie in the common solution space V, the
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7

intersection of (45 < x^ < »
, 60 < x^ < w

, 50 < x
2

< <»
,

55 1 x
2 < * , 55 < xj < oo, 65 < x| < oo

) , (0 < l| < 10,

0<l]< 10), (650 >5x| + 6 x* > 620, 650 > 5 x
2

+ 6 x
2

> 620,

650 > 5 x^ + 6 x^ > 620), C(x
2

- x*)
2
+ (xj - x

2
)

2
< 30,

(x
2

- x*)
2 +(x^ - x

2
)

2 < 30], and ( 1^ =0, l| =0).

Our previous point (51.25, 65.25, 52.5, 64.5, 54, 60) which

satisfied the first five goals does not lie in the solution

space V, as it is not satisfying the sixth goal. From table

4.1 e, we see that l£ =7.75. l| = 9«75. In order to achieve

the sixth goal as far as possible, d~ and dg are minimized

at sixth priority level and the results are tabulated in

table 4.1 f. At the point (48.1, 63.25, 50.2, 61.5, 52, 60),

the first five goals are completely satisfied, but the sixth

goal is not completely attained. We have I£ =0.3, l| =4.75.

If we try to reduce these values further, we increase the

underutilization of production capacity.,, which is now hours,

which is highly undesirable because it is at higher priority

level. So, the best compromisable solution for the problem

is to follow the production schedule (48.1, 63.25, 50.2, 61.5,

52, 60) which satisfies the first five goals.
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CHAPTER 5

CONCLUSIONS

Multiple criteria decision making through goal programming

has been performed through the use of nonlinear goal program-

ming. An algorithm is developed by modifying the Hooke and

Jeeves pattern search technique to solve the nonlinear goal

programming problems iteratively. In this technique, lower

priority goals are considered only after the higher priority

goals are satisfied or have reached the point beyond which no

further improvements are possible. The new technique allows

us to solve many of the applied nonlinear multiple objective

problems that exist.

The capability of the iterative nonlinear goal programming

technique is shown by applying it to aggregate production

planning problems where multiple objectives exist. The model

in this thesis considers only some of the common objectives

found in aggregate production planning. It is, of course

possible to develop models even further in many respects. For

example, in the general model of Chapter k, use of subcontra-

cting may be added as an additional objective to the problem.

There is much scope for improvement in present techniques

of solving nonlinear goal programming problems. Sequential

simplex method may be modified to solve NLGP problems itera-

tively. Other possible areas are nonlinear integer goal progra-

mming for stochastic systems, and geometric programming.
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ABSTRACT

Multiple conflicting objectives exist in. nost real .world

problems. So modern decision analysis must deal with all these

conflicting objectives. Goal programming seems to be an

appropriate technique for solving decision problems with multi-

ple conflicting objectives. Decision problems become more

complex when these objectives are nonlinear in nature.

A new algorithm, which integrates the iterative approach

and modified Hook and Jeeves pattern search, is developed and

the solution procedure is explained through a numerical example.

Next,, nonlinear goal programming is applied to aggregate

production planning problems. Holt's model for production

planning is modified by adding two more objectives and solved

using nonlinear goal programming. Also, a general multi-

objective aggregate production problem is formulated as a

goal programming model and the solution is obtained by using

nonlinear goal programming approach.


