
JOB- SHOP SCHEDULING

by

BALRAJ SINGH SONDHU

B. So. (Mechanical Engineering),
Panjab University, 1961j.

A MASTER'S REPORT

submitted in partial fulfillment of the

requirements for the degree

MASTER OP SCIENCE

Department of Industrial Engineering

KANSAS STATE UNIVERSITY
Manhattan, Kansas

1967

Approved by:

Major Professor

26CX 1

TABLE OP CONTENTS

5/

l.O. INTRODUCTION 1

1.1. The Gantt Chart £

2.0. GRAPHICAL APPROACHES TO THE PRODUCTION
SCHEDULING PROBLEM 9

2.1. The Case of Two Jobs on m Machines 9

2.2. The General Case of n Jobs on m Machines . 21

3.0. COMBINATORIAL APPROACH TO THE JOB- SHOP
SCHEDULING PROBLEM 2ij.

3.1. The Case of n Jobs on One Machine (n x 1) 2$

3.2. The Case of n Jobs on Two Machines (n x 2) 26

3.3. The General Case--n Jobs on m Machines
(n x m) 36

I4..O. INTEGER LINEAR PROGRAMMING APPROACH TO JOB-
SHOP SCHEDULING PROBLEM 62

I4..I. Definition of the Problem 63

4.2. Wagner's Model with Two Tabular Arrays . . 65

!(_. 3 . Bowman's Formulation Giving Least
Total Time 73

I4_.ll. A Compact Formulation by Manne 76

5.0. THE USE OF SCHEDULE ALGEBRAS IN JOB-SHOP
SCHEDULING

'

8l

5.1. Precedes and Next Precedes Relations ... 8l

5.2. Schedule Algebras 85

5.3. Schedule Algebra Formalizations 88

5.I4-. Determinate Scheduling Problems 91

6.0. SUMMARY 105

ACKNOWLEDGMENT 108

BIBLIOGRAPHY 109

rare. In practice the majority of job-shop production orders

are executed only once, and only a small percentage of them are

repeated regularly or intermittently.

A job-shop production schedule that establishes the start- -

ing and finishing dates (times) of all jobs is subject to the

limitations of the availability of the following:

1. Facilities of the type required to process the jobs

being scheduled.

2. Operators who possess the desired skill and experi-

ence to operate the equipment and perform the type of

work involved.

3. Necessary materials and purchased parts, if any.

The inadequacy of any one of these factors, or at least faulty

knowledge as to when the missing factors will be made available,

prevents the development of an intelligent production schedule.

In a job-shop we try to match the requirements set out in a

production order (part number, quantities, dates of delivery),

with the available men, machines, and materials. There may be

several ways in which the requirements can be met, i.e., sev-

eral ways of routing the jobs through machines. We have to

find the schedule which is best according to some predetermined

criteria (measure of effectiveness) . Usually this criteria is

based on costs or profits. The solution that insures the attain-

ment of the objectives of a production order at lowest possible

costs, such that long term profits are maximized, is considered

to be the best one.

The first job is to find if a feasible schedule exists.

If there is more than one feasible schedule, then we may choose

an optimal one. In the optimization process the criteria used

is known as an objective function. Thus the job-shop schedul-

ing problem is essentially a problem of determining the order

(sequence) of jobs on different machines so that some objective

function (e.g., total elapsed time, average idle time on ma-

chines, manhours, expected profit, expected cost, etc.) is

optimized. In other words, the problem of scheduling is one

of sequencing jobs for each machine.

Job-shop scheduling is a dynamic process. Schedules can-

not be set once for all times. The schedule of every new order

must be integrated with the processing of jobs already in par-

tial stages of completion.

Mathematical analysis of the scheduling problem has

recently begun. Some progress has been made to date. The

formulation of the problem itself is incomplete because it is

concerned with minimizing some function of time. The balancing

of conflicting objectives has not yet been brought into the

scheduling problem. For example, in scheduling jobs over a

series of machines, we are not only concerned with minimizing

total elapsed time (in order to reduce the cost of in process

inventory and to increase output for fixed investment) but

usually are also concerned with providing equal incentive oppor-

tunities to operators of different machines. These and other

requirements such as shipping priorities and delivery dates are

generally in conflict with the objective of minimizing some

function of processing time.

The first step toward scheduling was the use of the Gantt

charts. Useful as these charts are, they often fail to yield

optimum schedules or to indicate how far their output is from

an optimum schedule. Researchers have devised algorithms to

improve the use of the Gantt charts. By the term algorithm we

mean a formal set of logical rules for the computation of some

desired criteria. Pour different approaches to the problem

will be discussed, namely, (1) graphical, (2) combinatorial,

(3) integer linear programming, (lj.) schedule algebras.

For the better application of the scheduling procedures,

one should be able to obtain: (1) Good approximations of times

for the jobs on different machines; (2) the desired sequence

of machines to process the job, and any possible alternate

sequences.

1.1. The Gantt Chart

The principles of Gantt charting were laid down by Henry

L. Gantt, a pioneer in scientific management movement. Though

this chart is named after Gantt, he was not the firs't to use

the charts to illustrate production situations but he was the

first to put his idea in writing. This was the first attempt

at visual control of the machine loading and production process.

It attempted to correlate machines or manufacturing orders or

material versus time. In other words, the basic principle used

is that the work planned and the work accomplished are shown on

the same chart in relation to each other and also in their re-

lation to time. The items are listed in a column, with corre-

sponding capacities or data on maximum scheduling loads shown

in the adjacent column. Other columns are used for time units,

such as hours, days, weeks, or months. In the chart a unit

space portrays both an amount of time and work to be done in

that time.

Figure 1.1 shows a Gantt chart representing the scheduling

of work for a department in which four machines, A, B, C, and

D, are used. A main time column has five divisions represent-

ing five working days in the week. To illustrate, the column

headed "July 3" means the week ending July 3- The straight

lines drawn horizontally represent the amount of work. For

each machine, the work scheduled by weeks is indicated by the

light line and total cumulative work scheduled by the heavy

line. Thus for machine D, work scheduled for the week ending

July 10 is four days, which represents 60 items; and total

amount of time scheduled for this machine for five weeks' work

Daily schedule

|
Gantt Load Chart

JULY
1

3 ; 10 1 V17 2U 31

Machine A 15

III 1

Machine B 20
1 ! R

1

—
'
—

Machine C 25 i—

—

"-
!

Machine D 15
i

MM
1

i 1

wi ". !_

Fig. 1.1. Gantt load chart showing graphically
the degree of utilization of machines, and

idle time available for scheduling.

is twelve days. The V mark on the top of the chart shows that

the chart represents the status of that date, which in the

illustration is July 16. This type of Gantt chart is termed a

load chart because it represents the load assigned to each

machine. If there are any letters under the horizontal lines,

they indicate the reason for any delay. For instance 'R' in

the row of machine A indicates the delay due to repairs.

The advantages of a Gantt chart as listed by Wallace Clark

are

:

1. The use of a Gantt chart makes it necessary to plan.

The plan is presented so clearly that it can be

understood in detail.

2. It compares what is done with what was done, thus

indicating the progress made, and, if progress is not

satisfactory, it tells the reason why.

3. It fixes the responsibility for the success or failure

of a plan. Causes and effects with their relation to

time are brought out so clearly that it becomes pos-

sible for executives to foresee future happenings.

1±. It is remarkably compact. There is continuity which

emphasizes any break in records or any lack of know-

ledge as to what has taken place.

5. It is easy to construct. No drafting experience is

necessary.

6. It is easy to read.

7. It visualizes the passing of time and thereby helps

to reduce idleness and waste of time.

8. It presents facts in relation to time and is therefore

dynamic. The chart becomes a moving force for action.

The Gantt chart has the following disadvantages:

1. Once a production schedule h8s been fixed it becomes

difficult to introduce any changes in it.

2. The chart does not easily tell the standing of a

particular production order at any moment in time.

3. It does not optimize any objective functions, e.g.,

the total time required for processing of the jobs in

a job-shop. The main reason for this being the limit

to an individual's memory. This has led the research-

ers to devise algorithms which minimize some objective

functions under certain assumptions.

The algorithms for solving the job- shop scheduling prob-

lems make it possible to use computers and quickly redo the

scheduling whenever any change in the situation occurs. Most

of the procedures amplify the use of the Gantt chart. In the

next section we will see how the graphical concept of the

scheduling problem can be used to minimize the make-span, i.e.,

the total time required to complete the processing of a given

number of jobs on a given set of facilities.

2.0. GRAPHICAL APPROACHES TO THE PRODUCTION
SCHEDULING PROBLEM

S. Akers and J. Friedman (2) considered in 1955 the

following problem:

"Given n parts to be fabricated on m machines. The order

of scheduling each part through the machines and operating time

of each part on each machine are known. The problem is to find

the sequence of fabricating parts so that the total elapsed

time to complete the manufacture of all parts is minimal." The

method of solution for the case of two parts and m machines is

given.

2.1. The Case of Two Jobs on m Machines

In 1956 Akers (3) gave a graphical approach for solving

the above problem involving two jobs and m machines. He took

the same problem discussed in (2, llj.) . Let us take another ex-

ample: there are four machines (A, B, C, and D) and two jobs,

job 1 and job 2. Job 1 is A, B
2 Cl Dc and job 2 is Co B

2
Ai D,-.

Subscripts denote time in hours required for each operation.

Take job 1 on x-axis and job 2 on y-axis. Shade the rectangles

defined by corresponding operations on the two axes. We draw

a continuous line joining the origin with point P, this line

having straight-line segments which are horizontal, vertical,

and diagonal (1+.5 degrees) . The origin and point P are the

start and finish points, respectively. The other points in the

outer rectangle show degrees of completion. Any points in the

shaded area are infeasible. A point in the shaded area means

10

that both of the jobs are being processed simultaneously on the

same machine. Thus shaded areas are regions of infeasibility.

Paths in the rectangle form (0, 0) to P, which do not pass

through infeasible regions, correspond to feasible sequence.

In a path, horizontal movement corresponds to the processing

of job 1, vertical movement to the processing of job 2, and

diagonal movement to the processing of both jobs simultaneously

.

An optimal feasible path and an infeasible path are shown in

Fig. 2.1. If a path passes below the infeasible region corre-

sponding to a machine, the sequence corresponding to this path

will have job 1 processed first on this machine; if it is above,

job 2 is processed first on this machine and we put a bar over

the corresponding letter; ab thus means on Machine A job 1 is

processed first and on Machine B job 2 is processed first.

The shortest of such paths would represent an optimal program.

In finding the shortest line, however, we must consider

the projections (on an axis) of the diagonal segments. Thus

length of a program isSvert. segments) +2(horiz. segments)
1

+ -=72Kl|5-degree segments).
42

1
Prom Akers-Friedman feasibility theorem I it follows that

a, b, c, d is feasible. In the above example the shortest line

is 20 hours. This method offers very quick solutions for the

2 x m case. Nothing is done about the general case.

Szwarc (8l) has solved the same problem (2 x m) by a

Akers and Friedman feasibility theorem I states: A
necessary and sufficient condition that a 2-job program be tech-
nologically feasible is that for each pair of machines X and Y
where_X precedes Y for job 1 and X follows Y for job 2, the
term xy does not appear in the program.

11

o
'-

Fig. 2.1. The dotted line corresponds to
an infeasible schedule.

12

method which is a combination of dynamic programming and graph-

ical approach. The problem Is to find the sequence of process-

ing the parts so that the total elapsed time to complete the

manufacture of all the parts is minimized. Even for large 'm'

the solution can be quickly obtained.

Let t.jj be the processing time for job i (i = 1, 2) on

machine j(j = 1, 2, . . . , m) . Let (r-p r2 , • • •, rm) repre-

sent the processing sequence for job 1 and (e-,, e
2 , • • •> em'

that for job 2; where (r-,, r
2 , . . ., r) and (e-p e 2 , . . . , e.

are permutations of numbers (1, 2, . . . , m)

.

One assumption is made here; i.e.,

m m
T
i = g *!!>% ^ = T2j

The problem as before is to find a path that satisfies

the following conditions:

1. The path consists of straight-line segments, is con-

tinuous, and belongs completely to the rectangle

(O^kx^Tx , 0£^y^T 2).

2. The path joins origin to the point P (T-, , To) .

3. All segments of the path must be either horizontal,

vertical, or at a lt-5-degree angle (up and to the right)

[).. The path does not pass through the following domains

(interiors of rectangles)

13

u-1 u

2Z t x , r < x <2I tx , r
p J

p=0 p=0

v-1 _v_

51 t 2 e < y < 21 t 2 , e

q=0 q q=0 q

where for each u, v = 1, 2, . . . , m such that

ru
= e

v , and t-^ = t
2 , e

Q
= 0.

5- ZKvertical segment) + Zl(horizontal segments)

1

+ 21 (diagonal segments) is minimum.

An optimal feasible path satisfies all conditions and a

feasible path satisfies conditions 1 through I4..

Let us consider the same example 2 jobs on I4. machines

(A, B, C, D) with the following operating sequence. Job 1 is

A-j B
2 Cl Dj- and job 2; C, B^ A-, Do, where subscripts denote

processing times. According to the feasibility theorem program,

a b c d is feasible. The domain of all the lines corresponding

to the program a b c d is given in Fig. 2.2, (interior repre-

sented by dotted lines) . The boundary of domain of all feasible

paths corresponding to above program consists of two lines -t

and ,£ (see Fig. 2.3), where

(a) £, does not run below ^ ;

(b) ,£ and £ satisfy conditions 1 to Ij.. It is possible

that .-c and £, have common segments (points).

The following procedure may be used to find optimal path

for given feasible program.

14

Pig. 2.2.

IS

>. X

Pig. 2.3.

16

Step 1. Start from the origin in the i^-degree angle

direction (to the right) until arriving at

L

or f . Then proceed to Step 2 (if moving in

lf5-degree angle direction, it is impossible to

proceed to Step 2)

.

Step 2. Move along o(£) to the right upwards until

arriving at a node. (Origin, point P, and

southeast or northwest corners of shaded rec-

tangles are nodes.) Then go to Step 3.

Step 3. Start from the node in i|5>-degree angle direction

(to the right) until arriving at {, or £, . Then

go to Step 1+.

Step 1+. Repeat Steps 2 and 3 until point P is reached.

For the general case of the n x m problem, a method has

been given which sometimes gives satisfactory results. The

method does not guarantee that (a) the result obtained is a

feasible solution, and (b) the result is optimal in case it is

feasible. It consists in solving () problems, each of which

is 2 x m type. We then write the solution in the form of a

program. Prom (2) program of 2 x m type we form the n x m

program.

Hardgrave and Nemhauser (31) have given another geometric

model for the problem of scheduling n jobs on m machines

so that the total time needed to complete the processing of all

jobs is minimized. The most important assumptions made are:

1. There are no random or uncertain elements.

2. All the processing times are known.

17

3. Sequence of machines on which jobs are processed is

specified.

1±. A job may not be processed by more than one machine

at a t ime

.

5. A machine may not process more than one job at a time.

6. All machines are of different types.

7. Jobs must be processed without interruptions.

It is possible to remove assumptions 5 through 7 without

difficulty. The approach is geometric interpretation of the

sequencing problem' in which feasible schedules are represented

by paths in the n-dimensional rectangle. It is possible to con-

struct a finite network in this rectangle such that every

shortest path in the network corresponds to an optimal sequence.

A simple and efficient algorithm for 2 x m is given. Although

the algorithm is not limited by the number of machines, it loses

efficiency rapidly with increase in number of jobs. For hand

computations the number of jobs can be at the most three, but

for efficient handling of the problem the number of jobs should

be two. As shown before, feasible schedules can be represented

geometrically within a closed rectangle (see Pig. 2.1). Rec-

tangle (0^=x^r T 1 , 0^y^rT 2) determines a region in which

any point (t-, tp) represents a degree of completion for each

job. Thus if Slm and S2m are the earliest start times for

operations on machine m, the interior of the rectangle with

lower left corner at (Slm , S2m) and upper right corner at

' Slm
+ t

lm'
S2m + t

2m'
is sn infeasible region. (See the shaded

rectangles of Figs. 2.1, 2.2, and 2.3.) As before, paths

18

composed of straight-line segments from the origin (0, 0) to

point P(T-, , Tp) represent possible sequences. If we set the

length of each possible path equal to its real processing time,

i.e., a diagonal branch from (t-,, t
2) to (t^ + t, tg + t), a

horizontal branch from (t-
L , t 2) to (t

1
+ t, t 2) , and a vertical

branch from (t 1; t 2) to (t]_, t 2 + t) , all of them will be of

length t. Thus:

Length of a path = J2 (vertical segments)

+ 23 (horizontal segments)

1 _
+ ~> (diagonal movements) .

V2

We will now proceed to show how a minimum path can be determined

rigorously and efficiently by finding a shortest path through

a finite network that will be called the schedule network.

The following rules will yield a sufficient number of nodes

but, in general, a few more than are actually necessary to find

a minimum path.

1. Starting at (0, 0), move diagonally until a region of

infeasibility is encountered, say at (t-^, S2m) (see

Pig. 2.1+) . Note that this corresponds to intersecting an in-

feasible region on its bottom edge; if an infeasible region is

intersected on its left side, the rules are similar.

2. Branch in the following two directions:

(i) At (t-, , Sp) move horizontally along the bottom

edge of the rectangle until (S, + t-, , So—) , the

point at which job 1 is completed on machine m.

19

(slm> s2m + W

:slm' s 2m)
(t, s 2m)

(s lm> s 2m " t + Sim'

lm +
'Offl

+ s 2m)

Pig. 2.[j_. An illustration of the
branching rule (2).

o

Pig. 2.5.

20

Return to Step 1, using (Slm + tlm , S2m) as a new

starting point.

(ii) At (Slm , S2m - t x
+ Slm) move vertically along the

left edge of the rectangle until (Slm , S2m + t2
ra)

»

the point at which job 2 is completed on machine m.

Return to Step 1 using (Slm , S2m + t 2m) as a new

starting point.

3. If the top or right edge of the outer rectangle is

encountered, move along that edge to the finish point.

The procedure ends when all of the paths have reached the desti-

nation node P(T-,, T2) . For the previous example the solution

is obtained directly.

Let us consider an example with 2 jobs and 6 machines.

Operations sequences are: Job 1, A, B„ Cp D/- E^ F,; and job 2,

A
2

B^ Or, C 2 F2 En, where subscripts represent processing times.

Figure 2.5 gives the solution for this example. The optimal

path is given by the solid line; all other paths resulting from

the application of the above rules are shown with dotted lines.

Starting at (0, 0) an infeasible region corresponding to

machine A is hit immediately. One then moves horizontally to

the point (L|_, 0) and vertically to (0, 2). From the point

(I4., 0) the next infeasible region, corresponding to machine D,

is hit at the point (12, 8). From (12, 8) applying 2(i), there

is a horizontal branch to (II4., 8) and from 2(ii) there is a

vertical branch from (8, l\.) to (8, 11). All branches are then

followed until they reach the terminal point P (22, 18) . The

path with minimum length corresponds to an optimal sequence.

21

The total time required is 2i+ time units. Only area P is below

the line. Thus job 1 is processed before job 2 on all machines

except P. The optimal program is a b c d e f; other feasible

programs are: abcdef, abcdef, and a b c d e f.

.'.'.--. ~:jl: Gor,-- r--.ri Cs£' o:' r. .!,[;; or: m Machines

This is an extension of the 2 x m problem. The principal

result for the two-dimensional case is true in the general case

also, namely, an optimal sequence corresponds to a shortest

path from (0, . . .,0) to (T]_, . . ., Tn) 8nd the schedule

network contains such a shortest path. For n = 3, the general

form of an infeasible region is shown in Pig. 2.6. The interior

of the six-pronged cross and its intersections with the planes

Sj_ = and S^ = T^ are infeasible, (where S^ are the axes

(x, y, z) J but other exterior surfaces are feasible.

The definition of the schedule network for the general

case is similar to that for the 2- job problem and can be in-

formally stated as follows:

1. Start at (0, 0, . . .,0) and proceed diagonally until

an infeasible region is encountered (which may, of

course, be immediately).

2. Whenever a block of an infeasible region is encoun-

tered, branch in one of the two possible ways around

it. These branches correspond to the two possible

orders of processing the two jobs on the machines that

are represented by this infeasible region.

3. Along these branches, proceed diagonally until another

block is hit. Then return to 2. Proceeding this way

22

(Tv T 2> T
3

)

s3m
+ t 3m

s2m
+ t 2m

Pig. 2.6. A typical infeasible region
for case n = 3.

23

we reach (T-, , T2, . . . , T) . It may happen that an-

other infeasible block will be hit before It is pos-

sible to branch completely around the present block.

In this case rule 2 is applied successively as many

times as possible.

2k

3.0. COMBINATORIAL APPROACH TO THE JOB-
SHOP SCHEDULING PROBLEM

The main problem we are trying to solve is the following:

There are n items, not all identical, which have to be processed

through a number of machines of different types. The order in

which the machines are to be used is not immaterial, since some

of the processes must be carried out before others. Given the

times required by i item on j machine, i = 1, 2, . . . , n;

j = l, 2, 3, . . . , m; determine the order in which the items

should be fed into the machines so as to minimize the total

time required to complete the processing of all the jobs. No

job may be processed more than once on a given machine.

Mathematically, the problem is one of arrangements, which

can be solved for any particular case by enumeration. However,

a quick count of possible arrangements will show that as soon

as the number of items reaches ten, the enumerative technique

becomes unwieldy. Especially in the general case, the first

item can be put on a machine in n different ways (there being n

different items) . The second item can be chosen from the re-

maining n - 1 and the third from n - 2. Thus there are

(n) (n - 1) (n - 2) . . . (1) = n! ways of processing items on

one machine. Since there are m machines, the items can be pro-

cessed in (ni) different ways.

The process of finding one or more permutations of the

integers 1 through n which optimizes some objective function

(say minimizes total elapsed time) is known as the combinatorial

25

approach to the job-shop scheduling problem. According to the

presently available techniques it appears that this is the best

approach to most of the job-shop scheduling problems. But

still we lack a practical algorithm for complex problems.

By the term algorithm we mean a formal set of logical

rules for the computation of some desired numerical function,

viz., completion time of a feasible schedule, minimum man-hours

for the schedule, maximum probability of lateness, minimum

cost, etc. In the following pages of this section we shall

present many typical algorithms which represent the efforts

made to solve the scheduling problem with a combinatorial

approach.

3.1. The Case of n Jobs on One Machine (n x 1)

In the case of n jobs on a single machine, if the execu-

tion times for the jobs are fixed, sequencing is no problem.

For some applications the execution time for each job on the

machine may be a random variable with a known probability dis-

tribution. B. P. Banerjee (5) has developed a simple algorithm

by using minimization of the maximum probability of lateness

as the optimization criterion. Under two assumptions:

1. The facility has to be constantly in use until all

the jobs are completed;

2. the sequence of n jobs, once started, will not be

interrupted before completion.

If T- is planned (or desired) completion time for the i

job and i = 1, . . . , n, Tx ^ T2 — T 3 • • •— Tn is an

26

optimal sequence. This decision rule, apart from its sim-

plicity of application, has some very desirable properties. '

Some of them are:

1. The rule is distribution free and is applicable regard-

less of the nature of processing time distributions.

2. If at any time it is decided to break the sequence to

inject a priority job, the rest of the sequence still

remains optimum.

3. The optimization process can be dynamic. Any job

arriving at any time can be inserted into the waiting

line in the order of desired completion time and the

criterion for optimality is maintained. It is thus

possible to relax the second assumption.

I|_. It has, inherent in it, the property of attaching a

higher priority to lagging jobs, which is desirable in

many job-shop situations.

3.2. The Case of n Jobs on Two Machines (n x 2)

The problem of n jobs through two machines has been solved

by Johnson (lj.7), Bellman (7, 10), and Mitten (58).

3- 2.1. Johnson's Procedure to Minimize Total Time to Pro -

cess n Jobs on Two Machines . Johnson took the discrete case of

two machines and n jobs under the assumption that the jobs are

kept in the same order for both machines. Let us call the first

machine on which a job is processed machine I and the other

machine II. The objective function is the accumulated idle

time on machine II, this being possible since the order of jobs

is to be maintained.

27

Let a., "b. represent the time required to process the i

item on first and second machines, respectively. Let x^ be the

inactive time on the second machine immediately before the i tn

item is processed on the second machine. Then

n ju u-1
I

,.?
= H x

±
= max >_ a, - £ b. (3-2.1)nx^ 1=1

X
1 ^ u === n 1=1

1
1=1

where Inx2 represents the total idle time on machine II; refer

to Pig. 3.1.

Proof:

x
l

" a
l

X2 = max (a-^ + a 2 ' 'l ' xi > ") (3-2.2)

= max (ap - b-, , 0)

Whence

Xi + x9 = max (a-, + a 9 - b-, , a-i)1
(3-2.3)

2 1 10
= max (1_ a. - £ b i) , (

2~
«i

- Zl b
1)10 10

where bp = . Similarly,

3

and

x, = max (ZI a- - 1_ b± - ZL x« , 0) (3.2.1;)
J 1=1 1=1 1=1

3 3 A 2

ZI x
i

= max (51 a- - ^_ b ± , YL x*)
1=1 1=1 1=1 1=1

3 _2 2

= max (
2~ a i

- 2_ b i , 21 a< - bj , a«)
1=1 1=1 1=1

(3-2.5)

The remainder of the proof is inductive.

28

a
3

-t
-i

x-^ b, x
2

bg x-3

k_

Fig. 3.1.

Idle
Idle time time

u \ 15 8 7 3 5 2

1 bt bo b-j_ b2
Total = I|l

,a
5
a
3

a x a 2 a^
a
i r-r" ? "-;—<—
14 15 k 15

Total = 39

Fig. 3.2.

29

According to Johnson, an optimal ordering is determined

by the rule: Item i precedes item j if

min (a
i , b

1) ^ min (a-, b.) (3.2.6)

If there is equality, either order is optimal provided

that it is consistent with all definite preferences.

For a three-stage problem, the corresponding formula for

the total idle time on the third machine, also derived by

Johnson, is:

v-1 1

±nx3 " ™* , ,
1 •£= u £= v •== n

u u-1 JV

E H - T. *>i + XL H " H Oi 1 (3.2.7)
i=l 1=1 i=l i=l

where a^, b^, c^ denote respectively the times required by the

i item on the first, second, and third machines.

Example . Let us now illustrate the way in which this

criterion (equation 3-2.6) may be applied. We follow the steps

given below:

1. List a^ and b- in two vertical columns

i a j bi

1 a
i

b
i

2 a
2

b
2

bn

2. Determine the minimum of all the a. and b..

3. If it is an a^, place the corresponding item first.

30

!(.. If it is a b., place the corresponding item last.

5. Cross off times for that item.

6. Repeat the steps on reduced set of (n - 1) items.

7. In case of ties, order the items with smallest subscript-

first, for the sake of definiteness. If a tie between

a. and b., order the item according to third step.

To illustrate the method, consider this example. The rule

yields (5, 3, 1, 2, I4.) as minimal order with a total time of

L|_l units, and 6 units of idle time.

h A

1 15 7

2 k 3

3 k 8

h 1$ 2

5 1 15

3.2.2. Bellman's Continuous Version of the Discrete

Problem . Bellman (7, 10) has tackled the simplified problem of

determining the optimal order when there are a large number of

items of only a few different types. Even here, the original

problem seems difficult to resolve. We shall use a device

which works uniformly well throughout the theory of dynamic

programming, namely, the replacement of a discrete problem by

a continuous version. This continuous version may be solved

with great ease.

31

Let us consider our problem under the following assump-

tions:

1. There are two machines and two different types of

items

.

2. The total number of items is large when compared to

the times required to process any individual item.

Here in place of the expression

u u-1

E. a i -
f-.

bi <

1=1 1=1

we consider the integral

u

I(u) =
_[(a(t) = b(t)} dt (3.2.8)
6

The analogue of an arrangement of items is a character-

istic function [_the characteristic function J2f(x) for a subset

E with respect to a set P has the value 1 for points x in E,

the value zero for points x in (F - E)J defined over the in-

terval (0, T) . This function determines a(t) and b(t) in the

following way:

a(t) = a,0 + a ? (l - jzO

(3.2.9)
b(t) = b-jjZ + b 2 (l - 0)

where (a^, b^) and (a
2

, b„) represent the times required on

the first and second machines for first and second types, re-

spectively. The function ${t) is the characteristic function

of the set over which the first item is processed. And 1-0"

is the characteristic function of the set over which the second

item is processed. The constraints upon are that it takes on

32

only the values and 1, and in addition satisfies

j
0dt = k, (where k is an integer) (3.2.10)

which is equivalent to the statement that k of the T items

belong to the first type. If we set

82 + bo

b2)

bi)

p = (a2

the problem is that of determining the quantity

(3.2-11)

I = min max
$ =feu^ T

J fa*

and determining the corresponding function $.

A minimizing <ji{t) (a solution) is given as follows:

U > o)

U<£ o)

(a = o)

0(t) = 1

=

izf(t) = 1

=

(T - kit=I)
(O^t ^T - k)

(0 d=.X, <=k)

(k •<£ t i:T - k)

[t) is arbitrary [3.2.13)

Thus we see that two-stage process may be attacked by the

functional equation approach of the theory of dynamic program-

ming, and resolved without the use of an explicit formula for

the idle time. This method is important since it is not always

possible to obtain a tractable explicit analytic representation

of the quantity that is to be minimized in many analogous

problems.

p

33

3-2.3. n Jobs on Two Machines with Overlap (Use of Time Lags)

L. G. Mitten (58, 59) has given an analytical solution

based upon two machines and n jobs with arbitrary start and

stop lags and a common sequence. Bellman as well as -Johnson,

treated rather severely restricted version of the problem in-

volving n jobs and two machines. Mitten has treated a somewhat

less restrictive case which is applicable to a wider variety of

roblems; the function to be minimized is the same, i.e., the

total idle time on machine II. The use of start and stop lags

permits one to treat a variety of practical problems which pre-

vious models were unable to handle. A start lag is the minimum

time which must elapse between starting a job on machine I and

starting on machine II, and a stop lag is the minimum time

which must elapse between completing a job on machine I and

completing it on machine II.

Mitten has considered the following problem:

Two machines (I and II) process n jobs, with jobs to be

run in the sequence S = (1, 2, . . . , n) . Let a
±

and b
±

be

(respectively) the times required by job i on machine I and

machine II. Associated with each job i is a "start-lag"

A
1 £>0) and a stop lag B

1 > (defined later). The following

assumptions are made:

1. Each job is to be run first on machine I and then on

machine II, using the same sequence (S) on both

machines.

2. On machine I, the jobs are to be run in the sequence S

without interruption.

3k

3. On machine II, job i is started as soon as possible

after the completion of job i-1 on machine II, subject

to the provisions that job i may not be started on

machine II less than A- time units after it was started '

on machine I, and job i may not be completed on machine

II less than B^ time units after its completion on

machine I.

By a proper choice of the start and stop lags, we can take

care of overlapping production (in some situations it is pos-

sible to start the production of a given job on the second ma-

chine (II) before the completion of processing of the job on

machine I; this is known as overlapping production), transport

time between machines, and scheduling bottleneck machines (in

most situations a small number of machines cause a vast majority

of these problems; these highly loaded machines are referred

to as "bottleneck" machines)

.

Minimizing the idle time on machine II is equivalent to

minimizing the total time to complete all of the jobs on both

machines (since we have a common sequence). Let x- be the idle

time immediately preceding the start of the job i on machine

II. We shall use

n_

I = T" Xj_ (= total idle time on machine II)
i=l

as our objective function to be minimized.

The procedure for obtaining an optimal schedule, given by

Mitten, is best explained with the aid of a simple numerical

example. In Table 1 the entries in the first five columns

35

Table 1. Example of two-machine Gantt chart
scheduling problem.

Given data 6:=2-3 7==i+-S 8=max(6

,

,7) 9==8+3 10==8+5 11

1

i

2

A
i

3

a i Bi

5

b i

A.i" a i Bi-bi mi m^+a-j m^+b;
Run-
ning-

order

1 2 2 k 3 1 1 3 X 1

2 3 Ij- 1 2 -1 -1 -1 X 1 5

3 1). 6 3 2 -2 1 1 X 3 3

h 1* 7 2 2 -3 X 2 k

5 3 4 1* 3 -1 l 1 X k 2

represent the given data. To find the optimal sequence, the

following steps are carried out in the table.

1. In each row, subtract the value in column 3 from the

value in column 2 and enter the result in column 6.

2. In each row, subtract the value in column 5 from the

value in column l\. and enter the result in column 7.

3. In each row, take the (algebraically) larger value from

column 6 and 7 and enter in 8.

i|.. In each row, put an X in column 10 if the value in the

column 3 is less than the value in column 5; otherwise

(if a
i

b
i), put an X in column 9.

5. In each row with an X in the column 10, add the value

in column 3 to the value in column 8 and enter the

sum in the column 9.

6. In each row with an X in column 9, add value in column 5

to the value in column 8 and enter the sum in column 10.

36

7. The job (row) with the smallest value in column 9 Is

run first; job with next smallest value in column 9

is run second, and so on. The job (row) with smallest

value in column 10 is run last; the job with next

smallest value in column 10 is run next to lest, etc.

This running order is entered in column 11.

The sequence in column 11 leads to Fig. 3-3. The schedule re-

quires 25 units of time to complete all five jobs on both

machines.

3.3. The General Case--n Jobs on m Machines (n x m)

3.3.1. The Use of Branch and Bound Technique of Little ,

Murty, Sweeny, and Karel . The Branch and Bound Technique orig-

inally developed by Little, Murty, Sweeny, and Karel (54) for

solving the traveling salesman problem has been applied to some

flow-shop scheduling problems. In order to use branch and

bound technique given by Ignal and Schrage (ij-0) , one must be

able to describe the problem as a tree, in which each node

represents a partial solution. In addition, one must be able

to write at each node a lower bound on the objective function

(mean completion time) for all the nodes that emanate from it.

If there are n jobs in a jobset, the problem is to find a

permutation or a sequence of the integers 1, 2, . . ., n, under

the assumption that the job sequence is the same for both of

the machines. The first 'node in the related tree structure

corresponds to not having committed any one integer (i.e., jobs)

to any position in the sequence. From this node there are n

37

Mach.I

2 k

< a-i»fc— a t—»t*

Mach.II ^*

7

*k

-A 14— A^-4 Ir— Aj -J I— A^ *l

2 3

13 2 2 2 25
3 f-b!-*- |*-b£-*| 3 -b

3
r 4 fbK^'Sbj-'

,4 J«rr 1 1
!

1
'« * »» «-« -3—1 1

;

Ml
4 l

S

10

3

!-

15

r 9

20 25

Pig. 3.3.

38

branches corresponding to the n possible integers (jobs) that

can be assigned to first position in the sequence. Prom each

of these nodes there are n - 1 branches corresponding to the

n - 1 integers available to be placed in the second position,

etc. Thus one can see that there are n! possible sequence or

permutations, and 1 + n + n(n - 1) + . . . + n.1 nodes in the

entire tree.

The problem is to define an objective function and then to

determine a lower bound for it. We will consider a 3-machine

problem. The total idle time on third machine (III) is to be

minimized, and since the order of the jobs on all machines is

the same, it minimizes the make span. Each node represents a

sequence of from 1 to n jobs. Let S be a sequence of a par-

ticular subset containing r jobs out of n. Let node P corre-

spond to the sequence Sr . Let Time I (

S

r) , Time II (Sp), and

Time III (Sr) be the times at which machines I, II, and III,

respectively, complete processing on the last of the r jobs in

the sequence. A lower bound on the make span of all the

schedules that begin with the sequence Sp is given by

LB (Sr) = max

Time I (Sr) + ^__ a i
iCS,,

min (t>i + Cj_)

Time II (Sp) +]E- b i
+ min c i

ifcS i£Sr

Time III (Sp) +
1(;S T

where a^_, b^, c^ are processing times of the i™ job on machines

39

I, II, and III, respectively, and Sr is the set of n - P jobs

that have not been assigned a position in the sequence Sr .

LB(P) = LB(Sr) is a lower bound on the make span for any node

that emanates from node P, since all such nodes represent

sequences from r + 1 to n jobs that begin with sequence S .

The technique, used by Ignall and Schrage, along with an

example, is given below.

Make a list of nodes ranked by lower bound such that the

node with the smallest lower bound is first. Make a list of

attributes (jobs) that are in sequence in order Time I, Time II,

Time III, for each node. Begin by having on the list only the

node that has scheduled none of the jobs. Follow the steps

given below to update the list recursively, until an optimal

solution is reached.

1. Remove the first node from the list.

2. Create a new node for every job that the node just

removed has not scheduled. Do this by attaching the

unscheduled job to the end of the sequence of

scheduled jobs.

3. Compute the lower bounds and the other attributes for

these newly created nodes and insert them in the

ranked list.

l±. Go to 1 if no node has scheduled all n jobs on the

list; otherwise, the problem is solved.

An example: consider the following 4- job 3-machine prob-

lem when the objective is minimizing makespan.

ko

'1 13 3 12

2 7 12 16

3 26 9 7

1+261
The tree and the list that are obtained by solving it by the

above technique are shown in Fig. 2>-k- and Table 2.

The lower bounds are written next to the nodes on the tree.

In case of a tie, i.e., if a newly created node and another

node had the same lower bound, the newly created node was put

before the old node on the list. Hote that node 231 's lower

bound, which is the makespan for sequence 2311)., is less than or

equal to the lower bound of any other 'unbranched form' node in

the tree (or on the list). For example, it would be impossible

for a sequence beginning with job 1+ to have makespan ^.63 and

62 ^ 63, so there is no need to explore any sequences that be-

gin with job !+. The same is true of sequences that begin with

job 3, and the same applies to the other nodes, so 231 is

optimal.

This technique is at least competitive with other methods

(Wagner (£8, £9), Dudek and Teuton (18)). It is particularly

suited for problems of small size. As Little, et al., have

mentioned, the Branch and Bound technique is a method of wide

applicability. In the 2-machine problem, a variety of objective

functions can be handled. For example, the lower bound for a

Ui

Pig. 3.k.

42

Table 2.

Node Lower bound Time II Time III Disposition

- - - Branched form

1 55 16 28 Branched form

2 55 19 35 Branched form

3 73 3i 42

1* 63 8 9

21 55 "•
43 Branched form

23 62 42 49 Branched form

24 63 25 36

213 63 63 63

234 61+ 57 64

12 56 36 48 Branched form

13 72 48 SS

14 61+ 22 29

123 62 61 63

12^ 64 57 64

231 62 60 62 An optimal sequence

231+ 63 51 63

1*3

weighted sum of completion times or mean one-sided lateness or

other criteria could be constructed, and the branch and bound

technique applied.

Johnson and Bellman have given extensions of their (n x 2)

problems to approximate 3-stage solutions for 3 machines and

n j o o s

.

3.3.2. The Nonnumerical Approach of Akers and Friedman . In

19£lj-, Akers and Friedman (2) developed a nonnumerical approach

for eliminating nonfeasible and possibly not optimal programs

out of (n!) possible programs where n is the number of jobs and

m is the number of machines. Machines are used for each job in

a specified order. If a program does not meet this requirement,

it is called nonfeasible. There are some technologically non-

feasible programs. For example, machining has to be done before

painting or drilling before threading. The elimination of such

programs is based purely on logical considerations without the

recourse of any numerical data.

Later Akers (3) developed a graphical approach to this

(2 x m) problem which offers very quick solution for the problem

of 2 jobs on m machines. In this case the graph is in the plane

of the paper but in the general case of n jobs on m machines,

the graph would be in n-dimensional space and the solution be-

comes obscure. This nonnumerical technique is very useful for

a smaller number of machines and where machine times are apt to

change. The possibly optimal solutions can be kept ready and

by applying new machine times an optimal solution can be found

easily.

IA

Bellman's continuous version of the discrete problem can

be used to give approximate solution to the n x m problem. He

has given a general formulation which can be tailored to par-

ticular situations. For example, where there are interchange-

able machines, operators trained to work on all of the machines,

and so on.

3.3-3. The Method of Active Feasible Schedules by Giffler

and Thompson . Giffler and Thompson (2f>) have developed algo-

rithms for solving problems to minimize the length of a produc-

tion schedule. They have considered the following general

assumptions

:

1. Each of the n commodities must be processed by one or

more of the m facilities (or machines).

2. The operation once started may not be interrupted.

3. A subset of the facilities may be equivalent (i.e.,

more than one machine of a given type)

.

1+. Some pairs of operations may be performed in succession.

Some pairs must be performed in succession.

5. The time needed to perform each operation is given and

also minimum delay after the start of first operation

and before the second operation may be started in case

of pairs of operation, is given.

6. For convenience we assume operations for a commodity

are performed in linear sequence, i.e., no commodity

is processed more than once by any facility or pair of

equivalent facilities.

7. The time to perform operations is independent of the

order in which they are performed.

The algorithms generate one or all the schedules of a par-

ticular subset of all the possible (n!

)

m called the active feas-

ible schedules. An active feasible schedule is defined as a

schedule with the following properties: (a) no machine is idle

for a length of time sufficient to completely process a simul.-

taneously idle commodity; and (b) whenever an assignment of a

commodity to a machine has been made, its processing is started

at the earliest time that both machine and commodity are free.

In these algorithms a subset of facilities may be equiva-

lent and some pair3 of operations may be performed in succession.

The completion date problems can be easily handled if after dis-

carding those active schedules in which due dates are not met,

we are left with one or more feasible active schedules. Their

main weakness is that we cannot handle cases where the criteria

for optimality is other than the shortest schedule. Thus one

could require of an optimal schedule that it minimize the total

idle time of all facilities and/or all commodities. We could

also require that the total dollar value of the in-process

inventory be minimized.

3.3-k-- -An Approximate Method by Dudek and Teuton when

no Passing is Allowed . Dudek and Teuton (18) have given an algo-

rithm that will determine an optimum sequence for n jobs pro-

cessed through m machines when no passing is allowed, that is,

the order in which n jobs pass through each of the machines be

identical. The algorithm does not generate all the optimal

1^.6

sequences

.

Statement of the problem: Given n jobs to be processed on

m machines (m 3), I, II, HI, • • . , m in the order I, II,

III, . . . , m, determine a sequence (one or more) that will

minimize total elapsed time. The algorithm is applicable under

the following assumptions:

1. Ho machine may process more than one job at any given,

time.

2. A job once started must be completed.

3. Processing time for each operation is known and finite.

It is independent of the order of operations.

l±. There are no due dates for any job.

5. The jobs are processed by machines as soon as pos-

sible and in a common order.

6. Transport time between machines may be considered neg-

ligible or as part of the processing time on the pre-

ceding machine.

7. Storage space for partially finished jobs is available.

We see that almost all of the assumptions (except i\- and

5>) are in line with most of the practical problems. In most of

the cases, especially where there is less automation, the pro-

cessing times are variable but good approximations can be made

by using average times.

In the mathematical formulation, total idle time accumu-

lated on the last machine to process each job is minimized.

This in turn minimizes the total elapsed time required for pro-

cessing of all the jobs because of the assumption that all the

kl

jobs are processed through all the machines In a common order.

The analysis of idle time follows Johnson's approach to two-

stage and three-stage sequencing problems. The development pro-

ceeds from three-stage case to a four-stage case and then to

the general m stage case.

Let a. = time required by job i on machine I

b^ = time required by job i on machine II

c- = time required by job i on machine III

Ib-^ = idle time on machine II from the end of job

i - 1 to the start of job i

I c . = idle time on machine III from the end of the

job i - 1 to the start of job i

T
e

= total elapsed time for jobs 1, 2, . . _, ,'n.

Now the problem is to find one or more permutations of the

integers 1 through n which will minimize T
e

. An example of a

possible sequence for n = l\. can be represented by the Gantt

Chart in Pig. 3-5- For the three-stage case

k k-

i=l i=l

k
so the problem becomes one of minimizing £_ I-

1=1 i

To determine if job j should precede job j + 1, we start

with sequence S' and from it obtain another sequence S" by

interchanging the j
th and (j + l)st jobs.

S' = 1, 2, 3, • • ., j - 1, j, j + 1, j + 2, . . ., n

S" = 1, 2, 3, . . ., j - 1, j + 1, j, j + 2, . . ., n.

1+8

Machine I

Machine II

Machine III

u
l "2

-^» it -.--.--.'-.

3
3 %

b
3 \

-i <" » . < <<< *-*-*—

^ '

Pig. 3.5- G-antt chart (3-machine)

k9

Let Kv (III)
1=1

v-1

1=1
max

1 ^ u ^ v 1=1

u-1

& bl >

and

u u_-l

Q (II) = max CET a, - >_ b.)Uu «^j-l 1=1 1=1

and KV (III)' represent the value of K (III) for sequence S',

and KV (III)" represent the value of K_(III) for the sequence

S". The following (m - 1) conditions have to be satisfied be-

fore a definite decision can be made on the preference of the

two sequences, S' and S". Thus for an m-stage process, job j

should precede job j + 1 if

(Condition 1)

KjU)', Kj+1 U)
' Kjtm)", K

j+1
(m)"

(Condition 2)

l(m-l), Kj(m-l)', Kj+1 (m-l)'

, : l(m-l), K (m-1)", K (m-1)"

(Condition m-1)

max Q(II), Kj(II) ', K j+1 (II)

=i max Iq(II), K.(II)", K.+1 (II)"

This m-stage rule is valid only if (m-1) conditions hold. If

condition 1 holds, but one (or more) of the remaining conditions

is not satisfied, then a decision cannot be made on the

50

preferability of S' or S". The algorithm given below lists

the necessary steps to go through when this situation arises.

A scheduled job is defined as one that has been selected

by the algorithm as the 1st, 2nd, 3rd, etc., job of the feasible-

schedule (one generated by algorithm). An unscheduled job is

defined as one that has not been selected by the algorithm to

fill a specific position of a feasible sequence.

The Algorithm . It is assumed that
(
j - 1) jobs have been

scheduled for the feasible sequence under consideration.

Step 1. List the (j - 1) scheduled jobs in their sched-

uled sequenced position of the sequence table as illus-

trated in Table 3.

Step 2. Determine the min
j

a^ + b^ + c* . . . (m - l) i |

for all remaining unscheduled jobs. In case of a tie,

select one with max m.. Place the corresponding job

and its processing times in the j sequence position

of the sequence table.

Step 3. Place one of the remaining (n - j) unscheduled

jobs in the (j + 1) at sequence position of the sequence

table.

Step lj_. See if condition 1 is satisfied.

Step $. Apply one of the following:

(a) If Condition 1 is satisfied, repeat steps 3 to 5

for each remaining possible sequence, that is,

the reduced set of (n - 1 - j), (n - 2 - j),

etc., remaining unscheduled jobs; continue to

step 6.

51

Table 3- Sequence table.

Sequence position Job i

k a
l|. \ % r\

3 ai b^ c-j m-j

(j - 1) 1 a
±

b
x

c-^

(j)

(j + 1)

(b) If Condition 1 is not satisfied because of an

equality , repeat step 3 through 5> for each remain-

ing possible sequence; continue to step 6.

(c) If condition 1 is not otherwise satisfied, replace

the job currently in sequence position (j + 1),

repeat steps 3 to 5 for each remaining possible

sequence, if all the unscheduled jobs have been

tried in sequence position (j), go to step 6.

Step 6. If (a) the job presently in the j position

satisfies Condition 1 for all remaining unscheduled

jobs, go to step 7a.

(b) The job presently in the j
tn position fails to

satisfy Condition 1 because one or more of the

52

remaining unscheduled jobs yield an equality;

go to step 7b.

(o) None of the remaining unscheduled jobs satisfies

(a) or (b); go to step 7c.

Step 7- Apply one of the following:

(a) If 6a occurs, determine if condition 2 through

m - 1 are satisfied for all remaining (n - j)

unscheduled jobs.

(1) If conditions 2 through m - 1 are satisfied

for all remaining unscheduled jobs, schedule

the job in sequence position (j) as the next

job of the feasible sequence.

(2) If conditions 2 through m - 1 are not satis-

fied for i remaining (n - j), unscheduled

jobs, it is necessary to assume that the job

presently in the j
th sequence position as

well as the remaining i unscheduled jobs that

do not satisfy this condition as the job of

(i + 1) feasible sequences.

(b) If 6b occurs, it is necessary to assume the job

in the j
tjl sequence position as well as k of the

remaining unscheduled jobs as the j job of (k + 1)

feasible sequences, where k is equal to the number

of remaining unscheduled jobs that had yielded an

equality in test of Condition 1.

(c) If 6c occurs, it is necessary to assume (turn by

turn) all remaining (n + 1 - j) unscheduled jobs

53

as the j
tla job of (n - 1 - j) feasible sequences.

Go to step 8.

Step 8. After having placed one job in the j
n position

of the sequence table, repeat step 1 through 7 until

(n - 2) jobs have been sequenced into a feasible solu-

tion. (If more than one job were assumed in step 7,

the first is assigned to position j and the others were

put aside until step 11.)

Step 9. To determine the (n - 1) st job of a feasible solu-

tion, determine which of the two remaining jobs satis-

fies Condition 1. Place the respective job in sequence

position n. In case of a tie, select either as job

(n - 1) of the feasible sequence.

Step 10. Enumerate the feasible sequence to determine total

elapsed time.

Step 11. If more than one job were assumed for position j

in step 7, select another (the first was chosen in

step 8) and repeat the step 1 through 10 until the

values put aside in 8 are used.

Step 12. Determine the sequence (one or more) that yield

the minimum total elapsed time for processing times

under consideration. This sequence becomes the optimal

sequence as it minimizes the total elapsed time T.

The conditions 1 through m - 1 can be stated differently.

For example, for three machines, job j should precede job

(j + 1) if

9+

(Condition 1)

lin I bj - max 4 Q(II), Kj(ll)" i, c 3+1

max i 0,(11), KjdD", K
J

.+1 (II)'

b.+1 - max Jq(II), Kj(II) ' I
,

X /

nax JQ(II), Kj(II), K
J
-+1 (II)

and (Condition 2)

max i 0,(11), Kj(II) ', Kj+1 (II) '

^ max Q(II), Kj-dl)", K j+1 (ll)"

Now we will solve the previous example by using the above

algorithm.

The data are given in tabular form. We will determine the

order of jobs such that the total time to complete the process-

ing of all jobs is minimized (see Table 4).

Table 1+. Processing time (hours) .

Job Machine I Ms chine II M achine III

1 13 3 12

2 7 12 16

3 26 9 7

k 2 6 1

First we find min(a. + b.) is 8 hours for job h_. Thus we

place job !(. in sequence position 1. Placing job 1 in sequence

position 2 yields the following calculations (Table 5) :

55

Table $. Sequence table (job 1; vs. job 1).

Sequence T „v, ,^ , . . J o u l a • o .• c tposition iii
1 4 2 6 1

2 1 13 3 12

min I 6 - max (0, 13), 12 - max ^0, 13, 12

j

<C min 3 - max io, 2 I , 1 - max io, 2, 9 A

or -7 <-8.

So condition 1 is not satisfied and according to step 5c

we place job 1 in sequence position 1. Comparing job 1 with

job 2, and following the calculation for condition 1, yields

Table 6.

Table 6. Sequence table (job 1 vs. job 2).

Sequence Job i a~
~<

7,position 111
1 1 13 3 12

2 2 7 12 16

bj = 3 o
J+1

= 16 b
j+1

= 12 Cj = 12

Q(II) = Kj(ll)" = 7 Kj+1 (II)" = 8 -

Kjdl) ' = 13 • K j+1 (ll) ' = 17

min M - max(0, 7), 16 - max(0, 7, 8)1

<C min
J

12 - max(0, 13), 12 - max(0, 13, 17)

56

Again, condition 1 is not satisfied, so according to $a

,

place job 2 in sequence position 1 (see Table 7)

•

Table 7. Sequence table (job 2 vs. job 1)

Sequence
position

Job i a i
b i

c i

1

2

2

1

7

13

12

3

16

12

b. = 12 CM = 12 Vi = 3 °3
= 16

Q(II) =

Kj(II)
'
= 7

Kj(II)" = 13 K j+1 (II)" = 17

K j+1
(II)'

(Condition 1)

min Il2 - max(0, 13), 12 - max(0, 13, 17)
J

^ rain 3 - max(0, 7), 16 - max(0, 7, 8)

(Condition 2)

:[(0, 7, 8)1 max 1(0, 13, 17) , or (8^ 17).

Thus conditions 1 and 2 are satisfied for job 1|. vs. job 1.

Similarly, we see job 2 satisfies both conditions for all re-

maining unscheduled jobs. So we schedule job 2 first. Now we

again scan various processing times to determine min(a. + b.)

.

We eliminate job 2 from the comparison. We find job I4. has

min(a. + b.) . But as we have already seen, job i\. vs. job 1

does not satisfy condition 1, so we put job 1 in sequence posi-

tion 2. We will see if job 1 satisfies conditions 1 and 2 when

57

placed in sequence position 2, placing job 3, one of the re-

maining (n - j) unscheduled jobs, in sequence position 3

(Table 8)

.

Table 8. Sequence table (job 1 vs. job 3).

Sequence
position

Job i a
i

b
i

c
i

1 2 7 12 16

2 1 13 3 12

3 3 26 9 7

b
J
= 3 °j+l

= 7 b
3+1

= 9 c .

J

= 12

(1(11) = 7 K.(II)" = 7 + 26 - 12 =,21

K j+1 (ll)"
= lj.6 - 12 - 9 = 25

K -(II) ' = 20 - 12 = 8

K j+l(ll) ' = 1+6 - 15 = 31

(Condition 1)

min 3 - max(7, 21), 7 - max(7, 81,
25)

J

Dr -18<-19.

^ min 9 - max(7, 8), 12 - max(7, 8, 31]

Thus condition 1 is not satisfied, so we replace (step 5c)

job 1 by job 3 (Table 9)

.

58

Table 9. Sequence table (job 3 vs. job 1).

Sequence
position

Job i a i
b i I

1 2 7 12 16

2 3 26 9 7

3 1 ij 3 12

bj = 9 °j+l
= 12 3 c .

J
7

•

Q(II) = 7 K,(II)" = 7 + 13 - 12 = 8

K
j+1

(ID" = lj.6 - 12 - 3 = 31

K.(II) = 33 - 12 = 21

K
j+1

(II) ' = 1+6 - 21 = 25

(Condition 1)

min [9 - max(7, 8), 12 - max(7, 8, 31)J

min I 3 - max(7, 21), 7 - max(7, 21, 25)j

or -19-£l-l8.

(Condition 2)

max(7, 21, 25) ^.max(7, 8, 31)

or 25 i=31.

Table 10. Sequence table (job 3 vs. job I).)

Sequence
position

Job i a
i

b
i

c
i

1 2 7 12 16

2 3 26 9 7

3 1* 2 6 1

59

bj = 9 =
j+1

= 1 b
j+1

=6 =. = 7

Q(II) = 7 Kj(II)" = 7 + 2 - 12 = -3

K
j+1 (ID" = 35 - 12 - 6 = 17

K.(II) '= 33 - 22 = 11

Kj+1 (II) ' 35 - 21 - Ik

(Condition 1)

min[9-max(7, -3),l-max(7, -3, 17)]

^ min 6 - max(7, 21), 7 - max(7, 21, 11+)

or -16-C -15 •

(Condition 2)

max(7, 21, llj.) <£, max(7, -3, 17)

or 11; ^ 17 .

Hence conditions 1 and 2 are satisfied by job 3 for remaining

unscheduled jobs, so job 3 goes to sequence position 2.

Now since two jobs are left we will determine the next job in

the sequence according to step 9. Let us try job 1 if it satis-

fies condition 1 when placed next in sequence (Table 11)

.

60

Table 11. Sequence table.

Sequence
position

Job i a
i

b
i

c
i

1 2 7 12 16

2 3 26 9 7

3 1 13 3 12

k k 2 6 1

b
j

= 3
°J+1 = ! b j+l = 6 °j = 12

Q(II) = 21 K.(II)" = 33 + 2 - 21 = 11+

K.+1 (II)"
= 1+8 - 21 - 6 = 21

Kj(II) ' = k° - 21 = 25

K
j

.+1 (II)' = 1+8 - 214- = 2k

min I 3 - max(21, 11).), 1 - max(21, 11+, 21)J

^Lmin j_6 - max(21, 25), 12 - max(21, 2$, 21+)

or -20 <^ -19 .

So condition 1 is satisfied. Hence this feasible sequence,

231I+, is the optimal sequence, since there is only one feasible

sequence.

To complete the problem let us find total elapsed time

(Table 12)

.

61

Table 12.

Machine I Machine II Machine III

Job Time Time Time Time Time Time
in out in out in out

: 7 7 19 19 35

3 7 33 33 1+2 1+2 1+9

1 33 ^6 ^6 ^9 1+9 61

k 1+6 1+8 k9 5k 61 62

Hence total time elapsed to complete processing all jobs is

62 hours.

Dudek and Teuton have asserted without proof that the gen-

eral algorithm will generate one or more optimal sequences but

it will not necessarily generate all the possible optimal

sequences.

It is possible to treat the important jobs; the algorithm

will function all right when the jobs have been selected to

fill first K positions of the feasible solution.

The authors have shown that the number of feasible sched-

ules generated increases when n, m, or both, increase but the

amount of computation required to determine feasible solutions

remains small as compared to that required for the complete

enumeration.

Though W. Karush has shown with a 3 x 3 example that the

algorithm fails to give an optimal sequence contrary to the

assertion made by Dudek and Teuton, yet this remains one of the

best available algorithms at present.

62

k.O. INTEGER LINEAR PROGRAMMING APPROACH
TO JOB-SHOP SCHEDULING PROBLEM

The job-shop scheduling problem is essentially a problem

of determining the order of jobs on different machines so that

some criteria (e.g., length of time, man-hours, expected

profit, expected cost, etc.) are optimized. It is assumed that

a job cannot be scheduled to start until all of its immediate

predecessors have been finished. Hence some device is needed

to signal when each job is finished. The mechanism used for

this is a variable that is equal to one if the given job is

finished and equal to zero otherwise. Using this idea and var-

iants of it, one can formulate the job-shop scheduling problem

as an integer linear programming problem as shown by Manne (56).

There have been at least three such formulations of the problem.

Many practical linear programming problems by nature de-

mand integer valued solutions. Because activities and re-

sources, such as machines and people, are frequently indivis-

ible. Of course, such problems can be solved as ordinary L. P.

problems, and attempts can then be made to "round" the answers

obtained to give integer solutions. In doing this we are not

guaranteed an optimal answer. Hence integer L. P. solutions

to the problems are required.

Integer programming algorithms such as Gomory (29) differ

from the ordinary L. P. algorithms in that new constraints are

created and added to the tableau as the algorithms proceed.

63

U..1. Definition of the Problem

There are n commodities or jobs to be processed on m ma-

chines. We assume that the order in which the commodities are

to be processed by the machines is completely specified. This

can be done easily by means of a matrix called the facility

(machine) sequence matrix; two examples are given in Pig. J+ -

1

and Fig. L|..2. The indices in the matrix of Pig. lj..l are those

of the facilities that are to operate on the given job and the

order in which these indices appear is the order in which the

job is to be "routed" to the various machines. It is assumed

here that all the job times are 1. The indices of the matrix

in Pig. if. 2 are again the indices of the machines in the order

in which the job is to be processed. The superscripts of these

indices are the corresponding job times.

Feasible schedules are most easily specified by means of

Gantt Charts which are illustrated in Fig. L(- . 3 - For example,

a feasible schedule for the problem shown in Fig. I4..I is given

in Fig. I4..3- The entries in the chart are the indices of jobs,

and these appear in the order in which each machine processes

them. Columns here represent different time intervals. In

any column no job appears more than once, meaning that only

one job is processed at one machine at a time. Idle times are

represented by dashes.

Similarly, a feasible schedule for problem given in

Fig. I4..2 is given in Pig. l+.l^. Here the repetition of an index

or dash indicates the number of time periods that the job with

that index or idle time are on the machine. This problem was

6^

Jl 3 1 2 Ij- 6

J2 2 3 5 6 j

J
3 3 Ij- 6 1 2

\ 2 1 3 1+ 5

J5 3 2 5 6 l

J6 2 1+ 6 1 >'

Pig k. 1.

J
l

1$ 2 2 38 ^7

J 2
38 ^ h* 23

Fig. lj.,2.

Ml - - k 1 3 6 2 5

M2 6 1+ 2 5 1 3 - -

M3 5 3 1 2 k - - -

*% - 6 3 - - 1 L -

K
5

- - - - 2 5 6 k

M6
- - 6 3 - 2 5 1

Pig . k.3.

65

formulated as in Integer L. P. by Wagner (83), Bowman (12),

and Manne (56), which are discussed.

1|.2. Wagner's Model with Two Tabular Arrays

Wagner considers the following machine scheduling or

sequencing problem:

"Given n items, each to be processed on one or more of m

machines, the order of processing for an item being partially

or entirely specified, find the sequencing of items on the

machines which minimizes the total elapsed time to complete

the manufacture of all the items."

Assumptions

:

1. Manufacturing time of an item on a machine is speci-

fied (i.e., non-stochastic).

2. No job is processed on any machine more than once.

3. In-process inventory is allowable, i.e., passing is

allowed.

4.2.1. Formulation of the Model . We may picture the re-

strictions characterizing a specific scheduling problem by

means of two tabular arrays of the type shown in Figs. I4..I and

k-2.

In the first matrix, a row corresponds to one of the n

items, and a column corresponds to a process stage in the manu-

facture of the item. For example, if item 1 must be processed

on machine 1, 2, . . ., m in that order, we define for the i
th

row the entry at process stage 1 to be "machine 1", at process

stage 2 to be "machine 2", . . ., at process stage m to be

"machine m".

66

If an item is not placed on every machine, then the number

of process stages is less than m. A minor modification of the

model may be made to allow for multiple processing. If at some

point of bhe manufacturing process of an item, the item is to

be placed on 'q' machines out of a subset (Q) of machines, the

specific order of manufacturing being unimportant, then we de-

fine the entry at that process stage to be subset (Q) and the.

specification q, e.g., item i at the fifth stage may be required

to be placed on any of three (= q) machines in the group

(Q) = (machine 5, machine 10, machine 16, machine 17, machine

25) . Note that all of the items do not necessarily have the

same number of process stages. We shall consider those pro-

duction situations in which it is possible to analyze the manu-

facturing process for each item as a consecutive sequence of

stages each comprising processing on one or more machines, and

such that the order of manufacturing within a process stage is

irrelevant.

In the second matrix the rows correspond to the items and

the columns, to the m machines. The entry t. at the intersec-

tion of i row and k column represents the manufacturing time

for item i on machine k. If the first matrix indicates that

under no circumstances is an item to be placed on a particular

machine, then the corresponding element in the second matrix

will not be defined. We postulate that our time units are

such that every t. is an integer.

We will use the following nonnegative integer valued

variables

:

67

x<
k

> = <

.<*)

s
(

.

k)

J

4
kl

r
J

1 if item i is scheduled in order--

position j on machine k.

if item i is not scheduled in order--

position j on machine k.

[time at which the item scheduled in order

I position j begins processing on machine k

time elapsing on machine k between completion

of the processing the item scheduled in order--

j

position j and initiation of processing the

item scheduled in order—position j + 1

time elapsing on machine k between the initia-

tion of production and the start of the pro-

cessing of the item scheduled in the first

position.

By "the item scheduled in order-position j ... on machine

k" we mean that, prior to this item being placed on machine k,

(j - 1) items have previously been processed.

Let n(k) = maximum number of items that might be processed

on machine k. It represents an upper bound to the number of

order positions that need to be considered for machine k.

Let H(k) be set of items for which machine k appears at

some stage. First we consider the constraints that insure that

each item i completes necessary operation within every process

stage. If for a stage p the item i must be placed on machine k,

we require

68

n(k) ...

EI x (
.

k
' = 1 (4.2.1)

3=1 1J

That is, the item i must appear in some ordered position on

(k)machine k. The restriction that x!, be integer-valued im-

plies that the item will be scheduled once, and only once, on

machine k. If there are Q machines listed for process stage p

and the item must be placed on every one of the Q machines,

then we have a set of Q equations of the form of equation

(4-2.1), one for each such machine. A similar statement holds

for relations below.

If for a given item i and process stage p the item must

be placed on one machine out of a group of machines k, , k„,

. . . , k_, we need

n <il> (ki) "(fe) (k j
n(k

Q) (k)

51 *</ + 1- *;,• + - - - + £T 3C 7* =1 (4-2.2)

Finally, if for a process stage p the item i must be placed on

all of q machines out of a group of machines k-,, ko, . . ., kQ ,

we require

ni*l' (k-,)£ x 7 =1-5, (4.2.2a)
j=l 1J X

n(kP) , ,

E 2
x *2) =l- 5 (4.2.2b)

3=1 ij ^

j=l J

69

6 X
+ 6 2

+ • • . + 6
Q

= Q - q . . . (1^.2.3)

where 6^ is restricted to be or 1.

Equations (I4.. 2 , 2) and (I4..2.3) and the integer restrictions -

on 5 insure that item i is processed on exactly q out of Q

machines

.

The second set of constraints guarantees that no more than

one item be assigned the j ordered position on a machine.

For each machine k, we require

C- xj^ /=\ j = 1, 2, . . ., n(k) (k-2.k)
ia(k) 1J

The above given constraints do not guarantee, firstly, an

item be scheduled for process stage p and completed before it

is scheduled for process stage p + 1, or even that, secondly, an

item not to be processed on two or more machines during the same

time. Consequently we need a set of (linear) relations implying

that the production schedule observes the process-stage restric-

tions and does not call for the item being placed on more than

one machine at one time. Here we use a "shorthand" notation

and to give explicit relations for h

.

Let

W _ v- Jk) Jk)
i€N(k)

T x, = 2_ ti x\' j + 1, 2, . . ., n(k) (I4..2.5)

(k)
Given equation (lj.,2.1;), Tx . represents processing time of the

j ordered item on machine k. Then for each machine k it may

be verified that

70

h|
k)

= 4
k)

(4.2.6a)

h<*) = T x{
k)

+ T 4
k)

+ . . . + T x^» + S J

k)
+ 4

k)

+ . . . + Sj
k

]_
j = 2, 3, . . ., n(k) (i4.-2.6b)

Equation (4.2. 6b) states that the item in order-position

j on machine k commences processing at a time equal to the sum

of the manufacturing and idle periods accumulated from initial

commencement of production.

Now we consider restrictions. First restriction that for

a particular item i any machining taking place in process stage

p + 1 may commence only after all machining is completed in

process stage p. We suppose in i row of matrix (first) ma-

chine k-^ appears in the entry column p and machine kp appears

in the entry for column p + 1. Suppose further that

(k-i)
(kp

)

X. .? =1 and x. .„ = 1 , i.e., item i is scheduled in order-

position j ' on machine k and in order-position j" on machine

k2 . For the schedule to be feasible

(k-,) (kx) (kx) , (k2)

h., 1
+ t.

-ij
1 ^ V (4-2.7)

Given the specific order of production for item i, (4.2.7)

guarantees that machining on (k
2) is not commenced until ma-

chining on (k-|_) is completed. But we cannot add (4-2.7) in its

present form as a constraint, since it requires too much, viz.,

that the starting time of the j "-positioned item on machine k„

never precedes the finishing time of the j ' -positioned item on

71

machine k-, ; we want (4.2.7) to hold only whenever item i happens

to be the item scheduled in both of these ordered positions.

Therefore we merely need to require

h^l) + t
l*L) x^UhJ^ + M(l - x[f + M(l -

,[f)
(4.2.8)

where M is a large positive integer and h. is evaluated by

(4.2.6) we see that (J4.. 2 . 8) is binding constraint only if

(kx)

ij' "ij'
x. .f = x. ,„

In general, for item i, each pair of process stages p and

p + 1, each ordered couple (machine k-, in process stage p, ma-

chine kp in process stage p + 1) and j '
= 1, 2, . . . , n(k,)

;

j" = 1, 2, . . . , n(k2), we have a constraint of the form

(4-2.8).

Secondly, we consider for item i the restriction that any

machining taking place within process stage p must be on only

one machine at a time. We suppose machines k^ and k2 appear

in the i row and p * column of the first matrix (or say

matrix I)

.

(k-.) (

k

2)

Under the assumption x. -f = x. .„ = 1, we require that

one of the relations below must hold in order that the schedule

be feasible:

h
(.^ + t!

kl> x
U

7
) ^h (>)

(4.2.9a)
J' 1 ij' J

(k2) (k 2) (k2) . (kx)

hjn +tj Xlj.„ 4= h y (I|_.2.9b)

72

Similar to the reasoning in dj.,2.8), we want either (I4.. 2 . 9a)

or (k.2.9b) to hold only whenever item i happens to be the item

scheduled in both of these ordered positions. Our linear con-

straint then is the pair

(ki) ,
(k2)

' + M(l - x- -n + 6M

(If.. 2 . 10a)

4^ + t
^i) x^k^'-Md-xi;}')

h^> „<**> x^ h^> + M(1 . 4*1>) + M (l - 4^) - M(5 -l)

(I4.. 2.10t>)

where 6 is either or 1.

In general for item i, each process stage p, each couple

(machine k-, in process stage p, machine k
2 in process stage

p + 1) and j' = 1, 2, . . ., n(k-,_), j" = 1, 2, . . ., n(k
2),

we have a constraint of the form (I4.. 2 . 10) .

Our objective function is the time at which processing on

all the items has been completed. The optimal schedule will

give earliest time. Let h-::- represent the earliest point in

time according to a given schedule. We desire to find a sched-

ule which minimizes h-::-. If, for example, all the items must be

"finished off" on machine m, then the optimizing form simply is

to minimize I h + T x j, where (I4..2.6) is used to evaluate

hW .

n

This model is capable of handling a wide class of machine

sequencing problems but the computation required is very large

for this mo^el to be of any practical use. There is hope for

further developments.

73

1+-3. Bowman's Formulation Giving Least Total Time

Another formulation is given by Bowman (12) which involves

an even greater number of variables and constraints than Wagner's

model, but no formal restrictions, including the size of the

problem, are inherent in this method. The scheduling problem

in its most simple form consists of a number of jobs to be done

on a number of machines, each having a number of operations to

be performed by the various machines in a specified sequence.

What feasible schedule covers the least total time?

The Problem . Let the jobs be J-,, Jg, and J,, and machines

M-,, M
2 , M,, and M, , and the time periods (small) run from 1, 2,

3 V
The times required (in time period units) are:

Mi M2 h M
;

J
l $ 2 8 7

J
2 k 3 8 5

J
3

7

Fig.

6

JI..3.1. The Problem Constraints . The basic variables in

the formulation are of the nature 0^ ' meaning product (job)

J-^ having machine operation M-j_ during time period 1. All these

variables are to take the values zero or one in the solution;

i.e., this process is or is not taking place during this time

period. The form of constraints is:

7k

Mx :l Mx :2 Ml :Tp M 2 :1 M2 :2
J
1 , J1 , . . . , 31 , Jx , . . . , J

x , . . . ,

:1 jVp,
. . ., j^

:T
p

It is necessary to include constraints assuring that the indi-

vidual operations will be performed. For instance, J, requires

five time units of processing on machine M-,. The form of con-

straints is:

T T
P M-,:i • P m ? :1

1=1 x
1=1 l

i ^ :i
= k ... & a :i

= 6

1=1 1=1 J

Two or more products may not be processed by the same

machine at the same time, so conflicting assignments are for-

bidden. The form of constraints is:

Hl'.l Mp:l Mt :1
J
1

1
+ Jj + J3 *= 1

M-, :2 M-, :2 M-. :2
+ J

3
^ 1

Ml, :T n Mi, :T n Mi, :Tn ,

^l
+ J

2
+ J

3 == 1
3

The main part of the problem is proper sequencing. Ho

operation may be undertaken until the previous operation on

the product in the specified sequence has been completed in a

previous time period. For example, product J-j_ requires five

time units on machine Mj_ before its operation on M2 can be

75

started. This operation on machine M2 (two time units), in

turn, must precede the operation on machine M,. The form of

constraints is:

Mo : z zsJ- Mn :

:

h
2 - £ ^x

1

Mo:z Zz1 Mo:i

1=1

, Mt :z Iz1 Mi, :i

3 — 1=1 J

for all z = 1 to z = T
p

.

l|.3-2. The Objective Function . To find a solution to the

Mirl
L. P. problem, the variables, of the form J. , must have

values associated with them (many such values may be zero) . In

a sense, the objective is to have the final operations on all

the products performed as early as possible. Prior operations

such as those on machine Mo, will of course have preceded the

final operations. The following objective function is suggested

to be minimized.

Mj,:23 M 2 :23 Mx : 23
Objective function = 1(J-, + Jo + J,)

,
, Mi. :2\ M2 :2i4. M-,:2li

+ Mj-l*- + j2 + J
3

)

. , Ml :2$ M P :25 M-, :2$
+ 16 (J-,4 + J

2
2 ' + jl

)

,, . Ml,: 26 M 2 :26 Mi: 26
+ 61^(J1

^ + r
2
d + J

3

X
)

76

Tr , Mi. :T„ M? :T„ M n :T n ,+ KT (J 4 P + 3J- P + J, 1 Ppi l 3

where KT = i|Krp _]_ . The rationale of the objective function

is that it makes operations (the last one on each product)

toward the end of the time periods costly. The number of time

periods chosen in advance of solution may certainly be equal

to or less than the simple sum of all operation times (55), and

can be no less than the sum of operation times required on the

longest product (22). The cost associated with any operation

in a time period is a synthetic one equal to the sum of all

prior costs plus one. This exploding cost function thus forces

operations toward the beginning for economic reasons.

This model is also impractical due to computation problem.

This simple problem presented has 300 to 600 variables, depend-

ing on the number of time periods chosen the number equals

(products) x (machine) x time periods . The number of con-

straints will be even greater than this. The author does not

make any claim of the practicality of the method.

k-k- A Compact Formulation by Manne

Manne's (£6) formulation of integer L. P. model is most

compact of the three formulations and it might be computation-

ally practical in some cases. A proposal for the integer L. P.

to the typical job-shop scheduling problem is given. It in-

volves both sequencing and noninterference restrictions. It

is assumed that this sequencing problem involves performance

77

of 'n' tasks--each task is defined in such a way as to require

the services of a single machine for an integral number of time

units (say days). The problem is to draw up a plan for time

phasing the individual jobs so as to satisfy (1) sequencing

requirements, e.g., children must be washed before dried, and

(2) equipment interference problems, e.g., the one-year old and

three-year old cannot occupy the same bathtub at the same time.

(All parents will hope that each of these tasks can be performed

in less than a day.) The integer valued unknowns Xj_ are to

indicate the day on which the task i is begun (^ = 0, 1, 2,

. . . , D) . A schedule is to be drawn up so as to minimize the

'make span', i.e., the elapsed calendar time for the perform-

ance of all jobs--subject, of course, to the constraints upon

sequencing and machine interference and also subject to any

delivery date requirements on individual items.

i|..I|..l. Noninterference Restrictions . Let the jobs u and

v require au and av consecutive days, respectively. Then if

they are to be prevented from occupying the same machine at the

same time, we must require that one of the two must precede the

other by sufficient time so that the first one can be completed

before the second is begun; either

*u " xv> a
v> or else xv " *u> a u (Ij-.if-.l)

To convert this condition into a linear inequality in integer

unknowns we define a new integer valued variable y and write

down the following restrictions.

78

0— y =1

(D + au)(l - yuv) + (j^ - Xy)

(1+.4.3)

(il-.ij.-24-)

Condition (4.I4..2) insures that yuv = or 1. We already know

that xu - Xy D. The conditions (I4...4..3) and C i+ -
ii-

• i+) have

the following effect. If

<*u

the...

0, 1

1 f and

1

where the first set of values for y is implied by condition

(4.4.3) and the second set by condition Ci4_.i4_.i4.) .

Hence it is seen that if (x - x) = 0, there is no value

that can be assigned to yuv so as to satisfy both (4. 4, 3) and

(4.4.4). If (xu - xv) ^ 0, yuv will be set at a value of

either zero or unity, depending upon which job precedes the

other.

4.4.2. Sequencing Restrictions . If the job u is to pre-

cede job v, this means that job v is to be performed at least

au days later than u. The integer programming condition becomes

*u *v (J4_.i4-.Sa)

'Weak' precedence relations may be written in an analogous

fashion. For instance, in order to specify that both jobs i

79

and u precede v, but that there is no precedence restriction

affecting the performance of i and u, we would have

x
i

+ Bi~ x
v *u

+ au to xv C4.ii-.5b)

There might be a delay of exactly Lj^ days between the

performance of jobs u and v. For this restriction we will have

*u
+ au

+ Luv = x
v (k.k.Sc)

l4-.lj-.3- Specific Delivery Requirements . If the shop is

committed to the delivery of an individual job no later than a

specified date and if task u is the last task which the shop is

to perform upon the item and if the item is to be available on

day d , this form of requirement may be written

x
u
+a

u
^du (1^.6)

J-4 i^i Zj Overall Delivery Requirements . We shall employ

our minimum as "make span" or total calendar time required for

the completion of all the jobs. If this calendar time is de-

noted by t, the problem now consists of the minimization of t

with respect 'to nonnegative integers x and 7U„, subject to

constraints (L). . i_)_ . 2) to (1|..1|..6), and also subject to

Xu + au 4: t (u = 1, . . ., n) (k-k-1)

Prom the economic point of view, we should minimize the

dollar cost. But in minimizing "make span" we receive the fol-

lowing cost and profit benefits: (1) A lowered amount of in-

ventory tied up in work in process, (2) a shorter average cus-

tomer delay time, and (3) a lower amount of idle time incurred

prior to the performance of all currently booked jobs--i.e., a

greater capacity to take on additional work as new orders

materialize

.

80

li.'n..^. Computations . If all the slack variables and also

the mlniitiand t are excluded, the number of unknowns here is

equal to the total number of x^ plus yuv . If, then, there are

tn tasks and also pm possible conflicting pairs of machine

assignments, the total number of unknowns would be n + pm .

For example, we have five machines with ten tasks to perform
1

on each; here n = 50 (5 x 10) and p = - (5) (10) (10 - 1) = 225.

The total number of integer valued unknowns x^ and y would

come, therefore, to 275, an impressive computational load but

by no means an impossible one.

If Wagner's formulation is used, the total number of un-

knowns would come to about 600 ; again, slack variables and also

make span minimand are neglected. In general, Wagner's formu-

lation will require slightly more than twice the number of

unknowns than in Manne ' s proposal.

81

5.0. THE USE OF SCHEDULE ALGEBRAS
IN JOB- SHOP SCHEDULING

Most of the work in mathematical solution of scheduling

problems has been done by Giffler (21, 23, 2[j.) . We will show

more efficient ways to solve production scheduling problems and

how to simplify and reduce the effort required to write com-

puter programs. We will give some of the theory of scheduling

as given by Giffler (21) and then show how the theory is used

to define and solve the production scheduling problem which can-

not be solved by most other techniques available at the present

time

.

5.1. Precedes and Next Precedes Relations

In every scheduling problem there is an order system whose

elements are jobs to be scheduled. The basic order relation,

which connects the jobs or tasks, is called a precedes relation

and is designated by the symbol ^= . The word precedes here has

the same meaning as "must start before or at the same time".

The statement a ^ b means task a precedes task b.

The precedes relation £= includes the relation next pre-

cedes, designated by the symbol —_ . The statement a ^&- b is

taken to mean that task a next precedes task b , or, more

specifically, that there exists a transitive chain of relations

^ from a to b, which includes no other task as an inter-

mediary. Each precedes relation 4^ contains one or more chains

of zero or more next precedes relations ./_! . In Pig. 5.1, the

relation a ^ d consists of two chains of relations <C^-, namely,

82

a <gC b -4X g <<^ld and a ^21 d. The first of these chains is

said to be of level 3 and the second is said to be of level 1

since it has one relation £~ . Each precedes relation of a task

to itself is said to consist of one chain of level zero.

Each chain of (zero or more) relations <^-is quantified

by associating with it a number which is the minimum interval

of time necessary to traverse the chain. Thus with a one-level

chain a<iij-lb, we would associate a number which is the minimum

time after task 'a has started before task b can start.

We express the fact that task i does not next precede task

j by the notation

•& " •

The superscript (1) tells us we are talking about one-level

chains; the symbol tells us that there is no one-level chain

from i to j, or, in other words, that i does not next precede

j . If task i does next precede j, we would write that

(1)
fs. . = t . .

ij 1 J

where t . . is a minimum interval of time, after task i has

started, before task j can start. When t. . has zero magnitude

we write s. =
, and expression s. . =0 means that i ^~ j

.

The number U has immediate application in quantifying all

chains of level 0. We simply say that

(0)

Hi =
-

if i = j

= , if i/j

83

Pig. 5.1.

6J+

The above does not hold for chains of level greater than zero.

We Introduce the concepts of the "set of all chains of given

level" which connect two tasks. Set of all chains of level 1

point to j is written as (Sj*). This set will contain the num-

ber zero if i ^~ j, or it will contain one or more positive

numbers t..'s if i <4C j. We express the above as

(»j_V
= (t -s) i = j

= to) 1 4 j

The set of the times to traverse all chains of level 2 can be

obtained easily from the sets of the times to traverse all

chains of level 1,

We write that

for all k such that i -^ k -sglj.

Another and potentially more useful way to summarize the

(2)calculation of the set (s. .) is to write that

(s
ij) - ^7

U
ik) G (s

k1)

k ik w KJ

where Q is a symbol for multiplication, and multiplying

(s.,) and (s, .) means to add each entry in (s.,) to all

entries in (s) when they are both nonzero, and the summation

over k means to collect all the products into one set.

85

g.2. Schedule Algebras

We will discuss two special algebras for scheduling prob-

lems. The first of these two is equivalent to the conventional

matrix algebra and is called "schedule algebra", and the second

is equivalent in terms of its postulates to the conventional

matrix algebra of nonnegative matrices. The second algebra is

called "schedule-::- algebra".

The elements of schedule algebra are rectangular matrices

whose (i, j) entries are sets. We refer to the elements of

the algebra as matrices and enclose all symbols for matrices in

brackets. We refer to the sets as sets or element-sets and

enclose symbols for these sets in braces. We reserve the term

element to refer only to the individual entries in the sets.

Symbols for elements are never enclosed. The set \o \ , which

contains only the number zero, is said to be empty. A nonempty

set may contain any arithmetic numbers except that no two num-

bers may have precisely the same magnitude and opposite sign.

A number of zero magnitude is to be replaced by ± L.

For addition of matrices |_aJ and [_B] > we use © symbol

and it is done in a manner similar to the conventional algebra.

Precisely to add two sets we perform the following operations.

1. Collect the entries of both sets.

2. Replace by a zero all pairs of entries which have

the same magnitude and opposite sign.

3. If an entry remains which is not zero, suppress all

zeros. If all remaining are zeros, suppress all zeros

but one.

86

Example .

{l> - l) (-3]

i°J i°)

{-}
,1 1

i
J
j

} M
{l, -l, -oj (-3, 3}]_ [k3 *°j

Matrix multiplication in schedule algebra resembles conventional

matrix multiplication and is designated by the symbol

When there is no ambiguity we may write |A
j
Q bJ as a| IbJ;

note here that [_Aj has as many columns as j^B
J

has rows.

When multiplying elements the following rule is observed.

a b = + jbl = c if a and b have the same sign

= -c if a and b have the opposite sign

=0 if a or b is zero

The plus sign in the above rule indicates a conventional addi-

tion operation. Thus
(_,

(T\ a = a for all a and - I C~> a = -a

for all a ^ 0.

Example , f JAJ has two columns and JBJ has two rows

l<" -lj (l. Ij o

=
\{y, 1, -1, -2, 1, lj (o, 0, -2, -2J

Hi/, 0, -2, 1, lj \-2, -2j

(/, -2, 1, lj {"2j -2J I (suppressing the

zero)

87

Matrices in schedule algebra obey, with respect to (V and Q ,

the same postulates as do matrices in conventional matrix algebra.

The identity matrix in addition is written |_0 j
; all of its sets

are \QJ; that is, empty.

The identity matrix in multiplication is the square matrix

J_ I J having sets \ii ^ on the main diagonal and |_0J
elsewhere.

The matrix |_-I 1 is defined the same as [I except that its diag-

onal sets are {-(./j . Premultiplying and postmultiplying any

matrix by -I serves to change the sign of all nonzero ele-

ments in the matrix. Thus schedule algebra subtraction is de-

fined as follows.

[a] [b] = [a] |-ij [b

All the theorems in conventional algebra which depend solely

on the postulates of the algebra apply also in schedule algebra.

In certain problems it is convenient to change the rule for

matrix addition so that it becomes a maximizing operation. Then

our schedule algebra becomes schedule* algebra. Matrices in

schedule-:;- algebra have entries which are either zero or a non-

negative number (including iota). The symbol for scheduler-

algebraic addition is -:;-. The (i, j)*11 entry of the sum [a] -::- BJ

is max(a. . , b. .), where a^ . and b. . are the (i, j)
th

- entries of

A
J
and iBJ respectively.

The number in these maximizations is treated as though

it were negative infinity. The identity matrix for addition

in schedule-::- algebra is written
[_ j and has zero entries.

88

Example .

1
;

I 1

1

1 5

max'l, 0) max(0, l)

max fL, 1) max(l, 5)

1 1

1 5j

In this case multiplication of matrices is exactly the same

as in schedule algebra except that all additions which occur in

the matrix multiplications are to "be carried out according to

the maximization rule, defined above. The identity matrix in

multiplication is the square matrix I ij having entries o on its

main diagonal and elsewhere. Schedule-::- algebraic multiplica-

tion of matrices is denoted by the symbol }f .

Example .

1

L 1
//

1

1 3

max(l Q 0, . 1) max(l0l, . 3)1

max([, © 0, 1 . 1) max(U0 1, 1 . 3)J

max(0, 0) max(2, 0)

max(0, 2) max(l, Jj.)

5-3- Schedule Algebraic Formalizations

2

2 k

We define one-level (or next precedes) matrix S , whose

U, j) set

^ = Ct..-a), if i y^j

= (0) ifii.j (5.3.D

and zero level precedes matrix S° be square matrix with

(i, j) set

89

(sffl = (I), If i = j
1 J -1 (5-3.2)

= (0), ifi/ j

[s
J is, of course, the identity matrix j" I 1 .

r
(2)The set i a. . I of all two-level chains from task i to task

1 1J

j is the schedule algebraic sum of all ktn products, } s . , I (T\

s j i x.e.

i
s
ij j

- V i s
ik i G l

s
kj j

(5-3.3)

The above concept can be extended to general w level chains

from i to j. We may write

i-ili-t Wr kl
) e Hi'j

where k is nonnegative integer such that k^w. We designate

the set of lengths of all chains (of any level) from i to j by

symbol e^ , and write that

K,H#je>f4S:Ja...e(.<r}«-'-»
where X-::- is the maximum number of relations <^- in any chain

from i to j. We assemble the < 6. .\ into the matrix
| 9j and

write that

[e] = [ij © [s
1]©)/]® ... © (/] (5.3.6)

where \ is maximum of all A-"-. It is clear that Sk I
=

J
for

all kj> A. Also it is shown that equation (5-3.6) may be

written as

90

f'ej = [i s]"
1

(5.3.7)

The matrix |_9 |
summarizes all the restrictions on the

starts of j tasks which are the consequences of the relations

<^land the time intervals associated with these relations.

Each set {6. .)• contains (if not empty) the lengths of time to

traverse all chains of relations ^~ from i to j, and is a lower

bound on the closeness of the starts of i to j. The maximum

entry in the set is denoted by the symbol 0. . . It is the great-

est of the lower bounds and represents the shortest possible

interval of time which can separate the tasks' respective starts.

For the cases in which one needs to know only the maximum

chains connecting (i, j) pairs of tasks, it is possible to de-

fine a schedule* algebraic matrix I jzf , whose (i, j) entry is

the number $ (defined already), and to solve for this matrix

by using the equation

or, since

|V]=[l]* [sj#|y] (5.3.8)

In the above equations, an entry in Is is assumed to con-

tain, at most, one element, zero, if the set is empty, or the

maximum of the set. This assumption is implied in the use of

schedule-::- algebraic formalizations and is the reason that each

set is represented always by the entry it contains.

5^+1 = [Y

91

S-h' Determinate Scheduling Problems

The two basic types of scheduling problems considered are

(1) determinate problems, and (2) indeterminate problems.

The determinate problems are those problems in which the -

desired answers are implicit in the given data, e.g., problems

to determine start times of tasks if the order relations which

connect them and the time required to perform each task are .

given. Indeterminate problems have insufficient data to deter-

mine the answers and for which it is necessary to define func-

tions to generate the missing data, e.g., production scheduling

problems in which the order of performing tasks on facilities

is not given a priori but must be determined by the repeated

application of a schedule rule.

The determinate problem, as a type of problem, is similar

to a problem of solving a set of simultaneous equations in that

the answer (namely, the values of the unknowns) is implicit in

the equations.

5.^.1. Example of a Determinate Scheduling Problem . We

are given a set of n tasks and are told that certain pairs of

these tasks must be performed consecutively (i.e., without a

third task intervening), and we are given for each of these

pairs the minimum time interval, after the first task starts,

before the second can start. We are told, finally, when each

unpreceded task starts and are asked to find when all the tasks

start.

We note first that we are given the matrix , S J and a row

JO)vector |_T j, whose j
th entry, t , is the start time of task j,

92

if j is unpreceded, and is zero otherwise. If we let
J

T[with.

th
j entry t . be a row of the starting times which are to be

determined, then we can write

M-MfrM

= !>o] * LTos] * [t s][s] * [t s
2
JLs] *

. * S
X
]

T„SX-ltJLsJ

(5.1+.D

By making use of a special property of schedule-::- algebraic

addition, namely, that

[a] * [_A~) = [a] for all [a]

the equation (5.2j.. 1) can be put into the following form

M-K]

T
°l* [

T
°i!

s r HI1 * s
"i

where

and

1

(5-^.2)

To solve the given problem, we need only to solve equation

(5.1).. 2) and for this we need a computing algorithm. The follow-

ing algorithm is recommended by Giffler (61).

Step 1. Prepare a sequence of n boxes (or words) to be

called T. Place the given start time of an i task

in the i"1 box of T. Place a zero in all other boxes

of T. (The algorithm, as it precedes, will eventually

place the start of each task in its corresponding box

93

in T .)

Step 2. Prepare a triplet of boxes for each given the

next-precedes relation. In the first box of each trip-

let place the index i of the task which next-precedes;

in the second box place the index j of the task which

is next preceded; in the third box place the given min-

imum time t. ., after the first task starts, before the

second can start. Sequence the triplets, j indices

within i indices. Call this set of boxes N.

Step 3. Set an index K = and place this index in (or

next to) each i box in T which contains a nonzero

entry. Call the number attached to an i box the K
i

number of the box.

Step Ij.. Note the "left most" box in T with K i
= K; say

it is the i box. (Initially, all nonzero boxes will

have K< = 0) .

Step $. Add the entry in the i box above to the first

Li in N. Compare the sum with the entry in the j

box of T. If the sum is greater, replace the entry in

the j box by the sum and check the box. Repeat this

step with each j

b successive tjv

Step 6. Repeat from step 3 until there are no boxes with

K< = K. When this happens, increase the K^ number of

all checked boxes by one and uncheck; advance K to

K + 1 and repeat from step]\.. If there are no checked

boxes, transfer to OUT.

9^

OUT. When this step is reached, the i
th box in T will

contain the start time of the i task.

5. 5- Indeterminate Scheduling Problems

We say that a scheduling problem is determinate if the

answer which is sought is implicit in the given restraints of

the problem. A problem in contrast is indeterminate if the

restraints do not imply the answer, but at most a set of pos-

sible (or feasible) answers. To solve an indeterminate problem

one must first make it determinate. This is customarily accom-

plished in scheduling problems by specifying a rule for select-

ing next tasks to be performed; that is, when the next task is

not prescribed by (or implicit in) the given constraints. We

consider the indeterminate scheduling problems in the follow-

ing context.

1. There are n tasks to be performed. For each task there

ia specified a group of facility types which is needed

to perform the task. There may be one or more facili-

ties of each type available to perform the task.

2. Certain pairs of tasks must be performed consecutively.

For each of these pairs there is a given minimum time

interval after the first task starts before the second

can start.

3. Certain pairs of tasks, because they are to be per-

formed by the same facility type and possibly by the

same facility of the given type (i.e., on the same ma-

chine), may be performed consecutively. For each of

these pairs there is a given number which is the minimum

95

delay, after the first task in the pair starts, before

the second can start, if we assume, of course, that the

second task ultimately next follows the first task on

the same facility.

I).. For some tasks there will be given an earliest 'time

at which the tasks may be started.

5>. For each task the time (a number) for completion may.

be given.

The problem is to determine for each task, the particular

facilities which perform it and the time it starts. Also, if

time to perform the task to completion is given, the ending

Lime is determinable. To solve the problem we assume a rule

is given for determining which task is to be performed next.

We will give a mathematical solution to the problem using

schedule-::- algebra. We start by collecting information in items

th
1, 2, and 3 (above) into an open Sq matrix whose (i, j) entry

s ii
=

*ii i:f> it; ^ s Siven that i ^1 j

= t. ., x . . if it is possible that i Z^- j (5-5-1)

=0 if it is impossible that i -^-j

The variable x. . is given the value i, if tasks i and j are to

be performed consecutively by a same facility; otherwise, x. .

is set equal to 0. S • , is set equal to at the outset, if it

is given that i = j, that j si or j «^li, or if it is given

that i and j are to be performed by facilities of different

types, and it is not given that i A=- j. The information in

item I4. (above) is assembled into a row vector I Tq
j
whose j

96

entry is the earliest permitted start time of j, if this is

specified, and is zero otherwise.

The main use of information in item 5 (above) is to deter-

mine the completion time of tasks if their starting times are

given. This information does not require a special treatment.

Let us make a few assumptions for simplification.

1. There is exactly one facility of each type.

2. Each task requires exactly one of these facilities

for its performance.

3. The next tasks are selected to be performed by these

facilities by the FOPO (first off, first on) rule. In

our problem this rule means that each task selected to

be performed next by a facility must be that particular

task which will first make the facility (which performs

it) available to perform another task.

An iterative procedure for determining the starting time

of all tasks is given below. This procedure is imitative of

the one used in the case of determinate scheduling problem.

See equation (10)

.

Step 1. Construct the vector [TqI and the matrix as

described above.

Step 2. Locate null or potentially null columns in [Sq 1 .

A column is potentially null if it could be made null

by setting all x's (defined previously) in the column

equal to zero and striking all entries in rows of

tasks previously selected to start.

Step 3- Determine for each j task whose column was

97

located in step 2, a "test number" equal to the j"1

entry of the vector Tq 1 , increased by minimum coeffi-

cient of an x in the j tasks row in]Sq . These com-

puted numbers, called PACATS (facility available time),

are the earliest times that the facility which performs

j could be available to start a next task, if j were

to be selected to start next. Select j task whose .

calculated FACAT is minimum.

Step lj_. Updata [s
|

to lS]J as follows: (a) Set each i th

x^ -; in column j equal to zero; (b) set each x -y. (if

there are any) equal to y,-k (this change of variable

is explained in the following paragraph); (c) if there

is y^,-, set it equal to and all other y,, (if any)

equal to zero.

Step 5. Compute [t-jJ = [t
q]

--•

j

T
Q § S-J . In multiplying

[S-jJ by I Tq L treat all x. . as though they were 0,

all y. .'s as though they were iota.

The variables y are of transistory nature. They represent

the value which x^ may assume on its way to becoming an iota

or a zero. When j task is selected to start, we know imme-

diately the task which can no longer next precede it. We do

not, however, know the particular task (if any) which will next

follow it. This is the reason for the introduction of y '

s

since we only know that (possibly) one of the x .,. will be set

equal to iota and the others to zero. While the x .,
' s are in

this "status", we give them the name v., 's.
Jk

98

5.5.1. A Numerical Example . The following numerical ex-

ample will make the procedure clearer.

Two products are to be manufactured. The first product

is assumed to have been released at time iota; and second at

time 3- Each product requires for its manufacture the perform-

ance of three tasks. The interrelation of the tasks and their

relevant processing times are depicted in the flow diagrams of

Pigs. $.2 and $.3.

In the figures the numbers in the nodes identify the tasks.

The ordered triplet of numbers, which is placed to the right of

each node, has the following meaning. The first number gives

the facility-type needed to perform the task, the second number

is the minimum time, after task i starts, before the next task

can start, and the third number gives the minimum time, after i

starts, before the next task can follow i on the same facility.

Let us first construct the vector [Tq^ and the matrix |_Sq
j

.thsuch that i row and/or column represents i task. Each x

In Sq
J
is a different variable.

[t
]
= [l I o 3 o oj

L
so]

=

[See Pigs. 5-2 and 5.3.

)

max(2

,

lx) lx

1 1 X lx

2x 2x

lx 1 lx

lx lx 2

2x 2x (5-5.2)

99

2 (2,1,D

Fig. 5-2.

6
J

(2,2,2)

5 (1,2,1)

k- (2,1,1)

Fig. 5-3.

100

Having constructed I Sq 1 , we note that tasks 1, 2, and 1+ are

potentially null since all elements have an x factor, and have

respective FACATS of 1, 1, and 1|. Since tasks 1 and 2 are

tied, we select task 1 (arbitrary) to start. This act of sec-

tion changes]

S

Q 1 to

N

max(2j iy) c 1-3

1 lx lx

2x

lx 1 lx

lx 2

2x 2x (5.5.2)

All of the entries in the first column are zero; this was ob-

tained by changing the entries with variable x's to zero. And

for the first row, change the variable from x to y; the rest

of the elements are as before.

We compute [1-A = ! T
J

-«• [T ij- S-
l_]

an

[T-^^L 2 3 ^

d obtain

(5.5-3)

We now note that the tasks with potential null columns are 2

and Ij. (task 1 having started we overlook its row and column),

and that their FACATS happen to remain 1 and 1)., respectively.

Consequently we select task 2 to start next. This leads us

to f S
2

1

.

101

>2l

iax(2 ly) iy

1 iy ly

2x

c 1 lx

Ix 2

2x

Computing [t 2 1 =[T^J # It 1 -/]i"S2], we obtain

L

2j
I 3

(5.5-k)

f

S.S.S)

The tasks with potential null columns are now 3 and 1+. and have

FACATS \\. and 1±, respectively. We select task 3 to start and

change [

S

2 I
to

r 2

1 iy ly

2y

lx

2

2x

Computing I TN i

=
I T 2 J

[T
3
]=[t U

J

T 2 ±f Sj. I, we obtain

3 1+ &]

(5.5.6)

(5-5.7)

This time the only task with a potential null column is task 1]_.

Since there is only one selection, we will not compute PACATS.

Thus task 1+ is selected to start next and we change I So I to

102

hi

2

11
2y

i ly

2

-4Finding
JT^J

= T3
j

* [T34f
S^ we obtain

*]

The next task to start is task 5 and we get

*] ly

\\ -'
!

L 2 3 1;

(5-5.8)

(5-5.9)

(5.5-10)

(5,

which gives
|
Tg

|

N
The last task to be selected is 6. Its selection changes

to

5.11)

[35J

103

S6 =

2

1 1

2

1 1

2

We c ompute
[
T6 |

= f T5
]
*

[
T£ ^ S6], 01

[t 6]=[l 2 3 1* 6]

[5.5-12)

I T5I is the start time vector
j

T I. Each j entry of
j

T is

the starting time of the j tas*..

The solution of the above problem is presented as a

Gantt chart in Pig. 5.1+.

, lOlj.

Facility-
Type 1

Facility
Type 2

-»

S G

Fig. $.\. a^ and b^ are, respectively, the times
for which the facility types 1 and 2 are

occupied by the job i.

105

6.0. SUMMARY.

The job-shop scheduling problem is one of the most chal-

lenging problems which has been posed in operations research.

So far algorithms have been developed for the simpler cases.

Accurate solutions are available for problems not involving

more than two or three machines. Of course, there is no limit

to the number of jobs. We have reviewed the general problem of

processing n jobs, not all identical, through m machines of

different types. The processing time of each job on each ma-

chine and the order of scheduling each job through the machines

are known. Different procedures used to determine the order in

which the jobs should be fed through each machine, are developed

under extremely simplifying assumptions. Moreover, the formu-

lation of the problem itself is incomplete. We need procedures

for which the objective function involving cost or profit is

optimized instead of some function of time.

The total number of possible schedules for the above men-

tioned problem is (n!)
m

, some of which, however, may not be

feasible since the required operations must be performed in a

specified order. The algorithms developed direct us to an

optimal or approximately optimal schedule without enumerating

all or most of the possible schedules.

In most of the formulations the criterion used for optimi-

zation is idle time or make span, i.e., the total time required

zo complete the processing of all the given jobs on the given

set of facilities. This optimization means greater capacity

106

of the machines to take additional work. But this does not

necessarily minimize the cost of production or maximize the

profits. Thus the measure of effectiveness should be cost or

profit.

Further research is required in the following areas:

1. Regressing back to a machine (in real situations,

sometimes it is required to take the job back to a

machine that has been previously used on that job)

.

None of the procedures developed so far allows this.

2. Situations involving two machines such that the first

machine could do what the second could do but the

second could not do what the first could.

3. Sometimes the same job can be done on different ma-

chines but the processing cost on different machines

may be different. This is a typical L. P. allocation

problem without sequencing restrictions.

I4-. The job-shop scheduling problem should be treated as

one involving three major variables; namely, jobs,

machines, and operators. Where an operator may be

trained to work on some or all of the machines.

f>. In case of overtime work, which machines should be

scheduled for overtime.

6. Balancing of overtime costs and delay penalties.

7. Another possible criterion may be to offer regular work

to employees and minimize the overtime work. These

days it is common to have some kind of contract in

which no work pay is guaranteed. We should consider

10?

this aspect at the same time.

8. Kore work should be done in the overlapping of produc-

tion. In some situations it is possible to start pro-

duction of a given job on the second machine before

the completion of processing on the first machine.

So far the most fruitful approach to the complex scheduling

problems which occur in reality seems to be that of simulation

technique. It allows the experimentation of a system on paper.

With the absence of a model describing the behavior of the

system, we are not quite sure what outcome to expect if we

change its operating conditions. We cannot take the risk of

experimenting with the system itself. Thus simulation tech-

nique is used to test the decision rules without applying the

decision rules to the real situations. The best set of deci-

sion rules is then picked up. The fruitfulness of this ap-

proach is enhanced by the availability of high-speed -computing

equipment.

108

ACKNOWLEDGMENT

The author wishes to extend sincere appreciation to

his Major Professor, Dr. L. E. Grosh, for assistance given

in the preparation of this report, and to Dr. F. A. Tillman,

who suggested the topic and gave help and encouragement

during its preparation.

The author's thanks are also extended to Mrs.

Lola M. Crawford, who typed the report.

109

BIBLIOGRAPHY

1. Ackoff, R. L., B. L. Arnoff, and C. W. Churchman. Progress
In Operations Research . New York: John Wiley and Sons,
Inc., 1961.

2. Akers, S. B. , and J. Friedman. "A Non-numerical Approach
to Production Scheduling Problems, " Journal of Operations
Research Society of America , Vol. 3, November, 1955,
pp. k2V-Ut-2-

3. Akers, S. B. "A Graphical Approach to Production Schedul-
ing Problems," Journal of Operations Research Society ,

Vol. I+, March, 1956, pp. 2iJ+-21;5.

J+. Baker, C. T., and B. P. Dzielinski. "Simulation of a Sim-
plified Job Shop," Journal of the Institute of Management
Sciences , Vol. 6, January, I960, pp. 311-323.

5. Banerjee, B. P. "Single Facility Sequencing with Random
Execution Times," Journal of Operations Research Society ,

Vol. 13, May, 1965, pp. 3^'iW-

6. Barnes, W. E. "The Application of Computer Simulation to
Production Scheduling Research," l6th National Meeting of
the Operations Research Society of America.

7. Bellman, R. "Some Mathematical Aspects of Scheduling
Theory, " Journal of the Society of Industrial and Applied
Mathematics , Vol. a, September, 1956, pp. 165-205.

8. Bellman, R. E. "Combinatorial Processes and Dynamic Pro-
gramming, " Rand P - 1 2 8J4. , February, 1958.

9. Bellman, R. E., 8nd S. E. Dreyfus. "Applied Dynamic Pro-
gramming," Princeton University, Princeton, New Jersey,
1962.

10. Bellman, R., and 0. Gross. "Some Combinatorial Problems
Arising in the Theory of Multi Stage Process," Journal of
the Society of Industrial and Applied Mathematics , Vol. 2,
September, 1^51|, pp. I75-IB3T

11. Blake, K. R. , and W. S. Stopakis. "Some Theoretical Results
on the Job Shop Scheduling Problem, " Report M-1533-1,
United Aircraft Corporation Research Department, East
Hartford, Connecticut, July 1, 1959.

12. Bowman, E. M. "The Scheduling Sequencing Problem," Journal
of Operations Research Society , Vol. 7, September, 1959,
pp. 621-62^.

110

13. Brooks, G. H. , and C. R. White. "An Algorithm for Finding
Optimal or Near Optimal Solutions to the Production
Scheduling Problem, " Journal of Industrial Engineering ,

Vol. 16, January, 1965, pp. 3IR+-0 •

llj.. Churchman, C. W., H. L. Ackoff, and E. L. Arnoff. "Intro-
.

duction to Operations Research." New York: John Wiley
and Sons, Inc., 196l.

15. Conway, R. W. "An Experimental Investigation of Priority
Dispatching," Journal of Industrial Engineering , Vol. 11,

June, I960, pp. 221-230.

16. Dantzig, G. B. "A Machine Shop Scheduling Model," Journal
of the Institute of Management Sciences , Vol. 6, January,

I960, pp. 191-196.

17. Dantzig, G. B. "On the Shortest Route through a Network,"
Journal of the Institute of Management Sciences ,

Vol. 6,

January, 19557 PP- 167-190.

18. Dudek, R. A., and Teuton, Jr. "Development of M-Stage De-

cision Rule for Scheduling n Jobs through m Machines,"
Journal of Operations Research Society , Vol. 12, May, 19611.,

PPTT7T-W7.

19. Fisher, H., and G. L. Thompson. "Probabilistic Learning
Combinations of Local Job-Shop Scheduling Rules,"
Chapter 15 in reference (6l) .

20. Giffler, B. "Mathematical Solution of Explosion and Sched-

uling Problems," IBM Research Report RC-118, June 18, 1959.

IBM Research Center, Business Systems Research, Yorktown
Heights, New York.

21. Giffler, B. "Mathematical Solution of Production Planning
and Scheduling Problems," IBM ASDD Technical Report
09.026, White Plains, New York, October, I960.

22. Giffler, B. SIMPRO 1: An IBM 70i).-7090 "Simulation Program
for Planning Scheduling and Monitoring Production Systems,"
IBM ASDD Technical Report, December, 196l.

23. Giffler, B. "Schedule Algebras and their Use in Formulat-
ing General Systems Simulation," Chapter 1; in reference
(61).

2lj.. Giffler, B. , and G. L. Thompson. "Algorithms for Solving
Production Scheduling Problems," IBM Research Report
RC-118, Yorktown Heights, New York, June, 1959-

Ill

25. Giffler. B. , and G. L. Thompson. "Algorithms for Solving
Production Scheduling Problems," Journal of Operations
Research Society , Vol. 8, July, I960, pp. "587-503.

26. Giffler, B. , G. L. Thompson, and V. Van Ness. "Numerical
Experience with the Linear and Monte Carlo Algorithms for

Solving Production Scheduling Problems," Chapter 3 in

reference (6l)

.

27. Giglio, R. J., and H. M. Wagner. "Approximate Solutions to

the Three-machine Scheduling Problem," Journal of Opera -

tions Research Society, Vol. 12, March, 1961;, pp. 305-321)..

28. Gornory, R. E. "An Algorithm for Integer Solutions to

Linear Programs," Princeton-IBM Mathematics Research Pro-

ject, Technical Report No. 1, November 17, 1958.

29. Gomory, R. E. "All-integer Integer Programming Algorithm,"
Chapter 13 in reference (61).

30. Gomory, R. E. "Mixed Integer Programming Algorithm,"
unpublished Rand memorandum.

31. Eardgrave, W. W. , and G. L. Nemhauser. "A Geometric Model
and a Graphical Algorithm for a Sequencing Problem,"
Journal of Operations Research Society , Vol. 11, November,

1963, pp. 889-900.

32. Held, M. , and R. M. Karp. "A Dynamic Programming Approach
to Sequencing Problems," Journal of the Society of Indus -

trial and Applied Mathematics , Vol. 10, March, 196~2,

pp. 196^210.

33. Held, M., R. M. Karp, and R. Shareshian. "Scheduling with
Arbitrary Profit Functions," M. & A. -11, Data Systems
Division, Mathematics and Applications Department, IBM
Corporation, New York.

31+. Heller, J. "Combinatorial, Probabilistic and Statistical
Aspects of an M x J Scheduling Problem," Report NYO-251;0,

ABC Computed and Applied Mathematics Center, Institute
of Mathematical Science, New York University, New York,
February 1, 1959.

3^i. Heller, J. "Combinatorial Properties of Machine Shop
Scheduling," NYO-2879, Atomic Energy Commission Research
and Development Report, July, 1959.

36. Heller, J. "Some Numerical Experiments for an (M x J) Flow
Shop and Its Decision Theoretical Aspects," Journal of
Operations Research Society , Vol. 8, March, 19o0,

pp. 178-181;.

112

37. Heller, J. "Some Problems in Linear Graph Theory That
Arise in the Analysis of the Sequencing of Jobs through
Machines," Report NYO-98I4.7, AEC Computed and Applied
Mathematics Center, Institute of Mathematical Science,
New York University, New York, October, I960.

38. Heller, J. , and G. Logemann. "An Algorithm for the Con-
struction and Evaluation of Possible Schedules," Journal
of the Institute of Management Sciences , Vol. S,
January, 1962, pp. 165-163.

39. IBM Group. "The Job Simulator: An IBM 7OI4 Program," IBM
Mathematics and Applications Department, International
Business Machines Corporation, New York, New York, I960.

14.0

.

Ignall, E., and L. Schrage. "Application of the Branch
and Bound Technique to Some Plow Shop Scheduling Problems,

"

Journal of Operations Research Society , Vol. 13, May,
1965, pp. i+.O0-i4.12.

14.1. Jackson, J. R. "Notes on Some Scheduling Problems,"
Management Sciences Research Project, Research Report
No. 35, University of California, Los Angeles, October,
1954-

4-2. Jackson, J. R. "Scheduling a Production Line to Minimize
Maximum Tardiness," Management Sciences Research Project,
Research Report No. 43, University of California, Los
Angeles, 1955-

43- Jackson, J. R. "An Extension of Johnson's Results on Job
Lot Scheduling, " Naval Research Logistics Quarterly
Vol. 3, September, 1956, pp. 201-203.

44. Jackson, J. R. "Simulation Research on Job Shop Produc-
tion," Naval Research Logistics Quarterly , Vol. 4,
December, 1957^

45- Jackson, J. R. "Machine Shop Simulation Using SWAC : A
Progress Report, " Management Sciences Research Project,
Discussion Paper No. 67, University of California,
Los Angeles, April, 1958.

lj.6. Jackson, J. R., and Y. Kuratani. "Production Scheduling
Research: A Monte Carlo Approach," Management Sciences
Research Project, Research Paper No. 61, University of
California, Los Angeles, May, 1957.

14.7. Johnson, S. M. "Optimal Two- and Three-stage Production
Schedules with Set-up Times Included,

"

Naval Research
Logistics Quarterly , Vol. 1, March, 1954, PP. 61-65, and
Chapter 2 in reference (6l) .

113

[|.8. Johnson, S. M. "Discussion," Journal of the Institute of

K-.nagement Sciences , Vol. 6, April, 19^9, pp. 299-303-

J_l_9 . Kar-ush, W. "A Counter-example to a Proposed Algorithm for
Optimal Sequencing of Jobs,

"

Journal of Operations Research
Society , Vol. 13, March, 1965, pp. 323-325^

50. Karush, ¥., and L. A. Moody. "Determination of Feasible
Shipping Schedules for a Job Shop," Journal, of Operations
Research Society , Vol. 6, February, 1950, pp. 35-55-

51- Karush, ¥., and A. Vazsonui. "Mathematical Programming
and Service Scheduling, " Journal of the Institute of
Management Sciences , Vol. 3, January, 1957

•

52. Kuratani, Yoshiro, and Helson. "A Pre-computational Re-
port on Job-Shop Simulation Research," Management Sciences
Research Project, University of California, Los Angeles,
October, 1959.

S3- Kuratani and McKenny. "A Preliminary Report on Job Shop
Simulations Research," Management Sciences Research Pro-
ject, University of California, Los Angeles, March, 1958.

51+. Little, J. D. C, D. W. Sweeney, C. Karel. "An Algorithm
for the Traveling Salesman Problem," Journal of Operations
Research Society , Vol. 11, 1963, pp. 972-909.

55- Lomnioki, Z. A. "A Branch- an d-Bound Algorithm for the
Exact Solution of the Three-Machine Scheduling Problem,"
Onerations Research Quarterly , Vol. 16, March, 1965,
pp. 09-100.

56. Manne, A. S. "On the Job-Shop Scheduling Problem," Journal
of Operations Research Society , Vol. 8, March-April, I960,
pp. 219-223, and also in Chapter 12 in reference (6l).

57. McNaughton, R. "Scheduling with Deadlines and Loss Func-
tions, " Journal of the Institute of Management Sciences ,

Vol. 5, January, 19597 pp. 1-22.

58. Mitten, L. C-. "Sequencing n Jobs on Two Machines with
Arbitrary Time Lags, " Journal of the Institute of Manage -

ment Sciences , Vol. 5, April, 19597
_
PP- 293-298.

59. Mitten, L. G. "A Scheduling Problem,

"

Journal of Indus -

trial Engineering , Vol. 10, March, 1959, pp. 131-135-

60. Muth, J. F. "The Effect of Uncertainty in Job Times on
Optimal Schedules," Chapter 18 in reference (6l).

Ilk

61. Muth, J. P., and G. L. Thompson. Industrial Scheduling .

Englewood Cliffs, New Jersey: Prentice-Hall, Inc., 19o3,

Chapter 12.

62. Nelson, R. T. "Priority Function Methods for Job-Lot
Scheduling," Management Sciences Research Project, Uni-
versity of California, Los Angeles, Discussion Paper No. $1;
February 2b,, 1955-

63. Page, E. S. "An Approach to Scheduling Jobs on Machines,"
Journal of Royal Statistics Society B, Vol. 23, 1961,

pp. 14.0^-5:92

.

6I4.. Palmer, D. S. "Sequencing Jobs Through a Multi-Stage Pro-
cess in the Minimum Total Time--A Quick Method of Obtain-
ing a Near Optimum," Operations Research Quarterly ,

Vol. 16, March, 1965, pp. 101-107.

6p. Reinitz, R. C. "An Integrated Job Shop Scheduling Problem,"
Ph.D. Thesis, Case Institute of Technology, Cleveland,
Ohio, 1961.

66. Reinitz, R. C. "On the Job-Shop Scheduling Problem,"
Chapter 5 in reference (6l).

67. Roy, B. "Cheminement et Connexite dans les graphes -

Applications aux problemes d ' ordonnancement, " METRA,
Serie Speciale No. 1, 1962, Societe d'economie et de
mathematiques appliquees, Paris.

63. Rowe, A. J. "Toward a Theory of Scheduling," Journal of
Industrial Engineering, Vol. 11, March, I960, pp. 125-136.

69. Rowe, A. J. "Sequential Decision Rules in Production
Scheduling," General Electric Company, October, 1958-

70. Rowe, A. J., and J. R. Jackson. "Research Problems in Pro-
duction Routing and Scheduling," Research Report No. I4.6,

University of California, Los Angeles, October, 1956.

71. Salveaon, M. E. "A Problem in Optimal Machine Loading,"
Journal of the Institute of Management Sciences , Vol. 2,

April, 1956, pp. 232-260.

72. Salveson, M. E. "A Computational Technique for the Sched-
uling Problem," Journal of Industrial Management , Vol. 13,
January, 1962, pp. 30-lj.l.

73- Sasieni, Yaspan, and Friedman. Operations Research :

Methods and Problems. New York: John Wiley and Sons,
Inc., 1959.

H5

7lf. Sherman, G. R. "The Use of a Computer for Scheduling
Students," Speech before annual meeting of Operations
Research Society of America, Washington, D. C,
Kay lk-15, 1959.

75. Sisson, ?:. L. "Machine Shop Simulation Using SWAC : Part II

of a Proposal," Management Sciences Research Project,
Research Paper No. 58, May, 1956.

76. Sisson, R. L. "Sequencing Theory," Chapter 7 in

reference (1)

.

77. Sisson, R. L. "Method of Sequencing in Job-Shop--A Review,"
Journal of Operations Research Society , Vol. 7, January,

1959, PP- 10-29.

78. Smith, W. E. "Various Optimizers for Single-stage Pro-
duction," Naval Research Logistics Quarterly , Vol. 3,

March and June, 1956, PP- 59-66.

79. Smith, W. E. "Application of a Posteriori Probability,"
Management Sciences Research Project, Research Report
No. 56, University of California, Los Angeles, September,
1958.

80. Story, A. E., and H. M. Wagner. "Computational Experience
with Integer Programming for Job-Shop Scheduling,"
Chapter II4. in reference (61) .

81. Szwarc, W. "Solution of the Akers-Friedman Scheduling
Problem, " journal of Operations Research Society ,

Vol. 8, November, I960, pp. 702-780.

82. Thompson, G. D. "Recent Developments in the Job Shop
Scheduling Problem," Naval Research Logistics Quarterly

,

Vol. 7, December, I960, pp. 585-509.

83. Wagner, H. M. "An Integer Linear Programming Model for
Machine Scheduling," Naval Research Logistics Quarterly ,

Vol. 6, June, 1959.

81;.. White, C. R. "An Algorithm for Finding Optimal or Near
Optimal Solutions to the Production Scheduling Problem,"
Ph.D. Thesis, Purdue University, Lafayette, Indiana,
1963.

JOB-SHOP SCHEDULING

by

BALRAJ SINGH SONDHU

B. Sc . (Mechanical Engineering),
Panjab University, 1961).

AN ABSTRACT OP A MASTER'S REPORT

submitted in partial fulfillment of the

requirements for the degree

MASTER OP SCIENCE

Department of Industrial Engineering

KANSAS STATE UNIVERSITY
Manhattan, Kansas

1967

This report considers the problem of scheduling n jobs,

not all identical, on m machines. The sequence of jobs through

each machine and the processing times for all the jobs are

known. The historical method of Gantt charts is discussed and

algorithms are given which amplify the use of Gantt charts such

that the scheduling becomes dynamic in nature and some objective

function is optimized. Four different approaches, i.e., graph-

ical, combinatorial, integer linear programming, and schedule

algebras are presented. Accurate solutions are available for

problems not involving more than two or three machines. Of

course, there is no limit to the number of jobs. The general

problem has been treated under severely simplifying assumptions

and the solutions are only approximate. Moreover, the formula-

tion of the problem is incomplete. Different functions of time

have been optimized but an objective function involving cost

or profit should be optimized.

Even under the simplifying assumptions the amount of com-

putation required for solving a problem of reasonable size is

large. With the new high-speed computing equipment, it is pos-

sible to solve real life problems of scheduling. So far the

most fruitful approach to the complex scheduling problems which

occur in reality seems to be that of simulation technique. The

fruitfulness of this approach also is enhanced by the availabil-

ity of high-speed computing equipment.

