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Abstract: Many historical datasets contain a large number of zeros, and cannot

be modeled directly using a single distribution. Motivated by rain data from a

global climate model, we study a semiparametric mixture of binomial regression,

in which both the component proportions and the success probabilities depend on

the predictors nonparametrically. An EM algorithm is proposed to estimate this

semiparametric mixture model by maximizing the local likelihood function. We also

consider a special case in which the component proportions are constant while the

component success probabilities still depend on the predictors nonparametrically.

This model is estimated by a one-step backfitting procedure, and the estimates

are shown to achieve the optimal convergence rates. The asymptotic properties

of the estimates for both models are established. The proposed procedures are

demonstrated by modelling rain data from a global climate model and historical rain

data from Edmonton, Canada. Simulation studies show that satisfactory estimates

are obtained for the proposed models for finite samples.
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1 Introduction

It is of great interest to study the evidence and impacts of climate change from

weather data over periods of time that range from decades to millions of years

(Parmesan and Yohe 2003, IPCC 2007, Tebaldi and Sansó 2009, and Smith et

al. 2009). While historical weather data are often limited, massive amounts of

data for future weather can be generated from a global climate model.

Global climate models are mathematical models of the general circulation of

a planetary atmosphere or ocean. There are about 25 versions of global climate

models developed in different research centers across the world. Global climate

models are commonly used for simulating the atmosphere or ocean of the earth
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using complex computer programs. They are widely used for weather forecast-

ing, understanding the climate and projecting climate changes. The Geophysical

Fluid Dynamics Laboratory (GFDL) in the U.S.A. developed one global cli-

mate model and implemented some computer simulations (Delworth et al. 2006,

Gnanadesikan et al. 2006, Wittenberg et al. 2006 and Stouffer et al. 2006).
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Figure 1: The number of rain days per week in the Edmonton area, Canada in three

periods 1981-2000, 2046-2065, 2081-2100 based on the outputs of the GFDL’s global

climate model.

Figure 1 displays the number of rain days per week in the Edmonton area,

Canada in three periods 1981-2000, 2046-2065, 2081-2100 based on the outputs

of the GFDL’s global climate model. Although such count data might typically

be modelled using a binomial distribution, preliminary analysis indicates that

this variable does not follow a binomial distribution since too many weeks have

no rain days.

Motivated by the above example, we propose a semiparametric mixture of

binomial regression model

f(X(t) | π1(t), p(t)) = π1(t)Bin(X(t);N, 0) + π2(t)Bin(X(t);N, p(t)), (1)
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where Bin(X;N, p) is the probability mass function of a binomial distribution for

the variable X based on N trials with success probability p . The first component

is a degenerate distribution with mass 1 on 0. To make the model (1) identifiable,

we assume N ≥ 2; see Teicher (1961) and Lindsay (1995). Two nonparametric

functions, π1(t) and π2(t), are the proportions of zero component and binomial

component, respectively, under the constraint π1(t) + π2(t) = 1. The nonpara-

metric function, p(t), is the success probability in the binomial component. The

semiparametric mixture model (1) can be used to model many historical data

with extra number of zeros. For example, it may be used to model the number of

days per week having a forest fire, which are observed with many zeros in winter

seasons when no forest fires happen because of snow.

Mixtures of binomial distributions

π1Bin(x, p1) + . . .+ πmBin(x, pm) (2)

were first used by Pearson (1915) to model yeast cell count data. Since then,

mixtures of binomial distributions have been used in many fields, such as medicine

(Farewell and Sprott, 1988), biology (Brooks et al., 1997) and veterinary science

(Böhning et al., 1998). If the component specific probabilities pj ’s depend on

some predictors parametrically, then the model (2) is called “mixture of binomial

regression”. Mixtures of binomial regression models have wide applications such

as in medicine (Zhu and Zhang, 2004), in biology (Follmann and Lambert, 1989),

in marketing research (Wedel and DeSarbo, 1933 and De Soete and DeSarbo,

1991), in genetics (Zhang and Merikangas, 2000), in medical research (Lwin and

Martin, 1989), in the economics of labor markets (Geweke and Keane, 1999), and

in agriculture (Wang and Puterman, 1998). However, the conventional mixtures

of binomial regression models require strong parametric assumptions about the

pjs and cannot account for the dependence of πjs on the predictors.

The semiparametric mixture model (1) extends mixtures of binomial regres-

sion models by removing the parametric assumptions about the component pro-

portions and success probabilities. The two functions π1(t) and p(t) in the semi-

parametric mixture model are estimated using nonparametric smoothing meth-

ods such as kernel regression. We propose an EM algorithm (Dempster, Laird,

and Rubin, 1977) to maximize the local likelihood function, and prove that the

EM algorithm monotonically increases the local likelihood function. The conver-
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gence rate of the consistent estimates and their asymptotic normality are also

established.

In some cases, one may have some prior knowledge that the component

proportions are constant over t. Therefore, we also consider the following model

f(X(t) | π1, p(t)) = π1Bin(X(t);N, 0) + π2Bin(X(t);N, p(t)). (3)

The above semiparametric mixture model (3) requires one to estimate p(t) locally

and π1 globally. Therefore, it is difficult to estimate both p(t) and π1 efficiently.

We propose a one-step backfitting algorithm, in which π1 is first estimated glob-

ally given an initial consistent estimate of p(t) and then p(t) is updated given the

global estimate of π1. We show that the one-step backfitting estimates for both

p(t) and π1 achieve the optimal convergence rates, and the computation is much

more efficient than performing multiple iterations.

The rest of the paper is organized as follows. In Section 2, we introduce

the estimation procedure for both proposed semiparametric mixture of binomial

regression models. The asymptotic properties of the proposed procedures are

established in Section 3. The bandwidth selection is discussed in Section 4. In

Section 5, we demonstrate the proposed procedures by modeling the rain data

from GFDL’s global climate model and the historical rain data from Edmonton,

Canada. In Section 6, we use simulations to compare the finite sample perfor-

mance of the proposed two semiparametric mixture models with a non-mixture

model.

2 Methods

In this section, we introduce the estimation procedures and algorithms for the

two proposed semiparametric mixture models (1) and (3). In (1), both the mix-

ing proportion π1(t) and the success probability p(t) depend on the predictor

t nonparametrically. We propose to use a local likelihood criterion to estimate

π1(t) and p(t). An EM algorithm is also proposed to maximize the local likeli-

hood. In (3), the component proportion π1 is a constant parameter while the

success probability p(t) depends on the predictor t nonparametrically. There-

fore, we need to estimate π1 using global data but estimate p(t) using local data.

4



We propose a one-step backfitting procedure to achieve the optimal convergence

rates for both of the estimates of π1 and p(t).

2.1 Semiparametric mixture model with time-varying propor-

tions

The semiparametric mixture model (1) has two nonparametric functions to esti-

mate: the proportion of zero component π1(t) and the success probability p(t).

Kernel regression is applied to estimate these nonparametric functions. One

might also use other nonparametric smoothing methods such as local polyno-

mial, spline smoothing, and wavelets.

The two nonparametric functions, at any point t0, are estimated by max-

imizing the following local log-likelihood (Tibshirani and Hastie 1987 and Fan

and Gijbels 1996)

ℓ(θ(t0)) =
1

n

n
∑

i=1

Kh(ti − t0) log

[

π1(t0)I(xi = 0)

+{1 − π1(t0)}
(

N

xi

)

p(t0)
xi{1 − p(t0)}N−xi

]

, (4)

where θ(t0) = {π1(t0), p(t0)}T , xi is the measurement or observation for X(t) at

ti, i = 1, · · · , n, and Kh(·) = h−1K(t/h) is a rescaling of the kernel function K(·)
with the bandwidth h. In this article, we use the Gaussian kernel for K(·) for

the real data analysis in Section 5 and our simulation study in Section 6. The

choice of bandwidth h will be discussed in Section 4.

Note that there is no explicit solution to the maximization of (4). We propose

an EM algorithm to maximize (4). Define a vector of component indicator zi =

(zi1, zi2)
T , where

zij =

{

1, if (xi, ti) is from the j-th component;

0, otherwise.

Then the complete local log-likelihood function for the complete data {(xi, zi),

i = 1, . . . , n}, after omitting some irrelevant constants, is

lc(θ(t0)) =

n
∑

i=1

Kh(ti − t0)[I(xi = 0)zi1 log π1(t0)

+zi2 {log(1 − π1(t0)) + xi log p(t0) + (N − xi) log(1 − p(t0))}].
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Let y = {(x1, t1), . . . , (xn, tn)} and θ
(k)(t0) be the value of θ(t0) after the

k-th EM iteration. The E-step at the (k + 1)-th iteration requires one to find

E
θ

(k)
(t0)

(lc(θ(t0)) | y). Since lc(θ(t0)) is a linear function of zij, the E-step

is equivalent to finding the classification probabilities p
(k+1)
ij = E

θ
(k)

(t0)
(Zij | y),

where Zij is the random variable corresponding to zij . The M step at the (k+1)-

th iteration requires one to maximize E
θ

(k)
(t0)

(lc(θ(t0)) | y) with respect to θ(t0),

which has explicit solutions.

Let π
(k)
1 (t0) and p(k)(t0) be the value of π1(t0) and p(t0) at the k-th iteration.

The EM algorithm to maximize (4) at the (k + 1)-th step, for any given t0, is as

follows:

E step : find the classification probabilities given the current estimate

p
(k+1)
i1 =

π
(k)
1 (t0)Bin(xi;N, 0)

π
(k)
1 (t0)Bin(xi;N, 0) + {1 − π

(k)
1 (t0)}Bin(xi;N, p(k)(t0))

p
(k+1)
i2 = 1 − p

(k+1)
i1 , i = 1, . . . , n.

M step : update {π1(t0), p(t0)} by

π
(k+1)
j (t0) =

∑n
i=1Kh(ti − t0)p

(k+1)
ij

∑n
i=1

∑2
j=1Kh(ti − t0)p

(k+1)
ij

, j = 1, 2.

p(k+1)(t0) =

∑n
i=1Kh(ti − t0)p

(k+1)
i2 xi

N
∑n

i=1Kh(ti − t0)p
(k+1)
i2

. (5)

The above EM algorithm monotonically increases the local log-likelihood (4)

after each iteration, which is shown in the following theorem.

Theorem 2.1. Each iteration of the above E and M steps will monotonically

increase the local log-likelihood (4), i.e.,

ℓ(θ(k+1)(t0)) ≥ ℓ(θ(k)(t0)),

for all k, where θ(t0) = (π1(t0), p(t0)) and ℓ(·) is defined in (4).

The proof of Theorem 2.1 will be given in the supplementary file.
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2.2 Semiparametric mixture model with constant proportions

For the semiparametric model (3), the success probability p(t) needs to be esti-

mated locally but the constant proportion π1 can be estimated globally. There-

fore, it is not trivial to estimate both p(t) and π1 efficiently. In this section, we

propose a one-step backfitting procedure to estimate the model (3): π1 is first es-

timated globally given an initial consistent estimate of p(t), and we then update

the estimate for p(t) given the root n consistent estimate of π1.

We first introduce how to estimate π1 globally given an initial consistent

estimate of p(t). Let p̂(t) and π̂1 denote the initial consistent estimate of p(t) and

π1, respectively, which can be obtained by maximizing the local log-likelihood

(4). Since π̂1 is a local estimator, it does not have root n convergence rate.

To improve the efficiency, π1 can be estimated globally by maximizing the log-

likelihood (6) using the EM algorithm after replacing p(t) in (3) by the consistent

estimate p̂(t):

ℓ1(π1) =
1

n

n
∑

i=1

log

[

π1I(xi = 0) + π2

(

N

xi

)

p̂(ti)
xi{1 − p̂(ti)}N−xi

]

(6)

Denote π̃1 as the maximizer of (6). We will prove the root n consistency of π̃1 in

Section 3.2.

The EM algorithm to maximize (6) at the (k + 1)th step is as follows:

E step : find the classification probability given the current estimate

p
(k+1)
i1 =

π
(k)
1 Bin(xi;N, 0)

π
(k)
1 Bin(xi;N, 0) + π

(k)
2 Bin(xi;N, p̂(ti))

p
(k+1)
i2 = 1 − p

(k+1)
i1 , i = 1, . . . , n.

M step : update (π1, π2) by

π
(k+1)
j =

∑n
i=1 p

(k+1)
ij

n
, j = 1, 2.

Next, we can further improve the efficiency of the estimator for p(t) given

the estimate π̃1. Replacing π1 in (3) by π̃1, we propose to estimate p(t0), for any
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given t0, by maximizing the local likelihood function

ℓ2(p(t0)) =
1

n

n
∑

i=1

Kh(ti − t0) log

[

π̃1I(xi = 0)

+(1 − π̃1)

(

N

xi

)

p(t0)
xi(1 − p(t0))

N−xi

]

. (7)

Denote by p̃(t0) the resulting estimate of p(t0) by maximizing (7). Since π̃1 is a

root n consistent estimate of π1, the p̃(t0) has the same efficiency as if π1 were

known. Therefore, p̃(t0) will be more efficient than p̂(t0), which needs to account

for the uncertainty of π̂1 since p̂(t0) and π̂1 are estimated locally simultaneously

in (4). See Theorem 3.3 and 3.4 for more details.

An EM algorithm is proposed to maximize (7). The estimate for p(t0) is

updated at the (k + 1)th step as follows:

E step : find the classification probability given the current estimate

p
(k+1)
i1 =

π̃1Bin(xi;N, 0)

π̃1Bin(xi;N, 0) + (1 − π̃1)Bin(xi;N, p(k)(t0))

p
(k+1)
i2 = 1 − p

(k+1)
i1 , i = 1, . . . , n.

M step : update p(t0) by

p(k+1)(t0) =

∑n
i=1Kh(ti − t0)p

(k+1)
i2 xi

N
∑n

i=1Kh(ti − t0)p
(k+1)
i2

.

The ascending property of the above EM algorithm can be established along the

lines of Theorem 2.1, and is omitted here.

One may further employ the backfitting procedures with a full iteration be-

tween estimating π1 and p(t) (see, for example, Buja, et al. 1989, Hastie and

Tibshirani 1990, and Opsomer and Ruppert 1999) or profile likelihood approach

(Severini and Staniswalis 1994) to improve the efficiency. However, we will prove

in Section 3.2 that the one-step backfitting procedure achieves the optimal con-

vergence rate, but the computation is much more efficient than performing the

full iterations or profile likelihood approach.

The idea of one-step estimate has been used by many authors to simplify

the computation procedure but yet still provide optimal convergence rates for
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both global parameters and nonparametric regression functions for semipara-

metric modeling. See, for example, Carroll et al. (1997) for generalized partially

linear single-index model, and Li and Liang (2008) for generalized partially linear

model.

3 Statistical Theory

In this section, we will investigate the asymptotic properties of the proposed

estimates for the two semiparametric mixture models (1) and (3).

3.1 Semiparametric mixture model with time-varying propor-

tions

We first give the convergence rate of the consistent estimates π̂1(t) and p̂(t) for

the semiparametric mixture of binomial regression model (1) in Theorem 3.1.

The asymptotic normality results are given in Theorem 3.2 .

Theorem 3.1. Under Conditions A−D in the appendix, there exists a consistent

maximizer θ̂(t0) = (π̂1(t0), p̂(t0))
T for the local log-likelihood function (4), such

that
∥

∥

∥
θ̂(t0) − θ0(t0)

∥

∥

∥
= Op

{

(nh)−1/2 + h2
}

,

where ‖ · ‖ is the Euclidian norm, and θ0(t0) is the true value of θ(t0) =

(π1(t0), p(t0))
T .

The proof of Theorem 3.1 is given in the appendix.

Before showing the asymptotic normality of the parameter estimates in the

next theorem, some notations have to be defined. Let

f(x,θ) = π1Bin(x;N, 0) + π2Bin(x;N, p),

where θ = (π1, p). Define l(x,θ) = log f(x,θ) and

l1(x,θ) =
∂

∂θ
l(x,θ) , l2(x,θ) =

∂2

∂θ∂θ
T
l(x,θ) ;

G(t) = E{l1(X,θ0(t0)) | T = t} , I(t) = −E{l2(X,θ0(t0)) | T = t} . (8)

The moments of K and K2 are denoted respectively by

µj =

∫

tjK(t)dt and νj =

∫

tjK2(t)dt.
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Theorem 3.2. Under the conditions A−D in the appendix, the estimate θ̂(t0) =

(π̂1(t0), p̂(t0))
T , which is a local maximizer of the local log-likelihood function (4)

and satisfies the condition in Theorem 3.1, has the following asymptotic distri-

bution

√
nh

{

θ̂(t0) − θ0(t0) − b(t0)h
2 + op(h

2)
}

D−→ N
{

0, g−1(t0)I−1(t0)ν0

}

,

where g(t) is the marginal density of the time random variable T , and

b(t0) = I−1(t0)

{

G′(t0)g
′(t0)

g(t0)
+

1

2
G′′(t0)

}

µ2, (9)

The proof of Theorem 3.2 is given in the appendix.

3.2 Semiparametric mixture model with constant proportions

Let π̃1 and p̃(t0) denote the estimates for the semiparametric mixture of binomial

regression model (3) using the one-step backfitting procedure introduced in Sec-

tion 2.2. We first establish the root n consistency of π̃1 and give its asymptotic

distribution in Theorem 3.3. The asymptotic distribution of p̃(t0) is given in

Theorem 3.4.

Theorem 3.3. Under the conditions A − D in the appendix, if nh4 → 0,

nh2 log(1/h) → ∞, then the consistent estimate π̃1 of π1 has the following asymp-

totic distribution
√
n(π̃1 − π1) → N

(

0,I−2
π1

Σ
)

,

where

Iπ1 = −E

{

∂2f(x, π1, p(t))

∂π2
1

}

,

Σ = var

{

∂f(x, π1, p(t))

∂π1
− Iπ1p(t)ψ(t, x)

}

,

Iπ1p(t) = −E

{

∂2f(X,π1, p(t))

∂π1∂p

∣

∣

∣
T = t

}

,

and ψ(t, x) is the second entry of I(t)−1l1(x,θ(t)) .

The proof of Theorem 3.3 is given in the appendix. Theorem 3.3 indicates

that the bandwidth has to satisfy h = o(n−1/4), while the optimal bandwidth
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for kernel smoothing in the literature usurally satisfies h = O(n−1/5). In other

words, undersmoothing is required for p̃(t) in order to get the root n convergence

rate for π̃1. This condition is consistent with what has been found by Carroll et

al. (1997) and Li and Liang (2008).

Theorem 3.4. Under the conditions A−D in the appendix, the consistent es-

timate p̃(t0) has the following asymptotic distribution

√
nh

{

p̃(t0) − p(t0) − b̃(t0)h
2
}

D−→ N
(

0, g(t0)
−1Ip(t0)

−1ν0

)

,

where

b̃(t0) =
1

2g(t0)Ip(t0)

{

Γ′′(t0)g(t0) + 2Γ′(t0)g
′(t0)

}

µ2 ,

Γ(t) = E

{

∂f(x, π1, p(t0))

∂p

∣

∣

∣
T = t

}

,

Ip(t) = var

{

∂f(x, π1, p(t0))

∂p

∣

∣

∣
T = t

}

.

The proof of the Theorem 3.4 is given in the appendix. Note that Ip(t) is

the (2, 2) element of I(t) and Γ(t) is the second entry of G(t), where I(t) and

G(t) are defined in (8). Denote by I22(t) the (2, 2) element of I−1(t). Note that

1/Ip(t0) ≤ I22(t0). Comparing the results in Theorem 3.2 and 3.4, we see that

the one-step backfitting estimator p̃(t0) has smaller asymptotic bias and variance

than the estimator p̂(t0).

4 Bandwidth Selection

The nonparametric functions in the two semiparametric mixture of binomial re-

gression models are estimated using the kernel regression with some bandwidth

h. The theoretical optimal bandwidth can be obtained by minimizing the asymp-

totic weighted mean square error. A practical data-driven bandwidth selector is

also introduced based on the Nadaraya-Watson estimator. For simplicity of ex-

planation, we will focus on the semiparametric mixture model (1). The methods

are easily adaptive to the semiparametric mixture model (3).

Based on Theorem 3.2, one can see that the asymptotic bias of θ̂ is b(t0)h
2

and the asymptotic covariance is (nh)−1g−1(t0)I−1(t0)ν0. A theoretic optimal
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bandwidth for estimating θ(t0) can be obtained by minimizing the asymptotic

weighted mean squared error (MSE)

E

[

{

θ̂(t0) − θ(t0)
}T

W
{

θ̂(t0) − θ(t0)
}

]

=b(t0)
TWb(t0)h

4 +
ν0

g(t0)nh
tr

{

I−1(t0)W
}

+ op (an) ,

where an = {h4 + (nh)−1}, tr(A) is the trace of A, and W is a weight function.

Therefore, the theoretic optimal local bandwidth is

ĥopt(t0) =

[

tr
{

I−1(t0)W
}

ν0

4b(t0)TWb(t0)g(t0)

]1/5

n−1/5, (10)

where b(t0) is given in (9). If our main interest is p(t0), the weight function W

can be diag{0, 1}. If we are interested in both π1(t0) and p(t0), we can take

W = I(t0), which is proportional to the inverse of the asymptotic variance of

θ̂(t0).

Based on the asymptotic bias and variance, we can also derive a theoretic

global bandwidth selector by minimizing the asymptotic integrated weighted

mean squared error (MSE)

∫

E

[

{

θ̂(t) − θ(t)
}T

W
{

θ̂(t) − θ(t)
}

]

w(t)dt,

where w(t) is any weight function, such as g(t) or 1. Therefore the theoretic

optimal global bandwidth is

ĥopt =

[

ν0

∫

tr
{

I−1(t)W
}

g−1(t)w(t)dt

4
∫

b(t)TWb(t)w(t)dt

]1/5

n−1/5. (11)

Note that there are some unknown quantities in the formula (10) and (11).

Therefore, they are not ready to use in practice. One of the commonly-used

methods is the Plug-In idea (see, for example, Ruppert, Sheather, and Wand

1995), i.e., to replace the unknown quantities in the formula (10) or (11) by some

estimates. In addition, one can also use a cross-validation criterion to choose the

bandwidth, with a little more computation.

Noting that (5) is a conventional Nadaraya-Watson estimator if pi2 is either

0 or 1, we can also employ the existing bandwidth selector for Nadaraya-Watson
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estimator; see, for example, Rice (1984); Hurvich, Simonoff, and Tsai (1998),

based on some initial partition of the data into different components. The initial

partition, i.e., the classification probabilities, pij, can be estimated by assuming

π1(t) and p(t) are constant or polynomial functions of t. This simple initial fit

cannot guarantee a consistent estimate but is easy to implement and generally

works well. This idea of initial parametric fit has been used by Fan and Gijbels

(1996, Sec 4.2). Note that the nonzero observation xi must be from the second

component. The only uncertainty is the zero observations of x. Therefore, the

impact of misspecification of π1(t) and p(t) is very small. One can also iterate

the above procedure serval times to get a refined bandwidth. We will use this

bandwidth selection method in our simulations and real data applications.

5 Applications

The semiparametric mixture model is demonstrated using two applications. The

first application is modeling past and future rain data generated from GFDL’s

global climate model. The second one analyzes historical rain data from Edmon-

ton, Canada.

5.1 Rain data from GFDL’s Global Climate Model

GFDL’s computer simulation based on their global climate model generated rain

data at 128 grid points in longitude and 64 grid points in latitude over the whole

earth in three time periods: 1981-2000, 2046-2065, and 2081-2100. We choose a

grid point close to Edmonton, Canada, and analyzed the rain data at this grid

point. Figure 1 displays the number of rain days per week during the three time

periods. A rain day is defined as a day with more than 1 millimeter of rainfall.

The semiparametric mixture of binomial regression model (1) with N = 7 is used

to analyze the rain data from each of these three time periods. We will use the

bandwidth introduced at the end of Section 4 and the Gaussian kernel for K(·)
for our model (1). Similar choices are used for the other examples.

It is of great interest to estimate the trend of extreme weather when studying

the evidence of climate change. For the rain data, extreme weather includes

having zero rain days in one week (too dry) or having seven rain days in one

13
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Figure 2: The top and bottom panels show the estimated probabilities of having zero

and seven rain days in one week within the three time periods 1981-2000 (solid lines),

2046-2065 (dashed lines) and 2081-2100 (thick dash-dotted lines) , respectively.

week (too wet). The probabilities of having zero and seven rain days in one week

are calculated as P (X(t) = 0) = π̂1(t) + {1 − π̂1(t)}{1 − p̂(t)}7 and P (X(t) =

7) = {1− π̂1(t)}p̂(t)7, respectively. Figure 2 displays the estimated P (X(t) = 0)

and P (X(t) = 7) in the three time periods. The time period 2081-2100 has a

high probability of having zero rain days in one week, which is 22.0% on average.

The average probability of having zero days in one week in the time period 2081-

2100 increases 27.4% and 6.2% from the time periods 1981-2000 and 2046-2065,

respectively.

The time period 2081-2100 also has a high probability of having seven rain

days in one week, which is 0.26% on average. The time period 2081-2100 has

the average probability of having seven rain days in one week increasing 9.4%

and 84.0% from the time periods 1981-2000 and 2046-2065, respectively. This

indicates that we may have more extreme weather in the time period 2081-2100.
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Figure 3: The number of rain days per week in Edmonton, Canada during 1961-1993.

5.2 Historical Rain Data in Edmonton

Figure 3 displays the number of rain days per week in Edmonton, Canada during

1961-1993. We fit the rain data with the semiparametric mixture of binomial

regression model (1) with N = 7.

Figure 4 displays the estimates of the probabilities of having zero and seven

rain days in one week, which are denoted as P (X(t) = 0) and P (X(t) = 7),

respectively. The time period 1986-1987 is extremely dry, having the largest

probability of zero rain days in one week (21.1%) and the smallest probability of

seven rain days in one week (0.042%). On the other hand, year 1973 has extreme

rainfall, with the smallest probability of having zero rain days in one week (7.4%)

and the largest probability of having seven rain days in one week (0.200%).

We also fit the same rain data with the non-mixture model:

f(X(t) | p(t)) = Bin(X(t);N, p(t)). (12)

The above non-mixture model ignores the degenerate zero component and is

equivalent to the semiparametric mixture model (1) when assuming π1(t) ≡ 0.

As a result, it seriously underestimates the probability of having zero and seven
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Figure 4: The top and bottom panels display the estimated probabilities of having zero

and seven rain days in one week in Edmonton, Canada during 1961-1993, respectively.

The solid and dashed lines are the estimates from the semiparametric mixture model (1)

and the non-mixture model (12), respectively. The dotted curves are the corresponding

95% confidence intervals for the estimates from the semiparametric mixture model (1).

rain days in one week, which is around 5.9% and 0.046% for the whole time

period. In Figure 4, one can also see that the estimates from the non-mixture

model are almost flat. This is mainly because that the non-mixture model does

not have enough flexibility and cannot capture the variation of the data.

Parametric bootstrap is applied to obtain the 95% confidence intervals for the

probabilities of having zero and seven rain days in one week. It is implemented

as follows. The simulated data are generated from the semiparametric mixture

model (1) with N = 7 where the true π1(t) and p(t) are set as the estimates from

the real rain data. Then the semiparametric mixture model is estimated from

the simulated data in 1000 simulation replicates. The probabilities of having

zero and seven rain days in one week are calculated from the 1000 estimates of

the semiparametric mixture model. We then obtain the 95% confidence interval

by calculating the 2.5% and 97.5% quantiles of the 1000 probabilities of having

zero and seven rain days in one week. Figure 4 displays the 95% confidence
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intervals for the probabilities of having zero and seven rain days in one week.

The probability of having zero rain days in one week estimated from the non-

mixture model is under the lower confidence bound, which indicates that the

estimate of P (X(t) = 0) from the mixture model is significantly higher than that

from the non-mixture model.

6 Simulations

Simulation studies are implemented to evaluate the finite sample performance

of the estimation for our proposed two semiparametric mixture of binomial re-

gression models (1) and (3), and compare them with the non-mixture model

(12).
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Figure 5: The mean of the estimates for p(t) and π1(t) in the semiparametric mixture

model (1), which are both plotted in solid lines . The dashed lines are the true functions

p(t) and π1(t). The dash-dotted line is the mean of the estimates for p(t) in the non-

mixture model (12).

The simulated data are generated in two scenarios, the first based on the

semiparametric mixture model (1) and the second based on the model (3) . Both

scenarios set the true success probability function p(t) = 0.3(1.5 + cos(2πt)). In

17



the first scenario, the true π1(t) is a time-varing function: π1(t) = 0.2(1.5 +

sin(2πt)). In the second scenario, the true π1 = 0.4 . We evaluate the finite

sample performance by varying the sample size as small (n = 50), medium (n =

100), and large (n = 200). The times are generated at n equally-spaced grid

points in [0,1]. The models (1) and (12) are estimated from the simulated data

in the first scenario, and the models (3) and (12) are estimated in the second

scenario. The simulation is done with 100 replicates.

Figure 5 displays the mean of the estimates for π1(t) and p(t) in the semi-

parametric mixture model (1) in the first scenario. For comparison, we also add

the mean of the estimates for p(t) in the non-mixture model (12) . From Figure

5, one can see that the mean estimates of both π1(t) and p(t) in our proposed

semiparametric model (1) are very close to the true functions, while the mean

estimate of p(t) in the non-mixture model is smaller than the true p(t), which

becomes more serious where the true π1(t) is large.

When the data are simulated based on the first scenario, the estimates for

the semiparametric mixture model (1) and the non-mixture model (12) are sum-

marized in Table 1. The average absolute values of biases of p̂(t) using the

semiparametric mixture model are only 12%, 10%, and 7% of those using the

non-mixture model when the sample size is 50, 100, and 200, respectively. The

estimates using the semiparametric mixture model have slightly smaller average

standard deviations for p(t) than those using the non-mixture model. The semi-

parametric mixture model also reduces the average RMSE of p̂(t) by 53%, 60%,

and 68% than the non-mixture model when the sample size is 50, 100, and 200,

respectively.

When the data are simulated based on the second scenario, the mixture

model (3) is estimated using our one-step estimator and the traditional full iter-

ative backfitting algorithm. Table 2 displays the summary of the estimates. Both

algorithms have almost the same quality of estimates for p(t). The backfitting

algorithm has a slightly smaller RMSE for π̂1 than the one-step method, but the

one-step method takes less than half the time than the backfitting algorithm.

The non-mixture model (12) is also fitted to the same simulated data. The mix-

ture model (3) reduces the average RMSE of p̂(t) by 62%, 70%, and 77% than

the non-mixture model when the sample size is 50, 100, and 200, respectively.
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Table 1: The summary of the estimates for the semiparametric mixture model (1) and

the non-mixture model (12) when the simulated data are generated based on the model

(1). The true success probability function p(t) = 0.3(1.5 + cos(2πt)), and the true

π1 = 0.2(1.5+sin(2πt)). The last three columns are the absolute values of bias, standard

deviation (SD) and root mean squared error (RMSE) of the estimates for the models (1)

and (12), averaged over n equally spaced points in [0,1]. The non-mixture model (12)

is estimated with the Penalized Iteratively Reweighted Least Squares (P-IRLS) method

(see e.g. Wood 2000) using the “mgcv” package in R (R Development Core Team 2010).

n Model |BIAS| SD RMSE

50
Mixture

π1(t) 0.013 0.164 0.165

p(t) 0.017 0.080 0.082

Non-Mixture p(t) 0.137 0.100 0.173

100
Mixture

π1(t) 0.014 0.133 0.134

p(t) 0.013 0.059 0.061

Non-Mixture p(t) 0.132 0.069 0.152

200
Mixture

π1(t) 0.013 0.099 0.100

p(t) 0.009 0.044 0.045

Non-Mixture p(t) 0.132 0.047 0.142
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Table 2: The summary of the estimates for the semiparametric mixture model (3), and

the non-mixture model (12)when the simulated data are generated based on the model

(1). The true success probability function p(t) = 0.3(1.5 + cos(2πt)), and the true

π1 = 0.4. “|BIAS|”,“SD”,“RMSE” are the absolute values of bias, standard deviation (SD)

and root mean squared error (RMSE) of the estimates for the models (3) and (12), averaged

over n equally spaced points in [0,1]. The non-mixture model (12) is estimated with the

Penalized Iteratively Reweighted Least Squares (P-IRLS) method (see e.g. Wood 2000)

using the “mgcv” package in R (R Development Core Team 2010). The last column is

the computing time in seconds for 100 Simulations.

n Model Method |BIAS| SD RMSE Time

50
Mixture

π1

One-Step 0.032 0.074 0.081 1.656

Backfitting 0.011 0.075 0.076 3.890

p(t)
One-Step 0.010 0.077 0.078 1.656

Backfitting 0.009 0.079 0.079 3.890

Non-Mixture p(t) P-IRLS 0.178 0.104 0.207 7.407

100
Mixture

π1

One-Step 0.032 0.055 0.064 3.374

Backfitting 1.9e-5 0.060 0.060 7.412

p(t)
One-Step 0.011 0.057 0.059 3.374

Backfitting 0.009 0.058 0.059 7.412

Non-Mixture p(t) P-IRLS 0.182 0.073 0.197 8.625

200
Mixture

π1

One-Step 0.026 0.037 0.045 7.710

Backfitting 0.001 0.038 0.038 15.637

p(t)
One-Step 0.009 0.042 0.044 7.710

Backfitting 0.008 0.043 0.044 15.637

Non-Mixture p(t) P-IRLS 0.181 0.053 0.190 11.625

20



Appendix

In this section, we will provide a sketch of the proof of Theorem 2.1 and 3.3.

The proof of Theorem 3.1, 3.2, and 3.4 are very standard and are omitted here.

Please refer to the supplementary file for more detail.

Let g(t) be the density function for t. The following technical conditions are

imposed in this section. They are not the weakest possible conditions, but they

are imposed to facilitate the proofs.

Technical Conditions:

A π1(t) and p(t) has continuous second derivative at t0 and 0 < π1(t0) < 1 and

0 < p(t0) < 1. (For the constant proportion semiparametric mixture model

(3), we use the same assumption for p(t) and assume 0 < π1 < 1.)

B g(t) has continuous second derivative at the point t0 and g(t0) > 0.

C K(·) is a symmetric (about 0) kernel density with compact support [−1, 1].

D The bandwidth h tends to zero such that nh→ ∞.

Proof of Theorem 2.1.

Note that

ℓ(θ) =
1

n

n
∑

i=1

Kh(ti − t0) log f(xi,θ).

Hence,

ℓ(θ(k+1)) − ℓ(θ(k)) =

n
∑

i=1

log

{

π
(k)
1 B(xi, N, 0)

f(xi,θ
(k))

π
(k+1)
1 B(xi, N, 0)

π
(k)
1 B(xi, N, 0)

+
π

(k)
2 B(xi, N, p

(k))

f(xi,θ
(k))

π
(k+1)
2 B(xi, N, p

(k+1))

π
(k)
2 B(xi, N, p(k))

}

Kh(xi − x0)

=

n
∑

i=1

log

{

r
(k+1)
i1

π
(k+1)
1 B(xi, N, 0)

π
(k)
1 B(xi, N, 0)

+ r
(k+1)
i2

π
(k+1)
2 B(xi, N, p

(k+1))

π
(k)
2 B(xi, N, p(k))

}

Kh(xi − x0)
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Based on the Jensen’s inequality, we have

ℓ(θ(k+1)) − ℓ(θ(k)) ≥
n

∑

i=1

[

r
(k+1)
i1 log

{

π
(k+1)
1 B(xi, N, 0)

π
(k)
1 B(xi, N, 0)

}

Kh(xi − x0)

+r
(k+1)
i2 log

{

π
(k+1)
2 B(xi, N, p

(k+1))

π
(k)
2 B(xi, N, p(k))

}

Kh(xi − x0)

]

Based on the property of M-step of (5), we have ℓ(θ(k+1)) − ℓ(θ(k)) ≥ 0.

Proof of Theorem 3.3.

Let

f(xi, π1, p̂(ti)) = log

[

π1I(xi = 0) + π2

(

N

xi

)

p̂(ti)
xi(1 − p̂(ti))

N−xi

]

.

Based on a Taylor expansion of (6), we have that

√
n(π̃1 − π1) = B−1

n An + op(1).

where

An =
1√
n

n
∑

i=1

∂f(xi, π1, p̂(ti))

∂π1
and Bn = − 1

n

n
∑

i=1

∂2f(xi, π1, p̂(ti))

∂π2
1

It can be shown that

Bn = −E

{

∂2f(xi, π1, p(ti))

∂π2
1

}

+ op(1) = Iπ1 + op(1).

It can be shown that

An =
1√
n

n
∑

i=1

∂f(xi, π1, p(ti))

∂π1
+

1√
n

n
∑

i=1

∂2f(xi, π1, p(ti))

∂π1∂p
{p̂(ti) − p(ti)} +Op(d1n)

=
1√
n

n
∑

i=1

∂f(xi, π1, p(ti))

∂π1
+ Sn1 +Op(d1n).

where d1n = n−1/2||π̃1 − π1||2∞ = op(1). Based on the proof of Theorem 3.2 (see

supplementary file), we have

θ̂(ti) − θ(ti) =
1

n
g(ti)

−1I(ti)
−1

n
∑

j=1

Kh(tj − ti)l1(xj ,θ(ti)) +Op(dn2),
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Similar to Li and Liang (2008) and Carroll et al. (1997), we can prove that

n1/2dn2 = op(1) uniformly in ti, if nh2/ log(1/h) → ∞. Let ψ(tj , xj) be the

second entry of I(tj)
−1l1(xj ,θ(tj)). Since p(ti) − p(tj) = O(ti − tj) and K(·) is

symmetric about 0, we have

Sn1 =
1

n−3/2

n
∑

j=1

n
∑

i=1

∂2f(xi, π1, p(ti))

∂π1∂p
g(ti)

−1ψ(tj , xj)Kh(tj − ti) +Op(n
1/2h2)

= Sn2 +Op(n
1/2h2).

It can be shown, by calculating the second moment, that Sn2 − Sn3 = op(1),

where Sn3 = −n−1/2
∑n

j=1 ξ(tj, xj), with

ξ(tj , xj) = −E

{

∂2f(x, π1, p(tj))

∂π1∂p
| t = tj

}

ψ(tj , xj) = Iπ1p(tj)ψ(tj , xj).

By condition nh4 → 0, we know

An = n−1/2
n

∑

i=1

{

∂f(xi, π1, p(ti))

∂π1
− ξ(ti, xi)

}

+ op(1).

We can show that E(An) = 0. Define

Σ = var(An) = var

{

∂f(x, π1, p(t))

∂π1
− ξ(t, x)

}

.

Based on the central limit theorem, we can have
√
n(π̃1 − π1) → N(0,I−2

π1
Σ).
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