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Abstract 

As energy efficient devices become more necessary, it is desired to increase the 

efficiency of air conditioning systems.  Current systems use on/off control, where the unit 

primarily operates in the long lasting start up transients.  A proposed solution is an air 

conditioning unit that runs continuously with active computer control implemented to 

maximize efficiency.  The objective of this thesis is to develop a mathematical model for 

a specific air conditioning unit and to compare this model to measurements made on the 

specific unit.  This model can then be used to develop a multi-input multi-output control 

law in the future. 

In this thesis, a linearized moving interface lumped parameter model is presented, 

and the derivation verified with great detail.  The model predicts transient perturbations 

from a steady state operating point.  The air conditioner tested in this work required 

several modifications including the addition of sensors and controllers.  A description of 

the system is provided.  Methods used to determine all of the parameters for the model 

are given with explanation.  The model is simulated with computer software and 

compared with experimental data.  Simulations predict the final value of superheat and 

pressures in the evaporator and condenser well for step changes in the compressor speed 

and expansion valve opening.
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CHAPTER 1 - Introduction 

It is desired to develop a computer model of an air conditioning system to use to 

develop a control law.  Active computer control could yield systems with higher energy 

efficiencies.  The refrigerant system mathematical model should predict the dynamic 

transients of key system parameters.  These include values that can be used to calculate 

the coefficient of performance as well as the superheat.   It is important that the model be 

simple enough to develop a control law with, but still be accurate.  This thesis presents a 

model proposed by He (1996) in further detail and tailored to a specific air conditioning 

system.  It is a twelfth order linear state space set of equations.  The model can be used to 

determine dynamic perturbations from a steady state operating point as a result of 

changes in system inputs.  Inputs include: compressor speed, expansion valve setting, and 

both heat exchanger blower speeds. 

Previous work to increase efficiency of HVAC systems includes controlling air 

flow throughout buildings, single input control, and multi-input multi-output (MIMO) 

control.  Saboksayr (1995) presented a decentralized controller for multi-zone space 

heating and House (1995) optimized control of two-zone building with variable-air-

volume air handlers.  The work of Aprea (2004) varies the compressor speed with fuzzy 

control techniques.  In Cerri (1994), the expansion valve is controlled for optimal 

performance.  Jiang (2003) uses a Linear-Quadratic-Gaussian regulator for MIMO 

feedback control.  The various papers by He discuss nonlinear models of the heat 

exchangers, a linear model of a refrigeration cycle, a reduced linear model, a low-order 

linear model, and LQG control.  In He (1995), nonlinear control of the evaporator 

temperature is achieved with feedback linearization.  Nonlinear observers are 

investigated in Cheng (2004 & 2006).      

The Model Derivation Chapter of this thesis gives the form of the nonlinear heat 

exchanger equations as well as their linearized forms.  Using linear equations for the 

expansion valve and compressor, the evaporator and condenser models are coupled to 

produce a linear model of the complete air conditioner.  Appendices A, B, and C contain 
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the step-by-step derivation of all of the equations required for the model.  The result of 

Chapter 2 is a symbolic set of state space equations.  Chapter 4 presents numeric 

evaluations of parameters to complete the model for the particular air conditioner used in 

this project.   

A great deal of work was required for the experimental setup.  The Experimental 

Setup Chapter describes the setup and modifications made to the original system.  This 

includes the refrigeration components and measurement hardware and software.  Air flow 

meters were fabricated and calibrated as part of the setup. 

A results chapter shows the comparison between computer simulated and 

measured data.  Investigation of the values of some uncertain parameters is also done 

here.  The thesis concludes with a critical discussion of the model and possible 

corrections for future consideration.     
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CHAPTER 2 - Lumped Parameter Modeling 

Equations 

In this chapter the governing equations of the refrigeration loop are presented.  

The derivation follows the doctoral dissertation of He (1996).  This thesis is intended to 

demonstrate the derivation more completely.  In this moving interface lumped parameter 

model, the heat exchangers are broken up into nodes.  The evaporator has two nodes; a 

two-phase saturation region and a single phase superheated gas region.  The condenser 

has three nodes; a single phase superheated gas region, a two-phase saturation region, and 

a subcooled liquid region.  Three equations are derived for each node.  These equations 

represent mass and energy balances on the refrigerant and energy balances on the tube 

wall.  The general approach for deriving the refrigerant equations starts with the 

differential forms.  The conservation of mass or continuity equation applied to the 

refrigerant flow is 

 0=
∂

∂+
∂
∂=

z

u

tDt

Dm ρρ
. (2.1) 

Conservation of energy in general can be expressed as 

( ) ( )[ ] ( ) Quufquuhu
t

uue
&vvvvvvv

vv

+⋅⋅∇+⋅+⋅−∇=⋅+⋅∇+
∂

⋅+∂ τρρρ
5.0

5.0
, but is derived by 

MacArthur (1989) for refrigerant flow in a cylindrical tube to be of the form  

 ( ) ( ) ( )rwi
i

TT
D

uh
z

Ph
t

−=
∂
∂+−

∂
∂ αρρ 4

. (2.2) 

The capital D’s in the continuity equation represent a substantial derivative.  Symbol 

definitions are given as Di: inner diameter of tube, e: internal energy, f: body force vector, 

h: enthalpy, P: pressure, q: heat flux, Q& : heat generation rate, Tw: tube wall temperature, 

Tr: refrigerant temperature, u: velocity of the refrigerant, αi: heat transfer coefficient 

between tube and refrigerant, ρ: density, and τ: shear stress tensor.  The spatial length and 

time are given by z and t, respectively.  In order to write the conservation of energy as 

equation (2.2) it must be assumed that the one-dimensional form is appropriate, spatial 
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variations of pressure are negligible, viscous dissipation is negligible, and axial 

conduction is negligible.  MacArthur (1989) states that momentum equations are not 

required since the spatial variations of pressure and viscous dissipation are neglected.   

The differential conservation equations are first integrated over the cross-sectional 

area of the tube, and then integrated along the length of the node.  The conservation of 

mass equations from the evaporator nodes are combined to form one mass balance of the 

evaporator.  Likewise, the three mass balances of the condenser are combined to form 

one equation for the condenser.  The tube wall energy balances are derived starting with a 

conservation of energy equation expressed as 

 m
CV EQ

dt

dE
&& += . (2.3) 

where ECV is the energy of the control volume, Q&  is the net heat transfer into or out of  

the control volume, and mE&  is the energy transfer rate as a result of mass crossing the 

control volume boundary.  This sets the time rate of change of energy equal to the sum of 

the main net energy rates.  The main rates are considered to be from heat transfer and 

mass crossing the boundary, all other energy rates associated with the tube wall are 

assumed to be negligible.  

 The end result is five equations for the evaporator and seven equations for the 

condenser.  These equations are first order nonlinear ordinary differential equations.  

Later in this chapter, these equations will be linearized and combined with equations for 

the expansion valve and compressor to form a linear model of the complete loop. 

Key assumptions used in the derivation are given in the following list.  These are: 

1. The heat exchangers are long, straight, thin walled tubes.  The fins on the outside 

of the tube are assumed to create an effective heat transfer coefficient; therefore 

only the cylindrical shape of the tube is considered. 

2. Conduction in the axial direction is considered negligible. 

3. Average heat transfer coefficients can be used on each node. 

4. Average refrigerant temperatures of nodes can be used in heat transfer equations. 

5. Average tube wall temperatures can be used in heat transfer equations, and the 

temperature is constant throughout the thickness. 
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6. Pressure is constant throughout the length of both the evaporator and the 

condenser.  Therefore, saturated properties are constant over the length. 

7. Average lengths of nodes are used. 

8. The cross-sectional area of the two-phase region can be split into two sections, 

liquid and vapor. 

9. The mean void fraction is constant with time. 

10. The heat flux on either side of the transition points of the two-phase regions are 

the same.  This is not actually true due to the fact that the wall temperature of the 

real system is constant in the two-phase region and varying along the length of the 

single-phase region.  This assumption is required for the system to be 

approximated as linear. 

11. The density throughout the length of the subcool region of the condenser is the 

saturated liquid density. 

 

These assumptions were used in the dissertation of He (1996).  They result in a 

simplified model, which was shown to accurately predict transients associated with 

perturbations of system inputs.  Various other assumptions are involved; they are pointed 

out as they are used in the derivations.  Appendices A, B and C contain the in-depth 

derivation of the equations in this chapter. 

A schematic of the major components is on page 6 in Figure 2-1.  A pressure-

enthalpy diagram illustrated in Figure 2-2 on page 6 shows the thermodynamic processes 

involved with the loop.  As seen in the pressure-enthalpy diagram, the expansion valve is 

assumed to be a constant enthalpy process. 
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Figure 2-1 Refrigeration Loop Schematic 

 

 

Figure 2-2 Pressure-Enthalpy Plot 



 7 

Non-Linear Modeling Equations of the Evaporator 

The evaporator is separated into two nodes for this derivation.  Appendix A 

contains the complete derivations of the equations in this section.  A schematic showing 

the key parameters of the evaporator is shown in Figure 2-3.  Complete evaporator 

nomenclature is given on page ix. 

 

Figure 2-3 Evaporator Schematic 

The control volumes for the two-phase and superheat regions are denoted by cv1 

and cv2, respectively. 
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The conservation of mass equation for node one can be expressed as 

 ( ) int,,
1

1
1

1 eine
e

eve
e

e

e
e mm

dt

dL
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dt
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and for node two as 
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The overall mass balance equation of the evaporator is given as 
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The conservation of energy is derived to be 
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for the two-phase and superheat nodes, respectively. 

The energy balances on the tube wall for node one and two respectively result in  

 ( ) ( ) ( )1111
1

ewerieieweaoeo
ew

w TTDTTD
dt
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The average density in node one is defined to be  

 ( ) eveeLee ργργρ +−= 11 . (2.11)  
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The average density of node two is a function of the evaporator pressure and the average 

enthalpy in node two, ( )outeeve hhh ,2 5.0 += .  Since the enthalpy of saturated vapor is a 

function of pressure the average density in node two can be expressed as 

( )outeee hP ,2 ,ρρ = .  Similarly the average temperature is a thermodynamic function of 

the form ( )outeeer hPTT ,2 ,= .  More nomenclature is defined below. 
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Non-Linear Modeling Equations of the Condenser 

The condenser is divided into three nodes by phase.  The first node is a superheat 

region, the second a two-phase region, and the third a subcool region.  A diagram of the 

condenser’s parameters is in Figure 2-4, and condenser nomenclature is given on page xi.  

For complete derivation of the modeling equations see Appendix B. 

 

Figure 2-4 Condenser Schematic 

The control volumes for the superheat, two-phase, and subcooled regions are 

denoted by cv1, cv2, and cv3, respectively. 



 11 

The conservation of mass equation for node one, node two, and node three can be 

expressed as  

 [ ] 1int,,
1

1
1

1 cinc
c

cvc
c

c mm
dt

dL
A

dt

d
AL && −=−+ ρρρ

, (2.12) 
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3,2int, += && , (2.14) 

respectively.  The overall mass balance equation of the condenser is given as 
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The results from the conservation of energy on the refrigerant equations for node one, 

two, and three are given by  
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respectively. 
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The governing equations given by the conservation of energy on the tube walls 

can be written as 
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respectively.  The average density in node two is defined to be 

 ( ) cvccLcc ργργρ +−= 12 . (2.22)  

The average density of node one is a function of the condenser pressure and the average 

enthalpy in the node one, ( )11 , ccc hPρρ = , where ( )inccvc hhh ,1 5.0 += .  More 

nomenclature is given below.   

 

It is worth noting that the equations for the subcool region refrigerant mass,  

(2.14), and energy balance,(2.18), differ by an extra term from those derived by He 

(1996).  The extra term is
dt

d
AL cL

c
ρ

3  in (2.14) and ( )
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d
hhAL c
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(2.18).  The difference will also show up in the overall condenser mass balance, eq. 

(2.15), as
dt
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d
AL c

c

cL
c

ρ
3 . The refrigerant energy balance of node two, eq. (2.17), has the 

extra term ( )
dt

dP

dP

d
hhAL c

c

cL
cvcLc

ρ
−3 .  It was determined that the equations derived in 

this thesis would be equivalent to the He (1996) equations if the time derivative of 
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saturated liquid density in the subcool region was set to zero.  The effects of this 

difference are small, but it is retained to be consistent with the other modeling equations 

where this time derivative is not zero. 

Linear Modeling Equations of the Refrigeration Loop 

The model developed in this thesis is a linear model.  It will be able to predict the 

small perturbations from an operating point.  This is a reasonable way to model an air 

conditioner for computer control, provided the perturbations remain small.  Most likely 

the conditions of the environment and the state properties of the refrigerant will not be 

changing by large amounts when the control is being applied, so the model will still be 

valid.  A linear model allows for a simpler simulation, as well as a wider variety of 

possible control schemes. 

To obtain a linear model of the refrigeration loop, linear equations of the heat 

exchangers are coupled by linear equations for the compressor and the expansion valve.  

Derivations of these equations and elements of the matrices are presented in Appendix C.  

The linear equations of the evaporator and the condenser can be expressed in matrix form 

by 

 eeeeee uBxAxD δδδ ′+′=&  (2.23) 

and cccccc uBxAxD δδδ ′+′=& , (2.24) 

respectively. 

The states and inputs of the evaporator are given as  

[ ]Tewewouteeee TThPLx 21,1= and [ ]Teouteineinee mhmu ν,,, &&= , where eν  

is the evaporator blower setting. 

The states and inputs of the condenser are given as 

[ ]Tcwcwcwoutccccc TTThPLLx 321,21=  and [ ]Tcoutcincincc mhmu ν,,, &&= , 

where cν  is the condenser blower setting. 

To model the compressor and expansion valve, equations are written for the 

change in enthalpy at the exit of the compressor, and the change in mass flow rate 

through each device.  It is assumed that the enthalpy at the exit of the compressor is a 

function of the evaporator and condenser pressures as well as the inlet enthalpy.  The 
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compressor exit enthalpy is assumed to be equal to the condenser inlet enthalpy and the 

compressor inlet enthalpy is assumed to be equal to the evaporator exit enthalpy.  This 

leads to the equation ),,( ,, outeceinc hPPhh = .  The mass flow rate through each device is 

assumed to be a function of evaporator and condenser pressures and their respective 

control settings.  Recognizing that the flow rate through the compressor is equal to the 

flow rate out of the evaporator and into the condenser, the mass flow rate through the 

compressor can be expressed in the following form 

),,(,, compceincoutecomp uPPmmmm &&&& === , where ucomp is the compressor setting.  The 

mass flow rate out of the condenser and into the evaporator is the flow rate through the 

expansion valve, which can be written as ),,(,, valveceineoutcvalve uPPmmmm &&&& === , 

where uvalve is the expansion valve setting.  Taking the differentials of these equations 

results in the linear modeling equations of the compressor and expansion valve.  The 

change in mass flow rate through the valve is expressed by  

 valveceineoutcvalve ukPkPkmmm δδδδδδ 131211,, ++=== &&& . (2.25) 

The change in compressor outlet enthalpy and mass flow rate are given by 

 outeceincoutcomp hkPkPkhh ,232221,, δδδδδ ++== , (2.26) 

and compceincoutecomp ukPkPkmmm δδδδδδ 333231,, ++=== &&& , (2.27) 

respectively.  The kij coefficients are to be determined experimentally. 

The equations for the evaporator and condenser can be written in terms of system state 

variables and inputs.  This is done by replacing the inputs of the heat exchanger models 

with functions of the system states and inputs.  The system state variables are the states of 

the evaporator and condenser and the inputs are compressor setting, expansion valve 

setting, evaporator blower setting, and condenser blower setting.   

The complete linear model of the refrigeration loop in state space form is 
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where the system states and inputs are 
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With this set of state space modeling equations the transient responses of the air 

conditioner can be simulated.  Chapter 4 discusses the determination of parameters 

required to simulate the system and Chapter 5 presents a comparison of simulated and 

measured results.  
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CHAPTER 3 - Experimental Setup 

In this section the air conditioner and data acquisition used to develop the model 

are discussed in detail.  This will include modifications of the original air conditioner 

design, hardware of the system, and measurements and controls applied to the system. 

The unit is a modified version of a Technovate air conditioning and refrigeration 

education system.  It originally was a learning tool to observe, analyze, and change the 

characteristics of an air conditioner.  The basic setup of the Technovate remains.  It has 

been retrofitted to use R-134a.  Changes were also made to allow for a variable speed 

compressor, heat exchanger blower speeds, and expansion valve opening.  Sensors have 

been introduced to the system for computer measurements of pressures, refrigerant 

temperatures, air relative humidity and temperature, air flow rates across the heat 

exchangers, and flow rate of the refrigerant.  A picture of the current setup is in  

Figure 3-1. 

 

Figure 3-1 Picture of Setup 



 17 

At the onset of the project the air conditioner had not been fully assembled, 

refurbished, tested, or wired for computer measurements and control.  A great deal of 

time and effort went into refurbishing the looks of the unit, leak proofing the refrigerant 

lines, and eliminating noise from measurement signals.  A few repairs and modifications 

were required in order to achieve the final design.  Figure D-2 and D-3 on page 127 and 

128 illustrate the layout of the initial and final design respectively.  A list of parts is also 

given in Tables D.6 to D.8 starting on page 144. 

System Description of Components 

This section describes the experimental setup at its current state.  The evaporator 

and condenser have the same geometry.  Each are finned compact single route heat 

exchangers with twenty passes of ⅜” o.d. copper tubing.  They have slots for glass sight 

tubes at the entry, middle, and exit.  The middle tube allows for visualization of two-

phase flow.  The entry and exit glass tubes were replaced with copper tubes to avoid 

leaks.  Wooden boxes with a Plexiglas front enclose the heat exchangers.  Ducts at the 

top of the boxes connect to air flow meters.  Blowers for the heat exchangers are turned 

by ¼ hp 230 VAC three phase motors.  These motors are controlled by variable 

frequency drives.  Ducts connect the blower output to the inlet of the heat exchangers.  

The ducting and boxes are sealed so that all the air flowing out of the blower goes 

through the air flow meter.  The compressor is a belt driven single cylinder ¼ hp unit, 

driven by a ¾ hp 230 VAC three phase motor.  The motor is powered by a variable 

frequency drive similar to the blower motor’s drives.  The system has the capability for 

using one of two expansion devices, a stepper motor expansion valve rated at ½ ton of 

cooling or a capillary tube.  The size of the expansion valve opening is controlled with a 

temperature control board.  This board drives the stepper motor in the expansion valve to 

a desired setting using a reference voltage supplied by the computer.  All of the testing in 

this thesis utilized the stepper motor expansion valve. 

The unit can run in a few different configurations.  A flow reversing valve can 

change the direction of flow and switch the roles of the condenser and evaporator making 

the unit a heat pump.  A set of check valves throughout the loop allow for this change in 

flow direction.  Energizing and un-energizing the solenoid in this valve can be controlled 
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with a TTL signal from the computer.  For the work done in this thesis, the valve was 

always set to run as an air conditioner.  Flow can be directed through an accumulator at 

the exit of the evaporator; valves allow for bypassing this accumulator.  The purpose of 

the accumulator is to collect liquid refrigerant to protect the compressor.  It is specially 

designed to keep the refrigerant oil in circulation.  During testing it was determined that 

the accumulator affected transient responses to changes in system inputs in ways not 

consistent with the current model development.  Therefore, the system was always run 

bypassing the accumulator.  The refrigerant accumulator at the exit of the condenser can 

be used to store refrigerant as well as add or remove refrigerant from the main circulation 

loop.  It was not utilized in this work. 

Modifications to Original Design        

This section explains the modifications to obtain the current setup. The first and 

most important change was to upgrade the expansion devices.  There are two possible 

expansion devices, a computer controlled expansion valve and a capillary tube.  Initially, 

the goal was to operate the unit with the capillary tube and then get the expansion valve 

working.  A blockage in the loop became a reoccurring issue when using the capillary 

tube.  All of the components which were likely to clog up were replaced.  This included 

the filter dryer, capillary tube, and strainers ahead of and behind the capillary tube.  Also 

the solenoid valve used to close off the path to the capillary tube was replaced with a 

manual variable opening valve. Replacing the solenoid valve eliminated the ability to 

select the expansion device with a computer, but this was determined to be an 

unnecessary feature for the current work.  A manual variable valve ahead of the capillary 

tube will allow for some adjustment of the flow rate; it was not utilized in this work.   

The original design had a proportional solenoid valve as the variable expansion 

valve.  This component failed because it had a maximum pressure difference of 345 kPa.  

The air conditioner requires a pressure difference on the order of 700 kPa.  It also had 

VITON seals, which are not compatible with R-134a.  A stepper motor expansion valve 

replaced this faulty component.  This required additional plumbing, due to the different 

valve geometry. Changing the direction of the check valves around it was necessary, 

because the new expansion valve requires flow to go up through the device. 
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The refrigerant/oil separator and oil receiver at the exit of the evaporator were 

replaced by a suction line accumulator.  Originally, the system had the capability of 

adding or removing oil from circulation.  When the appropriate valves were open and 

flow went through the separator, oil would be removed from circulation.  The separated 

oil could then be put in the oil receiver and if desired put into the sump of the 

compressor, which would eventually lead to the oil circulating through the loop again.  A 

suitable fitting could not be found to connect the oil receiver to the compressor sump, so 

this oil separating feature could not be achieved.  Instead, the suction line accumulator 

was added.  This accumulator is designed for recirculation of oil while protecting the 

compressor from liquid. 

Thermocouple probes replaced the bimetallic dial thermometers of the original 

setup.  While visual verification of refrigerant temperature is important, it was deemed 

more important for the computer to have an accurate measure of refrigerant temperature. 

Measurements and Controls 

The system has measurements of refrigerant pressure, temperature, and flow rate.  

There are five pressure transducers; one at the inlet and exit of both heat exchangers and 

one at the exit of the compressor.  Thermocouple probes are near each of the pressure 

transducers.  Dial pressure gauges located at the inlet and exit of the heat exchangers give 

a visual verification that the computer measurements are reasonable.  A V-cone 

Flowmeter is positioned at the exit of the compressor.  This meter produces a pressure 

differential measured by the differential pressure transmitter.  This pressure difference 

combined with the line pressure and temperature can be used to determine a mass flow 

rate.  The meter was calibrated for gas, which is why it is located at the exit of the 

compressor.  It is guaranteed that the state of the refrigerant at output of the compressor 

will be gas.  Unfortunately, oil is also present in the flow and the flow meter never 

produced reliable measurements, likely because of the presence of oil.  Communication 

with the manufacturer of the V-cone confirmed that oil would lead to inaccurate flow 

measurements. 

Relative humidity and temperature sensors are located at the inlet and exit of each 

heat exchanger.  Air flow meters are positioned at the exit of the two heat exchangers.  
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These meters were constructed and calibrated as part of this project, and will be discussed 

in a later section of this chapter.  With these measurements the energy gained or lost by 

the air can be estimated. 

Thermocouples attached to the tubes of the heat exchangers give a rough estimate 

of the tube wall temperature.  The beads of the thermocouples were glued into place 

using epoxy.  This results in some insulation between the tube and the air.  The insulation 

lowers the local heat transfer; hence the temperature measured is too close to that of the 

refrigerant.  These thermocouple measurements were taken by a ten channel Omega 

Digital Thermometer. 

The system inputs include compressor speed, expansion valve setting, evaporator 

blower speed, and condenser blower speed.  Variable frequency drives control the speeds 

of the three motors.  They can either be controlled manually with the keypad or by a 0-10 

VDC reference signal.  The temperature control board uses a 0-10 VDC reference signal 

to control the valve opening.  All of the signals are referenced with respect to the analog 

out ground on the screw terminal boards of the data acquisition system. 

The manual or computer control switch plate allows the user to select the 

operation mode of each of the four components.  When a switch is to the left the 

corresponding device will be controlled manually, computer control is required when the 

switches are to the right.  In manual mode the operator uses the keypads of the variable 

frequency drives to control motor speeds.  The fourth, bottom, switch is for the expansion 

valve and is a little different.  In the left position the stepper motor expansion valve 

closes and the flow reversing valve solenoid is guaranteed not to be energized.  In this 

configuration the flow will go through the capillary tube and the unit will be in air 

conditioning mode.  When the switch is to the right the expansion valve opening is 

controlled by the reference signal from the computer, and the reversing valve can be 

controlled by a TTL signal. 

The measurements and controls are implemented using National Instruments data 

acquisition hardware and software.  The hardware includes two PCI-6024E DAQ cards 

coupled with two SC-2070 screw terminal boards.  The screw terminal boards have a 

cold junction reference to be used with the thermocouples.  The DAQ cards are installed 

in a PC with an AMD Athlon 902 Mhz processor, 512 MB RAM, and MS Windows XP 
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operating system.  National Instruments LabVIEW 8 software processes, records, and 

displays the measurements. 

Electrical Wiring 

The entire unit is powered by 120 VAC single phase, i.e. wall outlets.  Wiring 

diagrams are located in Appendix D starting on page 130.  The air conditioner and 

computer are connected to grounded plug 1.  The variable frequency drives for the 

blower motors are connected to grounded plug 2.  These drives are a terrible source of 

noise, it was determined that powering them separately reduced noise in the 

measurements.  These grounded plugs are then connected to extension cords that plug 

into wall outlets.  The air conditioner’s power from grounded plug 1 runs through the 

main switch, a watt meter, and to the power strip.  The watt meter does not measure 

power used by the blower motors.  It has a shunt so that it only measures half of the 

power used by the rest of the unit.  A switch below the meter allows for selecting low and 

high scales.  The power strip supplies the compressor speed controller, temperature 

control board, flow reversing solenoid, and DC power supply.  The reversing valve was 

not used in this work so it was never plugged into the power strip.   

With the 24 VDC from the power supply, a 24 to 5 VDC converter, and a 24 to 

±12 VDC converter all of the sensors get their required supply voltage.  Wiring of the 

sensors is fairly simple, power and ground wires run from the power bus to the device 

and signal wires are routed to the screw terminal board.  All of the sensors’ signals are 

referenced to their supply voltage’s ground so only one wire needs to be routed to the 

screw terminal board from each sensor.  Shielded wires were used in all cases to help 

eliminate the noise. 

The three variable frequency drives and the temperature control board use 

reference inputs from the computer.  Shielded wires carry the signal from the screw 

terminal board to the respective devices.  It is important to note the location where the 

shielding is grounded.  The blower motor frequency controllers require that the shielding 

be grounded only at the screw terminal board enclosure.  Grounding the shielding at the 

drive will add excessive noise to the computer measurements.  This is the opposite for the 

compressor motor speed controller; noise was less when the shielding was grounded at 
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the controller.  To avoid unnecessary measurement noise, the blower motors need their 

frames to be grounded at their respective frequency drive which is then grounded at the 

wall outlet.  The compressor motor frame should also be grounded at the motor 

controller.  Electrical isolation between the mounting bolts of the frequency drives and 

the main electronics box is also required to avoid a ground loop.  The proper grounding 

of the frequency drives enormously reduces the noise on computer measurements and is 

an absolute necessity. 

A ground bar connected to a solid ground line provides a reference for the 

computer measurements and the sensors.  The DC power supply, computer, screw 

terminal board enclosure, main electronics box, and copper refrigerant tubes are 

grounded at the ground bar.  The pressure transducers require that their cases be 

grounded.  These cases are connected to the refrigerant tubes, which makes them all 

electrically connected.  To avoid ground loops, only the case of one pressure transducer is 

directly connected to the ground bar. 

Most of the noise in the measurements is due to the variable frequency drives.  

The noise can be reduced greatly with proper grounding of the sensors, computer, 

frequency drives, motors, and shielding.  The grounding and shielding was iteratively 

changed until the noise was acceptable.  Appendix D wiring diagrams starting on page 

130 illustrate the proper grounding of the system. 

Software 

Measurements and controls are implemented using LabVIEW 8 software.  The 

software converts all of the sensor signal voltages to the proper measurement units, e.g. 

kPa for pressures.  Several of the signals are filtered by the software.  Measurements are 

plotted on charts and displayed numerically on the front panel, in addition they can be 

written to a file which is usable in MS Excel.  Control signals for the four system inputs 

are also generated by the virtual instrument.  The subcool and superheat are calculated 

and displayed continuously on the front panel.  A picture of the front panel of the virtual 

instrument is in Figure 3-2 on page 23. 
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Figure 3-2  Front Panel of Virtual Instrument 

All signals are displayed numerically.  Temperatures are in degrees Celsius, 

pressures are absolute and in kPa, air flow rates are in cubic feet per minute.  The output 

of the differential pressure transmitter is displayed in kPa.  In order to calculate a mass 

flow rate from this pressure, a complex formula and thermodynamic tables must be used, 

therefore the mass flow rate was not calculated on the fly.  The air temperatures, 

refrigerant pressures, refrigerant temperatures, subcool, and superheat are plotted versus 

time.  Refrigerant temperature and pressure at the compressor exit were not plotted, 

because they were not variables that needed to be tracked while operating the unit.  

Waveform charts help to determine when the air conditioner is at a steady state operating 

point.  A time span of ten or twenty minutes was commonly used.  To save space, 

abbreviations of C or Cond, E or Evap, Comp denote measurements related to the 

condenser, evaporator, and compressor, respectively.  Saturation temperature is 

abbreviated by Tsat.  The four controls are in the bottom left corner.  Motor speeds are 

input as the frequency that the variable frequency drives are desired to output.  The 
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expansion valve setting is simply a 0-10 VDC input.  Two additional inputs are tau, the 

time constant for the software filters, and the atmospheric pressure used to calculated 

total pressure from the gauge pressure measurements.  A time constant of one second and 

a nominal atmospheric pressure of 97.449 kPa (14.13 psi) were used in all instances.  

This nominal atmospheric pressure was measured on a local barometer once and was 

assumed not to vary significantly from day to day.  Users can input a distinct file name 

into the File Name box and use the enable/disable button for writing measurements to 

files.  A late light in the bottom right flashes when the virtual instruments did not finish 

all tasks on time during the last loop iteration.  The stop button shuts down the virtual 

instrument. 

All reference information for the virtual instrument is given in Appendix D.  

Figures D-10 and D-11 starting on page 137 illustrate the block diagram of the virtual 

instrument.  All of the tasks are placed in a timed while loop that starts every 100 ms.  

This time step was determined to be adequate for completing all of the tasks.  Two DAQ 

assistants, Board 1 and Board 2, take the measurements.  The thermocouple signals are 

taken in Board 2 and the rest are done in Board 1.  Channel assignments, DAQ assistant 

scales, and formula block equations are shown in Table D.3, D.4 and D.5 starting on page 

136, respectively.  An acquisition mode of one sample on demand was used in both 

assistants.  The board 1 signals are all reference single ended, meaning the voltage 

measured on a channel is referenced to the computer’s ground.  Custom scales created in 

the DAQ assistant convert voltages to measurement units in Board 1.  The sub virtual 

instrument (sub-vi) board_1_router.vi routes the measurements from Board 1 to be 

displayed, written to a file, or filtered.  Figure D-12 on page 139 shows the block 

diagram.   

Temperature signals are acquired in Board 2.  The DAQ assistant outputs the 

voltage from each thermocouple as well as the temperature measured by the cold junction 

reference.  The thermocouple channels are set to a differential terminal configuration and 

the cold junction is a referenced single ended input on channel 0.  The screw terminal 

board where the thermocouples are connected is configured to output the cold junction 

signal to channel 0.  A custom scale converts the cold junction voltage to a temperature in 

degrees Celsius.  The thermocouple measurements are converted to milli-volts with a 
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custom scale.  An offset voltage was added to each measurement.  This is because the 

differential channels where shown to measure approximately 0.12 mV when the channels 

were shorted.  This offset is enough to noticeably change temperature readings from a 

thermocouple.  The temperature signals are sent to a sub-vi, temperature processing.vi, 

where they are converted to degrees Celsius and filtered.  Figure D-17 on page 142 

contains the block diagram of the sub-vi.  To determine the refrigerant temperature from 

each thermocouple, the cold junction reference temperature is converted to a voltage, 

then added to the thermocouple voltage, and finally the sum is converted to a temperature 

in degrees Celsius.  The conversions are done with third order polynomials.  Both 

polynomials were curve fit to type K thermocouple reference table data over the range of 

-50 to +50 degrees Celsius. 

Several of the measurements had enough noise that a filter was required.  These 

signals include the pressures, refrigerant temperatures, differential pressure, and the air 

flow rates.  The signals are filtered inside of the sub-vi’s press processing.vi, flow 

processing.vi, and temperature processing.vi.  Figures D-15 to D-17 starting on page 140 

illustrate the block diagrams of these sub-vi’s. In all cases the first order filter is of the 

form  

 ( )∫ −=
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outinout dtVVV
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τ
, 

which can be approximated by 
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where the value of x is determined by 
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Time t is the current loop iteration and tt ∆−  is the previous loop iteration.  The time 

constant τ  determines the cut off frequency of the filter, this time constant can be 

changed in the tau numeric input on the front panel.  Vin is the raw signal and Vout is the 

filtered signal. 

The program calculates the subcooling value of the condenser and superheat value 

of the evaporator using the exit pressures and temperatures of the heat exchangers.  The 
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superheat is the exit temperature minus the evaporator saturation temperature and the 

subcooling is the condenser saturation temperature minus the exit temperature.  These 

values help in determining when the air conditioner is operating at a good set point.  By 

rule of thumb, five degrees Celsius of superheat is desired.  The saturation temperatures 

are calculated in the sub-vi sat temps.vi, shown in Figure D-13 on page 139.  It contains 

two formula blocks that use a polynomial for saturation temperature as a function of 

pressure.  The polynomials were curve fit to saturation tables over the range of 685 to 

1105 kPa for the condenser and 170 to 380 kPa for the evaporator. 

The sub-vi file_writing.vi, depicted in Figure D-14 on page 140, writes the 

measurements to the user specified file name when the enable/disable button is enabled.  

For filtered signals, only the filtered values are written.  Measurements are written once 

for every ten iterations, which is once per second.  This is accomplished by finding the 

remainder of the current loop iteration number divided by ten.  When the remainder is 

zero and the button is enabled the current measurements are written.  

Motor speed and valve setting inputs are converted to a 0-10VDC value and sent 

to DAQ assistants to output the voltage to the controllers.  The motor speed conversions 

are linear where 0 Hz corresponds to 0 VDC and 60 Hz to 10VDC.  In the case of the 

valve setting no conversion is needed.  The Valve and Comp assistant handles the 

expansion valve setting and the compressor motor while the Fans assistant controls the 

blower motor control signals.  Each DAQ assistant is set for a generation mode of one 

sample on demand.   Channel assignments are shown in Table D.3 on page 136. 

Air Flow Rate Meters 

In order to measure the flow rate of air through the heat exchangers two flow 

meters were constructed and calibrated.  These meters are turbine meters that generate a 

frequency which is then converted to a voltage.  The basic design is a propeller blade 

mounted inside of a six inch diameter tube with an infrared emitter upstream of the blade 

and a detector downstream.  When the blade rotates it periodically breaks the path 

between the emitter and detector creating an on/off signal with a frequency proportional 

to the flow rate.  A chip and surrounding circuit convert the generated frequency to a 

voltage.   
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The propeller blade is connected to a shaft that rotates on a bearing mounted on 

an axial fan casing.  The casing is bolted to the six inch diameter PVC tube, and then 

silicone sealed to assure that all flow goes through the inside of the casing.  A flow 

straightening mesh is upstream of the blade to achieve more accurate measurements.  The 

setup is illustrated in the sketch in Figure 3-3. 

 

Figure 3-3 Air Flow Meter Sketch 

To generate a frequency, the emitter/detector circuit is wired to output 5 VDC 

when the path is open and 0 VDC when the path is broken.  This frequency is converted 

to a voltage by a frequency to voltage chip and surrounding circuit.  The surrounding 

circuit was constructed as per the applications specification sheet for the chip.  The chip 

used is a VFC32KP manufactured by Burr-Brown.  A digital flip-flop was added to clean 

up the emitter/detector signal.  This chip creates a discontinuous on/off signal that the 

frequency to voltage chip requires.  The signal directly from the detector would not work.  

Also an op-amp was added to the output signal.  Without the op-amp the output voltage 

would change without a change in flow rate when the variable frequency drives were 

turned on.  There are also numerous bypass capacitors added to the supply voltages to 

filter out AC voltages due to the blower motor controllers’ noise.  It is important that the 
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shielding of the output signal wire be grounded at the screw terminal board and 

connected to the ground of the frequency to voltage converting circuit board.  The output 

voltage will occasionally drop for no apparent reason without this special grounding.  A 

wiring diagram is located in Appendix D on page 134. 

Calibration of the meters was required to convert the output voltage into a flow 

rate.  The meters were put in series with a calibrated vane anemometer.  A set up of the 

calibration is shown in Figure 3-4, which is not to scale.   

 

Figure 3-4 Air Flow Meter Calibration Setup 

The voltage output of the meters and the measured flow rate were measured for 

several flow rates.  Pressure measurements were taken ahead of and behind the flow 

meters, the pressure was never more than an inch of water different than atmospheric 

pressure in the room.  Therefore, effects of pressure difference were ignored.  To adjust 

the flow the inlet of the blower was covered by varying amounts.  The output voltage was 

averaged over approximately fifteen seconds with a sample period of 100 ms for each 

data point.  The output of the vane anemometer was read from its digital display as a 

magnitude of velocity.  The magnitude of velocity was later converted to a volumetric 

flow rate for the calibration.  This calibration was done over the range of 50 to 260 cubic 

feet per minute, the blower could not source any more flow than this.  Although the 

meters will need to measure flow rates up to 340 cfm, the calibration was quite linear and 

should be okay for slightly higher flows.  A plot of the calibration points and deviations 

are shown in Figure 3-5 on page 29.  The meters are named after the heat exchanger that 

they will be used with.  The total uncertainty was determined to be about two percent at 

300 cfm.  Results of the linear regression calibration and uncertainty analysis are located 

in Appendix D on page 146.  
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Figure 3-5 Calibration Plots   

The deviations are the difference between the voltages calculated with the linear 

regression equation and the measured voltage.  The equation for the evaporator curve fit 

is 334.0016.0 −= FV , and the condenser’s is 159.0015.0 −= FV .  The symbols V and F 

represent the voltage in Volts and flow rate in cubic feet per minute, respectively. 
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CHAPTER 4 - Determination of Modeling 

Parameters 

Numerous parameters are needed to fill out the terms of the state space modeling 

equations.  Throughout this thesis the term parameter will refer to quantities that appear 

directly in the linear modeling equations.  This chapter will cover in detail determination 

of these parameters.  The values are measured, calculated, evaluated from 

thermodynamic relationships, or determined experimentally.  The parameters will be 

broken into three sections according to which set of heat exchanger matrices the numbers 

go into (i.e. mutual, evaporator, and condenser).  Parameters in the mutual section appear 

in matrices for the evaporator and condenser. A complete listing of the parameters and 

their values is located in Appendix E starting on page147.   

Mutual 

Values that can be measured directly include the inside and outside diameter of 

the tubes and the total length of the heat exchangers.  The total length was chosen to only 

include the finned tubes, because this is where most of the heat transfer takes place.  

Also, the model was derived based on the assumption of considering only these sections.  

The cross-sectional area inside of the tube can be determined from the inside diameter.  

Also, the cross-sectional area of the tube wall can be calculated based on the inside and 

outside diameters.  The specific heat and density of tubes can be found in a table for the 

properties of copper. 

There is no direct measurement of the refrigerant mass flow rate, since the oil 

affects the V-cone measurement.  The mass flow rate must be backed out by an energy 

balance on the heat exchangers.  The condenser should produce more reliable results, 

because there will not be a change in the humidity of the air.  Equating the heat transfer 

of the air and refrigerant yields ( ) ( )outcincrefinairoutairairpair hhmTTcm ,,,,, −=− && . 
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Solving for the mass flow rate of the refrigerant,refm& ,  
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The enthalpies will be discussed in the condenser section of this chapter.  Inlet 

and exit air temperatures are measured values and represented symbolically as Tair,in and 

Tair,out, respectively.  The specific heat, cp,air, can be found in a table.  The average of inlet 

and exit temperatures was used for the specific heat value.  Volumetric flow rate of air is 

measured and the mass flow rate, symbolicallyairm& , is simply the density multiplied by 

the volumetric flow rate.  The density of air at the average temperature was obtained from 

tables just as with the specific heat. 

The coefficients of the linear expansion valve and compressor modeling 

equations, (2.25), (2.26), and (2.27), were determined experimentally.  The testing 

procedure went as follows: 

1. Start up the air conditioner and let it reach a steady state operating point. 

2. Record data for about twenty minutes at the steady state. 

3. Continue recording data and apply a step change to a single input, the 

valve opening or compressor speed. 

4. Record data until the system reaches a new steady state. 

5. Determine the change in mass flow rate, evaporator pressure, condenser 

pressure, condenser inlet enthalpy, and evaporator exit enthalpy. 

6. This is done a sufficient number of times to perform a least squares fit, 

which is described in a later paragraph. 

From the initial start up, the air conditioner was given forty minutes to reach its 

steady state.  It is worth noting that steady state does not mean that all of the properties of 

the system are constant.  Steady state will be characterized by the properties having a 

fairly constant average value over time.  The properties will always oscillate.  This is due 

to the nature of condensing and evaporating two-phase flow.  The new steady state is 

defined as the point where the system states level out for the first time.  Generally, the 

system will respond very deliberately to an input.  Properties will follow a smooth path to 

their new values, often times including overshoot and damping.    Then things will level 
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off for awhile.  The usual time frame for leveling off is five to ten minutes.  As time goes 

on the states will start roaming and oscillating.  This roaming cannot be predicted by the 

model and therefore will not be considered.  The plots in Figure 4-1 illustrate this 

phenomenon.  They show the exact same response measurements over two different time 

frames. 

 

Figure 4-1 Long Term and Short Term Transient Responses 

The changes were evaluated between the average values during the twenty minute 

steady state point and the average values during the initial stable point after the change in 

input.  The second average period was between five minutes and ten minutes after the 

step change.  At this point a least squares method can be used to determine the 

coefficients for equations (2.25), (2.26), and (2.27).  A least squares fit was done for each 

equation separately using test results from both expansion valve and compressor initiated 

transients.  All of the tests were done to increase the superheat.  Initial testing that 

decreased the superheat often led to losing all superheat, which is bad for the compressor.  

Input step changes must be large enough to have measurable effects, but not so large that 

the system cannot be approximated as linear. 

Several tests were done, but some of them were not used in the least squares fit.  

Occasionally tests results were not good because of changes in the room temperature, 

which has an influence on the refrigerant pressures due to the fact that pressure is a 

function of temperature in the two-phase regions.  For instance, the condenser pressure 

can rise by twenty seven kPa for a one degree Celsius temperature increase.  Similarly, in 

the evaporator the pressure rises by twelve kPa per degree Celsius.  These changes are of 
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significance considering tests changed the pressure by at most fifty kPa in the condenser 

and twenty kPa in the evaporator.  If a test’s data did not fit well into the least squares 

solution, it would be discarded and the least squares repeated.  Another factor was 

whether the solution for the coefficients produced a reasonable response in the computer 

simulation.  The least squares fit was done with different sets of test data to produce the 

most accurate simulation.  Results from the least squares analysis are located in Appendix 

E on page 152. 

The steady state control settings for all of the tests presented in this thesis are 

given in Table 4.1. 

Table 4.1 Steady State Control Settings 

Compressor 31 Hz
Expansion Valve 1.7 V

Evaporator Blower 52 Hz
Condenser Blower 50 Hz

Control Settings

 

Evaporator 

The parameters that are directly measured are the ambient temperature of air at 

the inlet of the evaporator, the inlet and exit pressures of the refrigerant, and the exit 

temperature of the refrigerant.  While the refrigerant pressure and temperature do not 

directly go into any of the matrix terms they are required to evaluate other parameters.  

An average of inlet and exit pressure will be used for the model.   

Thermodynamic tables are used to find a number of the required parameters.  

Table 4.2 on page 34 lists these parameters as well as what values are required to 

determine them.  Asterisks denote parameters that do not directly appear in the model.  

The density of saturated vapor, specific heat of node two, viscosity of node two, and 

thermal conductivity of node two are represented symbolically as ρev, cp,e2, µe2, ke2  

respectively.  The enthalpy of node two, he2, is the average of the outlet enthalpy and 

saturated vapor enthalpy.  
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Table 4.2  Evaporator Thermodynamic Tabulated Parameters 

Thermodynamic Relation Parameters 

ρeL (Pe) hev (Pe) *µe2 (Pe, he2) 

*ρev (Pe) Ter1 (Pe) *cp,e2 (Pe, he2) 

*heL (Pe) ρe2 (Pe, he2) *ke2 (Pe, he2) 

hefg (Pe) Ter2 (Pe, he2) he,out (Pe, Te,out) 
The length of the saturation node is estimated from a heat transfer balance and can 

be calculated as 
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The length of the superheat region, Le2, is found by  
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and should be equal to the total length of the evaporator minus the length of node one.  

The mean void fraction is determined using Zivi’s model from  
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(4.4) was obtained from Wedekind (1978). 

The inlet enthalpy is equal to the condenser exit enthalpy, which will be discussed 

in the condenser section of this chapter.  An average density of node one will be defined 

as ( ) eeveeLe γργρρ +−= 11 , which is equation (2.11). 

The average heat transfer coefficients on the inside of the tubes in the two-phase 

region and superheat region are determined by correlations.  In the two-phase region, the 

models proposed by Shah (1982), Kandlikar (1897), Chaddock and Brunemann (1967), 

Gungor and Winterton (1986), Jung and Radermacher (1989), and Kattan et al. (1998) 

were used to determine average heat transfer coefficients.  These calculations were 

achieved using software developed in a dissertation prepared by Kelly (2000).  Table 4.3 

on page 35 lists the results of the heat transfer coefficient analysis.  The Kattan value was 

used for this thesis, it was near the average of the all models. 
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Table 4.3 Evaporating Average Heat Transfer Coefficients 

Model Average Heat Transfer Coefficient 








Km

W
2

 

Shah 2206.6  
Kandlikar 2483.2  

Chaddock-Brunemann 2812.0 
Kattan 2761.7 

Gungor-Winterton 2901.1 
Jung-Radermacher 2873.5 

  

In the superheat region, the Dittus-Boelter equation for heating presented in 

Incropera (2002) is used.  It is given by 

 4.08.02
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An estimate of the average effective heat transfer coefficient between the outside 

of the tube wall and the air is found from 
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This equation is derived from rearranging an equation which equates the heat 

transfer from the air to the tube and the energy gained by the refrigerant in node one. 

Measurements of the wall temperatures are taken, but they are not accurate as 

mentioned in Chapter 3.  To find numbers for the wall temperatures an optimizing 

technique was used with the MS Excel Solver tool.  This involved iteratively changing 

the wall temperatures, calculating the new node lengths, and determining the outside heat 

transfer coefficient in an effort to minimize the difference between the energy gained by 

the refrigerant and the convective heat transfer from the air to the tube wall in the 

superheat node.  The energy balance in the two-phase node is automatically satisfied by 

equation (4.6).  The length of node one was calculated as per equation (4.2), the length of 

node two was calculated with equation (4.3), and the outside heat transfer coefficient 

with equation (4.6). 
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The energy gained by the refrigerant was evaluated as the mass flow rate 

multiplied by the change in enthalpy across the node.  The heat transfer from the air to 

the tube wall for node j is defined by 

 )(, ewjeaejieoairj TTLDQ −= πα& . 

This optimization was done using the solver tool in MS Excel.  A constraint must 

be added so the solution makes physical sense; the sum of the length of the nodes must be 

equal to the total length of the evaporator.  The spreadsheet used to accomplish this is 

given on page 150 in Table E.4. 

Quite a few derivatives of properties go into the model.  The majority of the 

slopes can be evaluated by curve fitting a line to a region of the property’s function.  The 

slopes were evaluated between pressures of 300 and 370 kPa and enthalpies of 401 and 

406 kJ/kg.  Saturation properties are strictly functions of pressure.  The average density 

of node one, ρe1, will be a function of pressure because it is defined in terms of saturated 

densities.  The mean void fraction is also a function of saturated densities and inlet 

quality as defined by equation (4.3).  Quality was evaluated at each pressure using the 

saturation enthalpies and a constant value for the inlet enthalpy.  The properties of the 

superheat region can be defined as functions of pressure and enthalpy.  These properties 

were plotted holding either pressure or enthalpy constant to find the slope.  The 

derivative of temperature with respect to enthalpy can be determined as the inverse of the 

specific heat, which is a function of the enthalpy and pressure.  Table 4.4 lists the 

required derivatives.  Asterisks denote parameters that do not directly appear in the 

model, but are required to find other values.   

Table 4.4 Evaporator Model Derivatives 

Derivatives 

d(ρe1)/dPe *dhefg/dPe 

d(ρeL*hefg)/dPe  (∂Ter2/∂Pe)he2 

dhev/dPe (∂ρe2/∂he,out)P 

dTer1/dPe (∂ρe2/∂Pe)he2 

*dρeL/dPe dTer2/dhe,out =1/cp,e2 
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The product rule was used to determine 
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Since the evaporator and condenser have the same geometry, the derivative of 

outside heat transfer coefficient with respect to volumetric air flow rate will be the same.  

The derivative of interest in the evaporator modeling equations is given by 
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where V& is the volumetric flow rate of air.  It is assumed that the volumetric flow rate of 

air is the most important variable affecting the outside heat transfer coefficient and all 

other variables can be neglected. 

The change in flow rate with respect to blower setting will be different for the 

evaporator and condenser due to the differences in ducting.  It can be determined by 

changing the blower speed and recording the change in flow rate, and then dividing the 

change in flow rate by the change in blower speed setting.  In order to determine how the 

outside heat transfer coefficient changes with flow rate, the coefficient must be calculated 

before and after a change in flow rate.  Calculating the outside heat transfer coefficient 

was discussed earlier in this section and requires knowing many other parameters 

including the mass flow rate of refrigerant.  The derivative is approximated in a manner 

similar to the change in flow rate with respect to blower setting. 

Condenser 

Direct measurements yield values for the refrigerant pressures, inlet temperature, 

and exit temperature.  These values do not directly appear in the model, but are required 

for other calculations.  An average of inlet and exit pressure will be used for the model.  

The ambient temperature of air entering the condenser is also measured. 

Similar to the evaporator analysis many properties need to be found in 

thermodynamic relation tables.  Table 4.5 on page 38 lists these parameters as well as the 

properties that determine them.  The viscosity, specific heat, and thermal conductivity 

values are required for both of the single phase regions of the condenser.  The table lists 

these values for the jth node as µcj, cp,cj, and kcj, respectively.  
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Table 4.5 Condenser Thermodynamic Tabulated Parameters 

Thermodynamic Relation Parameters 

ρc1(Pc,hc1) hcv (Pc) *µcj (Pc, hc,j) 

ρcL (Pc) hcL (Pc) *cp,cj (Pc, hc,j) 

*ρcv (Pc) hcfg (Pc) *kcj (Pc, hc,j) 

hc,in (Pc, Tc,in) Tcr1 (Pc, hc1)  

hc,out (Pc, Tc,out) Tcr2 (Pc)  
The length of the nodes is calculated similarly to the evaporator.  The length of 

the superheat region is given as 
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The length of the two-phase region is 
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The subcool region then has a length consisting of the rest of the condenser, but 

for the wall temperature optimization should be calculated as 
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As with the evaporator, the Zivi model is used to determine the mean void 

fraction from 
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 .  The form of equation (4.10) was obtained from Wedekind (1978). 

With the mean void fraction the average density in the two-phase region will be 

defined as ccvccLc γργρρ +−= )1(2 , which is equation (2.22). 

The enthalpy of node one, hc1, is the average of the condenser inlet enthalpy and 

the saturated vapor enthalpy.  Similarly, the enthalpy of node three is the average of the 

enthalpy at the start and end of the region. 
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An average temperature of the subcool region is given by 
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The Dittus-Boelter correlation equation for cooling from Incropera (2002) is used 

to determine the average heat transfer coefficients in the single phase regions.   

These values are determined by 
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The software developed by Kelly (2000) was again used to determine the average 

heat transfer coefficient in the two-phase region.  The models presented in Shah (1979), 

Traviss et al. (1972), and Cavallini and Zecchin (1974) are shown in Table 4.6.  The 

value from the Traviss model was used for the simulation; this is the correlation that was 

used in He (1996).  

Table 4.6 Condensing Average Heat Transfer Coefficients 

Model Average Heat Transfer Coefficient 








Km

W
2

 

Shah 1635.1  
Traviss  1795.5 
Cavallini  1870.5 

Similar to the evaporator parameter, the outside heat transfer coefficient is 

evaluated from the two-phase region wall to air heat balance as 
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An optimization technique similar to the one described in the evaporator section 

was used to determine the wall temperatures, but this time two nodes must be considered, 

the superheat and subcool. 
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Many derivatives are required for the condenser matrices.  Table 4.7 lists the 

required derivatives.   

Table 4.7 Condenser Model Derivatives 

Derivatives 

d(hcv)/dPc (∂(ρc1)/∂Pc)hc1 

d(hcL)/dPc (∂(ρc1)/∂hc1)P 

d(ρcL)/dPc (∂(Tcr1)/∂Pc)hc1 

d(ρc2)/dPc (∂(Tcr1)/∂hc1)P = 1/cp,c1 

d(ρcL*hcfg)/dPc (∂(Tcr3)/∂Pc)hc,out 

*d(hcfg)/dPc (∂(Tcr3)/∂hc,out)P 

d(Tcr2)/dPc   

 

All but one of the derivatives were estimated by the slope of a line curve fit to a 

section of the data.  Ranges of 950-1140 kPa and 420-425 kJ/kg were used for pressure 

and enthalpy plots, respectively.  The saturated related variables can be plotted as a 

function of pressure.  For the single phase region slopes, the enthalpy was held constant 

for derivatives with respect to pressure and vice versa for derivatives with respect to 

enthalpy.  The derivative of the average two-phase region density with respect to pressure 

is evaluated similar to the evaporator.  In order to plot the average temperature in the 

subcool region, equation (4.11) was used at each pressure value holding the value of the 

outlet enthalpy constant.  A plot was not generated for Tcr3 as a function of the outlet 

enthalpy, instead the slope was estimated as 
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 , where δh is a small 

perturbation. 

The derivative of the product of saturated liquid density and enthalpy of 

vaporization is found similarly to the evaporator counterpart. 

A value for the change in outside heat transfer coefficient with respect to change 

in blower setting can be determined in the same way as with the evaporator.  Since the 

derivative of the coefficient with respect to flow rate should be the same, the value from 

the evaporator can be used.  The slope of air flow rate with respect to blower setting will 

be slightly different due to the variation in ducting of the heat exchangers. 
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CHAPTER 5 - Simulation Results and Comparison 

to Measured Data 

This section will present plots of measured data and the simulated responses.  In 

and effort to improve the model, some of the more uncertain terms will be varied to 

determine their effects. The values determined in Chapter 4 are substituted into the matrix 

elements from Chapter 2.  A Matlab m-file constructs the required matrices.  This results 

in the linear state equations used for simulation.  The output equation is of the form 

 uDxCy δδδ += , 

where 
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The D matrix is a zero matrix.  The outputs are the changes in evaporator pressure, 

condenser pressure, and superheat.  These are quantities that can be measured and are of 

interest. 

The simulation is done with a Matlab Simulink model using a state space block 

and four step input blocks as seen in Figure 5-1. 

all inputs are changes
from steady state

dSH

dPe

dPc

Valve
Setting

simout

To Workspace

x' = Ax+Bu
 y = Cx+Du

State-Space

Evaporator fan 
Setting

Condenser fan 
Setting

Compressor 
Setting

 

Figure 5-1 Simulink Block Diagram 
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Changes in the outputs are added to the initial absolute measured values to 

generate the plots in this section.  In all cases the change in input occurs at time equal 

zero.  The graphs show the exit pressure changes of the heat exchangers.  Test 

measurements demonstrated that the general shape of the inlet and exit pressures were the 

same.  The Figures 5-2 to 5-4 illustrate transient responses for step changes in valve 

opening with all other control inputs held constant.  The sizes of the changes are 

indicated in the figure captions. 

 

Figure 5-2 Response for Valve Setting Decreased by 0.2V 
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Figure 5-3 Response for Valve Setting Decreased by 0.25V 

 

Figure 5-4 Response for Valve Setting Decreased by 0.3V 
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The model predicts the change in steady state values of these three quantities 

quite well.  Time constants for the actual and simulated systems are not exactly 

consistent.  In each case the initial upward slope is generally the same when comparing 

measurements and simulations.  Although, the simulation tends to be a little faster.  

Measurements of the superheat have a time delay that the model lacks.  The model 

obviously does not exhibit the overshoot present in the air conditioner.  Measurements for 

each test appear to exhibit linear system responses.  

The Figures 5-5 to 5-7 present results for compressor speed initiated transients 

with all other control inputs held constant.  The size of the change is given in the caption. 

 

Figure 5-5 Response for Compressor Setting Increased by 2 Hz 
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Figure 5-6 Response for Compressor Setting Increased by 3 Hz 

 

Figure 5-7 Response for Compressor Setting Increased by 4 Hz 
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The comparison for the compressor tests is similar to that of the expansion valve 

tests where the simulation is often too fast and misses transient shapes for overshoot and 

damping, but the final value is fairly reliable.  The model shows a very fast response for 

the superheat which is not present in any of the actual tests.  Again the measurement 

responses are representative of a linear system, comparing test to test. 

Figures 5-8 and 5-9 contain the responses created by changes in blower speed 

setting with all other control inputs held constant. 

 

Figure 5-8 Response for Condenser Blower setting increased by 5 Hz 

The condenser pressure simulation is the only one that is decently accurate.  It is a 

little fast, but predicts the final value nicely.  Simulated values follow the evaporator 

pressure to the peak value, but do not oscillate back to the correct final value.  The 

superheat response is in the correct direction, not much else is good.  Measurements of 

the evaporator pressure and superheat almost seem to go back to their original values, 

which is curious.   
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Figure 5-9 Response for Evaporator Blower setting increased by 8 Hz 

As with the condenser blower test, the condenser pressure response is the best.  

The evaporator pressure is better, and the superheat is again only in the correct direction.  

Clearly the model has trouble with these blower initiated transients and investigation in 

this area is desired.  Further testing of blower speed changes could not be accomplished 

due to equipment failure. 

Modified Parameter Results 

In the Determination of Modeling Parameters Chapter there were several values 

that had some uncertainty.  In this section, the values of certain modeling parameters will 

be numerically altered from their calculated values, and the rest will remain constant.  

This creates a slightly different model to simulate and compare to the original model.  

Values will be made smaller and larger to determine if they can make the model response 

more like the measured data, or at least determine their effects.  The main parameters that 

could be questioned include the mass flow rate of refrigerant, heat transfer coefficients, 
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tube wall temperatures, lengths of nodes, appropriate ambient temperatures, mean void 

fractions and the coefficients for the expansion valve and compressor equations.  The 

term parameter is used here to indicate quantities that appear directly in the modeling 

equations.   

The mass flow rate is solved for indirectly from a heat transfer balance equation 

between the air and the refrigerant.  This requires measurements of air temperature, air 

flow rate, refrigerant temperatures, and refrigerant pressures.  Combining all of the 

uncertainties from these measurements could result in an inaccurate value for the mass 

flow rate of the refrigerant.    In addition, there are heat losses for the air that cannot be 

accurately quantified.  Some of the heat will conduct from the exchanger tubes to the 

mounting brackets and then to the mounting board.  Energy can also be lost through the 

box that encases the condenser.  It is reasonable to assume that the mass flow rate may 

need to be altered to achieve an accurate model.  To determine the effects of the mass 

flow rate on the model, the value used in the model will be varied, and then the modeling 

parameters it affects will be recalculated.  These parameters include heat transfer 

coefficients, tube wall temperatures, and lengths of nodes.  Table E.5 on page 151 lists 

the new values.  The model will be reassembled with these new values.  Figure 5-10 on 

page 49 illustrates the model simulations for step inputs of the valve and compressor 

setting. The valve input transients were initiated by a -0.2V change in input with all other 

control inputs constant, and the compressor input transients were initiated by a +2 Hz 

change with all other control inputs constant.  The evaporator pressure and superheat are 

plotted, because they are of the most interest.  These figures show the simulation results 

for the original model and the model with the mass flow rate modeling value adjusted by 

plus and minus ten percent.  Varying the mass flow rate mostly affects the final value of 

the outputs.  This does not help the model to better follow the actual system’s transient 

shape. 
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Figure 5-10 Simulated Responses with Adjusted Mass Flow Rate 

The ambient temperature used in the model was that of the air just ahead of the 

heat exchangers.  These temperatures are used for heat balance equations between the 

tube wall and the air.  Since the air is changing temperature as it flows through the heat 

exchanger, the inlet temperature may not be the appropriate temperature to use.  The 

ambient temperature could be approximated with a weighted average between the inlet 

and exit temperatures with the equation )1()( xTxTT outinamb −+= , where the value x 

represents the percentage of the inlet temperature present in the ambient temperature.  

Figure 5-11 on page 50 shows the changes in response for x = 100%, 75%, and 50%.  The 

same changes of inputs were used as with the modified mass flow rate plots.  Both heat 

exchanger ambient temperatures are adjusted with the same x.  The node lengths, wall 

temperatures, and outside heat transfer coefficients were recalculated.  Table E.5 on page 

151 lists the new values.  These new values were used to create the modified model.  As 

with the mass flow rate, the major effect is the final values.  It also has a longer time 

constant for valve tests, but does not add any overshoot. 
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Figure 5-11 Simulated Responses with Adjusted Ambient Temperatures 

The mean void fractions of the evaporator and condenser were estimated using the 

Zivi model.  Various other models can be used to find different values for the mean void 

fraction.  The effects of this parameter are therefore of interest.  Figures 5-12 and 5-13 on 

pages 51 and 52 demonstrate the response for variations of the evaporator and condenser 

mean void fractions respectively.  These plots show the responses of the original model 

as well as the modified models.  The same changes of inputs were used as with the 

modified mass flow rate plots.  The mean void fractions were increased and decreased by 

twenty percent, except for the evaporator.  Only a three percent increase was reasonable 

here, since the mean void fraction is less than one. 

The final values were invariant with changes in either mean void fraction.  A 

three percent increase in the evaporator was too small to have any effect, and the decrease 

tended to make the pressure respond faster and the superheat slower.  Overall, this did not 

make the model follow the measured data better. A higher mean void fraction in the 

condenser slowed the system down.  Decreasing the condenser mean void fraction made 

the responses faster for the valve transients and added overshoot for the compressor 
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initiated transients.  This overshoot is present in the measured data, so this adjustment 

helps the model for compressor tests.  Although, the system is still too fast, and the valve 

response is no better. 
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Figure 5-12 Simulate Responses with Adjusted Evaporator Mean Void Fraction 
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Figure 5-13 Simulated Responses with Adjusted Condenser Mean Void Fraction 

The coefficients for the expansion valve and compressor modeling equations can 

also be questioned since they rely on measurements of mass flow rate.  The mass flow 

rate through the valve can be expressed by the orifice equation 

 ( )ecvvvvalve PPACm −= ρ& , (5.1)  

where Cv is a valve coefficient, Av is the valve opening area, and ρv is the density of the 

fluid flowing through the valve.  This equation does not take into account the phase 

change, so it is not entirely accurate.  Taking the differential of this equation assuming Cv 

and ρv are constant will result in equation (2.25), where 

 
ec

valve

ec

v
vv

e

valve

PP

m

PP
AC

P

m
k

−
−

=
−

−=
∂

∂
=

&& ρ
11 ,    

 
ec

valve

ec

v
vv

c

valve

PP

m

PP
AC

P

m
k

−
=

−
=

∂
∂

=
&& ρ

12 , 

and  ( )
valve

valve
ecvv

valve

valve

u

m
PPC

u

m
k

&&
=−=

∂
∂

= ρ13 .   



 53 

Rearranging equation (5.1) into a fraction equaling one and multiplying it by the 

intermediate derivative can be used to find the final form of these derivatives.  This is 

assuming that the area of the valve opening can be expressed as max10
A

u
A valve

v = , where 

uvalve is between zero and ten Volts.  The symbol Amax is the maximum valve opening 

area.  Numerical values of the kij are determined by plugging in values measured during 

the steady state operation.  In all of the partial derivatives that define the kij coefficients, 

all variables other than the one that the derivative is with respect to are held constant.   

As presented by McQuiston (1994), the mass flow rate through the piston 

compressor can be written as 
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The compressor rotation speed, volumetric displacement, clearance volume to 

displacement volume ratio, density, and polytropic coefficient are symbolically ω, Vc, ρc, 

Cc, and n, respectively.   

Similar to the differentiation of the orifice equation, the coefficients in equation 

(2.27) can be shown to be: 
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This is assuming that Vc, ρc, Cc, and n are constants.  Rearranging equation (5.2) into a 

fraction equaling one and multiplying it by the intermediate derivative can be used to find 

the final form of these derivatives.  The clearance ratio is approximated as one tenth and 

the polytropic coefficient as the ratio of specific heat at constant pressure, cp, over 

specific heat at constant volume, cv.  These specific heats are taken at the compressor 

inlet temperature and pressure.  The rotation speed is assume to be
60max
compu

ωω = , 

where ωmax is the maximum rotation speed, and ucomp is between zero and sixty Hertz.    

Using the definition of isentropic efficiency the enthalpy at the outlet of the 

compressor is incomp
comp

incompsoutcomp
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η
.  The subscripts comp and s 

denote the compressor and isentropic value respectively.  The compressor isentropic 

efficiency is given by ηcomp.  Values for the coefficients of equation (2.26) are:  
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 The isentropic efficiency can be estimated from the steady state operation 

measurements and thermodynamic tables and assumed to be constant.  Perturbing the 

evaporator pressure, condenser pressure, and inlet enthalpy and determining the change 

in the isentropic outlet enthalpy yields an estimate of the partial derivatives.  These 

values are found to be  
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Two alternate methods for determining the coefficients will be used, constrained 

least squares and analytical.  For the constraints, the values and k11 and k12 will be 

constrained to be equal but opposite.  The values of k31 and k32 will be forced to satisfy 
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the equation
e

c

P

P

k

k
−=

32

31 .  These constraints come from the analytical solutions for the 

coefficients.  No constraint was added for the other values.  Table 5.1 summarizes the 

different sets of coefficients.  The constrained and analytical values for k11 make more 

intuitive sense.  They are negative, which would indicate that as the evaporator pressure 

increases the flow through the valve would decrease.  Also, the constrained and analytical 

values of k32 are negative.  This indicates that an increased condenser pressure would 

decrease flow through the compressor, which makes physical sense.  The constrained and 

analytical solutions are fairly similar for the mass flow rate equations.  Most values are 

near the same order of magnitude, excluding sign differences, for each of the solutions.  

The value of k23 is very different for the least squares fit and analytical solutions, and 

may require additional consideration.  

Table 5.1 Sets of Valve and Compressor Coefficients 

Original Constrained Analytical
k11 8.56E-06 -8.56E-06 -1.31E-05
k12 1.75E-05 8.56E-06 1.31E-05
k13 6.06E-04 1.70E-03 5.40E-03
k21 -7.42E-02 -7.42E-02 -1.67E-01
k22 1.72E-02 1.72E-02 2.56E-02
k23 3.25E-02 3.25E-02 1.1667
k31 2.30E-05 3.54E-05 6.74E-06
k32 1.20E-05 -1.18E-05 -2.25E-06
k33 1.43E-04 4.71E-04 2.95E-04

Expansion Valve and Compressor 
Coefficients

 

Figure 5-14 on page 56 plots the responses of the original model, a new model 

using the constrained solutions, and a new model using analytical solutions.  The 

compressor is stepped up by two Hertz in the compressor input plots, and the valve 

closed by 0.2 V in the valve input plots.  In each case the control inputs not mentioned in 

the plot titles are held constant. 
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Figure 5-14 Responses with Adjusted Expansion Valve and Compressor Coefficients 

The constrained and analytical solutions result in a system which is much faster.  

While the constrained system generally hits the correct final value the purely analytical 

set is not very accurate.  Overshoot is added with the analytical solution, but its time 

constants and final values are poor. 

Overall, the original model seems to be the most accurate.  Some of the 

modifications will help a couple of features but never everything.  The mass flow rate and 

ambient temperature variations primarily adjust final values, which is a strength of the 

original model.  Modifying the evaporator mean void fraction does not have much effect, 

and the condenser fraction only helps in the compressor tests.  The alternate expansion 

valve and compressor coefficients weaken the model, but can obviously have quite an 

effect.  Constrained and analytical solutions contradict the data measured in tests.  It 

makes physical sense that the mass flow rate through the valve decreases as the 

evaporator pressure increases, and the flow through the compressor decreases as 

condenser pressure increases.  But, data from expansion valve tests suggest otherwise.  

This contradiction is most likely what leads to inaccurate final values.   
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CHAPTER 6 - Conclusions 

 This work has presented the lumped parameter nonlinear modeling equations for 

heat exchangers, and their detailed derivations.  These equations were then linearized 

about an operating point and put in terms of the air conditioner’s states and inputs.  To 

accomplish this, linear modeling equations of the expansion valve and compressor 

replace heat exchanger inputs with system states and inputs.  In order to determine values 

for parameters in the model, the air conditioner was modified, fixed, charged with 

refrigerant, leak proofed, and wired for measurements and controls.  Several attempts at 

redesigning the loop were necessary to bring the air conditioner to proper operating 

conditions.  Efforts were made to reduce noise in the measurements due to variable 

frequency drives for the blower motors.  Air flow meters were also designed, constructed, 

and calibrated.  Numerous tests were run and data was recorded to determine required 

parameters.  This thesis provides detailed evaluations of the modeling parameters.  The 

model was simulated with Matlab software and compared to experimental data.  Some of 

the lesser known parameters were varied to determine their effects on the simulation.  

The original parameter values yielded the most accurate results.  It predicts final value 

changes quite well and time constants decently.  The transient dynamic shapes require 

improvement. 

Critical Analysis of Model 

The model requires many parameters which cannot easily be determined 

accurately.   Individual adjustments of theses parameters did not improve the model, but 

better values for all of them combined should help.  Measurements of mass flow rate are 

always challenging.  In this case, the presence of oil in the lines compromises the V-cone 

Flowmeter.  The refrigerant flow rate therefore had to be indirectly calculated with a heat 

transfer balance.  This involves quite a few measurements as well as unquantifiable heat 

losses.  More measurements increase the uncertainty.  Perhaps measurements of the inlet 

and exit heat exchanger air temperatures were not as accurate as they should be.  The 
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temperature was only measured in one spot on each side of the heat exchanger, so a better 

value for the bulk temperature may be possible.  Small differences in temperature can 

have an impact on the calculations, due to the fact that the total temperature change 

across a heat exchanger is on the order of ten degrees Celsius.  Higher quality air flow 

meters could also result in more accurate measurements.  The oil may also affect the 

determination of thermodynamic properties such as enthalpies and densities.  These 

properties were found in tables using pressure and temperature measurements.  

Inaccuracies in the flow rate will also manifest in the calculations of heat transfer 

coefficients, lengths of nodes, and tube wall temperatures. 

There is always uncertainty when using correlations to determine heat transfer 

coefficients.  Issues could arise with this.  Although, the inside coefficients do not seem 

to have a large effect.  A better determination of the tube wall to air heat transfer 

coefficient could help, instead of backing it out. 

Measuring tube wall temperatures is a difficult task, and could not be accurately 

done in this work.  Without a direct measurement of the wall temperatures, optimization 

was required to determine node lengths and outside heat transfer coefficients.  With 

precise wall temperature measurements more confidence in the parameters calculated 

using these temperatures would exist.  The lengths of nodes are also backed out of heat 

transfer equations, and cannot be determined directly.  

The mean void fraction is another value that may need more improvement.  The 

oil could create issues in the determination of the void fraction. 

Better determination of the ambient temperatures surrounding the heat exchangers 

could be necessary. 

The most questionable values are the coefficients of the linear expansion valve 

and compressor equations.  The least squares fit used to find these values requires very 

accurate measurements of the refrigerant mass flow rate, which are probably not achieved 

using an indirect calculation.  There did not seem to be a good solution for the 

coefficients in these equations.  The differences between measured and calculated values 

of change in mass flow rate were quite similar for many different sets of coefficients.  

And, the model could be greatly affected with the alternate solutions.  The counter 

intuitive signs of the k11 and k32 coefficients are curious.  They most likely are a result of 



 59 

the fact that during testing both the evaporator and condenser pressures decreased when 

the valve was closed slightly.  This puts the tests used to determine the coefficients into 

question, which is troublesome.  Due to nonlinearities, the coefficients must be found at 

the operating point of the air conditioner.  This does not leave many alternatives.  

Certainly further investigation of these coefficients is desired. 

Possible Solutions for a Better Model 

A new refrigerant flow meter in addition to or replacing the current one should 

produce stronger measurements.  Ideally, having two meters would heighten the 

confidence of the measurements.  These measurements could also be used to check the 

validity of the mass flow rate calculated in this thesis.  A different type of compressor or 

an oil separator will most likely be required.  Hopefully, this would increase the accuracy 

of the current refrigerant flow meter.  In addition, pure refrigerant would be circulating 

through the system making the tabulated thermodynamic properties truer.  Perhaps, time 

delays occur do to the oil.  With the current setup, the oil concentration is not controlled.  

This adds un-modeled features to the air conditioner.   It is likely that changes in flow 

rate, especially with changed compressor speed, affect this concentration.  Removing the 

oil from circulation definitely will not hurt, and will expectedly help.  The compressor 

and its motor get quite hot when running for a long time.  A method for cooling them is 

definitely worth consideration.   

The tests were not run in an environmentally controlled chamber.  Conditions 

could not be varied intentionally.  Many times tests were compromised or steady state 

could not be reached due to changes in room temperature.  Temperature changes of less 

than one degree Celsius affected pressures as much as changes in expansion valve setting.  

Testing in a more controlled environment would be desired.    

The modeling equations may also need inspection.  Too many or poor 

simplifications and assumptions could cause the model to miss the transient dynamics of 

the system.  A better way to link the heat exchanger models into the complete model may 

be possible.  This could include accurate determination of the expansion valve and 

compressor equation coefficients or possibly a different form for the equations.
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Appendix A - Derivation of Evaporator Equations 

Two-Phase Region 

Mass Balance on the refrigerant in Two-Phase Region of the Evaporator 

The control volume of interest is shown in Figure 2-3 as cv1. 
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Energy Balance on Refrigerant in Two-Phase Region of the Evaporator 

The control volume of interest is shown in Figure 2-3 as cv1. 
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From the mass balance equation (2.4) on node 1 
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Substituting results of (2.4) into the energy balance equation 
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To further simplify this equation the two left hand side terms will be simplified separately 

as follows. 
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Using the definition of enthalpy of vaporization to simplify: 
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Using the definition of enthalpy of vaporization to replace eLh  
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Putting terms A and B back together in energy balance equation 
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Energy Balance on the Tube Wall in Two-Phase Region of the Evaporator 

m
CV EQ

dt

dE
&& +=  

dt

dECV   is the time rate of energy change in the control volume 

Q&  is the net heat transfer rate of the control volume 

mE&  is the energy transfer rate as a result of mass crossing the control volume 

boundary 

Figure A-1 illustrates the parameters involved with the derivation of the tube wall energy 

conservation equations.  The positive Z direction corresponds to the direction of 

refrigerant flow.  The length of the two-phase region is assumed to shorten while the 

superheat region lengthens. The velocity 
dt

dLe1  is intentionally shown in the negative 

direction to illustrate that the two-phase region is getting shorter. 

 

Figure A-1 Evaporator Two-Phase Wall Energy Balance Diagram 
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Superheat Region 

Mass Balance on the Refrigerant in the Superheat Region of the Evaporator  

The control volume of interest is shown in Figure 2-3 as cv2. 
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Energy Balance on the Refrigerant in the Superheat Region of the Evaporator 

The control volume of interest is shown in Figure 2-3 as cv2. 
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From Conservation of mass on superheat region, equation (2.5) 
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Combining Terms 1, 2, and 3 
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From Mass Balance equation (2.5) 
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Substitute this into the energy balance equation. 
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Energy Balance on the Tube Wall in the Superheat Region of the Evaporator 

m
CV EQ

dt

dE
&& +=  

This derivation is similar to that to the two-phase region.  Again the two-phase 

region is shortening while the superheat region lengthens.  Figure A-2 shows the 

parameters involved.  The positive Z direction corresponds to the direction of refrigerant 

flow.  The velocity 
dt

dLe1  is intentionally shown in the negative direction to illustrate that 

the two-phase region is getting shorter. 

 

Figure A-2 Evaporator Superheat Wall Energy Balance Diagram 
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Overall Mass Balance of Evaporator 

From mass balance on Two-Phase region, equation (2.4) 
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Appendix B - Derivation of Condenser Equations 

Superheat Region 

Mass Balance on Refrigerant in the Superheat Region of the Condenser 

The control volume of interest is shown in Figure 2-4 as cv1. 
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Term 2:     
z

u

∂
∂ρ

 

Integrate over the cross-sectional area. 
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Energy Balance on the Refrigerant in the Superheat Region of the Condenser 

The control volume of interest is shown in Figure 2-4 as cv1. 
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From conservation of mass on superheat region, equation (2.12)  
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From conservation of mass on superheat region, equation (2.12)  
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Energy Balance on the Tube Wall in the Superheat Region of the Condenser 

m
CV EQ

dt

dE
&& +=  

This derivation is similar the evaporator.  The superheat region is assumed to be 

lengthening.  FigureB-1 shows the parameters involved. The positive Z direction 

corresponds to the direction of refrigerant flow.  Velocities are shown the direction that 

the derivation assumes. 

 

Figure B-1 Condenser Superheat Wall Energy Balance Diagram 
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Two-Phase Saturation Region 

Mass Balance on Refrigerant in the Two-Phase Region of the Condenser 

The control volume of interest is shown in Figure 2-4 as cv2. 
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Integrate over the length. 
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 [ ] ( ) 01int,2int,
12

2
2

2 =−+−+−+ cc
c

cLcv
c

cLc
c

c mm
dt

dL
A

dt

dL
A

dt

d
AL &&ρρρρρ

(2.13) 



 96 

Energy Balance on the Refrigerant in the Two-Phase Region of the Condenser 

The control volume of interest is shown in Figure 2-4 as cv2. 
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Integrate over the cross-sectional area. 
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Integrate over the length. 
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Integrate over the length. 
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From mass balance on two phase region, equation (2.13) 
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From mass balance on subcool region, equation (2.14) 
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Substituting the mass balance results into the energy balance equation 
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To further simplify the equation the first and third terms of the left hand side will 

simplified separately as follows. 
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Using the definition of enthalpy of vaporization, cfgcvcL hhh −= , to replace hcL  
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Putting terms back together in energy balance equation. 
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Using the definition of enthalpy of vaporization to substitute for cLcv hh −   
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Energy Balance on the Tube Wall in the Two-Phase Region of the Condenser 

m
CV EQ

dt

dE
&& +=  

This derivation is similar the evaporator.  The superheat region is assumed to be 

lengthening, while the subcooled  region is getting shorter.  Figure B-2 shows the 

parameters involved.  The positive Z direction corresponds to the direction of refrigerant 

flow.   Velocities are shown the direction that the derivation assumes. 

 

Figure B-2 Condenser Two–Phase Region Wall Energy Balance Diagram 
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Term 2: Q&   
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Subcool Region 

Mass Balance on Refrigerant in the Subcool Region of the Condenser 

The control volume of interest is shown in Figure 2-4 as cv3. 
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Applying Leibniz’ Rule 
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Assuming that the density is the density of saturated liquid throughout the subcool region 
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Term 2:     
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Integrate over the cross-sectional area. 
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Integrate over the length. 
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Energy Balance on the Refrigerant in the Subcool Region of the Condenser 

The control volume of interest is shown in Figure 2-4 as cv3. 
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Integrate over the length. 
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The density is assumed to becLρ  throughout the region 
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Using the fact that the length of the condenser is constant 
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Integrate over the cross-sectional area. 
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Integrate over the length. 
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Combining Terms 1, 2, and 3 
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From mass balance on subcool region, equation (2.14) 
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Substituting this into the energy balance equation 
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Energy Balance on the Tube Wall in the Subcool Region of the Condenser 

m
CV EQ

dt

dE
&& +=  

This derivation is similar the evaporator.  The subcool region is assumed to be getting 

shorter.  FigureB-3 shows the parameters involved.  The positive Z direction corresponds 

to the direction of refrigerant flow.  The velocity of the boundary is shown in the 

direction that the derivation assumes. 

 

Figure B-3 Condenser Subcool Region Wall Energy Balance Diagram 
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Term 2: Q&   
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Using the fact that the length of the condenser is constant 
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Overall Mass Balance of Condenser 

 

From superheat region mass balance, equation (2.12) 
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From subcool region mass balance, equation (2.14) 
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Plugging results from the two single phase regions into the two-phase mass balance 
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Plugging this in to the mass balance equation 
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Appendix C - Derivation of Linear Modeling Equations 

Evaporator Equations 

Nonlinear equations with the left hand side expanded 
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The right hand sides of the nonlinear equations expanded 
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outeinee mmf ,,3 && −=  from equation (2.6) 
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( ) ( )22225 ewerieieweaoeoe TTDTTDf −+−= παπα  from equation (2.10) 
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Using the total length constraint 
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











∂
∂

−−+










∂
∂

−
∂
∂

+−−=

 

Linearize fe3 

outeinee mmf ,,3 && δδδ −=  

Linearize fe4 

[ ] ( ) e
e

eo
eweaoewoeoieie

e

er
ieie TTDTDDP

P

T
Df δν

ν
απδπαπαδπαδ 









∂
∂

−+−−+








∂
∂

= 111
1

14  

Linearize fe5 

[ ]

( ) e
e

eo
eweao

ewoeoieioute
oute

er
ieie

e

er
ieie

TTD

TDDh
h

T
DP

P

T
Df

δν
ν
απ

δπαπαδπαδπαδ










∂
∂

−+

−−+














∂
∂

+








∂
∂

=

2

22,
,

2
2

2
25
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Putting the equations into matrix form 























==

5

4

3

2

1

e

e

e

e

e

eee

f

f

f

f

f

fxD &                 

Linearize the previous equation 

( ) eeeeeeee uBxAfxxD δδδ ′+′+=+ &&  

 eeeeee uBxAxD δδδ ′+′=&  (2.23) 

 























=′

EEE

EE

EEEE

EEE

e

aaa

aa

aaaa

aaa

A

555352

4442

25232221

141211

00

000

00000

0

00

 























−=′

E

E

E

EE

e

b

b

b

bb

B
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44

23

1211

000

000

0101

000

00

 

 























=

EE

E

EEE

EEE

EE

e

dd

d

ddd

ddd

dd

D

5551

44

333231

232221

1211

000

0000

00

00

000
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Condenser Equations 

Nonlinear equations with the left hand sides expanded 

from equation (2.16) 

( ) ( ) 1
1

1,
11

,11 5.0
1

5.0 c
c

ccvinc
c

c

cvc

c

c
cvinc

c

cv
cc f

dt

dL
hhA

dt

dP

dP

dh

hcP
hh

dP

dh
AL =−+












−








∂
∂

+
∂
∂

−+ ρβρρρ

 from equation (2.17) 

( ) ( ) 2322

21

1 c
c

c

cL
cvcLc

c

cv
c

c

cLcfg
cc

c
cfgcLc

c
cfgcL

f
dt

dP

dP

d
hhL

dP

dh

dP

dh
LA

dt

dL
hA

dt

dL
hA

=












−+







−+−−+

+

ρβρ
ρ

γ

ργρ
 

from equation (2.18) 

[ ] [ ]

( ) 3
,

3,3

2
,

1
,

5.05.05.0

5.05.0

c
outc

cLc
c

c

cL
cL

c

cL
cLoutcc

c
outccLcL

c
outccLcL

f
dt

dh
AL

dt

dP

dP

dh

dP

d
hhAL

dt

dL
hhA

dt

dL
hhA

=+







−+−+

−+−

ρβρρ

ρρ
 

from equation (2.15) 

[ ] ( ) 4
1

1
2

2
1

11
1

2
23 c

c
cLc

c
cLc

c

c

cv

c

c

c

c
c

c

c
c

c

cL
c f

dt

dL
A

dt

dL
A

dt

dP

dP

dh

hP
L

dP

d
L

dP

d
LA =−+−+





















∂
∂

+
∂
∂

++ ρρρρρρρρ

 from equation (2.19) 

( ) ( )
5

1

1

211
c

c

c

cwcwcw
w f

dt

dL

L

TT

dt

Td
CA =







 −
+ρ  

from equation (2.20) 

( ) 6
2

c
cw

w f
dt

Td
CA =ρ  

from equation (2.21) 

( ) ( ) 7
21

3

323
c

cc

c

cwcw
w

cw
w f

dt

LdL

L

TT
CA

dt

Td
CA =

+







 −
+ ρρ   

The right hand sides of the nonlinear equations expanded 

( ) ( ) inccvinccrcwciicc mhhTTDLf ,,11111 &−+−= απ  from equation (2.16) 

( )2222,2 crcwciiccfgoutcc TTDLhmf −+= απ&  from equation (2.17) 
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( ) ( )3333,,3 crcwciicoutccLoutcc TTDLhhmf −+−= απ&  from equation (2.18) 

outcincc mmf ,,4 && −=  from equation (2.15) 

( ) ( )11115 cwcricicwcaococ TTDTTDf −+−= παπα  from equation (2.19) 

( ) ( )22226 cwcricicwcaococ TTDTTDf −+−= παπα  from equation (2.20) 

( ) ( )33337 cwcricicwcaococ TTDTTDf −+−= παπα  from equation (2.21) 

States and inputs 

[ ] [ ]Tcoutcincincc
T

cwcwcwoutccccc mhmuTTThPLLx ν,,,321,21 &&==  

 

Linearize fc1 

( )

( ) incincinccvinccwciic

c
c

cv

c

cr

c

cr
ciic

c

cv
incccrcwciic

hmmhhTDL

P
P

h

h

T

P

T
DL

P

h
mLTTDf

,,,,111

1

11
11,11111

δδδαπ

δαπδαπδ

&&

&

+−++




















∂
∂

∂
∂

+
∂

∂
−

∂
∂

−+−=
 

 This is assuming c
c

cv
inc P

P

h
h δδ

∂
∂

=,   and    
1

1

,

1

c

cr

inc

cr

h

T

h

T

∂
∂

=
∂
∂

 

Linearize fc2 

( )

outccfgcwciic

c
c

cr
ciic

c

cfg
outcccrcwciic

mhTDL

P
P

T
DL

P

h
mLTTDf

,222

2
22,22222

&

&

δδαπ

δαπδαπδ

++










∂
∂

−
∂

∂
+−=

 

Linearize fc3 

( )

( ) outcoutccLcwciicoutc
outc

cr
ciicoutc

c
c

cr
ciic

c

cL
outcc

c

c
c

c

c
crcwciic

mhhTDLh
h

T
DLm

P
P

T
DL

P

h
mL

L

L
L

L

L
TTDf

,,333,
,

3
33,

3
33,2

2

3
1

1

3
3333

&&

&

δδαπδαπ

δαπδδπαδ

−++












∂
∂

−−+










∂
∂

−
∂
∂

+








∂
∂

+
∂
∂

−=

 

Using the total length contraint 

( ) 1
2

3

1

3
213 −=

∂
∂

=
∂
∂

+−=
c

c

c

c
cccTc L

L

L

L
LLLL  
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Plugging this in 

( )( )

( ) outcoutccLcwciicoutc
outc

cr
ciicoutc

c
c

cr
ciic

c

cL
outccccrcwciic

mhhTDLh
h

T
DLm

P
P

T
DL

P

h
mLLTTDf

,,333,
,

3
33,

3
33,213333

&&

&

δδαπδαπ

δαπδδπαδ

−++












∂
∂

−−+










∂
∂

−
∂
∂

+−−−=

 

Linearize fc4 

outcincc mmf ,,4 && δδδ −=  

Linearize fc5 

[ ] ( ) c
c

co
cwcaocwocoicic

c

c

c

cr

c

cr
icic TTDTDDP

P

h

h

T

P

T
Df δν

ν
απδπαπαδπαδ

∂
∂

−+−−+








∂
∂

∂
∂

+
∂

∂
= 111

1

1

11
15

  This is assuming c
c

cv
inc P

P

h
h δδ

∂
∂

=,    and    
1

1

,

1

c

cr

inc

cr

h

T

h

T

∂
∂

=
∂
∂

 

Linearize fc6 

[ ] ( ) c
c

co
cwcaocwocoicic

c

cr
icic TTDTDDP

P

T
Df δν

ν
απδπαπαδπαδ

∂
∂

−+−−+
∂

∂
= 222

2
26  

Linearize fc7 

[ ]

( ) c
c

co
cwcao

cwocoicioutc
outc

cr
icic

c

cr
icic

TTD

TDDh
h

T
DP

P

T
Df

δν
ν
α

π

δπαπαδπαδπαδ

∂
∂

−+

−−+
∂
∂

+
∂

∂
=

3

33,
,

3
3

3
37

 

Putting the equations into matrix form 

[ ]Tcccccccccc ffffffffxD 7654321==&         

Linearize the previous equation 

( ) cccccccc uBxAfxxD δδδ ′+′+=+ &&         

 cccccc uBxAxD δδδ ′+′=&  (2.24) 
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
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
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
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
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ddd
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 120 

Complete Model 

Fold δfe1 into complete model using valvecevalveine ukPkPkmm δδδδδ 131211, ++== &&     

    outcine hh ,, δδ =  

( )
( ) outc

E
valve

E
c

E
ew

E
e

EE
e

E
e

outc
E

valvece
E

ew
E

e
E

e
E

e

ine
E

ine
E

ew
E

e
E

e
E

e

hbukbPkbTaPkbaLaf

hbukPkPkbTaPaLaf

hbmbTaPaLaf

,12131112111141111121111

,1213121111114121111

,12,11114121111

δδδδδδδ

δδδδδδδδ

δδδδδδ

++++++=

++++++=

++++= &

 

 

Fold δfe2 into complete model using compcecompoute ukPkPkmm δδδδδ 333231, ++== &&     

( )
( ) comp

E
c

E
ew

E
oute

E
e

EE
e

E
e

compce
E

ew
E

oute
E

e
E

e
E

e

oute
E

ew
E

oute
E

e
E

e
E

e

ukbPkbTahaPkbaLaf

ukPkPkbTahaPaLaf

mbTahaPaLaf

δδδδδδδ

δδδδδδδδ

δδδδδδ

33233223225,233123221212

33323123225,23221212

,23225,23221212

++++++=

++++++=

++++= &

 

 

Fold δfe3 into complete model using compcecompoute ukPkPkmm δδδδδ 333231, ++== &&     

valvecevalveine ukPkPkmm δδδδδ 131211, ++== &&  

( ) ( ) compvalvecee

compcevalvecee

outeinee

ukukPkkPkkf

ukPkPkukPkPkf

mmf

δδδδδ
δδδδδδδ

δδδ

3313321231113

3332311312113

,,3

−+−+−=

−−−++=

−= &&

 

 

δfe4  and δfe5  require no modifications for complete model 

e
E

ew
E

oute
E

e
E

e

e
E

ew
E

e
E

e

bTahaPaf

bTaPaf

δνδδδδ

δνδδδ

54255,53525

44144424

+++=

++=
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Fold δfc1 into complete model using compcecompinc ukPkPkmm δδδδδ 333231, ++== &&   

outeceinc hkPkPkh ,232221, δδδδ ++=  

( )
( )

( )
( ) e

CC
oute
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c
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outece
C

compce
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+++

+++++=

+++

+++++=

++++= &

 

 

Fold δfc2 into complete model using    valvecevalveoutc ukPkPkmm δδδδδ 131211, ++== &&  

( )
( ) e

C
valve

C
cw

C
c
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c

C
c

valvece
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C

c
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δδδδδδδ
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,23226232222

+++++=

+++++=

+++= &

  

 

Fold δfc3 into complete model using valvecevalveoutc ukPkPkmm δδδδδ 131211, ++== &&     

( )
( ) e

C
valve

C
cw

C
outc

C
c
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c

C
c

C
c

valvece
C

cw
C
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C
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C
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C
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C
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C
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C

c
C

c
C
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C
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ukPkPkb
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δδδδδδδδ

δδδ

δδδδδδ

δδδδδδδ

11331333337,341233332321313
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+++++++=

+++

++++=

+++++= &

 

Fold δfc3 into complete model using valvecevalveoutc ukPkPkmm δδδδδ 131211, ++== &&     

    compcecompinc ukPkPkmm δδδδδ 333231, ++== &&  

( ) ( ) valvecompcec

valvececompcec

outcincc

ukukPkkPkkf

ukPkPkukPkPkf

mmf

δδδδδ
δδδδδδδ

δδδ

1333123211314

1312113332314

,,4

−+−+−=

−−−++=

−= &&
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δfc5 , δfc6 and δfe7  require no modifications for complete model 

c
C

cw
C

outc
C

c
C

c

c
C

cw
C

c
C

c

c
C

cw
C

c
C

c

bTahaPaf

bTaPaf

bTaPaf

δνδδδδ

δνδδδ

δνδδδ

74377,74737

64266636

54155535

+++=

++=

++=

 

 

Express the linear model of the evaporator in terms of the evaporator and condenser 

states and system inputs in matrix form 

uBxAxAx

uBDxADxADx

uBxAxAxD

uBxAxAuBxAxD

eececeeee

eeececeeeeee

eececeeeee

ececeeeeeeeee

δδδδ
δδδδ

δδδδ
δδδδδδ

++=

′+′+′=

′+′+′=

′+′+′=′+=

−−−

&

&

&

&

111
 

 

Express the linear model of the condenser in terms of the evaporator and condenser states 

and system inputs in matrix form 

uBxAxAx

uBDxADxADx

uBxAxAxD

uBxAxAuBxAxD

ccececccc

cccececccccc

ccececcccc

ccececcccccccc

δδδδ
δδδδ

δδδδ
δδδδδδ

++=

′+′+′=

′+′+′=

′+′+′=′+′=

−−−

&

&

&

&

111
 

 

System states and inputs 

[ ]Tcevalvecomp
c

e
uuu

x

x
x νδνδδδδδ

δ
δ =








=  

 

System linear modeling equations  

 u
B

B
x

AA

AA
x

cc

ee

ccce

ecee δδδ 







+








=&  (2.28) 
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Evaporator Matrix Elements 
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Condenser Matrix Elements  
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Appendix D - Experimental Setup References 

System Diagrams 

 

Figure D-1 Original Design Diagram  

 

Figure D-2 Final Design Diagram (Front)  

(See Table D.1 for key to diagrams) 
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Figure D-3 Final Design Diagram (Back) 

 (See Table D.1 for key diagrams) 
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Table D.1 Key to Diagrams 

A Filter/Dryer G3 Pressure Gauge 3 S-1 
Switch, Condenser 
Blower Motor 
Control 

B 
Moisture/Liquid Sight 
Glass 

G4 Pressure Gauge 4 S-2 
Switch, Evaporator 
Blower Motor 
Control  

BL-C Blower/Motor 
Assembly, Condenser 

H Receiver, Refrigerant S-3 
Switch, Compressor 
Motor Control  

BL-E Blower/Motor 
Assembly, Evaporator 

I Reversing Valve S-4 
Switch, Expansion 
Valve 

C Solenoid Valve J V cone Flowmeter TCB 
Temperature 
Control Board 

D Expansion Valve K 
Differential Pressure 
Transmitter 

T1 
Thermocouple 
Probe 1 

D1 Dial Thermometer 1 L Compressor T2 
Thermocouple 
Probe 2 

D2 Dial Thermometer 2 M Main Switch T3 
Thermocouple 
Probe 3 

D3 Dial Thermometer 3 N Watt Meter T4 
Thermocouple 
Probe 4 

D4 Dial Thermometer 4 O 
Condenser Blower 
Motor Variable 
Frequency Drive 

T5 
Thermocouple 
Probe 5 

D5 Dial Thermometer 5 P 
Compressor Motor 
Variable Frequency 
Drive 

U 
Suction Line 
Accumulator 

E Capillary Tube P1 Pressure Transducer 1 V 
24 VDC Power 
Supply 

F 
Separator, 
Oil/Refrigerant 

P2 Pressure Transducer 2 W Power Strip, 6 outlet 

FM-E 
 Air Flowmeter, 
Evaporator 

P3 Pressure Transducer 3 X Ground Bar 

FM-C 
 Air Flowmeter, 
Condenser 

P4 Pressure Transducer 4 Y 
Grounded Plug 2             
(3 outlet) 

G Reciever, Oil P5 Pressure Transducer 5 Z 
Grounded Plug 1             
(3 outlet) 

G1 Pressure Gauge 1 Q 
Evaporator Blower 
Motor Variable 
Frequency Drive   

G2 Pressure Gauge 2 SCB Screw Terminal Board   
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Wiring Diagrams 

 

Figure D-4 Main Box Wiring Diagram (Right) 
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Figure D-5 Main Box Wiring Diagram (Center) 
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Figure D-6 Main Box Wiring Diagram (Left) 
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Figure D-7 Temperature Control Board Wiring Diagram 
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Figure D-8 Air Flow Meter Wiring Diagram 

 

Table D.2 Air Flow Meter Key 

R1 39 kΩ R5 110 Ω C4 1 µF
R2 10 kΩ C1 0.1 µF D Detector
R3 2.2 kΩ C2 4.7 µF E Emitter
R4 1 kΩ C3 470 pF

Notes:

* The ground symbol represents the ground on the circuit board.
** The voltages go to their respective buses’ on the circuit board.
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Figure D-9 Screw Terminal Board Wiring Diagram 

 (See Table D.3 for Key) 
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Table D.3 Screw Terminal Board Connections 

Channel Signal Channel Signal
0 Condenser Air Flowmeter 0 Cold Junction Ref.
8 Pressure 1 8 blank
1 Pressure 2 1 Thermocouple 1 (+)
9 Pressure 3 9 Thermocouple 1 (-)
2 Pressure 4 2 Thermocouple 2 (+)
10 Pressure 5 10 Thermocouple 2 (-)
3 Evaporator Exit Humidity 3 Thermocouple 3 (+)
11 Evaporator Exit Temperature 11 Thermocouple 3 (-)
4 Evaporator Inlet Humidity 4 Thermocouple 4 (+)
12 Evaporotor Inlet Temperature 12 Thermocouple 4 (-)
5 Condenser Exit Humidity 5 Thermocouple 5 (+)
13 Condenser Exit Temperature 13 Thermocouple 5 (-)
6 Condenser Inlet Humidity 6 blank
14 Condenser Inlet Temperature 14 blank
7 Differential Pressure 7 blank
15 Evaporator Air Flowmeter 15 blank

DAC0OUT Compressor Control DAC0OUT Evaporator Fan Control
DAC1OUT Expansion Valve Control DAC1OUT Condenser Fan Control

Screw Terminal Board Connections

** R = 1 MΩ

Board # 1 Board # 2

* A circled G on a wire indicates that the shielding is grounded at the body of the 
enclosure.
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LabVIEW Block Diagrams 

 

Figure D-10 Main Block Diagram (Top Half) 
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Figure D-11 Main Block Diagram (Bottom Half) 

(See later figures for sub-vi’s) 
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Figure D-12 board_1_router sub vi 

 

Figure D-13 sat temps sub vi 
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Figure D-14 file_writing sub vi 

 

Figure D-15 flow processing sub vi 
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Figure D-16 press processing sub vi  
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Figure D-17 temperature processing sub vi 

 

Figure D-18 Integral sub vi 
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Table D.4 DAQ Assistant Custom Scales 

Name Equation Output Units Range

Voltage-Pressure P = (517.11)V - 517.11 kPa (gauge)  0 - 2000

Voltage-Humidity RH = (20)V percent  0 - 100

Voltage-Temperature T = (26)V - 30 oC  -30 - 80

pressdiff ∆P = (4.982)V - 4.982 kPa  0 - 20

Evapflow F = (62.4597)V + 20.862 cfm  0 - 400

Condflow F = (64.6994)V + 10.2628 cfm  1 - 400

cjcel T = (100)V oC  0 - 40 

diffOffset mV = (1000)V + .12 mV  -5 - 5

DAQ Assistant Custom Scales

 

 

 

Table D.5 Formula Block Equations 

Name Equation
Input 
Units

Output 
Units

C to mV V = (-1.2902E-7)T3 + (2.672E-5)T2 + (3.9444E-2)T - 3.121E-4 oC mV
mV to C T = (0.0701)V3 + (-0.4535)V2 + (25.352)V + 0.015 mV oC

High 
Pressure 

Saturation
T = (-0.1709)P2 + (7.1201)P - 14.7079 bar oC

Low 
Pressure 

Saturation
T = (0.3328)P3 + (-4.2153)P2 + (25.5184)P - 46.9264 bar oC

Formula Block Equations
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Parts Lists 

Table D.6 System Components 

Quantity Device Manufacturer Part Number Relevant Specifications
Supply:  115 VAC             
single phase, 60 Hz

Output: 200-230 VAC                                            
3 phase, 0-60 Hz

Control Signal:  0-10VDC

2 AC Century Blower Motor MagneTek HM2H001
200-230 VAC                                   

3 phase, 1/4 hp

Supply:  115 VAC             
single phase, 60 Hz

Output: 200-230 VAC                   
3 phase, 0-60 Hz

Control Signal:  0-10VDC

1 AC Compressor Motor Leeson C6T17FK58A
208-230 VAC                                  

3 phase, 3/4 hp

1 Compressor Blissfield CE 9910 Single Cylinder, 1/4 hp

Supply:  24VAC

Control Signal:  0-10VDC

1 Stepper Expansion Valve Sporlan SEI - 0.5 - 10 - 8 Cooling Capacity:  0.5 ton

Yaskawa

Components

VS Mini Variable 
Frequency Drives

2 GPD205 - 10P2

952660

Leeson

Sporlan1

Speedmaster Adjustable 
Speed AC Motor 

Controller

Temperature Control 
Board

1 174931

 

 

Table D.7 System Sensors 

Quantity Sensor Manufacturer Part Number Supply Output
Calibration 

Range

5 Pressure Transducer Cole Parmer 07356-04 24 VDC 1-5 VDC 0-300psig

1
Type K Thermocouple 

Probe (grounded)
Omega KQSS - 18U - 4 N/A  -6 - 50 mV  -200 - 1250 oC

1
Differential Pressure 

Meter
Rosemount D2M22B2S1B4E5 12 VDC 1-5 VDC 0-80in water

1 V-Cone Meter McCrometer VT0AQC02N1 N/A 0-80in water 6-60 Liter/min

2 Air Flow meters N/A N/A
±12 VDC         
5 VDC

0-10 VDC 50-260 cfm

4
Relative Humidity & 

Temperature
Precon HS-2000V 5 VDC 1-5 VDC

0-100%                       

-30 to 85 oC 

1 Watt Meter Triplett 460 - G N/A visual
0-1500W                            
0-750W

Sensors
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Table D.8 Electronic Components 

Quantity Device Part Number Relevant Specifications
Supply:  120 VAC, single phase, 60 Hz 
Output:  24 VDC 
Supply: 24 VDC
Ouptut:  5 VDC
Supply: 24 VDC
Output: -12 / +12 VDC
Input: 120V, 50/60 Hz
Output: 24V @ 1.67 Amps
Maximum Power: 40VA

2 Flip-Flop 74LS 74A Supply:  5 VDC
Supply:  ±12 VDC
Output:  0-10 VDC
Reverse Voltage:  5 VDC
Turn on Current:  150 mA

3 741 Op-Amp LM741CN Supply: ±12 VDC

1 Tri-State Buffer 74HCT541N Supply:  5 VDC
Control:  1.2 VDC (typ.) 20-50 mA
Rated:  3A, 125 VAC

276-142 (RadioShack)

275-310 (RadioShack)

Electronics

2
Frequency to Voltage 

Converter

24 to ±12 DC-DC 
Converter

Transformer

HD24-4.8-A

PSS3-24-5

PsSD3-24-1212

TCT40-01E07AB

VFC32KP

Infrared 
Emitter/Detector

2

1

1

1

1

1

DC Power Supply

24 to 5 DC-DC 
Converter

Solid State Relay
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Air Flow Meter Calibration 

Table D.9 Linear Regression Results 

Velocity 
(ft/min)

Flowrate 
(cfm)

Evaporator 
Voltage (V)

Condenser 
Voltage 
(V)

Evaporator 
Flowrate 
(cfm) 

Conderser 
Flowrate 
(cfm) 

Evaporator 
Voltage       
(V) 

Condenser 
Voltage              
(V)

543 47.4 0.40 0.55 46.2 46.1 0.42 0.57
1008 88.0 1.07 1.21 87.5 88.6 1.07 1.20
1486 129.7 1.76 1.87 130.9 131.0 1.74 1.85
2020 176.3 2.53 2.56 178.9 176.1 2.49 2.57
2515 219.5 3.16 3.24 218.4 219.6 3.18 3.23
3048 266.0 3.91 3.94 264.9 265.4 3.92 3.95

Linear Regression Results
CalculatedMeasured

 

Evaporator Equations Condenser Equations 

87.2046.62

334.0016.0

+=
−=

VF

FV
 

26.1070.64

159.0015.0

+=
−=

VF

FV
 

 

V is the output voltage in Volts and F is the flow rate in cubic feet per minute 

Table D.10 Uncertainty Results 

Evaporator Condenser

0.07811 0.04467 Volts
4.879 2.890 cfm

0.0024414 0.0024414 Volts
0.152 0.158 cfm

0.05392 0.05462 Volts
3.368 3.534 cfm

3 3 cfm

6.65 5.47 cfm
2.22% 1.82%  @ 300 cfm

Total Uncertainty

Linearity Uncertainty

Resolution Uncertainty

Random Uncertainty

Standard Error "+/- 1%"

Uncertainty Results
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Appendix E - Modeling Parameter Values 

Table E.1 Mutual Parameter Values 

A 5.95E-05 m2
LeT = LcT 6.1 m

Aw 1.16E-05 m2
Tc,air,in 23.4 °C

Do 0.00952 m Tc,air,out 31.8 °C

Di 0.00871 m 

cp,w 0.385 kJ/(kg*K) cp,air 1.007 kJ/(kg*K)

ρw 8933 kg/m3
ρair 1.161 kg/m3

mdot 0.00913 kg/s mdotc,air 0.186 kg/s

Vdotc,air 340 cfm

k11 8.56E-06 kg/(kPa*s)

k12 1.75E-05 kg/(kPa*s)

k13 6.06E-04 kg/(V*s)

k21 -7.42E-02 kJ/(kPa*kg)

k22 1.72E-02 kJ/(kPa*kg)

k23 3.25E-02 unitless

k31 2.30E-05 kg/(kPa*s)

k32 1.20E-05 kg/(kPa*s)

k33 1.43E-04 kg/(Hz*s)

Indirect
Mutual
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Table E.2 Evaporator Parameters 

Tea 296.7 K Pe 348.6 kPa

Te,out 282.3 K

hefg (Pe) 194.8 kJ/kg cp,e2 (Pe, he2) 0.9152 kJ/(kg*K)

hev (Pe) 401.4 kJ/kg heL (Pe) 206.6 kJ/kg

he,out (Pe, Te,out) 405.5 kJ/kg ke2 (Pe, he2) 0.01207 W/(m*K)

Ter1 (Pe) 278.1 K µe2 (Pe, he2) 1.10E-05 (N*s)/m2

Ter2 (Pe, he2) 280.3 K ρeg (Pe) 17.1 kg/m3

ρe2 (Pe, he2) 16.44 kg/m3

ρeL (Pe) 1278 kg/m3

Le1 5.71 m C 0.0564

Le2 0.39 m he2 403.5 kJ/kg

Tew1 281.3 K he,in 250.3 kJ/kg

Tew2 290.5 K Pre2 0.835

αei1 2.7617 W/(m2*K) Ree2 1.21E+05

αei2 0.346 kW/(m2*K) xe,in 0.224

αeo 0.524 kW/(m2*K)

γe 0.952

ρe1 77.252 kg/m3

d(ρe1)/dPe 0.2336 kg/(m3*kPa) dhefg/dPe -0.0663 kJ/(kg*kPa)

d(ρeL*hefg)/dPe -140.52 kJ/(m3*kPa) dρeL/dPe -0.2864 kg/(m3*kPa)

dhev/dPe 0.049 kJ/(kg*kPa) ∂αeo/∂Vdot 1.118 W/(m2*K*cfm)

dTer1/dPe 0.0851 K/kPa ∂Vdot/∂νe 4.25 cfm/Hz

∂Ter2/∂he,out =1/cp,e2 1.09 (kg*K)/kJ

∂αeo/∂νe 4.75E-03 kW/(m2*K*Hz)

∂Ter2/∂Pe 0.030 K/kPa

∂ρe2/∂he,out -0.096 kg2/(m3*kJ)

∂ρe2/∂Pe 0.0513 kg/(m3*kPa)

D
er

iv
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iv
es

M
ea

su
re

d
Direct

Evaporator
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rm
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Indirect
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Table E.3 Condenser Parameter Values 

Tca 296.7 K Pc 1046 kPa

Tc,out 309.1 K
Tc,in 317.4 K

ρc1(Pc,hc1) 51.03 kg/m3
ρcv (Pc) 51.62 kg/m3

ρcL (Pc) 1142 kg/m3
µc1 (Pc, hc1) 1.267E-05 (N*s)/m2

hc,in (Pc, Tc,in) 423.5 kJ/kg cp,c1 (Pc, hc1) 1141 J/(kg*K)

hc,out (Pc, Tc,out) 250.3 kJ/kg kc1 (Pc, hc1) 0.01566 W/(m*K)

hcv (Pc) 419.9 kJ/kg µc3 (Pc, hc3) 1.67E-04 (N*s)/m2

hcL (Pc) 258 kJ/kg cp,c3 (Pc, hc3) 1489 J/(kg*K)

hcfg (Pc) 161.9 kJ/kg kc3 (Pc, hc3) 0.07541 W/(m*K)

Tcr1 (Pc, hc1) 315.8 K
Tcr2 (Pc) 314.2 K

Lc1 0.22 m C 0.127
Lc2 5.23 m Prc1 0.9231
Lc3 0.65 m Rec1 1.05E+05
γc 0.802 Prc3 3.30

ρc2 267.8 kg/m3
Rec3 8.00E+03

Tcw1 302.9 K hc1 421.7 kJ/kg
Tcw2 308.5 K
Tcw3 301.17 K

αci1 0.421 kW/(m2*K)

αci2 1.7955 kW/(m2*K)

αci3 0.378 kW/(m2*K)

αco 0.800 kW/(m2*K)

Tcr3 311.6 K
hc3 254.2 kJ/kg

d(hcv)/dPc 0.0153 kJ/(kg*kPa) d(hcfg)/dPc -0.0385 kJ/(kg*kPa)

d(hcL)/dPc 0.054 kJ/(kg*kPa) ∂αco/∂Vdot 1.118 W/(m2*K*cfm)

d(ρcL)/dPc -0.154 kg/(m3*kPa) ∂Vdot/∂νc 4.70 cfm/Hz

d(ρcL*hcfg)/dPc -68.93 kg/(m3*kPa)

∂(ρc1)/∂Pc 0.057 kg/(m3*kPa)

∂(Tcr1)/∂Pc 0.022 K/kPa

∂(ρc1)/∂hc1 -0.318 kg2/(m3*kJ)

∂(Tcr3)/∂hco 0.336 (kg*K)/kJ

d(ρc2)/dPc 0.104 kg/(m3*kPa)

d(Tcr2)/dPc 0.036 K/kPa

∂(Tcr3)/∂Pc 0.0184 K/kPa

∂(Tcr1)/∂hc1 = 1/cp,c1 0.876 (K*kg)/kJ

∂(αco3)/∂νc 5.25E-03 kW/(m2*K*Hz)

Condenser
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Table E.4 Wall Temperature Optimization Spreadsheet 

mdot Refrigerant Mass Flow Rate 0.00913 kg/s
Do Inside Tube Diameter 9.52E-03 m

Di Outside Tube Diameter 8.71E-03 m

he,in Inlet Enthalpy 250.3 kJ/kg

hev Saturated Vapor Enthalpy 401.4 kJ/kg

heL Saturated Liquid Enthalpy 206.6 kJ/kg

he,out Outlet Enthalpy 405.5 kJ/kg

Tea Ambient Temperature 23.5 C

Ter1 Temperature of Node 1 Refrigerant 4.9 C

αei1 Inside Convection Coefficient of Node 1 2.7617 kW/(m2*K)

Ter2 Temperature of Node 2 Refrigerant 7.14 C

αei2 Inside Convection Coefficient of Node 2 0.346 kW/(m2*K)

Ltotal Total Heat Exchanger Length 6.1 m

Tew1 Temperature of node 1 wall 8.10 C
Tew2 Temperature of node 2 wall 17.3 C

Le1 mdot*(hev-he,in) /(αei1*Di*π(Tew1-Ter1)) 5.71 m

Le2 mdot*(he,out-hev) /(αei2*Di*π(Tew2-Ter2)) 0.39 m

αeo mdot*(hev-he,in) /(π*Do*Le1*(Tea-Tew1)) 0.524 kW/(m2*K)

Ltotal Le1 + Le2 6.1000 m

Q2(meas) mdot*(he,out-hev) 0.03741 kW
Q2(air calc) αeo*π*Do*Le2*(Tea-Tew2) 0.03741 kW

diff2 (Q2(meas) - Q2(air calc))2
4.27E-22 kW

Constant Inputs

Variables

Calculated Variables

Heat Transfer Values

 

The solver was set to vary the values of Tew1 and Tew2 to minimize the target cell 

that calculates the difference squared while equating the constant input total length and 

the calculated variable total length.  The calculated variables and heat transfer values are 

evaluated with the given equations. 
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Table E.5 Recalculated Values for Modified Mass Flow Rate and Ambient 

Temperatures 

"+10%" "-10%" 75% 50%

0.01004 0.00821 293.5 / 298.725 290.35 / 300.08 units

αei1 2.98 2.494 no change no change kW/(m2*K)

αei2 0.373 0.318 no change no change kW/(m2*K)

αeo 0.578 0.47 no change no change kW/(m2*K)

αci1 0.454 0.387 no change no change kW/(m2*K)

αci2 1.938 1.647 no change no change kW/(m2*K)

αci3 0.408 0.347 no change no change kW/(m2*K)

αco 0.889 0.718 no change no change kW/(m2*K)

Tew1 281.31 281.23 281.29 281.34 K

Tew2 290.55 290.45 289.25 290.55 K

Tcw1 302.74 303.01 303.5 304.21 K

Tcw2 308.35 308.55 308.35 308.25 K

Tcw3 301.08 301.28 302.05 303.05 K

Le1 5.72 5.73 5.67 5.59 m

Le2 0.38 0.37 0.42 0.51 m

Lc1 0.223 0.218 0.232 0.246 m

Lc2 5.223 5.206 5.141 5.055 m
Lc3 0.652 0.673 0.0725 0.797 m

Tea / Tca (K)mdot (kg/s)
Modified Parameter Values
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k11 * δPe  + k12 * δPc  + k13 * δuvalve  = δmdot δmdot (calc) diff2
% diff

k11 0.0308 -10.43 -8.31 -0.2 -1.173 -1.282 1.18E-02 9%
k12 0.0631 -8.96 -3.71 -0.2 -0.965 -0.946 3.57E-04 -2%
k13 2.1813 -16.93 -8.85 -0.3 -1.831 -1.734 9.34E-03 -5%

-12.50 -4.18 -0.25 -1.056 -1.194 1.91E-02 13%
-13.42 -8.03 -0.25 -1.559 -1.465 8.84E-03 -6%
-21.97 45.30 0 2.126 2.182 3.12E-03 3%
-18.32 29.78 0 1.393 1.315 6.12E-03 -6%

sum 5.87E-02

k31 * δPe  + k32 * δPc  + k33 * δucomp  = δmdot δmdot (calc) diff2
% diff

k31 0.0828 -10.43 -8.31 0 -1.173 -1.221 2.31E-03 4%
k32 0.0431 -8.96 -3.71 0 -0.966 -0.901 4.20E-03 -7%
k33 0.5141 -16.93 -8.85 0 -1.829 -1.783 2.14E-03 -3%

-12.50 -4.18 0 -1.054 -1.215 2.60E-02 15%
-13.42 -8.03 0 -1.554 -1.456 9.55E-03 -6%
-21.97 45.30 4 2.126 2.191 4.17E-03 3%
-18.32 29.78 3 1.396 1.310 7.42E-03 -6%

sum 5.58E-02

k21 * δPe  + k22 * δPc  + k23 * δhe,out  = δhc,in δh1 (calc) diff2
% diff

k21 -0.0742 -10.43 -8.31 3.8 0.9 0.75 2.11E-02 -16%
k22 0.0172 -8.96 -3.71 4.1 0.7 0.73 1.19E-03 5%
k23 0.0325 -16.93 -8.85 6.2 1.3 1.31 3.22E-05 0%

-12.50 -4.18 5.5 1.0 1.03 1.18E-03 3%
-13.42 -8.03 5.4 1.0 1.03 1.10E-03 3%
-21.97 45.30 2.7 2.6 2.50 1.10E-02 -4%
-18.32 29.78 2.1 1.8 1.94 1.93E-02 8%

sum 5.49E-02

diff is the difference between measured and calcluated 

Mass flow rates are in kg/hr

Notes:

Least Squares Analysis

Pressures are in kPa

Enthalpies are in kJ/kg

 

 


