
 

 

 

A COMPARISON STUDY ON THE ESTIMATION IN TOBIT REGRESSION MODELS 

 

 

by 

 

 

ANTOINETTE LEIKER 

 

 

 

B.S., Fort Hays State University, 2009 

 

 

 

A REPORT 

 

 

submitted in partial fulfillment of the requirements for the degree 

 

 

 

MASTER OF SCIENCE 

 

 

 

Department of Statistics 

College of Arts and Sciences 

 

 

 

KANSAS STATE UNIVERSITY 

Manhattan, Kansas 

 

 

2012 

 

Approved by: 

 

Major Professor 

Dr. Weixing Song 

 

 



 
 

Abstract 

 

The goal of this report is to compare various estimation procedures on regression 

models in which the dependent variable has a restricted range.  These models, called Tobit 

models, are seeing an increase in use among economists and market researchers, 

specifically.  Only the standard Tobit regression model is discussed in the report. 

First we will examine the five estimation methods discussed in Amemiya (1984) for 

standard Tobit model.  These methods include Probit maximum likelihood, least squares, 

Heckman’s two-step, Tobit maximum likelihood, and the EM algorithm.  We will examine 

the algorithm utilized in each method’s estimation process.   

We will then conduct simulation studies using these estimation procedures.  Twelve 

scenarios have been considered consisting of three different truncation threshold on the 

response variable, two distributions of  

covariates, and the error variance known and unknown.  The results are reported and a 

discussion of the goodness of each method follows.     

 The study shows that the best method for estimating Tobit regression models is 

indeed the Tobit maximum likelihood estimation.  Heckman’s two-step method and the EM 

algorithm also estimate these models well when the truncation rate is low and the sample 

size is large. The simulation results show that the Least squares estimation procedure is far 

less efficient than other estimation procedures.  
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Chapter 1 – Introduction 

 Consider a research project in which the level of lead in drinking water is 

being analyzed as a function of house-hold income.  Most lead-testing kits have a 

threshold on minimum detectable concentration levels, say five parts per billion.  

Thus, any value below 5 ppb will read as a 0.  In figure 1.1 one can see that the 

observations where the lead concentration is greater than 5 ppb could easily be 

modeled linearly, but the observations below the 5 ppb threshold are unusable.  

This is an example of left-censoring, or censoring from below.   

Figure 1.1 

 
 Tobin (1958) noted the relationship between household expenditures on a 

durable good and household income are similarly distributed and cannot be simply 

modeled as a linear regression due to the characteristic that several observations on 

expenditure are zeros.  He developed a model to adjust for this censoring.  In a 1964 

paper, Goldberg names Tobin’s model the Tobit model because of its similarities to 

Probit models.   

 Consider the previous examples.  To be specific, assume that a response 

variable and a predictor 𝑋𝑋, possibly multidimensional, can be modeled as 

𝑦𝑦∗ = 𝑚𝑚(𝑋𝑋) + 𝜖𝜖, where 𝑚𝑚 is the regression function 𝐸𝐸(𝑦𝑦∗|𝑋𝑋), and 𝜖𝜖 is the random 

error.  In Tobit regression model, 𝑦𝑦∗ can only be observed if its value is above a 

threshold 𝑦𝑦0, which is often assumed to be known, or one can observe 𝑌𝑌 =
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max{𝑦𝑦∗,𝑦𝑦0}. The classical Tobit regression model assumes that 𝑚𝑚(𝑥𝑥) = 𝛽𝛽0 + 𝑋𝑋𝑖𝑖′𝛽𝛽1, 

and the random error 𝜖𝜖 follows a normal distribution 𝑁𝑁(0,𝜎𝜎2).  

 Since the 1960s, the applications of Tobit regression models have increased 

dramatically.  The value of these models has led to various research areas such as 

economics, biometrics, agriculture, psychology, sociology and medicine to 

incorporate Tobit regression in their respective fields.  Shishko and Rostker (1980) 

utilized tobit regression in labor studies—determining the probability a full-time 

employee moonlights (works a second job) as well as estimating the number of 

hours worked at the second job.  Delva and associates (2006) employed tobit 

regression in an analysis of the association of youth alcoholism with depression and 

parental factors in Korea.  This study examines the extent to which depressive 

symptoms, parental alcoholism and parental attention predict or explain adolescent 

drinking behaviors.  Tobit regression is an appropriate method due to the large 

number of adolescents who didn’t exhibit issues with alcohol and thus creating a 

cluster of “zero” observations.   

 Other examples can be found in Ekstrand and Carpenter (1998), Smith and 

Brame (2003), Holden (2004), Wang (2007), Caudill and Mixon (2009), Solon 

(2010), and the references therein. 

 In the classic Tobit regression model, the statistical inference mainly focuses 

on the estimation of the regression parameter 𝛽𝛽 and the variance 𝜎𝜎2.  Assuming that 

𝜖𝜖 follows a normal distribution 𝑁𝑁(0,𝜎𝜎2), one can use the Probit maximum likelihood 

to find a consistent and asymptotic normally distributed estimate for σβ0  and

σβ1 .  However, one cannot estimate the regression parameters and standard 

deviation separately; naive least square estimation by simply regressing 𝑦𝑦 linearly 

on 𝑥𝑥 produces biased estimates, but the bias can be corrected by nonlinear 

regression. The log-likelihood function of the Tobit regression model is not globally 

concave with respect to the original parameters 𝛽𝛽 and 𝜎𝜎, see Amemiya (1973). After 

certain reparametrization, Olsen (1978) showed that the log-likelihood function in a 

reparameterized Tobit model is globally concave, which implies that a standard 

iterative method such as the Newton-Raphson or Fisher scoring always converges to 
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the global maximum of the log-likelihood function.  Extensive computations are 

involved when implementing the nonlinear least squares and Tobit maximum 

likelihood procedures. Heckman’s two step estimator can significantly reduce the 

computation load by combining a probit maximum likelihood procedure and a 

simple linear regression procedure.   Treating the Tobit regression as a missing data 

structure, one can apply EM algorithm to estimate the unknown parameters. The 

computation cost is even less than Heckman’s two-step estimate, since only simple 

linear regressions are needed in the procedure.  

 Simulation studies show that the Tobit maximum likelihood estimation is not 

robust to nonnormality and heteroscedasticity. This characteristic may be shared by 

other procedures since they all rely on the normal assumption of the error term 𝜖𝜖. 

To overcome this disadvantage some nonparametric and semiparametric estimation 

procedures are constructed in literature.  One such estimator is the least absolute 

deviation (LAD), proposed by Powell (1984).  However, the merit of Powell’s LAD 

estimator as being semi-parametric and robust to non-normality and 

heterscedasticity are diminished by the computational difficulty and the limitation 

that the regression function form must be linear. See Berg (1998) for more 

discussion.  Lewbel and Linton (2002) and Zhou (2007) proposed several 

nonparametric estimation procedures for the regression function. Both of these 

estimators involve some integrals whose computation in turn uses numerical 

approximation, and more importantly, their estimators are not consistent unless 

some strict conditions are imposed on the tails of the distribution of 𝜖𝜖.   

 Although the estimation procedures developed for the classical Tobit 

regression models are subject to some disadvantages, they still enjoy a great 

popularity among statisticians and econometricians because of the following 

reasons: (i) the real data generated from various applications may not be exactly 

normal, but are not far from normal, and after some data transformation, the 

homoscedasticity assumption holds. (ii) The computational difficulty is much less 

than their nonparametric and semi-parametric counterparts. And finally, (iii) the 

methodology developed for Tobit regression models with normal errors can be 

extended to Tobit regression models with non-normal errors. 
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 This report will compare five different estimation procedures for Tobit 

regression models through simulation studies: Probit maximum likelihood 

estimator, least squares estimator, Heckman’s two-step estimator, Tobit maximum 

likelihood estimator and the estimator based EM algorithm.  To make the 

comparison, an empirical relative efficiency of an estimator to maximum likelihood 

estimator is employed.  This relative efficiency is defined as the ratio of the 

empirical mean squares of errors from both estimation procedures.  For each 

simulation setup, the efficiency is calculated. An estimation procedure is deemed to 

be good if the relative efficiency is close to 1.  

 The report is organized as follows. In Chapter 2, we will briefly review the 

basic ideas for each estimation procedures and the algorithms will be given. Any 

modifications to these methods are also discussed there. Simulation studies will be 

conducted in Chapter 3, together with some comparison results and our 

recommendations. For the sake of completeness, R codes for each estimation 

procedure are included in the Appendix. 
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Chapter 2 – Estimation Methods 

 For the sake of brevity, throughout the report, we shall assume that the 

predictor 𝑥𝑥 is univariate. The extensions of the developed algorithms to 

multidimensional cases would be straightforward. 

Probit Maximum Likelihood Estimators 

 The Probit model is a popular model in econometrics and statistics.  The 

response variable, y, is binary while the independent variables can be continuous or 

categorical.  The Probit model, along with the logistic model, is one of the most 

popular models for dichotomous data.   
 The Tobit likelihood function can be trivially rewritten as  

 
.  (2.1) 

Then, the likelihood function of the Probit model is simply 

  . (2.2) 

The Probit maximum likelihood estimator of 
 
and 

 

β
σ

 , denoted and , is found 

by maximizing the likelihood function (2.2).  In this study we utilize the R function 

glm with a probit link function to maximize.  It is quickly obvious that one cannot 

estimate α, β and σ separately, but must estimate the ratios  and 

 

β
σ

 instead.  This 

results in a loss of efficiency and for this study the Probit maximum likelihood 

estimator is examined only when σ is known.   

Least Squares Estimators 

 Simple calculation shows that 

  𝐸𝐸(𝑦𝑦𝑖𝑖|𝑦𝑦𝑖𝑖 > 0) = ( ) + 𝜎𝜎𝜎𝜎(( )/𝜎𝜎)  (2.3) 
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and 

  𝐸𝐸𝑦𝑦𝑖𝑖 = Φ� /𝜎𝜎� [𝑋𝑋𝑖𝑖𝛽𝛽 + 𝜎𝜎𝜎𝜎( /𝜎𝜎)]  (2.4) 

where 𝜆𝜆 �( )/𝜎𝜎� = 𝜙𝜙(( )/𝜎𝜎)/Φ(( )/𝜎𝜎) is the reciprocal of 

Mill’s ratio. These relationships imply that simply regressing 𝑦𝑦 on 𝑥𝑥 will ignore some 

factors in the regression function (2.3) and (2.4), hence results in biased estimates.  

A consistent and asymptotically normally distributed estimate can be obtained by 

considering the following nonlinear regression models 

  𝑦𝑦𝑖𝑖 = ( ) + 𝜎𝜎𝜎𝜎 � 𝜎𝜎⁄ � + 𝜉𝜉𝑖𝑖 ,       𝑦𝑦𝑖𝑖 > 0 (2.5) 

or  

                                        𝑦𝑦𝑖𝑖 = Φ� �   + 𝜎𝜎𝜎𝜎( /𝜎𝜎)] + 𝜂𝜂𝑖𝑖 .                       (2.6) 

 In the following section, we will develop the algorithm to implement the 

nonlinear least squares procedures.  

σ is unknown 

First let’s consider the nonlinear least squares estimation based on model 

(2.5). For convenience, let 𝑧𝑧𝑖𝑖 = ( )/𝜎𝜎  and )()( zzzh λ+= .  The MLEs of α, β 

and σ using only positive observations are defined as  

( ) ( ) [ ] .)(argmin,,argminˆ,ˆ,ˆ
1

2
,,,, ∑

=

−==
n

i
iin zhyL σσβασβα σβασβα  

 With basic calculus, it’s easy to see that 

  

 

λ'(z) = −zλ(z) − λ2(z) , 

 

′ ′ λ (z) = (z2 −1)λ(z) + 3zλ2(z) + 2λ3(z) .      (2.7) 

Then 

         ,   ,   , 

 

′ h (z) =1+ ′ λ (z) , 

 

′ ′ h (z) = ′ ′ λ (z) , (2.8) 

and  

 

∂z
∂α

=
1
σ

 

∂z
∂β

=
x
σ

 

∂z
∂σ

= −
z
σ
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).(')())](([

),('))](([

),('))](([

zzhzhzzy

zxhzzy

zhzzy

+−=
+−

−=
+−

−=
+−

∂σ
λσ∂

∂β
λσ∂

∂α
λσ∂

   (2.9) 

 To use Newton-Rhaphson algorithm, we have to calculate the first and 

second order derivatives of 

 

Ln (α,β,σ)  with respect to α, β and σ.  Using (2.7), (2.8) 

and (2.9), the first order derivatives are 

  

)].(')()][([2),,(

,)(')]([2),,(

,)(')]([2),,(

1

1

1

i

n

i
iiii

n

n

i
iiii

n

n

i
iii

n

zhzzhzhyL

XzhzhyL

zhzhyL

∑

∑

∑

=

=

=

−−−=
∂

∂

−−=
∂

∂

−−=
∂

∂

σ
σ

σβα

σ
β

σβα

σ
α

σβα

 

The second derivatives are 

                        

 

Then we can use the following Newton-Rhaphson algorithm to find out the MLEs of 

α, β and σ. 

Algorithm 

(1) Select  𝛼𝛼0,𝛽𝛽0 and 𝜎𝜎0 be the initial values; 
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(2) Iterate the following equation: 

 

(2.10) 

until it converges. 

 Now let’s consider the nonlinear least squares estimation based on model 

(2.6) which uses all the available data on 𝑦𝑦 including 0s. Denote  

 

λ(z) = zΦ(z) + φ(z)   
and 𝑧𝑧 = 𝛼𝛼 + 𝛽𝛽𝛽𝛽 𝜎𝜎⁄ , then we have 

 

′ λ (z) = Φ(z) , 

 

′ ′ λ (z) = φ(z) . In this case, we have to 

minimize the following quantity  

  
  

Note that  

   
Then we can obtain the first order derivatives 

 
The second order derivatives are 

 

∂[y −σλ(z)]
∂α

= − ′ λ (z),

∂[y −σλ(z)]
∂β

= −x ′ λ (z),

∂[y −σλ(z)]
∂σ

= −λ(z) + z ′ λ (z).

 

 

∂Ln (α,β,σ)
∂α

= −2 [Yi −σλ(Zi)] ′ λ (Zi)
i=1

n

∑ ,

∂Ln (α,β,σ)
∂β

= −2 [Yi −σλ(Zi)] ′ λ (Zi)Xi
i=1

n

∑ ,

∂Ln (α,β,σ)
∂σ

= −2 [Yi −σλ(Zi)][λ(Zi) − Zi ′ λ (Zi)]
i=1

n

∑ .
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Then we can use the following Newton-Rhaphson algorithm to find out the MSEs of 

α, β and σ. 

Algorithm 

  (1) Select  𝛼𝛼0,𝛽𝛽0 and 𝜎𝜎0 be the initial values; 

(2) Iterate the following equation: 

  (2.11) 

σ is known 

 Sometimes, the standard deviation σ is known. In this case, we only have to 

estimate α and β. The equation iterated in the Newton-Rhaphson algorithm 

becomes more simple:    

 

∂ 2Ln (α,β,σ)
∂α 2 = 2 [λ'(Zi)]

2

i=1

n

∑ − 2 [Yi −σλ(Zi)] ′ ′ λ (Zi)
σ

,
i=1

n

∑

∂ 2Ln (α,β,σ)
∂α∂β

= 2 [λ'(Zi)]
2

i=1

n

∑ − 2 [Yi −σλ(Zi)] ′ ′ λ (Zi)Xi

σ
,

i=1

n

∑

∂ 2Ln (α,β,σ)
∂α∂σ

= 2 [λ(Zi) − Ziλ'(Zi)]λ'(Zi)
i=1

n

∑ + 2 [Yi −σλ(Zi)] ′ ′ λ (Zi)Zi

σ
,

i=1

n

∑

∂ 2Ln (α,β,σ)
∂β 2 = 2 Xi

2[λ'(Zi)]
2

i=1

n

∑ − 2 [Yi −σλ(Zi)] ′ ′ λ (Zi)Xi
2

σ
,

i=1

n

∑

∂ 2Ln (α,β,σ)
∂β∂σ

= 2 [(λ(Zi) − Zλ'(Zi))λ'(Zi)Xi]
i=1

n

∑ + 2 [Yi −σλ(Zi)] ′ ′ λ (Zi)XiZi

σ
,

i=1

n

∑

∂ 2Ln (α,β,σ)
∂σ 2 = 2 [λ(Zi) − Ziλ'(Zi)]

2

i=1

n

∑ − 2 [Yi −σλ(Zi)]Zi
2 ′ ′ λ (Zi)

σi=1

n

∑ .
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   . 

The first and second derivatives are identically defined as before, except σ is a 

known value.   

Remark on the Least Squares Estimators: σ is unknown 

 Hartley (1976) and Amemiya (1981) showed that the nonlinear least squares 

estimators are asymptotically normal and consistency is then a natural 

consequence.  When σ is unknown, the MSEs of α, β and σ are obtained by iterating 

the Newton-Rhaphson equations (2.10) or (2.11).  However, the potential 

singularity of the matrix 

   
presents some serious computation challenges.  A possible way to avoid the 

singularity is to re-parameterize the model.  For example, one can define ,/σα=a  

σβ /=b , 

 

σ = σ  and apply the Newton-Rhaphson algorithm directly to 𝑎𝑎, 𝑏𝑏 and 𝜎𝜎.    

 Another way to avoid the calculation of the second order derivative matrix is 

to use the fixed-point algorithm. Suppose 𝜎𝜎 is unknown, the nonlinear least squares  

estimation procedure based on all data is to solve the following equations: 

�[𝑦𝑦𝑖𝑖 − 𝛼𝛼Φ(𝑧𝑧𝑖𝑖) − 𝛽𝛽𝑥𝑥𝑖𝑖Φ(𝑧𝑧𝑖𝑖) − 𝜎𝜎𝜎𝜎(𝑧𝑧𝑖𝑖)]Φ(𝑧𝑧𝑖𝑖) = 0
𝑛𝑛

𝑖𝑖=1

 

�[𝑦𝑦𝑖𝑖 − 𝛼𝛼Φ(𝑧𝑧𝑖𝑖) − 𝛽𝛽𝑥𝑥𝑖𝑖Φ(𝑧𝑧𝑖𝑖) − 𝜎𝜎𝜎𝜎(𝑧𝑧𝑖𝑖)]xiΦ(𝑧𝑧𝑖𝑖) = 0
𝑛𝑛

𝑖𝑖=1

 

�[𝑦𝑦𝑖𝑖 − 𝛼𝛼Φ(𝑧𝑧𝑖𝑖) − 𝛽𝛽𝑥𝑥𝑖𝑖Φ(𝑧𝑧𝑖𝑖) − 𝜎𝜎𝜎𝜎(𝑧𝑧𝑖𝑖)]ϕ(𝑧𝑧𝑖𝑖) = 0
𝑛𝑛

𝑖𝑖=1

 

 

∂Ln (α,β,σ )
∂α 2

∂Ln (α,β,σ )
∂α∂β

∂Ln (α,β,σ)
∂α∂σ

∂Ln (α,β,σ )
∂α∂β

∂Ln (α,β,σ )
∂β 2

∂Ln (α,β,σ)
∂β∂σ

∂Ln (α,β,σ )
∂α∂σ

∂Ln (α,β,σ )
∂β∂σ

∂Ln (α,β,σ)
∂σ 2

 

 

 
 
 
 
 
 

 

 

 
 
 
 
 
 
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where 𝑧𝑧 = ( )/𝜎𝜎.  It should be noted that, similarly, one can construct a fixed 

point algorithm for other cases. 

Tobit Maximum Likelihood Estimators 

 The log-likelihood function of the Tobit regression models is given by  

   

where n1 is the number of non-zero observations.  Again we will consider situations 

in which σ is known and unknown.  Here, the Tobit MLE is consistent and 

asymptotically normal, as shown in Amemiya (1973).  In the simulation the R 

function VGLM is utilized to obtain these estimates.  Below is a description of the 

algorithm utilized by this function.   

σ is unknown 

 Following Olsen (1978)’s suggestion, we use the transformed parameters 

 

a =
α
σ

,

 

b =
β
σ

 and 

 

h =
1
σ

.  Hence, the log-likelihood function in terms of the new 

parameters can be written as 

( )[ ] ( )∑∑ −−−−+Φ−=
1

2

0
1 2

1log1loglog bXyhnbXaL iii α  

where .   

 The first order derivatives of log L with respect to a, b, and h are 

   

.)(log

,)(log

,)(log

1

1

10

10

∑

∑∑

∑∑

−−=
∂

∂

−−+−=
∂

∂

−−+−=
∂

∂

iii

iiiii

iii

ybXahy
h
n

h
L
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The second order derivatives of log L with respect to a, b, and h are 
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Then the Newton-Rhaphson algorithm of finding MLEs of a, b and h is to iterate the 

following equation: 

 

(2.12) 

The MSEs of α, β and σ will be obtained by 

. 

σ is known 

 If σ is known, we use the transformed parameters 

 

a =
α
σ

 and b =
β
σ

.  Again 

denote 

 

h =
1
σ

 and .  The first order derivative of log L with 

respect to a and b are  

 

ˆ α =
ˆ a 
ˆ h 

,   ˆ β =
ˆ b 
ˆ h 

,   ˆ σ = 1
ˆ h 
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The second derivatives of log L with respect to a and b are 
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The Newton-Rhaphson algorithm of finding MSEs of a and b is to iterate the 

following equation: 

  (2.13) 

The MSEs of α and β will be obtained by 

   
 

ˆ α = σ ˆ a ,   ˆ β = σ ˆ b . 

Tobit Maximum likelihood estimators are strongly consistent and are asymptotically 

normal.  Unfortunately, due to the non-linearality of the equations they must be 

solved iteratively and do take some computation time.   

Heckman’s two-step estimator 

 Heckman’s two-step estimation procedure, also known as λ-correction or 

Heckit method, was originally designed for the Type 3 Tobit model.  It turns out this 

methodology also applies to the standard Tobit regression model after a minor 

adjustment. 

 The estimation procedure relies on one of the following equations, which 

also appear in the section on the Least squares estimation procedure.  
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   (2.14) 

   (2.15) 

 

 First we assume that σ2 is unknown.  The following is the steps to implement 

the Heckman’s two-step estimation method. 

Step 1: Estimate  by the Probit MLE defined earlier or other applicable 

procedures.  Denote the estimate as 
�

. 

Step 2: If (2.14) is used, then regress 𝑦𝑦𝑖𝑖  on (𝛼𝛼 + 𝑋𝑋𝑖𝑖𝛽𝛽) and 𝜆𝜆
�

 by least 

squares using only the positive observations on 𝑦𝑦𝑖𝑖 .  The coefficient of (𝛼𝛼 + 𝑋𝑋𝑖𝑖𝛽𝛽) will 

be the estimator of β, and the coefficient of 𝜆𝜆
�

will be the estimator of σ.  If 

(2.15) is used, then regress 𝑦𝑦𝑖𝑖  on Φ 
�

𝑋𝑋𝑖𝑖  and 𝜙𝜙 
�

 without intercept 

by least squares using all the data 𝑦𝑦𝑖𝑖 .  The coefficient of Φ 
�

𝑋𝑋𝑖𝑖  will be the 

estimator of β and the coefficient of 𝜙𝜙 
�

 will be the estimator of σ. 

 The Heckman’s two-step procedure for known σ2 follows the similar steps as 

above, except the response variable in the regression analysis in Step 2 becomes 

𝑦𝑦 − 𝜎𝜎𝜎𝜎 
�

 for (3.1) and 𝑦𝑦𝑖𝑖 − 𝜎𝜎𝜎𝜎 
�

 for (3.2), and β is still estimated by 

the coefficient of 𝜆𝜆 
�

or the coefficient of Φ 
�

𝑋𝑋𝑖𝑖 . 
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  The regression models in (2.14) and (2.15) are heteroscedastic.  An efficient 

estimation procedure should take the variances into account, for example, one can 

use the weighted least squares in Step 2.  However, using the weighted least squares 

procedure requires one to consistently estimate the asymptotic covariance matrix, 

which in turn needs initial estimates for the regression parameters.   

 Large sample results, such as the weak consistency, the asymptotically 

normality of Heckman’s two-step estimators can be found in Amemiya (1984) and 

Heckman (1979). 

The EM algorithm 

 The EM algorithm is a generic device that provides an iterative procedure for 

computing MLEs in situations where, but for the absence of some additional data, 

MLE would be straightforward.  We start this section with a brief introduction of EM 

algorithm in a general setup.   

 Let Y be the random vector with density function 𝑓𝑓(𝑦𝑦;𝜃𝜃), where 𝜃𝜃 𝜖𝜖 Θ, X be 

the vector containing the complete data which include some additional data, 

referred to as the unobservable or missing data.  Let 𝑓𝑓𝑐𝑐(𝑥𝑥;𝜃𝜃) denote the density 

function of the random vector X corresponding to the complete data vector x.  Then 

the complete data log-likelihood function is given by  

log 𝐿𝐿𝑐𝑐(𝜃𝜃) = 𝑙𝑙𝑙𝑙𝑙𝑙𝑓𝑓𝑐𝑐(𝑥𝑥;𝜃𝜃). 

Let 𝜃𝜃(0) be some initial value of θ.  Then on the first iteration of EM algorithm, the E-

step requires the calculation of  

𝑄𝑄�𝜃𝜃;𝜃𝜃(0)� = 𝐸𝐸𝜃𝜃(0)[𝑙𝑙𝑙𝑙𝑙𝑙𝐿𝐿𝑐𝑐(𝜃𝜃)|𝑌𝑌 = 𝑦𝑦]. 

The M-step requires the maximization of 𝑄𝑄(𝜃𝜃;𝜃𝜃(0)) with respect to θ over the 

parameter space Θ.  That is, we choose 𝜃𝜃(1) such that 

𝑄𝑄(𝜃𝜃(1);𝜃𝜃(0)) ≥ 𝑄𝑄(𝜃𝜃;𝜃𝜃(0)). 

For all 𝜃𝜃 𝜖𝜖 Θ.  The E- and M-steps are then carried out again, but this time with 𝜃𝜃(0) 

replaced by 𝜃𝜃(1).  On the j-th iteration, the E- and M-steps are defined as follows: 

E-Step: Calculate 𝑄𝑄�𝜃𝜃;𝜃𝜃(𝑗𝑗−1)� = 𝐸𝐸𝜃𝜃(𝑗𝑗−1)[𝑙𝑙𝑙𝑙𝑙𝑙𝐿𝐿𝑐𝑐(𝜃𝜃)|𝑌𝑌 = 𝑦𝑦] . 

M-Step: Choose 𝜃𝜃(𝑗𝑗 ) such that 𝑄𝑄(𝜃𝜃(𝑗𝑗 );𝜃𝜃(𝑗𝑗−1)) ≥ 𝑄𝑄(𝜃𝜃;𝜃𝜃(𝑗𝑗−1)) for all 𝜃𝜃 𝜖𝜖 Θ. 
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The E- and M-steps are iterated repeatedly until some convergence criteria is met.  

For example, one can stop the iteration whenever the difference 𝐿𝐿(𝜃𝜃𝑘𝑘) −  𝐿𝐿(𝜃𝜃𝑘𝑘−1), 

or |𝜃𝜃(𝑘𝑘) − 𝜃𝜃(𝑘𝑘−1)|, changes by a very small amount.   

 The formulation of the idea behind the EM algorithm can be traced back to 

the late 19th century.  But, it was the paper by Dempster, Laird and Rubin (1977) 

that the ideas in the earlier literature were synthesized, a general formulation and a 

theory developed, and a variety of applications indicated.   

 The EM algorithm is especially suited for censored regression models such as 

Tobit models.  Now, we consider the application of the EM algorithm to the Tobit 

model.  Define 𝜃𝜃 = (𝛼𝛼,𝛽𝛽,𝜎𝜎2)′.  Suppose all the values of Y* are observable, then we 

have  

𝐿𝐿𝑐𝑐(𝜃𝜃) = −
𝑛𝑛
2
𝑙𝑙𝑙𝑙𝑙𝑙𝜎𝜎2 −

1
2𝜎𝜎2 �(𝑦𝑦𝑖𝑖∗ − 𝛼𝛼 − 𝑋𝑋𝑖𝑖𝛽𝛽)2

𝑛𝑛

𝑖𝑖=1

. 

 

For an initial value of 𝜃𝜃(0) = (𝛼𝛼0,𝛽𝛽0,𝜎𝜎2
0), let W denote a random variable indicating 

whether y is truncated.  Then, the EM algorithm for iteration is as follows. 

E-Step: 

𝐸𝐸�𝐿𝐿𝑐𝑐(𝜃𝜃)�𝑌𝑌 = 𝑦𝑦,𝑊𝑊 = 𝑤𝑤,𝜃𝜃(0)� = −
𝑛𝑛
2
𝑙𝑙𝑙𝑙𝑙𝑙𝜎𝜎2 −

1
2𝜎𝜎2 � (𝑦𝑦𝑖𝑖 − 𝛼𝛼 − 𝑋𝑋𝑖𝑖𝛽𝛽)2

𝑖𝑖:𝑤𝑤𝑖𝑖=0

 

−
1

2𝜎𝜎2 � [𝐸𝐸�𝑦𝑦𝑖𝑖∗�𝑊𝑊𝑖𝑖 = 0,𝜃𝜃(0)� − 𝛼𝛼 − 𝑋𝑋𝑖𝑖𝛽𝛽]2 +
1

2𝜎𝜎2 � 𝑉𝑉𝑉𝑉𝑉𝑉�𝑦𝑦𝑖𝑖∗�𝑊𝑊𝑖𝑖 = 0,𝜃𝜃(0)�
𝑖𝑖:𝑤𝑤𝑖𝑖=0

.
𝑖𝑖:𝑤𝑤𝑖𝑖=0

 

Where  

𝐸𝐸 �𝑦𝑦∗|𝑊𝑊𝑖𝑖 = 0, 𝜃𝜃(0) = 𝛼𝛼0 + 𝑋𝑋𝑖𝑖𝛽𝛽0 −
𝜎𝜎0𝜙𝜙0

1 −Φ0
� , 

𝑉𝑉𝑉𝑉𝑉𝑉�𝑦𝑦𝑖𝑖∗�𝑊𝑊𝑖𝑖 = 0,𝜃𝜃(0)� = 𝜎𝜎0
2 +

𝜎𝜎0𝜙𝜙0(𝛼𝛼0 + 𝑋𝑋𝑖𝑖𝛽𝛽0)
1 −Φ0

− �
𝜎𝜎0𝜙𝜙0

1 −Φ0
�

2

, 

and 𝜙𝜙0 = 𝜙𝜙 �𝛼𝛼0+𝑋𝑋𝑖𝑖𝛽𝛽0
𝜎𝜎0

� and Φ0 = Φ�𝛼𝛼0+𝑋𝑋𝑖𝑖′𝛽𝛽0
𝜎𝜎0

� . 

M-Step:  Without loss of generality, we assume that the first n1 observations of Yi are 

positive, denoted by Y(1), and an n-n1-vector with elements 𝐸𝐸�𝑌𝑌∗�𝑊𝑊𝑖𝑖 = 0,𝜃𝜃(1)� is 
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denoted by Y(2).  Arrange the matrix X accordingly.  Then, by maximizing 

𝐸𝐸�𝐿𝐿𝑐𝑐(𝜃𝜃)�𝑌𝑌 = 𝑦𝑦,𝑊𝑊 = 𝑤𝑤,𝜃𝜃(0)� with respect to θ, we have 

�
𝛼𝛼1
𝛽𝛽1
� = (𝑋𝑋′𝑋𝑋)−1𝑋𝑋′ �𝑌𝑌

(1)

𝑌𝑌(2)� , 

    𝜎𝜎1
2 = 1

𝑛𝑛
�∑ (𝑌𝑌𝑖𝑖

(1) − 𝛼𝛼1 − 𝑋𝑋𝑖𝑖𝛽𝛽1)2 + ∑ �(𝑌𝑌𝑖𝑖
(1) − 𝛼𝛼1 − 𝑋𝑋𝑖𝑖𝛽𝛽1)2 + 𝑉𝑉𝑉𝑉𝑉𝑉(𝑦𝑦𝑖𝑖∗|𝑊𝑊𝑖𝑖 = 0,𝜃𝜃(0))�𝑛𝑛

𝑖𝑖=𝑛𝑛𝑖𝑖+1
𝑛𝑛1
𝑖𝑖=1 �. 

 Anemiya (1984) showed that when n is large enough, and if the iteration is 

started from a point close to the MLE, the above estimate obtained by EM algorithm 

converges to the MLE. 
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Chapter 3 – Simulation Study 

 This section is a summarization of the simulation studies.  These simulations 

are performed under various scenarios. The goal of the simulation study is to 

examine which estimation algorithm does best at estimating α, β and sometimes σ. 

 The simulation will be ran 500 times for sample sizes of 100, 200, 300, 400, 

500, 800 and 1000.  Each scenario consists of specifically chosen settings for the 

distribution of X, the distribution of ε, yo and whether σ2 is known or unknown.  For 

all scenarios α=β=σ2=1.  The parameter estimates and the respective MSEs are listed 

in tables located in Appendix A.  Because we will examine various lower limits, yo, 

for the response variable, I will also list the truncation percentage for each 

simulation.  This is calculated by the percentage of y* observations that are less than 

the designated yo (denoted low).   

 The simulation study will be conducted in 12 scenarios.  The first six 

scenarios will use all 5 estimation methods.  The last six scenarios will consist only 

of the least squares estimator, Heckman’s two-step estimator, Tobit maximum 

likelihood estimator, and the EM algorithm.  The scenarios will be conducted with 

the following parameter settings: 

  1. ε~N(0,σ2) , X~N(0,1) , yo = -0.8 , σ2 known 

  2. ε~N(0,σ2) , X~N(0,1) , yo = 0 , σ2 known 

  3. ε~N(0,σ2) , X~N(0,1) , yo = 1 , σ2 known 

  4. ε~N(0,σ2) , X~Uniform(-√3, √3), yo = -0.8 , σ2 known 

  5. ε~N(0,σ2) , X~Uniform(-√3, √3), yo = 0 , σ2 known 

  6. ε~N(0,σ2) , X~Uniform(-√3, √3), yo = 1 , σ2 known 

  7. ε~N(0,σ2) , X~N(0,1) , yo = -0.8 , σ2 unknown 

  8. ε~N(0,σ2) , X~N(0,1) , yo = 0 , σ2 unknown 

  9. ε~N(0,σ2) , X~N(0,1) , yo = 1 , σ2 unknown 

  10. ε~N(0,σ2) , X~Uniform(-√3, √3), yo = -0.8 , σ2 unknown 

  11. ε~N(0,σ2) , X~Uniform(-√3, √3), yo = 0 , σ2 unknown 

  12. ε~N(0,σ2) , X~Uniform(-√3, √3), yo = 1 , σ2 unknown 
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Results of Simulation Study 

The simulation results are displayed in Table 1 – Table 12 in Appendix A.  

Some graphs are displayed with discussion, all others can be found in Appendix C.  

The simulation study will be discussed by evaluating each condition set individually.  

Condition Sets 1 through 6 estimate α and β only and Condition Sets 7 through 12 

estimate α, β and σ.  The results are compiled in 12 tables. 

Results when σ2 is known 

As mentioned in the previous section, the scenarios were conducted under the 

assumption that σ2 was known and unknown. I am first considering the cases where 

σ2 is known.  Three threshold or cutoff values were applied to two distributions.    

Condition Set 1  

Figure 3.1 

 

Under these conditions, all methods were able to produce estimates for cases 

when σ was known.  Estimates of α and β are displayed in Figure 3.1 and Figure 3.2.  

As you can see, the Probit MLE does not do a good job of estimating α, but produces 

a fairly good estimation of β.   

When estimating β, Heckman’s Two-step and the Least Squares methods are 

not particularly effective.  As sample size increases the Least Squares method 

becomes better than Heckman’s.  This is evident in both Figure 3.2 and table 1, 
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where the MSE(b) for Least Squares becomes smaller than Heckman’s for larger 

sample sizes.   

Overall, accuracy becomes better as sample size increases.  Estimates for all five 

methods grow closer to the actual values for both parameters.  The best method for 

estimating under condition set 1 is Tobit maximum likelihood estimation because 

the estimates are very accurate and the MLEs for both α and β are small.  As a 

second option, the EM algorithm does produce the next best estimates of α and β. 

Figure 3.2 

 

Condition Set 2  

Again, all methods were able to produce estimates of both parameters.  Under 

condition set 2, the truncation rate was nearly 25%.  This causes the estimates of α 

and β to not be as good as in condition set 1.   
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Figure 3.3  

 
As seen in Figure 3.3, the Tobit MLE, EM Algorithm and Probit MLE methods 

have almost identical estimates for α.  The Least squares method results in 

inconsistent estimates.  Heckman’s Two-step method produce over-estimates, 

which do not improve in accuracy as sample size increases.   

Figure 3.4 displays estimates for β.  Again, the Tobit MLE, EM algorithm and 

the Probit MLE methods have very similar and close estimates.  Much like the 

estimates for α, the estimates produced by the Least Squares method are 

inconsistent as sample size increases.  Heckman’s two-step produces under-

estimates, which do not improve in accuracy as sample size increases.   
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Figure 3.4 

 
Condition set 2 is a very likely scenario.  A threshold of zero is common in 

many economics and econometrics models as well as sociology, psychology, biology 

and others.  There are three good methods one could use when analyzing these data. 

Displayed in Figure C.1 and Figure C.2 of Appendix C are the Tobit MLE, EM 

Algorithm and Probit MLE method estimates.  From these figures, one can see that 

Tobit MLE does the best at estimating α and β.  However, If ease of calculation was a 

concern, the Probit maximum likelihood estimation method is suitable under large 

sample sizes.   

Condition Set 3  

Condition set 3 has a threshold value of Y0 = 1.  This causes a truncation rate 

of approximately 50%, which is not desirable.  Because of this, the estimates of α 

and β are occasionally very poor under some methods.   
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Figure 3.5 

 

 

Estimates for α are inconsistent, over-estimates using the Least Squares 

method.  The resulting mean squared errors are also extremely large, as seen in 

Table 3.  The EM algorithm produces consistent under-estimates with large mean 

squared errors.  Heckman’s Two-step doesn’t improve accuracy as sample size 

increases and yields the worst estimates of α of the four methods. Both the Probit 

and Tobit maximum likelihood methods estimate α well.  However, the Probit 

method does so with relatively large errors.  The Tobit estimation method not only 

estimates better but it also results in very small MSEs.   

The estimation of β is not improved over α.  Again Least squares, Heckman’s 

two-step and the EM Algorithm produce poor estimates with unwanted, large MSEs.   

The Probit method improves estimation as sample size increases and yields 

desirable estimates of β with small errors when n is greater than 400.  The most 

favorable option is Tobit maximum likelihood.  This method estimates well at all 

sample sizes and results in small errors.  However, I do believe that either Probit or 

Tobit methods would be satisfactory under these conditions.   
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Figure 3.6   

 

Condition Set 4  

Condition set 4 has a Uniformly distributed X.  The threshold for this data is 

Y0 = -0.8, yielding a truncation rate of 10%.   

Figure 3.7 

 

As you can see from Figure 3.7, all five methods converge as sample size 

increases.  It is evident that Probit maximum likelihood estimation does not do a 

good job of estimating α.  However, the mean squared errors for the Probit 
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estimates are not as big as the MSEs for LSE estimates, when sample size is 100 or 

200.  This can be seen in Table 4.   

Figure C.3 shows that Tobit maximum likelihood estimation is indeed the 

best estimator for α.  This method also had the smallest mean squared errors.  The 

EM and Heckman’s two-step are very close in the estimates for α at all sample sizes.  

However, the squared errors for the EM algorithm estimates are smaller.  A second 

good option for estimating α would be the EM algorithm, even though the 

calculations are somewhat cumbersome.   

Figure 3.8 

 

The estimates of β for all five methods are displayed in Figure 3.8.  The Least 

Squares estimation method does not produce good estimates and, as shown in Table 

4, the mean squared errors are large as well. The EM algorithm and Heckman’s two-

step method generate similar estimates for all sample sizes.  The best estimates of β 

are a result of the Probit MLE and Tobit MLE methods.  Probit MLE is best when 

sample size is very large.   

Even though Probit maximum likelihood estimation estimates β well, it is at 

the cost of poor estimates of α.  Under condition set 4, the best estimation method is 

Tobit maximum likelihood. It estimates both parameters well and with small mean 

squared errors.  
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Condition Set 5  

Under condition set 5, the threshold value is zero, which results in a 

truncation rate of about 25%.  

Figure 3.9 

 
There are three methods that produce good estimates of α.  The first is Probit 

maximum likelihood.  It is hard to see from Figure 3.9, but it is clear from Figure C.4 

and Table 5 that the Probit MLE increases in the strength of estimation as sample 

size increases.  When sample size is large, the estimates are very good and have very 

small mean squared errors.  This method is an excellent choice when sample sizes 

are large.  Tobit maximum likelihood estimation produces estimates that are close 

to α.  The squared errors are small as well.  However, the EM Algorithm also does a 

superb job at estimating α.  The estimate oscillates around one until it converges to a 

value very close to one.  The mean squared errors are very small.  Because of this, I 

think this method is the best option for estimating α when X is Uniformly distributed 

and the cutoff value is equal to one. 
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Figure 3.10 

 
Like in estimating α, Heckman’s Two-step and the Least Squares estimation 

methods do not have high quality estimates of β.  The Least squares estimates have 

large MSEs and Heckman’s two-step estimates do not converge to a value near one.  

Using figure C.5 I conclude that the best estimates of β are yielded by the EM 

algorithm and Tobit MLE.  Either method is a good choice, but again I believe that 

the EM algorithm does the best.   

Condition Set 6  

Similarly to condition set 3, under condition set 6 Probit maximum likelihood 

estimation cannot be used.  The other four methods are displayed in Table 6 and 

Figures 3.11 and 3.12.  Note that the truncation rate is about 50% for all methods. 
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Figure 3.11 

 

The estimates of α generated by both the EM algorithm and Least Squares 

estimation are poor.  The estimates from Heckman’s two-step and Tobit maximum 

likelihood estimation are much better.  Both methods have good accuracy but Tobit 

MLEs do result in smaller mean squared errors.  The mean squared errors from 

Heckman’s estimates are large, especially when sample size is small.  Even at 

n=1000, the mean squared errors are comparatively very large.    

 Similarly, the estimates of β are best from Tobit MLE and Heckman’s two-

step and are not desirable with the Least squares estimation or the EM algorithm 

methods.  The mean squared errors for Heckman’s estimate are much improved 

over the errors for the estimates of α.  Although, this is not enough to make this 

method better than the Tobit method.  Because of the very small MSEs I believe 

Tobit maximum likelihood estimation is the best option for Uniformly distributed 

data with a truncation rate greater than zero.   
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Figure 3.12 

 

Results when σ2 is known 

Condition Sets 7 through 12 include estimates for σ.  As previously 

mentioned, Probit maximum likelihood estimation cannot produce estimates for σ.  

Therefore, only the remaining four methods are used, except when the truncation 

value Y0 is zero.  When the threshold value is zero, the EM Algorithm can fail to 

converge and thus was left out of the simulation study.   

When performing the simulation study on the next six condition sets, I 

wanted to answer the following question: does estimating a third parameter alter 

the effectiveness of the estimation methods?  That is, do the estimation methods 

that work well when σ2 is known continue to produce good estimates when 

estimating σ is required? 

Condition Set 7  

Using a Normally distributed X and a cutoff value of Y0 = -0.8, I looked at the 

estimates of α, β and σ.  Does adding another unknown parameter affect the 

truncation rate or the ability for the estimation methods to produce quality 

estimates?  Under the conditions of Condition set 7, I do not believe so.  The 

truncation rates are identical to those in Condition set 1.   
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Figure 3.13 

 

As show in figure 3.13 the estimating ability of Heckman’s two-step and Tobit 

MLE are still good.  Even the Least squares estimation method is a little more stable 

than under previous conditions.  The EM algorithm produces estimates that fail to 

be better than either Heckman’s or Tobit maximum likelihood estimates.  When 

comparing the two best methods, the Tobit MLE results in the smallest mean 

squared errors.  Heckman’s two-step can easily be used as a good estimator of α, 

however.   

Not much changes when looking at the estimates of β.  The same two 

methods are better producers of accurate estimates.  Though, the estimates of β and 

the mean squared errors resulting from these estimates are much improved with 

Least squares estimates.  However, they are still not desirable.  As before, the Tobit 

maximum likelihood estimates are superior to Heckman’s by only a little.  The 

smaller MSEs do make this method the best option for estimating β.  
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Figure 3.14 

 

In the estimates for α and β, the precision increases as sample size increases 

for all methods.  This is not true for estimates of σ.  In Figure 3.15 one can see that 

the Least squares method produces under-estimates that do not improve as sample 

size increases.  This immediately makes me believe this method is not a good 

candidate for estimating under these conditions.   

The remaining three methods are still possible options.  Using Figure C.8 and 

Table 7, one can see that the EM algorithm and Heckman’s two-step methods do not 

produce as useful of estimates as the estimates made by Tobit maximum likelihood 

estimation.  While Heckman’s estimates are closer to the true value of β, the EM 

algorithm makes estimates with smaller mean squared errors.  Across all sample 

sizes, Tobit MLE has the most favorable estimates as well as the smallest errors.   

Most evident from Figure 3.16 is the inability for the Least squares 

estimation method to produce favorable estimates of σ.  Using Figure C.9 it becomes 

easier to see that Tobit MLE does indeed have the best estimates even at small 

sample sizes.  Heckman’s two-step fails to produce estimates without comparatively 

large mean squared errors, especially when sample size small.   

When considering the necessity to accurately estimate all parameters 

simultaneously, it’s my opinion the Tobit maximum likelihood estimates are the best 

option. Even at small sample sizes this method can be used.   
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Figure 3.15 

 

Condition Set 8  

Because of the poor estimating ability of the Least squares method, I will 

refer to tables C.10 through C.12 for this section. This condition set, like Condition 

set 2 is very important.  This is a common scenario for researchers.  With a 25% 

truncation rate, good estimates of α, β and σ could be hard to achieve.   

In Figure 3.16 the strange inconsistent nature of the Least squares method is 

evident.  This has been seen under other conditions, but it is very prominent when σ 

is unknown and the threshold value is zero.  As seen in Figure C.10 Heckman’s two-

step and Tobit maximum likelihood estimation are the best two methods while the 

EM algorithm fails to improve in accuracy as sample size increases.  Heckman’s 

estimates are best at larger sample sizes.  However, Tobit’s method produces the 

best estimates of α with the smallest errors.   
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Figure 3.16 

 

Figure 3.17 

 

The estimates of β are better than estimates of α from the Least squares 

method.  This does not mean they are desirable.  Looking at Figure C.11 the best two 

methods are again the Tobit MLE and Heckman’s two-step.  And once more, Tobit 

maximum likelihood estimation is the best overall method for estimating β.  To 

comment on the EM algorithm, the estimations do not improve as sample size 

increases.  This method seams to converge to an estimate close to one, however, it 

never reaches the true value of β.   
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Figure 3.18 

 

Without commenting on the Least squares method, I immediately refer to 

Figure C.12.  It’s immediately evident that the Tobit maximum likelihood method 

quickly converges to σ = 1. Even at small sample sizes the estimates are very good 

with small errors.  The other methods are not ideal.  The EM algorithm stops 

improving its estimating at sample size n=400.  Heckman’s two-step under-

estimates and then over-estimates σ at the larger sample sizes of n=400, 500, 800 

and 1000.  

In considering the best method for this condition set, I looked at the 

estimates as well as the error.  Clearly Tobit maximum likelihood estimation is the 

top method.  It produces accurate results, even at small sample sizes.  One does not 

have to trade off inaccurate estimates of one parameter for accurate estimates of 

another.  It’s consistently good at estimating the unknowns.   

Condition Set 9  

Under condition Set 9 the threshold value is Y0 = 1.  This positive cutoff leads 

to a 50% truncation rate.  This high rate does not seem to affect the ability for the 

Tobit maximum likelihood estimation and Heckman’s two-step methods to estimate 

the parameters.  The EM algorithm cannot consistently be invertible, leading to 
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errors.  Because of this, I have omitted this method from consideration under the 

given conditions.  

Figure 3.19 

 
As seen in Figure 3.19 the Least squares estimation method is unreliable—

over-estimating α at all sample sizes.  Referring to figure C.13 a clearer picture is 

painted of the behavior of the estimation methods as sample size increases.  Tobit 

maximum likelihood estimation is good even at the smallest sample size of 100.  The 

squared error is also very small at sample size n=200 and greater.  This almost 

immediately shows that when the threshold value is greater than 0, the best method 

is Tobit maximum likelihood.  Heckman’s two-step can’t seem to converge to a 

single estimate of α even at large sample sizes.  This, accompanied with the large 

mean squared errors from Table 9, indicate that this method is not the best option.   
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Figure 3.20  

 
The true behavior of the estimation methods is hard to see from Figure 3.20.  

Looking at figure C.14, it’s easier to understand the methods’ effectiveness.  

Heckman’s two-step estimates of β exhibit a similar behavior as the estimates for α.  

The squared errors are improved over the errors from estimating α, but they remain 

larger than the Tobit maximum likelihood estimate mean squared errors.  The 

estimates produced by the Tobit MLE method are very close to one, fluctuation only 

slightly as sample size increases.  Again, the squared errors are small.   

Figure 3.21 
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When estimating σ, the Tobit maximum likelihood estimation method 

approaches one from the left and quickly converges to the true value of one.  It does 

this with the smallest errors of all estimated parameters.  Heckman’s two-step still 

produces fine estimates, but they are not superior to those produced by Tobit MLE.  

The ideal method for estimating all three unknown parameters simultaneously is 

Tobit maximum likelihood.   

Condition Set 10  

We are again considering condition sets where X is Uniformly distributed.  

The threshold value is Y0 = -0.8 which yields a truncation rate of about 10%.  As 

under previous conditions, the Least squares estimates are the least effective at 

estimating all three unknowns.   

Figure 3.22 

 
The estimates of α produced by all four methods converge to a single value as 

sample size increases.  The Least squares estimates are not good compared to the 

other methods.  The errors from these estimates are large at small sample sizes, and 

are still large in comparison at sample sizes greater than 500.  In Figure C.16 I 

consider only Heckman’s two-step and Tobit maximum likelihood estimation 

methods.  From this figure one sees that both methods are good estimators of α.  In 

Table 10, it is evident that between these two, Tobit MLE is the better option only 
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because of the mean squared errors, though I believe either method would do a 

proficient job at estimating α.   

Figure 3.23 

 
Estimates of β follow the patterns for the estimates of α.  The Least squares 

estimation method does not improve, while Heckman’s two-step and Tobit 

maximum likelihood are the best two options.  Using Figure C.17, in which only 

Heckman’s and Tobit MLE are pictured, the convergence of the Tobit MLE is 

apparent.  Heckman’s two-step is again an adequate estimator and I believe either 

would be an appropriate choice for estimating β. 

The Least squares estimates of σ are very goofy under the given conditions.  

As shown in Table 10, the mean squared errors are huge at all sample sizes.  Figure 

3.24 shows just how strange the Least squares estimation method behaves.  Though 

not easily discerned, the EM algorithm produces under-estimates of σ that are less 

accurate than those produced by Tobit maximum likelihood and Heckman’s two-

step methods.  I do not believe that Heckman’s two-step method performs as well 

when estimating σ compared to the estimates of α and β.  Because of this, I think that 

Tobit MLE is the top choice for estimating σ as well as the other two parameters 

under these conditions. 
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Figure 3.24 

 

Condition Set 11 

Looking at condition set 11, I was not surprised that the Least squares 

estimates are not desirable compared to all others.  As shown in Table 11, the mean 

squared errors for this method are incredibly large and are an indication that this 

method cannot be used under these conditions.  The usefulness of this method in 

general will be discussed later.  For now, I focus on the other three methods.  Here, 

Y0 = 0 is studied and the consequential truncation rate is approximately 25%.   

Figures 3.25 and 3.26 are useful for observing the irregularity of the Least 

Squares method but do not serve another purpose in this discussion.  Figure C.19 

displays the estimation performance of the remaining methods in a clearer nature.  

The Tobit maximum likelihood estimates are again superior, but I first want to 

discuss the EM algorithm and Heckman’s two-step method.  At the small sample 

sizes of n=100, 200 EM algorithm estimates slightly more accurately with smaller 

errors.  At the larger sample sizes, Heckman’s method produces better estimates, 

however, the errors are still larger than the EM algorithm. Neither method produces 

undesirable estimates, but Tobit maximum likelihood estimates are more accurate 

and generate smaller errors. Tobit maximum likelihood does a good job of 

estimating α even at small sample sizes.  
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Figure 3.25 

 
Relying on the previous statements regarding Least squares estimates as the 

only discussion necessary, I move on to the remaining three methods.  As seen in 

Table 11 and Figure C.20 the EM algorithm cannot estimate β as well as Heckman’s 

two-step and Tobit maximum likelihood estimation can.  However, the mean 

squared errors resulting from the use of the EM algorithm are relatively smaller 

than those of Heckman’s.  Either method would be an adequate second option 

behind the Tobit maximum likelihood estimator.  

Figure 3.26 
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Figure 3.27 

 
Estimating σ proves to be the strength of Tobit maximum likelihood 

estimators.  The estimates are the most accurate and have the smallest errors.  

Neither Heckman’s two-step, nor the EM algorithm improves their estimates of σ 

over estimates of α and β.  I do not think one can use the EM algorithm or Heckman’s 

two-step to estimate σ when Tobit maximum likelihood estimation is available.   

Overall, the best method for estimating α, β and σ under the given conditions is 

Tobit MLE.  I do not think there is much of an argument for the other methods when 

looking at the ability to simultaneously estimate all unknowns well.   

Condition Set 12 

The last set of conditions considered was a Uniformly distributed X with a 

threshold of Y0 = 1.  This positive cutoff leads to a 50% truncation rate amongst the 

estimation methods.   Like Condition set 9, the EM algorithm can become singular, 

making the calculations impossible.  I did not use the EM algorithm under the given 

conditions.  Like much of the results, Least squares estimation does not provide 

useful estimates of any unknown.  Some of the largest mean squared errors seen in 

the simulation study were exhibited by this method.  Because of this, it will not be 

discussed in the following.   The other two methods are discussed next.   
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Figure 3.28 

 
Though hard to tell from Figure 2.28 both Heckman’s 2-step and Tobit 

maximum likelihood estimation provide good estimates of α.  Like under other 

conditions, Tobit provides slightly better estimates accompanied with smaller 

squared errors.  Both methods reach good estimates of α with sample sizes of 

n=300.  The mean squared errors of Heckman’s two-step do improve as sample size 

gets large.  However, the errors are smaller for estimates of β.   

Figure 3.29 
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Looking at the estimating power of the two methods for β, one sees that both 

are adequate.  However, the errors are again smaller for Tobit maximum likelihood 

estimates. For the sake of observation, the squared errors produced by Heckman’s 

two-step method are smallest when estimating β at large sample sizes.  At small 

sample sizes, the mean squared errors are too large to make this method useful.   

Figure C.23 shows that Heckman’s two-step can estimate σ well at large 

sample sizes, but compared to Tobit maximum likelihood estimation, it doesn’t do a 

good job of producing accurate estimates at sample sizes smaller than 400.  The 

mean squared errors are relatively large for Heckman’s method as well.   

Figure 3.30 

 
Ranking the estimating capability of the methods by the ability to accurately 

estimate α, β and σ with small MSEs leads to the conclusion that the best method 

under Condition set 12 is Tobit maximum likelihood estimation.  Heckman’s two 

step can be used with large sample sizes if needed.   
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Recommendations 

Many scenarios were considered in the simulation study.  For ease of 

discussion, I will consider each estimation method individually and then make a few 

general recommendations.   

The Least squares estimation method is not a useful estimation procedure.  I 

make this conclusion because of the complexity of calculations as well as the very 

large mean squared errors.  Throughout the simulation study, the results presented 

problems.  For a smaller sample size, the matrix could become singular and at large 

sample sizes the matrix was non-singular, but the results were very unstable. In 

general, when estimates were produced, they were not good.  I do not see a need to 

use least squares estimation when better options are available.   

The EM algorithm has its advantages. When σ2 is known and the threshold 

value is Y0 = 0, the EM algorithm produces good estimates of α and β with very small 

mean squared errors.  Under Condition set 5 the EM algorithm performed the best 

of all methods.  The major drawback of this method is its computational complexity.  

That being said, the EM algorithm is best with large sample sizes, but even with 

small n, the estimates and errors are reasonable.   

Heckman’s two-step has some good qualities.  It is computationally easier 

than Tobit maximum likelihood estimation.  And, under certain conditions, it can 

produce good estimates with small MSEs.  When the threshold value is not positive 

and sample size is large, Heckman’s method can be used with little hesitation. 

Probit maximum likelihood estimation was only used when σ2 was known; 

except for under Condition set 6.  Of the five scenarios it estimated best when the 

cutoff value was not negative.  This method performed well under Condition set 3, 

where X was Normally distributed and the cut off value was 1.   The drawback of 

Probit maximum likelihood estimation is the inability to be fully efficient.  Because it 

only uses the sign of yi* and not the numeric value, this method cannot compete with 

the other methods.    

 



45 
 

Lastly, there is Tobit maximum likelihood estimation.  This method is clearly 

ideal for estimating under the conditions of this study.  In 11 of the 12 scenarios, 

Tobit MLEs were the best and had the smallest errors.  I do not believe there is a 

better method for estimating censored and truncated data under these conditions.  

The numerous applications of Tobit regression across a spectrum of research fields 

support this opinion.   

 



46 
 

References 

Amemiya, T. (1984). Tobit models: a survey. Journal of Econometrics, (24), 3-61. 
 
Berg, G. D. (1998). Extending powell's semiparametric censored estimator to include 

non-linear functional forms and extending buchinsk'ys estimation technique 
(Working Paper No. 98-27). Retrieved from University of Colorado Department 
of Economics website: 
http://www.colorado.edu/Economics/papers/papers98/wp98-27.pdf 

 
Caudill, S. B., & Mixon, F. G. (2009). More on testing the normality assumptionin the 

tobit model. Journal of Applied Statistics, 36(12), 1345-1352. 
 
Delva J, Kaylor AG, Steinhoff E, Shin DE, Siefert K. Using tobit regression analysis to 

further understand the association of youth alcohol problems with depression 
and parental factors among Korean adolescent females. J Prev Med Public Health 
2007;40:145–149. 

 
Dempster, A. P., Laird, N. M., & Rubin, D. B. (1977). Maximum likelihood from 

incomplete data via the EM algorithm . Journal of the Royal Statistical Society, 
39(B), 1-38. 

 
Ekstrand, C., & Carpenter, T. E. (1998). Using a tobit regression model to analyse risk 

factors for foot-pad dermatitis in commercially grown broilers. Preventive 
Veterinary Medicine, 37(1), 219-228. 

 
Hartley, M.J. (1976). Estimation of the Tobit model by nonlinear least squares 

methods (Discussion paper No. 373).  
 
Heckman, J. J. (1979). Sample selection bias as a specification error. Econometrica, 

47, 153-161. 
 
Lewbel, A., & Linton, O. B. (2002). Nonparametric censored and truncated 

regression. Econometrica, 70, 765-779. 
 
McDonald, John F., and Robert A. Moffitt. "The uses of Tobit analysis." Review of 

Economics and Statistics 62 (1980): 318+. Academic OneFile. Web. 25 Aug. 2011. 
 
Powell, J. L. (1984). Least absolute deviations estimation for the censored regression 

model. Journal of Econometrics, 25, 303-325. 
 
Shishko, R., Rostker, B., & , (1976). The economics of multiple job holding. The 

American Economic Review, 66(3), 298-308. 
 



47 
 

Smith, D. A., & Brame, R. (2003). Tobit models in social science research: Some 
limitations and a more general alternative. Sociological Methods and Research, 
31(1), 364-388. 

 
Solon, G. (2010). A simple microeconomic foundation for a tobit model of consumer 

demand. Economics Letters, 106, 131-132. Retrieved from 
www.elsevier.com/locate/ecolet 

 
Stat Data Analysis Examples Tobit Analysis.  UCLA: Academic Technology Services, 

Statistical Consulting Group. Retrieved from 
http://www.ats.ucla.edu/stat/stata/dae/tobit.htm (accessed January 25, 2012). 

 
Tobin, J. (1958). Estimation of relationships for limited dependent variables. 

Econometrica, 26(1), 24-36. 
 
Wang, L. (2007). A simple nonparametric test for diagnosing nonlinearity in tobit 

median regression model. Statistics & Probability Letters, 77, 1034–1042. 
 
Zhou, X. (2007). Semiparametric and nonparametric estimation of tobit models. 

(Doctoral dissertation, Hong Kong University of Science and Technology, Hong 
Kong), Available from ProQuest. (3434086). 

 
 
 
 
 
 

 



48 
 

Appendix A – Tables 

Table A.1 

Condition Set 1 
Sample Size n=100 

 Probit MLE  Least Squares Est. Heckman’s 2-Step Tobit MLE EM Algorithm 
Mean (a) 1.9288 0.7323 1.1512 1.0021 1.0542 

MSE (a) 1.0744 3.7745 0.0418 0.0092 0.0124 
Mean (b) 1.1081 1.2187 0.8424 1.0060 0.9454 

MSE (b) 0.1668 1.6576 0.0372 0.0103 0.0134 
Trunc. % 0.1017 0.1400 0.1017 0.1018 0.1017 

Sample Size n=200 
 Probit MLE  Least Squares Est. Heckman’s 2-Step Tobit MLE EM Algorithm 

Mean (a) 1.8760 0.8475 1.1629 1.0010 1.0627 
MSE (a) 0.8268 0.0814 0.0347 0.0055 0.0084 

Mean (b) 1.0461 1.1393 0.8322 1.0002 0.9333 
MSE (b) 0.0484 0.0501 0.0337 0.0054 0.0092 

Trunc. % 0.0993 0.0850 0.0993 0.0997 0.0993 
Sample Size n=300 

 Probit MLE  Least Squares Est. Heckman’s 2-Step Tobit MLE EM Algorithm 
Mean (a) 1.8390 0.8656 1.1659 1.0014 1.0628 

MSE (a) 0.7456 0.0440 0.0333 0.0039 0.0071 
Mean (b) 1.0272 1.1275 0.8360 0.9985 0.9391 

MSE (b) 0.0361 0.0323 0.0310 0.0036 0.0070 
Trunc. % 0.1013 0.0733 0.1013 0.1006 0.1013 

Sample Size n=400 
 Probit MLE  Least Squares Est. Heckman’s 2-Step Tobit MLE EM Algorithm 

Mean (a) 1.8328 0.8855 1.1650 0.9989 1.0595 
MSE (a) 0.7199 0.0274 0.0314 0.0027 0.0058 

Mean (b) 1.0160 1.1173 0.8308 0.9984 0.9311 
MSE (b) 0.0206 0.0236 0.0315 0.0026 0.0072 

Trunc. % 0.1002 0.1225 0.1002 0.1015 0.1002 
Sample Size n=500 

 Probit MLE  Least Squares Est. Heckman’s 2-Step Tobit MLE EM Algorithm 
Mean (a) 1.8346 0.8863 1.1602 1.0041 1.0570 

MSE (a) 0.7155 0.0223 0.0288 0.0019 0.0051 
Mean (b) 1.0212 1.1140 0.8314 1.0002 0.9335 

MSE (b) 0.0187 0.0201 0.0307 0.0021 0.0063 
Trunc. % 0.1006 0.0800 0.1006 0.1007 0.1016 

Sample Size n=800 
 Probit MLE  Least Squares Est. Heckman’s 2-Step Tobit MLE EM Algorithm 

Mean (a) 1.8104 0.8974 1.1673 1.0013 1.0601 
MSE (a) 0.6685 0.0168 0.0299 0.0013 0.0047 

Mean (b) 1.0096 1.1072 0.8297 0.9971 0.9324 
MSE (b) 0.0117 0.0157 0.0306 0.0015 0.0059 

Trunc. % 0.1014 0.1000 0.1014 0.1015 0.1014 
Sample Size n=1000 

 Probit MLE  Least Squares Est. Heckman’s 2-Step Tobit MLE EM Algorithm 
Mean (a) 1.8161 0.8952 1.1625 1.0006 1.0573 

MSE (a) 0.6762 0.0155 0.0279 0.0010 0.0041 
Mean (b) 1.0119 1.1061 0.8297 1.0001 0.9323 

MSE (b) 0.0084 0.0144 0.0302 0.0012 0.0056 
Trunc. % 0.1017 0.0920 0.1017 0.1010 0.1017 
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Table A.2 

Condition Set 2 
Sample Size n=100 

 Probit MLE  Least Squares Est. Heckman’s 2-Step Tobit MLE EM Algorithm 
Mean (a) 1.0264 1.0509 1.3680 1.0077 0.9920 

MSE (a) 0.0417 17.5457 0.1616 0.0101 0.0119 
Mean (b) 1.0511 0.9934 0.7127 1.0035 1.0173 

MSE (b) 0.0686 11.5432 0.1008 0.0139 0.0140 
Trunc. % 0.2407 0.2400 0.2407 0.2372 0.2407 

Sample Size n=200 
 Probit MLE  Least Squares Est. Heckman’s 2-Step Tobit MLE EM Algorithm 

Mean (a) 1.0347 1.0509 1.3658 1.0052 1.0032 
MSE (a) 0.0208 12.3629 0.1453 0.0060 0.0055 

Mean (b) 1.0306 1.0189 0.7041 1.0002 1.0020 
MSE (b) 0.0277 0.3551 0.0961 0.0067 0.0062 

Trunc. % 0.2368 0.2500 0.2368 0.2370 0.2368 
Sample Size n=300 

 Probit MLE  Least Squares Est. Heckman’s 2-Step Tobit MLE EM Algorithm 
Mean (a) 1.0156 0.6583 1.3774 0.9977 1.0033 

MSE (a) 0.0126 12.2833 0.1514 0.0037 0.0039 
Mean (b) 1.0196 1.0241 0.7105 1.0033 1.0076 

MSE (b) 0.0160 4.6802 0.0895 0.0046 0.0044 
Trunc. % 0.2395 0.2467 0.2395 0.2390 0.2395 

Sample Size n=400 
 Probit MLE  Least Squares Est. Heckman’s 2-Step Tobit MLE EM Algorithm 

Mean (a) 1.0131 0.7560 1.3746 1.0006 0.9996 
MSE (a) 0.0097 5.0732 0.1463 0.0031 0.0029 

Mean (b) 1.0149 1.1047 0.7042 1.0015 0.9997 
MSE (b) 0.0128 0.6163 0.0915 0.0040 0.0032 

Trunc. % 0.2386 0.2525 0.2386 0.2390 0.2386 
Sample Size n=500 

 Probit MLE  Least Squares Est. Heckman’s 2-Step Tobit MLE EM Algorithm 
Mean (a) 1.0073 0.8815 1.3688 0.9991 0.9968 

MSE (a) 0.0072 4.1731 0.1410 0.0024 0.0024 
Mean (b) 1.0117 1.0455 0.7069 1.0014 1.0022 

MSE (b) 0.0108 1.3514 0.0893 0.0025 0.0025 
Trunc. % 0.2402 0.2300 0.2402 0.2403 0.2402 

Sample Size n=800 
 Probit MLE  Least Squares Est. Heckman’s 2-Step Tobit MLE EM Algorithm 

Mean (a) 1.0004 0.3990 1.3737 0.9989 1.0013 
MSE (a) 0.0043 82.1690 0.1426 0.0016 0.0014 

Mean (b) 0.9994 1.3416 0.7053 0.9998 0.9992 
MSE (b) 0.0057 26.2138 0.0891 0.0018 0.0017 

Trunc. % 0.2393 0.2288 0.2393 0.2405 0.2393 
Sample Size n=1000 

 Probit MLE  Least Squares Est. Heckman’s 2-Step Tobit MLE EM Algorithm 
Mean (a) 1.0025 0.8607 1.3737 0.9990 0.9977 

MSE (a) 0.0036 0.4431 0.1419 0.0010 0.0010 
Mean (b) 1.0088 1.0834 0.7029 1.0020 1.0006 

MSE (b) 0.0044 0.2107 0.0900 0.0013 0.0013 
Trunc. % 0.2407 0.2440 0.2407 0.2407 0.2407 
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Table A.3 

Condition Set 3 
Sample Size n=100 

 Probit MLE  Least Squares Est. Heckman’s 2-Step Tobit MLE EM Algorithm 
Mean (a) 0.9905 1.6765 1.8227 1.0079 0.5650 

MSE (a) 0.0237 1.7185 0.7487 0.0194 0.2159 
Mean (b) 1.0663 0.6510 0.5285 1.0000 1.2768 

MSE (b) 0.0559 0.5139 0.2699 0.0210 0.1061 
Trunc. % 0.4991 0.4500 0.4991 0.4954 0.5009 

Sample Size n=200 
 Probit MLE  Least Squares Est. Heckman’s 2-Step Tobit MLE EM Algorithm 

Mean (a) 1.0057 1.3947 1.8192 1.0051 0.5832 
MSE (a) 0.0108 31.1831 0.7097 0.0095 0.1857 

Mean (b) 1.0287 0.7311 0.5364 1.0020 1.2475 
MSE (b) 0.0211 8.9383 0.2340 0.0094 0.0734 

Trunc. % 0.5012 0.4850 0.5012 0.4986 0.4988 
Sample Size n=300 

 Probit MLE  Least Squares Est. Heckman’s 2-Step Tobit MLE EM Algorithm 
Mean (a) 1.0156 1.5586 1.8271 1.0029 0.5893 

MSE (a) 0.0126 10.7067 0.7045 0.0061 0.1775 
Mean (b) 1.0196 0.5870 0.5318 1.0019 1.2494 

MSE (b) 0.0160 3.2934 0.2312 0.0071 0.0701 
Trunc. % 0.2395 0.4800 0.5013 0.4994 0.4986 

Sample Size n=400 
 Probit MLE  Least Squares Est. Heckman’s 2-Step Tobit MLE EM Algorithm 

Mean (a) 1.0020 1.4900 1.8161 1.0024 0.5850 
MSE (a) 0.0053 16.4612 0.6841 0.0048 0.1784 

Mean (b) 1.0055 0.7055 0.5347 0.9993 1.2379 
MSE (b) 0.0089 4.8979 0.2265 0.0048 0.0625 

Trunc. % 0.5016 0.5250 0.5016 0.4987 0.4984 
Sample Size n=500 

 Probit MLE  Least Squares Est. Heckman’s 2-Step Tobit MLE EM Algorithm 
Mean (a) 0.9947 1.2412 1.8323 0.9991 0.5765 

MSE (a) 0.0044 37.3577 0.7063 0.0039 0.1848 
Mean (b) 1.0154 0.8301 0.5353 1.0015 1.2465 

MSE (b) 0.0081 11.2221 0.2237 0.0035 0.0662 
Trunc. % 0.4984 0.4920 0.4984 0.4996 0.5016 

Sample Size n=800 
 Probit MLE  Least Squares Est. Heckman’s 2-Step Tobit MLE EM Algorithm 

Mean (a) 1.0010 1.4948 1.8324 1.0003 0.5880 
MSE (a) 0.0026 6.2415 0.7011 0.0023 0.1727 

Mean (b) 1.0010 0.6827 0.5311 1.0008 1.2370 
MSE (b) 0.0044 5.5079 0.2248 0.0025 0.0593 

Trunc. % 0.2393 0.4663 0.5008 0.5000 0.4992 
Sample Size n=1000 

 Probit MLE  Least Squares Est. Heckman’s 2-Step Tobit MLE EM Algorithm 
Mean (a) 0.9990 1.5014 1.8264 0.9994 0.5844 

MSE (a) 0.0019 7.7428 0.6897 0.0017 0.1749 
Mean (b) 1.0028 0.7232 0.5308 0.9981 1.2375 

MSE (b) 0.0038 4.8093 0.2242 0.0022 0.0588 
Trunc. % 0.4995 0.4960 0.4995 0.5000 0.5005 
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Table A.4 

Condition Set 4 
Sample Size n=100 

 Probit MLE  Least Squares Est. Heckman’s 2-Step Tobit MLE EM Algorithm 
Mean (a) 1.9888 0.8130 1.0619 0.9944 1.0722 

MSE (a) 1.2208 2.8999 0.0395 0.0098 0.0138 
Mean (b) 1.1302 1.1560 0.9397 0.9983 0.9399 

MSE (b) 0.1868 3.2213 0.0671 0.0097 0.0118 
Trunc. % 0.1054 0.1200 0.1054 0.1073 0.1054 

Sample Size n=200 
 Probit MLE  Least Squares Est. Heckman’s 2-Step Tobit MLE EM Algorithm 

Mean (a) 1.8904 0.7081 1.0601 1.0013 1.0577 
MSE (a) 0.8794 8.6356 0.0177 0.0047 0.0077 

Mean (b) 1.0684 1.2940 0.9174 0.9993 0.9328 
MSE (b) 0.0717 9.0833 0.0339 0.0053 0.0087 

Trunc. % 0.1060 0.1000 0.1060 0.1052 0.1060 
Sample Size n=300 

 Probit MLE  Least Squares Est. Heckman’s 2-Step Tobit MLE EM Algorithm 
Mean (a) 1.8722 0.8524 1.0650 1.0054 1.0664 

MSE (a) 0.8147 0.0474 0.0144 0.0033 0.0075 
Mean (b) 1.0478 1.1572 0.9436 0.9994 0.9337 

MSE (b) 0.0455 0.0426 0.0215 0.0036 0.0071 
Trunc. % 0.1045 0.1000 0.1045 0.1051 0.1045 

Sample Size n=400 
 Probit MLE  Least Squares Est. Heckman’s 2-Step Tobit MLE EM Algorithm 

Mean (a) 1.8569 0.8585 1.0664 1.0040 1.0665 
MSE (a) 0.7714 0.0501 0.0114 0.0028 0.0065 

Mean (b) 1.0455 1.1513 0.9398 0.9985 0.9345 
MSE (b) 0.0342 0.0415 0.0169 0.0026 0.0065 

Trunc. % 0.1056 0.0975 0.1056 0.1060 0.1056 
Sample Size n=500 

 Probit MLE  Least Squares Est. Heckman’s 2-Step Tobit MLE EM Algorithm 
Mean (a) 1.8341 0.8749 1.0659 1.0016 1.0677 

MSE (a) 0.7250 0.0271 0.0096 0.0021 0.0064 
Mean (b) 1.0171 1.1441 0.9312 1.0029 0.9292 

MSE (b) 0.0241 0.0293 0.0162 0.0020 0.0069 
Trunc. % 0.1047 0.1140 0.1047 0.1059 0.1047 

Sample Size n=800 
 Probit MLE  Least Squares Est. Heckman’s 2-Step Tobit MLE EM Algorithm 

Mean (a) 1.8243 0.8690 1.0603 1.0011 1.0617 
MSE (a) 0.6971 0.0256 0.0072 0.0013 0.0049 

Mean (b) 1.0189 1.1402 0.9350 0.9991 0.9305 
MSE (b) 0.0142 0.0250 0.0111 0.0014 0.0059 

Trunc. % 0.1057 0.1163 0.1057 0.1056 0.1057 
Sample Size n=1000 

 Probit MLE  Least Squares Est. Heckman’s 2-Step Tobit MLE EM Algorithm 
Mean (a) 1.8168 0.8746 1.0635 1.0009 1.0628 

MSE (a) 0.6799 0.0212 0.0069 0.0011 0.0048 
Mean (b) 1.0137 1.1391 0.9341 0.9986 0.9318 

MSE (b) 0.0107 0.0230 0.0093 0.0010 0.0056 
Trunc. % 0.1058 0.0940 0.1058 0.1061 0.1058 
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Table A.5 

Condition Set 5 
Sample Size n=100 

 Probit MLE  Least Squares Est. Heckman’s 2-Step Tobit MLE EM Algorithm 
Mean (a) 1.0432 0.1864 1.2776 1.0074 1.0053 

MSE (a) 0.0541 241.1589 0.1112 0.0125 0.0107 
Mean (b) 1.0431 1.5603 0.7154 0.9959 1.0115 

MSE (b) 0.0559 144.7041 0.2112 0.0116 0.0110 
Trunc. % 0.2515 0.2500 0.2515 0.2475 0.2515 

Sample Size n=200 
 Probit MLE  Least Squares Est. Heckman’s 2-Step Tobit MLE EM Algorithm 

Mean (a) 1.0185 1.1760 1.2701 1.0002 0.9904 
MSE (a) 0.0217 278.5386 0.0857 0.0059 0.0056 

Mean (b) 1.0321 0.7895 0.6928 0.9976 1.0056 
MSE (b) 0.0242 104.0293 0.1558 0.0059 0.0056 

Trunc. % 0.2525 0.2450 0.2525 0.2507 0.2525 
Sample Size n=300 

 Probit MLE  Least Squares Est. Heckman’s 2-Step Tobit MLE EM Algorithm 
Mean (a) 1.0219 0.7937 1.2723 1.0031 1.0014 

MSE (a) 0.0143 2.3255 0.0830 0.0039 0.0038 
Mean (b) 1.0259 1.1405 0.7162 0.9964 1.0046 

MSE (b) 0.0170 1.8829 0.1179 0.0046 0.0036 
Trunc. % 0.2502 0.2133 0.2502 0.2501 0.2502 

Sample Size n=400 
 Probit MLE  Least Squares Est. Heckman’s 2-Step Tobit MLE EM Algorithm 

Mean (a) 1.0212 0.9278 1.2713 1.0001 1.0023 
MSE (a) 0.0118 2.5133 0.0795 0.0028 0.0026 

Mean (b) 1.0214 1.0517 0.7149 0.9993 1.0041 
MSE (b) 0.0120 1.1279 0.1072 0.0031 0.0029 

Trunc. % 0.2495 0.2350 0.2495 0.2494 0.2495 
Sample Size n=500 

 Probit MLE  Least Squares Est. Heckman’s 2-Step Tobit MLE EM Algorithm 
Mean (a) 1.01689 0.9839 1.2777 0.9998 1.0046 

MSE (a) 0.00794 2.0925 0.0819 0.0026 0.0023 
Mean (b) 1.01075 0.9989 0.7041 0.9983 0.9976 

MSE (b) 0.00745 1.6558 0.1096 0.0023 0.0024 
Trunc. % 0.2487 0.2260 0.2487 0.2498 0.2487 

Sample Size n=800 
 Probit MLE  Least Squares Est. Heckman’s 2-Step Tobit MLE EM Algorithm 

Mean (a) 1.00391 0.9192 1.2681 0.9971 0.9982 
MSE (a) 0.00483 0.2830 0.0751 0.0015 0.0013 

Mean (b) 1.00175 1.0263 0.7099 1.0024 0.9990 
MSE (b) 0.00542 0.2019 0.0991 0.0015 0.0014 

Trunc. % 0.2500 0.2363 0.2500 0.2510 0.2500 
Sample Size n=1000 

 Probit MLE  Least Squares Est. Heckman’s 2-Step Tobit MLE EM Algorithm 
Mean (a) 1.00575 1.0066 1.2737 1.0020 0.9992 

MSE (a) 0.00401 4.0095 0.0776 0.0012 0.0011 
Mean (b) 1.00808 0.9451 0.7077 0.9978 1.0010 

MSE (b) 0.00475 4.4093 0.0969 0.0012 0.0012 
Trunc. % 0.2504 0.2530 0.2504 0.2495 0.2504 
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Table A.6 

Condition Set 6 
Sample Size n=100 

 Least Squares Est. Heckman’s 2-Step Tobit MLE EM Algorithm 
Mean (a) 1.6647 0.9547 1.0040 0.5821 

MSE (a) 10.9099 1.6872 0.0177 0.2000 
Mean (b) 0.5970 1.0255 1.0045 1.2820 

MSE (b) 4.8580 0.5802 0.0189 0.1081 
Trunc. % 0.4900 0.5026 0.4977 0.4975 

Sample Size n=200 
 Least Squares Est. Heckman’s 2-Step Tobit MLE EM Algorithm 

Mean (a) 1.9864 0.8844 0.9923 0.5685 
MSE (a) 811.9849 0.7441 0.0098 0.1980 

Mean (b) 0.4029 1.0622 1.0037 1.2656 
MSE (b) 355.4275 0.2804 0.0102 0.0823 

Trunc. % 0.5050 0.4973 0.5009 0.5027 
Sample Size n=300 

 Least Squares Est. Heckman’s 2-Step Tobit MLE EM Algorithm 
Mean (a) 1.1901 1.0270 1.0051 0.5869 

MSE (a) 92.7502 0.4001 0.0065 0.1790 
Mean (b) 0.9166 0.9804 1.0007 1.2626 

MSE (b) 41.1026 0.1590 0.0064 0.0759 
Trunc. % 0.4767 0.5022 0.4986 0.4978 

Sample Size n=400 
 Least Squares Est. Heckman’s 2-Step Tobit MLE EM Algorithm 

Mean (a) 1.6577 1.0072 0.9980 0.5865 
MSE (a) 1.6882 0.3231 0.0044 0.1766 

Mean (b) 0.6113 0.9963 1.0033 1.2612 
MSE (b) 1.0576 0.1262 0.0048 0.0744 

Trunc. % 0.4825 0.5009 0.4998 0.4991 
Sample Size n=500 

 Least Squares Est. Heckman’s 2-Step Tobit MLE EM Algorithm 
Mean (a) 2.0711 0.9978 1.0054 0.5928 

MSE (a) 94.8792 0.2328 0.0040 0.1705 
Mean (b) 0.3461 0.9981 0.9965 1.2520 

MSE (b) 39.2993 0.0942 0.0039 0.0682 
Trunc. % 0.5140 0.5029 0.4982 0.4971 

Sample Size n=800 
 Least Squares Est. Heckman’s 2-Step Tobit MLE EM Algorithm 

Mean (a) 1.5408 0.9969 0.9972 0.5817 
MSE (a) 11.8077 0.1610 0.0024 0.1781 

Mean (b) 0.6561 0.9978 1.0027 1.2561 
MSE (b) 4.4319 0.0640 0.0026 0.0688 

Trunc. % 0.4825 0.4993 0.5005 0.5007 
Sample Size n=1000 

 Least Squares Est. Heckman’s 2-Step Tobit MLE EM Algorithm 
Mean (a) 2.4617 0.9876 1.0018 0.5848 

MSE (a) 298.1035 0.1229 0.0020 0.1748 
Mean (b) 0.1771 1.0038 0.9993 1.2567 

MSE (b) 114.3189 0.0477 0.0019 0.0684 
Trunc. % 0.5040 0.5002 0.4995 0.4998 
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Table A.7 

Condition Set 7 
Sample Size n=100 

 Least Squares Est. Heckman’s 2-Step Tobit MLE EM Algorithm 
Mean (a) 0.7323 0.9734 1.0021 1.0586 

MSE (a) 3.7745 0.0504 0.0092 0.0127 
Mean (b) 1.2187 1.0262 1.0060 0.9396 

MSE (b) 1.6576 0.0479 0.0103 0.0140 
Mean (sig) -1.9352 1.1874 0.9912 0.9432 

MSE (sig) 21.7195 1.5938 0.0058 0.0080 
Trunc. % 0.1400 0.1017 0.1018 0.1017 

Sample Size n=200 
 Least Squares Est. Heckman’s 2-Step Tobit MLE EM Algorithm 

Mean (a) 0.8475 1.0023 1.0010 1.0677 
MSE (a) 0.0814 0.0181 0.0055 0.0089 

Mean (b) 1.1393 0.9971 1.0002 0.9267 
MSE (b) 0.0501 0.0203 0.0054 0.0101 

Mean (sig) -2.1236 1.0343 0.9912 0.9381 
MSE (sig) 18.9400 0.5189 0.0030 0.0060 
Trunc. % 0.0850 0.0993 0.0997 0.0993 

Sample Size n=300 
 Least Squares Est. Heckman’s 2-Step Tobit MLE EM Algorithm 

Mean (a) 0.8656 1.0012 1.0014 1.0675 
MSE (a) 0.0440 0.0107 0.0039 0.0076 

Mean (b) 1.1275 1.0068 0.9985 0.9332 
MSE (b) 0.0323 0.0129 0.0036 0.0078 

Mean (sig) -2.0332 1.0253 0.9942 0.9443 
MSE (sig) 10.9246 0.2602 0.0021 0.0046 
Trunc. % 0.0733 0.1013 0.1006 0.1013 

Sample Size n=400 
 Least Squares Est. Heckman’s 2-Step Tobit MLE EM Algorithm 

Mean (a) 0.8855 0.9965 0.9989 1.0641 
MSE (a) 0.0274 0.0093 0.0027 0.0064 

Mean (b) 1.1173 1.0002 0.9984 0.9252 
MSE (b) 0.0236 0.0106 0.0026 0.0080 

Mean (sig) -2.1166 1.0335 0.9972 0.9435 
MSE (sig) 11.0884 0.2265 0.0015 0.0043 
Trunc. % 0.1225 0.1002 0.1015 0.1002 

Sample Size n=500 
 Least Squares Est. Heckman’s 2-Step Tobit MLE EM Algorithm 

Mean (a) 0.8863 0.9984 1.0041 1.0617 
MSE (a) 0.0223 0.0065 0.0019 0.0056 

Mean (b) 1.1140 0.9987 1.0002 0.9276 
MSE (b) 0.0201 0.0075 0.0021 0.0071 

Mean (sig) -2.1242 1.0039 0.9956 0.9440 
MSE (sig) 10.2163 0.1550 0.0012 0.0040 
Trunc. % 0.0800 0.1006 0.1007 0.1006 

Sample Size n=800 
 Least Squares Est. Heckman’s 2-Step Tobit MLE EM Algorithm 

Mean (a) 0.8974 0.9995 1.0013 1.0643 
MSE (a) 0.0168 0.0042 0.0013 0.0052 

Mean (b) 1.1072 0.9998 0.9971 0.9271 
MSE (b) 0.0157 0.0051 0.0015 0.0066 

Mean (sig) -2.1267 1.0149 0.9989 0.9503 
MSE (sig) 10.0923 0.0989 0.0007 0.0030 
Trunc. % 0.1000 0.1014 0.1015 0.1014 

Sample Size n=1000 
 Least Squares Est. Heckman’s 2-Step Tobit MLE EM Algorithm 

Mean (a) 0.8952 1.0017 1.0006 1.0617 
MSE (a) 0.0155 0.0030 0.0010 0.0046 

Mean (b) 1.1061 0.9954 1.0001 0.9267 
MSE (b) 0.0144 0.0037 0.0012 0.0064 

Mean (sig) -2.1112 0.9817 0.9978 0.9475 
MSE (sig) 9.9008 0.0747 0.0006 0.0032 
Trunc. % 0.0920 0.1017 0.1010 0.1017 
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Table A.8 

Condition Set 8 
Sample Size n=100 

 Least Squares Est. Heckman’s 2-Step Tobit MLE EM Algorithm 
Mean (a) 1.0509 0.9656 1.0077 1.0054 

MSE (a) 17.5457 0.1533 0.0101 0.0122 
Mean (b) 0.9934 1.0278 1.0035 1.0034 

MSE (b) 11.5432 0.1002 0.0139 0.0152 
Mean (sig) 0.8962 1.0785 0.9820 0.9331 

MSE (sig) 82.5837 0.9276 0.0069 0.0112 
Trunc. % 1.0509 0.2407 0.2372 0.2407 

Sample Size n=200 
 Least Squares Est. Heckman’s 2-Step Tobit MLE EM Algorithm 

Mean (a) 0.7608 1.0015 1.0052 1.0196 
MSE (a) 12.3629 0.0572 0.0060 0.0058 

Mean (b) 1.0189 0.9967 1.0002 0.9850 
MSE (b) 0.3551 0.0413 0.0067 0.0072 

Mean (sig) 1.5011 1.0063 0.9914 0.9215 
MSE (sig) 24.5965 0.3561 0.0032 0.0090 
Trunc. % 0.7608 0.2368 0.2370 0.2368 

Sample Size n=300 
 Least Squares Est. Heckman’s 2-Step Tobit MLE EM Algorithm 

Mean (a) 0.6583 1.0021 0.9977 1.0190 
MSE (a) 12.2833 0.0343 0.0037 0.0041 

Mean (b) 1.0241 1.0061 1.0033 0.9915 
MSE (b) 4.6802 0.0268 0.0046 0.0047 

Mean (sig) 2.0576 1.0069 0.9934 0.9269 
MSE (sig) 436.9739 0.2155 0.0025 0.0073 
Trunc. % 0.6583 0.2395 0.2390 0.2395 

Sample Size n=400 
 Least Squares Est. Heckman’s 2-Step Tobit MLE EM Algorithm 

Mean (a) 0.7560 0.9973 1.0006 1.0156 
MSE (a) 5.0732 0.0300 0.0031 0.0032 

Mean (b) 1.1047 0.9981 1.0015 0.9833 
MSE (b) 0.6163 0.0223 0.0040 0.0038 

Mean (sig) 1.4622 1.0079 0.9993 0.9258 
MSE (sig) 17.2744 0.1782 0.0017 0.0070 
Trunc. % 0.7560 0.2386 0.2390 0.2386 

Sample Size n=500 
 Least Squares Est. Heckman’s 2-Step Tobit MLE EM Algorithm 

Mean (a) 0.8815 0.9981 0.9991 1.0127 
MSE (a) 4.1731 0.0216 0.0024 0.0025 

Mean (b) 1.0455 0.9994 1.0014 0.9860 
MSE (b) 1.3514 0.0160 0.0025 0.0029 

Mean (sig) 1.5469 0.9984 0.9986 0.9273 
MSE (sig) 9.4372 0.1284 0.0014 0.0064 
Trunc. % 0.8815 0.2402 0.2403 0.2402 

Sample Size n=800 
 Least Squares Est. Heckman’s 2-Step Tobit MLE EM Algorithm 

Mean (a) 0.3990 1.0015 0.9989 1.0165 
MSE (a) 82.1690 0.0136 0.0016 0.0017 

Mean (b) 1.3416 0.9982 0.9998 0.9837 
MSE (b) 26.2138 0.0102 0.0018 0.0021 

Mean (sig) 1.4164 1.0012 0.9991 0.9302 
MSE (sig) 174.3011 0.0800 0.0009 0.0056 
Trunc. % 0.3990 0.2393 0.2405 0.2393 

Sample Size n=1000 
 Least Squares Est. Heckman’s 2-Step Tobit MLE EM Algorithm 

Mean (a) 0.8607 1.0030 0.9990 1.0132 
MSE (a) 0.4431 0.0106 0.0010 0.0012 

Mean (b) 1.0834 0.9949 1.0020 0.9848 
MSE (b) 0.2107 0.0080 0.0013 0.0016 

Mean (sig) 1.3545 0.9889 0.9990 0.9298 
MSE (sig) 23.1927 0.0646 0.0007 0.0055 
Trunc. % 0.8607 0.2407 0.2407 0.2407 
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Table A.9 

Condition Set 9 
Sample Size n=100 

 Least Squares Est. Heckman’s 2-Step Tobit MLE 
Mean (a) 1.6765 1.0008 1.0079 

MSE (a) 1.7185 0.9525 0.0194 
Mean (b) 0.6510 1.0004 1.0000 

MSE (b) 0.5139 0.3285 0.0210 
Mean (sig) 1.3490 0.9890 0.9804 

MSE (sig) 59.3216 1.2465 0.0100 
Trunc. % 0.4500 0.4991 0.4954 

Sample Size n=200 
 Least Squares Est. Heckman’s 2-Step Tobit MLE 

Mean (a) 1.3947 0.9990 1.0051 
MSE (a) 31.1831 0.4430 0.0095 

Mean (b) 0.7311 0.9961 1.0020 
MSE (b) 8.9383 0.1536 0.0094 

Mean (sig) 2.0660 1.0017 0.9919 
MSE (sig) 135.8685 0.5991 0.0055 
Trunc. % 0.4850 0.5012 0.4986 

Sample Size n=300 
 Least Squares Est. Heckman’s 2-Step Tobit MLE 

Mean (a) 1.5586 0.9831 1.0029 
MSE (a) 10.7067 0.2455 0.0061 

Mean (b) 0.5870 1.0154 1.0019 
MSE (b) 3.2934 0.0904 0.0071 

Mean (sig) 1.2737 1.0250 0.9971 
MSE (sig) 198.4167 0.3370 0.0037 
Trunc. % 0.4800 0.5013 0.4994 

Sample Size n=400 
 Least Squares Est. Heckman’s 2-Step Tobit MLE 

Mean (a) 1.4900 0.9890 1.0024 
MSE (a) 16.4612 0.2013 0.0048 

Mean (b) 0.7055 1.0010 0.9993 
MSE (b) 4.8979 0.0740 0.0048 

Mean (sig) 0.5378 1.0102 0.9964 
MSE (sig) 128.5356 0.2713 0.0029 
Trunc. % 0.5250 0.5016 0.4987 

Sample Size n=500 
 Least Squares Est. Heckman’s 2-Step Tobit MLE 

Mean (a) 1.2412 1.0137 0.9991 
MSE (a) 37.3577 0.1414 0.0039 

Mean (b) 0.8301 0.9918 1.0015 
MSE (b) 11.2221 0.0531 0.0035 

Mean (sig) 2.1237 0.9767 0.9978 
MSE (sig) 197.2982 0.1890 0.0023 
Trunc. % 0.4920 0.4984 0.4996 

Sample Size n=800 
 Least Squares Est. Heckman’s 2-Step Tobit MLE 

Mean (a) 1.4948 1.0174 1.0003 
MSE (a) 6.2415 0.0915 0.0023 

Mean (b) 0.6827 0.9891 1.0008 
MSE (b) 5.5079 0.0334 0.0025 

Mean (sig) 0.6902 0.9829 1.0004 
MSE (sig) 121.9921 0.1235 0.0013 
Trunc. % 0.4663 0.5008 0.5000 

Sample Size n=1000 
 Least Squares Est. Heckman’s 2-Step Tobit MLE 

Mean (a) 1.5014 1.0107 0.9994 
MSE (a) 7.7428 0.0823 0.0017 

Mean (b) 0.7232 0.9900 0.9981 
MSE (b) 4.8093 0.0300 0.0022 

Mean (sig) 0.8410 0.9862 0.9990 
MSE (sig) 82.1504 0.1116 0.0011 
Trunc. % 0.4960 0.4995 0.5000 
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Table A.10 

Condition Set 10 
Sample Size n=100 

 Least Squares Est. Heckman’s 2-Step Tobit MLE EM Algorithm 
Mean (a) 0.8130 0.9981 0.9944 1.0785 

MSE (a) 2.8999 0.0635 0.0098 0.0145 
Mean (b) 1.1560 1.0103 0.9983 0.9324 

MSE (b) 3.2213 0.0549 0.0097 0.0125 
Mean (sig) -1.8363 1.1130 0.9863 0.9276 

MSE (sig) 23.5156 1.6579 0.0057 0.0100 
Trunc. % 0.1200 0.1054 0.1073 0.1054 

Sample Size n=200 
 Least Squares Est. Heckman’s 2-Step Tobit MLE EM Algorithm 

Mean (a) 0.7081 0.9920 1.0013 1.0637 
MSE (a) 8.6356 0.0270 0.0047 0.0083 

Mean (b) 1.2940 0.9990 0.9993 0.9257 
MSE (b) 9.0833 0.0280 0.0053 0.0096 

Mean (sig) -2.3901 1.0325 0.9922 0.9324 
MSE (sig) 16.3463 0.7349 0.0030 0.0068 
Trunc. % 0.1000 0.1060 0.1052 0.1060 

Sample Size n=300 
 Least Squares Est. Heckman’s 2-Step Tobit MLE EM Algorithm 

Mean (a) 0.8524 1.0078 1.0054 1.0725 
MSE (a) 0.0474 0.0200 0.0033 0.0082 

Mean (b) 1.1572 0.9947 0.9994 0.9266 
MSE (b) 0.0426 0.0186 0.0036 0.0080 

Mean (sig) -2.4844 0.9822 0.9942 0.9306 
MSE (sig) 14.4509 0.4749 0.0019 0.0061 
Trunc. % 0.1000 0.1045 0.1051 0.1045 

Sample Size n=400 
 Least Squares Est. Heckman’s 2-Step Tobit MLE EM Algorithm 

Mean (a) 0.8585 1.0063 1.0040 1.0724 
MSE (a) 0.0501 0.0131 0.0028 0.0072 

Mean (b) 1.1513 0.9972 0.9985 0.9276 
MSE (b) 0.0415 0.0128 0.0026 0.0074 

Mean (sig) -2.3248 0.9908 0.9968 0.9338 
MSE (sig) 12.1332 0.3178 0.0016 0.0055 
Trunc. % 0.0975 0.1056 0.1060 0.1056 

Sample Size n=500 
 Least Squares Est. Heckman’s 2-Step Tobit MLE EM Algorithm 

Mean (a) 0.8749 1.0025 1.0040 1.0735 
MSE (a) 0.0271 0.0099 0.0028 0.0072 

Mean (b) 1.1441 0.9980 0.9985 0.9225 
MSE (b) 0.0293 0.0116 0.0026 0.0078 

Mean (sig) -2.4860 1.0221 0.9968 0.9345 
MSE (sig) 13.1248 0.2669 0.0016 0.0052 
Trunc. % 0.1140 0.1047 0.1060 0.1047 

Sample Size n=800 
 Least Squares Est. Heckman’s 2-Step Tobit MLE EM Algorithm 

Mean (a) 0.8690 0.9964 1.0011 1.0674 
MSE (a) 0.0256 0.0074 0.0013 0.0056 

Mean (b) 1.1402 0.9997 0.9991 0.9240 
MSE (b) 0.0250 0.0073 0.0014 0.0068 

Mean (sig) -2.3176 1.0126 1.0004 0.9368 
MSE (sig) 11.3288 0.1790 0.0007 0.0045 
Trunc. % 0.1163 0.1057 0.1056 0.1057 

Sample Size n=1000 
 Least Squares Est. Heckman’s 2-Step Tobit MLE EM Algorithm 

Mean (a) 0.8746 1.0006 1.0009 1.0686 
MSE (a) 0.0212 0.0055 0.0011 0.0055 

Mean (b) 1.1391 0.9982 0.9986 0.9251 
MSE (b) 0.0230 0.0053 0.0010 0.0065 

Mean (sig) -2.3466 0.9961 1.0000 0.9359 
MSE (sig) 11.4365 0.1248 0.0005 0.0046 
Trunc. % 0.0940 0.1058 0.1061 0.1058 
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Table A.11 

Condition Set 11 
Sample Size n=100 

 Least Squares Est. Heckman’s 2-Step Tobit MLE EM Algorithm 
Mean (a) 0.1864 0.9813 1.0074 1.0268 

MSE (a) 241.1589 0.2047 0.0125 0.0117 
Mean (b) 1.5603 1.0197 0.9959 0.9897 

MSE (b) 144.7041 0.1287 0.0116 0.0115 
Mean (sig) 2.0188 1.0741 0.9848 0.9047 

MSE (sig) 125.2262 1.0800 0.0071 0.0148 
Trunc. % 0.2500 0.2515 0.2475 0.2515 

Sample Size n=200 
 Least Squares Est. Heckman’s 2-Step Tobit MLE EM Algorithm 

Mean (a) 1.1760 0.9789 1.0002 1.0119 
MSE (a) 278.5386 0.0864 0.0059 0.0057 

Mean (b) 0.7895 1.0084 0.9976 0.9839 
MSE (b) 104.0293 0.0610 0.0059 0.0062 

Mean (sig) 0.5697 1.0324 0.9957 0.9084 
MSE (sig) 192.8885 0.4726 0.0038 0.0112 
Trunc. % 0.2450 0.2525 0.2507 0.2525 

Sample Size n=300 
 Least Squares Est. Heckman’s 2-Step Tobit MLE EM Algorithm 

Mean (a) 0.7937 1.0044 1.0031 1.0242 
MSE (a) 2.3255 0.0577 0.0039 0.0044 

Mean (b) 1.1405 0.9968 0.9964 0.9816 
MSE (b) 1.8829 0.0395 0.0046 0.0042 

Mean (sig) 1.0062 0.9951 0.9978 0.9024 
MSE (sig) 63.0037 0.3094 0.0022 0.0111 
Trunc. % 0.2133 0.2502 0.2501 0.2502 

Sample Size n=400 
 Least Squares Est. Heckman’s 2-Step Tobit MLE EM Algorithm 

Mean (a) 0.9278 1.0031 1.0001 1.0244 
MSE (a) 2.5133 0.0373 0.0028 0.0031 

Mean (b) 1.0517 1.0000 0.9993 0.9816 
MSE (b) 1.1279 0.0275 0.0031 0.0034 

Mean (sig) 1.1982 0.9973 0.9950 0.9052 
MSE (sig) 35.2919 0.2025 0.0020 0.0104 
Trunc. % 0.2350 0.2495 0.2494 0.2495 

Sample Size n=500 
 Least Squares Est. Heckman’s 2-Step Tobit MLE EM Algorithm 

Mean (a) 0.9839 1.0086 0.9998 1.0272 
MSE (a) 2.0925 0.0279 0.0026 0.0029 

Mean (b) 0.9989 0.9920 0.9983 0.9748 
MSE (b) 1.6558 0.0224 0.0023 0.0032 

Mean (sig) 1.2263 0.9930 0.9952 0.9029 
MSE (sig) 51.0299 0.1669 0.0014 0.0105 
Trunc. % 0.2260 0.2487 0.2498 0.2487 

Sample Size n=800 
 Least Squares Est. Heckman’s 2-Step Tobit MLE EM Algorithm 

Mean (a) 0.9192 0.9927 0.9971 1.0203 
MSE (a) 0.2830 0.0232 0.0015 0.0017 

Mean (b) 1.0263 1.0023 1.0024 0.9768 
MSE (b) 0.2019 0.0162 0.0015 0.0020 

Mean (sig) 1.5203 1.0131 0.9997 0.9061 
MSE (sig) 6.0143 0.1291 0.0010 0.0095 
Trunc. % 0.2363 0.2500 0.2510 0.2500 

Sample Size n=1000 
 Least Squares Est. Heckman’s 2-Step Tobit MLE EM Algorithm 

Mean (a) 1.0066 1.0010 1.0020 1.0216 
MSE (a) 4.0095 0.0164 0.0012 0.0015 

Mean (b) 0.9451 0.9979 0.9978 0.9783 
MSE (b) 4.4093 0.0115 0.0012 0.0017 

Mean (sig) 1.6104 0.9960 0.9981 0.9048 
MSE (sig) 12.0106 0.0863 0.0006 0.0096 
Trunc. % 0.2530 0.2504 0.2495 0.2504 
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Table A.12 

Condition Set 12 
Sample Size n=100 

 Least Squares Est. Heckman’s 2-Step Tobit MLE 
Mean (a) 1.6647 0.9547 1.0040 

MSE (a) 10.9099 1.6872 0.0177 
Mean (b) 0.5970 1.0255 1.0045 

MSE (b) 4.8580 0.5802 0.0189 
Mean (sig) 1.3880 1.0609 0.9827 

MSE (sig) 23.0105 2.1549 0.0112 
Trunc. % 0.4900 0.4974 0.4977 

Sample Size n=200 
 Least Squares Est. Heckman’s 2-Step Tobit MLE 

Mean (a) 1.9864 0.8844 0.9923 
MSE (a) 811.9849 0.7441 0.0098 

Mean (b) 0.4029 1.0622 1.0037 
MSE (b) 355.4275 0.2804 0.0102 

Mean (sig) 0.5917 1.1270 0.9922 
MSE (sig) 737.4882 0.9193 0.0055 
Trunc. % 0.5050 0.5027 0.5009 

Sample Size n=300 
 Least Squares Est. Heckman’s 2-Step Tobit MLE 

Mean (a) 1.1901 1.0270 1.0051 
MSE (a) 92.7502 0.4001 0.0065 

Mean (b) 0.9166 0.9804 1.0007 
MSE (b) 41.1026 0.1590 0.0064 

Mean (sig) 1.0162 0.9675 0.9910 
MSE (sig) 31.2024 0.5167 0.0036 
Trunc. % 0.4767 0.4978 0.4986 

Sample Size n=400 
 Least Squares Est. Heckman’s 2-Step Tobit MLE 

Mean (a) 1.6577 1.0072 0.9980 
MSE (a) 1.6882 0.3231 0.0044 

Mean (b) 0.6113 0.9963 1.0033 
MSE (b) 1.0576 0.1262 0.0048 

Mean (sig) 0.5726 0.9934 0.9992 
MSE (sig) 50.6474 0.4101 0.0031 
Trunc. % 0.4825 0.4991 0.4998 

Sample Size n=500 
 Least Squares Est. Heckman’s 2-Step Tobit MLE 

Mean (a) 2.0711 0.9978 1.0054 
MSE (a) 94.8792 0.2328 0.0040 

Mean (b) 0.3461 0.9981 0.9965 
MSE (b) 39.2993 0.0942 0.0039 

Mean (sig) 0.5025 1.0072 0.9917 
MSE (sig) 174.4657 0.3105 0.0025 
Trunc. % 0.5140 0.4971 0.4982 

Sample Size n=800 
 Least Squares Est. Heckman’s 2-Step Tobit MLE 

Mean (a) 1.5408 0.9969 0.9972 
MSE (a) 11.8077 0.1610 0.0024 

Mean (b) 0.6561 0.9978 1.0027 
MSE (b) 4.4319 0.0640 0.0026 

Mean (sig) 0.9939 0.9981 0.9972 
MSE (sig) 308.8809 0.2039 0.0014 
Trunc. % 0.4825 0.5007 0.5005 

Sample Size n=1000 
 Least Squares Est. Heckman’s 2-Step Tobit MLE 

Mean (a) 2.4617 0.9876 1.0018 
MSE (a) 298.1035 0.1229 0.0020 

Mean (b) 0.1771 1.0038 0.9993 
MSE (b) 114.3189 0.0477 0.0019 

Mean (sig) -0.1347 1.0142 0.9988 
MSE (sig) 1011.6760 0.1552 0.0011 
Trunc. % 0.5040 0.4998 0.4995 
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Appendix B – R Program 

Condition Set 2 

 
#Tobit MLE  
set.seed(987654) 
library(VGAM) 
low=0; 
Ma=Mb=Msig=Lpe=rep(0,7) 
MSa=MSb=MSsig=rep(0,7) 
j=1; 
for(n in c(100,200,300,400,500,800,1000)) 
{ 
 a=b=sig=lowp=rep(0,500) 
 for(k in seq(500)) 
 { 
  x=rnorm(n,0,1) 
  ystar=1+x+rnorm(n) 
  y=pmax(ystar,low) 
  fit=vglm(y~x, tobit(Lower=low)) 
  lowp[k]=sum(y==low)/n 
  table(fit@extra$censoredL) 
  a[k]=coef(fit,matrix=TRUE)[1,1] 
  b[k]=coef(fit,matrix=TRUE)[2,1] 
  sig[k]=1 
  
 } 
  
 Ma[j]=mean(a) 
 Mb[j]=mean(b) 
 Msig[j]=mean(sig) 
 MSa[j]=mean((a-1)^2) 
 MSb[j]=mean((b-1)^2) 
 MSsig[j]=mean((sig-1)^2) 
 Lpe[j]=mean(lowp) 
 j=j+1 
} 
results=rbind(Ma,MSa, Mb, MSb, Msig, MSsig, Lpe) 
dimnames(results)=list(c("Mean(a)", "MSE(a)", "Mean(b)", "MSE(b)", "Mean(sig)", "MSE(sig)", "Trunc.Pt"), 
c(100, 200, 300, 400, 500, 800, 1000)) 
 
results 
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#Probit MLE 
set.seed(987654) 
low=0; 
Ma=Mb=Msig=Lpe=rep(0,7) 
MSa=MSb=MSs=rep(0,7) 
j=1; 
for(n in c(100,200,300,400,500,800,1000)) 
{ 
 a=b=sig=lowp=rep(0,500) 
 for(k in seq(500)) 
 { 
  x=rnorm(n,0,1) 
  ystar=1+x+rnorm(n) 
  y=(ystar>=low) 
  fit=glm(y~x, family=binomial(link="probit")) 
  lowp[k]=sum(y==low)/n 
  a[k]=coef(fit)[1] 
  b[k]=coef(fit)[2] 
   
 } 
  
 Ma[j]=mean(a) 
 Mb[j]=mean(b) 
 MSa[j]=mean((a-1)^2) 
 MSb[j]=mean((b-1)^2) 
 Lpe[j]=mean(lowp) 
 j=j+1; 
} 
results=rbind(Ma,MSa, Mb, MSb, Lpe) 
dimnames(results)=list(c("Mean(a)", "MSE(a)", "Mean(b)", "MSE(b)", "Trunc.Pt"), c(100, 200, 300, 400, 500, 
800, 1000)) 
 
results 
 
#Theoretical Truncation Rate 
f=function(x){pnorm(-1-x)}; 
integrate(f, lower=-1, upper=1)$value/2 
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# LSE Positive 
 set.seed(987654) 
 total=500 
 ma=msa=mb=msb=Lpe=rep(0,7) 
 j=1; 
 for( n in c(100, 200, 300, 400, 500, 800, 1000)) 
{ 
   alp=bet=rep(0,total) 
   for(i in seq(total)) 
   { 
   repeat{ 
      lowp=0; 
     low=0; 
     se=1; 
     x=rnorm(n,0,1) 
     ystar=1+x+rnorm(n,0,se) 
     y=ystar[ystar>=low] 
     x=x[ystar>=low]; 
     lowp=length(ystar[ystar<low])/n 
     length(y); 
     length(x); 
     a=0.95; 
     b=0.95; 
   
     for(k in seq(10)) 
     { 
       z=(a+b*x)/1; 
       laz=dnorm(z)/pnorm(z); 
    laz1=-z*laz-laz^2; 
    laz2=(z^2-1)*laz+3*z*laz^2+2*laz^3; 
    a1=y-1*(z+laz) 
    a2=1+laz1 
    a3=laz-z*laz1; 
     
    B1=-sum(a1*a2) 
       B2=-sum(a1*a2*x) 
       B3=-sum(a1*a3) 

       
A11=sum(a2^2-a1*laz2/1) 

       A12=sum(x*a2^2-a1*laz2*x/1) 
       A13=sum(a3*a2+a1*laz2*z/1) 
       A22=sum(x^2*a2^2-a1*laz2*x^2/1) 
       A23=sum(a3*a2*x+a1*laz2*x*z/1) 
       A33=sum(a3^2-a1*z^2*laz2/1) 
       
   A=matrix(c(A11,A12,A13,A12,A22,A23,A13,A23,A33),nrow=3) 
       cond=rcond(A); 
      flag=0; 
       if(abs(cond)<10^(-6))  
         { 
           flag=1; 
           break; 
         }  
       B=matrix(c(B1,B2,B3),nrow=3)    
       AiB=solve(A)%*%B 
       a=a-AiB[1] 
       b=b-AiB[2] 
        } 
      if(flag==0) break; 
     } 
     alp[i]=a; 
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     bet[i]=b; 
   } 
   ma[j]=mean(alp) 
   msa[j]=mean((alp-1)^2) 
   mb[j]=mean(bet) 
  msb[j]=mean((bet-1)^2) 
   Lpe[j]=mean(lowp) 
   j=j+1; 
}  
results=rbind(ma,msa, mb, msb, Lpe) 
dimnames(results)=list(c("Mean(a)", "MSE(a)", "Mean(b)", "MSE(b)", "Trunc.Pt"), c(100, 200, 300, 400, 500, 

800, 1000)) 
 
results 
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#Heckman 2-step  
set.seed(987654) 
low=0; 
Ma=Mb=Msig=Lpe=Maa=Mbb=rep(0,7) 
MSa=MSb=MSs=MSaa=MSbb=rep(0,7) 
j=1; 
for(n in c(100,200,300,400,500,800,1000)) 
{ 
 a=b=sig=lowp=aa=bb=rep(0,500) 
 for(k in seq(500)) 
 { 
  x=rnorm(n,0,1) 
  ystar=1+x+rnorm(n) 
  y=(ystar>=low) 
  fit=glm(y~x, family=binomial(link="probit")) 
  lowp[k]=sum(y==low)/n 
  a[k]=coef(fit)[1] 
  b[k]=coef(fit)[2] 
   x=x[ystar>low] 
  lamda=dnorm(a[k]+b[k]*x)/pnorm(a[k]+b[k]*x) 
          y=ystar[ystar>low] 
          lamda=lamda[ystar>low] 
  fit2=lm(y~x+lamda) 
  aa[k]=coef(fit2)[1] 
  bb[k]=coef(fit2)[2] 
  sig[k]=1 
                } 
  
 Ma[j]=mean(a) 
 Mb[j]=mean(b) 
 MSa[j]=mean((a-1)^2) 
 MSb[j]=mean((b-1)^2) 
 Maa[j]=mean(aa) 
 Mbb[j]=mean(bb) 
 MSaa[j]=mean((aa-1)^2) 
 MSbb[j]=mean((bb-1)^2) 
 Msig[j]=mean(sig) 
 MSs[j]=mean((sig-1)^2) 
 Lpe[j]=mean(lowp) 
 j=j+1 
} 
results=rbind(Maa, MSaa, Mbb, MSbb, Msig,MSs,Lpe) 
dimnames(results)=list(c("Mean(aa)", "MSE(aa)", "Mean(bb)", "MSE(bb)", "Mean(sig)","MSE(sig)", "Trunc.Pt"), 
c(100, 200, 300, 400, 500, 800, 1000)) 
 
results 
 
#Theoretical Truncation Rate 
f=function(x){pnorm(-1-x)}; 
integrate(f, lower=-1, upper=1)$value/2 
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#EM Algorithm  
set.seed(987654) 
options(decimal=3) 
total=500 
low=0; 
se=1; 
ma=mb=ms=msa=msb=mss=Lpe=rep(0,7) 
k=1; 
for(n in c(100,200,300,400,500,800,1000)) 
   { 
     alp=bet=sigm=Lowp=rep(0,total) 
     for(i in seq(total)) 
     { 
       x=rnorm(n,0,1) 
     ystar=1+x+rnorm(n,0,se) 
     y=pmax(ystar,low); 
     x0=x[y==low]; 
     xp=x[y>low]; 
      y0=y[y==low]; 
     yp=y[y>low];  
     a=0.95; 
     b=0.95; 
     sig=1; 
     X=cbind(rep(1,n),c(xp,x0)); 
     a1=b1=10; 
     s1=1; 
       repeat 
     { 
        z0=(a+b*x0)/sig; 
        p1=dnorm(z0); 
        P1=pnorm(z0); 
        y0new=a+b*x0-sig*p1/(1-P1); 
        vy0=sig^2+a+b*x0*(sig*p1/(1-P1))-(sig*p1/(1-P1))^2; 
        B=solve(t(X)%*%X)%*%t(X)%*%(c(yp,y0new)) 
        a=B[1]; 
        b=B[2];  
        sig=1; 
        if((abs(a1-a)<10^(-6))&(abs(b1-b)<10^(-6))&(abs(s1-sig)<10^(-6))){break;} 
        a1=a; 
        b1=b; 
        s1=sig;     
      } 
      alp[i]=a; 
      bet[i]=b; 
      sigm[i]=sig; 
      Lowp[i]=sum(y==low)/n 
     } 
    ma[k]=mean(alp) 
    msa[k]=mean((alp-1)^2) 
    mb[k]=mean(bet) 
    msb[k]=mean((bet-1)^2) 
    ms[k]=mean(sigm) 
    mss[k]=mean((sigm-1)^2) 
    Lpe[k]=mean(Lowp) 
    k=k+1; 
   } 
result=rbind(ma,msa,mb,msb,ms,mss, Lpe) 
dimnames(result)=list(c("Mean(a)","MSE(a)","Mean(b)","MSE(b)","Mean(sigma)","MSE(sigma)", 

"Trunc.Pt"),c(100,200,300,400,500,800,1000)) 
 
result 
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Condition Set 5 

 
#Tobit MLE  
set.seed(987654) 
library(VGAM) 
low=0; 
Ma=Mb=Msig=Lpe=rep(0,7) 
MSa=MSb=MSsig=rep(0,7) 
j=1; 
for(n in c(100,200,300,400,500,800,1000)) 
{ 
 a=b=sig=lowp=rep(0,500) 
 for(k in seq(500)) 
 { 
  x=seq(-sqrt(3), sqrt(3), len=n) 
  ystar=1+x+rnorm(n) 
  y=pmax(ystar,low) 
  fit=vglm(y~x, tobit(Lower=low)) 
  lowp[k]=sum(y==low)/n 
  table(fit@extra$censoredL) 
  a[k]=coef(fit,matrix=TRUE)[1,1] 
  b[k]=coef(fit,matrix=TRUE)[2,1] 
  sig[k]=1 
  
 } 
  
 Ma[j]=mean(a) 
 Mb[j]=mean(b) 
 Msig[j]=mean(sig) 
 MSa[j]=mean((a-1)^2) 
 MSb[j]=mean((b-1)^2) 
 MSsig[j]=mean((sig-1)^2) 
 Lpe[j]=mean(lowp) 
 j=j+1 
} 
results=rbind(Ma,MSa, Mb, MSb, Msig, MSsig, Lpe) 
dimnames(results)=list(c("Mean(a)", "MSE(a)", "Mean(b)", "MSE(b)", "Mean(sig)", "MSE(sig)", "Trunc.Pt"), 
c(100, 200, 300, 400, 500, 800, 1000)) 
 
results 
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#Probit MLE 
set.seed(987654) 
low=0; 
Ma=Mb=Msig=Lpe=rep(0,7) 
MSa=MSb=MSs=rep(0,7) 
j=1; 
for(n in c(100,200,300,400,500,800,1000)) 
{ 
 a=b=sig=lowp=rep(0,500) 
 for(k in seq(500)) 
 { 
  x=seq(-sqrt(3), sqrt(3),len=n) 
  ystar=1+x+rnorm(n) 
  y=(ystar>=low) 
  fit=glm(y~x, family=binomial(link="probit")) 
  lowp[k]=sum(y==low)/n 
  a[k]=coef(fit)[1] 
  b[k]=coef(fit)[2] 
   
 } 
  
 Ma[j]=mean(a) 
 Mb[j]=mean(b) 
 MSa[j]=mean((a-1)^2) 
 MSb[j]=mean((b-1)^2) 
 Lpe[j]=mean(lowp) 
 j=j+1; 
} 
results=rbind(Ma,MSa, Mb, MSb, Lpe) 
dimnames(results)=list(c("Mean(a)", "MSE(a)", "Mean(b)", "MSE(b)", "Trunc.Pt"), c(100, 200, 300, 400, 500, 
800, 1000)) 
 
results 
 
#Theoretical Truncation Rate 
f=function(x){pnorm(-1-x)}; 
integrate(f, lower=-1, upper=1)$value/2 
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# LSE Positive 
 set.seed(987654) 
 total=500 
 ma=msa=mb=msb=Lpe=rep(0,7) 
 j=1; 
 for( n in c(100, 200, 300, 400, 500, 800, 1000)) 
{ 
  alp=bet=rep(0,total) 
  for(i in seq(total)) 
  { 
  repeat{ 
   lowp=0; 
   low=0; 
   se=1; 
   x=seq(-sqrt(3), sqrt(3), len=n) 
   ystar=1+x+rnorm(n,0,se) 
   y=ystar[ystar>=low] 
   x=x[ystar>=low]; 
   lowp=length(ystar[ystar<low])/n 
   length(y); 
   length(x); 
 
   a=0.95; 
  b=0.95; 
   
   for(k in seq(10)) 
    { 
       z=(a+b*x)/1; 
       laz=dnorm(z)/pnorm(z); 
       laz1=-z*laz-laz^2; 
   laz2=(z^2-1)*laz+3*z*laz^2+2*laz^3; 
   a1=y-1*(z+laz) 
   a2=1+laz1 
       a3=laz-z*laz1; 
 
       B1=-sum(a1*a2) 
       B2=-sum(a1*a2*x) 
       B3=-sum(a1*a3) 
 
       A11=sum(a2^2-a1*laz2/1) 
       A12=sum(x*a2^2-a1*laz2*x/1) 
       A13=sum(a3*a2+a1*laz2*z/1) 
       A22=sum(x^2*a2^2-a1*laz2*x^2/1) 
       A23=sum(a3*a2*x+a1*laz2*x*z/1) 
       A33=sum(a3^2-a1*z^2*laz2/1) 
 
       A=matrix(c(A11,A12,A13,A12,A22,A23,A13,A23,A33),nrow=3) 
       cond=rcond(A); 
       flag=0; 
       if(abs(cond)<10^(-6))  
         { 
            flag=1; 
            break; 
         }  
       B=matrix(c(B1,B2,B3),nrow=3)    
       AiB=solve(A)%*%B 
 
       a=a-AiB[1] 
       b=b-AiB[2] 
  
     } 
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    if(flag==0) break; 
    }  
 
    alp[i]=a; 
    bet[i]=b; 
   
  } 
 
   
  ma[j]=mean(alp) 
  msa[j]=mean((alp-1)^2) 
  mb[j]=mean(bet) 
  msb[j]=mean((bet-1)^2) 
  Lpe[j]=mean(lowp) 
  j=j+1; 
 
} 
  
results=rbind(ma,msa, mb, msb, Lpe) 
dimnames(results)=list(c("Mean(a)", "MSE(a)", "Mean(b)", "MSE(b)", "Trunc.Pt"), c(100, 200, 300, 400, 500, 

800, 1000)) 
results 
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#Heckman 2-Step  
set.seed(987654) 
low=0; 
Ma=Mb=Msig=Lpe=Maa=Mbb=rep(0,7) 
MSa=MSb=MSs=MSaa=MSbb=rep(0,7) 
j=1; 
for(n in c(100,200,300,400,500,800,1000)) 
{ 
 a=b=sig=lowp=aa=bb=rep(0,500) 
 for(k in seq(500)) 
 { 
   x=seq(-sqrt(3), sqrt(3), len=n) 
   ystar=1+x+rnorm(n) 
   y=(ystar>=low) 
   fit=glm(y~x, family=binomial(link="probit")) 
   lowp[k]=sum(y==low)/n 
   a[k]=coef(fit)[1] 
   b[k]=coef(fit)[2] 
     x=x[ystar>low] 
   lamda=dnorm(a[k]+b[k]*x)/pnorm(a[k]+b[k]*x) 
           y=ystar[ystar>low] 
           lamda=lamda[ystar>low] 
   fit2=lm(y~x+lamda) 
   aa[k]=coef(fit2)[1] 
   bb[k]=coef(fit2)[2] 
   sig[k]=1 
 } 
  
 Ma[j]=mean(a) 
 Mb[j]=mean(b) 
 MSa[j]=mean((a-1)^2) 
 MSb[j]=mean((b-1)^2) 
 Maa[j]=mean(aa) 
 Mbb[j]=mean(bb) 
 MSaa[j]=mean((aa-1)^2) 
 MSbb[j]=mean((bb-1)^2) 
 Msig[j]=mean(sig) 
 MSs[j]=mean((sig-1)^2) 
 Lpe[j]=mean(lowp) 
 j=j+1 
} 
results=rbind(Maa, MSaa, Mbb, MSbb, Msig,MSs,Lpe) 
dimnames(results)=list(c( "Mean(aa)", "MSE(aa)", "Mean(bb)", "MSE(bb)", "Mean(sig)","MSE(sig)", "Trunc.Pt"),  

c(100, 200, 300, 400, 500, 800, 1000)) 
 
results 
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#EM Algorithm 
set.seed(987654) 
options(decimal=3) 
total=500 
low=0; 
se=1; 
ma=mb=ms=msa=msb=mss=Lpe=rep(0,7) 
k=1; 
for(n in c(100,200,300,400,500,800,1000)) 
 { 
    alp=bet=sigm=Lowp=rep(0,total) 
    for(i in seq(total)) 
    { 
      x=seq(-sqrt(3), sqrt(3),len=n) 
    ystar=1+x+rnorm(n,0,se) 
    y=pmax(ystar,low); 
    x0=x[y==low]; 
    xp=x[y>low]; 
    y0=y[y==low]; 
    yp=y[y>low];  
    a=0.95; 
    b=0.95; 
    sig=1; 
    X=cbind(rep(1,n),c(xp,x0)); 
    a1=b1=10; 
   s1=1; 
    repeat 
    { 
       z0=(a+b*x0)/sig; 
       p1=dnorm(z0); 
       P1=pnorm(z0); 
       y0new=a+b*x0-sig*p1/(1-P1); 
       vy0=sig^2+a+b*x0*(sig*p1/(1-P1))-(sig*p1/(1-P1))^2; 
      B=solve(t(X)%*%X)%*%t(X)%*%(c(yp,y0new)) 
       a=B[1]; 
       b=B[2];  
       sig=1; 
       if((abs(a1-a)<10^(-6))&(abs(b1-b)<10^(-6))&(abs(s1-sig)<10^(-6))){break;} 
       a1=a; 
       b1=b; 
       s1=sig;     
     } 
     alp[i]=a; 
     bet[i]=b; 
     sigm[i]=sig; 
     Lowp[i]=sum(y==low)/n 
   } 
   ma[k]=mean(alp) 
   msa[k]=mean((alp-1)^2) 
   mb[k]=mean(bet) 
   msb[k]=mean((bet-1)^2) 
   ms[k]=mean(sigm) 
   mss[k]=mean((sigm-1)^2) 
  Lpe[k]=mean(Lowp) 
   k=k+1; 
  } 
result=rbind(ma,msa,mb,msb,ms,mss, Lpe) 
dimnames(result)=list(c("Mean(a)","MSE(a)","Mean(b)","MSE(b)","Mean(sigma)","MSE(sigma)", 

"Trunc.Pt"),c(100,200,300,400,500,800,1000)) 
 
result 
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Condition Set 8 

 
#Tobit MLE  
set.seed(987654) 
library(VGAM) 
low=0; 
Ma=Mb=Msig=Lpe=rep(0,7) 
MSa=MSb=MSsig=rep(0,7) 
j=1; 
for(n in c(100,200,300,400,500,800,1000)) 
{ 
 a=b=sig=lowp=rep(0,500) 
 for(k in seq(500)) 
 { 
  x=rnorm(n,0,1) 
  ystar=1+x+rnorm(n) 
  y=pmax(ystar,low) 
  fit=vglm(y~x, tobit(Lower=low)) 
  lowp[k]=sum(y==low)/n 
  table(fit@extra$censoredL) 
  a[k]=coef(fit,matrix=TRUE)[1,1] 
  b[k]=coef(fit,matrix=TRUE)[2,1] 
  sig[k]=exp(coef(fit,matrix=TRUE)[1,2]) 
  
 } 
  
 Ma[j]=mean(a) 
 Mb[j]=mean(b) 
 Msig[j]=mean(sig) 
 MSa[j]=mean((a-1)^2) 
 MSb[j]=mean((b-1)^2) 
 MSsig[j]=mean((sig-1)^2) 
 Lpe[j]=mean(lowp) 
 j=j+1 
} 
results=rbind(Ma,MSa, Mb, MSb, Msig, MSsig, Lpe) 
dimnames(results)=list(c("Mean(a)", "MSE(a)", "Mean(b)", "MSE(b)", "Mean(sig)", "MSE(sig)", "Trunc.Pt"), 

c(100, 200, 300, 400, 500, 800, 1000)) 
 
results 
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# LSE Positive 
 set.seed(987654) 
 total=500 
 ma=msa=mb=msb=ms=mss=Lpe=rep(0,7) 
 j=1; 
 for( n in c(100, 200, 300, 400, 500, 800, 1000)) 
{ 
   alp=bet=sigm=rep(0,total) 
   for(i in seq(total)) 
   { 
    repeat{ 
     lowp=0; 
     low=0; 
     se=1; 
     x=rnorm(n,0,1) 
     ystar=1+x+rnorm(n,0,se) 
     y=ystar[ystar>=low] 
     x=x[ystar>=low]; 
     lowp=length(ystar[ystar<low])/n 
     length(y); 
     length(x); 
     a=0.95; 
     b=0.95; 
     sig=0.95; 
   
 
     for(k in seq(10)) 
     { 
        z=(a+b*x)/1; 
        laz=dnorm(z)/pnorm(z); 
        laz1=-z*laz-laz^2; 
        laz2=(z^2-1)*laz+3*z*laz^2+2*laz^3; 
        a1=y-1*(z+laz) 
        a2=1+laz1 
        a3=laz-z*laz1; 
 
        B1=-sum(a1*a2) 
        B2=-sum(a1*a2*x) 
        B3=-sum(a1*a3) 
 
        A11=sum(a2^2-a1*laz2/1) 
       A12=sum(x*a2^2-a1*laz2*x/1) 
       A13=sum(a3*a2+a1*laz2*z/1) 
        A22=sum(x^2*a2^2-a1*laz2*x^2/1) 
        A23=sum(a3*a2*x+a1*laz2*x*z/1) 
        A33=sum(a3^2-a1*z^2*laz2/1) 
 
        A=matrix(c(A11,A12,A13,A12,A22,A23,A13,A23,A33),nrow=3) 
        cond=rcond(A); 
        flag=0; 
        if(abs(cond)<10^(-6))  
         { 
            flag=1; 
            break; 
         }  
        B=matrix(c(B1,B2,B3),nrow=3)    
        AiB=solve(A)%*%B 
 
        a=a-AiB[1] 
        b=b-AiB[2] 
        sig=sig-AiB[3] 
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      } 
      if(flag==0) break; 
     }  
     alp[i]=a; 
     bet[i]=b; 
     sigm[i]=sig; 
   } 
   ma[j]=mean(alp) 
  msa[j]=mean((alp-1)^2) 
   mb[j]=mean(bet) 
   msb[j]=mean((bet-1)^2) 
   ms[j]=mean(sigm) 
   mss[j]=mean((sigm-1)^2) 
   Lpe[j]=mean(lowp) 
  j=j+1; 
} 
  
results=rbind(ma,msa, mb, msb, ms, mss, Lpe) 
dimnames(results)=list(c("Mean(a)", "MSE(a)", "Mean(b)", "MSE(b)", "Mean(sig)", "MSE(sig)", "Trunc.Pt"), 

c(100, 200, 300, 400, 500, 800, 1000)) 
results 
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#Heckman 2-Step 
set.seed(987654) 
low=0; 
se=1; 
 
Ma=Mb=Msig=Lpe=Maa=Mbb=rep(0,7) 
MSa=MSb=MSs=MSaa=MSbb=rep(0,7) 
j=1; 
for(n in c(100,200,300,400,500,800,1000)) 
{ 
     a=b=sig=lowp=aa=bb=rep(0,500) 
     for(k in seq(500)) 
      { 
         x=rnorm(n,0,1) 
         ystar=1+x+rnorm(n,0,se) 
         y=(ystar>=low) 
         fit=glm(y~x, family=binomial(link="probit")) 
        lowp[k]=sum(y==low)/n 
        a[k]=coef(fit)[1] 
         b[k]=coef(fit)[2] 
         lamda=dnorm(a[k]+b[k]*x)/pnorm(a[k]+b[k]*x) 
         y=ystar[ystar>low] 
         x=x[ystar>low] 
         lamda=lamda[ystar>low] 
         fit2=lm(y~x+lamda) 
         aa[k]=coef(fit2)[1] 
         bb[k]=coef(fit2)[2] 
         sig[k]=coef(fit2)[3] 
       } 
 
      Ma[j]=mean(a) 
      Mb[j]=mean(b) 
      MSa[j]=mean((a-1)^2) 
      MSb[j]=mean((b-1)^2) 
      Maa[j]=mean(aa) 
      Mbb[j]=mean(bb) 
      MSaa[j]=mean((aa-1)^2) 
      MSbb[j]=mean((bb-1)^2) 
      Msig[j]=mean(sig) 
      MSs[j]=mean((sig-se)^2) 
      Lpe[j]=mean(lowp) 
      j=j+1 
   } 
  results=rbind(Ma, MSa, Mb, MSb, Maa, MSaa, Mbb, MSbb, Msig,MSs,Lpe) 
  dimnames(results)=list(c("Mean(a)", "MSE(a)", "Mean(b)", "MSE(b)", "Mean(aa)", "MSE(aa)", "Mean(bb)", 

"MSE(bb)", "Mean(sig)","MSE(sig)", "Trunc.Pt"), c(100, 200, 300, 400, 500, 800, 
1000)) 

  
  results 
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#EM Algorithm 
  set.seed(987654) 
  total=500 
  low=0; 
  se=1; 
  ma=mb=ms=msa=msb=mss=Lpe=rep(0,7) 
  k=1; 
  for(n in c(100,200,300,400, 500,800,1000)) 
  { 
    alp=bet=sigm=Lowp=rep(0,total) 
    for(i in seq(total)) 
    { 
      x=rnorm(n,0,1) 
    ystar=1+x+rnorm(n,0,se) 
    y=pmax(ystar,low); 
    x0=x[y==low]; 
    xp=x[y>low]; 
    y0=y[y==low]; 
    yp=y[y>low];  
    a=0.95; 
    b=0.95; 
    sig=0.95; 
    X=cbind(rep(1,n),c(xp,x0)); 
    a1=b1=s1=10; 
    repeat 
    { 
       z0=(a+b*x0)/sig; 
       p1=dnorm(z0); 
       P1=pnorm(z0); 
       y0new=a+b*x0-sig*p1/(1-P1); 
       vy0=sig^2+a+b*x0*(sig*p1/(1-P1))-(sig*p1/(1-P1))^2; 
       B=solve(t(X)%*%X)%*%t(X)%*%(c(yp,y0new)) 
       a=B[1]; 
       b=B[2];  
       sig=sqrt((sum((yp-a-b*xp)^2)+sum((y0-a-b*x0)^2)+ 
           sum(sig^2+(a+b*x0)*(sig*p1/(1-P1))-(sig*p1/(1-P1))^2))/n); 
       if((abs(a1-a)<10^(-6))&(abs(b1-b)<10^(-6))&(abs(s1-sig)<10^(-6))){break;} 
       a1=a; 
       b1=b; 
       s1=sig;     
     } 
     alp[i]=a; 
     bet[i]=b; 
     sigm[i]=sig; 
     Lowp[i]=sum(y==low)/n 
   } 
   ma[k]=mean(alp) 
   msa[k]=mean((alp-1)^2) 
   mb[k]=mean(bet) 
   msb[k]=mean((bet-1)^2) 
   ms[k]=mean(sigm) 
   mss[k]=mean((sigm-1)^2) 
   Lpe[k]=mean(Lowp) 
   k=k+1; 
  } 
 
result=rbind(ma,msa,mb,msb,ms,mss, Lpe) 
dimnames(result)=list(c("Mean(a)","MSE(a)","Mean(b)","MSE(b)","Mean(sigma)","MSE(sigma)","Trunc.Pt"), 

c(100,200,300,400, 500,800,1000)) 
result 
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Condition Set 11 

 
#Tobit MLE 
set.seed(987654) 
library(VGAM) 
low=0; 
Ma=Mb=Msig=Lpe=rep(0,7) 
MSa=MSb=MSsig=rep(0,7) 
j=1; 
for(n in c(100,200,300,400,500,800,1000)) 
{ 
 a=b=sig=lowp=rep(0,500) 
 for(k in seq(500)) 
 { 
  x=seq(-sqrt(3), sqrt(3), len=n) 
  ystar=1+x+rnorm(n) 
  y=pmax(ystar,low) 
  fit=vglm(y~x, tobit(Lower=low)) 
  lowp[k]=sum(y==low)/n 
  table(fit@extra$censoredL) 
  a[k]=coef(fit,matrix=TRUE)[1,1] 
  b[k]=coef(fit,matrix=TRUE)[2,1] 
  sig[k]=exp(coef(fit,matrix=TRUE)[1,2]) 
  
 } 
  
 Ma[j]=mean(a) 
 Mb[j]=mean(b) 
 Msig[j]=mean(sig) 
 MSa[j]=mean((a-1)^2) 
 MSb[j]=mean((b-1)^2) 
 MSsig[j]=mean((sig-1)^2) 
 Lpe[j]=mean(lowp) 
 j=j+1 
} 
results=rbind(Ma,MSa, Mb, MSb, Msig, MSsig, Lpe) 
dimnames(results)=list(c("Mean(a)", "MSE(a)", "Mean(b)", "MSE(b)", "Mean(sig)", "MSE(sig)", "Trunc.Pt"), 

c(100, 200, 300, 400, 500, 800, 1000)) 
 
results
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# LSE Positive 
set.seed(987654) 
total=500 
ma=msa=mb=msb=ms=mss=Lpe=rep(0,7) 
 j=1; 
for( n in c(100, 200, 300, 400, 500, 800, 1000)) 
{ 
   alp=bet=sigm=rep(0,total) 
   for(i in seq(total)) 
   { 
   repeat{ 
    lowp=0; 
    low=0; 
    se=1; 
    x=seq(-sqrt(3), sqrt(3), len=n) 
    ystar=1+x+rnorm(n,0,se) 
    y=ystar[ystar>=low] 
    x=x[ystar>=low]; 
    lowp=length(ystar[ystar<low])/n 
    length(y); 
    length(x); 
    a=0.95; 
    b=0.95; 
    sig=0.95; 
   
    for(k in seq(10)) 
    { 
       z=(a+b*x)/1; 
       laz=dnorm(z)/pnorm(z); 
       laz1=-z*laz-laz^2; 
       laz2=(z^2-1)*laz+3*z*laz^2+2*laz^3; 
       a1=y-1*(z+laz) 
       a2=1+laz1 
       a3=laz-z*laz1; 
 
       B1=-sum(a1*a2) 
       B2=-sum(a1*a2*x) 
       B3=-sum(a1*a3) 
 
       A11=sum(a2^2-a1*laz2/1) 
       A12=sum(x*a2^2-a1*laz2*x/1) 
       A13=sum(a3*a2+a1*laz2*z/1) 
       A22=sum(x^2*a2^2-a1*laz2*x^2/1) 
       A23=sum(a3*a2*x+a1*laz2*x*z/1) 
       A33=sum(a3^2-a1*z^2*laz2/1) 
 
       A=matrix(c(A11,A12,A13,A12,A22,A23,A13,A23,A33),nrow=3) 
       cond=rcond(A); 
       flag=0; 
       if(abs(cond)<10^(-6))  
        { 
           flag=1; 
           break; 
        }  
       B=matrix(c(B1,B2,B3),nrow=3)    
       AiB=solve(A)%*%B 
 
       a=a-AiB[1] 
       b=b-AiB[2] 
       sig=sig-AiB[3] 
     } 
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     if(flag==0) break; 
    }  
    alp[i]=a; 
    bet[i]=b; 
    sigm[i]=sig; 
   }  
   ma[j]=mean(alp) 
   msa[j]=mean((alp-1)^2) 
   mb[j]=mean(bet) 
   msb[j]=mean((bet-1)^2) 
   ms[j]=mean(sigm) 
   mss[j]=mean((sigm-1)^2) 
   Lpe[j]=mean(lowp) 
   j=j+1; 
} 
  
results=rbind(ma,msa, mb, msb, ms, mss, Lpe) 
dimnames(results)=list(c("Mean(a)", "MSE(a)", "Mean(b)", "MSE(b)", "Mean(sig)", "MSE(sig)", "Trunc.Pt"), 

c(100, 200, 300, 400, 500, 800, 1000)) 
results 



80 
 

#Heckman 2-Step 
set.seed(987654) 
low=0; 
se=1; 
Ma=Mb=Msig=Lpe=Maa=Mbb=rep(0,7) 
MSa=MSb=MSs=MSaa=MSbb=rep(0,7) 
j=1; 
for(n in c(100,200,300,400,500,800,1000)) 
 { 
      a=b=sig=lowp=aa=bb=rep(0,500) 
      for(k in seq(500)) 
      { 
        x=seq(-sqrt(3), sqrt(3), len=n) 
         ystar=1+x+rnorm(n,0,se) 
         y=(ystar>=low) 
         fit=glm(y~x, family=binomial(link="probit")) 
         lowp[k]=sum(y==0)/n 
         a[k]=coef(fit)[1] 
         b[k]=coef(fit)[2] 
         lamda=dnorm(a[k]+b[k]*x)/pnorm(a[k]+b[k]*x) 
         y=ystar[ystar>low] 
         x=x[ystar>low] 
         lamda=lamda[ystar>low] 
         fit2=lm(y~x+lamda) 
         aa[k]=coef(fit2)[1] 
         bb[k]=coef(fit2)[2] 
         sig[k]=coef(fit2)[3] 
       } 
      Ma[j]=mean(a) 
      Mb[j]=mean(b) 
      MSa[j]=mean((a-1)^2) 
      MSb[j]=mean((b-1)^2) 
      Maa[j]=mean(aa) 
      Mbb[j]=mean(bb) 
      MSaa[j]=mean((aa-1)^2) 
      MSbb[j]=mean((bb-1)^2) 
      Msig[j]=mean(sig) 
      MSs[j]=mean((sig-se)^2) 
      Lpe[j]=mean(lowp) 
      j=j+1 
 } 
results=rbind(Ma, MSa, Mb, MSb, Maa, MSaa, Mbb, MSbb, Msig,MSs,Lpe) 
dimnames(results)=list(c("Mean(a)", "MSE(a)", "Mean(b)", "MSE(b)", "Mean(aa)", "MSE(aa)", "Mean(bb)", 

"MSE(bb)", "Mean(sig)","MSE(sig)", "Trunc.Pt"), c(100, 200, 300, 400, 500, 800, 
1000)) 

  
results 
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#EM Algorithm 
set.seed(987654) 
total=500 
low=0; 
 se=1; 
ma=mb=ms=msa=msb=mss=Lpe=rep(0,7) 
k=1; 
for(n in c(100,200,300,400, 500,800,1000)) 
{ 
    alp=bet=sigm=Lowp=rep(0,total) 
    for(i in seq(total)) 
    { 
      x=seq(-sqrt(3), sqrt(3),len=n) 
    ystar=1+x+rnorm(n,0,se) 
    y=pmax(ystar,low); 
    x0=x[y==low]; 
    xp=x[y>low]; 
    y0=y[y==low]; 
    yp=y[y>low];  
    a=0.95; 
    b=0.95; 
    sig=0.95; 
    X=cbind(rep(1,n),c(xp,x0)); 
    a1=b1=s1=10; 
    repeat 
    { 
       z0=(a+b*x0)/sig; 
       p1=dnorm(z0); 
       P1=pnorm(z0); 
       y0new=a+b*x0-sig*p1/(1-P1); 
       vy0=sig^2+a+b*x0*(sig*p1/(1-P1))-(sig*p1/(1-P1))^2; 
       B=solve(t(X)%*%X)%*%t(X)%*%(c(yp,y0new)) 
       a=B[1]; 
       b=B[2];  
       sig=sqrt((sum((yp-a-b*xp)^2)+sum((y0-a-b*x0)^2)+ 
           sum(sig^2+(a+b*x0)*(sig*p1/(1-P1))-(sig*p1/(1-P1))^2))/n); 
       if((abs(a1-a)<10^(-6))&(abs(b1-b)<10^(-6))&(abs(s1-sig)<10^(-6))){break;} 
       a1=a; 
       b1=b; 
       s1=sig;     
     } 
     alp[i]=a; 
     bet[i]=b; 
     sigm[i]=sig; 
     Lowp[i]=sum(y==low)/n 
   } 
   ma[k]=mean(alp) 
   msa[k]=mean((alp-1)^2) 
   mb[k]=mean(bet) 
   msb[k]=mean((bet-1)^2) 
   ms[k]=mean(sigm) 
   mss[k]=mean((sigm-1)^2) 
   Lpe[k]=mean(Lowp) 
   k=k+1; 
  } 
 result=rbind(ma,msa,mb,msb,ms,mss, Lpe) 
 
dimnames(result)=list(c("Mean(a)","MSE(a)","Mean(b)","MSE(b)","Mean(sigma)","MSE(sigma)","Trunc.Pt"), 

c(100,200,300,400, 500,800,1000)) 
 result 
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Appendix C – Additional Figures 

Figure C.1 

 
Figure C.2 
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Figure C.3 
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Figure C.5 

 
Figure C.6 
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Figure C.7 

 
Figure C.8 
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Figure C.9 

 
Figure C.10 
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Figure C.11 

 
Figure C.12 
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Figure C.13 

 
Figure C.14 
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Figure C.15 

 
Figure C.16 
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Figure C.17 

 
Figure C.18 
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Figure C.19 

 
Figure C.20 
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Figure C.21 

 
Figure C.22 
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Figure C.23 
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