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CHAPTER I
INTRODUCTION TO THE REPORT

1.1 INTRODUCTION

The object of this report is to set forth the most useful method for
finding the complex roots of fairly complicated functions. Such functions
are encountered quite often in many fields of electrical engineering. In
some cases it is almost impossible to find the roots by hand-calculations.
The Newton-Raphson method has been found to be a powerful tool for finding
roots. This method has been demonstrated by a parallel-plate waveguide prob-
lem which is of great interest these days. A brief introduction about the
problem is given in the next paragraph.

During the past few years, there has been a considerable interest in the
propagation of electromagnetic pulses caused by nuclear bursts or lightning.
These pulses travel large distances over the surface of the earth and into
the ground. The propagation of electromagnetic pulse has engineering signi-
ficance in many areas such as nuclear test detection systems, damage to
electronic equipment and interruption of communication systems. A number of
papers have been published in the recent literature. Johler [1] found that
the pulses caused by nuclear burst contain components as low as 10 Hz. More
recently, good work has been done by Bernotski [2] in this field. He
attacked this problem with a particular emphasis on the near zone problem
(20 to 300 Km) and on very low frequency pulses (50 Hz to 10 kHz). A mathe-
matical model, studied by Bernotski, is reviewed in Chapter III of this
report. In the ﬁodel the earth and the ionosphere form the parallel planes

of a parallel-plate waveguide. An integral solution is obtained for the




vertical electric dipole source by solving Maxwell's equations subject to the
appropriate boundary conditions at the walls of the guide. The integral
solution is then approximated by a mode series. The evaluation of the mode
series involves the solution of a transendental mode equation as a function

of frequency.

1.2 OBJECTIVE OF THE REPORT

The objective of this report was to write a general computer program
which could find the roots.of the transendental mode equation for any number
of modes over any range of frequency. The Newton-Raphson method was used to
find the roots. Although there are many numerical methods, this was found to
be very rapid. The Newton-Raphson method, its pitfalls and its speed of
convergence are discussed in detail in Chapter II. The Chapter III discusses
the mathematical model of the waveguide problem and the approximation of its
integral solution by mode series.

In Chapter IV the numerical solution to the transendental mode equation
is presented. Computer programming and the problems encountered are dis-
cussed in this chapter. Results are presented for two specific cases. The

last chapter concludes the report.




CHAPTER II

NUMERICAL METHOD OF FINDING ROOTS

2.1 INTRODUCTION

Determining the roots of equations is encountered frequently in modern
computing since it is required in a great variety of applications. Generally,
a function of x, F(x), is given and it is required to find the values of x
for which

F(x) =0 (2.1)
The function F may be algebraic or transcendental and it is generally differ-
entiable.

In practice, generally the functions are quite complicated and have no
simple closed formula for their roots. In such cases the roots can only be
found by methods of approximating the roots. These methods involve two
steps:

(1) Finding an approximate root.

(2) Refining the approximation to some prescribed degree of accuracy.

The first approximation is generally known from physical considerations.
Sometimes graphical methods can be used as discussed by Kaiser [8]. Special
methods exist for the important case in which F(x) is a polynomial. (See
Anthony [9])

Refining an initial approximation or '"guess'" is done by a numerical
method in which a succession of approximations is made and this is known as
an iterative technique. Each step, or approximation, is called iteration.

If the iterations produce approximations that approach the solution more and

more closely, it is said that the iteration method converges.




Although there are several iterative techniques for the solution of
equations of this problem only the Newton-Raphson method is discussed in this

chapter.

2.2 THE NEWTON-RAPHSON METHOD

The Newton-Raphson method is a very rapid method for computing the real
roots of F(x) = 0 if the derivative of F(x) can be found easily.

To derive a formula for computing roots by this method, let 'a' denote
an approximate value of thé desired root. Suppose 'h' denotes the correction
which must be applied to 'a' to get exact value of the root. Then

x=a+h (2.2)
is a root of equation (2.1). Replacing x by (a + h), equation (2.1) becomes
F(a+h) =0 (2.3)

Expanding by Taylor's theorem, equation (2.3) becomes

1

ET-hZF”(aJ ‘.

n
o

F(a + h) = F(a) + hF™(a) + (2.4)

Assuming that the terms involving h2 and higher powers of h are small
enough to be neglected, equation (2.4) reduces to
F(a) + hF"(a) = 0 (2.5)
that is, h is approximately equal to - [F(a)/F"(a)]. Therefore, from equation
(2.2) it follows, in general, that
x = a- [F(a)/F"(a)] (2.6)
is a better approximation than x = a.
Equation (2.6) can be used again with each corrected estimate of the

root. Now starting with x, instead of 'a' as the first approximation, the

0

successive approximations will be

F(xo)
17 % " F™ (xy)




then
.. .
2 71 F(x,)
1
leading to
.
*re1™ % Fr(x,)

The procedure for Newton-Raphson iteration will be more clear from the
flow diagram, Fig. 2.1, as described by Watson [10]. In all straight forward
cases the successive corrections quickly become smaller and smaller indicat-

ing that the sequence Xgr Xq» X converges rapidly towards an accurate

5 "

value of the root. Cases of failure are discussed in section 2.5.

2.3 GEOMETRIC SIGNIFICANCE OF THE NEWTON-RAPHSON METHOD

Geometrically speaking, the Newton-Raphson method is based on the fact
that the tangent at any point of any curve is a close approximation to the
curve for a short distance on each side of the point of contact.

A graphical representation of the Newton-Raphson method is shown in Fig.
2.2. The curve PS represents the graph of y = F(x) near the root. Draw a

tangent from the point P whose abscissa is x This tangent intersects the

0"

x-axis in some point T. Then draw another tangent from P1 whose abscissa is

O0T. This tangent meets the x-axis in some point T1 between T and S. A third

tangent can be drawn from P, whose abscissa is OT., this tangent cutting x-axis

2 1’

at a point T, between T. and S, and so on. It is evident that if the curvature

2 1

of the graph does not change sign between P and S the points T, T,, T

1* 7z -

will approach the point S as a limit. In other words, the intercepts OT, OTl,

UT2 . . . will approach the intercept OS5 as a limit. Since OS represents the

real root of the equation, it follows that OT, OTI’ 0T2 . . . are successive
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approximations to the desired root. This is the geometric significance of
the Newton-Raphson method.
Geometrically, the fundamental formula for the Newton-Raphson method can

be derived as follows. Suppose in Fig. 2.2, QT = h TTl =h, ... . The

1.2 pi
slope of the graph at P is obviously F’(xo). Also from Fig. 2.2

v y = F(x)

F(xo)

=Y

-

XO——LQ_ hl —HT
1—*

T
N
X -

-

I

2

FIG. 2.2 GRAPHICAL REPRESENTATION OF NEWTON-RAPHSON METHOD

tan / ¥
- PQ/QT

- F(xo)/hl

Slope of graph at P

n

Therefore, it follows that

F (x)) = - Flx))/hy




or h1 = - F(xOJ/F‘(XOJ

leading to hr ol 29 F(xr)/F'(xr)

Hence, the real root after the rth iteration will be

Bie 1 F By ® F(xr)/F’(xr)

which is the fundamental formula for the Newton-Raphson method.
From the preceding discussion it is evident that in the Newton-Raphson
method the graph of the given function is replaced by a tangent at each suc-

cessive step in the approximation process.

2.4 SPEED OF CONVERGENCE

In the Newton-Raphson method the speed of convergence tends to increase
markedly as the error becomes small. This can be seen as follows.

For convenience the basic convergence scheme is rewritten as

F(xr)

- —'PTXI)* (2.7)

X = X
T+ 1

If x is the desired root, then the error at step r, denoted by e will be

e, = X - X (2.8)

and at step r + 1, the error will be

= 5 (2.9)

r+1 r+ 1

Subtracting x from both of equation (2.7) and then by rearranging, it can be

seen that F(xr)
X = Xr+ 1 = X - Xr+-}-:,—(x;'j" (2.10)
Using equations (2.8) and (2.9), equation (2.10) becomes
F(x - er)
e =e_ + (2.11)

T+ 1 r F(x- er)




Expanding (2.11) by Taylor series,

F) - e F7(x) + (e 2/ P'x) + . . ..
6., 1= * r2 (2.12)
F/(x) - e F'(x) + (e° /2) F'' (x) + .

Making use of the fact that F(x) = 0, and dividing the numerator by the

denominator, equation (2.12) reduces to

z
e
ce -e - X EX) L icher-
B j N B, B, T + higher-order terms
& 2
% P
or 8w i ¥ 7 (0 (2.13)

It is obvious from equation (2.13) that the absolute error at step r + 1
is proportional to the square of the absolute error at step r. In other
words, if an answer is correct to one decimal place at one step, it should be
accurate to two decimal places at the next step, four at the next, eight at
the next, and so forth. This rapid convergence, where the error at one step
is proportional to the square of the previous error, is called ''second-order"

convergence.

2.5 PITFALLS OF THE NEWTON-RAPHSON METHOD

It was seen in the previous section that the Newton-Raphson method pro-
duces fast results when it works. Sometimes, this method does not converge
but instead oscillates back and forth. Fig. 2.3 shows a case where the
initial guess is such that the iteration oscillates between P and Q and never
converges to the desired root x. Another case of oscillation is shown in
Fig. 2.4 where the function is symmetrical about the desired root.

This method will also fail when the initial approximation x, is such

0
that the value of F(xo)/F‘(xO) is not small enough, as shown in Fig. 2.5.
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The slope of the tangent at P (the first approximation) is small and it would
cross the x-axis at Q thus making the second estimate of the root worse than
the first. In this case the initial guess should be close to the desired
root X.

This method may also fail if a pole and a zero of equation (2.1) lie
close to each other. In such a case the left side of equation (2.1) will
never approach to the value zero and hence the iterations will never converge.
So there is a possibility that we may lose the root. In order to avoid such

situations, the poles of the equation should be removed.

2.6 COMPLEX ROOTS OF EQUATIONS BY THE NEWTON-RAPHSON METHOD
So far in this chapter it was discussed how to find the real roots of a

equation by the Newton-Raphson method. If the initial guess x_  is real, then

0
F(x
g, = % e
0
will also be real and all the X, will be real. If, on the other hand, the
initial guess is complex, then all X will also be complex, and so on. The
pitfalls of this method, discussed in section 2.5, for real roots will also
hold good in the case of complex roots.
In general, the Newton-Raphson method can find the complex as well as

the real roots of complex equations, assuming the iteration process converges.
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CHAPTER III

STUDY OF A PRACTICAL EXAMPLE TO DEMONSTRATE

THE NEWTON-RAPHSON METHOD

3.1 INTRODUCTION

To demonstrate the usefulness of the Newton-Raphson method, a practical
example—the waveguide problem—is discussed in this chapter. The mathemati-
cal formulation of the waveguide problem, originally done by Bernotski [2],
has been reproduced here. Section 3.2 deals with the mathematical model for
the problem developed on certain assumptions. In the next section the inte-
gral equation solutions for the vertical electric dipele are found. Their
conversion into one of the well-known series solutions—the mode series
solution—is presented in section 3.4, The last section discusses the signi-

ficance of the roots of the transendental mode equatiom.

3.2 THE MATHEMATICAL MODEL

The mathematical model for the earth-ionosphere waveguide is shown in
Fig. 3.1. 1In this model a semi-infinite ionosphere is assumed to be situated
at a distance H from the semi-infinite earth; thus forming a parallel plate
waveguide. The point S represents the location of a source (vertical elec-
tric dipole) distant Z, above the earth and R represents the location of the
receiver at height Z from earth. The horizontal distance between the source
and the receiver is p in the c¢ylindrical co-ordinate system.

Because of the interest of near-zone problem, earth has been assumed to
be flat. For simplicity a homogeneous icnosphere has been chosen as the

upper bound of the waveguide. For the same reason a ground with constant

conductivity has been selected although Wait [3] indicates that the ground
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conductivity may be a function of frequency.

3.3 INTEGRAL EQUATION SOLUTIONS

The model of section 3.2 is used to derive the integral equation solu-
tions. Let the earth be represented as medium (1), the space between earth
and ionosphere as medium (2), and the ionosphere as medium (3). For sinus-
oidal time variations Maxwell's curl equation in phasor form for any medium
n can be written as:

L - "Juwe H (3.1)

<]

~

m
]

<

™

A,
1l

(on + Jmen) En + Jn (3.2)
The electric and magnetic fields for any medium, in terms of the electric

Hertz vector m_, can be expressed as:

n
B ow oyt 4 NPT (3.3)
n Yn n n =
Hn = (Un + Jmen) V x m (3.4)
where . wz + jao w
Yo T "% I%

Substituting (3.3) and (3.4) into equations (3.1) and (3.2) and using

the vector identity

vxVxm o= 9(T) - 7
n n n
we get: _
3 _ B = '
R R CAEE T (]
n n

Since the source—an electric dipole oriented in the Z direction—is
present only in the space between earth and ionosphere, equation (3.5) for

each medium becomes
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2 2 . 8 2 _
(Vi-y;)m, =" -yg)m, =0 (3.6)
1 3
P N </ o = 2, 8le) s, 34
Y2 Trz2 jmsz 2mp '

where Idf is the dipole moment and § is the Dirac delta function. It is also
assumed here that the conductivity of medium (2) is zero.
Using notations similar to Sommerfeld [4], the solution to equations

(3.6) and (3.7) in integral form can be written as:

For medium (1), +v12
G, e
_ Ide +ao ] (2)
T, = Ty o g o e H0 (Ap) Adar (3.8)
1 2 1
For medium (2), sz "VZZ
B. e + B, e
" = EE%?%Zfi L - H 2 (a) 2
2 2 2
_-Y T
2
2 e
" - (3.9)
_-Y T
Ide e 2 : 3 ;
where 2 is the dipole field in free space.
4ﬂ(]m€2) T
For medium (3), -v3z
I e
Idg +o 71 (2)
f, = gl——gs [ ool (Zp) AdA (3.10)
24 8ﬂ(Jw52) Vs o}
where Vv =N/A2 -k 2 =N/R2 + ¥ "
n n n
A= kzs
kn ALY




and G B B, and I

2

boundary conditions.

= =1 1

ionosphere are:

At Z 0
and
At

and

Expanding either
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are unknown co-efficients and can be determined by

The boundary conditions for the earth and the

Ej, = By (3.11a)
Hyg = Hye (3.11b)
By, = By (3.12a)
Hyo = Hyg (3.12b)

side of equations (3.3) and (3.4) in cylindrical

co-ordinates, it can be seen that

azn
zn
Epn - ap oZ
and Hen = (cn +

At the boundaries Z = 0 and Z = H, equations (3.13) and (3.14) yield

following conditions:

ot
5
3Z 7 0
(ol + stl)
Bﬁz
2
o9z 7 H
(Jwe,) ™
2 z2

Now substituting

(3.13)

o
z

jwen) 5 (3.14)

the

sz
2 322 (3.15)
Z =20
nzl ‘ = Jjue, sz (3.16)
Z=0 Z =0
anz
= 323 (3.17)
Z=H
= (03 + JwES) wzs (3.18)
Z =H Z=H

€

the value of given by Sommerfeld's formula as:




17

™ -v, |z -z |
2 2 o}
2 -1 2l (2)
=5 5 ok > H Y (A) Adx (3.19)
equation (3.9) becomes:
v.,Z -v,Z
-v,|z -z | 2 2
) Ide . 2 o B1 e B2 e
T2, T Br(jwe.) el v t Ty T
%2 195y 2 2 2
Ho(23 (o) AdA (3.20)

where 0 < Z < H

Since equations (3.8), (3.20) and (3.10) have the same limits of inte-
gration and each integral must converge to represent the physical fields, so
taking the partial derivatives inside the integral sign will not affect the
convergence. Thus the conditions given by equations (3.15) - (3.18) give

rise to the following equations

_ 270
G1 = e + Bl - 32 (3.21)
g, + juwe jwe -V,Z
1 1 _ 2 270
= Gl R (e + Bl + sz (3.22)
1 2
-v,(H - Z2) v, H -v.H -v H
2 0 2 20 _ 3
- e + B1 e - B2 e = I1 e (3.23)
juwe -v,(H - Z) v, H -v,.H o, + jwe -v H
2 (e : © 4+ B, e B B, e e ) = : 31 3
v, 1 2 Vq 1
(3.24)
Solving the equations (3.21) - (3.24) for B1 and B2 we get:
V.2 -v.,Z
“2vie t 0w R, @ L
B1 = Ri e -2v2H (3.25)




18

-v, Z -v,(2H - Z)
- 270 . Ri “ 2 o
B2 = Rg -2V2H (3.26)
1 -R.R e
18
where Ri and R_g are the Fresnel reflection co-efficients given by
Vs, i vy
juwe g, + juwe
R, = - 2 1 v 1 (3.27)
& - 1
stz Gl + JmEl
i A
juwe g, + jwe
R, =23 3 (3.28)
i v v
2_, 3
Jwe, 03 + Jweg

Substituting the values of B, and B, in equation (3.20) and simplifying,

1 2
equation (3.20) becomes
For Z < Z
!
VL E -v,Z -Vv,Z v,(Z - 2H)
H (2)(Ap] (e 4 g R e “ ) (e L R.e L )
_ Ids + o g i Ao
ﬁzz - 87(jue,) -« v, -2v,H
(1 - RiR e )
(3.29)
For Z > Z
0
v, Z -v,Z -v,Z v,(Z - 2H)
BB ey e 2% ne © %fe 2 « a2 )
T R B & AdA
z, - 8n(jue,) -= vy -2v,H
(1 - RRe )
1B
{3.30)

The above equations (3.29) and (3.30) are the integral equation solu-
tions. In the next section these solutions are approximated by a series

representation known as the mode series solution.
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3.4 THE MODE SERIES SOLUTION

The integral solutions given by equations (3.29) and (3.30) can be
approximated by a series representing 2nj times the sum of the residues at
the poles of the integrand which lie in the lower half of the S-plane or
A-plane. The location of the poles of the integrand are given by the roots
of the transendental equation

23k

CH
1-R. R e e
1 B

=0 (3.31)
where vy = jk,C = jk 1-58
Using the notations of Wait [3], the mode series for equations (3.29)

and (3.30) becomes

_oIde o (2)
"z, * ZueH nf_m H ““(k,p S ) F (Z)) F (2) 8 (C) (3.32)

where Fn is the height gain function given by

JkZCnZ _ijCnZ
e + R
F (2) =
2 ng[Cn]
-1
3R, (C) Rg(C)
aC |
and & (C) = 1+ L
n ' n

2H R (€) R (C)

3.5 SIGNIFICANCE OF THE ROOTS OF THE TRANSENDENTAL EQUATION

In order to study the significance of the roots of the transendental
equation (3.31) it is essential to find out what the Hankel function of argu-
ment k Snp describes. Referring to Jordan [5], when the Hankel function of

2

zero order and second kind is appropriately combined with the time factor
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ejwt, then it represents the outward-traveling wave. In other words, it
represents the behavior of each mode with distance from the source. That
this is so, is evident since this function can be replaced by an exponential
function for large values of the argument. For example, for large values of

kzsnp the Hankel function of zero order and second kind can be expressed as

-j(k.S p - ©/4)
n @k s o) 2 ?Zm
o 2 n nkzsnp

Now it should be observed that the argument kZSn can be associated with the
propagation constant, vy = o + jB, in the usual rectangular waveguides. Thus
we see that the phase velocity and the attenuation of each mode can be pre-
dicted from the S-plane plots. The phase velocity is given by the reciprocal
of the real part of S and the attenuation per wave length by 2w times the
imaginary part of S.

A numerical solution to the transendental equation (3.31) is presented

in the next chapter.
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CHAPTER IV

NUMERICAL SOLUTION TO THE TRANSENDENTAL EQUATION

4.1 INTRODUCTION

In this chapter a demonstration of finding the roots of a transendental
equation by the Newton-Raphson method on the computer is given. The computer
program, written in Fortran IV language, is described in section 4.2. Prob-
lems encountered in programming are also discussed in this section. This
program takes about 3 minutes of computer time to find the roots of the equa-
tion for four modes over the frequency range 0.1 kHz - 50 kHz.

Parameters were chosen for two specific cases. The results for these
cases are presented in graphical form and their physical interpretations are

discussed in the last section of this chapter.

4.2 ROOTS OF THE TRANSENDENTAL EQUATION

It was mentioned in the last section of the previous chapter that in
order to approximate the integral solutions by mode series one of the essen-
tialities is to find the roots of the transendental equation (3.31). For the

sake of convenience, equation (3.31) and all information about it is repeated

here:
-2jk2CH
1-R R _e =0 (4.1)
1 g
where
V2 '
g, + jwe o, + jwe
Ri - 2 . 2 3 . 3 (4.2)
2 3
02 + jwe, 03 + jue,
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2 i 1
0, * juwe, O + jue,
B, 8-Sy - (4.3)
2 1
o, * jw52 o * jmal
k, 2
_ e, VL
v =g anJ/i (k ) S (4.4)
n
kn =w fue, (4.5)
§ = o1 - C° (4.6)
w = 2rf (4.7)

Looking at equation (4.1) it is quite obvious that this is of the form:
F(C) =0 (4.8)
which has already been discussed in Chapter I. So it follows that this can
be solved by the Newton-Raphson method. Now it may be recalled that to start
with Newton-Raphson method it is essential to find a '"'good" initial guess.
The initial guess must be good because otherwise the iterations procedure may
fail as discussed in section 2.5 of Chapter II. In our case a good initial

guess which worked quite satisfactorily was found as follows:

Defining the index of refractions N, and N, for earth and ionosphere

1 3
respectively as

k1
N, = — (4.9)

1 k2

k

3

N3 = E;_ (4.10)

the equations (4.2) and (4.3) become
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N12C = h/klz -1+ C2
R = (4.11)
: N 2C +AJ/N 2 -1+ C2
1 1
stc —,\/ﬁsz -1+ C?
R, = (4.12)

1
=
+
(]

1
2 2 2
N; C +AJA§3

At extremely low frequencies and for reasonable conductivities for the earth

and the ionosphere it can be seen from equations (4.9) and (4.10) that

2 2 . 2 2 1
Nl and N3 >> 1, since Nl and N3 « F
Assuming C™ << le or N3 , equations (4.11) and (4.12) reduce to
1
k=R
1
Rg = 1
1 o st
N1C
2
=2 ] = —
NIC
2
NlC
= e
.
N3C

1

Similarly Ri e

Substituting the approximate values of Rg and Ri in equation (4.1), it can be

seen that
S22
sonmj N;C  NiC -2jk,CH )
- e e =0
- Z_ 424 25k.0H = s2nw (4.13)
N,C N.C 2
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Solving equation (4.13) for C gives

2 g
1 1
Ces I L/c——““ ) o s Ly (3.14)
2k2H 2k2H k2H Nl N3
For n = 0,
j 1 1
C =2 E— * =) (4.15)
VIR

Since C2 is assumed to be ﬁuch less than N1 or NS’ this means that the second

term under the radical sign in equation (4.14) will be very small. So, for

n # 0, C can be approximated as

(]
1
I+
|=’
3

=
b o

(4.16)

Starting with the initial guess as given by equations (4.15) and (4.16), the
sequence of successive approximations will follow as given by the following
equation

F(C.)
C +1=2¢C S

i r F [Cr)

(4.17)

Since the initial approximations for n = 0 and n # 0 are complex, so all C,

will also be complex, and so on.

4.3 COMPUTER PROGRAMMING

A computer program (Appendix I) was written to find the roots of the
transendental equation (4.1) by the Newton-Raphson method. Equations (4.15)
and (4.16) were used as initial approximations. The Table 4.1 on the next
page gives the list of computer variables used in the computer program for

different problem variables.




TABLE 4.1 LIST OF COMPUTER VARIABLES
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ié Problem Variable Computer Variable
Ls Permeability and permittivity of free space; Uo, EO
pos Eo
2. Relative permeability and relative permit- UR, ER
tivity of medium; Wos Eo
3. Permeability and permittivity of medium; U, E
H, E
4. Conductivity of medium, o G
5. Ionosphere height, H H
6. Complex j J
7. Value of = PHI
8. Radian frequency, w W
9. Mode number, n MN
10. Frequency in K.Hz FK
11. Numerators of Ri and Rg NRI, NRG
12 Denominators of R.i and Rg DRI, DRG
-2jk,CH
13. Exponential term, e EX
14. Function of C, F(C) F
15 Derivatives of NRI, NRG, DRI, DRG, EX DNRI, DNRG, DDRI,
and F DDRG, DEX, DERF
l6. Ratio F(C)/F”(C) DELTA
17. Absolute value of DELTA AV
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The transendental equation (4.1) was not taken as F(C) but it was
simplified first. It is quite obvious that the poles of this equation are
the zeros of the denominators of Ri and Rg.

In order to avoid the pitfall due to poles, discussed in section 2.5 of
Chapter II, the poles of the transendental equation were removed by multiply-
ing both sides of it by the denominators of Ri and Rg. Thus, in terms of
computer variables, F(C) takes the form as

F = DRI * DRG - NRI * NRG * EX (4.18)

and its derivative will be
DERF = DDRI * DRG + DRI * DDRG - DNRI * NRG * EX - NRI * DNRG * EX
- NRI * NRG * DEX (4.19)

Then, the ratio F(C)/F”"(C) will be given by

F

TERE (4.20)

DELTA =

Since a transendental equation has infinite set of roots, so it is very
essential to find a logical numbering system to order the roots. A system
found by Bernotski [2] was adopted in which the roots are traced as the
frequency varies in steps over a certain range for each mode. A flow chart
describing the operations in the computer program is shown in Fig. 4.1 on the
next page.

Before considering the problem of convergence or lack of convergence,
let us point out the situation in which errors in the data or the program
could cause the machine to run in the loop indefinitely, thus wasting time
and money. In order to save such situations a counter, named N, has been
established in the program which allows the iteration to be performed a maxi-
mum of 25 times and then skips to statement 70, which prints out "DOES NOT

CONVERGE." 1If the answer had been obtained in less than 25 iterations, 1t




Set MN=0
V
Set FK=0.1

} |
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a

Set Cl=C

Y

Count N=0
V’
N=N+1

1

Calculate F(C)

i

Calculate DERF(C)

YESY

!

DELTA=F/DERF

!

C1=C-DELTA

1S

PRINT

FK,C1,S,DELTA,F,DERF,N

AV-1.0x10">) < 0

FK=FK+Freq.Step

FIG. 4.1 FLOW CHART OF COMPUTER PROGRAM

Set C=Cl

YES

Y

MN=MN+1
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would be printed out in the normal fashion.

Once DELTA has been calculated, the obvious next step is to test the
convergence. For this we ask the computer whether the absolute value of
DELTA is sufficiently close to zero i.e. less than, say m, depending upon the
acturacy required. In our case the value of m is 10-5. This is generally a
valid test, since the difference between two successive iteration must go to
zero 1f the process is to converge. If the convergence does not occur to the
desired accuracy, the iteration process continues. If the limit of itera-
tions has not been reached but the process has converged to desired accuracy,
the computer prints out the values of C, S, DELTA, F, DERF and N in a tabular
form as shown in Appendix II. Next the computer takes a frequency step and
assumes the previous value of C as the initial guess and goes through the
same prbcess again as discussed above.

Stepping the frequency was found to be the most troublesome problem.
Frequency step should not be too large because the root at the last frequency
may not be a good initial guess at the new frequency. In the range of
0.1 kHz to FKL, which is defined as

FKL = 2 = MN
the frequency step was kept as 0.1 kHz and at each' step the initial guess
was calculated from the equations (4.14) and (4.15) since in this range the
roots for a particular mode were found to be so far apart from each other
that the previous root did not prove to be a good initial guess at the new
frequency. During the period FKL to 20 kHz, the step size was kept 0.2 khHz.
From 20 kHz to 50 kHz, the frequency step was boosted to 2.0 kHz because it
was found that the roots for each mode lie very close to each other at higher

frequencies.




4.4 RESULTS AND DISCUSSION

Two cases have been studied, namely, (a) Day Over Poor Land (b) Day Over

Normal Land. In each case the height of the ionosphere was 70 kilometers.

Other parameters used for each media are listed in Tables 4.2 and 4.3.

TABLE 4.2 DAY OVER POOR LAND

- Relative Relative Conductivity
Permeability Permittivity in mhos
Earth 1.000 15.000 0.236 x 107°
Free space 1.000 1.000 0.000
Tonosphere 1.000 1.000 0.118 x 107°
TABLE 4.3 DAY OVER NORMAL LAND
; Relative Relative Conductivity
Medium Eal B rai :
Permeability Permittivity in mhos
Earth 1.000 15.000 0.500 x 1072
Free space 1.000 1.000 0.000
Ionosphere 1.000 1.000 0.177 x 107°

The roots for the first four modes were plotted in the complex planes,

namely, C-plane and S-plane.

each case.

These plots are shown in Figs. 4.2 - 4.5 for

Recalling section 3.5 of the previous chapter, the phase velocity and

the attenuation of each mode can be interpreted from the S-plane plots.

The

Figs. 4.4 and 4.5 show that the frequencies less than 3 kHz for n = 0 mode

have phase velocities less than the speed of light since the value of S is

greater than one.

But the phase velocities of the higher frequencies of this
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mode are about the same as the speed of light. For other modes the real part
of S is always less than one and hence their phase velocities are faster than
the speed of light.

At low frequencies, the imaginary part of S is quite large for each mode,
except for the n = 0 mode. This shows that the lower frequencies are highly

attenuated.
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CHAPTER V
CONCLUSIONS

The Newton-Raphson method was found to be an efficient method for find-
ing the roots of a transendental equation on the computer. Prior to the
advent of computers, the solutions to transendental equations have been con-
sidered relatively inaccessible, and obtainable only by means of a considera-
ble effort. But, as can be seen from the sample output (Appendix II}, the
convergence is so fast that the computer takes less than 3 minutes to find
the roots for four modes over the frequency range 0.1 kHz - 50 kHz. The only
drawback of this method is that to start with we must have a good initial
guess.

The computer program is quite general for the waveguide problem—general
in the sense that it can be used for predicting the velocity and attenuation
of electromagnetic pulses for any case such as Day land, Night land, Sea land
etc., just by changing the data cards. The ionospheric height (in meters) is
specified on the first data card and the next three cards carry the values of
UR, ER and G in order for each media according to the format statements 2 and
3 respectively. This program can be used in conjunction with a computer sub-
routine for the Hankel Functions to calculate the sum of the modes.

A simple model was used in the study of the waveguide problem. The
study can be extended to more complicated model where layered ionospheres may
be used to make it a real world problem.

The Newton-Raphson method can be applied to many complicated problems in
electrical engineering where it is required to find the roots of an equation

in which one parameter is varied over a certain range. One such application




36

could be in the field of Network Synthesis where it may be necessary to find
the stability of a network when a parameter is changed over a certain range.
Stability of a network can be checked from the location of the poles and

zeros of the network function in the complex-plane.
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29
30
31
32
33
34
35
26
37
38
29
40

41
42
43

45
46
47

48
49

$.408 SCS:TIME=10,PAGES=25%

c FINDING COMPLEX ROOUTS OF COMPLEX FUNCTIONS BY

C NEWTCN-RAPHSON METHGD

C EXAMPLE. SOLVING FOR RDOTS OF 1-RI{C)I.RGICILEXP(C)=0

c

C

COMPLEX CMPLX,CEXP,CSORT
COMPLEX CyJyMRIZNRG,DRI+DRG,EX,F,DERF,E(3),K[3),
1V(3)4VEL3),DVE(3),DNRI,ONRG,CDRI ,CORG,DEX4LELTA,
15,C1,CHI3),NJ(3)4NIL3)

DIMENSTION UR(3)Y,ER(3),613),U(3),RELI(3)}
REAL IFGI(3)
READ{]l,2)H

2 FORMAT(F1C.0)
WRITE(3,20C)H

200 FORMATI/+55Xy" H=',F10.3,' METERS"'}

WRITE(344)

4 FORMAT{/44BX*UR" 10X, ER*,12X,"'G")
DO 10 I=1,3
READI1,3)UR(T)LER(I),GI(])

3 FORMATI(3FL1GC.0)
WRITE(3,5)URII)LER(I),GI(I)

S5 FORMAT(44X,FT.345XsFTe3,5%X,E10.3)

10 CONTIANUE -
J=CMPLX(0.0,1.0)
PHI=3.14159
U0=PHI%*4.0 E-07
EO=8.854 E-12
BEGIN FUDE NUMBER LCOP
DO 110 L=1,4
MR=L-1
FKL=2.CFMN
WRITEIS«300i#N

300 FORMAT(/,! MODE NO.=',13)
WRITE(3,400)

400 FORMAT(/// 43X "FKR"312X+°Cl",20X,"S"419X,'DELTA"
1,22X,1F", 24X, "DERF ", 16X, 'N")
FK=0a.1
BEGIN FREQUENCY LOOP

90 W=2.0%PHI*FK*1000.0
DO 20 (=1.3
UulIN=uc=urII}
RELUT)=EQ*ER(I)
IMG(T)=—-GI(I1)/H
E(I)=CMPLX(RELII) IMG(I))
K(I}=w#CSQRTIULII*E(L))

20 CONTINUE ‘
DO 12C I=1,3
NJIII={KI2)/KII}))
NILIY={NJ(L))=*%2

12¢ CONTINUE
CHOOSE INITIAL GUESS AT EACH FREQ. FOR EACH MODE
IFINNLEQ.Q)GO TO 140
1IF{FK.GT.FKLIGO TO 130
C=(MNFPHTI) FIK(2)%H)
GO TC 130

140 IF(FK.GT.1.C)G0 TO 130
C=CSQRTUJE(NJIILI+NI(I))}/{K{2)%H} )

130 N=0
BEGIN ITERATION LOOGP

30 S=CSQRT{1l.0-C*x%2)

=Nl

39




60

40

1%
560

50
600

150

160

18C
170

116G

40

[F{(N-25).EQ.C)GO TO 70

pod 60 1=1,3

BEGIN CEFINITION OF F AND DERF
CMII)=CSCRT(1.0-NI(Il}%(S=%2))
VII)=J2K(T)*CMIT)
VELT)=V{I[)*EQ/E(1)

DVELT)=J*K (T} %[ 1C/CM(II*NI(I)*C*EQ/E(I)
CONTINUE

NRI=VE(2)-VE{3)

NRG=VEI2)-VE(1)

DRI=VE{2)+VE{3)

DRG=VE(2)+VEI(1])
EX=CEXP(-2.0*%V(2)*H)
DNRI=CVE(2)-DVE(3)
DNRG=DVE(2)-0GVE(Ll}
CDRI=DVE(2)+DVE(3)
DDRG=CVE(Z2)+DVE(1l]
DEX=1=-2 0% J¥HFEX*K(2))
F=zDRI*DRG-NRIXNRG*EX
DERF=DCRI*DRG4+DRI*DDRG-DNRI#NRG+EX—NRI*DNRG*EX-NRI*NRG*DEX
END DEFINITION OF F AND DERF
DELTA=F/DERF

ITERATION STEP

C1=C-DELTA

TESTING CONVERGENCE

AV=CABS(DELTA)

IF(AV-1.0 E-05)50,5044C

c=Cl1

GO TO 3C

END ITERATION LOOP

WEiiE{3,300

FUMAT(®* DOES NOT CCNVERGE")
WRITE(3,600)FX,C1,S,DELTA,F,CERF N
FORMATIFS, 105X s FTu3y " +J ' g FTu3¢05XsFTa3y " +J"3FT43,04X,E9.2

1,"+J"'4E9.2404X,EL10.3,"+J',E1C.3,005X,E10.3,"'+J",EL0.3,005X
1,13)

IF(MN.EQ.O)GO TO 150
[FIFK.GE.FKL)GO TO 160
FK=FK+C.10CCl

GO 7O 17¢
IF{FX.GT.0.8¥G3 TO 16C
FK=FK+0.10001

GO 'T0 170

c1=C

IF(FK.GE.19.991G0 TO 1¢€0
FE=FK+(C.?

GO TO 170

FR=FK+2.0
IF(FK-52.0)90,30,110
END FREGUENCY LOOP
COATINUL

STuP

END MODE NUMBER LOOP
END
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2 N BB T BT T T i AT AR B B B S B G i = B AR A o R e B e W N A B T B T B B B

LO=3954 =T +l0=79€9"0
LN=3AF2%*0-T+[N-36%9"0
L1-3609"N-T+]C-31965"0
LC-A06F*C-Tr+/.0~-3166%0
L0=-316E°0=~T+L0~-36060
LO=-390€"0~T+L0~30Lh"0
LC-J15€ 0-M+.lC-36%%"0
L0=T9¢€°0=T+L0-36FL"0
LO~J12€*0=-T+I0-JI9E"0
IC~-39CF"0-T+L0=-31¢€"D
LN=32¢f2°C-M+LC-36CF "0
LO=-ALLZ2*O-T+ [ D-5282°0
LC-32%2°*C-r+Ll0-34862*0
LC-36%2*0-T+lC-3%E2"0
LO-3A%E2*0-T+L0-3212"0
LC-3022°*0-T+/l0~-31AT1"0
LC=-39C7°0-r+L0-3121°0
LN=3E6T"0=-r+20=-3761°0
LN-318T1°0-r4L0=-32¢1°0
LC-3CLT*0-T+LC-3TIT"0
LN-3E0T1°0-M+680-3616"0
LO-3LGT"N-Tr+80~3919*0
LC-36BT1°0-r+650~-318%"0
LC-3ACT1Z2°0-r+30~-3c£9°*N
LN-3012°Q-r+80-31%6"0
LC=3EET°0=r+20=-3%21"0
LL=3281°C=r+LC=-3T1%1°0
LO=3E1T1*0=r+20~3%%1°0
AC-I19L°C-T+L0=39¢ 1"
BC-3C9%*0~-M+/C~IAT1T"0
gC=-3L€2°0-r+80-3286"°0
60-34PR*0-r+80-3021L "0
11-3¢r2*0 r+uC-3566°0
60-3e4%%"0 r+80=-312%"0
6N-11P5*0 Mr+p0=-3802°0
EC=3L96G%0 M+8M-34d81°0
6C-3%%9%*0 M+80-3611*N
6C-3ANE "0 r+60-31%9%0
6C-3401"0 r+6G-3L2€"0
EC-3HET1C T+60-3612"0
C1-311A°0 M+RO=-36E1°0
C1=-3946°0 F+01-3278°0
CT=347€°0 r+C1-3LE%"0
0T=345T°0 r+01-3L6T1*0
11-3896°0 M+11-3659"0
21-36%6°C r+11-3501°0
4430

£1-32%2°0 M+4€1-3558°0~-
HT=-366T°0-C+E1-3010"D~
YT1-4998°O0-r+E1-3018°0~
ET=-30%T1°0-T+f1-2901" 0~
F1-2%02°0-MF+01-46L67Q~
ET-J5e1*0=-r+21-3211°0~
€E1-39071"0-r+21-39¢1°0~
E1-39%€°0-r+Z1-36£17C~
€1-366%°0-Tr+21-3061" 0~
€T1-aw4%1*0~-r+21-3161°0~
Z1-3101*0-r+21-3L"
Z1-3/21°0-~r+21-3401*0~
Z1-31L1°0-TM+g1-3202*3~
Z1-3112°0-r+21~3¢ 120~
Y1-32¢9°0-C+G51-3%%%°0~
#1-3222°0 M+S1-J25% 0~
$1-3992°0 M+%1-3661°0~-
%1-3¢¢€°0 r+491-deelt0-
#1-311€°0 r+s1-3222°0

#1-3009°0 r+%1-3682"°0-
§T-3%%4%"0 F+4%1-3561°0~
B1-322G°0-r+41-3L.6"0

£1-3027°0 r+%1-364¢"0~
#T1-3€E1°0 F+%T1-3€€5°0-
»1-3682°0 M+%1=-3%492" 0~
£1-39598°0 M+%T-3EEL"0

€1-308E°0-M+%1-3EeL "0~
HT-36HZ°0 F+%1-3992"0

€1=-3511°0 rey1-39%2°0-
£1-382L°0-F+£1-3948°*0~
ET-JEEF"0-M+€T1-3954"0~
€£1-392C 0=-T+€T=-3491¢ "0~
£l-392Z°0-r+g1-3561°0-
HT=3%%9°0-r+E1-3001°0-
#1-399%°0 rM+e1-3L61°0-
H1-36LT1°0 F+E1-3T11°0~
S1-3%y»°*0-r+c(-30L%"0

91-39L2°0-T+91-3RLT 0~
CT-3€9L°0-T+4T1=-3LSE" D~
61=-39¢2* 0~ 44138110~
91-3666°0 F+G1=3%%%" (-
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ABSTRACT

The usefulness of the Newton-Raphson method to find the complex roots of
a complex function is presented in this report. This method was found to be
very efficient and rapid. It is demonstrated by a earth-ionosphere waveguide
problem studied by Bernotski [2]. In the mathematical study of this problem,
it is required to find the roots of a transendental equation as given below:
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where Ri and Rg are functions of C and f. A computer program is written in
Fortran IV language to find the roots by the Newton-Raphson method. The
computer program is quite general for this problem and it can be used to find

the roots over the frequency range 0.1 kHz to 50 kHz for first four modes for

any type of earth surface and ionosphere.




