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Abstract 
 

Metabarcoding data generated using next-generation sequencing (NGS) 

technologies are overwhelmed with rare taxa and skewed in Operational 

Taxonomic Unit (OTU) frequencies comprised of few dominant taxa. Low 

frequency OTUs comprise a rare biosphere of singleton and doubleton OTUs, 

which may include many artifacts. We present an in-depth analysis of global 

singletons across sixteen NGS libraries representing different ribosomal RNA 

gene regions, NGS technologies and chemistries. Our data indicate that many 

singletons (average of 38% across gene regions) are likely artifacts or potential 

artifacts, but a large fraction can be assigned to lower taxonomic levels with very 

high bootstrap support (~32% of sequences to genus with ≥ 90% bootstrap 

cutoff). Further, many singletons clustered into rare OTUs from other datasets 

highlighting their overlap across datasets or the poor performance of clustering 

algorithms. These data emphasize a need for caution when discarding rare 

sequence data en masse: such practices may result in throwing the baby out with 

the bathwater and underestimating the biodiversity. Yet, the rare sequences are 

unlikely to greatly affect ecological metrics. As a result, it may be prudent to err 

on the side of caution and omit rare OTUs prior to downstream analyses. 
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 Next generation sequencing (NGS) permits deep interrogation of hyper-

diverse fungal communities (Hibbett et al. 2009). Data generation has become 

expedient and sequence analysis/annotation more streamlined via available 

pipelines (e.g. MOTHUR, QIIME). Concurrently sequencing costs have declined, 

resulting in the democratization of sequencing in ecology (Caporaso et al. 2012). 

Many new investigators utilize NGS but are often uncertain how to handle rare 

operational taxonomic units (OTUs). These rarities are common - singletons 

alone often comprise half of all OTUs. 

Rare OTUs may represent the ‘rare biosphere’ (Sogin et al. 2006) but their 

validity has been questioned; PCR/sequencing artifacts may lead to inflation of 

the ‘rare biosphere’ (Huse et al. 2010; Kunin et al. 2010; Quince et al. 2011). 

However, Zhan et al. (2013) sequenced aquatic communities and spiked the 

samples with known indicators to test sensitivity. They found that many 

singletons represented the spiked controls suggesting that not all singletons are 

artifacts. 

 To estimate the proportion of artifactual singletons and to test the origin of 

these singletons (NGS platform or PCR errors), we reanalyzed singletons from 

sixteen experiments that targeted three nuclear ribosomal RNA gene regions 

(LSU, ITS1, ITS2) from different sequencing technologies or chemistries (454-

FLX, 454-Titanium, and Illumina-MiSeq; Table S1). These datasets included five 

ITS1 [454-FLX(3) and 454-Titanium(2)], six ITS2 (Illumina-MiSeq), and five Large 

Subunit variable region D1 (454-Titanium) libraries (see Table S1 for primers and 



 

 

direction of sequencing). The datasets were analyzed using MOTHUR (v.1.32.1; 

Schloss et al. 2009), denoised (Quince et al. 2011), plus chimera- (UCHIME; 

Edgar et al. 2011) and sequencing-error screened (pre.cluster; Huse et al. 2010) 

prior to OTU binning at 97% similarity. After this quality control, ~ 50% of the 

OTUs were singletons, which we extracted into four fasta files (supplemental 

material) containing all comparable singleton sequences (ITS1-FLX, ITS1-

Titanium, ITS2 and LSU). LSU libraries were aligned against a modified James et 

al. (2006) reference (Brown et al. 2014) and gaps removed prior to downstream 

analyses. Sequences were truncated to equal lengths and subsampled to equal 

numbers per library (Table S1). Four MiSeq libraries were generated on split-

reactions (EcM and Soil Fungi – Australia and EcM of Yellow Pine using two 

different polymerases) allowing differentiation among sequencing platform-

generated artifacts from others. 

 Each singleton dataset was pairwise-aligned and resultant distance 

matrices clustered into OTUs at 97% similarity (using the MOTHUR implemented 

Average-Neighbor clustering algorithm - UPGMA) to detect overlapping rare 

OTUs across libraries. It is important to note that the method of OTU binning can 

dramatically affect the generation of singletons: single-linkage clustering 

(nearest-neighbor in MOTHUR) produces fewer OTUs with higher average 

sequence dissimilarity within an OTU, whereas a complete-linkage clustering 

(furthest-neighbor in MOTHUR) produces more OTUs with higher sequence 

similarity within an OTU. Average-neighbor clustering (UPGMA) is a "middle 

ground" algorithm both in terms of OTU numbers and sequence similarity. After 



 

 

clustering, conserved regions (SSU, 5.8S, LSU) were removed from 

representative sequences for each ITS OTU (including singletons) using the 

online UNITE Phylogenetic Module ITSx using default online options with the 

exception that we set the minimal number of domains required to match for 

extraction to one (unite.ut.ee; Nilsson et al. 2010; Bengtsson-Palme et al. 2013). 

The extracted OTU sequences were assigned to taxa in MOTHUR using the 

Naïve Bayesian Classifier (Wang et al. 2007) with the RDP 28s rRNA reference 

(v.7) or with two ITS databases, Findley (ITS1; Findley et al. 2013) and UNITE 

plus INSD non-redundant ITS database (ITS1 and ITS2; Kõljalg et al. 2013).  The 

Naïve Bayesian Classifier queries all non-overlapping 8-bp words (k-mers) 

against a reference dataset and provides bootstrap support estimates to 

taxonomic levels based on the number of times a queried sequence is placed in 

the same rank. OTUs were considered artifacts if: 1) OTUs were unclassified at a 

phylum level (many uncultured sequences may lack phylum level classification 

thus exaggerating proportion of artifact OTUs); 2) they did not classify to a 

phylum at 50% bootstrap support or higher; or, 3) the ITS sequences could not 

be mapped to ITS1 or ITS2 region (ITSx). Furthermore, sequences from the ITS1 

libraries were considered artifacts if these conditions were met for taxonomy 

labels from both reference databases. Additionally, singletons were considered 

potential artifacts if they received < 50% bootstrap support at the family level. We 

report statistics on the proportion of singletons classified to all taxonomic levels 

at > 50%, 75%, and 90% bootstrap support (Table 1). 



 

 

Many singletons from the sixteen libraries clustered at 97% with at least 

one other sequence at rates seemingly driven by gene region [LSU(Titanium) – 

11.5%; ITS1 (FLX) – 0.83%; ITS1 (Titanium) – 0.43%; ITS2 (MiSeq) – 2.27%] 

reflecting variability of clustering efficiencies across gene regions. Singletons that 

clustered together often originated from within the same original library 

suggesting that they are a result of algorithm performance that provides non-

exact clustering solutions. The more conserved LSU likely performs better with 

these algorithms.  

We queried our sequences against databases to estimate assignment 

robustness through bootstrapping. Overall, the proportion of artifact sequences 

(<50% support for phylum level classification) was much lower (12.94% - 

19.10%; Table 1) than expected based on previous estimates suggesting that 

~80% of singletons may be artifacts (Tedersoo et al. 2010). This is unexpected: 

our liberal inclusion of unclassified phyla as artifacts likely inflated the number of 

artifact singletons. The combined proportion of artifacts and potential artifacts 

was largely affected by region: LSU (54.80%) had a greater proportion of 

questionable sequences than ITS regions (Table 1). Interestingly, many 

sequences that were not considered artifacts or potential artifacts were assigned 

to lower taxonomic levels with high bootstrap support. The proportion of 

sequences with a genus-level affinity with ≥90% bootstrap support ranged from 

10.53%-44.14%, a level of support unlikely for true artifacts.   



 

 

Our analyses, similarly to Tedersoo et al. (2010), indicate that many 

singletons are likely artifacts. However, our estimates are less than half of the 

~80% estimate of Tedersoo and coworkers. There are many underlying reasons 

for this discrepancy. The early 454-datasets explored how to analyze NGS data 

(e.g., Buee et al. 2009; Jumpponen & Jones 2009; Tedersoo et al. 2010). 

Lessons from those analyses have led to recommendations on tools to utilize 

NGS data in fungal ecology (Nilsson et al. 2011; Lindahl et al, 2013), including 

adoption of denoising (Quince et al. 2011), standard chimera removal (Edgar et 

al. 2011) and preclustering (Huse et al. 2010). Noteworthy is that Tedersoo et al. 

included a BLAST-based post-hoc chimera check. However, this method is less 

sensitive as it relies on database accession quality, whereas pre-OTU binning 

methods (UCHIME; Edgar et al. 2011) rely on NGS-acquired data itself. 

Additionally, our study differs in other important ways; we neither had anchor 

taxa from the same samples nor performed the detailed phylogenetic analyses. 

Instead, we relied on the Naïve Bayesian Classifier, an approach that parallels 

the phylogenetic approach. Nonetheless, our results highlight the importance of 

appropriate quality controls to minimize artifacts.  

 Many ‘global singleton’ sequences clustered into new non-singleton OTUs. 

Whilst the underlying reasons remain unclear, we suggest two primary 

explanations. First, fungal communities are hyper-diverse (Jumpponen & Jones 

2009), include large numbers of low frequency taxa, and are locally or regionally 

distinct (Meiser et al. 2014). Second, clustering relies on imperfect heuristic 



 

 

algorithms that permit non-exact solutions for OTU membership, especially in 

large and complex datasets. This allows stochastic OTU memberships and 

sequences may be placed into different OTUs each time a dataset is clustered.  

Our results suggest that half of the singletons may represent true target 

taxa. However, we cannot determine if artifact singletons result from sequencing 

platform errors. Singletons may also represent off-target amplification as 

evidenced by the common occurrence of sequences, from which ITS regions 

could not be extracted with ITSx. A surprisingly high proportion of queried 

sequences had no extractable ITS regions (5.33% for ITS1-FLX; 2.86% for ITS1-

Titanium; 4.53% for ITS2-MiSeq; Table S2). Similar proportions of non-target 

LSU sequences are likely but tools to evaluate this were not explored here. 

Interestingly, absence of extractable ITS regions were not solely due to non-

target amplification: many discarded sequences were fungal, although no ITS 

regions could be excised using ITSx. More than 90% of our ITS1-FLX and all of 

our ITS1-Titanium sequences that failed to extract were fungal based on BLASTn 

analyses (see Table S3 for complete list of sequences that failed to be extracted 

using ITSx and the best BLASTn taxonomic strings). ITS2 had the highest non-

target amplification: 61.03% of the sequences that failed to be extracted were not 

fungal (Table S3). Additional sequences failed to extract that were actually ITS2 

fungal sequences. Peculiarly, all but two of the fungal sequences discarded 

because of failed ITS2 extraction belonged to Agaricomycetes (primarily 

Russulaceae and Thelephoraceae) suggesting that the Hidden Markov Models 

(HMM) in ITSx may fail to recognize this class fully. Alternatively, this could be 



 

 

explained by insufficient 5’ LSU length upstream of the priming site causing the 

HMMs to fail for some Agaricomycetes. The remaining artifacts are likely PCR 

errors - polymerase mis-pairs, deletions, or insertions (Eckert & Kunkel 1991) 

and chimeras that evaded detection.  

To investigate if these singletons represent true biological or artificial 

variability (platform specific variability, indels due to polymerase slippage, or 

homopolymeric reads), we aligned singletons against representative sequences 

of the 100 most abundant OTUs from the original datasets. The mismatches 

among singletons and the representative sequences of the common OTUs 

generated on 454 and Illumina platforms appeared stochastically distributed 

across the alignments suggesting that they were unlikely a result of poor read 

quality in the read termini. Singletons generated using 454 technologies differed 

from abundant OTUs frequently because of inconsistent homopolymer lengths 

and/or single nucleotide differences. In contrast to 454-sequencing, differences in 

the Illumina-generated singletons were most often nucleotide differences with no 

evidence of inconsistent homopolymer lengths. Based on these findings it is 

impossible to determine the source of the variability as polymerase slippage, 

suboptimal platform performance or true biological variability could result in 

similar outcomes.  

Removal of rare sequences may underestimate observed and 

extrapolated richness (Unterseher et al. 2011). Rare taxa also affect community 

pairwise distances commonly visualized by ordination tools. Conversely, 

singleton exclusion may minimally affect community composition (Shade et al. 



 

 

2013) or multivariate analyses (Gobet et al. 2010; Lindahl et al. 2013). Although 

removal of singletons may not substantially affect the visualization of community 

composition, rare sequences may be necessary for more accurate biodiversity 

estimates, if they represent real taxa but biodiversity estimates from sequence 

data are capricious (Haegeman et al. 2013). 

We conclude that for most hypothesis-driven experiments that compare 

experimental conditions, rare taxa present a minor issue: excluding them unlikely 

sways strong community responses. However, if estimation of biodiversity is 

crucial, careful manual examination and annotation of the infrequent sequences 

is required. One must strike a balance: is it better to err on the side of caution 

and throw the baby out with the bathwater (exclude rare sequences) or to 

analyze the rare sequences and scrape the bottom of large pools of sequence 

data to account for every last unculturable fungus that occurs in the data if even 

only once? Due to the minimal effect these rare sequences have in community 

analyses, we concur with previous suggestions to remove all singletons and 

expand this recommendation to remove other highly rare (n=10) sequences in 

datasets as modern sequencing depth allows for such stringent practices. 
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Table 1.  Percentage of singletons that are artifacts and potential artifacts as 
well as the percentage of non-artifactual OTUs than are assigned to taxa above 
50%, 75% and 90% bootstrap support on all levels of taxonomic levels. 
 

 LSU-Titanium ITS1-FLX ITS1-Titanium ITS2- MiSeq 

Percentage of Artifacts 16.87% 12.94% 13.34% 19.10% 

Percentage of Potential Artifacts 37.93% 21.67% 13.29% 17.20% 

     

Percentage of Sequences Above Bootstrap Support Thresholds  

     

Phylum (90%) 67.80% 71.67% 74.00% 64.27% 

Phylum (75%) 69.80% 80.17% 79.86% 69.50% 

Phylum (50%) 73.60% 86.33% 86.29% 79.07% 

     

Class (90%) 48.27% 62.67% 63.71% 58.60% 

Class (75%) 55.60% 70.00% 71.57% 63.77% 

Class (50%) 63.40% 76.83% 79.29% 70.23% 

     

Order (90%) 32.73% 52.82% 58.86% 53.80% 

Order (75%) 44.07% 61.33% 67.00% 60.33% 

Order (50%) 56.53% 68.17% 77.00% 66.23% 

     

Family (90%) 20.00% 48.00% 51.71% 47.40% 

Family (75%) 32.40% 56.17% 60.71% 56.07% 

Family (50%) 47.13% 65.50% 73.43% 64.13% 

     

Genus (90%) 10.53% 39.17% 44.14% 37.30% 

Genus (75%) 18.07% 51.17% 55.57% 48.97% 

Genus (50%) 36.80% 61.33% 70.43% 61.33% 
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