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Abstract 

The primary aim of this dissertation was to evaluate the factors that contribute to the 

cardiorespiratory and vascular responses following exercise conditioning and microgravity 

deconditioning. The first study of this dissertation (Chapter 2) revealed that exercise training in 

the head down tilt posture, which places increases central blood volume compared to upright, 

results in cardiorespiratory adaptations in both upright and head down tilt postures which are not 

completely expressed with exercise training in the upright posture. These findings suggest that 

augmentation of the ventricular volume load during exercise training may result in adaptations 

that transfer across multiple body positions. In the second and third studies measurements of 

blood velocity and flow were performed via Doppler ultrasound. In Chapter 3 we observed that 

in the brachial and femoral arteries blood moves with a slightly blunted parabolic velocity profile 

that is very stable across a range of mean arterial pressures and downstream limb resistances. We 

concluded that these findings support the current calculations of shear rate based on the 

assumptions of laminar flow. With these assumptions confirmed, the investigation in Chapter 4 

could be performed. We observed that acute exposure to a sustained antegrade shear rate, via 

unilateral forearm heating, increased measurements of flow-mediated dilation and the overall 

rate of adjustment for forearm blood flow and vascular conductance during dynamic handgrip 

exercise. These findings suggest that one potential stimulus for improvements in vascular 

function and health following exercise conditioning may be exposure to elevations in antegrade 

shear. Lastly in Chapter 5 we changed focus to the cardiorespiratory deconditioning following 

long-duration microgravity exposure. We retrospectively reviewed and analyzed previous 

investigations of microgravity deconditioning and demonstrated that the decrease in maximal O2 

consumption ( O2max) occurs as a function of duration of exposure and that both convective 

and diffusive O2 transport pathways substantially contribute to this decline. In addition we 

reviewed the current literature and highlighted potential mechanisms, across several organ 

systems, which may contribute to this decline in O2max. Collectively, these studies revealed 

the breath of plasticity for cardiorespiratory adaptations to a variety of stressors.   
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exercise. These findings suggest that one potential stimulus for improvements in vascular 

function and health following exercise conditioning may be exposure to elevations in antegrade 

shear. Lastly in Chapter 5 we changed focus to the cardiorespiratory deconditioning following 

long-duration microgravity exposure. We retrospectively reviewed and analyzed previous 

investigations of microgravity deconditioning and demonstrated that the decrease in maximal O2 

consumption ( O2max) occurs as a function of duration of exposure and that both convective 

and diffusive O2 transport pathways substantially contribute to this decline. In addition we 
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Chapter 1 - Introduction 

The stress of sustained dynamic exercise requires the integration of individual 

physiologic systems controlling the movement of molecular oxygen from atmospheric air to 

muscle mitochondria. With the transition from rest to exercise O2 transport requires: (i) the 

appropriate pulmonary ventilation and ventilation-to-perfusion ratio within the lung; (ii) an 

effective alveolar-to-pulmonary capillary diffusion capacity; (iii) blood that contains a normal 

hemoglobin structure and concentration; (iv) a cardiac structure and function that can effectively 

increase cardiac output via increases in stroke volume and heart rate; (v) a peripheral circulation 

capable of increasing muscle blood flow via targeted increase in vascular conductance and 

preferential distribution of cardiac output to active tissue without compromising arterial blood 

pressure; (vi) normally functioning capillary hemodynamics capable of increasing red blood cell 

(RBC) flux and capillary hematocrit; and (vii) adequate intramuscular structures (i.e., myoglobin 

and mitochondria), enzymes, and substrates for cellular respiration (181, 203, 249). Furthermore, 

these demands on the pulmonary, cardiovascular, and muscular systems are exercise intensity 

dependent, such that during maximal aerobic exercise ( O2max) all steps within the O2 transport 

pathway are important determinants (241, 242).  

 

Of the above systems that contribute to O2max, the cardiovascular system is one that 

plays a critical role in coupling pulmonary gas exchange with O2 diffusion and utilization within 

the active skeletal muscle. In addition, the cardiovascular system demonstrates a significant 

plasticity to adapt to alterations in hemodynamic and environmental stress. Two stressors that 

result in widespread adaptations within the cardiovascular system include exercise conditioning 

and exposure to microgravity.  Following both stressors, significant adaptations in structural and 

functional components of the cardiovascular system are observed and often contribute to the 

paralleled changes in O2max (17, 202). However, questions still remain surrounding the stimuli 

that mediate the changes in cardiorespiratory function in response to these stressors (51, 131, 

203). It is therefore the primary aim of the current dissertation to evaluate the factors that 
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contribute to the cardiorespiratory and vascular responses following exercise conditioning and 

microgravity deconditioning.  

 

Following a period of aerobic exercise conditioning, increases in maximal cardiac output 

and systemic O2 transport are achieved (17). This improved cardiac function can be attributed to 

a larger stroke volume stemming primarily from increases in ventricular end-diastolic volume, 

ventricular compliance, and increased diastolic filling. One mechanism mediating these 

adaptations is the “chronic volume overload” or cardiac distension that occurs during dynamic 

exercise (17, 203). Within a given exercise session the increased cardiac filling and subsequent 

increased cardiac distension, observed as an increased left ventricular end-diastolic volume and 

stroke volume, may act as an exercise stimulus for myocardial adaptation. However, it is 

unknown if augmentations in ventricular filling during exercise training impact cardiorespiratory 

adaptations. Therefore, in chapter 2 of this dissertation we utilized an exercise training protocol 

in the head down tilt posture to induce changes in ventricular filling, and examined the effects of 

this on stroke volume and aerobic capacity. Previous investigations have demonstrated that the 

head down tilt posture increases central venous pressure, an index of effective ventricular filling 

pressure, and left ventricular end-diastolic volume compared to upright and supine postures (81, 

115, 166). As such we hypothesized that (i) endurance training in the upright posture would 

increase O2peak, sub-maximal stroke volume, and peak stroke volume during upright exercise, 

but not during head down tilt exercise, (ii) training in the head down tilt posture would increase 

O2peak, sub-maximal stroke volume, and peak stroke volume in both upright and head down 

tilt testing postures, and (iii) that the increase in sub-maximal and peak stroke volume would be 

greater after head down tilt training compared to upright.   

 

Within the peripheral circulation, adaptations to exercise conditioning positively impact 

vascular structure, function, and overall cardiovascular health (83, 131, 172). One key exercise 

stimulus mediating these vascular adaptations may be the mechanical shear stress acting on the 

endothelium, consequent to the increased vascular conductance and blood flow observed during 

dynamic exercise (164). Previous reports suggest that endothelial cells exposed to different types 

and magnitudes of shear stress exhibit a cascade of increased intra-cellular signaling which will 
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influence endothelial cell phenotype. Moreover, sustained increases in antegrade shear stress 

similar to that experienced during exercise, increased nitric oxide bioavailability and endothelial 

function, while retrograde and oscillatory shear patterns are associated with a pro-atherosclerotic 

state and a decrease in endothelial function (131). However, this apparent plasticity for 

endothelial cell phenotype via modification of the shear stress pattern is not completely defined.  

 

Recent reports highlight the current assumptions made when assessing shear stress non-

invasively via Doppler ultrasound (92, 176). One critical assumption has been that blood flow 

through peripheral arteries has laminar properties resulting in a parabolic velocity profile, and 

that the profile remains steady when the cardiovascular system is under stress. Given the 

potential for shear stress to modify vascular function and the possible error associated with the 

above assumptions, we first set out to determine the blood velocity profile in the intact human 

cardiovascular system when downstream vascular resistance was elevated (cold pressor test) and 

decreased (exercise) (Chapter 3). Following this investigation, we determined the effects of 

sustained antegrade shear stress, independent of muscular contractions, on the vasodilator 

responses to exercise (Chapter 4).  

 

Unlike exercise conditioning, the cardiorespiratory adaptations to sustained microgravity 

results in a “spaceflight deconditioning” that becomes evident when gravity is restored. The 

characteristics of this deconditioning include decreases in total blood volume (5), cardiac 

function and mass (60, 177), an impaired macro- and microvascular function (146, 217, 221), 

and skeletal muscle atrophy (77, 234, 235). In addition, one important hallmark response of this 

deconditioning is a significant decrease in O2max upon return to gravity (34, 36, 247). 

However, there are currently no investigations that have determined the importance of the 

various independent variables within the O2 transport pathway to the decline in O2max 

following sustained microgravity exposure. Given the versatility of the integrative model 

advocated by Wagner and associates in describing the determinants of O2max in health and 

disease, we applied a similar technique to microgravity exposure (Chapter 5) (202, 239, 241, 

242). 
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In chapter 5 we present a model for the rate of decline in O2max as a function of 

microgravity exposure. Then using Fick’s Principle of Mass Conservation and Law of Diffusion 

for O2 movement we calculated the convective and diffusive components of O2max following 

60 and 360 days of microgravity exposure. In addition, we review the current literature and 

highlight potential mechanisms contributing to this decline in O2max.  

 

Chapter 2-5 of this dissertation are self-contained and are presented in standard journal 

article format (Introduction, Methods, Results, Discussion). Chapter 6 provides an overall 

summary and conclusion for the above series of investigations.  
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Chapter 2 - Effects of body posture and exercise training on 

cardiorespiratory responses to exercise  
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 Summary 
 

The primary aims of the present study were to evaluate cardiorespiratory responses to 

incremental head down tilt exercise and to determine if the cardiorespiratory adaptations 

obtained from endurance training in the head down tilt posture transfer to the upright posture. 22 

men (25 ± 3 yrs) performed O2peak cycle exercise tests in the upright and head down tilt 

postures. Of these, 11 men were endurance trained on a cycle ergometer in the upright posture 

for 8 wks (upright training group; UTG) or in the upright posture for 4 wks followed by 4 wks in 

the head down tilt posture (head down training group; HTG). During acute exercise, O2peak 

was decreased in the head down tilt posture compared to upright (2.01±0.51 vs. 2.32±0.61 L/min 

respectively, P < 0.05). Stroke volume (SV) at 100 Watts was greater during head down tilt 

cycling compared to the upright (77±5 vs. 71±4 ml/beat, P < 0.05). Following training O2peak 

increased in both groups during upright exercise. However, O2peak during head down tilt 

cycling was only increased in the HTG. Sub-maximal and peak SV in the HTG increased in both 

upright and head down tilt postures. SV in the UTG increased only in the upright posture and 

was unchanged during head down tilt cycling. In conclusion, acute head down tilt exercise 

increases sub-maximal SV compared to upright exercise. Furthermore, training in the head down 

tilt posture induces cardiorespiratory adaptations in both upright and head down tilt postures, 

while the adaptations to upright exercise training are primarily observed when upright exercise 

was performed. 
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Introduction 
 

At rest, the transition from the upright to the supine posture increases ventricular preload 

and stroke volume (SV) (12, 13, 180, 206, 226). This altered gravitational vector and reduced 

hydrostatic column increase pulmonary capillary wedge pressure, an index of ventricular filling 

pressure, and ventricular end-diastolic volumes (180, 226). Similar cardiovascular responses are 

observed during supine cycling. Poliner et al. (180) demonstrated that supine cycling at an 

intermediate intensity (~98-122 Watts) increased left ventricular end-diastolic volume compared 

to upright cycling, suggesting greater cardiac filling. These findings are supported by additional 

reports of an elevated SV during supine exercise compared to upright (12, 13, 66, 139, 180, 198, 

199, 226).  

 

 

Similar to the supine posture, the head down tilt posture has been widely used to further 

redistribute blood volume toward the central cavity (81, 114, 115, 166). Kakurin et al. (114) 

demonstrated that a head down tilt posture is associated with a greater central fluid shift 

compared to the supine position. As such, the head down tilt bed rest model is commonly used in 

place of the supine model to simulate the effects of microgravity. In addition, short duration head 

down tilt studies have consistently demonstrated a greater increase in central venous pressure 

and left ventricular end-diastolic volume compared to supine rest (81, 166). This increase in 

ventricular preload and chamber volume caused by the head down tilt posture, coupled with the 

Frank-Starling relationship, results in a greater SV compared to the supine posture (203). 

However, to our knowledge no study has reported the effects of exercise on SV in the head down 

tilt posture. 

 

In addition to postural differences in central cardiovascular responses, comparisons 

between dynamic upright and supine exercise models reveal that cycling in the supine position 

decreases both O2peak and time-to-exhaustion relative to upright posture (59, 65-67, 117, 122, 

192, 198). Egna et al. (65) demonstrated that the decrease in exercise time-to-fatigue between 

upright and supine exercise is correlated with the height of the hydrostatic column. Therefore, 
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the decreased O2peak observed previously during supine exercise is often attributed to a 

decreased gravitational assistance to muscle blood flow, which would be aggravated in head 

down tilt posture. However, to date, the forearm (78, 104, 254) and arm cranking (124) exercise 

models have been the primary methods used to examine the cardiorespiratory adjustments to 

exercise when the contracting muscle is placed above the heart. To our knowledge it remains 

unknown how dynamic large muscle mass exercise performance is affected when performed 

above heart-level, like that achieved with head down tilt posture (Figure 2.1). 

 

Training adaptations of the cardiorespiratory system in response to chronic exercise 

include increases in O2peak, lactate threshold (LT), and SV (112). Previous studies have 

demonstrated a strong postural specificity for training induced cardiorespiratory adaptations. Ray 

and colleagues (198, 199) trained individuals for 8 wks in either the upright or supine posture. 

Training consisted of a combination of high-intensity interval and endurance training. These 

investigators demonstrated significant increases in O2peak in both groups. However, the 

increase in O2peak displayed significant postural specificity so that greater increases in aerobic 

capacity were seen when subjects were tested in the specific training posture. Similarly, each 

group only demonstrated a training induced increase in SV when measured in their respective 

training posture. These data suggest a lack of transfer between upright and supine postures. 

However, to date, it is unknown if the increased ventricular preload and chamber volumes 

associated with resting head down tilt posture compared to upright and supine postures will 

result in cardiorespiratory training adaptations that will transfer to traditional upright exercise.  

 

The rationale for the present study was that because effective ventricular filling is greater 

during resting head down tilt posture compared to supine and upright postures (81, 115, 166), 

cycling training in the head down tilt posture may result in greater ventricular adaptations 

compared to upright training and that the increased CO and SV would increase O2peak when 

measured in both the upright and head down tilt postures. Therefore, the primary aims of the 

present study were to 1) compare the acute cardiorespiratory responses to incremental head down 

tilt exercise with those during upright exercise, and 2) to determine if the cardiorespiratory 

adaptations obtained from endurance training in the head down tilt posture transfer to the upright 

condition. It was hypothesized that (i) head down tilt exercise would increase sub-maximal SV, 
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but decrease O2peak compared to upright exercise. Furthermore, it was hypothesized that (ii) 

endurance training in the upright posture would increase O2peak, sub-maximal SV, and 

SVpeak during upright exercise, but not during head down tilt exercise, but that (iii) training in 

the head down title posture would increase O2peak, sub-maximal SV, and SVpeak in both 

upright and head down tilt testing postures. In addition, it was hypothesized (iv) that the increase 

in sub-maximal and SVpeak would be greater after head down tilt training compared to upright.  
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 Methods 
Subjects 

 

22 men (age 25 ± 3 yrs (mean ±SD); stature 177.5 ± 8.2 cm; mass 75.0 ± 17.6 kg; BMI 

23.8 ± 17.6 kg x m-2) completed the experiments. All subjects were free from known 

cardiovascular, pulmonary, or metabolic disease and were non-smokers as determined from 

medical history questionnaire. None were regularly participating in structured exercise activities 

before their involvement in the study. Verbal and written consent were obtained from all subjects 

following approval of the study by the Institutional Review Board for Research Involving 

Human Subjects at Kansas State University, which conformed to the Declaration of Helsenki. 

 

Experimental Design 

 

All testing was completed in an air-conditioned laboratory at a temperature of 20-25°C. 

Each subject performed two randomly ordered exercise protocols on different days. One testing 

session consisted of a graded cycling test in the upright posture, while in the other session a 

graded cycling test in the -6° head down tilt posture was performed (Figure 1). Upright cycle 

tests were performed on a electronically braked cycle ergometer (800 Ergometer, SensorMedics, 

USA). Head down tilt cycle tests were performed on a mechanically braked Monarck 818E cycle 

ergometer mounted to a custom-made apparatus that placed the subject in the appropriate 

exercising posture with the crank shaft ~10 cm above the level of the subject’s back resulting in -

6° head down tilt posture. Both cycle ergometers were calibrated to ensure accurate work load 

settings prior to the beginning of the study and pilot work determined that each ergometer 

elicited similar exercise responses as evident by a similar O2 (800 Ergometer,1.11±0.11 vs 

Monarck,1.16±0.12 l min-1, P>0.05) and heart rate (800 Ergometer,125±20 vs Monarck,123±16 

bpm, P>0.05) at 100 Watts. During head down tilt cycling subjects laid on a padded mat with 

their feet secured to the pedals. At each test the subject was positioned to allow a slight bend in 

the knee when the leg was fully extended and seat height was recorded to ensure consistency 

across testing sessions. Following 5-minutes of baseline rest, the subjects began cycling at 60 

revolutions per minute at 20 Watts for additional 5-minutes. The work rate then progressively 
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increased 25 Watts every minute until the subject could not maintain the pedal rate for 5 

consecutive revolutions, despite verbal encouragement.  

 

Following the completion of each testing sessions, 11 of the initial 22 subjects completed 

two additional exercise training periods (Table 1). These subjects underwent two 4 wk periods of 

endurance cycling training. All sessions were performed on a mechanically braked Monarch 

818E cycle calibrated prior to the study. Seat height was recorded to ensure consistency across 

training sessions. The first training period consisted of 4 wk of upright cycling at 70% O2peak 

for 1 h/day, 3 days/wk. This initial 4 wk training period provided a comparable level of training 

stimuli across all groups at an attempt to normalize each subject’s fitness level prior to the 

postural training intervention. Following the initial training period, subjects were tested again 

(Midtest) and randomly sub-divided into either a continued upright training group (UTG) or a 

head down tilt training group (HTG). This second training period consisted of 4 wk cycling at 

70% posture specific O2peak for 1 h/day,3 days/wk. Following the second training period each 

subject performed graded cycling tests in the upright and head down tilt postures on separate 

days (Posttest). Brief periods of rest were permitted during the training sessions, if necessary, 

and was not included in the total exercise session time. Heart rate was monitored during each 

training session to ensure the correct exercise intensity was achieved. The subjects were 

instructed to maintain their normal levels of physical activity and dietary habits throughout the 

training period. This study design allows for the initial training adaptations due to an increased 

level of physical activity to occur within the initial 4 wk training period allowing for any further 

adaptations following the second 4 wk (i.e., Midtest vs Posttest) period to be primarily the result 

of the training posture. 

 

Experimental Measurements 

 

 

Breath-by-breath metabolic and ventilatory data were continuously measured during all 

exercise tests  (SensorMedics 229 Metabolic Cart, SensorMedics Corp.,Yorba Linda, CA) and 

converted to fifteen second mean. Heart rate (HR) was collected continuously with a four lead 

ECG interfaced to the metabolic cart. Oxygen pulse was measured as the oxygen consumption 
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per heart beat. The maximum 15 s average O2, CO2, HR, and E obtained during the 

incremental tests were considered as peak values for a given exercise condition. The O2 

corresponding to the lactate threshold was determined as the O2 at which CO2 increased out 

of proportion with respect to O2 and an increase in E/ O2 with no increase in E/ CO2 (8).  

 

Pulmonary capillary blood flow was determined via an acetylene single-breath exhalation 

technique and used as an index of cardiac output (CO) at rest and when possible 30 seconds into 

a minimum of three exercise stages ranging between 50-200W. The acetylene single-breath 

exhalation technique has been used previously to estimate cardiac output at rest and during 

exercise (57, 62, 140). Since acetylene and carbon monoxide are both soluble in blood, during 

the constant exhalation the concentrations of acetylene and carbon monoxide decline at a rate 

that is proportional to pulmonary capillary blood flow (252). Subjects were instructed to take a 

full inhalation of a test gas mixture of 0.3% methane, 0.3% acetylene, 0.3% carbon monoxide, 

21% oxygen, with the remainder nitrogen. Following maximal inhalation, subjects were told to 

exhale at a constant rate of 200-800 ml/s for at least 3 seconds. Each CO value was accepted if 

the subject performed the procedure correctly and the data output was sufficient to make the 

calculations. The CO: O2 relationship was determined for each subject via linear regression and 

interpolated to find the CO at 100 watts and extrapolated to the CO at O2peak. The regression 

equation provided a more accurate analysis of the data during exercise than a single 

measurement. The sub-maximal intensity of 100 watts was used to compare with the protocol 

previously used by Poliner et al. (1980) and Ray et al. (1990). The calculated CO was divided by 

the time-aligned heart rate to calculate SV. Pulmonary capillary blood flow can underestimate 

CO due to intrapulmonary shunts and therefore values reported in the current study should not be 

directly compared with values measured via echocardiography (207). 

 

Statistical Analysis 

 

Data are given as mean ± SD. The effects of head down tilt cycling on the 

cardiorespiratory adjustments to incremental exercise in the initial 22 subjects were tested by 

paired T-tests. The effects of training and posture on the cardiorespiratory function were tested 

by a two-way within-subject analysis of variance with the between factor ‘training group’ (UTG 
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versus HTG) and the repeated factor ‘time’ (Pretest versus Midtest versus Posttest). Significant 

interactions or main effects were determined with Student-Newman-Keuls Method as a post hoc 

analysis test. Significance was set at p < 0.05 for all analyses. 
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 Results 
Acute Responses 

 

Table 2-2 summarizes the group mean peak cardiorespiratory response to acute upright 

and head down tilt exercise. Exercise times and peak power outputs were significantly greater in 

the upright than head down tilt posture. Head down tilt exercise decreased both absolute and 

relative O2peak compared to upright. Peak HR was significantly decreased during head down 

tilt exercise compared to upright exercise. The mean O2 at LT was significantly lower during 

head down tilt cycling compared to upright. However, relative to O2peak there was no 

difference between the two postures. Peak respiratory exchange ratio was not significantly 

different between the two postures.  

 

O2 and HR at 100 Watts were not significantly different between the two postures. 

Figure 2 illustrates the individual and group mean SV responses at 100 watts. Notice that sub-

maximal SV is significantly greater during head down tilt exercise compared to upright 

(73.9±10.6 vs. 67.5±8.5 ml respectively; P<0.001). This increase resulted in an elevated sub-

maximal CO during head down tilt exercise. In addition, sub-maximal O2 pulse ( O2/ HR) was 

increased during head down tilt exercise compared to upright (8.9±1.3 vs. 8.1±1.3 ml O2 x beat-1 

respectively, P<0.001).  

 

Training Adaptations 

 

Table 2-3 summarizes the mean cardiorespiratory responses to training. O2peak during 

upright exercise increased significantly in the UTG after 8 wks compared to Pretest (Figure 

2.3A). However, in the HTG Posttest- O2peak during upright cycling was significantly 

increased above both Pretest and Midtest values (Figure 2-3B). Similarly, when measured during 

head down tilt cycling, Posttest- O2peak only slightly, but significantly, increased in the UTG 

after 8 wks compared to Pretest, while it was significantly greater in the HTG compared to 

Pretest and Midtest values (Figure 2-3 C and D). Both groups demonstrated similar changes in 

maximal O2 pulse. No significant changes occurred in RERpeak or HRpeak after training in 
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either group. The mean O2 at LT measured during upright exercise was unchanged in the UTG 

and HTG. The LT in the UTG increased significantly during head down tilt exercise after 8 wks. 

When measured as a percent of O2peak, LT was unchanged after training in both groups.  

 

Figure 2-4 illustrates the peak SV responses to training. During upright exercise peak CO 

and SV significantly increased at 4 wks in the UTG but did not increase further, whereas in the 

HTG COpeak and SVpeak were increased after 8 wks above Pretest and Midtest values. 

Similarly, COpeak and SVpeak during head down tilt cycling did not change in the UTG, but 

significantly increased in the HTG.  

 

Sub-maximal cardiorespiratory responses to training during upright and head down tilt 

exercise at 100 Watts are summarized in Table 2-4. There were no significant changes in O2 or 

HR at 100 Watts after training in either group. Similar to peak responses, sub-maximal SV 

during upright exercise increased in both groups after 8 wks of training (Figure 2-5). However, 

sub-maximal SV during head down tilt cycling was significantly increased only in the HTG. 
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 Discussion 

 

The primary findings of the present study are that acute exercise in the head down tilt 

posture results in an approximately 10%  greater sub-maximal stroke volume compared to 

upright posture, and that chronic endurance training in the head down tilt posture increases 

maximal cardiorespiratory performance during both head down and upright exercise. These 

findings are consistent with our first hypothesis. The second and third hypotheses were also well 

supported by the data. In addition, the increase in O2peak, CO, and SV following training in the 

upright posture (UTG) was only observed during upright cycling, as it did not transfer to HDT 

cycling. Conversely, the effects of head down tilt training (HTG) transferred to both upright and 

head down tilt cycling. Training in the upright posture increased O2peak by ~4%, with no 

significant change in SV during head down tilt cycling after 8 wk of training compared to the 

~17% and ~12% significant increase in O2peak and SV, respectively, achieved with 4 wk of 

training in the head down tilt posture. However, similar increases in O2peak during upright 

cycling were observed between upright (~7%) and head down tilt (~10%) training groups. In 

addition, the data is inconsistent with the fourth hypothesis in that the increase in stroke volume 

was not greater after head down tilt training compared to upright training (Table 2-3 and 2-4). 

Taken together these observations indicate that 1) acute exercise in the head down tilt posture 

increases sub-maximal SV, but significantly decreases peak aerobic capacity, compared to 

upright, and that 2) cardiorespiratory adaptations to training in the head down tilt posture transfer 

to upright exercise. 

 

Influence of Posture on Cardiorespiratory Performance 

 

During head down tilt cycling O2peak was approximately 85% of upright cycling 

O2peak (Table 2.2). The decreased peak aerobic capacity presented here is consistent with 

previous findings comparing upright and supine exercise in that exercise in the supine posture 

consistently decreases O2peak and peak power compared to upright cycling (59, 66, 105, 117, 

122, 192, 198). The decrease in LT reported in the present study during head down tilt cycling is 
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in agreement with some (102, 105, 122) but not all studies examining supine exercise (59, 111). 

In addition, Egana and colleagues demonstrated that the difference between cycling times in the 

upright and supine postures is significantly correlated with subject height and therefore the 

hydrostatic column (65). These reports suggest that reducing the hydrostatic column decreases 

exercise performance. The precise mechanisms behind this posture- related decline in aerobic 

capacity may be attributed to several factors. First, muscle perfusion pressure is decreased during 

supine and head down tilt posture compared to upright and may well contribute to the decline in 

exercise performance (78, 254). Nielson et al. (1983) demonstrated that arterial pressure in the 

leg mirrored the change in pressure cause by alterations in the hydrostatic column (165). 

Therefore, since muscle perfusion pressure is a product of arterial and hydrostatic pressure, any 

reduction in the height of the hydrostatic column will proportionally decrease muscle perfusion 

and potentially exercising blood flow. Secondly, the effects of the muscle pump may be 

attenuated in the absence of a venous hydrostatic column, as with head down tilt posture. 

Laughlin and Joyner (1987, 2003) suggest that an effective muscle pump may only exist when 

sufficient venous pressure is present within the circulation (128, 130).  

 

The finding that sub-maximal SV was significantly increased during head down tilt 

cycling compared to upright is consistent with previous reports evaluating cardiac performance 

during supine cycling (12, 13, 66, 139, 180, 198, 199, 226). This increased SV during head down 

tilt exercise may be attributed to the Frank Starling (or length-tension) relationship such that the 

central fluid shift and presumed increased effective filling pressure improves cardiac 

performance (203). Unfortunately, SV is a poor surrogate of ventricular filling pressure. 

However, if an ejection fraction of 83% is assumed (180, 199) then an estimate of left ventricular 

end diastolic volume can be made. As expected, the calculated end-diastolic volume during head 

down tilt in the present study is approximately 10 ml greater compared to upright (90.2±12.9 vs. 

80.4±10.1 ml respectively), suggesting a greater cardiac volume overload during head down tilt 

cycling. In addition, the slope of the CO: O2 relationship was not significantly different between 

upright and head down tilt postures. Others have demonstrated a similar response between 

upright and supine exercise (180). However, these data are in contrast to Leyk et al. (1992) who 

report an increased CO during supine cycling up to 160 watts compared to upright.  
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Influence of Training Posture on Cardiorespiratory Adaptations 

 

This study demonstrated significant improvements in O2peak following several weeks 

of head down tilt exercise training. In addition, we confirmed the third hypothesis that this 

increase in aerobic capacity would transfer to upright cycling. As highlighted by Wagner and 

colleagues the determinants of O2peak include both convective ( O2 = CO × [CaO2 – CvO2]) 

and diffusive ( O2 = D x [capillary PO2 – mitochondrial PO2]) O2 transport (240, 242, 243). 

Applying these determinants to the findings of the present study reveals several potential factors 

by which head down tilt cycling increased both head down tilt and upright exercise performance. 

 

Factors contributing to improved convective O2 transport post-training include an 

increase in COpeak and vascular O2 content. Ray et al. (1990) reported no change in blood or red 

cell volume following several weeks of supine cycling training, suggesting vascular O2 content 

may not have increased following the present training program. However, an increase in CO will 

have a profound impact on peak O2. In the present study, COpeak increased approximately 

10% and 13% following head down tilt training when measured during upright and head down 

tilt postures respectively. These findings are consistent with the 10% increase in COpeak 

measured during upright cycling following swim training (145). Furthermore, these data support 

previous reports of a significant positive correlation between CO and O2max (68).  

 

Improvements in diffusional O2 capacity (DO2) following training can occur via changes 

within the muscle microcirculation. These include increased capillary blood flow ( cap), 

improved cap/ O2 matching, increased capillary hematocrit, increased capillary to fiber ratio, 

and increased capillary length. Training interventions of similar duration and intensity have 

reported increases in DO2 (202). However, the present study does not allow us to identify if any 

of these factors or the resultant DO2 are increased with head down tilt cycling training.  

 

The primary cardiovascular adaptations in this study were increases in both SV and CO. 

Specifically, SV increased during upright cycling in both training groups. However, during head 

down tilt cycling, stroke volume only increased in the HTG. These findings suggest that the 

effects of head down tilt cycling training on cardiovascular adaptations translate to different 
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exercising postures better than traditional upright training. Martin et al. (1987) demonstrated that 

12 wks of swim training increased peak SV 18% and 10% during supine and upright exercise 

respectively (145). In contrast, Ray et al. (1990) suggested that central cardiovascular 

adaptations, including left ventricular end-diastolic, end-systolic, and stroke volume, are posture 

specific. In their study several weeks of high intensity interval and prolonged continuous cycling 

in the supine posture only increased sub-maximal SV measured during supine exercise, not 

upright. Possible differences compared to the present study may be attributed to several factors. 

First, the head down tilt posture consistently results in a greater central fluid shift and effective 

ventricular filling pressure compared to the supine posture (81, 166). This elevated ventricular 

preload may have resulted in greater myocardial adaptations (i.e, chamber size and/or 

compliance). Second, Ray et al. (1990) had subjects perform a more high-intensity interval style 

of training, whereas the present study utilized only a constant work rate endurance training 

program. As such, subjects in the present study performed approximately 20 min of additional 

exercise each week, thus placing them in as state of “chronic volume loading” for a greater 

period of time (160, 203). In addition, these diverse cardiovascular adaptations following 

recumbent cycling training may be dependent on slight hemodynamic differences and 

myocardial adaptations between supine and head down tilt exercise that have not yet been 

rigorously evaluated. Further investigations evaluating effective ventricular filling pressure and 

diastolic function are needed to determine the potential differences in training adaptations 

between supine and head down tilt postures. However, the results of the present study extend 

those of Ray et al (1990) and Martin et al. (1987) who focused on supine cycling and swimming 

(145, 199). The present study utilized a new recumbent model of cycling exercise different from 

the traditionally studied upright or supine postures. In addition, the present study provides 

additional insight to changes in peak SV and CO and the extension of benefits to upright 

exercise.  

 

The training induced increases in SV observed in the present study are likely associated 

with changes in left ventricular end-diastolic volume. Previous reports suggest that left 

ventricular end-systolic volume and ejection fraction, a surrogate of myocardial contractility, are 

unchanged following upright or supine training (17, 199, 201). Therefore, we believe the primary 

mechanisms associated with the increases in SV in the present study are those directly impacting 
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diastolic volume. One such mechanism is an increase in effective ventricular filling pressures 

owing to an increase in blood or plasma volume which leads to an elevated SV. Blood volume 

was not measured in the present study, but previous reports suggest that changes in blood volume 

are variable with training (199). Second, training can increase ventricular compliance. Levine et 

al. (1991) demonstrated that endurance trained athletes have a greater increase in SV for a given 

change in ventricular pressure compared to untrained controls due to an increased compliance 

and distensibility (136). This elevated compliance allows for a greater range in ventricular 

volumes in which the Frank-Starling relationship can be effective. During head down tilt cycling 

when the ventricle is presumably exposed to a high filling pressure, a less compliant ventricle 

will require a large change in pressure to elevate SV. If training has little impact on compliance, 

little to no change in SV measured during head down tilt cycling would be observed. However, if 

the training stimulus did in fact increase ventricular compliance, an increase in SV would be 

observed both during upright and head down tilt cycling tests (136). It therefore seems likely that 

changes in ventricular compliance may account for the increase in SV measured during upright 

and head down tilt cycling for the HTG that was not observed in the UTG. Third, chronic 

ventricular volume overload, like that experienced during endurance training, results in myocyte 

longitudinal growth, also known as eccentric hypertrophy. Moore et al. (1993) measured left 

ventricular myocyte length following several weeks of endurance training in rats (158). They 

demonstrated that trained rats have significantly longer myocytes compared to sedentary 

controls, accomplished by adding sarcomeres in series with existing sarcomeres. This type of 

cardiac hypertrophy resulted in substantial increases in ventricular chamber volumes. For 

example, if the ventricle is assumed to be elliptical, a 5% increase in myocyte length will 

increase ventricular volume ~10% (157, 158). Therefore it is plausible that an increase in 

myocyte length of this magnitude would explain the 9-10% increase in SV measured following 

head down tilt training.  

 

Relevance 

 

The key implications of the present study are twofold. First, as previously demonstrated 

by Fitzpatrick et al. (1996) and Wright et al. (1999) when a contracting forearm is elevated above 

heart level, exercise tolerance is significantly limited (78, 254). The results of the present study 
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extend these findings as evident from a significantly decreased O2peak and LT during head 

down tilt cycling when the legs are elevated above heart level. In addition, subjects performing 

head down tilt exercise repeatedly complained of a “burning” sensation of the quadriceps at sub-

maximal exercise intensities suggestive of greater lactic acid accumulation. These reports are 

similar to those reported during supine exercise (198). Furthermore, the present study utilized 

whole body exercise (i.e., cycling) not a small muscle mass model like handgrip exercise (78, 

254). However, despite this decrease in exercise tolerance the central cardiovascular responses 

were greater during sub-maximal head down tilt cycling suggesting a cardiac volume overload 

that is advantageous during training.  

 

Second, endurance exercise training results in beneficial cardiac adaptations primarily 

due to a chronic ventricular volume overload, as evident by the increased sub-maximal SV 

measured during upright cycling (203). The significant increase in sub-maximal and maximal SV 

measured during upright and head down tilt cycling in the HTG suggests that head down tilt 

cycling training results in a high chronic ventricular volume overload that may be greater than 

experienced during traditional upright cycling. This sets the foundation for future work in 

populations who would benefit from a high central cardiovascular training stimulus. However, 

further research is needed to determine if this specific training modality will improve measures 

of ventricular function as assessed by Doppler echocardiography or magnetic resonance imaging, 

and vascular function assessed by flow-mediated dilation. 

 

Experimental Considerations 

 

Several experimental considerations are relevant to the interpretation of the present study. 

First, the sample size was limited to untrained college-aged men. This may limit extrapolation of 

these data to other populations (i.e., women, athletes, older individuals, and patients with heart 

failure). In addition, the number of trained subjects was limited to 11 men. Despite a small 

sample size, 4 out of 5 subjects within the HTG demonstrated substantial increases in O2peak 

during both upright and head down tilt exercise (Figure 2.3B and 3D), which is suggestive of a 

large effect size and supports the statistical conclusions. This is in contrast to the high variability 

observed in the UTG across the second 4 wk training period (Figure 2.3C) during head down tilt 



22 

 

cycling. Post-hoc sample size analysis (SigmaStat 3) of the UTG cardiorespiratory adaptations  

during head down tilt exercise present dataset via a commercially available calculator (SigmaStat 

3) revealed that a sample size of >30 would have been necessary to observe a significant 

increase. Therefore, despite a limited sample size the primary conclusions appear to be 

appropriate. Second, due to the impact sex hormones can have on cardiovascular function (154), 

women were not included in the present study.  Third, the acetylene single-breath exhalation 

technique is used as an estimate of pulmonary capillary blood flow, which in healthy adults can 

be used as a surrogate measurement of CO. Furthermore, Dibski et al. (2005) reported that the 

single-breath exhalation technique is difficult to perform above the second ventilatory threshold 

(i.e., in the severe exercise intensity domain) and recommended measurements be performed 

below this thereshold (57). Therefore, multiple measurements were made in the present study at 

several sub-maximal work rates to minimize measurement error, limit subject discomfort, and to 

allow for extrapolation to maximal exercise.  

 

Conclusion 

 

The present study demonstrated that posture affects maximal cardiorespiratory responses 

as evident from a lower O2peak but higher SV during head down tilt cycling compared to 

upright. Additionally, endurance exercise training in the head down tilt posture resulted in 

significant increases in O2peak, SV, and CO that were observed during both upright and head 

down tilt cycling. Furthermore, these data indicate that upright endurance training only improves 

cardiorespiratory responses during upright cycling and does not transfer to the head down tilt 

posture. Therefore, we conclude that training in a head down tilt position can be used to increase 

cardiorespiratory performance and function across multiple body positions. This outcome may be 

due to an increased central cardiac stimulus subsequent to the central fluid shifts associated with 

the head down tilt posture. 
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Table 2.2-1. Physical Characteristics of the training subjects 

 

UTG (n=6) 
 

HTG (n=5) 

Age, yr 23.8 ± 1.3  28.0 ± 3.7 

Height, cm 181 ± 9.3  180 ± 8.4 

Weight, kg        

Pretest 73.2 ± 7.0  82.2 ± 24.7 

Midtest 75.6 ± 10.2  75.9 ± 12.0 

Posttest 72.7 ± 6.9  76.2 ± 10.0 

Values are mean± SD. UTG, upright training group; HTG, head down 

tilt training group 
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Table 2-2: Peak cardiorespiratory responses to acute upright and head down tilt exercise 

(n=22) 

 

Upright Exercise 
 

Head Down Tilt 

Exercise  
Difference % 

WR, W 220 ± 51  186 ± 30*  15 

VE, l/min 80.8 ± 15.7  73.6 ± 13.0*  9 

VO2, l/min 2.44 ± 0.50  2.09 ± 0.39*  15 

VO2, ml/kg/min 33.1 ± 5.9  28.4 ± 4.7*  15 

VCO2, l/min 2.74 ± 0.47  2.39 ± 0.41*  13 

O2 Pulse, ml/beat 13.6 ± 3.1  12.9 ± 2.8*  5 

RER 1.13 ± 0.06  1.15 ± 0.07  2 

HR, bpm 181 ± 13  164 ± 14*  10 

LT, l/min 1.44 ± 0.38  1.27 ± 0.31*  11 

LT, % 59.0 ± 9.1  61.4 ± 10.0  4 

Values are mean ± SD. WR, work rate; VE, ventilation; VO2, O2 uptake; VCO2, CO2 

output; RER, respiratory exchange ratio; HR, heart rate; LT, lactate threshold. 

 

* Significantly different from Upright Exercise 
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Table 2-3: Peak cardiorespiratory responses during upright cycling before and after training 

 

UTG 

 

HTG 

Variable Pretest 

 

Midtest 

 

Posttest 

 

Pretest 

 

Midtest 

 

Posttest 

WR, W 229 ± 29  267 ± 30α  288 ± 31α  245 ± 48  280 ± 37α  280 ± 37α 

VE, l/min 81.2 ± 14.1 

 

85.2 ± 15.6 

 

94.6 ± 19.7 

 

81.5 ± 13.9 

 

86.2 ± 16.9 

 

93.8 ± 15.8 

VO2, l/min 2.52 ± 0.37 

 

2.77 ± 0.46 

 

2.90 ± 0.45α 

 

2.58 ± 0.54 

 

2.81 ± 0.51α 

 

3.08 ± 0.53αβ 

VO2, 

ml/kg/min 34.6 ± 5.64 

 

37.1 ± 7.23 

 

40.0 ± 6.04 

 

32.5 ± 8.08 

 

37.5 ± 8.00α 

 

40.8 ± 7.93α 

VCO2, 

l/min 2.87 ± 0.35 

 

3.11 ± 0.54 

 

3.34 ± 0.63 

 

2.76 ± 0.50 

 

3.07 ± 0.52α 

 

3.27 ± 0.54α 

O2 Pulse, 

ml/beat 13.2 ± 1.35  15.1 ± 3.05  16.3 ± 3.05α  14.5 ± 3.55  15.6 ± 3.07  16.8 ± 3.47α 

RER 1.14 ± .06 

 

1.12 ± 0.05 

 

1.14 ± 0.05 

 

1.08 ± 1.05 

 

1.10 ± 0.04 

 

1.10 ± 0.07 

HR, bpm 191 ± 9 

 

185 ± 9 

 

180 ± 16 

 

180 ± 11 

 

181 ± 6 

 

185 ± 9 

LT, l/min 1.50 ± 0.24  1.63 ± 0.36  1.64 ± 0.24  1.59 ± 0.37  1.79 ± 0.60  1.69 ± 0.39 

LT, % 59.6 ± 4.6  58.9 ± 8.6  57.0 ± 6.8  62.8 ± 12.5  63.4 ± 14.8  56.3 ± 11.3 

CO, l/min 16.0 ± 1.8  18.2 ± 3.1α  18.7 ± 2.7α  16.7 ± 3.6  17.7 ± 3.3  19.5 ± 3.1αβ 

SV, ml 86.3 ± 10.5  98.8 ± 19.1α  101.7 ± 16.4α  93.5 ± 22.9  97.5 ± 19.5  106.0 ± 20.4αβ 

Values are mean ± SD. UTG, upright training group; HTG, head-down tilt training group; WR, work rate; VE, ventilation; VO2, O2 uptake; VCO2, CO2 output; RER, respiratory 
exchange ratio; HR, heart rate; LT, lactate threshold; CO, cardiac output; SV, stroke volume. 
 
α Significantly different from Pretest 
β Significantly different from Midtest 
* Significantly different from UTG 
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Table 2-4: Peak cardiorespiratory responses during head down tilt cycling before and after training 

 

UTG 

 

HTG 

Variable Pretest 

 

Midtest 

 

Posttest 

 

Pretest 

 

Midtest 

 

Posttest 

WR, W 188 ± 21  204 ± 29  229 ± 40αβ  195 ± 27  215 ± 29  245 ± 33αβ 

VE, l/min 68.9 ± 9.6 

 

78.1 ± 21.4 

 

80.6 ± 12.9 

 

79.1 ± 14.1 

 

85.0 ± 18.1 

 

97.5 ± 24.6α 

VO2, l/min 2.06 ± 0.23 

 

2.30 ± 0.49 

 

2.43 ± 0.54α 

 

2.21 ± 0.41 

 

2.40 ± 0.45 

 

2.81 ± 0.43αβ 

VO2, 

ml/kg/min 28.3 ± 3.29 

 

31.0 ± 8.41 

 

33.6 ± 7.25α 

 

27.9 ± 6.42 

 

32.0 ± 6.16 

 

35.4 ± 6.82α 

VCO2, 

l/min 2.34 ± 0.27 

 

2.63 ± 0.59 

 

2.83 ± 0.68 

 

2.49 ± 0.45 

 

2.72 ± 0.52 

 

3.13 ± 0.51α 

O2 Pulse, 

ml/beat 12.7 ± 1.83  13.8 ± 2.66  14.7 ± 2.81α  13.6 ± 3.17  14.4 ± 3.08  16.7 ± 3.11αβ 

RER 1.14 ± 0.10 

 

1.14 ± 0.03 

 

1.16 ± 0.05 

 

1.13 ± 0.02 

 

1.14 ± 0.04 

 

1.09 ± 0.08 

HR, bpm 164 ± 18 

 

166 ± 11 

 

165 ± 12 

 

164 ± 10 

 

168 ± 11 

 

169 ± 12 

LT, l/min 1.18 ± 0.18  1.40 ± 0.24  1.47 ± 0.24α  1.42 ± 0.26  1.47 ± 0.25  1.59 ± 0.41 

LT, % 57.9 ± 9.1  61.8 ± 9.1  61.4 ± 10.8  64.9 ± 8.7  61.4 ± 3.8  56.5 ± 5.7 

CO, l/min 13.7 ± 1.2  15.2 ± 2.9  15.5 ± 2.6  14.9 ± 2.3  16.0 ± 2.5  18.1 ± 2.8αβ 

SV, ml 84.4 ± 8.7  91.5 ± 17.4  93.7 ± 12.9  91.7 ± 18.6  96.2 ± 18.3  107.5 ± 20.8αβ 

Values are mean ± SD. UTG, upright training group; HTG, head-down tilt training group; WR, work rate; VE, ventilation; VO2, O2 uptake; VCO2, CO2 output; RER, respiratory 
exchange ratio; HR, heart rate; LT, lactate threshold; CO, cardiac output; SV, stroke volume. 
 
α Significantly different from Pretest 
β Significantly different from Midtest 
* Significantly different from UTG 
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Table 2-5: Cardiorespiratory data during upright and head down tilt cycling at 100 watts 

 

UTG 

 

HTG 

Variable Pretest 

 

Midtest 

 

Posttest 

 

Pretest 

 

Midtest 

 

Posttest 

Upright Exercise 

VO2, l/min 1.19 ± 0.12  1.25 ± 0.08  1.21 ± 0.13  1.23 ± 0.09  1.26 ± 0.09  1.32 ± 0.08 

HR, bpm 127 ± 11  125 ± 11  117 ± 13  129 ± 23  121 ± 15  121 ± 17 

CO, l/min 8.8 ± 0.6  9.3 ± 0.6  9.13 ± 0.6  9.0 ± 0.6  9.2 ± 0.7  9.9 ± 0.5αβ 

SV, ml 69.5 ± 4.0  75.11 ± 8.7  78.6 ± 8.4α  71.1 ± 10.2  77.0 ± 10.5  82.4 ± 11.2α 

Head Down Tilt Exercise 

VO2, l/min 1.18 ± 0.14  1.25 ± 0.09  1.22 ± 0.14  1.25 ± 0.11  1.18 ± 0.13  1.26 ± 0.11 

HR, bpm 124 ± 5  122 ± 6  117 ± 8  127 ± 16  123 ± 15  116 ± 12 

CO, l/min 8.8 ± 0.3  9.3 ± 0.7  8.9 ± 0.5  9.5 ± 0.5  9.0 ± 0.7  9.5 ± 0.7 

SV, ml 71.0 ± 3.0  76.8 ± 9.2  76.9 ± 5.5  75.6 ± 11.4  74.2 ± 12.4  82.5 ± 11.4αβ 

Values are mean ± SD. UTG, upright trained group; HTG, head down tilt trained group; VO2, O2 uptake; HR, heart rate; CO, cardiac output; SV, stroke volume 

 

α Significantly different from Pretest 
β Significantly different from Midtest 
* Significantly different from UTG  
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Figure 2-1. A schematic representation of the hydrostatic column and contracting muscle mass 

relative to the heart during upright (A) and head down tilt (B) exercise.  

Notice the contrasting cardiovascular environment between the two postures. 

 

Hydrostatic column: ↓ heart 

Contracting muscle: ↓ heart 

Hydrostatic column: ↑ heart 

Contracting muscle: ↑ heart 

A 

B 
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 Figure 2-2. Stroke volume at 100 Watts during acute upright and head down tilt exercise.  

The solid line indicates the group’s mean response. Dashed lines represent individual responses. 

Stroke volume was significantly greater during acute head down tilt cycling compared to upright. 

* Significant difference vs. upright, (P<0.001). 
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Figure 2-3. O2peak responses before and after exercise training  

in the upright trained (UTG) and head down tilt trained (HTG) groups measured in both the 

upright and head down tilt postures. α Significant difference vs. Pretest, (P<0.05). β Significant 

difference vs. Midtest, (P<0.05). 
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Figure 2-4. Peak SV before and after training measured in the upright and head down tilt 

postures.  

Stroke volume is increased during both upright and head down tilt exercise in the HTG. UTG, 

upright training group; HTG, head down tilt training group. α Significant difference vs. Pretest, 

(P<0.05). β Significant difference vs. Midtest, (P<0.05). 

Upright Exercise

UTG HTG

SV
pe

ak
 (m

l)

0

20

40

60

80

100

120

140

Pretest
Midtest
Posttest

Head Down Tilt Exercise

UTG HTG

SV
pe

ak
 (m

l)

0

20

40

60

80

100

120

140

α
αβ

α
αβ

A B



32 

 

Figure 2-5. Sub-maximal (100 Watts) SV before and after training measured in the upright and 

head down tilt postures.  

During upright exercise SV increased in both groups after training (A). However, during head 

down tilt exercise SV only increased in the HTG (B). UTG, upright training group; HTG, head 

down tilt training group. α Significant difference vs. Pretest, (P<0.05). β Significant difference 

vs. Midtest, (P<0.05). 
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Chapter 3 - Antegrade and retrograde blood velocity profiles in the 

intact human cardiovascular system 
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 Summary 
  

Current assessments of the effects of shear patterns on vascular function assume that a parabolic 

velocity profile is always present. Any substantial deviation in the profile away from this may 

result in misinterpretation of the importance shear patterns have on vascular function. The 

current investigation tested the hypothesis that antegrade and retrograde blood flow would have a 

parabolic velocity profile at rest, during cold pressor test (CPT), and exercise. Eight healthy 

subjects completed a cold pressor test and a graded knee extension exercise test. Doppler 

ultrasound was used to determine time-average-mean velocity (VMEAN) and time-averaged-peak 

velocity (VPEAK) for both antegrade and retrograde flow in the femoral (FA) and brachial arteries 

(BA). The VMEAN/VPEAK ratio was used to interpret the shape of the blood velocity profile 

(parabolic, VMEAN/VPEAK = 0.5; plug-like, VMEAN/VPEAK = 1.0). At rest, BA and FA VMEAN/VPEAK 

ratios of antegrade and retrograde flow were not significantly different than 0.5. During CPT 

antegrade VMEAN/VPEAK in the BA (0.56±0.02) and FA (0.58±0.03) were significantly greater 

than 0.5. During peak exercise, the VMEAN/VPEAK ratio of antegrade flow in the FA (0.53±0.04) 

was not significantly different than 0.5. In all conditions the retrograde VMEAN/VPEAK ratio was 

lower compared to antegrade. These data demonstrate that blood flow through two different 

conduit arteries under two different physiological stressors maintains a velocity profile that 

resembles a slightly blunted parabolic velocity profile.  
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 Introduction 
 

Vascular function is a key variable predicting the likelihood of an adverse cardiovascular 

event (255). Recent investigations demonstrate that shear stress contributes to endothelial 

function, remodeling, and the formation of atherosclerotic lesions (131, 164). Chronic increased 

antegrade blood flow and shear stress, such as that achieved with exercise, have been shown to 

improve endothelial function as determined via flow-mediated dilation (163, 193, 232). 

Conversely, retrograde and oscillatory shear in both animal and human models have been 

associated with a pro-atherosclerotic condition paralleled by a decrease in endothelial function 

(27, 107, 151, 229, 258). Unfortunately, as Halliwill and Minson (92) and Parker et. al. (176) 

have recently reported, the current assessment of shear stress relies on inherent assumptions 

based on Poiseuille’s equation. These assumptions include: 

i) The vessel is rigid and long compared to its radius; 

ii) The physical properties of blood maintain a constant viscosity independent of the shear 

rate; 

iii) The flow is laminar flow that is not pulsatile, resulting in a parabolic profile; 

iv) Blood velocity at the vessel wall is zero (101, 147).  

In turn, each of these factors will have a direct effect on the interaction of blood flow and the 

endothelium. Therefore, these assumptions must be evaluated before confident conclusions can 

be drawn concerning shear patterns.  

 

In animal studies, antegrade blood flow moves with a parabolic-like profile (14, 91, 214). 

Unfortunately, many of these studies were performed in vessels smaller than the brachial and 

femoral arteries studied in humans. Recently, Osada and Radegran (170, 171) found that the 

blood velocity profile of humans becomes more parabolic in shape with the transition from rest 

to exercise, when controlling for blood pressure phases and muscle contraction. Information 

regarding retrograde blood flow profiles, however, remains undetermined. Furthermore, the 

findings of Osada and Radegan (2005, 2006) suggests that the velocity profile is not a constant 

variable within the cardiovascular system. Conversely, the stability of the velocity profile 

remains undetermined in smaller arteries or with other types of physiologic stress.  
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The purpose of the present investigation was to non-invasively determine the blood 

velocity profile during both antegrade and retrograde flow in the intact human cardiovascular 

system, using the relationship between mean blood velocity (VMEAN) and peak blood velocity 

(VPEAK) across the vessel lumen (142, 170, 171). Parabolic velocity is present when mean 

velocity is one-half the maximum velocity (VMEAN/VPEAK = 0.5). Any substantial deviation from 

this ratio would be considered evidence of the presence of either a plug-like profile 

(VMEAN/VPEAK = 1.0) or a sharpened-parabolic profile (VMEAN/VPEAK ≈ 0). This investigation 

provides important and novel information regarding the fluid dynamics occurring within the 

human cardiovascular system at rest and during physiologic stress. Our approach was to 

determine antegrade and retrograde blood velocity profiles in the brachial and femoral arteries at 

rest, during a cold pressor test, and during dynamic leg exercise. It is well established that 

changes in vascular resistance alter blood flow characteristics thus potentially altering the shape 

of the velocity profile (174, 219, 229). Therefore, the goal was to determine blood velocity 

profiles when downstream resistance is elevated (CPT) and decreased (exercise). We 

hypothesized that (a) the velocity profile would not be significantly different during CPT and 

exercise compared to rest, (b) antegrade and retrograde flow would each demonstrate a parabolic 

velocity profile, and (c) the retrograde blood velocity profile would not be significantly different 

from that of antegrade.  
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 Methods 
 

Subjects 

 

Eight subjects (6 men; 2 women; age 21 ± 2 yrs (mean ± SD); stature 178.1 ± 12.2 cm; 

mass 91.2 ± 38.5 kg; BMI 28.1 ± 9.8 kg x m-2) completed the experiments. All subjects were 

non-smokers and had no history of cardiovascular, pulmonary, or metabolic disease as 

determined by medical history questionaire. Women were tested during the follicular phase (days 

1-14) of their menstrual cycle to standardize the influence of female hormones. Verbal and 

written consent was obtained from all subjects following approval of the study by the 

Institutional Review Board for Research Involving Human Subjects at Kansas State University, 

and conformed to the Declaration of Helsenki.  

 

Experimental Measurements 

 

Basic Measurements  

 

Heart Rate (HR) was monitored via three-lead electrocardiograph. Mean arterial pressure 

(MAP) was measured beat by beat via finger photoplethysmography (NexfinHD; BMEYE, 

Amsterdam, The Netherlands). 

 

Ultrasound 

 

Blood velocities in the brachial and femoral arteries were measured via Doppler 

Ultrasound (Vivid 3; GE Medical Systems, Milwaukee, WI) with a phased linear array 

transducer probe operating at an imaging frequency of 6.7 MHz. Blood velocities were measured 

in pulse waved mode at a Doppler frequency of 4.0 MHz. Doppler velocity measurements were 

performed and corrected for an angle of insonation less than 65°, which is less than that 

previously reported in similar studies (193, 195). The mean insonation angle used in the present 

study was 60.9 ± 1.3° and was kept constant throughout each experiment, which provides a valid 
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measurement of blood velocity (126). For all studies the Doppler gate was set to the full width of 

the vessel to ensure complete insonation. The mean sampling volume in the present study for the 

femoral and brachial arteries was 7 and 4 mm respectively. Measurements of the common 

femoral artery were made 2-3 cm below the inguinal ligament to minimize turbulent flow caused 

by the bifurcation of the common femoral artery into the superficial and profunda branches (95, 

99, 143). The mean femoral artery depth and resting diameter in the present study was 18.4 ± 3.8 

mm and 6.42 ± 0.33 mm, respectively.  Measurements in the brachial artery were made 2-5 cm 

above the antecubital fossa. The mean brachial artery depth and diameter was 9.5 ± 2.5 mm and 

4.01 ± 0.49 mm, respectively. The locations of the bifurcations were not determined in the 

present study. However, unpublished observations indicate that when in a recumbent position 

(120°) the femoral artery bifurcation is ~4-6 cm distal to the inguinal ligament. Likewise, the 

bifurcation was not seen in the 2D image suggesting that all Doppler measurements were made 

>1 cm from the bifurcation.  Mean blood velocity (VMEAN; cm × sec-1) was defined as time-

averaged mean velocity over each complete cardiac cycle while peak velocity (VPEAK; cm × sec-

1) was defined as the time-averaged blood velocity taken from the maximum outer envelope of 

the Doppler waveform, representing peak velocities in the vessel. Both were calculated using the 

manufacturer’s on-screen software. The blood velocity profile index was expressed as the 

VMEAN/VPEAK ratio (142, 170, 171). All blood velocities were determined as the average of 5-6 

consecutive cardiac cycles and corrected for the insonation angle using the manufacture’s signal 

processing software (GE Medical Systems, Milwaukee, WI). During exercise, cardiac cycles 

with similar antegrade flow and the absence of measureable retrograde flow (so as to minimize 

muscle contraction artifact). Blood flow was calculated in the brachial (BABF) and femoral 

(FABF) arteries using the product of VMEAN and vessel cross sectional area (CSA). If parabolic 

profiles are present within each artery, an alternative calculation of blood flow using the product 

of [VPEAK x 0.5] and CSA will produce similar results. Vessel diameters were measured at each 

experimental time point via two-dimensional sonography and used to calculate vessel cross 

sectional area (CSA = πr2; cm2). Vessel diameters were not significantly different compared to 

baseline in the brachial artery during CPT and the femoral artery during exercise. Femoral artery 

diameter significantly decreased during CPT compared to baseline (6.2 ± 0.4 and 6.3 ± 0.5, 

respectively vs. 6.5 ±0.3, P<0.05). 
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VMEAN, VPEAK, and the VMEAN/VPEAK ratio were determined for both antegrade and retrograde 

phases of the cardiac cycle. The antegrade phase began when mean blood velocity increased 

above the minimum velocity of the previous cardiac cycle by visual inspection and ended when 

the average velocity returned to zero (Figure 3-1). In some instances a smaller second antegrade 

flow was present later in diastole. This second antegrade phase was not included in the 

calculation of antegrade velocities, but was included in the calculations of blood flow and 

velocity measurements across the entire cardiac cycle. The retrograde phase was defined from 

the end of the antegrade phase to the point when the average velocity returned to zero. All 

Doppler signals were stored on a computer and offline analysis was completed using the 

manufacture’s signal processing software (GE Medical Systems, Milwaukee, WI). 

 

 

Experimental Procedures 

 

All testing was completed in an air-conditioned laboratory at a temperature of  20-25°C. 

Subjects performed two randomly ordered testing protocols on different days. One testing 

session consisted of two series of cold pressor tests (CPT) and the other session was composed of 

graded knee extension exercise.  

 

Protocol 1: Cold Pressor Test 

 

Subjects performed two randomly ordered cold pressor tests with 20 minutes recovery 

between each test. One test was performed while evaluating the brachial artery and one while 

evaluating the femoral artery. The cold pressor test consisted of a 2-minute baseline, 2-minutes 

with the right hand submerged in ice water (~3°C), and 2-minute recovery. The cold pressor 

response in the brachial artery was evaluated with the subject in the supine position. 

Measurement of the cold pressor response in the femoral artery was performed with the subject 

in a seated position to mimic the position and hydrostatic influences experienced during knee 

extension exercise.  

 

Protocol 2: Graded Exercise 
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Subjects performed incremental exercise on a custom-built knee extension ergometer 

(143). Exercise was performed in a seated position with the thigh parallel to the ground and the 

lower leg initially perpendicular to the ground. Following 2-minutes of baseline, subjects began 

kicking at 40 contractions per minute. The work rate progressively increased every minute until 

the subject could not maintain the contraction rate for at least 5 contractions despite verbal 

encouragement. Work was generated by compressing air in a pneumatic cylinder as the lower leg 

was extended. Full extension of the lower limb was limited to a fixed linear displacement (d) of 

10.9 cm, which represents ~20° knee extension. 

 

 

Data Analysis 

 

HR and MAP were determined by averaging the signals over the last 30 seconds of each 

interventional test stage. Limb vascular conductance (ml-1 x min-1 x mmHg) was calculated as 

the ratio of blood flow to MAP, while limb vascular resistance (mmHg x ml-1 x min-1) was 

calculated as the ratio of MAP to blood flow. A one-way within-subject repeated measures 

ANOVA with post hoc Tukey test to adjust for multiple comparisions was used to independently 

determine the effects of cold pressor and exercise on MAP, HR, vascular conductance, vascular 

resistance, VMEAN, and VPEAK. A two-way ANOVA (time x direction) (time x calculation 

method) with post hoc Tukey test was used to determine the difference between antegrade and 

retrograde VMEAN/VPEAK and blood flow calculation methods, respectively. A single sample t-test 

was used to compare the VMEAN/VPEAK ratio to 0.5. Linear correlation analysis was used to assess 

the relationship between VMEAN and VPEAK across individuals. Significant differences between 

regression slopes were tested using a Student’s t test. All data is expressed as mean ± standard 

deviaton. Statistical significance was declared when P < 0.05. 
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 Results 
 

Figure 3-1 illustrates the Doppler waveform profile in a representative subject during 

CPT (Panel A) and knee extension exercise (Panel B). Retrograde flow (below baseline) in this 

individual was present during CPT, but not during exercise.  

 

Cold Pressor Test: Brachial Artery 

 

Table 3-1 summarizes the group mean blood velocity response of the brachial artery to 

CPT. MAP significantly increased and limb vascular conductance was decreased at 1-minute 

CPT and 2-minute CPT compared to baseline. BABF calculated using VPEAK/2 (BABFVPEAK/2) 

was significantly decreased at all time points compared to BABF calculated using VMEAN 

(BABFVMEAN). Figure 3-2A illustrates the significant linear regression between BABFVMEAN and 

BABFVPEAK/2 across individuals during CPT.  

 

The mean ratio of VMEAN/VPEAK across the entire cardiac cycle during both minutes of 

CPT and recovery were not significantly different compared to baseline (Table 3-1), but were 

significantly greater than 0.5. The baseline antegrade mean ratio of VMEAN/VPEAK was not 

significantly different than 0.5, indicating a parabolic shape. The antegrade ratios during both 

minutes of CPT and recovery were not significantly different compared to baseline (Figure 3-

3A). However, 1-minute CPT and recovery antegrade ratios were significantly greater than 0.5. 

The baseline retrograde mean VMEAN/VPEAK was not significantly different than 0.5. Further, the 

retrograde VMEAN/VPEAK ratio during CPT and recovery was not significantly different than 

baseline, but was significantly decreased compared to antegrade at each time point.  

 

Figure 3-4A illustrates the linear regression between VMEAN and VPEAK across individuals 

in the brachial artery during CPT, while table 3-2 includes the regression parameters for each 

testing condition. The regression slopes did not significantly change with time for either 

antegrade or retrograde velocities. However at baseline, 1-minute CPT, and recovery the 

retrograde regression slope was significantly lower than that for antegrade. 
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Cold Pressor Test: Femoral Artery 

 

Table 3-3 summarize the mean blood velocity response of the femoral artery to CPT. 

CPT elicited increases in MAP at 1-minute CPT and 2-minute CPT compared to baseline. Limb 

vascular conductance was significantly decreased at 1-minute CPT compared to baseline, but not 

at 2-minute CPT. FABF at 1-minute CPT was decreased compared to baseline, but not at 2-

minute CPT or and recovery. FABF calculated using VPEAK/2 (FABFVPEAK/2) was significantly 

decreased at all-time points compared to FABF calculated using VMEAN (FABFVMEAN). Figure 3-

2B illustrates the significant linear regression between FABFVMEAN and FABFVPEAK/2 across 

individuals during CPT and knee extension exercise.  

 

The mean ratio of VMEAN/VPEAK across the entire cardiac cycle during both minutes of 

CPT and recovery was not significantly different compared to baseline (Table 3-3). The baseline 

antegrade and retrograde VMEAN/VPEAK was not significantly different than the 0.5 parabolic 

profile value, but antegrade VMEAN/VPEAK during CPT and recovery was significantly greater 

than 0.5. The ratio during CPT and recovery was not significantly different from baseline in 

either the antegrade or retrograde direction (Figure 3-3B). The retrograde VMEAN/VPEAK for 

baseline, CPT, and recovery was significantly lower than the corresponding antegrade 

VMEAN/VPEAK ratios.  

 

Figure 3-4B illustrates the linear regression between VMEAN and VPEAK across individuals 

in the femoral artery during CPT. The regression slopes did not significantly change with time 

for either antegrade or retrograde velocities (Table 3-2). Furthermore, in contrast to that seen for 

the brachial artery, the retrograde regression slope was not significantly different from that for 

antegrade. 

 

Dynamic Leg Exercise: Femoral Artery 

 

Table 3-4 summarizes the group mean blood velocity in the femoral artery during knee 

extension exercise. Exercise increased MAP, limb vascular conductance, FABFVMEAN, and 
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FABFVPEAK, and decreased limb vascular resistance compared to baseline. The mean ratio of 

VMEAN/VPEAK across the entire cardiac cycle during knee extension exercise was not significantly 

different compared to baseline. The baseline and exercise antegrade VMEAN/VPEAK was not 

significantly different than 0.5. Retrograde flow was only present at baseline and VMEAN/VPEAK 

was not different than 0.5. Antegrade VMEAN/VPEAK ratio was unchanged across exercise 

intensities compare to baseline. 

 

Figure 3-4C illustrates the linear regression between VMEAN and VPEAK across individuals 

in the femoral artery during knee extension exercise, while table 3-2 includes the regression 

parameters for each testing condition. The antegrade regression slope at 50%-peak power was 

significantly higher compared to baseline, but not at peak power. The baseline retrograde 

regression slope was not significantly different compared to antegrade.  
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 Discussion 
 

The primary finding of the present study is that the brachial and femoral arterial blood 

velocity profiles are remarkably stable despite changes in MAP and downstream limb 

resistance/conductance when using the VMEAN/VPEAK ratio as an index of the distribution of intra-

luminal blood velocities. This finding is consistent with our first hypothesis. However, the data is 

inconsistent with the second hypothesis that blood flow has a true parabolic profile during cold 

pressor and exercise stress. At rest and during exercise, the VMEAN/VPEAK ratio is not 

significantly different from that of a perfect parabolic profile (0.5), but during CPT the antegrade 

ratio becomes significantly greater than 0.5, suggesting the presence of a slightly blunted 

parabolic shape. Likewise, in contrast to our third hypothesis the retrograde profile was slightly 

but significantly different than antegrade, but was always parabolic. Taken together these 

observations indicate 1) a consistent velocity profile despite the pulsatile nature of blood flow, 2) 

that the antegrade and cardiac cycle velocity profile have a slightly blunted parabolic shape, and 

3) that differences exist between antegrade and retrograde profiles. 

 

The interaction of blood flow and endothelial cells contributes to vascular control within 

the arterial circulation, in large part through the resulting shear stress, which is defined as the 

stress parallel to the vessel wall created by the friction between flowing blood and the 

endothelium. Changes in blood flow and shear patterns influence the pro-vasodilatory function 

of the endothelial (131, 164). Recent work by Tinken et al. suggests that the greater the 

magnitude of antegrade flow and shear within the physiologic range the better the pro-

vasodilatory function compared to low flow and shear (232). In contrast, oscillatory shear 

increases the release of superoxide (151), the expression of endothelian-1 (258), adhesion 

molecules (27), and reactive oxygen species-producing enzymes (107), while suppressing 

endothelial NO synthase expression (107). Likewise, Thijssen et al. demonstrated that retrograde 

shear stress decreases the pro-vasodilatory function of the endothelial (229). Furthermore, recent 

work by Padilla et al. (173, 174) suggests that increases in sympathetic nervous activity and age-

related decrements in NO synthesis may increase the magnitude of retrograde shear. The present 

study demonstrates a stable retrograde velocity profile when downstream vascular resistance is 
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acutely increased during CPT, suggesting that changes in the calculated shear stimulus are not 

the result of variations in the velocity profile.  

 

Calculations of shear rate using Poiseuille’s equation are based on four major 

assumptions outlined in the introduction. When this calculation is applied to the cardiovascular 

system, three potential sources of error exist. First, the vasculature is composed of a compliant 

network of branches, not long rigid tubes with fixed diameters. Vessel distensibility can decrease 

shear by ~30% compared to rigid vessels (178). Second, blood may not always exhibit 

Newtonian fluid properties. However, in vessels with an internal diameter greater than 0.5mm, 

like those of the current study, blood behaves as a Newtonian fluid (147). Third, the velocity 

profile may not always be a true parabola. As demonstrated in the current study, the 

VMEAN/VPEAK ratio at rest and during exercise was not significantly different than 0.5, consistent 

with a parabolic profile. In support of parabolic-like profiles within the arterial system, multiple 

in-vitro studies evaluating blood movement in glass tubes report the presence of parabolic-like 

flow (80, 200). Further, Hale et al. (1955) reported in the femoral artery of the dog that during 

antegrade flow the velocity profile approached that of a parabola, but that reversal of flow 

(retrograde) created a profile in which the lamine near the vessel edge moved at a greater rate 

than its center (91), i.e. not parabolic in form. This is in contrast with the present study in which 

retrograde flow was interpreted as maintaining a parabolic-like profile based on the 

VMEAN/VPEAK ratio. The difference may in part be due our inability to distinguish where within 

the lumen of the vessel the peak velocity is occurring.  

 

Similar reports on antegrade flow have been made in venous microvessels of the rat at 

rest. Using fluorescently labeled red blood cells, Bishop et al. (14) observed a nearly parabolic 

velocity distribution across a wide range of blood velocities with a VMEAN/VPEAK ratio not 

significantly different than 0.5. The previous findings of Hale et al. (91) and Bishop et al. (14) in 

combination with the present study provide support for the conclusions that parabolic-like flow 

is a routine occurrence within the intact circulation. 

 

The data in the present study during exercise is related to that reported in previous 

investigations utilizing the reciprocal index (VMAX/VMEAN) to determine the velocity profile. 
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Using Doppler ultrasound, Osada and Radegran (170, 171) determined that at rest in the femoral 

artery the velocity profile ranged from a VMAX/VMEAN ratio of ~1.3 to ~1.75, which corresponds 

to VMEAN/VPEAK ratio of 0.76 and 0.57 respectively, suggesting a profile that is less parabolic and 

more blunted than that reported in the present study. Likewise during knee extension exercise the 

velocity profile ranged from a VMAX/VMEAN ratio of ~1.6 to ~1.9, which corresponds to 

VMEAN/VPEAK ratio of 0.63 and 0.52 respectively. Possible difference may be attributed to how 

the blood velocities were measured and when the velocity ratio was calculated. First, the Doppler 

ultrasound beam width and insonation angles can affect blood velocity measurements. Difference 

in the ultrasound set-up between the present study and those of Osada and Radegran may 

account for the observed differences. Second, Osada and Radegran evaluated the velocity profile 

during the systolic and diastolic pressure phases, and report at rest a significantly more plug-like 

profile (VMEAN/VPEAK ≈ 0.76) during the systolic phase compared to the diastolic phase 

(VMEAN/VPEAK ≈ 0.57). Assuming the diastolic phase represents 2/3 of the cardiac cycle the 

calculated average resting VMEAN/VPEAK ratio across the entire cardiac cycle is ≈ 0.63, which is 

greater than a ratio of 0.58 and 0.53 observed in the resting femoral artery of the present study. 

These differences suggest that the velocity profile may be dependent on within-subject factors 

that have not yet been evaluated. Further investigations evaluating arterial compliance, blood 

viscosity, and vessel configuration (i.e. tortuous vs. straight) are needed to determine what 

factors impact the velocity profile.  

 

While the ratios between studies are different they suggest that the femoral artery 

velocity profile is a blunted parabolic shape. Furthermore, the results of the present study extend 

those of Osada and Radegran who focused on the effects of blood pressure phases and muscle 

contraction on femoral artery velocity profiles during submaximal exercise. The present study 

provides additional insight with exercise and CPT in multiple arteries. Likewise, the present 

study focuses on antegrade, retrograde, and the entire cardiac cycle, which is commonly used for 

measurements of shear rate and blood flow.  

 

Calculation of blood flow traditionally is the product of mean blood velocity and vessel 

cross sectional area. In addition if a parabolic velocity profile is present, blood flow, in theory, 

can be calculated as the product of peak blood velocity, the VMEAN/VPEAK ratio for a parabola 
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(0.5), and vessel cross sectional area. However, the findings of the current study and those of 

Osada and Radegran suggest that the assumption of a VMEAN/VPEAK ratio of 0.5 is incorrect. 

Across the entire cardiac cycle the VMEAN/VPEAK ratio is 6 to 12% greater than 0.5, which results 

in a ~ 4-20% error in the calculation of blood flow when assuming a perfect parabolic profile. 

  

Relevance 

 

The key implications of the present study are two fold. First, as previously noted by 

Halliwill and Minson (92) and Parker et. al (176), calculations of shear rate contain inherent 

assumptions, as discussed above. The results of the present study support one of these 

assumptions that the velocity profile is remarkably stable. Furthermore, while the VMEAN/VPEAK 

ratio of ~ 0.6 across the entire cardiac cycle suggests a blunted parabolic shape it is much closer 

to the perfect parabolic ratio of 0.5 than the plug-profile ratio of 1.0. Therefore, the present data 

support the use of mean flow to estimate shear in healthy populations, especially in the 

evaluation of endothelial function via flow-mediated dilation, which requires estimation of the 

shear stimulus (176). 

 

Second, the aforementioned work by Thijssen (229) and Padilla (173, 174) suggest the 

need for more research regarding the consequences of retrograde shear. The stability of the 

retrograde velocity profile in the present study suggests that the calculation of retrograde shear is 

an acceptable approximation. This sets a foundation for future work in aged and diseased 

populations in which retrograde flow is more prevalent and potentially pathogenic (45, 173, 

256). 

Further research is needed to determine whether VMEAN/VPEAK differences from 0.5 indicated 

physiological significant differences in actual shear stress to the endothelium 

 

Limitations 

 

Several limitations are relevant to the interpretation of the present findings. First, the 

sample size used was small and consisted of young healthy men and women and this may limit 

the extrapolation of these data to other populations. However, the correlation coefficients across 
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a broad range of blood velocities provide evidence that the findings of the present study are 

robust and would not have been improved with a larger sample size. Second it is well established 

that the cyclic effects of sex hormones in women can impact vascular function (154). In an 

attempt to mitigate these effects all women were tested during the follicular phase of their 

menstrual cycle. Third, the velocity profile was evaluated using ratios of blood velocities, not 

direct observations, such as with cinematography. Since cinematography is unpractical in 

humans, the use of the VMEAN/VPEAK ratio provides insight to what is happening within the 

vessel. Unfortunately, the sample volume of a pulsed Doppler ultrasound does not permit 

evaluation of individual lamiae across the vessel lumen, limiting the ability of this technique to 

distinguish the specific instantaneous velocity profile. Likewise, differences in Doppler 

ultrasound beam width, insonation angle, and spectral broadening may limit the accuracy of 

blood velocity measurements. An ultrasound beam width that is smaller than the vessel diameter 

(i.e. doesn’t complete insonate the vessel cross section) results in overestimation of mean blood 

velocities (100). Furthermore, Evans et al. suggests that in the presence of a parabolic profile, the 

mean velocity could be overestimated by 30-33% when the beam width is less than a quarter of 

the vessel diameter (70). In the context of the present study, an overestimation of VMEAN would 

result in a higher VMEAN/VPEAK ratio. Therefore, the slight differences between brachial and 

femoral VMEAN/VPEAK ratios observed in the present study and the differences between 

VMEAN/VPEAK ratios reported in the present study compared to those of Osada and Radegran 

(2005, 2006) may be partially explained by incomplete vessel insonation caused by a narrow 

ultrasound beam width. Nonetheless, the similarity between the results of the present study and 

the cinematographic observations of earlier work in the intact dog femoral artery provide 

evidence that the assumption of parabolic-like flow within the human limb conduit arteries is 

justified.  

 

Conclusion 

 

The present study demonstrates that the blood velocity profile remains constant during 

CPT and dynamic exercise and that the antegrade profile has a slightly blunted parabolic shape, 

while the retrograde profile closely resembles a true parabolic shape. In addition, the profile in 

both directions is extremely resistant to change when limb vascular resistance/conductance and 
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mean arterial pressure is manipulated.  We conclude that these results provide support of the 

current practice of calculating shear rate based on the assumption of laminar flow, but that those 

calculations may only provide an approximation of shear rate, not an exact measure. The 

presence of a blunted parabolic profile will induce error into any shear rate calculation. However, 

based on the findings of the current study that error will remain constant during CPT and 

dynamic exercise.                    
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Table 3-1: Systemic and Brachial Artery Hemodynamic Responses to Cold Pressor, n=7 

Variable Baseline   CPT - 1:00 min   CPT - 2:00 min   Recovery 

MAP, mmHg 83.5 ± 5.6  92.7 ± 8.4**  95.9 ± 7.3***  84.2 ± 5.4 

HR, beats x min-1 60 ± 8  61 ± 8  62 ± 9  62 ± 8 

Vascular Conductance,  

      ml x min-1 x mmHg-1 0.82 ± 0.42  0.56 ± 0.21*  0.59 ± 0.32*  1.17 ± 0.74 

Vascular Resistance,  

      mmHg x ml-1 x min-1 
1.48 ± 0.61  2.05 ± 0.76  2.06 ± 0.80  1.25 ± 0.81 

BABFVMEAN, ml x min-1 67.8 ± 34.7  52.4 ± 20.3  57.5 ± 34.0  98.0 ± 61.1 

BABFVPEAK/2, ml x min-1
 57.0 ± 32.8ααα  43.0 ± 15.4ααα  50.1 ± 30.7ααα  86.5 ± 55.6ααα 

Cardiac Cycle 

VPEAK, cm x sec-1 13.4 ± 6.6  10.4 ± 2.5  12.4 ± 6.3  17.2 ± 11.1 

VMEAN, cm x sec-1 7.95 ± 3.45  6.18 ± 1.70  7.14 ± 3.47  9.79 ± 6.09 

VMEAN/VPEAK 0.61 ± 0.06  0.59 ± 0.03‡  0.58 ± 0.02‡  0.58 ± 0.02‡ 

Antegrade 

VPEAK, cm x sec-1 57.5 ± 9.3  50.7 ± 8.3  48.7 ± 5.5**  58.6 ± 9.1 

VMEAN, cm x sec-1 31.2 ± 5.3  28.2 ± 4.2  26.3 ± 4.3*  32.4 ± 6.2 

VMEAN/VPEAK 0.54 ± 0.02  0.56 ± 0.02‡  0.54 ± 0.03  0.55 ± 0.02‡ 

Retrograde 

VPEAK, cm x sec-1 16.7 ± 2.7  14.2 ± 3.8  14.6 ± 3.7  15.6 ± 4.2 

VMEAN, cm x sec-1 8.08 ± 0.94  6.72 ± 1.75**  6.94 ± 1.38*  7.47 ± 1.54 

VMEAN/VPEAK 0.49 ± 0.05+++  0.47 ± 0.03+++  0.48 ± 0.04++  0.48 ± 0.05+++ 

Values are means ± SD. MAP, mean arterial pressure; HR, heart rate; FABFVMEAN, femoral artery blood flow calculated as 

VMEAN x CSA; FABFVPEAK/2, femoral artery blood flow calculated as (VPEAK/2) x CSA; VPEAK, average peak blood velocity; 

VMEAN, average mean blood velocity 

Significantly different from Baseline *(P<0.05), **(P<0.01), ***(P<0.001) 

Significantly different from Antegrade VMEAN/VPEAK ratio +(P<0.05),  ++(P<0.01), +++(P<0.001) 
‡ Significantly different from 0.5 (P<0.05) 

Significantly different from BABFVMEAN α(P<0.05)), αα(P<0.01), ααα(P<0.001) 
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Table 3-2: Linear regression analysis of blood velocities.  

 Cold Pressor Test  Knee Extension Exercise 

 Baseline 
CPT, 

minute 1 

CPT, 

minute 2 
Recovery  Baseline 50% Peak Peak Power 

Brachial Artery 

Antegrade         

y-intercept, M -0.61 -4.20 -6.69 -6.56  - - - 

Slope, b 0.55 0.64 0.67 0.66  - - - 

R 0.98 0.99 0.94 0.99  - - - 

Retrograde         

y-intercept, M 2.88 0.52 1.67 2.26  - - - 

Slope, b 0.31+ 0.43+ 0.36+ 0.34+  - - - 

R 0.91 0.98 0.96 0.92  - - - 

Femoral Artery 

Antegrade         

y-intercept, M 0.65 3.12 4.72 3.05  3.43 -9.08 -3.90 

Slope, b 0.56 0.52 0.49 0.52  0.49 0.73* 0.59 

R 0.93 0.95 0.95 0.93  0.92 0.98 0.96 

Retrograde         

y-intercept, M -0.98 -1.29 -1.59 -1.33  1.10 - - 

Slope, b 0.54 0.57 0.59 0.57  0.41 - - 

R 0.94 0.93 0.96 0.96  0.93 - - 

Linear model: VMEAN = M(VPEAK) + b; CPT, cold pressor test. 
+ Significantly different from Antegrade Slope (P<0.05) 

* Significantly different from Baseline (P<0.05) 
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Table 3-3: Systemic and Femoral Artery Hemodynamic Responses to Cold Pressor, n=8 
Variable Baseline   CPT - 1:00 min   CPT - 2:00 min   Recovery 

MAP, mmHg 89.6 ± 13.5  95.9 ± 15.6*  98.2 ± 12.6**  87.6 ± 10.8 

HR, beats x min-1 71 ± 12  72 ± 11  73 ± 13  70 ± 12 

Vascular Conductance,  

      ml x min-1 x mmHg-1 1.76 ± 0.87  1.20 ± 0.38*  1.45 ± 0.75  1.77 ± 0.88 

Vascular Resistance,  

      mmHg x ml-1 x min-1 
0.69 ± 0.31  0.93 ± 0.33**  0.88 ± 0.45*  0.69 ± 0.33 

FABFVMEAN, ml x min-1 150 ± 57.0  111 ± 28.5*  138 ± 66.1  149 ± 60.5 

FABFVPEAK/2, ml x min-1
 128 ± 45.3ααα  90 ± 25.1*ααα  113 ± 56.7ααα  124 ± 53.6ααα 

Cardiac Cycle 

VPEAK, cm x sec-1 12.9 ± 4.9  10.0 ± 3.2*  12.2 ± 6.6  13.4 ± 6.0 

VMEAN, cm x sec-1 7.55 ± 3.06  6.14 ± 1.78  7.43 ± 3.65  8.04 ± 3.36 

VMEAN/VPEAK 0.58 ± 0.07  0.62 ± 0.05‡  0.61 ± 0.04‡  0.61 ± 0.04‡ 

Antegrade 

VPEAK, cm x sec-1 44.2 ± 7.6  44.2 ± 7.5  44.1 ± 7.7  45.2 ± 7.8 

VMEAN, cm x sec-1 25.4 ± 4.6  25.9 ± 4.1  26.2 ± 3.9  26.3 ± 4.3 

VMEAN/VPEAK 0.57 ± 0.04  0.58 ± 0.03‡  0.60 ± 0.03‡  0.58 ± 0.03‡ 

Retrograde 

VPEAK, cm x sec-1 20.6 ± 5  20.2 ± 4.4  18.0 ± 4.3  18.2 ± 4.9 

VMEAN, cm x sec-1 10.2 ± 2.9  10.2 ± 2.7  9.0 ± 2.7  8.9 ± 2.9 

VMEAN/VPEAK 0.48 ± 0.04+++  0.50 ± 0.05+++  0.50 ± 0.05+++  0.49 ± 0.05+++ 

Values are means ± SD. MAP, mean arterial pressure; HR, heart rate; FABFVMEAN, femoral artery blood flow calculated as 

VMEAN x CSA; FABFVPEAK/2, femoral artery blood flow calculated as (VPEAK/2) x CSA; VPEAK, average peak blood velocity; 

VMEAN, average mean blood velocity 

Significantly different from Baseline *(P<0.05), **(P<0.01), ***(P<0.001) 

Significantly different from Antegrade VMEAN/VPEAK ratio +(P<0.05),  ++(P<0.01), +++(P<0.001) 
‡ Significantly different from 0.5 (P<0.05) 

Significantly different from BABFVMEAN α(P<0.05)), αα(P<0.01), ααα(P<0.001) 
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Table 3-4: Systemic and Femoral Artery Hemodynamic Responses to Knee Extension Exercise, n=8 
Variable Baseline   50% Peak Power   Peak Power 

MAP, mmHg 92.1 ± 7.1  122 ± 10.6***  129 ± 16.6*** 

HR, beats x min-1 77 ± 13  108 ± 20***  138 ± 15*** 

Vascular Conductance,  

      ml x min-1 x mmHg-1 1.78 ± 0.99  4.42 ± 1.25*  5.98 ± 1.90* 

Vascular Resistance,  

      mmHg x ml-1 x min-1 
0.73 ± 0.36  0.24 ± 0.07**  0.18 ± 0.05** 

FABFVMEAN, ml x min-1 164 ± 90  544 ± 181***  768 ± 248*** 

FABFVPEAK/2, ml x min-1
 153 ± 77  502 ± 137**  739 ± 213*** 

Cardiac Cycle 

VPEAK, cm x sec-1 15.7 ± 7.1  49.7 ± 10.4*  69.5 ± 14.5* 

VMEAN, cm x sec-1 8.4 ± 4.2  26.9 ± 7.3*  35.9 ± 8.2* 

VMEAN/VPEAK 0.53 ± 0.03  0.54 ± 0.05  0.52 ± 0.04 

Antegrade 

VPEAK, cm x sec-1 43.0 ± 10.5  50.0 ± 10.0  69.4 ± 13.8*** 

VMEAN, cm x sec-1 24.3 ± 5.5  27.3 ± 7.5  36.8 ± 8.5** 

VMEAN/VPEAK 0.57 ± 0.05  0.54 ± 0.06  0.53 ± 0.04 

Retrograde 

VPEAK, cm x sec-1 15.2 ± 4.29         

VMEAN, cm x sec-1 7.31 ± 1.88         

VMEAN/VPEAK 0.49 ± 0.04+++         

Values are means ± SD. MAP, mean arterial pressure; HR, heart rate; FABFVMEAN, femoral artery blood 

flow calculated as VMEAN x CSA; FABFVPEAK/2, femoral artery blood flow calculated as (VPEAK/2) x CSA; 

VPEAK, average peak blood velocity; VMEAN, average mean blood velocity 

Significantly different from Baseline *(P<0.05), **(P<0.01), ***(P<0.001) 

Significantly different from Antegrade VMEAN/VPEAK ratio +(P<0.05),  ++(P<0.01), +++(P<0.001) 
‡ Significantly different from 0.5 (P<0.05) 

Significantly different from BABFVMEAN α(P<0.05)), αα(P<0.01), ααα(P<0.001) 
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Figure 3-1. Representative Doppler waveforms during (A) Cold Pressor Test and (B) knee 

extension exercise.  

Note that antegrade blood velocities occur above baseline and were evaluated between the initial 

increase in blood velocity with systole and the start of retrograde blood velocity when the 

Doppler waveform transitioned below baseline.  
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Figure 3-2. Blood flow calculated using VPEAK/2 x CSA as a function of blood flow calculated 

using VMEAN x CSA in the (A) brachial and (B) femoral arteries.  

Solid symbols represent flow during CPT, open symbols represent flow during dynamic exercise. 

The solid line indicates the line of identity. The dashed line indicates the significant (P<0.001) 

linear regression between the two methods of calculating blood flow.  
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Figure 3-3. Group ± SD changes in antegrade and retrograde VMEAN/VPEAK ratio during cold 

pressor test in the (A) brachial artery and (B) femoral artery.  

The cold pressor test did not impact the brachial or femoral VMEAN/VPEAK ratio. Antegrade flow 

had a significantly higher VMEAN/VPEAK ratio compared to retrograde under all conditions.  
+ Significant difference vs. antegrade, ‡ significant difference vs. 0.5. 

Baseline 

Baseline 
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Figure 3-4. VMEAN as a function of VPEAK in 

subjects determined over 3-5 cardiac cycles in 

the brachial artery during (A) CPT and in the 

femoral artery during (B) CPT and (C) knee 

extension exercise.  

The solid line indicates the line of identity 

(VMEAN/VPEAK =1; plug-like profile) and the 

dotted line indicates the line representing a 

parabolic profile (VMEAN/VPEAK = 0.5). 

Retrograde velocities have been inverted to 

positive values. 

 

 



58 

 

 
 

Chapter 4 - Influence of prior sustained antegrade shear rate on the 

vascular responses during dynamic forearm exercise 
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 Summary 
 

Previous investigations have demonstrated that elevations in antegrade shear stress are associated 

with an antiatherosclerotic condition and a pro-vasodilatory state. However, the effects of prior 

exposure to sustained elevations in antegrade shear on the on-transient kinetics of vascular 

adjustments to exercise remain unknown. Therefore, the purpose of the present study was to 

determine the effects of antegrade shear on forearm vascular conductance (FVC) and blood flow 

(FBF) during dynamic forearm exercise. Eight men (25 ± 3 yr; mean ± SD) completed a flow-

mediated dilation (FMD) test and a constant-load exercise test corresponding to 40% peak power 

output, were performed prior to and following a 30 min intervention consisting of forearm 

heating, which has previously been shown to increase antegrade shear rate in the brachial artery. 

During exercise, FBF (Doppler ultrasound), muscle deoxygenation (deoxy-[Hb+Mb]) 

determined via near-infrared spectroscopy, and mean arterial pressure (MAP) were measured and 

averaged into 3 sec bins; FVC was calculated as FVC = FBF/MAP×100. FBF, FVC, and deoxy-

[Hb+Mb] data were fit with a monoexponential model. During the heating intervention, 

antegrade shear rate increased 150%. FMD was increased 43% following heating. The rate of 

adjustment in FVC and FBF to exercise was faster post-heating (21.4±2.60 and 29.7±7.5 s, 

respectively) compared to pre-heating (38.2±15.3 and 42.2±13.3, respectively; P<0.05). Heating 

resulted in slowed kinetics and reduced steady-state for deoxy-[Hb+Mb] following heating. 

These results demonstrate that vascular and endothelial functions at rest and during dynamic 

exercise are positively influenced by acute elevations in antegrade shear rate patterns.   
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 Introduction 
 

Chronic aerobic exercise decreases the risk for all-cause cardiovascular disease, while 

simultaneously increasing aerobic exercise capacity and quality of life (15, 175). However, only 

a fraction of the decreased cardiovascular risk can be explained by modifications of traditional 

risk factors (i.e., body mass index, lipids, hypertension, diabetes, etc.) (85, 113, 159, 231). One 

contributing component to the overall improvement in cardiovascular health may be the vascular 

adaptations or ‘vascular conditioning’ associated with exercise training, which include positive 

structural and functional changes coupled with an anti-atherosclerotic state (83, 131, 172). 

However, the signal generated by a given exercise bout as a modifier of vascular function is not 

completely defined (51, 131).  

 

One key exercise stimulus mediating vascular adaptation may be the mechanical shear 

stress acting on the endothelium, consequent to the increased vascular conductance and blood 

flow observed at exercise onset (164). Evidence from isolated cell culture studies suggests that 

endothelial cells exposed to an increased shear stress exhibit a cascade of increased intra-cellular 

signaling which could contribute to the increased vascular function associated with exercise 

training (131). Furthermore, endothelial cells respond to shear stress in a time-dependent manner 

such that there is a near-immediate response followed by a slower transient response that varies 

with the duration of the shear stimuli (7). The immediate response to an increased shear stress is 

observed within seconds and includes the release of the vasoactive substance nitric oxide (168). 

In the intact human cardiovascular system, this immediate response is evident during reactive 

flow-induced or flow-mediated dilation (FMD), in which increased flow and shear rate following 

5 min limb occlusion results in conduit artery vasodilation, primarily facilitated via endothelial-

dependent NO release (123, 204). Therefore, the FMD test has become a reproducible clinical 

test to evaluate endothelial function (194, 227). Similar to the immediate response, a sustained 

increase in shear stress lasting several minutes to hours, similar to that experienced during 

endurance exercise, results in various intracellular adaptations. Following 3hr of exposure to 

unidirectional shear stress, cultured endothelial cells demonstrate an increased eNOS gene 

transcription and eNOS mRNA expression (197, 237). Similarly, 2hrs of increased shear stress in 
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isolated perfused coronary arterioles increases eNOS and super oxide dismutase (SOD-1) 

expression, both of which will contribute to an increased NO bioavailability (253). In addition, 

Green and colleagues have characterized the impact of different experimental shear patterns 

within the intact human cardiovascular system on endothelial function via the FMD test (228, 

229, 232, 233). Tinken et al. (232) demonstrated that when mean shear rate is acutely increased 

for 30 min via a single bout of exercise or forearm heating, FMD is significantly increased. 

These data suggest that acute elevations in shear rate within the intact artery result in an 

enhanced endothelial function. Cumulatively these studies provide evidence that shear stress is a 

key signal during an exercise bout for endothelial and subsequent vascular adaptation. 

 

During exercise the on-transient temporal mismatch between oxygen delivery ( O2) and 

oxygen consumption ( O2) is observed in aged (9, 49) and diseased (58) conditions. This 

matching of O2 to O2 is dependent on the increase in muscle blood flow which is achieved in 

part via the targeted vasodilation of microvascular and feed arteries within the active limb. The 

dynamics of this response is in part mediated by local mechanisms, which include both 

metabolic and endothelium-mediated control (31, 54, 129). Nitric oxide (NO) released from the 

vascular endothelium or the locally contracting muscles, has been highlighted as a key 

vasoactive substance contributing to the coordinated increase in muscle blood flow during 

exercise (41, 42, 129). Recently, Casey et al. (26) demonstrated that the vasodilator response to 

dynamic forearm exercise is attenuated following arterial infusion of a NO synthase (NOS) 

inhibitor. These authors concluded that NO-mediated dilation significantly contributes to 

increase in limb vascular conductance during the exercise on-transient. Therefore, the increased 

vasodilator response and improved matching of O2 to O2 following exercise training may be 

an effect of an increased shear stress and NO availability experienced during each exercise bout 

within a training regimen (84, 163). However, it remains unknown if an acute increase in shear 

stress, like that achieved during a single bout of exercise, improves vascular function during 

exercise. 

 

The primary aim of the present study was therefore to determine if prior increased shear 

stress in a conduit artery, independent of muscular contractions, increases vascular function as 
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determined via FMD and the on-transient vasodilator response to moderate forearm exercise. It 

was hypothesized that prior exposure to a single bout of antegrade shear via forearm heating, 

which has previously been shown to elicit a similar shear rate pattern as dynamic exercise (163, 

232), would (i) increase the FMD response to post-occlusion (i.e., reactive hyperemia), (ii) 

increase the vasodilator and subsequent blood flow responses to dynamic forearm exercise, and 

(iii) improve the matching of O2 to O2 as determined via near infrared spectroscopy during 

forearm exercise.  

  

.   
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 Methods 
 

Subjects 

 

Eight men (25 ± 3 yrs (mean ± SD); stature 178.8 ± 6.4 cm; mass 92.0 ± 18.0 kg; BMI 

28.9 ± 6.0 kg x m-2) completed the experiments. All subjects were free from known 

cardiovascular, pulmonary, or metabolic disease and were non-smokers as determined via health 

history questionnaire. Verbal and written consent were obtained from all subjects following 

approval of the study by the Institutional Review Board for Research Involving Human Subjects 

at Kansas State University, which conformed to the Declaration of Helsinki.  

 

Study design and protocol 

 

All testing sessions were performed at the same time of day for a given subject in a 

temperature controlled laboratory following an overnight fast and after refraining from exercise, 

alcohol, and caffeine for at least 12 hrs. Subjects completed three visits, each separated by a 

minimum of 48 hrs. The first visit consisted of graded dynamic forearm exercise test to 

determine peak power output. At the second and third visits, a FMD test and a constant-load 

exercise test were randomly performed on separate days before and after a 30 min antegrade 

shear rate intervention. The intervention consisted of heating of the forearm designed to increase 

mean and antegrade shear rate and decrease retrograde shear. 

 

Incremental Exercise. To determine peak power output, subjects performed an 

incremental dynamic forearm exercise test on a custom built forearm ergometer. Exercise was 

performed in a supine position, with the right arm extended laterally (~80°) at heart level. 

Following 1 min of baseline, subjects began forearm contractions at 20 contractions min-1. 

Contractions consisted of squeezing a handgrip device, which compressed an adjustable 

pneumatic cylinder 4 cm, at a duty cycle of 1:2 s work-rest cycle with concentric contraction 

contributing to ~100% of the work phase. The work rate progressively increased 0.5 Watts every 

30 sec until the subject could not maintain the correct contraction rate for at least 3 contractions 
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despite verbal encouragement. Peak power output (PPO) was defined as the highest power output 

at which a minimum of 15 s of the test stage was completed. 

 

FMD. Conduit artery endothelial function was assessed by FMD in the brachial artery of 

the right arm according to the guidelines suggested by Thijssen et al. (2011) before and 10 min 

after the 30 min heating intervention (Figure 4-1A) (227). During a 15 min supine rest period, 

subjects were instrumented for continuous measurement of beat-by-beat HR and MAP via finger 

photoplethysmography (Nexfin HD; BMEYE, Amsterdam, The Netherlands). A rapid 

inflation/deflation pneumatic cuff (Hokanson) was positioned on the right arm proximal to the 

olecranon process. Measurements of brachial artery shear rate (SR = 4 x Vmean/diameter) were 

made using a linear array transducer probe proximal to the pneumatic cuff operating at an 

imaging frequency of 6.7 MHz and an insonation angle less than 60 degrees (Vivid 3; GE 

Medical Systems, Milwaukee, WI). Vmean was calculated as half the peak blood velocity to 

account for incomplete sampling of Doppler shifts across the full width of the artery (3, 227). 

Shear rate was used as an estimate of shear stress without accounting for blood viscosity. After a 

clear image of the brachial artery was obtained, measurements of both blood velocity and artery 

diameter were recorded for a baseline period of 1 min. Following baseline, the pneumatic cuff 

was inflated to (>280 mmHg) for 5 min. Blood velocity and diameter measurements were 

resumed 15 s prior to cuff deflation and continued for 2 min post-occlusion. Since the Vivid 3 

ultrasound system does not support duplex imaging, blood velocities and artery diameters were 

measured at alternating 5 s intervals throughout the FMD protocol.  

 

Constant-load Exercise. Subsequent to the incremental test, subjects completed a square-

wave transition within the moderate intensity domain before and 10 min after the forearm 

heating intervention (Figure 4-1B). Initially subjects rested in the supine position for 15 min. In 

each exercise trial, baseline data was collected for 1 min, followed by a step increase in work 

rate to 40% PPO for 6 min. During the course of each exercise trial beat by beat heart rate (HR) 

and mean arterial pressure (MAP) were continuously measured as previously described. Brachial 

artery blood velocity and diameter were measured with a linear phased array transducer probe 

and averaged into 3 sec bins and corrected for an angle of insonation less than 60 degrees. 

Forearm blood flow (FBF, ml x min-1) was calculated using the product of mean blood velocity 
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(Vmean, cm x sec-1) and brachial artery cross-sectional area (cm2). Vmean was calculated as half the 

peak blood velocity. Vessel diameters were measured every 60 seconds via two-dimensional 

sonography and used to calculate cross-sectional area (CSA = π x radius2). Forearm vascular 

conductance (FVC, ml x min-1 (100 mmHg)-1) was calculated as the ratio of FBF to MAP x 100.  

 

Skeletal muscle hemoglobin + myoglobin deoxygenation (deoxy-[Hb+Mb]) of the right 

flexor digitorum superficialis was evaluated by near-infrared spectroscopy (NIRS) (OxiplexTS; 

ISS, Champaign, IL). Briefly, the NIRS probe consisted of eight light emitting diodes operating 

at two wavelengths (690 and 830 nm) and a single detector fiber bundle (source detector 

separation of 2.0-3.5 cm). The near-infrared probe was placed longitudinally along the belly of 

the flexor digitorum superficialis (~15 cm proximal to the wrist). Muscle location was verified 

via surface electromyography and manual palpations. The data were stored at >25Hz and 

averaged into 3 sec bins off-line. No movement of the probe occurred during exercise. Near-

infrared spectroscopy has previously been used to evaluate the redox state of microvascular 

hemoglobin and intracellular myoglobin. Specifically, the concentration of these deoxygenated 

heme molecules is an estimate of microvascular fractional O2 extraction that describes the 

balance between O2 and O2 (49, 71, 121, 125). 

 

Antegrade shear rate intervention. Acute alteration of the shear rate pattern in the 

brachial artery of the right arm was performed in the supine position via unilateral forearm 

heating in a similar method as Tinken et al. (232). Briefly, the forearm was wrapped with a 

digitally controlled heating pad designed to increase forearm skin temperature to ~40°C. Since 

the target heating stimulus was not instantaneous a 10 min warming period was used followed by 

a 30 min intervention period in which skin temp was clamped at between 38-40°C. Following 

the 30 min intervention the forearm was cooled back to resting skin temperatures (~32°C) over a 

10-15 min period. Testing did not continue until this return to baseline had been achieved. Skin 

temperature was continuously monitored via skin thermocouples (Thermes USB; Physitemp 

Instruments, Clifton NJ) placed on the anterior portions of the forearm. Measurements of mean, 

antegrade, and retrograde shear rate were calculated using mean, antegrade and retrograde blood 

velocities, respectively. The oscillatory shear index (OSI) was used to characterize the magnitude 

of the shear rate oscillations throughout a cardiac cycle (174). The OSI is calculated as follows: 
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OSI = |retrograde shear| / (|antegrade shear|+|retrograde shear|) such that OSI values of zero 

correspond to a unidirectional shear rate while values of 0.5 are indicative of oscillations with a 

mean shear rate of zero.  

 

Data Analysis 

 

The on-transient kinetics for FBF, FVC, and [HHb] during constant-load forearm 

exercise were analyzed using non-linear regression with a least squares technique (Sigma Plot 

10). The responses were fitted as follows: 

 

Y(t) = Y(baseline) + Amp [1-e-(t-TD)/τ] 

 

Where Y(t) is the dependent variable at any time (t), Y(baseline) is the resting baseline prior to 

exercise onset, Amp represents the amplitude of the response, TD the time delay, and τ is the 

duration of time for the dependent variable to change 63% of the steady-state amplitude. The 

initial rate of increase for FVC (kr,FVC = FVC/ τ(FVC)) and [HHb] ((kr, [HHb] = [HHb]/ 

τ([HHb])) were calculated from the modeled parameters.  

 

FMD responses are reported as the absolute (mm) and relative (%) increase in brachial 

artery diameter above baseline. The relevant shear stimulus generating the FMD response 

following cuff deflation was determined as the area under the shear rate curve (AUCSR), 

calculated for data up to peak diameter for each individual using the trapezoid rule, as per the 

guidelines established by Thijssen et al (227).  

 

Statistical Analysis 

 

Data are presented as mean±SD. One-tailed paired t-tests were used to test for differences 

in the FMD response and the model parameters of FBF, FVC, and [HHb] during constant-load 

exercise before and after the shear rate intervention. A one-tailed test is appropriate in this 

instance for testing directional hypotheses (141). A two-tailed paired t-test was used to determine 
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statistical significance for all other dependent variables in which no a priori directional 

hypothesis was given. Statistical significance was declared when P<0.05.  

 



68 

 

 Results 
 

Figure 4-2 illustrates the shear rate patterns prior to and during the 30 min heating 

intervention on both the FMD and exercise test days. Forearm heating significantly increased 

mean and antegrade shear rate and decreased retrograde shear rate. In addition, heating 

significantly decreased the OSI index by ~87% compared to pre-heating on both the FMD (0.23 

± 0.08 vs. 0.02 ± 0.04, P<0.05) and exercise test days (0.22 ± 0.08 vs. 0.04 ± 0.06, P<0.05). 

There was no significant difference in the shear pattern between days.  

 

FMD Response 

 

Table 4-1 summarizes the group mean baseline characteristics and FMD response. There 

was no significant difference in the shear rate stimuli as determined by AUCSR between FMD 

tests. The antegrade shear rate intervention, via forearm heating, did not significantly alter 

baseline MAP, HR, brachial artery diameter. However, 30 min of sustained heating significantly 

increased both absolute and relative FMD (Figure 4-3). 

 

Exercise Response 

 

Baseline and on-transient responses during forearm exercise are summarized in Table 4-

2. The 30 min heating intervention did not alter baseline or steady-state MAP, HR, or FVC. 

However, there was a significant increase in steady-state FBF and decrease in deoxy-[Hb+Mb] 

compared to pre-heating. After heating, FBF kinetics were faster compared to pre-heating 

(Figure 4-4A). This increase in blood flow kinetics at exercise onset was achieved in part by a 

faster vasodilator response following heating (Figure 4-4B). Figure 4-5 illustrates the mean fit of 

the measured FBF response prior to and following the heating intervention. Notice that τFVC 

was significantly faster following heating (Figure 4-4B).  In addition, the initial rate of increase 

in FVC (kr,FVC) was significantly speeded. Baseline and steady-state deoxy-[Hb+Mb] were 

decreased following heating. The 30 min heating intervention significantly increased τdeoxy-

[Hb+Mb] (Figure 4-4C) indicating that the temporal matching of O2 to O2 was improved.  
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 Discussion 
 

The present study is the first to examine the vascular responses to constant-load exercise 

following an acute elevation in shear rate, independent of muscle contractions within the human 

circulation. The primary findings of the present study were that 1) acute forearm heating 

increased brachial artery mean and antegrade shear rate, but decreased retrograde shear rate and 

the OSI; 2) following the heating intervention, brachial artery FMD increased compared to pre-

heating; 3) the overall rate of adjustment for FBF and FVC during exercise (measured as τFBF 

and τFVC) was significantly faster following the 30 min forearm heating intervention; and 4) the 

matching of O2 to O2 was improved following the intervention as evident from an increased 

FBF, a longer τdeoxy-[Hb+Mb] and lower steady-state deoxy-[Hb+Mb] compared to pre-

intervention. These results indicate that vascular and endothelial function are positively 

influenced by acute antegrade shear rate patterns, lending supporting evidence that shear rate is 

one signal for alterations in vascular function. 

 

Shear stress is the mechanical interaction between blood flow and the endothelial cells lining the 

arterial wall. It contributes in part to the release of vasoactive substances, the regulation of 

endothelial gene expression, and over time the structural remodeling of the artery wall (7, 164). 

These endothelium-mediated responses are dependent on the direction, magnitude, pulsatility, 

and duration of the mechanical shear stimulus such that they will promote either a 

proatherosclerotic or antiatherosclerotic endothelial phenotype (131). The capacity for 

endothelial cells to detect and respond to changes in shear stress can be described by four 

broadly defined steps (46). First, shear stress along the endothelium causes mild physical cellular 

deformation; second, this extracellular stress and deformation is transmitted intracellularly. 

These initial steps rely on mechanotransducers, which detect changes in flow magnitude and 

direction, and initiate intracellular signals. Currently no one specific component has been 

determined, but several have been proposed, including flow-sensitive ion channels, integrins, 

glycocalyx, primary cilia, and G-protein-coupled receptors (90, 110). The third and fourth steps 

consist of the conversion of the intracellular mechanical stimuli to an altered chemical activity 

followed by the activation of specific biochemical pathways within the endothelium. 
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Experimental evidence from cell culture studies indicate that disturbed or oscillatory flow 

patterns promote atherosclerosis, while sustained increases in unidirectional laminar flow and 

shear stress creates a pro-vasodilatory and antiatherosclerotic state (131, 164). Briefly, 

oscillatory shear is linked with an increased release and expression of superoxide, endothelin-1, 

adhesion molecules, and reactive oxygen species-producing enzymes, while also suppressing NO 

production (27, 107, 151, 258). Conversely, elevations in antegrade shear stress, like that 

experienced during exercise, produce a contrasting response. Kuchan et al. (127) demonstrated 

that exposure of cultured endothelial cells to laminar fluid flow stimulates an increase in NO 

release. Within 30 sec of exposure, NO levels increased above baseline and continued to 

progressively increase over the next several hours in a shear-dependent manner. These data 

suggest that sustained increases in shear stress ranging from minutes to hours results in a parallel 

increase in NO availability. In addition, similar studies report that as little as 2-4 hrs of exposure 

to an amplified shear stress increase NOS levels, NOS mRNA expression, SOD mRNA 

expression, and increase capacity for NO production and release (197, 237, 253). Also, chronic 

high blood flow and shear stress produced by arteriovenous fistulas in rat and canine models 

results in increased NOS mRNA expression, NOS protein levels, and endothelium-dependent 

relaxation (108, 153, 162).  

 

Unlike cell culture models, the intact cardiovascular system at rest exhibits a phasic flow pattern 

in peripheral conduit arteries such that during systole a large antegrade flow is followed by a 

period of retrograde flow of varying degrees that is dependent on resting vascular tone (3, 148). 

During exercise, the increase in blood flow and vascular conductance result in an increase in 

both the magnitude and duration of antegrade flow to meet the metabolic demands of the 

contracting muscle (31, 129, 131, 211). This elevation in flow increases the parallel acting shear 

stress, between blood flow and the endothelium similar to that seen in cell culture studies. 

However, since the hemodynamic environment experienced by endothelial cell cultures is 

different from the intact cardiovascular system, it is critical to evaluate the effects of in vivo 

increases in shear stress. Therefore, more directly related to the vascular adaptations following a 

single bout of exercise, Haram et al. (93) evaluated endothelial adaptation following acute 

exercise in rats. They demonstrated that a single 60 min bout of exercise increased endothelium-
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dependent dilation that persists up to 48hrs. Likewise, Tinken et al. (232) evaluated endothelial 

function via brachial artery FMD following 30 min of either handgrip exercise or forearm 

heating. Both interventions significantly increased mean and antegrade shear rate which resulted 

in an increased FMD. The results of the present study extend the work of Tinken et al. (232) who 

focused only on resting endothelial function. By utilizing a 30 min heating protocol to increase 

antegrade shear rate, the present study was able to isolate the increase in antegrade shear rate 

independently of muscular contractions. To our knowledge this is the first study to independently 

confirm these previous findings of Tinken et al. (232) and to more importantly evaluate the 

effects of shear rate on the blood flow and vasodilator responses to dynamic exercise. 

 

The active hyperemia that occurs during muscular exercise results in a 10- to 100-fold increase 

in muscle blood flow (211). The magnitude and time course of increases in blood flow is 

dependent on the integrated actions of metabolic control, the muscle-pump, myogenic 

vasodilation, and flow-induced endothelium-mediated vasodilation (31, 54, 211). Following the 

first contraction, muscle blood flow rapidly increases resulting in an elevated shear rate acting on 

the endothelium. This increase in shear rate increases the production of NO, via eNOS from L-

arginine, which diffuses to the vascular smooth muscle resulting in vasodilation via cGMP and 

PKG pathways (129). This flow-induced vasodilation contributes in part to the increase in 

vascular conductance and muscle blood flow observed during exercise. The contribution of 

endothelial derived NO on blood flow during exercise has been evaluated in studies involving 

both animal and human models following pharmaceutical blockage of NO production.  Hester et 

al. (98) demonstrated that inhibition of NO production attenuated the vasodilator response to 1 

min of electrical stimulations in first and second-order arterioles of the hamster cremaster 

muscle. These authors provided key evidence that the transient onset of vasodilation during 

exercise is in part mediated by NO production. Recent work by Casey et al. (26) further 

evaluated the contribution of NO on the on-transient increase in vascular conductance during 

forearm exercise in humans. Following NOS inhibition the rate of vasodilation was decreased 

and the time to reach a steady-state was increased compared to control conditions. While the 

contributions of neuronal NO cannot be disregarded (41, 42), it is likely that a fraction of the on-

kinetics of the vascular conductance adjustments from rest to exercise steady-state is in part 

mediated by the endothelium. In the present study, prior exposure to an increase in shear rate 
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acting on the endothelium resulted in significantly faster on-transient FVC and FBF responses 

during exercise. The ability to modulate the vasodilator kinetics during exercise via acute 

increases in shear rate, in combination with the work of Casey et al. (26) provides strong 

evidence that the endothelium substantially contributes to the rate of adjustments in exercise 

hyperemia in humans.  

 

Unique to the present study was the evaluation of the dynamic balance between O2 and O2 

via near-infrared spectroscopy derived measurements of skeletal muscle deoxy-[Hb+Mb]. 

Briefly, the deoxy-[Hb+Mb] signal provides a representation of local O2 extraction within the 

small arterioles, venules, and capillaries (19, 49, 71, 125). Recently, Koga et al. (121) 

demonstrated that the time course of muscle deoxygenation via NIRS is similar to direct 

measurements of the microvascular partial pressure of oxygen (PmvO2) during muscular 

contraction, thus providing strong evidence that the τdeoxy-[Hb+Mb] is an appropriate index of 

local O2 extraction kinetics during exercise. Therefore, during exercise a compromised muscle 

blood flow and O2 delivery relative to O2 results in an increased deoxy-[Hb+Mb] concentration 

consequent to a decreased O2 driving pressure and increased O2 extraction. Conversely, the 

present study demonstrated a slowed kinetics and reduced steady-state for deoxy-[Hb+Mb] 

following acute shear rate modification, via forearm heating, which suggests an improved O2 

delivery at the level of the microcirculation.  

 

The mechanism for the decreased deoxy-[Hb+Mb]  and apparent improved matching of O2 to 

O2 in skeletal muscle observed in the present study may be resultant to an increased NO 

availability (72). Ferreira et al. (2006) evaluated the PmvO2 kinetics in the rat spinotrapezius 

muscle following NOS inhibition. These authors demonstrated that NO availability has a 

profound impact on the matching of O2 to O2 (72). In relation to the present study, prior 

exposure to an increased shear rate may have up-regulated the NO pathway similar to that 

observed in cell culture resulting in an increased NO production and overall bioavailability 

(127). Therefore, the slower deoxy-[Hb+Mb] kinetics (τdeoxy-[Hb+Mb])  reported in the present 

study suggest that exposure to 30 min of a sustained increase in antegrade shear rate, via forearm 
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heating, resulted in an increased muscle microvascular blood flow and improved matching of 

O2 to O2  during moderate forearm exercise.  

 

Experimental Considerations 

 

Several methodological considerations are relevant to the interpretation of the present results. 

First, measurements of FBF and FVC taken in the brachial artery were used to evaluate the 

vascular responses across the entire limb. It is well documented that the vasodilator control 

mechanisms are different throughout the arterial tree and across the tissues they perfuse (129). In 

addition, previous reports from our laboratory have demonstrated differences in conduit artery 

blood flow kinetics compared to estimated capillary blood flow kinetics during moderate 

intensity knee extension exercise (95). Therefore, the present study only provides a broad 

measurement of limb conductance and flow.  

 

Second, despite continuous measurements of blood velocity, the initial rapid hyperemic response 

that occurs within ~1-5 sec of exercise was not evaluated. At exercise onset the blood velocity 

obtained during the first contraction often disrupted the Doppler signal. Therefore, the first 

contraction was removed from the kinetic analysis.  

 

Third, the present study did not attempt to evaluate the contribution of individual vasoactive 

substances (i.e., NO, adenosine, prostaglandins) via pharmaceutical blockade. While this limits 

identification of specific mechanisms contributing to the enhanced vasodilator responses 

observed following the shear rate intervention, it does not diminish the primary findings of the 

present study. However, previous work has demonstrated a strong NO-dependent mechanism for 

FMD (123, 196, 204) and the on-transient increase in vascular conductance during exercise (26, 

72). Therefore, these previous studies in combination with the findings of the present study 

suggest that NO availability is a potential mediator for shear rate induced vascular adaptation.  

 

The fourth experimental consideration pertains to the use of NIRS as a measurement of O2 to 

O2 matching. The assumptions and limitations relevant to this measurement technique have 
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been previously been discussed in detail (49, 73, 125) and will only be highlighted here. Briefly, 

the NIRS-derived deoxy-[Hb+Mb] is reflective of changes in hemoglobin oxygenation within the 

small arterioles, venules, and capillaries and intracellular myoglobin due to similar absorption 

properties of the NIRS light wavelengths, thus preventing distinction between the two (47). 

However, the deoxy-[Hb+Mb] signal has previously been used to evaluate microvascular O2 

exchange and its kinetic response to exercise is not appreciably different from direct PmvO2 

measurements (121). In addition, the influence of skin blood flow and volume on the NIRS 

signal cannot be ignored (48), but has been shown to contribute minimally to the NIRS signal 

(144). In the present study forearm heating was used to generate an increase in skin temperature 

and blood flow resulting in an increased brachial artery blood flow and antegrade shear rate. 

However, skin temperature was controlled for by inclusion of a 10-15 min post-heating period 

when skin temp and presumably skin blood flow were returned to pre-heating values. In addition, 

an increase in blood volume under the NIRS probe has a minor impact on the deoxy-[Hb+Mb] 

signal (125). Therefore, we believe the deoxy-[Hb+Mb] response observed in the present study is 

the result of altered vascular function within the skeletal muscle microcirculation.  

 

Summary and conclusions 

 

The vast improvements in cardiovascular health and vascular function following aerobic exercise 

training is well documented (15, 113, 159, 175, 231); however, the underlying mechanisms 

stimulated within a given exercise bout are not completely defined (51, 131). This study 

investigated the effects of an acute increase in shear rate independent of muscular contractions 

via unilateral forearm heating on vascular function at rest and during exercise. The present study 

identified that prior exposure to a high antegrade shear rate increases FMD and the speed of the 

on-transient increase in FBF and FVC during moderate intensity exercise. These results suggest 

that one potential stimulus for improvements in vascular health and function is exposure to 

elevations in antegrade shear.  
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Table 4-1. FMD Responses 

 Pre  Post 

Baseline        

MAP (mmHg) 90.3  ± 4.62  94.0 ± 7.57 

HR (bpm) 68 ± 10  65 ± 9 

D (mm) 4.60 ± 0.60  4.50 ± 0.50 

        

Flow-mediated dilation        

FMD (mm) 0.28 ± 0.09  0.40 ± 0.12* 

FMD (%) 6.20 ± 2.54  9.05 ± 3.11* 

SRAUC (s 104) 22.7 ± 5.67  24.3 ± 6.76 

Values are mean ± SD. MAP, mean arterial pressure; HR, heart rate; D, 

diameter; FMD, flow-mediated dilation; SRAUC, area under the shear rate 

curve. 

* Significantly different from Pre, P<0.05. 
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Table 4-2. Exercise Responses 

 Pre  Post 

Baseline        

MAP (mmHg) 90.3 ± 8.58  94.9 ± 7.13 

HR (bpm) 68 ± 8  67 ± 8 

FBF (ml min-1) 73.6 ± 23.9  87.1 ± 28.3 

FVC (ml min-1 (100 mmHg)-1) 81.5 ± 24.3  92.6 ± 32.9 

deoxy-[Hb+Mb] (mM) 20.6 ± 2.77  17.2 ± 4.41* 

        

Steady-state        

MAP (mmHg) 100 ± 10.9  106 ± 9.61 

HR (bpm) 75 ± 8  75 ± 8 

FBF (ml min-1) 286 ± 67.1  314 ± 71.1* 

FVC (ml min-1 (100 mmHg)-1) 289 ± 71  295 ± 55 

deoxy-[Hb+Mb](mM) 35.6 ± 9.95  30.39 ± 10.3* 

        

Parameter Estimates        

ΔFBF (ml min-1) 212 ± 50.9  227 ± 61.5 

τ FBF, (s) 42.2 ± 13.3  29.7 ± 7.52* 

kr, FBF (ml min-1 s-1) 5.44 ± 1.94  8.01 ± 2.95* 

        

ΔFVC (ml min-1 (100 mmHg)-1) 208 ± 53.4  203 ± 41.3 

τ FVC, (s) 38.2 ± 15.3  21.4 ± 2.9* 

kr, FVC 

     (ml min-1 (100 mmHg)-1) s-1) 

6.48 ± 3.59  9.65 ± 2.39* 

        

Δ[HHb] (mM) 15.0 ± 9.50  13.2 ± 8.07* 

τ [HHb], (s) 21.2 ± 14.1  33.8 ± 19.7* 

kr,  deoxy-[Hb+Mb] (mM s-1) 1.04 ± 0.95  0.70 ± 0.88* 

Values are mean ± SD. MAP, mean arterial pressure; FBF, forearm blood 

flow; FVC, forearm vascular conductance;  deoxy-[Hb+Mb], deoxy 

hemoglobin + myoglobin; τ, time constant of the response; kr initial rate of 

increase. 

* Significantly different from Pre, P<0.05. 
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Figure 4-1. Schematic representation of the experimental protocol for the flow-mediated dilation 

(FMD) (A) and constant-load exercise test (B). See test for full explanation. 
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Figure 4-2. Mean, antegrade, retrograde shear rates in the brachial artery prior to and following 

the unilateral limb heating intervention on the (A) flow-mediated dilation and (B) constant-load 

exercise test days.  

Limb heating significantly (P<0.05) increased mean and antegrade shear rate, while decreasing 

retrograde shear in both conditions. * significant difference vs. pre-heating, P<0.05. 
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Figure 4-3. Effects of exposure to 30 min of a sustained increase in antegrade shear rate on flow-

mediated dilation.  

* significant difference vs. pre-heating, P<0.05. 
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Figure 4-4. Effects of exposure to 30 

min of a sustained increase in antegrade 

shear rate on the dynamic response (as τ) 

of (A) forearm blood flow (FBF), (B), 

forearm vascular conductance (FVC), 

and (C) skeletal muscle deoxygenation 

(deoxy-[Hb+Mb]) to moderate intensity 

forearm exercise.  

* significant difference vs. pre-heating, 

P<0.05. 
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Figure 4-5. Schematic illustration of the mean fit for measured on-transient forearm vascular 

conductance (FVC) response during moderate intensity forearm exercise.  

Note the faster FVC response following the heating intervention (dashed line) compared to pre-

heating (solid line). 
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Chapter 5 - Convective and diffusive O2 transport: foundations for 

the decreased maximal O2 consumptions after sustained 

microgravity 
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 Summary 
 

Sustained exposure to microgravity, via spaceflight or head down bed rest (HDBR), 

decreases maximal O2 consumption ( O2max) at a rate which is dependent on the duration of 

exposure. This brief review focuses on (1) the time-course for O2max decline following 

microgravity, (2) the components within the O2 transport pathway that determine O2max in a 

post-flight astronaut, and (3) the characterization of the potential mechanisms contributing to the 

compromised post-microgravity O2max. Experimental evidence and retrospective analysis 

reveals that exposure to microgravity lasting greater than 60 days decreases O2max by as much 

as 36% consequent to decreases in both convective and diffusive O2 transport. Mechanistically, 

this attenuation of the O2 transport pathway may be the combined result of a spaceflight 

deconditioning across multiple organ systems. Following microgravity, significant decreases in 

total blood volume, red blood cell mass, cardiac function and mass, vascular function, and 

skeletal muscle mass occur and become evident during exercise upon re-exposure to the head-to-

foot gravitational forces of upright posture on Earth. The potential contribution of each 

individual system’s adaptation to microgravity is presented and appropriately applied to the O2 

transport pathway in a post-flight long-duration astronaut. Gaps in knowledge unanswered by 

current scientific investigations and targets for therapeutic countermeasures are also highlighted. 
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 Introduction 
 

Since the 108 minute spaceflight of Yuri Gagarian in April of 1961 the scientific and 

medical communities have understood that the human body can adapt to life in a reduced 

gravitational environment (i.e., microgravity). However, when head-to-foot gravitational forces 

are restored, like that achieved with return to Earth (1-g) or a future planetary landing (i.e., Mars 

3/8th-g), the physiologic adaptations that occurred in-flight now result in a severe “spaceflight 

deconditioning” that is evident across multiple organ systems (Figure 5-1). Therefore, the often 

overlooked consequence of spaceflight is not just the ability to survive in space, but also the 

capacity to endure the physiologic challenges created upon landing. As such it is common that 

astronauts regularly experience post-flight orthostatic intolerance, decreased sensorimotor 

function, and reduced muscular strength and cardiorespiratory endurance (18, 22, 234, 236).  

 

Many post-flight disorders are the result of in-flight adaptations that seem to be 

dependent on the decreased level of physical activity and removal of the head-to-foot 

gravitational force. With exposure to microgravity the reduced gravitational and hydrostatic 

pressure gradients redistribute intravascular fluid volume and pressure from the legs and lower 

body towards the thoracic cavity and head (203, 247). The adaptations that follow collectively 

result in a decrease in plasma volume followed closely by a decrease in red blood cell mass (5). 

In addition, microgravity adversely impacts the central cardiovascular system. Post-microgravity 

measurements of ventricular volumes are decreased due in part to the decreased ventricular 

filling pressure and blood volume (36, 96). Significant cardiac atrophy is also observed 

following microgravity exposure that occurs as a function of duration (60, 177). However, these 

findings only highlight the adaptations to microgravity within the cardiovascular system. 

Relative to the cardiac health, scientific investigations evaluating the peripheral circulation are 

less numerous, but an adverse influence on vascular structure and function is also demonstrated 

(146, 217, 221). The pulmonary system is also impacted by the removal of gravity (187, 250). 

However, post-microgravity measurements of arterial saturation (SaO2) and arterial partial 

pressure of oxygen (PaO2) suggest that the effects on pulmonary gas exchange are minimal (24, 

186, 188). Within the contracting muscles, particularly of the lower limbs and postural muscles, 
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microgravity results in a decreased mass, cross sectional area, and overall contractile strength 

that is only partially mitigated with exercise countermeasures (77, 234, 235).  

 

While the response of individual biological systems to spaceflight is important to 

understand, it is the integrative function of the pulmonary, cardiovascular, and muscular systems 

following long-duration space missions that will provide critical information regarding astronaut 

health and exercise tolerance upon return to gravity. Maximal O2 consumption ( O2max) is one 

key parameter of integrated cardiorespiratory function that is widely used to evaluate the severity 

of disease, the progression of aging, and the decline in astronaut health and performance (244). 

Thus, a detailed evaluation of the contribution of the independent physiologic variables within 

each organ system (i.e., lungs, heart, circulation, and oxidative enzymes) in determining O2max 

post-flight provides the opportunity to investigate the mechanisms by which the body responds 

to the spaceflight environment. It is therefore the objective of this review to i) evaluate the 

decline in O2max following long-duration space missions, ii) calculate the determinants of 

O2max post-flight by retrospectively modeling the adaptations within the O2 transport pathway 

and iii) consider the potential mechanisms responsible for the reduced O2 transport capacity 

following long-duration spaceflight missions.  

 

 

 



86 

 

 Comments on the study of spaceflight 
 

Microgravity is defined as any substantial reduction in the gravitational force along the 

head-to-foot axis. During low-orbit spaceflight (Skylab, Shuttle, International Space Station, 

etc.) the force of Earth’s gravity still persists, but is matched by the centripetal acceleration of the 

spacecraft and crew circling the Earth such that the resultant force is decreased creating a 

microgravity environment. Beyond low-Earth orbit (i.e., deep-space mission or interplanetary 

transit) will provide a “true” decrease in gravity, as astronauts are taken beyond the reach of 

Earth’s gravity. While both types of spaceflight are ideal for the study of gravitational 

physiology, the limited research opportunities due to high cost, low sample sizes, and equipment 

availability make these models difficult. Therefore, the head-down tilt bed rest (HDBR) model is 

often used to simulate the effects of microgravity. HDBR confines the research subject to 

inactivity in a bed that is adjusted between 0° to -10° angle. This body posture alters the head-to-

foot gravitational force to a similar extent as that experienced by in-flight astronauts (114, 115). 

Therefore, HDBR provides an opportunity to study the effects of microgravity exposure in a 

larger number of subjects across a range of simulated mission lengths in a more controlled 

environment.  
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 Exercise performance and long-duration microgravity 
 

A key hallmark of microgravity deconditioning is a significant decrease in O2max upon 

return to gravity (Table 5-1). As previously highlighted, O2max is a physiologic parameter 

reflecting integrated cardiorespiratory function. O2max is also used as a predictor of athletic 

and work performance, and can provide insights to an astronaut’s ability to successfully perform 

physically demanding extravehicular activities (EVA) (2, 43, 44). While, to date, aerobic 

capacity has not limited EVA performance, observations of unexpected tachycardia have been 

reported during strenuous EVA tasks (179). In addition, simulation studies indicate that EVAs in 

the 3/8-g of Mars may require a O2 > 30 ml × kg-1 × min-1 which following microgravity 

deconditioning will require a greater fraction of O2max that may result in exhaustion (167).  

 

A marked reduction in O2max is evident following short duration microgravity 

exposure. Convertino and colleagues have consistently demonstrated a 4-15% reduction in 

O2max following 10 days of microgravity (35, 37, 38, 40, 106, 251). Furthermore, multiple 

investigations have also revealed additional reductions in O2max when the duration of 

microgravity is extended to 20-30 days (24, 28, 39, 40, 137, 152, 216, 222-225, 236, 246). To 

this effect it is commonly believed that the reduction in O2max occurs as a function of mission 

duration. A previous review has highlighted this relationship with a cross-sectional comparison 

of the change in O2max following HDBR lasting between 7 to 30 days (34). Within this time 

period O2max decreases approximately 1% for each day of microgravity exposure. However, 

while informative, this model of O2max deconditioning may not be appropriate for estimating 

the decline following long duration space missions lasting > 30 days. To this effect, Cappelli et 

al. (24) evaluated the time course in the reduction of O2 following 14, 42, and 90 days HDBR. 

Their results demonstrate for the first time that the rate of decline beyond 42 days is less than the 
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previously estimated 1% per day suggesting that O2max may not decrease in a linear function 

as previously reported. Therefore, a retrospective analysis of 37 (5 spaceflight; 32 HDBR) (Table 

5-1) independent investigations of the percent reduction in O2max (%Δ O2max) following 

space flight or HDBR were plotted as a function of duration (Figure 5-2). The %Δ O2max data 

were then fit by linear, piecewise two-linear segment, and exponential decay models. 

linear:  

%Δ O2max (x) = y0+(a×x)       [1] 

(where x represents duration of exposure, y0 represents the y-intercept (i.e., pre-flight O2max) 

and a the slope of the response) 

 

piecewise two-linear segment: 

%Δ O2max (x) = region1(x) = (y1*(BP-x) + y2*(x-x1))/(BP-x1);  [2] 

region2(x) = (y2*(x2-x) + y3*(x-BP))/(x2-BP)  

f = if(t <= BP, region1(x), region2(x)) 

  

(where x represents duration of exposure; x1 and x2 represent the minimum and maximum x-

values of duration respectively; y1 and y3 represent the predicted %Δ O2max at x1 and x2 

respectively; BP represents the break point between the two regions; and y2 represents the 

predicted %Δ O2max at BP (i.e., y2 = %ΔVO2max where regions intersect)).  This effectively 

yields two linear Equations for durations above and below the BP. 

 

exponential decay:  

%Δ O2max (x) = y0-A*(1-e-(x)/τ))      [3] 

 

(where x represents duration of exposure, A represents the amplitude, and τ the time constant of 

the exponential response). To determine which model provided the best fit the three response 

curves (linear, piecewise, and exponential) were compared using Δ Akaike Information Criteria 

(ΔAIC): 
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ΔAIC = N ln [SSmodel1/SSmodel2] + 2(Kmodel1 – Kmodel2)   [4] 

 

Where N is the number of data points, SSmodel1 and SSmodel2 are the residual sum of squares from 

the models being compared, and K is the number of parameters in the fitted model +1. When the 

retrospective cross-sectional data in Figure 5-2 was fit with the three models the ΔAIC indicates 

that an exponential decay best describes the decrease in O2max as a function of the duration of 

microgravity exposure. This analysis demonstrates that the decrease in O2max has a time 

constant of ~41 days and appears to reach a steady-state within ~160 days. Using this model the 

post-flight O2max in an average NASA Shuttle crew astronaut (26-50 yrs., 84 kg, pre-flight 

O2max 3,700 ml × min-1 (1)) following 60 and 360 day space missions will be approximately 

2,700 ml × min-1 and 2,370 ml × min-1 respectively. The mechanisms contributing to the decline 

in O2max are complex and the importance of each independent variable within the O2 transport 

pathway may also be dependent on duration. We, therefore, might hypothesize that the decline in 

O2max may be more dependent upon adaptations to the central cardiovascular mechanisms 

following short duration missions and peripheral (i.e., macro- and microcirculatory) mechanisms 

contribute more during long duration missions (34, 36, 74, 75). 

 

Wagner and associates (202, 239, 241, 242) has advanced the theory that O2max is not 

limited by one specific independent variable, but determined by the integration of all steps of all 

the steps along the O2 transport pathway. Within this pathway the movement of oxygen from air 

to the muscle mitochondria relies on two components of O2 transfer: convective O2 transport 

within the circulation to the active skeletal muscle capillary bed and diffusive O2 transport which 

describes capillary-to-mitochondria O2 diffusion (Figure 5-3A). Convective O2 transport can be 

mathematically described with Fick’s Principle of Mass Conservation:  

 

O2 =  × (CaO2 – CvO2)         [5] 
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where  represents cardiac output, CaO2 and CvO2 represent arterial and venous O2 contents 

respectively. Equation 5 can be expanded to reveal the components of blood O2 content, which 

include hemoglobin concentration ([Hb]), arterial and venous saturation (SaO2 and SvO2 

respectively), and diffused O2 (removed for clarity).  

 

O2 =  × ((1.34 × [Hb] × SaO2) – ((1.34 × [Hb] × SvO2))    [6] 

 

The diffusion of O2 from within the capillary circulation into the muscle mitochondria 

can be described with Fick’s Law of Diffusion: 

 

O2 = DO2m × (PcapO2-PmitO2)         [7] 

 

Where DO2m represents muscle O2 diffusing capacity, PcapO2 and PmitO2 represent capillary 

and mitochondria PO2 respectively. Since during maximal exercise PmitO2 is approximately 1-3 

Torr it can be set to zero. In addition, PcapO2 can be approximated by a constant k and muscle 

venous PO2 (PvO2) yielding the following simplification of Equation 7. 

 

O2 = DO2m × k × PvO2         [8] 

 

Figure 5-3B illustrates the relationship between Equation 6 and Equation 8 in 

determining O2max, with O2 on the ordinate and PvO2 on the abscissa, for the average pre-

flight astronaut. Using the known relationship between SaO2 and PvO2 via the O2 dissociation 

curve, Equation 6 is plotted as a curved line for a given max, [Hb], and SaO2 as a function of 

PvO2. Equation 8 is represented by the straight line from the origin and in which the slope is 

equal to DO2m. Notice that the only point satisfying the laws of mass conservation is the point 

where both convective and diffusive Equations equal the same O2max. The beauty of this 

integrated relationship is that if O2max and the measureable variables within Equation 6 are 
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known then changes in DO2m can be calculated. With this information conclusions can be drawn 

as to the importance of each independent variable in determining O2max.  

 

To facilitate the integrative modeling of convective and diffusive O2 transport at O2max 

the changes in the measureable variables of O2max, max, [Hb], and SaO2 are required. As 

previously mentioned, 60 and 360 days of spaceflight will reduce an average NASA astronaut’s 

O2max from 3700 ml min-1 to 2,700 ml min-1 and 2,370 ml min-1 respectively (i.e., ≥ 30%) 

(Figure 5-2). Pre-flight max was calculated with the assumption of a constant linear : O2 

relationship. The changes in max post-microgravity from Capelli et al. (24), Levine et al. (137), 

Shibata et al. (216), and Saltin et al. (210) were fit with an exponential decay curve and max 

was subsequently calculated for durations of 60 and 360 days for our reference astronaut (Table 

5-2). Pre-flight [Hb] was set to 16 g dl-1, which is a normal [Hb] in healthy subjects (249). 

Similar to O2max and max, the change in [Hb] with microgravity exposure was modeled 

from the recent HDBR data of Capelli et al. (24).  With estimates of [Hb] pre- and post-

microgravity, SaO2 assumed to be 98% at O2max (24), an O2 carrying capacity of 1.34 ml O2 × 

g × Hb-1, CaO2 was calculated as CaO2=1.34 x [Hb] x SaO2 (Table 2). CvO2 was then calculated 

by rearranging Equation 6 (CvO2 = CaO2-( O2/ )) which allowed SvO2 to be calculated (SvO2 

= CvO2/[Hb] x 1.34)). PvO2 corresponding to O2max was calculated using a modification of 

Hill’s Equation based on the human blood O2 dissociation curve (215). DO2m was calculated as 

O2max /PvO2.  
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 Post-microgravity determinants of O2max 

 

The calculations for pre- and post-microgravity exposure in the reference astronaut are 

summarized in Table 5-2. Figure 5-4 illustrates the integrated relationship between O2 and 

DO2m where the curved lines represent the O2, as determined by max, [Hb], SaO2, and PvO2, 

the straight lines from the origin represents DO2m, following 60 (figure 5-4A) and 360 (figure 5-

4B) day space missions. As seen in Figure 5-4A, 60 days of microgravity exposure result in an 

approximately 30% decrease in convective O2 transport, owing to a decreased max and [Hb]. 

The relatively unchanged DO2m post-60 days microgravity suggests that at this time point, O2 

delivery is the primary mediator for the ~37% decrease in O2max. This finding supports the 

previous reports of a significant correlation between the change in plasma volume and O2max 

for short-duration microgravity exposure (36). Up to this duration it is likely that the decreased 

plasma volume and subsequent decreased max and [Hb] combine to limit convective O2 

delivery. The central and hemotologic mechanisms contributing to the decreased O2 are 

extensive and will be discussed in detail below (see Potential Mechanisms: Cardiac and Blood 

Volume Control). 

 

It is critical to remember that the fractional O2 extraction (arterial-venous O2 difference) 

is dependent on both O2 and DO2. The mild decrease in arterial-venous O2 difference (16.1 to 

14.1 ml × dl-1) calculated post-60 days microgravity, is determined by a reduction in CaO2 and 

subsequent O2, not an elevation in CvO2 which would be present if O2 extraction was 

compromised. In reality, CvO2 and PvO2 decrease as a consequence of an increase in the ratio of 

DO2m to QO2. As highlighted by Roca et al. (202) an increase in this ratio will increase O2 

extraction, but in the case of the post-60 day spaceflight astronaut this is offset by a greater 

decrease in CaO2 resulting in a slight decrease in the arterial-venous O2 difference.  
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Unlike 60 days of exposure, the additional 14% decrease in O2max following 360 days 

microgravity are likely the result of peripheral mechanisms that decrease muscle O2 diffusing 

capacity (DO2m) by approximately 44% (Figure 4B). Since, the decrease in O2 observed 

following 360 days is similar to that at 60 days, these findings suggest that the mechanisms for 

the decreased convective O2 transport occur within the first 60 days of exposure and reach a new 

set-point that persists for up to 360 days. Ferretti and colleagues (75) performed a similar 

analysis using a multifactorial model of O2max limitation and suggested a similar peripheral 

mechanism for the decreased O2max following extended durations of microgravity exposure. 

Therefore, the calculations of the present review clearly demonstrate that following long-

duration microgravity exposure additional factors beyond max and blood volume, particularly 

those within the periphery, contribute to the progressive decrease in O2max. The precise 

mechanisms for the 44% decrease in DO2m following 360 days spaceflight may involve 

impaired microcirculatory hemodynamics and are discussed below (see Potential Mechanisms: 

Microcirculatory hemodynamics and O2 diffusion). With respect to fractional O2 extraction 

following 360 days microgravity exposure there is a relatively greater decrease in DO2m than 

O2 which decreases the DO2m/ O2 ratio. Decreases in this ratio will increase CvO2 and PvO2 

which is observed as a decrease in the arterial-venous O2 difference.  

 

Following microgravity, it has traditionally been theorized that the primary determinant 

of O2max post-flight was convective O2 delivery. This conclusion has consistently been 

supported by the large decrease in central cardiac performance and O2 delivery owing to a 

decreased cardiac output (20, 24, 76, 96, 106, 137) and reduced blood volume (37-39, 87, 109, 

216, 222, 224, 251). In addition, minor changes in maximal arterial-venous O2 difference post-

microgravity led to the presumption that peripheral factors are not responsible for the decrease in 

O2max. However, these conclusions are based on short duration studies and the contribution of 

peripheral circulation may become more important with long duration space missions or when 

central performance is not limited (i.e., post-flight volume loading). For instance, the presence of 
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a reduced DO2m becomes evident when plasma volume expansion post-flight fails to restore 

O2max to pre-flight levels (216). 

 

Similar decreases in O2max and max with minor changes in a-v O2 difference have 

been reported in diseased populations (183). Like post-flight astronauts, patients with congestive 

heart failure (CHF) often have an unchanged or greater fractional O2 extraction at maximal 

exercise, which led to the misconception of an unimpaired DO2m (183). As recently highlighted 

by Poole et al. (183) in CHF the reduction in convective O2 delivery and DO2m occur to a 

similar extent so that at maximal exercise fractional O2 extraction appears normal despite a 

severely compromised diffusivity of O2.  

 

Therefore, the present calculations for 60 and 360 day spaceflights strongly advocate for 

the need to tailor microgravity countermeasures based on mission duration. Shorter-duration 

missions should target convective ( O2) O2 transport, while longer-duration missions should 

have the objective to maintain both convective and diffusive (DO2m) O2 transport and the 

specific mechanisms associated with their maladaptation.   
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 Potential mechanisms 
 

Pulmonary. It is well established that lung mechanics are influenced by gravity, as 

previously reviewed (187, 250). Briefly, the 1-g environment of Earth results in several 

functional consequences which include differences in regional lung volumes, pulmonary blood 

flow, and the ventilation-to-perfusion ratio (VA/ ) (248). It is therefore no surprise that in the 

absence of gravity many of these gravitational dependent variables are altered relative to 1-g. 

When in microgravity the distribution of ventilation and pulmonary blood flow becomes more 

evenly distributed and improves VA/  matching, but some heterogeneity still persists (238). The 

improved distribution of pulmonary blood flow and an increase pulmonary capillary blood 

volume in microgravity also contributes to an improved pulmonary CO-diffusing capacity 

(DLCO) that rapidly returns to pre-flight levels upon landing (191, 238). However, DLCO 

during long-duration microgravity (> 120 days) may be decreased (155, 190). During both short- 

and long-duration spaceflight the change in lung volumes are more consistent. Sawin et al. (213) 

reported a decrease in vital capacity during 84 days aboard the Skylab flight that returned to 

normal upon landing. These findings are similar to those of short-duration spaceflight missions 

(69)  

 

Most important to the present review of O2 transport is the level of SaO2 post-

microgravity. The unchanged pulmonary diffusing capacity and gas exchange (188, 189) coupled 

with the long-duration HDBR study that demonstrated an unaltered SaO2 following as much as 

90 days exposure (24) suggests that arterial saturation is unaffected by microgravity. Therefore, 

any changes in pulmonary structure and/or function during microgravity exposure have a 

minimal effect on pulmonary convective and diffusive O2 transport.  

 

Blood volume control. Similar to the lung, intravascular fluid distribution is significantly 

influenced by gravity. When standing in a 1-g environment, 70-75% of the total blood volume is 

below the level of the heart (203). As such, the intravascular pressures at the feet approaches 200 

mmHg compared to the approximately 70 mmHg measured at the level of the head. During 

exposure to microgravity a redistribution of the intravascular fluid volume occurs very rapidly, 
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resulting in a more uniform pressure generated by the heart throughout the body so that pressure 

in the lower limbs decreases and pressure in the head and upper extremities increases (94, 247) 

(Figure 5-5). This redistribution occurs within hours and following a few days results in a 

significant decrease in plasma and blood volume (37-39, 87, 109, 216, 222, 224, 251) followed 

by a decrease in red blood cell mass (24, 29, 32, 39, 40, 133). In the past, the precise mechanisms 

mediating these changes have been difficult to study during spaceflight and researchers therefore 

relied heavily on HDBR models. Unfortunately, within the last decade it has become apparent 

that despite a similar hematologic adaptation to microgravity the mechanisms between 

spaceflight and HDBR are different enough to warrant some discussion (169, 245).  

 

The redistribution of blood volume following exposure to microgravity via HDBR 

increases central venous pressure (CVP), which distends the cardiac chambers (16, 166) and 

stimulates a neurohumorally mediated decrease in blood and plasma volumes via the Henry-

Gauer reflex resulting in an increased diuresis and natriuresis (6, 82, 169). For decades this 

theory of fluid volume control prevailed as the primary mechanism for the microgravity induced 

hypovolemia.  

 

Unlike HDBR, an increased diuresis and natiuresis have never been observed during 

spaceflight (63, 64).  When the head-to-foot gravitational force is removed in-flight, there is a 

similar shift in blood volume and pressure away from the lower body upward towards the head, 

but no increase in CVP (21). Since the microvascular structure in the upper body is adapted for 

lower pressures, this very rapid increase in volume and intravascular pressure results in an 

increase in transcapillary filtration (94, 132, 247). Leach et al. (132) demonstrated that the 

movement of plasma proteins to the extravascular space is one primary mechanism for the 

spaceflight reduction in plasma volume. Similar increases in fluid filtration capacity have also 

been measured following 120 days HDBR, but are often masked by the increased diuresis (30). 

Therefore, the current evidence supports a rapid and sustained decrease in plasma volume during 

microgravity and that the mechanisms mediating the response appear to be somewhat dissimilar 

between HDBR and spaceflight.  
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In addition to the decreased plasma volume consequent to microgravity exposure, many 

investigations also report a reduction in total red blood cell mass and [Hb] (24, 29, 32, 39, 40, 

133). The rapid and early decreased plasma volume in-flight causes an acute increase in [Hb] and 

hematocrit that over the following days is reduced by means of decreased erythropoietin levels 

and increased destruction of red blood cells (4, 5, 88, 89). Alfrey et al. (4, 5) demonstrated with 

the use of radiolabeled autologous red blood cells that during short duration spaceflight (9-14 

days) red blood cell mass is decreased via the favored destruction of newly produced red blood 

cells. In addition, it seems that over time this reduced total red blood cell mass achieves a new 

set-point that is appropriate for the new lower circulating plasma volume.  

 

While these adaptations may be appropriate for the microgravity environment, the post-

flight consequences are severe in regards to orthostatic challenges and convective O2 transport.  

Upon exposure to a strong gravitational environment, like Earth or Mars, the blood volume shifts 

back towards the lower limbs (203). This post-flight redistribution in blood volume away from 

the thoracic cavity coupled with the reduced circulating blood volume contributes to the 

decreased cardiac performance observed upon return to gravity (24, 137, 216). In addition, the 

initial post-microgravity blood volume will be perceived by the body as low resulting in a rapid 

increase in plasma volume beginning within hours. While this increase will assist with arterial 

pressure regulation and begin to aid cardiac performance, it will negatively impact O2 carrying 

capacity via the reduction in hemoglobin concentration (Equation 6). Both the body’s natural rate 

of volume correction and any medical interventions (i.e., intravenous saline infusion) will 

therefore alter the post-flight [Hb].  

 

Cardiac. Since the Gemini and Apollo programs it has been clear that central 

cardiovascular function is affected by microgravity exposure (156, 205). In addition, a decreased 

exercise stroke volume was reported following several Skylab missions lasting between 28-84 

days (23). These measurements were some of the first to demonstrate that the microgravity 

environment negatively impacts the cardiovascular system. Additional experimental data from 

both spaceflight and HDBR demonstrate a decreased resting, sub-maximal, maximal left 

ventricular end-diastolic volume, stroke volume and cardiac output during upright posture 

following microgravity (20, 25, 60, 61, 76, 96, 106, 137, 138, 177, 216, 218, 220). Furthermore, 
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several investigations suggest one primary mechanism for the post-microgravity decrease in 

ventricular volume is a significant decrease in circulating blood volume. Shibata et al. (216) 

demonstrate that resting cardiac volumes are preserved following 18 days HDBR when 

intravenous dextran infusions were given to restore cardiac filling pressure to baseline. In 

addition, Bringard et al. (20) reported a preserved maximal SV and max following 35 days 

HDBR when subjects were tested in the supine position, presumably when the effects of a 

reduced blood volume are minimized (i.e. high effective filling pressure).  These findings 

suggest that the reduced max at 60 days reported in the present review is primarily due to a 

decreased circulating blood volume that limits ventricular preload during maximal exercise.  

 

While changes in blood volume may be one key mechanism for the observed cardiac 

deconditioning post-microgravity, several additional factors have been implicated during short- 

and long-durations of exposure. Levine and colleagues (25, 60, 138, 177) have consistently 

demonstrated a decreased cardiac mass that is observed within the first two weeks of 

microgravity exposure. Furthermore, these authors report that this eccentric cardiac atrophy 

occurs at a rate of approximately 1% per week of microgravity exposure that occurs for up to 12 

weeks (60). When this rate is applied to simulated 60 and 360 day missions it becomes evident 

that a reduction in cardiac mass will likely be a key determinant of the reduced max and 

ultimately convective O2 delivery. In addition to a reduction in cardiac volumes and mass, 

several investigations have reported an impaired diastolic suction and leftward shift of the left 

ventricular pressure-volume curve (25, 61, 96, 138), both of which will limit ventricular filling. 

It is critical to note that despite a decreased diastolic function, no measureable reduction in 

myocardial contractility has been observed following microgravity exposure (25, 61).  

 

Peripheral circulation: Hemodynamic forces within the peripheral vasculature are key 

signals mediating adaptations in endothelial cell phenotype (131). For example, the increased 

shear stress associated with exercise training acts as a stimulus for positive adaptations in 

endothelial function (172, 233). Conversely, chronic exposure to low blood flow, oscillatory 

shear stress, and/or a reduced transmural pressure decreases vascular structure and function (131, 

164, 230). The current scientific investigations of vascular adaptations to microgravity utilize 
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both animal and human models. Delp and colleagues (10, 33, 50, 52, 53, 146, 149, 150, 221) 

have extensively studied the microvascular responses to microgravity in the rat. Using a 

hindlimb unloading protocol (HU), the effects of microgravity can be studied in rats in a similar 

manner as HDBR in humans. Using this model, investigators report that the initial minutes of 

microgravity decrease muscle blood flow compared to baseline standing and that this reduction 

persists to at least 15 days HU (149), which is consistent with human spaceflight (245). 

However, post-microgravity sub-maximal bulk hindlimb blood flow is not significantly different 

compared to pre-microgravity exposure (149, 150). While the bulk flow is unaffected, the 

distribution of the available flow throughout the body and within the exercising limb is adversely 

impacted. During post-microgravity exercise, blood flow to the splenic region and kidneys 

remained increased compared to pre-HU (149). Likewise, blood flow is preferentially increased 

to muscles containing greater proportions of glycolytic fibers and decreased in those containing a 

high oxidative fiber composition (52, 149). This is contrary to normal 1-g exercise when blood 

flow is redistributed away from the splenic circulation and kidneys towards skeletal muscle 

(203). To this effect, at maximal exercise intensities approximately 95% of max is 

preferentially directed to the active skeletal muscle circulation to meet the high metabolic 

demand (129). Therefore, the appropriate and coordinated distribution of max via adjustments 

in region specific vascular conductance is critical for adequate convective O2 delivery during 

maximal aerobic exercise and may be significantly impaired following long-duration 

microgravity (52, 146, 149).  

 

Similar to the reduced muscle blood flow observed in rats during HU, a decreased calf 

blood flow is reported in humans exposed to short-duration spaceflight (245). One fundamental 

consequence of these reductions in blood flow during microgravity includes a paralleled decrease 

in endothelial shear stress.  As reviewed by Laughlin et al. (131), endothelial health is dependent 

on the magnitude and direction of the mechanical shear stress it experiences. Endothelial cells 

chronically exposed to a low shear stress are generally in a more proathrosclerotic state. 

Therefore, the alterations in the head-to-foot blood volume and pressure gradient coupled with 

the decreased level of physical activity in the lower limbs experienced during microgravity are 

likely factors responsible the maladaptation in vascular structure and function (131, 164, 230).  
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Mechanistically, the impaired distribution of cardiac output following microgravity 

appears to be the result of an impaired vasodilator and vasoconstrictor response (10, 52, 53, 103, 

146, 217, 221, 257). Following 2 wks HU, arterioles from rat skeletal muscles composed of 

primarily type IIb fibers have a decreased response and sensitivity to the vasoconstrictor agonist 

KCl (221). Conversely, the vasoconstrictor responses of arterioles from the soleus, which is 

primarily oxidative in nature, were not different from controls (52). Recent findings from Stabley 

et al. (221) demonstrate a reduced vasoconstrictor response in rats following 15 days of 

spaceflight that is mediated by a deficit in intracellular calcium release via ryanodine receptors 

within the vascular smooth muscle. In addition, data from human HDBR experiments confirm 

the reports in animal models of microgravity (217, 257). Shoemaker et al. (217) demonstrated 

that the human forearm’s vasoconstrictor response to a cold pressor test during a reactive 

hyperemia blood flow maneuver was decreased following 14 days of bed rest. These findings 

were the first to suggest the presence of an impaired vasoconstrictor function in humans and 

provide a potential mechanism for the known decreased exercise and orthostatic tolerance 

associated with spaceflight.  

 

In conjunction with the attenuated vasoconstrictor response, Shoemaker et al. (217) also 

demonstrated a reduced vasodilator response to reactive hyperemia following acute limb 

occlusion and similar findings have been reported in short-duration HU in rats (53). Following 

unloading, the arteriole’s medial layer cross-sectional area and acetylcholine-induced dilation are 

decreased, indicating significant structural and functional remodeling within the peripheral 

microcirculation (53). In addition, the severity of these maladaptations is fiber type dependent 

(53). While it is evident that both oxidative and glycolytic fibers are negatively impacted 

following microgravity exposure, the reduction in vasodilator responses is greater in the more 

oxidative fibers (146). Furthermore, the reduced vasodilation of arterioles to adenosine is 

indicative of a diminished peripheral vascular response to a metabolically-mediated increase in 

vascular conductance (146). In summary, it is evident that the attenuated vascular function and 

impaired redistribution of max are potential mechanisms contributing to the decreased 

convective O2 delivery during maximal aerobic exercise following microgravity exposure.  
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Microcirculatory hemodynamics and O2 diffusion. As illustrated in figure 5-4B, during 

upright maximal aerobic exercise following 360 days of microgravity exposure, the diffusive 

capacity for O2 to move from the capillary into the muscle mitochondria is decreased. This is 

divergent from many short-duration studies in which the arterial-venous O2 difference is 

unaffected (34, 36, 96, 106, 137, 210). However, as proposed by Convertino (34, 36) and Ferretti 

et al. (74, 75) and discussed above, the peripheral limitations to O2 movement and utilization 

may have a greater impact on O2max as the duration of space missions increase. 

 

The diffusing capacity for oxygen is determined in part by surface area and the distance 

of diffusion. While the distance is important, it is the RBC-to-capillary surface area that is often 

a more critical determinant of DO2m, such that there is a strong association between capillary 

hemodynamics and DO2m (for review see Poole et al. (181, 182, 184)). At rest, most skeletal 

muscle capillaries support RBC flow but have a significantly reduced capillary hematocrit to 

around 15% (55, 118-120). During exercise these already flowing capillaries undergo an 

increased RBC flux and velocity that elevates capillary hematocrit toward systemic levels (119). 

This increased hematocrit across the length of a capillary is referred to as longitudinal capillary 

recruitment and increases the overall area for diffusion (182-184). While these events within the 

capillary occur perfectly in the healthy circulation, in aging and diseases like congestive heart 

failure there is an impaired capillary RBC flux during exercise (183). In these populations, a 

significant number of capillaries do not support flow during exercise. As a consequence, the 

available surface area for O2 diffusion is decreased resulting in a decreased DO2m. 

 

Microgravity’s influence on capillary structure appears to be limited. Generally, skeletal 

muscle capillary density and capillary-to-fiber ratio are unaffected by microgravity (11, 56, 74, 

97, 161, 208). These findings suggest that the decrease in the absolute number of capillaries is 

similar to the decrease in muscle fiber cross sectional area, resulting in an unchanged density 

(74).  However, Ferretti et al. (74) also report a ~22% decrease in total capillary length following 

42 days of HDBR that they advocate is a consequence of muscle fiber atrophy. While this 

decrease in length may contribute to a reduced DO2m, the regularly reported static capillary-to-

fiber ratio suggests that the available surface area for O2 diffusion per muscle fiber is unchanged. 

However, the number of capillaries only sets the upper limit for available diffusion surface area; 
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it is the number and velocity of RBCs within a given capillary that ultimately determine the 

RBC-to-capillary diffusion area. Unfortunately, no study to date has evaluated the change in 

capillary hematocrit or the degree of longitudinal capillary recruitment following microgravity. 

One might speculate that healthy astronauts exposed to long-durations of microgravity may 

experience similar adaptations in microcirculatory hemodynamics to that of an aged or heart 

failure circulation.  

 

The calculated decrease in DO2m following 360 days microgravity in this review is 

supported in part by measurements of tissue deoxygenation during exercise via near-infrared 

spectroscopy (NIRS). Following 35 days HDBR, subjects had a significantly decreased peak 

deoxygenated [hemoglobin + myoglobin] signal in the vastus lateralis during incremental 

exercise (185, 212). The authors interpreted these findings as evidence for an impaired capacity 

for O2 extraction. This is somewhat contrary to the minor decrease in DO2m following 60 days 

microgravity in Figure 5-4A. However, it is important to highlight that the NIRS signal only 

provides a window into the movement of oxygen, not a direct measure of O2 extraction. In 

practice, this signal is determined by the matching of O2 delivery-to-O2 utilization, DO2m, and 

the state of intracellular oxidative metabolism (212). In addition, as previously mentioned, the 

distribution of blood is altered between muscle fiber types post-microgravity and therefore must 

be considered when interpreting NIRS data.  

 

Similarly, the influence of microgravity on mitochondrial oxidative enzyme activity 

should be highlighted. Following 17 days of spaceflight, Trappe et al. (235) report an unaltered 

citrate synthase activity within the human gastrocnemius. However, investigations of longer 

durations indicate that oxidative enzyme activity is significantly influenced by microgravity (11, 

97). Therefore, the duration of microgravity exposure may likely dictate if adaptations in 

intracellular oxidative metabolism occur and ultimately impact exercise performance. At this 

time it is unclear if these adaptations in oxidative enzyme are great enough to significantly 

impact O2max in the post-flight astronaut. Additional research in this area is needed to address 

this gap in knowledge. 
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 Remaining unanswered questions and conclusions 
 

The modeling and review of the determinants of O2max following long-duration 

microgravity exposure provides a unique opportunity to highlight the current gaps in knowledge. 

The first key question relates to the control of blood flow and its distribution during exercise. 

Specifically, what are the precise mechanisms for the reduced microvascular function currently 

observed in the rat HU model? Likewise, are the observations made in peripheral conduit arteries 

(i.e., flow-mediated dilation or reactive hyperemia) an accurate measure of what is occurring 

downstream within the skeletal muscle arterioles? The second group of unanswered questions 

focuses on the determinants of DO2m. Does the microcirculatory hemodynamic response to 

exercise change following spaceflight?  Is there a decreased longitudinal capillary recruitment in 

astronauts similar to heart failure patients that explain the decreased DO2m? To that point, it is 

critical to remember that the modeled decrease in DO2m made in the present review is only an 

initial estimation. The appropriate measurements must be performed in astronauts to accurately 

determine the changes in convective and diffusive O2 transport. 

 

CONCLUSIONS 

 

  Sustained microgravity exposure results in a time dependent decrease in O2max. 

Without the inclusion of countermeasures this decrease occurs at a rate such that a 37% decrease 

in O2max is expected following a 360-day space mission. This decline in aerobic capacity is 

initially mediated by a decrease in convective O2 transport that is followed by a decrease in 

diffusive O2 transport. To date, many of the independent components within the O2 transport 

pathway have been evaluated. However, substantial gaps in knowledge still remain, particularly 

within the peripheral circulation. Finally, such a dramatic decline in aerobic capacity will have a 

substantial impact on space mission performance and safety. Astronauts, their flight surgeons, 

and the scientific community must continue to facilitate the study of gravitational physiology, 

with particular focus on the countermeasures that impact the various steps within the O2 transport 

pathway.  
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Table 5-1. % Change in Maximal Oxygen Uptake Post-Microgravity 

Exposure without Countermeasure Procedures 

Reference Model Duration 

 

%Δ 

Friman G et al. (79) BR 7 
 

-5.76 
Convertino VA et al. (40) BR 8 

 

-9.71 

Katkovskiy BS et al. (116) SF 8.7 
 

-13.00 
Katkovskiy BS et al. (116) SF 9.4 

 
-10.07 

Convertino VA et al. (35) BR 10 

 

-15.12 

Convertino VA et al. (38) BR 10 
 

-7.02 
Williams DA et al. (251) BR 10 

 

-15.49 

Hung J et al. (106) BR 10 
 

-15.00 
Convertino VA et al. (37) BR 10 

 

-8.03 

Convertino VA et al. (37) SF 10 
 

-7.45 
Convertino VA et al. (37) SF 10 

 
-4.26 

Convertino VA et al. (37) BR 10 

 

-10.19 

Levine BD et al. (137) SF 11.5 
 

-22.46 
Capelli C et al. (24) BR 14 

 

-13.21 

Stremel RW et al. (224) BR 14 
 

-12.27 
Convertino VA et al. (40) BR 14 

 
-9.09 

Convertino VA et al. (39) BR 15 

 

-13.99 

Watenpaugh DE et al. (246) BR 15 
 

-13.54 
Chase GA et al. (28) BR 15 

 

-1.95 

Trappe T et al. (236) SF 17 
 

-10.31 
Trappe T et al. (236) BR 17 

 

-6.79 

Shibata S et al. (216) BR 18 
 

-20.08 
Saltin B et al. (209) BR 20 

 
-27.27 

Stenger MB et al. (222) BR 21 

 

-12.50 

Meehan JP et al. (152) BR 28 
 

-16.49 
Stevens PM et al. (223) BR 28 

 

-20.90 

Taylor HL et al. (225) BR 28 
 

-17.40 
Greenleaf JE et al. (86) BR 30 

 
-20.49 

Lee SM et al. (134) BR 30 

 

-16.36 

Chase GA et al. (28) BR 30 
 

-10.95 
Lee SM et al. (134) BR 30 

 

-16.00 

Lee SM et al. (135) BR 30 
 

-23.00 
Bringard A et al. (20) BR 35 

 

-38.54 

Porcelli S et al. (185) BR 35 
 

-18.00 
Capelli C et al. (24) BR 42 

 
-16.61 

Katkovskiy BS et al. (116) BR 60 

 

-26.07 

Capelli C et al. (24) BR 90 
 

-32.38 

BR, bed rest; SF, spaceflight     
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Table 5-2. Estimated changes in O2 transport for an average reference 
astronaut following microgravity exposure  
Variable  Pre-Flight  60 days  360 days 

O2max, l × min-1  3.70  2.7  2.37 

max, l × min-1  23.0  17.2  17.2 

CaO2,  ml × dl-1    21.3  19.7  19.6 
CvO2,  ml × dl-1    5.2  4.0  5.8 
PvO2, Torr  16.0  14.1  18.4 
a-vO2 diff, ml × dl-1    16.1  15.7  13.8 
SaO2, %  98.0  98.0  98.0 
[Hb], g × dl-1  16.0  14.8  14.7 

O2, %Δpre-flight  -  -30.7%  -31.2% 

DO2m, %Δpre-flight  -  -17.0%  -44.2% 
O2max, maximal oxygen uptake; max, maximal cardiac output; 

CaO2, arterial O2 content; CvO2, venous O2 content; PvO2, venous PO2; 
a-v O2 diff, arterial-venous oxygen difference; SaO2, arterial 
saturation; [Hb], hemoglobin concentration; O2, convective O2 

delivery; DO2m, O2 diffusing capacity 
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Figure 5-1. Schematic illustration of the adaptations to long-duration spaceflight missions.  

Removal of gravitational forces and a decreased level of physical activity result in fluid 

redistribution, changed cardiac loading, and unloading of the musculoskeletal system. Upon 

return to gravity, spaceflight deconditioning becomes evident across multiple organ systems that 

may all contribute to a decreased post-flight cardiorespiratory function. 

 

Fluid Redistribution 
Intravascular fluid shift from legs 
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that decreases with mission 
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Progressive ↓ Cardiac mass 

Long-duration Space Missions 
In-flight 

Removal of  the head-to foot gravitational force 
 - Removal of hydrostatic pressure 
 - Altered intravascular fluid pressures 
 - Reduced mechanical stress 
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locomotory muscles 
↓ Bone mineral density 
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requirements 
↑ Protein degradation 

Return to Gravity 

Lung 
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↔ breathing mechanics 

Blood 
↓ Central Venous Pressure due to 

the ↓ in blood volume 
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↓ Type I and II fiber atrophy 
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↓ Muscle capillary volume and 
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Figure 5-2. Analysis of the percent change in O2max as a function of microgravity duration. 

Closed symbols refer to data obtained from published HDBR studies. Open symbols refer to data 

obtained from published spaceflight experiments.   
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Figure 5-3. (Panel A) Diagram of oxygen transport in skeletal muscle. Convective O2 transport 

occurs from the arteriole, across the capillary bed, to the venule.  

Diffusion of oxygen is dependent on the RBC-to-capillary surface area and distance between 

RBC and muscle mitochondria. (Panel B) Graphical representation of the convective and 

diffusive components that determine O2max in a pre-flight astronaut. Note that both 

components of the O2 transport pathway intersect to yield O2max. 
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Figure 5-4. Illustration of the influence of long-duration spaceflight on the determinants of 

O2max (dashed lines).  

(Panel A) Following 60 days microgravity O2max is primarily reduced by an impaired 

convective O2 transport (curved lines). (Panel B) After 360 days of microgravity O2max is 

determined by both impaired convective and diffusive (straight line) O2 transport.  
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Figure 5-5. Schematic illustration of the effects of microgravity on the distribution of blood 

volume.  

Note the head ward shift in blood volume and pressure. This redistribution increases 

transcapillary filtration leading to a decrease in plasma volume. During HDBR, the caudal 

translocation of blood volume distends the cardiac chambers and increases diuresis and naturesis 

via the Henry-Gaur reflex. 
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Chapter 6 - Conclusions 

 

Following integration of the investigations described in this dissertation, we concluded 

that the cardiorespiratory adaptations to exercise conditioning and microgravity deconditioning 

are widespread and are in part mediated by alterations in the hemodynamic forces placed on the 

cardiovascular system. Specifically, the increased ventricular volume load achieved via exercise 

training in the head down tilt posture increases cardiac performance and maximal O2 

consumption ( O2max). Conversely, mechanical unloading of the heart via sustained 

microgravity exposure decreases cardiac mass and function thus contributing to a significant 

decrease in maximal cardiac output, convective O2 delivery, and ultimately O2max following 

microgravity exposure. Our data also demonstrated that the hemodynamic environment within 

the peripheral circulation significantly impacts vascular function. With the gained knowledge 

that blood moves with an appropriate quasi-parabolic velocity profile we demonstrated that prior 

exposure to a high antegrade shear rate increases endothelial function as assessed via flow-

mediated dilation and the kinetics of the on-transient vasodilator response to exercise. These 

findings suggest that one potential mechanism for vascular adaptation, like that achieved with 

exercise conditioning, is exposure to elevations in antegrade shear. On the other hand, as 

reviewed in Chapter 5, the stress imposed by sustained microgravity exposure decreases vascular 

function by some undefined mechanism. A chronic low shear stress has been implicated as a 

contributing factor, but direct scientific investigations have not been performed. Collectively, the 

current dissertation extends our understanding of the stress that initiates cardiorespiratory and 

vascular function. Important preventative and therapeutic applications arise from these 

investigations when considering that exercise conditioning can be used to positively impact 

cardiovascular health across multiple populations. Furthermore, the review of microgravity 

deconditioning highlights the adverse effects of an environment lacking the necessary stimuli for 

maintenance of healthy cardiorespiratory function and control.  
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