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ABSTRACT

Integer programs (IPs) are mathematical models that can provide an optimal solution

to a variety of different problems. They have the ability to maximize profitability and

decrease wasteful spending, but IPs are NP -complete resulting in many IPs that cannot

be solved in reasonable periods of time. Cutting planes or valid inequalities have been

used to decrease the time required to solve IPs.

These valid inequalities are commonly created using a procedure called lifting. Lifting

is a technique that strengthens existing valid inequalities without cutting off feasible

solutions. Lifting inequalities can result in facet defining inequalities, the theoretically

strongest valid inequalities. Because of these properties, lifting procedures are used in

software to reduce the time required to solve an IP.

This thesis introduces a new algorithm for synchronized simultaneous approximate

lifting for multiple knapsack problems. Synchronized Simultaneous Approximate Lifting

(SSAL) requires O(|E1|SLP|E1 |+|E2 |,m
+ |E1|

2) effort, where |E1| and |E2| are the sizes of

sets used in the algorithm and SLP is the time to solve a linear program. It approximately

uplifts two sets simultaneously to creates multiple inequalities of a particular form. These

new valid inequalities generated by SSAL can be facet defining.

A small computational study shows that SSAL is quick to execute, requiring fractions

of a second. Additionally, applying SSAL inequalities to large knapsack problem enabled

commercial software to solve faster and also eliminate off the initial linear relaxation

point.
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Chapter 1

Introduction

Integer programming is a method for solving problems which can maximize revenue,

reduce costs, and optimize systems and businesses. Integer programs (IPs) are mathe-

matical models that can provide an optimal solution to a variety of different problems

and take the form maximize cT x subject to Ax ≤ b and x ∈ Z
n
+, where A ∈ R

mxn,

c ∈ R
n and b ∈ R

m. This thesis presents a new algorithm, Synchronized Simultaneous

Approximate Lifting (SSAL), to generate cutting planes. SSAL works on the multiple

knapsack problems (MKP), which is a common class of IPs.

Examples of the multiple knapsack problem are faced in everyday life when faced by

yes/no choices. A simple example is deciding who to invite to a party. There might be

problems between two friends which prevent inviting both. This type of problem also ap-

pears in industrial application. For example, which boxes should be sent on a particular

truck. Perhaps two products cannot be shipped together for fear of contamination.
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Multiple knapsack problems can be use to solve numerous optimization applications.

One such popular use is in finances and investments [6, 27, 30]. It also has application

in road and highway construction selection, which results in more efficient placement of

roads reducing traffic congestion with minimal cost [33]. It even has less conventional

uses, which includes cryptography [7]. This wide range of uses for multiple knapsack

problems makes it a powerful tool for optimization.

The most common method to solve IPs is the branch and bound algorithm which uses

the optimal solution from linear relaxations. A linear relaxation (LR) is a linear program

(LP) which has the IP formulation. Since it is an LP instead of an IP, it doesn’t have the

integer requirement. When the LR contains fractional values branch and bound creates

two nodes, also referred to as children. One child adds the constraint that a fractional

variable is less than or equal to the floor of its value from the LR. The other child adds

the constraint that the variable must be greater than or equal to its ceiling. By adding

these constraints, the non integer space between some integer points is no longer valid in

either of these problems. Running this process iteratively enumerates all integer points.

Eventually branch and bound finds the optimal solution, but it can require exponential

time. Say for example that instead of trying to pack a single truck, you are in charge of

packing every truck in a company which moves thousands of products. These problems

can become large enough that they take days or even weeks to solve. For this reason,

much research has been done in creating new inequalities, or cutting planes, that reduce

the solution times of these IPs.
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A cutting plane is a valid inequality that when added to the problem eliminates

some fraction of the LR’s feasible area. A valid inequality is satisfied by every feasible

IP solution. Applying iterations of cutting planes can force the optimal LR solution to

become an integer solution, thus the IP is solved. Facet defining cutting planes are the

theoretically strongest valid inequalities because they can fully define the space of the

problem allowing the LR to provide the optimal integer solution.

One method to obtain a facet defining inequality is through lifting. Lifting uses

the restricted polyhedron which forces some variables in the problem to specific values.

Lifting alters the coefficients on the variables of a valid inequality to make it stronger.

This thesis focuses on the development of inequalities through synchronized simultaneous

approximate lifting. The lifting technique in this thesis also has the ability to create

facet defining inequalities.

1.1 Research Motivation

Bolton [3] developed an exact synchronized simultaneous uplifting algorithm. This al-

gorithm was limited to a single constraint, which means that problems with more con-

straints cannot achieve as strong of cuts as would be possible if all constraints are

considered together. The goal of this research is to develop a synchronized simultaneous

approximate lifting algorithm, which creates stronger inequalities for the multiple knap-

sack instance. Thus presenting a new lifting method with the objective of generating

cutting planes to reduce the time to solve IPs.
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1.2 Research Contributions

This thesis presents a new synchronized simultaneous approximate lifting (SSAL) al-

gorithm for the knapsack polytope which is capable of solving problems with multiple

constraints. The input to SSAL is a multiple knapsack problem and two sets of mutually

exclusive indices. A table of feasible points based on the indices selected from the initial

valid inequality is found using LP. These points are used to calculate the approximate

synchronized simultaneous uplifting coefficients.

The primary contributions of this thesis lie in the creation of synchronized simulta-

neous approximate lifted variables for the multiple knapsack polyhedron. Results from a

small computational study show applying SSAL enabled CPLEX 10.0 [12], a commercial

integer programming software, to solve large sample problems 6% faster. In addition,

the initial linear relaxation solution decreased by between 2% in large problems and 6%

in smaller problems.

1.3 Outline

Chapter 2 contains an overview of integer programming and polyhedral theory provid-

ing the background information necessary to understand the research presented in this

thesis. Topics covered include: cutting planes and facet defining inequalities, the knap-

sack problem, and various forms of lifting including SSL. Formal definitions along with

detailed examples aid in the understanding of this thesis.
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Chapter 3 presents SSAL. First, notation is defined followed by an overview of the

algorithm. Next, the pseudocode provides the details to execute SSAL. Proof of correct-

ness and proof of advancement over previous algorithms and its ability to make facet

defining inequalities are presented. Finally, an example demonstrates SSAL produces

multiple facet defining inequalities.

The results from the computational study are found in Chapter 4. The class of

problems generated is described along with data to support the effectiveness of SSAL.

Data presented includes changes in the initial linear relaxation solution and the time

required to solve to optimality.

Finally, Chapter 5 provides a conclusion of SSAL and its computational results. This

chapter also contains ideas and extensions discovered during the development of SSAL

that can be pursued as future research.
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Chapter 2

Background Information

This chapter introduces the necessary operations research and mathmatical background

necessary to understand this thesis. Concepts discussed include integer programming,

the definition and use of cutting planes, and the concept of lifting and lifting techniques.

Through the discussion in this chapter, a basic understanding of the concepts should

lead to an appreciation of the work presented in this thesis.

2.1 Integer Programming

An integer program (IP) has a linear objective equation that can either be maximized or

minimized to meet a specific goal. It is also subject to a finite set of linear constraints,

and the variables are required to be integer. Therefore, IPs follow the form:

Maximize
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zIP = cTx

subject to

Ax ≤ b

x ∈ Z
n
+

where c ∈ <n, A ∈ <m×n and b ∈ <m.

The feasible space for an IP is defined as P = {x ∈ Z
n
+ : Ax ≤ b}. The solution

space, P contains a set of countable points. Denote N as the set of indices of an IP,

N = {1, ..., n}.

The most popular method for solving IPs is the use of the branch and bound algo-

rithm. This algorithm first solves the problem as though it were a linear program, which

typically yields a solution with non-integer variables. This related problem is called the

linear relaxation (LR) and represents the optimal solution to the problem if the vari-

ables need not be integer. The linear relaxation that corresponds to the given problem

is referred to as IPLR with the format: Maximize zLR = cT x subject to Ax ≤ b, x ∈ <n
+.

Let PLR be defined as the LR’s feasible region, PLR = {x ∈ <n
+ : Ax ≤ b}.

If the solution to IPLR is fractional, branch and bound splits this LR into two sub-

problems, which would then continue to be split into subproblems that collectively still

have every feasible integer point. If the solution to one of these subproblems is infeasible,

7



it is instantly fathomed, which means that it no longer branches and is eliminated from

the pool of problems. But if the solution is feasible, it continues to split. Though, not

every point needs to be examined and its objective value found. Every time the problem

is split, there is a possibility that the new child problem has an integer solution. In this

case, the node is no longer split. The largest of these objective values is saved and used

for comparison. If any non-integer solution is found to be lower than this value, it can

be fathomed. Once every subproblem has been eliminated, the highest integer solution

is known to be the optimal answer and the solution to the original IP.

There are many different classes of IP’s which can be used in different situations.

One class of IP is the knapsack problem (KP). This class of problems is called a knapsack

problem because of the problem faced by a traveler preparing for a trip. They are faced

with a collection of items that could be taken with them, but are limited by the amount

they can carry in their “knapsack”. There are n items they could take, each with their

own benefit cj , and weight aj. The traveler also has a maximum amount they can carry

b.

A formulation of KP has its variables xj = 1 if the item is taken, and xj = 0 if it is

not. The formulation of a simple KP is

Maximize

∑n
j=1 cjxj

subject to

∑n
j=1 ajxj ≤ b

8



xj ∈ B for all j = 1, 2, ..., n

where aj ≥ 0 ∀ j = 1, ..., n. Let PKP represent the set of feasible solutions, PKP = {x ∈

B
n :

∑n
i=1 aixi ≤ b}.

A KP is such a simple formulation which only includes one constraint, a common

extension is to have multiple knapsack constraints. Instead of only having the weight

a hiker can carry, assume that there is only so much room inside one’s knapsack or

only have so much money to buy supplies. This introduces more constraints which

would further limit the number of items that could be taken. This is referred to as a

multiple knapsack problem, or MKP. Formally, an MKP is Maximize
∑n

j=1 cjxj subject

to
∑n

j=1 ai,jxj ≤ bi for all i = 1, ..., m, xj ∈ B for all j = 1, 2, ..., n where ai,j and bi ≥ 0

for all j = 1, ..., n. Also, the set of feasible points, {xj ∈ B, Ax ≤ b} is denoted as PMKP .

Example 1:

A hiker is considering taking 12 items on his trip. Each item has a benefit, weight,

size and cost given in Table 2.1. Below is a formulation of this problem.

Item# 1 2 3 4 5 6 7 8 9 10 11 12 capacity

Benefit 20 20 18 16 15 14 13 12 12 12 11 10

Weight 20 20 18 16 15 14 13 12 12 12 11 10 115

Size 2 12 29 17 13 4 17 18 20 16 8 11 110

Cost 5 16 16 5 7 8 13 9 15 10 17 19 95

Table 2.1: Benefit, weight, size, and cost of items that may be taken in the knapsack

Maximize

20x1 +7x2 +46x3 +79x4 +9x5 +84x6 +42x7 +34x8 +91x9 +107x10 +117x11 +3x12

9



Subject to

20x1+20x2+18x3+16x4+15x5+14x6+13x7+12x8+12x9+12x10+11x11+10x12 ≤ 115

2x1+12x2+29x3+17x4+13x5+4x6+17x7+18x8+20x9+16x10+8x11+11x12 ≤ 105

5x1 +16x2 +16x3 +5x4 +7x5 +8x6 +13x7 +9x8 +15x9 +10x10 +17x11 +19x12 ≤ 95

xj ∈ {0, 1}, j ∈ {1, ..., 12}.

The optimum solution to this problem is to select items {1, 4, 6, 7, 8, 9, 10, 11} leading

to an objective benefit of 574 units. The individual would carry 110 and with a volume

of 102 and a cost of 82 units.

2.2 Polyhedral Theory

Polyhedral theory is critical to integer programming research. Numerous researchers

have applied concepts from polyhedral theory to decrease the time required to solve an

integer program [2, 9, 13]. This section describes some of the basic polyhedral concepts.

Polyhedra are convex. A set is convex if and only if for any two points in the set,

every point on the line between those two points is also in the set. The convex hull of a

set S, Sch, is the intersection of all convex sets that contain S. S ⊆ R
n

Each linear inequality produces a half space by including all points on one side and

eliminating the other from the solution space. Thus {x ∈ <n :
∑n

j=1 αjxj ≤ β} is a half

space. The intersection of finitely many half spaces is a polyhedron.
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Clearly, the feasible region of an IPLR is a polyhedron and is always convex, because

the feasible region is confined by linear constraints. Since IPs have the condition of

always needing to be integer and the space between any two integer solutions is not

integer, P is not convex, unless there is only zero or one feasible solutions. Of particular

interest to integer programming research is the relationship between P ch and PLR. This

particular research focuses on P ch
MKP = conv(PMKP ).

While P ch and PLR are similar, there is a key distinction between them. While the

PLR consists of all the space inside the constraints, the convex hull is defined by the

extreme integer points and the inequalities between them. If the constraints were ever

tight enough to make P ch and PLR the same, then the initial solution to the IPLR would

produce an integer solution and therefore eliminate the need for branch and bound which

could otherwise require exponentially many iterations.

For this reason, there is a large dedication of time in polyhedral theory spent to

creating new inequalities for IP’s. These new inequalities, or cutting planes, are valid

inequalities that are used to restrict the area in PLR without removing any points from

P . The inequality
∑n

j=1 αjxj ≤ β is a valid inequality of P ch if and only if every x ∈ P

satisfies
∑n

j=1 αjxj ≤ β.

The dimension of a polyhedron is a significant characteristic critical to research in

integer programming. The dimension of a polyhedron is the number of linearly inde-

pendent vectors that can be used to define a space. A set of vectors, v1, ..., vq ∈ <n,

is independent if any combination of vectors cannot recreate any other vector. This
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concept is expressed mathematically as
∑q

i=1 λivi = 0 if and only if there exists a unique

solution for λi = 0 for all i = 1, ..., q. Because P does not contain any feasible vectors

in its solution space, affine independence is used instead.

Affine independence uses a set of points to determine the dimension of a space. A set

of points x1, x2, x3, ..., xr ∈ <n
+ is affinely independent if and only if,

∑r
j=1 λjxj = 0 and

∑r
j=1 λj = 0 is uniquely solved by λj = 0 for all j = 1, ..., r. Since vectors can be made

from two points, there has to be one additional point to act as the origin to determine

the dimension of a set of points. For this reason, the dimension of a space equals the

maximum number of affinely independent points minus one.

Every valid inequality induces a face on a polyhedron. The valid inequality,
∑n

j=1 αjxj ≤

β, defines a face F ⊆ P ch of the form F = {x ∈ P ch :
∑n

j=1 αjxj = β}. Any polyhedron

can be defined as a set of faces. While any face can restrict the space of a polyhedron,

some are redundant to others either because they are less restrictive or because they

have a smaller dimension. The minimum set of faces that define the convex hull consists

of only facets. Facets are the faces that are one dimension less than the polyhedron,

and make the strongest inequalities. The following simple 2-dimensional example shows

how certain inequalities are more effective than others.

Example 2

Consider the following integer program:

Maximize

5x1 + 6x2

12



Figure 2.1: 2-Dimensional IP example

Subject to

x1 + 3x2 ≤ 9

x1 + x2 ≤ 4

x1, x2 ∈ Z+.

Figure 2.1 provides a graphical view of this IP. The first constraint x1+x2 ≤ 4 passes

through the points (0, 4), B, C , D, (3, 1), and (4, 0). The second constraint x1 +3x2 ≤ 9

passes through points A and B. Clearly PLR is defined by these two constraints and

the x1 and x2 axes. The solution to the LR is the point B which is (1.5, 2.5) giving a z

value of 22.5. The large circles represent P , the feasible integer points.
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Clearly, PLR is not P ch because there is a non-integer vertex B. Both original

constraints induce proper faces of P ch, at least one point in P satisfies each inequality at

equality. Since the dimension of P ch is two, only 1 dimensional faces are facets. Using

affine independence, we can examine both these constraints for their dimension. The

first constraint, x1 +x2 ≤ 4, passes through several feasible points, (4,0),(3,1) and (2,2),

but since they are all in a line, only 2 of them are affinely independent. Thus, this

constraint is facet defining. However, the second constraint, x1 + 3x2 ≤ 9, is only met

at equality by the integer point A. Thus, its dimension is 0 and it is not facet defining.

In this case, the solution to the LP is fractional or results in a non-integer solution.

To fully define the convex hull, a new facet defining inequality can be added to cut off

the rest of the linear relaxation space. This new constraint x1 + 2x2 ≤ 6 is represented

as the dotted line in Figure 2.1. With this final constraint added, the solution space,

PLR becomes the same as P ch and the solution to IPLR would be the optimal integer

solution.

There are many different strategies for creating new constraints, and most of them

are very specific to the type of problem that one is solving. Sometimes the constraints

created are far from the solution space or are cutting off very little linear relaxation space.

This gave rise to a process called lifting which is used to create stronger inequalities.

Lifting is the focus of the next section and is the basis of this thesis.

14



2.3 Lifting

The purpose of lifting is to use weak valid inequalities and transform them into stronger

valid inequalities. This is done by introducing new variables into the inequality or

changing existing coefficients, which allows the inequality’s dimension to increase and

may enable it to become facet defining.

Lifting was originally developed by Gomory [16], and has expanded to many dif-

ferent classes of lifting. Lifting begins with a restricted polyhedron. Given set E =

{e1, e2, ..., e|E|} ⊆ N and K = (k1, ..., k|N\E|), then the restricted set of feasible points is

PE,K = {x ∈ Zn : Ax ≤ b, xe|E|+1
= k1, e2 = k|E|+2, ..., xe|N |

= k|N\E|}. Lifting requires

a valid inequality
∑

i∈N αixi ≤ β over P ch
E,K and creates a valid inequality of the form

∑
i∈N\E α′

ixi +
∑

i∈E α′
ixi ≤ β ′ for P ch.

There are four classifications of different type of lifting techniques. These techniques

are classified based upon the size of E, values of α′ and β ′, values of K and also how

many different inequalities are obtained. The four classes are: sequential or simulta-

neous lifting, exact or approximate lifting, up, down or middle lifting, and single or

synchronized lifting.

So a specific lifting technique might be classified as approximate, synchronized, si-

multaneous, up lifting. To the best of my knowledge, this thesis is the first research

done in this area.
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2.3.1 Up, Down, and Middle Lifting

When lifting was originally developed, there was only up lifting, and it remains the most

commonly studied variety of lifting. This version of lifting assumes the variables that are

about to be lifted into the inequality have an initial coefficient, or K, equal to 0. Any

up lifting techniques would then determine how high the coefficient can be increased to

make the new inequality still valid for all possible solutions in the polyhedron.

Down lifting is different in that it starts with K = u where u is a predetermined

upper bound which causes the inequality being lifted to be overly restrictive. These

coefficients are then systematically decreased until they are valid for all solutions which

were feasible in the original formulation. This is much less commonly studied than up

lifting. But even less studied is middle lifting. In middle lifting, the coefficients are

neither at an upper bound or lower bound to start and can be both increased and/or

decreased.

2.3.2 Exact vs. Approximate Lifting

Exact lifting seeks to increase the α′ coefficients and/or decrease β as far as possible

while still remaining valid. Any further manipulation of these coefficients would result in

an invalid inequality because exact lifting techniques put their values exactly to the limit.

This results in the most restrictive inequalities possible, but require intense calculation.

This can result in a process which is actually harder computationally to solve than then

original problem as shown in Gutierrez’s work [20]. While exact lifting was the original
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form of lifting, highly complex problems have become commonplace in IP formulation,

and most exact lifting techniques are too complex to be implemented which gave rise to

approximate lifting.

Approximate lifting is a branch of lifting that does not result in an optimally re-

strictive inequality. But through giving up this exactness, also allows huge reductions in

runtime to determine α′ and β. This allows researchers to create lifting techniques that

can quickly create coefficients that maintain a valid inequality, but it still has room to be

improved more. Even if they are not exact, they still help to eliminate linear relaxation

space which helps increase the solution time of IP’s.

2.3.3 Single vs. Synchronized Lifting

Further types of lifting are single and synchronized lifting. Nearly all current lifting

techniques are single lifting which generate exactly one inequality when applied. Syn-

chronized lifting is a technique, originally used in Jennifer Bolton’s thesis and refers to

an algorithm that is capable of creating numerous inequalities as a single instance.

2.3.4 Sequential vs. Simultaneous Lifting

Another classification of lifting involves the number of variables that are added to the

equation at a time. There are two categories and they describe the size of E. In sequen-

tial lifting, |E| = 1, meaning that only a single variable is being lifted. Simultaneous

lifting lifts multiple variables at a time, meaning |E| ≥ 2. Unlike the other categories
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of lifting, where one type is studied substantially more than the other, both sequential

and simultaneous lifting are popularly studied.

Sequential lifting seeks to modify the coefficients of variables individually and in

succession. The order in which the variables are lifted has an effect on the inequalities

that are produced. The single sequential up lifting algorithm assumes that Σn
j=2αjxj ≤ β

is valid for P ch
{1}, and seeks to create a valid inequality α1x1 + Σn

j=2αjxj ≤ β for P ch.

Several individuals have performed research on sequential up lifting [4, 5, 31]

Simultaneously up lifting the variables of E results in inequalities of the form α
∑

i∈E wixi+

∑
i∈N\E αixi ≤ β, where wi ∈ R is a weight, as described by Gutierrez [20]. The goal

is to seek the maximum α value for which this inequality is valid. Gutierrez also pro-

vided theory to show that the exact lifting coefficient can be obtained by solving a single

integer program.

2.3.5 Prior Lifting Research

With an understanding of the distinct classes of lifting, prior research can now be clas-

sified into these categories of lifting. Thus, there are 24 different types of lifting. This

section describes much of the prior work relating to lifting and categorizes them into

these categories.

By far the most popular is single sequential up lifting. Some exact algorithms can be

found in [5, 20, 21, 24, 25, 31]. In the node packing polyhedron, [10, 31] provide some

results.
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Sequence independent lifting [1, 17, 29] is considered a single approximate sequen-

tial uplifting method with Balas [4] also providing research on approximate sequential

uplifting, but his method generates numerous inequalities and thus is considered as a

synchronized method.

Hooker and Easton [14] developed a linear time algorithm to simultaneously lift

variables into cover inequalities for P ch
KP . Gutierrez’s method can also perform single

exact simultaneous up lifting. Since then, [18, 19] expanded on this theory by creating

pseudopolynomial or polynomial time algorithm that allows multiple simultaneously

lifted sets to be sequentially lifted into a valid inequality for P ch
KP . [26, 11] provide some

exact simultaneous lifting results on the node packing polyhedron.

Zemel [32] developed the first exact method to simultaneously lift multiple variables

in 1978, but this method required the use of exponentially many integer programs and

can be applied only to cover inequalities from the binary Knapsack Problems. Zemel’s

method generates many inequalities by finding the extreme point of the polar, but is too

computationally intensive to be efficiently implemented. In actuality Zemel’s method

generates numerous inequalities that are all simultaneously lifted. Thus, his method

should have been classified as a synchronized simultaneous lifting algorithm.

Although sychronized lifting was originally created by Zemel but was later given the

name of synchronized lifting. Bolton generated a polynomial time exact synchronized

simultaneous uplifting technique [3]. Later both Beyer and Harris extended upon these

results [8, 22]. This thesis is also an extension of their research. Bolton’s synchronized
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simultaneous lifting (SSL) which is critical to this thesis is briefly described next.

2.3.6 Exact Synchronized Simultaneous Up Lifting

The original SSL created by Jennifer Bolton requires a knapsack problem with a sin-

gle constraint and two mutually exclusive lifting sets E1 and E2. SSL outputs valid

inequalities of the form αE1

∑
i∈E1

xi + αE2

∑
i∈E2

xi ≤ β. Her algorithm requires O(n2)

effort.

To begin SSL, the feasible combinations of the two sets are listed as ordered pairs.

This is achieved by finding the maximum number of variables from E1 that can be

included together and have a feasible solution. This number is then decremented by

1, and as many variables in E2 are introduced. This continues until there are no more

variables included from E1.

Next, beginning at the first extreme point on the axis, the slope of the lines from the

first point to all other points is found. The line that does not eliminate any points is

the most extreme. The slope of the line is computed through finding α values for each

set. The value of αE1
is found by taking (q − q∗), where p∗ and q∗ are the quantities

from the first and second set, respectively, feasible at the first point, and p and q are the

quantities from the first and second set, respectively, feasible at the second point. The

coefficient αE2
is found by taking (p∗ − p). Finally, β is equal to (p∗q − q∗p).

The ratio of αE2
/αE1

gives the slope of the line between the two points. By selecting

the lowest ratio (or highest, depending on which axis is used as the starting point), the
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next extreme point can be found. Should a tie occur in the ratio of the α values, the

point farthest down the list is selected. This corresponds to two or more points on the

same line with the steepest slope. This extreme point is now considered (p∗, q∗), and the

slope of the lines to all subsequent points is found. This process is repeated until the

final extreme point candidate located on the other axis is selected as an extreme point.

To demonstrate SSL, consider the first constraint from the MKP Example 1 with an

altered b to better illustrate the algorithm:

20x1+20x2+18x3+16x4+15x5+14x6+13x7+12x8+12x9+12x10+11x11+10x12 ≤ 90

For this example, arbitrarily set E1 = {1, 2, 3, 4, 5} and E2 = {6, 7, 8, 9, 10, 11, 12}.

As is seen above, the a coefficients have been sorted for each of the sets. All the feasible

combinations of sets are found by starting the count for E1 at its maximum possible of 5

which would allow no variables from E2. Since (5, 0) is feasible, it attempts (5, 1), which

is infeasible. The algorithm then attempts (4, 1) which is feasible. The point (4, 2) is

also feasible and then (4, 3) is infeasible. This procedure continues until it generates the

following set of points in Table 2.2.

These are the potential candidates to be extreme points. These points can be reduced

to the obvious set of candidate extreme points as shown in Table 2.3. The algorithm

begins with the first point and determine the slopes to every other point. The results

are in the table below.

Next, the lowest slope is selected which is 1
2

produced when E1 = 4 and E2 = 2. This

can more clearly be seen in Figure 2.2 with the bold line having the minimum slope.
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count feas E1[count] feas E2[count] Feasible

0 5 0 y
0 5 1 n
1 4 1 y
1 4 2 y
1 4 3 n
2 3 3 y
1 3 4 n
1 2 4 y
1 2 5 y
1 2 6 n
4 1 6 y
1 1 7 n
6 0 7 y

Table 2.2: Feasible point data

count feas E1[count] feas E2[count]

0 5 0
1 4 2
2 3 3
3 2 5
4 1 6
6 0 7

Table 2.3: List of candidate extreme points

It is clearer to see in the graph that only the 1
2

slope line would result in an in-

equality that doesn’t cut off any feasible points. This line is represented by the in-

equality 2
∑

i∈E1
xi +

∑
i∈E2

xi ≤ 10. This second point is used as a new start point,

and the list is once again reviewed for the lowest slope. This is repeated until the

last point is chosen. When completed, the algorithm results in two more inequalities,

3
∑

i∈E1
xi + 2

∑
i∈E2

xi ≤ 16 and
∑

i∈E1
xi +

∑
i∈E2

xi ≤ 7 shown below in the graph.

Bolton also provided conditions for when these inequalities are facet defining. In this
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E1 E2 αE1
αE2

αE2

αE1

4 2 2 1 1

2

3 3 3 2 2
3

2 5 5 3 5
3

1 6 6 4 2
3

0 7 7 5 5
7

Table 2.4: Values for the first SSL inequality

particular case, none of these inequalities meet her condition and are not facet defining

inequalities.

This algorithm provides good inequalities, but it relies on the original problem only

having a single constraint. It doesn’t provide as strong of results when moving into

problems with multiple constraints. For this reason, the next chapter of this thesis is

about a new algorithm which can create good valid inequalities for multiple knapsack

problems.
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Figure 2.2: Example 2 SSL first constraint
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Figure 2.3: Example 2 SSL complete E1 − E2 graph
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Chapter 3

SSAL Algorithm

This chapter formally introduces the Synchronized Simultaneous Approximate Lifting

(SSAL) algorithm for MKP’s. SSAL uplifts two sets into an arbitrary inequality simul-

taneously and generates multiple inequalities of the same form. Discussed in this chapter

is an overview of SSAL introducing the notation. This is followed by the pseudocode for

SSAL and the theoretical argument of correctness along with the ability to make facet

defining inequalities. Finally, an example illustrates SSAL and shows that it creates new

inequalities without the need for solving IP’s which could possibly take longer than the

original problem to solve.

One major weakness of Bolton’s is that her algorithm is restricted to a single knap-

sack. The mechanics of extending Bolton’s algorithm to multiple knapsack soley hangs

on the identification of feasible points. The remainder of the algorithm is the same.

At the outset of this research, a dynamic program was built to identify the set of
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feasible points. This algorithm required far to much effort to generate these feasible

points, and any computational benefit from the cuts was wasted in the generation of the

set of feasible points. It was clearly necessary to find a faster or approximate method to

find a set of ”candidate extreme points”.

Synchronized Simultaneous Approximate Up Lifting (SSAL) combines SSL with an

approximate set of point that may or may not be feasible. Thus, the inequalities are

not as strong as they may be because the algorithm may state that a point is feasible,

when in actuality it is not.

Linear programs are solved to generate these approximate extreme points. Briefly, an

LP is set up with the original IP constraints and an additional constraint
∑

i∈E1
xi = e1

where e1 ranges from 0 to |E1|. The objective function ze1
= maximizes

∑
i∈E2

xi. The

candidate feasible point becomes (e1, bze1
c). These points are then fed into Bolton’s

algorithm and the inequalities are generated.

Formally, this process breaks into two subroutines. The first identifies the feasible

points and is called Find Points . The inputs to SSAL are an MKP instance with n

variables and m constraints and two mutually exclusive nonempty sets E1, E2 ⊂ N .

The psuedocode is as follows:

Find Points Subroutine

Initialization:

Set e1 := |E1|.
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Set numpoints := 0.

Main Step:

while e1 ≥ 0

Solve the following linear program:

ze1
= Max

∑
i∈E2

xi

subject to Ax ≤ b

∑
i∈E1

xi = e1

0 ≤ x ≤ 1.

if the LP is feasible, then

feaspointse1
[numpoints] :=e1.

feaspointse2
[numpoints] := bze1

c.

numpoints := numpoints + 1.

Set e1 := e1 − 1.

Output:

Report feaspointse1
, feaspointse2

and numpoints.

Once the number of feasible points and the matrices with their values have been

found, they can be passed into the second subroutine. This next subroutine identifies

the inequalities created from these candidate extreme points.
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Generate Valid Inequalities Subroutine

Initialization:

Set loc := 0.

Set numconst := 0.

Set sumin := 0.

Main Step:

Horizontal inequality

Set validineqα1
[numconst] := 1.

Set validineqα2
[numconst] := 0.

Set validineqβ[numconst] := feaspointse1
[0].

Set numconst := numconst + 1.

Angled inequality

while loc < numpoints

Set estart
1 := feaspointse1

[loc].

Set estart
2 := feaspointse2

[loc].

Set α := M where M is arbitrarily high.

Set k := loc + 1.

while k ≤ numpoints
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Set eend
1 := feaspointse1

[k].

Set eend
2 := feaspointse2

[k].

Set αnew := (estart
1 − eend

1 )/(eend
2 − estart

2 ).

if αnew ≤ α, then

Set α := αnew.

Set loc := k.

Set slope1 := (estart
1 − eend

1 ).

Set slope2 := (eend
2 − estart

2 ).

Set validineqα1
[numconst] := slope2.

Set validineqα2
[numconst] := slope1.

Set validineqβ[numconst] := estart
1 ∗ slope2 + estart

2 ∗ slope1.

Set numconst := numconst + 1.

Vertical inequality

Set validineqα1
[numconst] := 0.

Set validineqα2
[numconst] := 1.

Set validineqβ[numconst] := feaspointse2
[numpoints].

Set numconst := numconst + 1.

Output

Report validineqα1
, validineqα2

, validineqβ and numconst as the valid inequalities
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of the PMK instance.

3.1 SSAL Theoretical Results

Now that the procedure of SSAL has been examined, we must confirm that the inequal-

ities created by SSAL are indeed valid. The following proof shows that each inequality

returned by SSAL is valid.

Theorem 3.1.1 The inequality
∑

i∈E1
αE1

xi +
∑

i∈E2
αE2

xi ≤ β returned from SSAL for

an MKP instance is valid for P ch
MK.

Proof : Given an MKP instance, assume that SSAL returns an inequality of the form

∑
i∈E1

αE1xi +
∑

i∈E2
αE2xi ≤ β. Let x′ be any point in PMK and let

∑
i∈E1

x′
i = p and

∑
i∈E2

x′
i = q.

One step in SSAL solved the LP max
∑

i∈E2
xi subject to Ax ≤ b,

∑
i∈E1

xi = p,

x ∈ Rn
+. The solution to this LP has a value of at least q. Therefore, SSAL stores the

point (p, r) for some r ≥ q and r ∈ Z within feaspoints.

The algorithm assures that none of the feaspoints violate any of the valid inequali-

ties. This is shown as follows. If loc has a value less than the point (p, r), then eventually

(p, r) is tested in the loop and thus an αnew := (estart
1 − p)/(r − estart

2 ). If αnew > α, then

αE1p + αE2r ≤ β and the result inequality is valid. Now if αnew ≤ α and no other

updates occur to α, then αE1p + αE2r = β.

31



Finally if αnew ≤ α and another updates occur to α, then the slope of the line has

been adjusted. In such a situation, the inequality generated during this iteration has

αE1p + αE2r < β.

It is evident that
validineqα1

[j]

validineqα2
[j]

<
validineqα1

[k]

validineqα2
[k]

for all k ≥ j. Let loc be such that

feaspointse1
[loc] ≤ p − 1. Due to these slopes having this property and the fact that

the polyhedron is convex, it must be that αE1p + αE2r < β.

Since αE1p + αE2q ≤ αE1p + αE2r and the point (p, r) satisfies each inequality, x′

satisfies each generated inequality. Thus,
∑

i∈E1
αE1xi +

∑
i∈E2

αE2xi ≤ β is a valid

inequality of P ch
MK .

2

Now that the inequalities provided by SSAL are shown to be valid, it is natural to

examine how much effort the algorithm takes to create them. The following result shows

that SSAL is a polynomial time algorithm.

Theorem 3.1.2 The SSAL algorithm requires O(|E1|SLP|E1|+|E2 |,m
+ |E1|

2) where SLPn,m

is the time required to solve an linear program with m constraints and n variables.

Proof : The findpointssubroutine has an initialization that requires O(1). The Main

Step solves |E1| linear programs and stores the desired numbers in each iteration. Ob-

serve that the linear programs are identical except for the right hand side of one con-

straint. Thus, swihching between linear programs requires O(1) effort. Since these are

MKP instances, only the variables in the E1 and E2 sets need to be considered. Conse-
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quently, the main step requires O(|E1|SLP|E1 |+|E2|,m
) effort. Thus this subroutine runs in

O(|E1|SLP|E1 |+|E2 |,m
) effort.

The Generate Valid Inequalities Subroutine has an initialization phase that trivially

requires O(1) effort. Both the horizontal and vertical inequalities also require O(1) effort.

The angled inequalities, has two loops that are both bounded by the size of E1. Each

loop requires O(1) effort. Thus, this routine requires solving |E1|+1 linear programs.

Thus, the SSAL algorithm requires O(|E1|SLP|E1 |+|E2 |,m
+ |E1|

2) effort.

2

Since linear programs can be solved in polynomial time [23], SSAL is a polynomial

time algorithm. Now that the psuedocode, validity, and runtime have all been presented,

an example problem can be presented. This small example would only take a fraction

of a seconds to solve, but it demonstrates the algorithm and provides some areas of

discussion.

3.2 SSAL Example

Recall the MKP from Example 1 regarding the hiker preparing for his trip. The con-

straints of this model are

20x1+20x2+18x3+16x4+15x5+14x6+13x7+12x8+12x9+12x10+11x11+10x12 ≤ 115

2x1+12x2+29x3+17x4+13x5+4x6+17x7+18x8+20x9+16x10+8x11+11x12 ≤ 105

5x1 +16x2 +16x3 +5x4 +7x5 +8x6 +13x7 +9x8 +15x9 +10x10 +17x11 +19x12 ≤ 95.
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Furthermore, let E1 = {1, 2, 3, 4, 5} and E2 = {6, 7, 8, 9, 10, 11, 12}.

This subroutine starts by initializing e1 to 5 and numpoints to 0. Next, the Find

Points Subroutine solves several LPs of the form: ze1
= Max

∑
i∈E2

xi, subject to Ax ≤ b,

∑
i∈E1

xi = e1, 0 ≤ x ≤ 1.

In this first iteration the LP is

Maximize

z5 = x6 + x7 + x8 + x9 + x10 + x11 + x12

Subject to

20x1+20x2+18x3+16x4+15x5+14x6+13x7+12x8+12x9+12x10+11x11+10x12 ≤ 115

2x1+12x2+29x3+17x4+13x5+4x6+17x7+18x8+20x9+16x10+8x11+11x12 ≤ 105

5x1 +16x2 +16x3 +5x4 +7x5 +8x6 +13x7 +9x8 +15x9 +10x10 +17x11 +19x12 ≤ 95

x1 + x2 + x3 + x4 + x5 = 5

0 ≤ x ≤ 1.

The optimal solution is z5 = 2.416 with x∗
5 = (1, 1, 1, 1, 1, 0, 0, 0, 0.4166, 0, 1, 1). This

solution creates a new feasible point on the e1−e2 graph. This point is e1 = 5 and e2 = 2

which is the objective function rounded down. These values are saved as feaspointse1
[0]

:=5 and feaspointse2
[0] := 2. numpoints increments to 1, e1 is reduced by 1 to 4, and

this step is repeated for every value of e1 until it reaches 0. This results in points shown

in Table 3.1.

Next the algorithm moves to the Generate Valid Inequalities Subroutine. This sub-
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numpoints feaspointse1
[numpoints] ze1 feaspointse2

[numpoints]

0 5 2.416 2
1 4 3.995 3
2 3 5.482 5
3 2 6.593 6
4 1 6.947 6
5 0 7 7

Table 3.1: Reported values from Find Points Subroutine

routine is initialized by setting loc, numconst, and sumin to 0. First it creates an

inequality from the first point that has the maximum number of e1. This is repre-

sented generically by setting validineqα1
[numconst] := 1, validineqα2

[numconst] := 0

and validineqβ[numconst] := feaspointse1
[0]. In this example, feaspointse1

[0] = 5 and

the valid inequality is x1 + x2 +x3 +x4 + x5 ≤ 5. The variable numconst would then be

incremented by 1 so the next inequality is saved in the next cell of each array. There is

only one horizontal inequality.

Next sloped inequalities can be calculated. This begins by first saving the information

of the starting point. Since the algorithm just began, this is the first point or when

numpoints = 0, (5,2). Using the data reported from the Find Points Subroutine, estart
1 :=

5 and estart
2 := 2 and α is set arbitrarily high. Any value higher than |E2| is large enough

for even the most extreme conditions because the possible slopes are equal to the change

in e2 divided by e1, and since e1 changes by a minimum of 1, the greatest value of αnew

is the change in e2 which is the size of |E2|.

Then for every point after the starting point, the slope of a line that passes through

both the starting point and this possible ending point is calculated. This is done by first
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obtaining these new values from the Find Points Subroutine. In this example, the first

possible ending point is when numpoints=1; This results in the following assignments:

eend
1 := 4 and eend

2 := 3.

These new values allow αnew to be calculated using the equation αnew = (estart
1 −

eend
1 )/(eend

2 − estart
2 ) or in this case, αnew = 5−4

3−2
= 1. This value of αnew is compared

to the current α, which is still arbitrarily high. Since it is less than this value, α is

assigned a new value of 1. This same procedure is continued for every possible ending

point until the lowest value of α is found. Table 3.2 of the possible ending point for this

first iteration:

numpoint eend
1 eend

2 αnew slope1 slope2

1 4 3 1 1 1
2 3 5 2

3
2 3

3 2 6 3
4

3 4
4 1 6 1 4 4
5 0 7 1 5 5

Table 3.2: Possible ending points for start point: numpoints=0

The lowest α in Table 3.2 is 2
3

and occurs between (5,2) and (3,5). The slopes from

these two points can assign the coefficients and calculate the β for new valid inequalities.

The inequality for the changes in e1 and e2 can be made using the following variables

and values: slope1 := (estart
1 − eend

1 ) = 5 − 3 = 2, slope2 := (eend
2 − estart

2 ) = 5 − 2 = 3,

and β := estart
1 ∗ slope2 + estart

2 ∗ slope1. These would be saved as validineqα1
[0] :=

3, validineqα2
[0] := 2, validineqβ[0] := 5 ∗ 3 + 2 ∗ 2 = 19. Which would represent the

valid inequality 3
∑

i∈E1
xi + 2

∑
i∈E2

xi ≤ 19. The variable numconst is incremented

again after each inequality’s values are added to the array.
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This process is then repeated with this end point as the new start point with estart
1 :=

3 and estart
2 := 5. Each point following this point is reassessed for a new lowest slope.

The possible ending points for this second iteration are in Table 3.3. The lowest α is

once again used to determine the coefficients and β for new valid inequalities. These

represent the following inequality:
∑

i∈E1
xi +

∑
i∈E2

xi ≤ 8.

numpoint eend
1 eend

2 αnew slope1 slope2

3 2 6 1 1 1

4 1 6 2 2 1
5 0 7 3

2
3 2

Table 3.3: Possible ending points for start point: numpoints=2

numconst validineqα1
[numconst] validineqα2

[numconst] validineqβ[numconst]

0 1 0 5
1 3 2 19
2 1 1 8
3 1 2 14
4 0 1 7

Table 3.4: Arrays for inequality values

When the final point is used as the ending point, the algorithm makes the final an-

gled inequality. In this example, there is one more inequality,
∑

i∈E1
xi + 2

∑
i∈E2

xi ≤

14. Next, SSAL creates the final cut, the vertical inequality. This final inequality

uses only the final point, and takes the form
∑

i∈E2
xi ≤ 7. This is the final in-

equality and with the addition of its values to the arrays, the algorithm is complete.

All the values for the valid inequalities which are stored in their respective arrays,

validineqα1
[numconst], validineqα2

[numconst], and validineqβ[numconst], are used to

create new inequalities. These arrays can be seen in Table 3.4 For this example, there
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are 5 cuts created and they are:

∑
i∈E1

xi ≤ 5

3
∑

i∈E1
xi + 2

∑
i∈E2

xi ≤ 19

∑
i∈E1

xi +
∑

i∈E2
xi ≤ 8

∑
i∈E1

xi + 2
∑

i∈E2
xi ≤ 14

∑
i∈E2

xi ≤ 7

These valid inequalities from SSAL can be examined to determine their usefulness in

solving the IP. As stated before, the strongest inequalities are facet defining inequalities.

To determine whether the inequalities are facet defining, first we must examine the

dimension of the polytope. PMKP is fully dimensional and so its dimension is 12.

This implies that a facet defining inequalities must be 11-dimensional or has 12 affinely

independent points on its face. In this example problem, two of the generated inequalities

are facet defining: 3
∑

i∈E1
xi + 2

∑
i∈E2

xi ≤ 19 and
∑

i∈E1
xi +

∑
i∈E2

xi ≤ 8.

x1 1 1 1 1 1 1 1 1 0 1 1 1
x2 1 1 1 1 1 1 1 0 1 0 1 1
x3 1 1 1 1 1 1 1 1 0 0 0 0
x4 1 1 1 1 1 1 1 0 1 1 0 1
x5 1 1 1 0 1 1 1 1 1 1 1 0
x6 1 0 0 0 0 0 0 1 1 1 1 1
x7 0 1 0 0 0 0 0 0 0 0 0 0
x8 0 0 1 0 0 0 0 1 1 1 1 1
x9 0 0 0 1 0 0 0 0 0 0 0 0
x10 0 0 0 0 1 0 1 1 1 1 1 1
x11 1 1 1 1 0 1 1 1 1 1 1 1
x12 0 0 0 0 1 1 0 1 1 1 1 1

Figure 3.1: Affinely independent points for 3
∑

i∈E1
xi + 2

∑
i∈E2

xi ≤ 19
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Figures 3.1 and 3.2 provide 12 feasible affinely independent points. This means that

these two SSAL cuts induce 11-dimensional faces and are therefore facet defining to

PMKP
ch .

x1 1 1 1 1 1 1 1 1 0 1 1 1
x2 0 0 0 0 0 0 0 0 1 0 1 1
x3 0 0 0 0 0 0 0 1 0 0 0 0
x4 0 0 0 0 0 0 0 0 1 1 0 1
x5 1 1 1 1 1 1 1 1 1 1 1 0
x6 0 1 1 1 1 1 1 1 1 1 1 1
x7 1 0 1 1 1 1 1 0 0 0 0 0
x8 1 1 0 1 1 1 1 1 1 1 1 1
x9 1 1 1 0 1 1 1 0 0 0 0 0
x10 1 1 1 1 0 1 1 1 1 1 1 1
x11 1 1 1 1 1 0 1 1 1 1 1 1
x12 1 1 1 1 1 1 0 1 1 1 1 1

Figure 3.2: Affinely independent points for
∑

i∈E1
xi +

∑
i∈E2

xi ≤ 8

This ability to make facet defining inequalities more consistently than previous al-

gorithms is a good indicator of the usefulness of the algorithm. This is a small example

problem so the appearance of facet defining inequalities shows the ability to make facet

defining inequalities even when not working on large problems.

3.3 Advancements of SSAL

One natural question is whether or not SSAL is better than SSL examined on the

individual constraints. This example also shows that SSAL has stronger inequalities

than SSL applied on each individual constraint and thus it has the potential to be useful

in practice.
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Consider the example problem and let the initial sets E1 and E2 be the same as in

the SSAL example. The SSL algorithm begins the same as SSAL in that it sets e1 to

its maximum and works its way down. SSL also calculates a set of feasible points which

are the optimal solution to

Maximize

zj
e1

=
∑

i∈E2
xi

subject to

Ax ≤ bj

∑
j∈E1

xj = e1

x ∈ {0, 1}

Due to the knapsack structure, these problems are simple enough that Bolton created

a linear time algorithm to determine these feasible points. Thus, SSL should be applied

to each constraint. Clearly, there are two methods to perform this. One adds valid

inequalities based upon each constraint. The second and clearly stronger version finds

the feasible points for each constraint and then takes the minimum. Valid inequalities can

be created from these feasible points. SSAL is still better than this stronger application

as the following discussion shows.

The first constraint has (5,2), (4,4), (3,5), (2,7), (1,7), (0,7) as potential extreme

points. Continuing for the second and third constraints yields Table 3.5. Clearly, the

candidate point would be the minimum for a particular e1 value. Thus, the set of
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potential extreme points are (5,2), (4,4), (3,5), (2,6), (1,6), (0,7).

e1 z0
e1

z1
e1

z2
e1

ze1

5 2 3 4 2

4 4 5 5 4

3 5 6 6 5

2 7 6 6 6

1 7 7 6 6

0 7 7 7 7

Table 3.5: SSL IP solutions

These values can then be used as points to make valid inequalities. As before e1 values

can be saved in feaspointse1
[numpoints] and ze1

can be saved in feaspointse2
[numpoints]

Since both SSL and SSAL make constraints using the same methods, we only need to

examine the points to determine the difference in strength of the output inequalities.

The table of both algorithms points can be found in Table 3.6.

numpoints feaspointse1
SSALfeaspointse2

SSLfeaspointse2

0 5 2 2
1 4 3 4

2 3 5 5
3 2 6 6
4 1 6 6
5 0 7 7

Table 3.6: Points reported from SSAL and SSL

This example problem only has one point change, but this is most likely caused by the

original formulation having 3 similarly formed inequalities. With more constraints that

vary more in nature, SSL loses its ability to create strong inequalities due to its inability

to use multiple constraints at a time. The point that changes in this example is when

feaspointse1
[numpoints] = 4. While SSAL provides the feaspointse2

[numpoints] value
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Figure 3.3: SSL and SSAL constraint differences

of 3, SSL provided a less restrictive value of 4. This point is extreme and therefore would

be used when creating new constraints during the Generate Valid InequalitiesSubroutine.

The effect on this inequality can be seen more clearly in Figure 3.3.

The thinest line shows the inequalities generated only by SSL and the regular line

shows the inequality generated by just SSAL, while the thickest lines show the inequali-

ties that are present in both SSL and SSAL. Each point that is eliminated by using SSAL

instead of SSL, has the possibility of affecting two inequalities. This example only affects

one because the new point (4,4) sits on a pre-existing inequality
∑

i∈E1
xi +

∑
i∈E2

xi ≤ 8,

so this inequality remains the same. The other inequality is affected. The SSL inequal-

ity 2
∑

i∈E1
xi +

∑
i∈E2

xi ≤ 12, is still valid as all its output equalities are but is not as
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restrictive on the inequality produced by SSAL. This inequality is clearly less restric-

tive than 3
∑

i∈E1
xi + 2

∑
i∈E2

xi ≤ 19 produced by SSAL, but what does that actually

mean in terms of dimension. There are only 7 affinely independent points that meet

2
∑

i∈E1
xi +

∑
i∈E2

xi ≤ 12 at equality. These points are shown as a matrix in Figure 3.4.

x1 1 1 1 1 1 1 1
x2 1 1 1 1 1 1 1
x3 1 1 1 1 1 1 1
x4 1 1 1 1 1 1 1
x5 1 1 1 1 1 1 1
x6 1 0 0 0 0 0 0
x7 0 1 0 0 0 0 0
x8 0 0 1 0 0 0 0
x9 0 0 0 1 0 0 0
x10 0 0 0 0 1 0 1
x11 1 1 1 1 0 1 1
x12 0 0 0 0 1 1 0

Figure 3.4: Affinely independent points for 2
∑

i∈E1
xi +

∑
i∈E2

xi ≤ 12

Since there are only 7 affinely points, that means that the dimension of the inequality

is 6. This SSL inequality is 6 dimensions smaller than PMKP
ch , which means that it is

not facet defining. Notice that this inequality only has feasible points at the (5,2) point.

This is because there are no feasible points at the (4,4) point. This is what allows SSAL

to cut that point off and create a stronger inequality. This proves that the inequalities

created by SSAL can be stronger than those created by SSL.
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Chapter 4

SSAL Computational Results

Now that we have seen the theoretical advances of SSAL over previous algorithms, an

obvious question is how well it performs in practice? In this chapter, computational

studies of SSAL are reported. First, the creation of the sample problems is described.

Next, the implementation issues of SSAL for this particular study are discussed. Finally,

the results from the computational study are presented and analyzed.

4.1 Computational Instances

Various multiple knapsack problems comprise this computational study. Recall that a

multiple knapsack takes the form Maximize cTx subject to Ax ≤ b, x ∈ B
n where A is

required to be nonnegative. One of the largest issues with knapsack instances, is that

many such problems are either prohibitively challenging to solve or surprisingly easy [15].
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For instance, MIPLIB has 270 multiple knapsack instances, of these 150 solve in less

than a minute. The other 120 require many hours or are unable to solve in a reasonable

amount of time.

In an effort to find problems in this middle ground, the spirit of the instances from

MIPLIB was followed. There are 3 categories of variations in the setup of the problem

groups: number of variables, number of constraints, and acceptance probability. Num-

ber of variables and constraints are represented in the MKP formulation by n and m

respectively and acceptance probability, p, is discussed in the instance formation.

The instances are created by first assigning each ai,j to a random integer between

1,000 and 10,000. Since most IPs are sparse, there is a acceptance probability. A uniform

random number between 0 and 1 is generated and if is larger than the acceptance

probability, then ai,j = 0, else ai,j remains unchanged. The right hand side of each

constraint, bi, is calculated by summing the ai,j in that row and multiplying by the

slackness coefficient ρ, bi =
∑n

j=1 ρai,j. The benefits cj are equal to cj = uj +
∑m

i=1 ai,j

where uj is a uniform number between 0 and 1000.

Through preliminary research, it was discovered that problems with many constraints

tend to have better computational results with SSAL as expected. For this reason, the

parameters were set so there will be approximately 10 times the number of constraints as

there are variables. Since the solution time of the MKP can grow exponentially, relatively

small values of n were chosen so solutions could be found in reasonable amounts of time.

For this reason, the values used for n are 20, 30, and 40 while the values for m are 200,
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300, and 400. To get a full view of the scarcity of the problems, the values of p chosen

are .25, .50 and .75. Every combination of the 3 parameters were tested, resulting in 27

test groups.

Since these are randomly generated instances and to avoid lucky or unlucky instances,

10 instances of each group of problems are created and solved. This helps to provide a

more comprehensive view of the benefits of SSAL.

4.2 Implementation of SSAL

This section is about the different methods SSAL used on the sample problems, and

descriptions about the most effective methods attempted. These are not changes in

the algorithm, merely how sets are chosen, which inequalities to include and how many

different pairs of sets selected.

The inputs to SSAL are a multiple knapsack problem and two variable sets: E1 and

E2. How these two sets are formed is very important. Several set creation methods

were attempted and involved sorting the variables for inclusion, but in the end, setting a

condition for acceptance and arbitrarily assigning to groups was the most effective. This

primary criterion for set selection is based upon a variable’s reduced cost, πj. The πj

represents the cost of moving a previously non-basic variable or excluding an included

variable. If πj is greater than or equal to a cutoff point, π′, then xj is included into one

of the sets. This π′ is a value determined by the programmer and has no set value. If

π′ is equal to 0, then the algorithm includes all the variables with positive x values in
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the linear relaxation. For this reason a value less than 0 is suggested. The best value

for π′ is largely dependent on the problems in which it is used, but with these sample

problems, a relatively small value, π′ = −50, was effective and is the value used for these

examples. Define E = {j ∈ N : πj ≥ π′}.

Once E is determined, there are numerous methods to divide this set into two groups.

Again several methods were attempted and alternating between set E1 and E2 pro-

vided stronger computational results. In order to provide numerous sets to generate

constraints, the following rules were implemented. During the first pass, the variables

alternate between the sets. For the second pair, two are placed into set E1 followed by

two into set E2, which repeats until E is partitioned. Next three went to E1 and three

to E2. This process continues until there were 6 in one set before changing to the other

set. Minimal computational improvements occurred by adding more sets in this fashion.

The following subroutine, Create Sets, provides psuedocode for this process. Al-

though this is not an actual subroutine from SSAL, it is very crucial to the successful

implementation of SSAL and the psuedo code for this is as follows:

Create Sets

Set k := 0.

for each i=1..n

if (πi) ≥ (π′), then

Set E0[k] := i.
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Set k := k + 1.

Set E0[k]:=-1.

Set cnt := 0.

Set cntt := 0.

Set i := 0.

Set control := 1.

while E0[i] 6= −1

if control equals 1, then

Set E1[cnt] := E0[i].

Set cnt := cnt + 1.

else

Set E2[cntt] := E0[i].

Set cntt := cntt + 1.

if (cnt + cntt)mod(set + 1) = 0, then

Set control:= (control+1) mod 2.

Set i := i + 1.

Set E1[cnt] := −1.

Set E2[cntt] := −1.
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The final change in implementation is the acceptance or rejection of inequalities.

When SSAL is run multiple times, it creates many inequalities, but these inequalities

are not equally strong. For this reason, not every inequality is accepted and used in the

solving of the MKP. Since the linear relaxation is available, and represents the optimal

non-integer solution, it provides a good benchmark for analyzing these inequalities. The

values for each variable from the linear relaxation solution are substituted into the in-

equality to get its current value. This is compared to the inequality’s rhs. When directly

compared, it would show whether or not the inequality cut off the linear relaxation point.

Since the goal is to cut off as much non-integer space as possible and not just the linear

relaxation, the rhs of each inequality is multiplied by a scalar, s, which allows inequal-

ities that are close to eliminating the linear relaxation to be included. This allows for

only the top inequalities to be included which increases the effectiveness of SSAL. For

these problems, a value of 1.25 is used for s.

These three implementational changes have allowed SSAL to be effective. In the

next section, the results of applying the recently discussed implementation to the sample

problems shows the real usefulness of SSAL.

4.3 Computational Results

The instances were solved with and without the use of SSAL inequalities. The SSAL

inequalities were added as preprocessing cutting planes two results were saved from each

solution: the solution times, tCPLEX and tSSAL, and the original linear relaxation values,
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LRCPLEX and LRSSAL. The values returned from the 10 instances from each group were

averaged. Next the percent changes from CPLEX to SSAL,tδ and LRδ were calculated,

so a better picture of SSAL’s results can be observed in Table 4.1.

m n p tCPLEX tSSAL tδ LRCPLEX LRSSAL LRδ

.25 .0172 .0161 93% 2735 2510 92%
20 .50 .264 .263 99% 5516 5042 91%

.75 1.40 1.46 104% 8251 7549 91%

.25 .219 .238 108% 4153 3937 95%
200 30 .50 23.4 23.7 101% 8288 7851 95%

.75 276 267 96% 12296 11643 95%

.25 7.00 7.36 105% 5522 5320 96%
40 .50 2650 2690 102% 10999 10583 96%

.75 9763 9981 102% 16430 16247 99%

.25 .0156 .0138 88% 4152 3737 90%
20 .50 .423 .394 93% 8288 7554 91%

.75 1.40 1.46 104% 12296 11197 91%

.25 .151 .151 100% 6221 5880 94%
300 30 .50 30.2 31.7 104% 12386 11685 94%

.75 288 300 104% 18484 17456 94%

.25 6.20 7.03 113% 8198 7879 96%
40 .50 3890 3830 98% 16425 15744 96%

.75 14700 15300 104% 24738 24234 98%

.25 .0132 .0129 97% 5547 4819 87%
20 .50 .474 .433 91% 11012 10028 91%

.75 3.01 2.99 99% 16433 14932 91%

.25 .149 .146 97% 8299 7829 94%
400 30 .50 32.7 30 92% 16480 15524 94%

.75 335 344 102% 24665 23239 94%

.25 6.53 7.14 109% 10939 10497 96%
40 .50 5910 6120 103% 22003 21074 96%

.75 7276 7190 98% 33036 32691 99%

Table 4.1: Computational results of SSAL

Upon inspection of the table, it is clear that the LR solution is reduced in nearly

all cases. This is because SSAL consistently is able to cut off the LR point, because it

always includes the variables used in the solution. It averages a 94% reduction across all
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these example problems. The change in solution time is less obvious, and can commonly

result in an increase in solution times, due to the addition of inequalities that slow the

branch and bound iteration.

However, through statistical analysis, it can be seen with an 80% confidence that

the correlation between the number of variables and number of constraints affects the

solution times of the problem. It shows that as the number of constraints compared to

the number of variables increases, the solution times were reduced. The most significant

showing of this, is when the number of constraints was at least 10 times the number of

variables. Table 4.2 shows only the results when this condition is met with the solutions

where constraints are strictly greater than 10 times the number of variables in bold.

m n p tCPLEX tSSAL tδ LRCPLEX LRSSAL LRδ

.25 .0172 .0161 93% 2735 2510 92%
200 20 .50 .264 .263 99% 5516 5042 91%

.75 1.40 1.46 104% 8251 7549 91%

.25 .0156 .0138 88% 4152 3737 90%
20 .50 .423 .394 93% 8288 7554 91%

300 .75 1.40 1.46 104% 12296 11197 91%
.25 .151 .151 100% 6221 5880 94%

30 .50 30.2 31.7 104% 12386 11685 94%
.75 288 300 104% 18484 17456 94%
.25 .0132 .0129 97% 5547 4819 87%

20 .50 .474 .433 91% 11012 10028 91%
.75 3.01 2.99 99% 16433 14932 91%
.25 .149 .146 97% 8299 7829 94%

400 30 .50 32.7 30 92% 16480 15524 94%
.75 335 344 102% 24665 23239 94%
.25 6.53 7.14 109% 10939 10497 96%

40 .50 5910 6120 103% 22003 21074 96%
.75 7276 7190 98% 33036 32691 99%

Table 4.2: Computational results of SSAL with 10:1 or greater constraint to variable
ratio
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Table 4.2 begins to provide a much stronger showing of SSAL’s beneficial impact

on the solution times in problems with many constraints compared to variables. This

was not the only information obtained from the original computational study. Another

statistical test on the original data showed that the acceptance probability was not linear

but instead showed a parabolic nature with the minimum in the middle. This means

that the problems that had a .5 acceptance probability tended to have lower solutions

times with SSAL. Table 4.3 shows only these results, again with the solutions greater

than 10:1 constraint to variable ratio shown in bold.

m n p tCPLEX tSSAL tδ LRCPLEX LRSSAL LRδ

20 .50 .264 .263 99% 5516 5042 91%
200 30 .50 23.4 23.7 101% 8288 7851 95%

40 .50 2650 2690 102% 10999 10583 96%
20 .50 .423 .394 93% 8288 7554 91%

300 30 .50 30.2 31.7 104% 12386 11685 94%
40 .50 3890 3830 98% 16425 15744 96%
20 .50 .474 .433 91% 11012 10028 91%

400 30 .50 32.7 30 92% 16480 15524 94%
40 .50 5910 6120 103% 22003 21074 96%

Table 4.3: Computational results of SSAL with .50 acceptance probability

This area when there are 10 times more constraints than variables and the constraint

coefficients are 50% sparse is where SSAL has shown the most improvement in problem

solution times. To test this hypothesis, larger MKP instances were created. This new

group has 70 variables and 1000 constraints. Again, ten instances were created in this

group and solved as before. Table 4.4 reports every problem from these larger instances.

Table 4.4 shows a clear improvement on solution solve times with all but one instance

improving. This average 6% drop in solution time is a clear sign of the beneficial nature
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trial tCPLEX tSSAL tδ LRCPLEX LRSSAL LRδ

1 15769 14072 89% 83553047 79798884 95%
2 14546 13543 93% 82405224 80421564 97%
3 13989 13544 97% 81987908 81976908 100%
4 14387 13206 92% 81529016 79122952 97%
5 13925 11329 81% 82101225 82101225 100%
6 15392 14295 93% 81920394 79918596 97%
7 13732 12952 94% 82495839 81847258 99%
8 14285 14001 98% 81593020 81593020 100%
9 13593 13920 102% 82495392 81149302 98%
10 14120 13819 98% 81395830 78284738 96%
Average 14374 13468 94% 82147690 81121445 98%

Table 4.4: Computational results of SSAL for large scale problems

of SSAL in large scale problems. The effect on the change in linear relaxation however

is much less profound. This is due to relativity between the size of the problem and how

much linear relaxation space there is to be cut off. Because the amount of space that

can be cut off does not grow as fast as the problem, only a 2% reduction is observed.

Although the inequalities appear not to be cutting off as much linear relaxation space,

the new cuts dramatically reduce the solve time, which is the most significant result.

This 6% reduction is the equivalent of 14 minutes while solving these problems that

averaged 4 hour solve times. If SSAL continues to improve this class of problems in even

larger instances, the reduction of solve time could quickly reach hours.

The processing time of SSAL has always been minute compared to the solution time

of the multiple knapsack problem, commonly taking fractions of a second. These larger

problems were the first to show actual times for processing with times still no longer

than 3 seconds. Compared to the 14 minutes which were cut from the problem solution

time, this 3 seconds is irrelevant.
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These computational studies clearly show the improvement possible with SSAL. This

algorithm commonly cuts off initial linear relaxation solution, and has a large improve-

ment in solution times in problems where the number of constraints is larger than 10

times the number of variables and the constraints are 50% filled.
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Chapter 5

Conclusions

The goal of this thesis was to expand on the SSL algorithm to expand its use to multiple

knapsack problems and to do this without an exponentially long processing time. To

achieve this, an approximate version of SSL was developed. SSAL lifts two sets into

a valid inequality. Another objective is to generate cutting planes that perform better

than traditional CPLEX and create stronger inequalities than SSL. The SSAL algorithm

presented in this thesis achieves these goals.

SSAL requires O(|E1|SLP|E1|+|E2 |,m
+ |E1|

2) effort where SLP is the time to solve an

LP which is polynomial. The inequalities generated are valid and have the possibility of

being facet defining. This is illustrated by an example which demonstrates all critical

aspects of the algorithm. After executing SSAL, five inequalities are generated. Two of

these inequalities are shown to be facet defining.

The computational study presented in Chapter 4 shows that adding SSAL inequalities
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to CPLEX enabled the software to solve some classes of problems 6% faster than with

CPLEX alone. SSAL inequalities are created very quickly, requiring no more than a few

seconds to generate.

5.1 Future Research

SSAL has moved the research in synchronized simultaneous lifting forward but there are

still many new ideas that can still be explored. In this section, some possible continua-

tions of this research will be presented.

At present, synchronized simultaneous approximate lifting is only able to use two

sets. Harris [22] developed an algorithm to exact synchronized simultaneous up lift

three sets. There is opportunity for research which allows approximate lifting of three

or more sets. This would allow the creation of more inequalities with greater variety.

This thesis focuses only on an approximate computation which causes it to create

weaker inequalities than are theoretically possible to save on computational time. Some

of the extreme points might not however be extreme. An interesting expansion on SSAL

could find the extreme points that are most likely to not have any feasible points, and

run a quick exact check on these points. This would allow the algorithm to strengthen

some of its inequalities without damaging computational times significantly.

The computational studies performed in this thesis are on sample problem in which

all variables are created uniformly. This causes variables which are not included in the
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LR to be as likely to be included in the final answer as the variables in the LR. This

means that using the variables based on reduced cost is only barely more likely to get

variables that are in the final solution as randomly selecting variables from the whole

set. It is likely that SSAL would perform better under a more realistic situation where

every variable is not created equal.
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