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Chapter 1

Introduction

1. 7The aims of the report

The last two decades have seen the large scale introduc-
tion of various forms of the strip transmission line, both
shielded and unshielded, in an attempt to simplify the construc-
tion of microwave components. The high cost, bulk and ever-
increasing complexity of equipment fabricated with standard
waveguides has stimulated interest in several alternative types
of transmission lines. Counterparts of most coaxial or wave-
_guide components, such as hybrid junctions, directional couplers,
etc., can be realized in planar form, and this has suggested
the possibility of fabricating quite complicated component
assemblies which would, moreover, have the advantage of rela-
tively small bulk and weight.

Various forms of shielded strip transmission lines have been
devised and discussed in the literature. Fig. 1 shows some
configurations. Some have inner conductors consisting of a
single strip or a solid inner bar, and with or without a filling
of solid dielectric, Fig. la and lc. Others have an inner
conductor made up of a dielectric card with a thin conducting
strip on one or both sides (with the dielectric occasionally
not extending beyond the edges of the strips), and air spaced
from the ground planes, Fig. lb and ld. In some applications,
striplines are made of two microstrip lines (a microstrip

line is made of a single strip and a ground plane on opposite
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Pig. 1. Various forms of shielded strip line

(a) single strip; (b) double strip, dielectric
supported; {(c) solid inner bar; (d) double
Strip, partial dielectric supported; (e) two
microstrip lines with the strips face to face;
{f) circular inner rod.



faces of a sheet of dielectric material) with the ground planes
on the top and bottom, Fig. le. Replacement of the rectangular
bar by a circular rod has also been discussed, Fig. 1f, as this
has obvious advantages in construction. These ground planes
are sometimes closed at the sides to form a closed rectangular
conducting tube.

As we know from transmission line theory, the transfer of
energy from one point to another is only one use of a transmiss-
ion line. At ultrahigh frequencies an equally important applica-
tion is the use of sections of lines as circuit elements, be-
cause for frequencies higher than 150 MHz ordinary lumped
circuit elements of high quality become difficult to construct.
Here, the required transmission line sections become small
enough to be used as circuit elements. They can be used in
this manner up to about 3 GHz where their physical size then
becomes too small and wave-guide techniques begin to take over.
For both applications, an extensive use is made of the charac-
teristicrimpedance of the line. For this reason, this impor-
tant class of problems of computing the characteristic impedance
in strip transmission lines will be considered in this report.

This report attempts
1) To outline methods applicable to this class of problems

2) To present the mathematical theory for their numerical analy-
sis ;

3) To summarize the numerical analysis procedures and their use
in constructing a computer program and

4) To give some important engineering results for practical
considerations.

In chapter 2, formulas for the characteristic impedance of



a strip line are developed and the numerical technique is
introduced to obtain solutions. Chapter 3 gives the flow chart
of_a computer program basea on the procedures discussed in
Chapter 2. Some curves of the results for the specific case

of Fig. le are shown in chapter 4. Also in chapter 4, the
quality of computed results are discussed. Finally, conclusions

are given in Chapter 5.
2. TEM-mode in a transmission line

When the strip conductors are enclosed between ground planes
or embedded in a homogeneous isotropic dielectric medium of
infinite extent, it is possible to assume uniform propagation
in a TEM-mode, provided that certain critical dimensions do not
exceed an appreciable fraction of a wavelength.

Before starting our analysis of the problem, we would like
to review some characteristics of the TEM-mode in a transmission
line. We shall begin by writing Maxwell's equations for the
dielectric region in rectangular coordinates, with the propaga-

(Jut-vz)

tion factor e substituted. Hence we assume that the

wave is propagating along the z-direction with a variation of
e Y2, The curl equations are written below for fields in the

dielectric of the system.

*Bz + yE, = -Juum, (1)
Y Y
3E .
-yE_ - 7z = =-juwuH (2)
X 3% ¥
3B, L 3B, o ~joul, (3)



vxIl = jwek

Mz + vI = Juek (4)

3y ¥

-YHX - aHz = juweE (5)
X y

My - My = juer, (6)

ox 0y

It must be noted that the components Ex’ Hx’ E etc., are

Yl‘
functions of x and y only, by our agreement to take care of

the z and time functions in the assumed e(3”t-YZ) factor.

From the above equations, it is possible to soclve for Ex

Ey' Hx, or Hy in terms of Ez and Hz. We have

o - 8H
1 . z z
Hy = c3—p (Juezzt = vy
b4 v2 % K2 ay X
1 aEz BHZ
H = ———— (jme-——-— + —‘——)
Y Y2 + KZ X 3y
" 3E_ M
E, = (-v + Juuz—=)
b4 Y2 K2 ax oy
o E oH
1 z : 2
E = (-y + Juur—
Y 72 K2 9y X
where,
K2 = mzue.

(7)

(8)

(9)

(10)

The total electric and magnetic intensities in the charge-

free region between the conducting boundaries must also satisfy

the wave equation



The three~dimensional V2 may be broken into two parts:

32—
V2E = V2 E + —b
Xy 322

The first term is the two-dimensional Laplacian in the
transverse plane, representing contributions to V2 from deri-
vatives in this plane. The last term is the contribution to v2

from derivatives in the axial direction. By the assumption that

the propagation function is e Y% in the z direction,
az"ﬁ__ 2=
02

Hence, the foregoing wave eguations may be written as

e B, 2o |

Ty =~ + KOF (11)
v2 H = -(72 + X3 (12)
Xy

Equations (11) and (l12) are the differential wave equations
that must be satisfied in the dielectric regions of transmission
lines.

One of the solutions to the wave equations has neither
electric nor magnetic fields in the direction of propogation,
and is called TEM. The general relations between wave components
as expressed by equations (7) to (10) show that, if E, and H,
are zero, all other components must be zero also, unless

72 + K2 = 0 at the same time. Thus, a TEM wave must satisfy

or,
y = £jK = #juw Jue (13)



With Equation (13) satisfied, the wave equations (11) and

{12) reduce to
E=0 ; Ve H=0 (14)

These are in the form of the two-dimensional Laplace's egquation
in the transverse plane. Since Ez and H, 6 are zero, E and H lie
entirely in the transverse plane. We recall that the electric
field satisfies Laplace's equation under static conditions. The
same is true for the magnetic field. Consequently it may be
concluded that the field distribution in the transverse plane

is exactly a static distribution, if it can be shown that the
boundary conditions to be applied to the differential equations
(l4) are the same as those for a static field distribution. 1In
a transmission line, the boundary condition for the TEM wave on
a perfect conducting guide is that the electric field at the
surface of the conductor can have a normal component only but
not a tangential component, which is the same as the boundary
condition at the conducting surface in the static case. Hence,
the problem of concern is reduced to the two-dimensional electro-
static problem with the imposed boundary conditions in the

transverse plane.
3. Validity of the TEM approach for composite lines

It is questionable to what extent the TEM approach is valid
when a line has a discontinuous medium over its cross section.
This question follows from the application of wave equations

(11) and (12). For TEM propagation, the propagation constant



is given by

B=1I (y)=uw e

m

If the dielectric permittivity e has two different values, one
value in one mediuwn and another value in the other medium, B
will have two values, one for each medium. This i1s contradic-
tory since one wave can only possess one propagation constant.
llowever, it is likely that a TEM wavé will exist and its propa-

gation constant can be expressed as

where €q is an effective dielectric constant.

This is true because most of the power is concentrated in
the region between the strip conductors and their closest
ground planes, and in this region the field should be substan-
tially TEM [l]. This suggests that the dominant mode is TEM
and that the solutions based on the TEM approach give a reason-
able approximation provided that the physical dimensions are
much smaller than half a wavelength, which means that the
operating fregquency is far below cutoff for all higher order
modes. Using a TEM approach to find the characteristic impedance
or the propagation constant usually will cause a minute error,
not amounting to more than a fraction of a per cent at fre-

quencies of several GHz [2].



Chapter 2

Mathematical Analysis

In this chapter, we shall derive the fundamental equations
and formulas for determining the parameters of the strip trans-
mission line, i.e., the capacitance and characteristic impedance.
We shall begin with Gauss's law, based on the assumption that
the problem is TEM, and then derive Laplace's equation for the
two-dimensional system. After that, we shall discuss a numeri-
cal technique to solve this two-dimensional Laplace equation,
which will be used for the computer-aided calculation of some
configurations of stripline in the later chapters.

Also, at the end of this chapter, we give some derived
formulas, using the Schwarz-Christoffel transformation technique.
In addition, there is another analytic solution which can be
found in the literature, using the so called variational method.
Formulas given by these two methods are usually tedious for
practical use and are restricted to very simple configurations
of the strip line. Because both analytic methods are so compli-
cated, they will not be proved in this report. For a more de-

tailed discussion, see [3], [4], and [5].
l. Gauss's law and Laplace's equation

We start with Gauss's law in order to formulate the egua-
tions for the numerical analysis. If the charge is continuously
distributed throughout the volume with a charge density p, Gauss's

law has the form
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‘f’s D .da = J’v pdv (1)

By using the divergence theorem, Equation (1) can be changed

into a differential form. From

=

%SD » da = Sv VD dv = jv pdv

it follows that

VeD = p (2)
which is the alternative statement of Gauss's law. In a region

in which there are no charges (p= 0), it becomes

V-ﬁ- = 0 (3)

As we mentioned before, our problem is concerned exclusively
with a two-dimensional system. Moreover, Cartesian coordinates
are suitable because of the configurations of the transmission
line of interest. Thus, Equation (3) is written as, in the

X-y plane

BDx+ 3D .
9x ay
or
2_ B +2-¢F =10 - (4)
Ix X dy Yy

where E is the electric field density and e is the permittivity
. of the medium at that point.

Recall that E is related to the potential V by

E = -9V (5)
or '
axEx + ayEy = a = ay ¥ (6)
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in the X~y plane. This gives

E,= -2~ , E =- 2% (7)

8 _

3 AV AV _
3% Sox T 3y fay = O (8) .
Note that in a homogeneous medium, e is independent of position,

and Equation (8) becomes

2 2
2l+ 2% =0 (9)
9x Yy

which is the usual form of the two-dimensional Laplace's

equation.
2. Numerical solution and the finite-difference technique

We want to develop a numerical method to find the solution
to Equation (9) by the so-called finite-difference method,
which is an iterative technique and is suitable for the high-
speed computer. To do so, consider a typical peint P, not on
a conductor, and eight adjacent points as shown in Fig. 2. Let
the separation of each point be h/2 in each coordinate direction.
The derivative of V with respect to x at point b is (with h
small)

oV E - "P

Fr P 1o



12

Y
l X
//’
v
- ™
// \\ ®
P a
Conductor W o a b E
Fh P
2
o]

Fig. 2 Typical voltage node in a transmission line.

Similarly,

3| = YEL;L:EE (11)
X4 h
v v
Sos AL (12)
£ |4
\' v )
a3V P - "5
SEE o e (13)
ay s h
Continuing in the same manner, we have
av av ;
2 vl ey 3 e B
axeaxJP o 5 Wl = 0 ARy A (14)

Substituting eqguations (10), and (1l1l) into (14), we have
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-g——e Vi s fh{r - Ypy-fa(Vp - Vi (15)
X 9x
p h?
Similarly,
o v e 5] - By
3y © 3y|p a oF Yic
h
. faVy - Vey-fc(Vp - Vg (16)
12

Finally, we substitute equations (15) and (16) into (8), and

after some manipulation we obtain

eaVN+ebVE+ach+edVW v

+c, +& _+F
- EaTERTECTEg

P =R (17)

where R, the residual, is the difference between VP and the
weighted average of the four adjacent voltages.

Note the case where the dielectric medium is discontinuous
in the y-direction only (which is the only case we shall be con-
cerned with), that is, for instance, the dielectric is discon-
tinuous at point P. Then, €y and €q are assumed to be given by

the average of the permittivities above and below the interface.

That is,
- _E €
Eb_ad——é—-—;—ﬁ (18)

This can be obtained from the requirement that the normal compo-
nents of the electric flux density be continuous at the inter-
fact [6].

Having formulated Equation (17), we are in position to employ
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a numerical relaxation method, the so called finite-difference
method to solve our problem. A simple example will serve to
illustrate this method. Consider a square duct containing a
centrally located round wire, as shown in Fig. 3. Let it be
required to find the potential distribution in it with +100 volts
potential on the inner wire and zero volts on the duct. The
space between conductors where a solution is desired is ruled
off in meshes to establish points at which the potential is to
be calculated, and a guess value is assigned to each point.
From symmetry, only one-eighth of the whole cross section needs
to be considered for this problem. At first, we guess the po-
tential at all nonboundary points to be +50 volts. After cal-
culating the potentials of the four points in the immediate
neighborhood of each point between conductors, we substitute
the potential values of these four adjacent points and the po-
tential of the center point into Equation (17). It will be
found that Equation (17) is not satisfied for some points with
a nonzero residual. Each residual is written above the poten-
tial and is enclosed in parentheses as shown in Fig. 3. The
potential of the point with the largest residual (=25 in Figqg.
3b) is increased by the value of the residual. Once the poten-
tial of a point is changed, all other residuals have to be re-
calculated and will be changed also. This is shown in Fig. 3c.
The procedure of finding the largest residual and adding it to
the potential of that point is repeated until no smaller residual
values can be reached. ft can be seen that the mesh can be

subdivided so as to make a more accurate solution as shown in
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.3. An example of the finite difference method.
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Fig. 3g. Rather than use hand calculation, the computer might
be employed to do this tedious work for more mesh nodes.

The relaxation process we have discussed is not fast because
it involves a great deal of computation. A modified method,
first proposed by Liebmann, has improved the speed of solution.
[7] Liebmann's method converges fast and requires substantially
less storage in the memory space of the computer. With this
method, only one residual is calculated, instead of the entire
array of residuals. Whenever the residual is found, the poten-
tial at that peoint is readjusted immediately. The advantages
of this process are that it

1) involves only the constant repetition of a small group of
machine orders,

2) allows the data relating to substantially large problems
' to be retained entirely in core, and

3) 1is terminable when any desired degree of residual tolerance
has been attained.

. Liebmann's method may be defined as the relaxation cycle,

v (1,7 = v°1%1,5) + o R(1,T) (19)
where o« is a number called the overrelaxation factor, ranging
in value from 1 to 2, R(I,J) is the residual calculated from the
potentials currently existing in the array of potential values
and (I,J) defines a mesh point. With each calculation, the old
value of the potential V(I,J) is replaced by an adjusted new
value. With the aid of Equation (17), it is possible to write

Equation (19) in the form

+1 Eav“+1(Iéliqlfﬂbvntx,J+1)+‘cvn(1t;LJ)+
VTR, 5 =V (I, T) +a i e vete reg

catep Teo teg
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n+l(I,J—l

£ Vn+l _ €, N1 € oy €
T a (I-1,J)+ bV (I,J+1)+ cV (I+1l,J)+ 4V
=(1 u)Vn{I,J)-i-u{ : e Ve re teg *

(20)

where superscripts indicate the order number of iteration cycle.
The iteration cycles are successively carried out, with each
cycle scanning all the points of the field. This calculation
may be done for a considerable number of cycles until none of
the residuals in the field has an absolute value greater than
the tolerance desired. The speed of convergence depends on a,
the overrelaxation factor. The function of the overrelaxation
factor, or so-called acceleration factor is explained as follows.
As illustrated in the above example, throughout the relaxation
process, potentials are increased by the corresponding residuals
(a=1) to depress residuals to zero. After the potential at a
given point is changed, the residuals at all the other points
will not remain zero. This knowledge gives an idea for the
improvement of the process. That is, instead of relaxing with
ae=1l, each potential is overrelaxed (a>1l) such that the rise in
residual that occurs on recalculation of the neighboring poten-
tidl will.bring the residual back to zero or some smaller value
than would be the case for a=l. It can"be shown that this method
is always convergent for e=1, and always divergent for a=2.

Best convergence is obtained for some value between these two

limits.
3. The characteristic impedance of the transmission line

Once the potential distribution of a transmission line is

known the capacitance can be found without difficulty. To obtain
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capacitance, it is necessary to find the charge QO on the conduc-
tors. From Gauss's law, the enclosed charge in volume V is ob-

tained from

Q= jvpdv = §sﬁ - da = §p da

where D is the normal component of electric flux density and
s is the surface enclosing V. D, is related to the electric

intensity and potential by
D= eE_ = -g— (21)

where n denotes the normal coordinate.
We now form the surface enclosing the conductor by lines cutt-
ing between mesh points and drawn parallel to the coordinates,

as shown in Fig. 4.

Surface of integration

e

T
Wl /////’_—_ Conductor
\F J_- === 1T T —-1’_ _I /
Pl LA
I dl
! | ?l } N
— -
! ) _\__ 11__
L i i i s i d - |' P ,
W E
S

Fig. 4 Integration to determine charge.
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As an illustration, if we choose a typical point P on the inte-

gration surface, then we have

. Yu - VE (22)

P h

The electric flux density at that point is

To obtain the total flux through the surface per meter of length
we sum up all the flux densities at the potential nodes on the
surface of integration. A special treatment is needed for the
rectangular corners of this surface. Supposg it is desired to
sum up the flux through two elemental areas adjacent to a typical
corner as shown in Fig. 5. Let A?l and h?z be the amount of flux

through these two areas. Referring to-Fig. 5, we have

= = [ - n
AWl an h E(VA VP}
-— P ] i n
A¥, = Do h = e(V, VQ)
and r
4 = | I [ S 1]
A?l + E?z = e(2VA Vp_ VQ)
T 1;___:H Surface of
i integration
c' iC o

i
I
I

_'_
, B' 2] T lolaglgr
) * l;

h
h A
f“'g““'\_,g__/
AY
“— . l A"
B" p n

Fig. 5 A note on the flux calculation for corners.
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Summing up other fluxes through the surface, the expression for
the total flux becomes

= _ B E - ! ! ! * e e s
Q Y j}:.ﬂ.‘i‘l € (VB + 2VA + VC + )

= E (VB+VP+VQ+VC+ ulo..) (23)

We observe from the above expression that the potential of
the inner vertex is used two times while that of the outer vertex
is not used. Once the charge is computed, the capacitance can

be found from

C = /v,

where Vc is the voltage difference between the conductors. Given
capacitance, the characteristic impedance follows straight-

forwardly,
oA = R _+ -_"P_{".
“a G + jwc

o

where, R, L, C, and G are the resistance, inductance, capaci-

tance, and conductance per unit length of the traﬁsmission line.
[8] At higher frequencies, the low-loss transmission line is of
special interest, in which case we can assume that R<<wL, G<<uC

and therefore
Zo = J L/C (24)

Since the inductance per unit length is not affected by the
introduction of a pure dielectric within the line, L may be de-

rived from the phase velocity of the TEM wave. Thus,

V. = w/B = (25A)

P S
B e
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and since L is independent of the dielectric within the line

Ve = 1/ JLEo ' N (25B)

or
L = ——%—— {25)
Vo Co
where U, is the velocity of light in air and C, is the capaci-
tance of the transmission line with only air dielectrics.
Two cases of dielectric configuration need to be distin-
guished. When the medium is inhomogeneous, and we substitute

Equation (25) into (24), we have

Zo = -1 ' ' (26)
Ve JCoC

Hence, for the inhomogeneous case, two capacitances need to be
determined. One is without dielectric, and the other is with
dielectric. -

However, when the medium is homogeneous, C-——er C, for the

dielectric constant Ev and Equation (26) becomes
5 e e
o =
; VaCo
| Afx

Only C,, the capacitance without the dielectric, is needed.

(27)

4. Analytic solutions

Sone simple configurations of strip transmission lines have
been solved analytically for the case of a homogeneous medium.
Two methods may be found in the literature. One uses the

Schwarz-Christoffel conformal transformation, while the other
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uses the variational approach.
An exact solution to the configuration shown in Pig. la is

given by [3]

n K(k')
Zo = 307 gy (28)

where

1

Cosh(%-gq

k' =le—k

SH/Z av
o . 1-k® sin®y

(29)
K{k)

n

RK(k")

/2
S av
o Jl—k;zsinzw

K(k) and X{(k') are elliptical integrals of the first kind.

This solution is obtained by using the Schwarz-Christoffel com-
formal transformation. This technique also leads to the solution
for the configuration shown in Fig. 1lb with £h¢ dielectric slab
removed [4]. The formula for finding that impedance is also

given by Equation (28), where k is now related to the line geom-

etry by
E - . b 3
k = -1
W_2 o Bl | g B o
b btan k(é.é.-l)] (30)
‘ K a

which is valid for w/a>0.35. The remainder of Equations (29) are
formally the same.. The quantity K(k)/K(k') has been tabulated
vs. Xk by Oberhettinger and Magnus ([3].

Another analytic approach is the variation solution, which

gives an upper bound of the exact impedance of the line. The
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variational solution relies upon finding a sufficiently accurate
approximation for the charge distribution on the strip conductors.
Then the Green's function technique is used to sclve the result-
ing boundary value problem for an upper bound value. Unfortunate-
ly, the variation formula is very complicated as it involves

several infinite series, and therefore will not be reproduced

here.
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Chapter 3

Computer Program

1. Geometry of problem

Here, we want to employ the computer to find the character-
istic impedance of the strip transmission line with the con-
figuration shown in Fig. le. In construction, this kind of
strip transmission line is made of two microstrip lines placed
together with their strip conductors face to face. Because of
construction difficulties (e.g. machine tolerances, etc.), there
may be an air gap between the two faces as shown in Fig. 6.

By symmetry, only one half of the whole cross section needs to
be considered, as shown in Fig. 6, which also shows labels on
the boundary locations (and hence the dielectric distribution).
Whenever the ratios of line dimensions need to be changed we
need only to change data of these locations for the computer
programn. Also note that in the calculation, we treat ground
planes as closed at the sides, though they are not necessarily
so in the practical construction. The error due to this treat-
ment is small, if the length d is not too shdrt. ‘This is
justified by the rapid exponential decay sideways of the field.

Essentially, there are two kinds of TEM modes which can
exist in a multiconductor-transmission line. One of them is
called the even mode, for which the respective voltages and
currents on two inner conductors, for the three-conductor case,
are equal and of the same sign. The other is the odd mode, for

which voltages and currents are equal but of the opposite sign.
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Fig. 6 A half cross-section detail of

a strip transmission line.

Ground Plane Integratlon Surface
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Any TEM mode in the line can be expressed as a linear combina-
tion of thesc two orthogonal TEM modes. For our particular
case, the odd mode is not important because the two strips are
electrically connected at the ends. Ience, let us now consider
only the even mode existing in the line. That is, we can set
equal potential values, say +100 wvolts, on both strips and zero
potential values on the outer walls. These boundary conditions

reguired in solving Laplace's eguation for our problem.
2. Programming and the flow chart

It is now profitable to consider a few of the programming
aspects of the problem. In the work that forms the subject of
this report, it proved possible to solve problems in a reasonable
time by using an IBM 360/50 computer.

A programming flow chart is shown in Fig. 7 to illustrate
the finite-difference method as applied to solve our problem.

The flow chart contains three main parts: (1) initial-condition
setting; blocks 1 and 2, (2) iteration process; blocks 3 to 10
and (3) computation of impedance and output of results; blocks
11 and 12. In the first part, we set proper values of boundary
conditions, guessed potential values at nonboundary points and
the dielectric distributions as shown in Fig. 6 according to the
configuration of the problem. The second part is to find the
finite difference potential distributions, using the iteration
technique discussed in Chapter 2 (refer to Equation (20) chapter
2). Once the potential distributions have been found, the capa-
citance and impedance can be obtained from Equations (23) and (26)

or (27) of chapter 2 with the integral contour as shown in Fig. 6.
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Finally, the results are printed out. 1In addition to the print-
out of capacitance and impedance, the facility for the print-
out of nodal potentials is also available on demand. This is
useful whenever it is necessary to check whether the problem

has been adequately represented by the finite~difference model
or where a knowledge of the field distribution itself is de-
sirable. A compuﬁer program using FORTRAN IV which is used to
solve our problem and written according to the flow chart is

listed in appendix I.
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Start

I

Reserve the required storazes for tke nndal
notentials, dielectric constants, sarfarce
integrations, canacitances and imnedances.

Set notentials at boundaries to nrescribed
values, and all others hal fway hetween,
Alsc set dielectric constants in the field.

F

(:) Set indicator 1=1

(:) For the next (or first) mesh noint,

calenlaste residaal value.

the residual valae
2reater than tolerance

Adjust the notential at this field
noint in accordance with the residual
(:) Just caleilated, and the nreserihed
overrelaxation factor.

No

the mimbhe!
of iteration
greater than

maximam allowed
I?

Continued on the
next page

Stoo
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(:) imredances, and the avera~e
value.

Print o1t the nodal notentials,
(:) caracitances, and rcharsacteristic
imredances. Also orint out the
mumber of iteration cycles. '
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#ig. 7. The flow chart of the computer
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Chapter 4

Computer Results

l. Numerical Results

Figs. 8 and 9 show the computer computation of impedance
vs different strip spacings with a fixed line width (refer to
Fig. 6). Two curves corresponding to an air gap between strips
with dielectric elsewhere and solid dielectric everywhere are
shown in each figure. The dielectric material used in Fig. 8
has er=10, while in Fig. 9 €,~=2.56. As observed from the figures,
the impedance decreases monotonically as the spacing between
strips increases. A physical explanation can be obtained from
the fact that increasing the spacing decreases the distance
between the strip and its ground plane and hence increases the
inherent capacitance. It is also observed that a gap of
a/b=0.05 causes a 6% change in Z, for ar=10 and 7% for er=2.56
from the characteristic impedance for the zero gap case. This
is probably not a sufficiently large change to seriously affect
operation in most applications, but might be critical in some
cases. The numerical results are given for a range of practical
interest as this range encompasses the impedance neer 50 ohms.

A problem arises from the calculated result of capacitance
(and hence that of characteristic impedance) found with such a
numerical solution in that the result is only approximately inde-
pendent of the surface of the application of Gauss's law, though
it is completely independent of the surface for an exact solution.

This is so because the finite difference equations (refer to
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Equation (17), chapter 2) are not solved exactly (with R=0 for
that equation). For example, the computer program for the point
A in PPig. 8 vielded the capacitance range of values from 205.5
to 207.7 pf/meter. The limits of the range are within 0.5% of
the average value. This gives us an indication that the problem
was solved within a reasonable degree of exactness by the appli-
cation of Gauss's law. In this report, the resulting impedance
is defined as the arithmetical average of impedances calﬁulated
from the different integral contours. However, Sinnott [9] has
pointed out that no theoretical reason has been found for one
contour integration giving a more accurate value thanrany other.
When the numerical solutions are reasonably precise, the contour
about midway between boundaries gives a better result. Before
leaving this subject, it is worth mentioning that there is an
alternative method to find the capacitance by fitting a continu-
ous function through the potential values and calculating the

energy associated with this potential distribution [10].
2. Quality of computer results and number of iterations

From the approximation we made in equations (10) to (16)
chapfer 2, it is obvious that the accuracy of the impedance
calculation depends on the grid size or the so called mesh size.
In addition to the mesh error which is a function of h, there
is also an iteration error due to the tolerance we allow. This
error arose because the potentials are not solved with identi-
cally zero residuals. Milne [11] has shown that if the maximum
absolute value of residuals does not exceed a positive quantity m,

the maximum error in the iteration solution will not exceed
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mp2/4h. In this formula, p is the radius of a circle with center
at a node which just encloses the entire region R of the mesh
point. Thus, the accuracy can be arbitrarily improved by de-
creasing the grid size and the tolerance. However, this re-
sults in increasing the number of iterations. As an illustra-
tion, we choose a point B in Fig. 8, which corresponds to

a/b = 2/39, and calculate its values of impedance corresponding
to two different tolerance values. When the tolerance is 0.05
volts, Z, is equal to 47.63 ohms and the number of iterations

is found to be 123. When the tolerance is changed to 0.01, 2Z,

is 48.22 ohms and the number of iterations is 182. We observe
that the impedance for the case of the 0.05 tolerance differs
only 1% from that of the 0.01 tolerance case, but the latter case
has increased the number of iterations about 50% over that of the
former. Note that Fig. 8 and 9 were obtained with 0.05 tole-
rance. As to the grid size, Fig. 8 and 9 were obtained with a
40x40 grid. Such a grid size gave a reasonable computer time

and a reasonable accuracy (it is believed to be within 1% of

the correct result). This can be justified by Johnson's work
[12] for a similar problem. In that work it was shown that
halving the grid size resulted in only about 0.5% change in

the corresponding result. It is also believed that the conver-
gence rate can be improved by using an optimum value of over-
relaxation factor. Unfortunately, the optimum value of over-
relaxation factor is not known theoretically and has to be found

by trial and error [6].
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3. Methods of improving the solution

In general, the over all accuracy of the finite difference
technique can be improved by

1) Richardson's method of extrapolation

2) progressive mesh refinement, and

3) graded mesh |

In Richardson's method, solutions are worked out for capaci-
tance, using three mesh sizes in increasing order of refinement.
These capacitance values are then substituted in Richardson's ,
formula to provide an improved accuracy [2].

In the second method, the computation is started with a
fairly coarse mesh size and the values obtained for the node
potentials are used to interpolate starting potentials on a finer
size mesh which is then further relaxed. Theoretically, this
method gives the solution with any desired accuracy if this
procedure is continued to any number of times. However, this
is limited by the computer storage.

The third method employs a relatively coarse mesh everywhere
except in the region where the potential changes rapidly. That

is, in this region a finer mesh is used.
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Chapter 5

Conclusions

The computation of characteristic impedances of various
transmission lines supporting TEM modes is a problem of con-
siderable importance for the design of microwave circuits.
Despite the physical simplicity of strip transmission lines the
rigorous mathematical analysis of their properties presénts
considerable difficulties. Solutions by analytic methods have
been obtained for certain problems of restricted interest, but
in many practical instances the solutions are rather tedious
for actual use. Instead of using the rigorous analysis, this re-
port has shown that finite difference techniques are particularly
suited for the evaluation of the characteristic impedance of
transmission lines by machine computation. The finite differ-
ence technique is a simple and accurate technique. This tech-
nique consists basically of a method for solving the field
equations by replacing the domain between conductors by a finite
set of mesh points and by solving Laplace's equation in finite
difference form by digital computation. It is particularly use-=
ful for the special case of a shielded strip transmission line
because exact solutions are not known and good approximations
are only available for limited ranges of the line parameters.

Hence, in this report, this technigue was outlined and its
application shown in the development of a computer program for
the numerical analysis of some problems. Considerable stress

was placed on generality in devising the computer program, mak-
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ing it possible to solve an extensive range of large problems.
Because of its generality the program becomes an important
laboratory tool which can be used as an aid in solving particu-
lar design problems. Its use has been illustrated, in this
report, in solving some practical problems. In fact, problems
solved in this report are-only simple examples of the multi-
conductor-transmission line system. It can be seen that the
finite difference technigue and the computer program developed
in this report can be applied without difficulty to solve many
other multiconductor-transmission line problems. For trans-
mission line concepts for multiconductor lines, a more detailed

discussion can be found in [13].
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FORTRAN IV 5 LEVEL 1, MDD 4 MATN UATE = 79051

G ITERATINN PROGRAM=STRIP TRANMSMISSICN LIN:E IMPFDANCE
0Cal CIMENSION V{1GO,1C0),v1i(20),v21208),C1(20),02(20),
1 Cl2¢),F(L00),7(2G)
Qc22 300 PEAD (1,108,END=1) I14,123J1sNe®eALP =S, VMAK,ER]
CC03 125 FORMAT (513,4F5,3)
G 11,12,J1,ARE TOP AMD SIDE £D5KS OF STRIP
C ER1 1S RCLATIVE PERMITIVITY OF ULIZLECTRIC
C VMAX 1S MAXIMUM POTENTIAL
C ALP IS NVERRILAXATION FACTOR
C EPS IS ACCURACY CBESIRELD
c
C SET INITIAL CONDITIONS
C
CCN4 K0 130 KKK=1,2
QCa5 NN = N-1
CLdh MM = M-1
cTa? VW=VMAX/2 .
CCoa CO 4 1=2,NN
:C29 CC 4 J=1,MM
0C1i0 4 Vil,Jd)=vv
0711 CO 5 J=1,J1
cCl2 VIT1l,y,J)=VMAX
nC13 5 vilzZ,J)=VMAX
Cll4 CO 8 I=1,N
0Lls 8 V(I,M)=0,
clle CO 58 J=1,M
ccrLy 58 V(l,J)=0.
CClB CO 59 J=1,M
219 59 V(M,J)=0.
0C20 40 K=0
gcz21l : WRITE (3,104)
22 104 FORMAT('171)
& .
C SET PERMITTIVITY VALUES
f
£C23 : CO 2 I=1,N
Cl24 2 Etl)=1,
0L2s [I=11-1
0C25 IK=12+1
0c27 Jd=J1+1
aC28 IF (KKK=-1) 61,61,62
0C29 62 CO 71 I=1,11
CZ30 71 E(I)=ER1
€231 CO 72 I=IKsN
ng3z 72 E(T)=ER1 .
0G33 ElI1l)=(1lo+FR1)/ 24
G344 F{T2)={1la+ER1) /2
CC35 WRITE (3,200) T1,12,J1sNyMsALP,EPS,VMAX,CR]
CC2A 200 FORMATI(LX,' Il = ',I3," I2 = "2I3,% Jl = *,[3,' 4 = ',13,
1 * M = ¥8,]3," ALP = ' ,F5,3," EPS = '",F5.:3,
1 ' VMAX = "yF5.1y' ERL = tyFba3)
GC37 WRITE (3,221) (E(I),I=1,N)
gcC3a 201 FORMAT(20F6.2) -
C
C START ITERATION PROCESS
C
Q€39 61 AA=1l,-ALP

cc40 g L=1



FORTRAN IV G

CCal

NCe?2
CCa3
0C44
AC45
QCab
CCa7
QC48
249
CcCho
LRl
nts52
GL53
CCs4
055
42C56

0C57
QZHhBe
0C59
cieD

cCol
nge2
0Ch3
CCat4
CCo5
2C66
067

0068
0Cé9
tcre
CC71
Q¢72
QLT3
CC74
N275

nCTé
GGT7
0C78
¢cC79
foan
0cCal
¢en2

das3
QCB4
CC8s
£CR6
oCca7
CCR8

¢cca9 -

nCoo
gCol

e R

LEVEL L, MND 4 MAIN DATZ = T06G4%;

K=K+1
LO SYMMETRY AXIS
CNn 19 1=2,11
CE=2.%Z([)+E(I+1)+E{1-1)
A= (E(T=2) %V (I=1, L) +ECT+1)%VIT+L,1 )42 %1 1) %V(1,2))/EE
10 VI, 1)=AARV(I,1)+ALP*A
CO 11 I=1K,NN
EE=2 *F(I)+E(I+1)4E(1=1)
A=(E(T=1) 2V {I=1,1)+4CIT+1)=V{I+1l, 1042, % (1) *¥V([],2))/¢LL
11 V(T,1)=AA®V(I,1)+ALP*A
[P=]1+1
IQ=12-1
IF (IQ-IP-1) T4,75,75
75 CO 90 I=IP,1IQ
EE=2%E(I}+E(I+1}+E(I-1)
A={E({T-1)1%V(I-1,1)+E(I+1)=VII+], 1)+2=*F(I)*VII:2))/c»
90 VIT,1)=AA%V(I,1)}+ALP*A
CO INTERIQOR POINTS
74 CO 13 1 = 2,11
EE=2,*¥5(T)}+E({I+1)}+E(I-1)
CO 13 J = 2,MM
A=(E(I) (Y T, J+ 1) +V(T,J=1))+E(T+1)%Y([+1,J)
1 +5(I-1)Y=V({I-1,J))/EE
IF (ABS{A=-V(I,J))=EPS) 13,13,12
12 L=2
13 vI(I,J)=Aa%V(I], J)+ALP*A
Co 16 I=11,12
EE=2¢*E{I)+E{I+1)+E(I- ll
CO 15 J=JJsiMM ,
A= (E(TIR(VIIZJ+L)+VII,d=-1))+ELI+1)%V(I+1,J)
1 #+E(I-11%=V(I-1,J}))/EE
IF (ABS(A-V(I,J)}=EPS) 15,15,14
L=2
VIiI,Jd) = AARNV{],J)+ALP*A
IF (IQ-1IP-1) 84,85,85
85 CO 91 I=IP,Iq '
EE=2.%F(I)+E({I+1}+E(I-1)
CO 91 J=2.:J1
A = (E(T)R(V T, d+1)+V{I,d=1))+c{I+1)%v{I+l,J)
1 +5(1=-1¥%V({I-1,J))/EE
IF {ABRS{A=-VI(I,J))-EPS) 91,91,92
92 L=2
91 VIIsJ)=AARV(I,.J)+ALP=A
84 CO 17 I=1K,NN
CE=2:%C (I}+F(I+1l+c(l 1)
CO 17 J=2,MM
A={E(T)H{V I, u+1)+VII,d= 1))+cl;+11*V(I+l J)
1 +8{I-1)%=v(I[-1,J))}/EE
1F (ABS(A-V{I,J))=-cPS) 17, 1?,16
16 L=2
17 V(I JdY=AAXV{ ], J)+ALP*A
[F (K=150) 19,19,290
1S5 GO TO (20,9),L
20 WRITE (3,101} K,EPS .
1C1 FORMAT(1X,' NUMBER CF ITZRATICNS ',I4,? TOLERANCe "+1553)
WRITE{(3,102) ALP
102 FDPLATtlx,- OVERRELAXATION FACTOR IS ',F5a3)

o
LU ]



FORTRAN IV G

2ca?2
ngas3
oC34

gcas
nLa6
(N
€98
GCG9
a1ngd
0101
€102
7123
0124
0135
0196

C1o7
Q1038
¢199
cl19
c1lll
C112
Cl13
0li4
0115
Cllé
Cl17
€118
cll9
cl29
cl2l
cl22
123
C1l24

D125

r1l24
0127
clze
0129
(133
0131
C132
cl1l33
Cl34
2135
01356
6137
Glia
£13i9

LeVEL

C
C

OO0

1, HOD 4 MAIN

PRINT VOLTAGT ARRAY
CoO 21 T = 1,N

WRITE(3,1323) (VII+d),yd =
FORMAT('0',26F5,.1)

21 1+25)
103

CoMPUTZ CAPACITANCE ANC IMPEUANCE

Kk = T1-2
CO 27 K=1,KK

VI(K)=VII1=-K,LI*E({I1-K)+V{I2+K,1)*E{[2+K)

JJ=sJ1+K
CG 24 J=2,Jd
VI{K)I=VIIKY+2%V(I2+K,J)*E(I2+K)
VI{K)I=VI{K)+2,*¥V(I1-K,J)®E([1-K)
[J=11-K

IK=T2+K

CO 25 I=1J,IK
25 VI(K)=VI{K)+2.%V{1,J1+K)*E(])
27 VZ2IK)=VI(K) =4 VIT1-K,J1+K)#¥c(I1-K)
1 —4o%VII2+K,J1+K)*E([2+K)

KJ = T1-3

[F {KKK-1) 65,65,66

CO 28 K=1,KJ
ClIK)=8.RE4F(VI(K}=-V2(K+1) )} /VMAX
Z(K)=1o0E+04/(CL(K)*SQRTIERL}*2,997925)
52209 @ "

CO 30 K=1,KJ

AZ=A72+7(K)

Y=AZ/KJ

CO TQ 99

CO 38 K=1,KJ
C2(K)}=8Bo854%{V1{(K)-V2{K+1))/VMAX
CIK)I=SQRT(CL(K)=*C2{K)]
Z{K}=1.CE+24/(C(K)*2,957925)
AZ=0¢ :

CO 29 K=1,KJ

AZ=AZ+7(K)

Y=AZ/KJ

24

65

28
30
66
38
29

PRINT THc RESULT

106 FORMAT(1X,' Il = *,I3,' I2 =
1 ' M= '13,' ERL = ",Fb6.3)

56 IF (KKK-1) 81,81,82

8l ER2=1,

WRITE(3,126)

GO TC 39 _

WRITE(3,106) I1,12,41,N,M,ERL

WRITE(3,108) '

FORMAT('0%,' V1{K) = ')

WRITE(35107) (VLK) K=1,KK)

FORMAT(13F10.2)

WRITE(3,109)

FORMAT('0", ¢ V2(K) = )

WRITE(3,107) (V2 (K)sK=1,KK)

WRITE(3,110)

FORMAT('0%,' CAPACITANCE [N PF PER MLTFK

213, J1 =
I1,12,J1,NsM,ERZ

82
39
128
107

1C9

11C

BATE =

41
IAVIVEI R

',I3,Y N = ',13,

= 1)



FURTRAN IV & LEVEL

1140
Glal
0142
{143
Cl4a
0145
Clab
Cl147
Glad
149
Q150
151
n1n2
Q153
2154
C155
Q1lh6

1y MUOD & MAIN DAT=Z = 70841

FORMAT(13F9.3)

IF (KKK-1) 120,120,122

WRITE(3,111) (CL(K),K=1,KJ)

GG 70 123

WRITE(3,111) (C2(K)}sK=1,KJ)

WRITE(3,112)

FORMAT('0',*' CHARACTERISTIC IMPEDANCE = 1)
WRTITE(3,113) (Z(K),K=1,KJ)

FORMAT{L13F9.3)

WRITE(3,114)

FORMAT('0',* AVERAGE UOF CHARACTERISTIC IMPECANCE =
WRTITE(3,115) Y

FORMAT (1F943)

CONTINUE

GO TO 390

STOP

END

')
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ABSTRACT

The purpose of this report is to study the variation of the
characteristic impedance of shielded strip transmission lines
as a function of line geometry by using the finite difference
method for solving Laplace's equation.

The finite difference technique, which is particularly suited
for machine computation, is reviewed. This technique is illus-
trated with a special kind of strip transmission line which is
made of two microstrip lines placed together with their strip
conductors face to face. It proved possible to solve the problem
in a reasonable time by using an IBM 360/50 computer. A pro-
gramming flow chart is shown and the developed program for the
problem is listed.

The numerical results have been given in the form of curves.
The impedance encompasses the range near 50 ohms, corresponding
to a ratio of the strip width to the total thickness of the line
of 0.2 with the dielectric material having a relative permittivity
of sr?lo, and to a ratio of 0.67 with er=2.56. The ratio of the
alr gap between the two strip conductors to the total thickness
is varied from 0 to 0.15. The quality of computer results is

also discussed.



