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A

I. INTRODUCTION

There has been much recent interest in formulating and

solving the equations for general networks containing dependent

sources. However, the conditions for unique solvability of the

equations describing a mathematical model of a general active

network are not well-understood .

2
Recently, Malik and Hale have extended Seshu and Reed's

solvability conditions for networks of passive elements and in-

dependent sources to networks containing dependent sources. The

extended conditions state that the Laplace transformed equations

describing a network N containing n finite- transmit tance depen-

dent sources have an unique solution if, and only if:

1) N contains no cut-set consisting only of elements from

the set of independent and dependent current sources of

' N,

2) N contains no circuit consisting only of elements from

the set of independent and dependent voltage sources of

N,

3) det [F - $"'"]
?« identically in s,

where matrix <I> is an n x n diagonal matrix with the reciprocals

of the transraittances of the dependent sources as diagonal ele-

ments, and F is an n X n matrix such that element f , . of F is a

certain transfer function found from a passive network N„ which

is related to N.



The first two conditions are simply generalizations of the

well-knov/n facts that the voltages across a cut-set of indepen-

dent current sources and the currents in a loop of independent

voltage sources cannot be uniquely determined. The third condi-

tion, which is unique to the active network problem, requires

interpretation and further study, vzhich hopefully v;ill lead to a

better understanding of the structure and properties of active

networks. \

In general, the determinant of condition 3 may be expanded

into a sum of 2 determinants, the first term of v;hir.h is the
<

determinant of F. The determinant det [F - ^ ] can vanish in

two ways: either all 2 terms vanish individually, or the terras

cancel one another and sum to zero. At this time there is no

known way to describe how the terras can cancel one another and

sum to zero. The possibility of individual terms vanishing,

however, seems to be related to the network structure and lends

itself more easily to further study. Every term in the expansion

except the first term, det F, has the reciprocal of a transraittance

for a coefficient. Thus, in the limit as all of the t ransmi t tances

approach infinity, the third condition reduces to det F i^ . This

suggests that studying networks containing infinite transmit tances

may provide valuable information about finite- transmi t tance net-

works. The idea of formulating equations for in fini te-transmit tance

3network is not new. Nathan , for example, has shown a matrix

analysis method for networks containing "infinite gain" opera-

tional amplifiers. .'



The object of this paper is to state and prove a necessary

condition for an uniquely solvable set of active network equations

to remain uniquely solvable in the limit as all of the trans-

mittances approach infinity. A specific statement of the

necessary condition must be deferred until after the concept of

a seg has been introduced.



II. NETWORK ANALYSIS TOOLS

A. Indefinite Admittance Matrix.

In formulating the equations for electrical netv'orks there

arise matrices with the property that the sum of the elements of

every rov; and of every column equals zero. As a consequence,

the matrices are singular and all the first cofactors associated

with the determinants of such matrices are equal. This kind of

matrix is called an "equicof ac tor matrix". The equicofactor

matrix formed on node basis is called the "indefinite admittance

matrix"

.

Shekel first introduced the indefinite admittance matrix as

a convenient means of completely specifying a linear n--terminal

network "black box". Every practical linear electrical network

may be analyzed by the matrix regardless of the number or type

of its constituent elements or their manner of interconnection.

The indefinite admittance m.atrix is composed of the usual

self- and mutual- admittances specified by the measurable

terminal magnitudes of an n-terminal "black box", and can be

constructed as follows. ' '"'

Consider a linear a-terminal network as shown in Fig. 1.

The assumptions are made that only the n terminals are physically

accessible, the remaining structure is contained i\i an inaccessi-

ble "black box", and the terminals are the points at which external

sources or loads may be connected. Let V , V_ , .... , V denote

the potentials measured between terminals 1, 2 , n.
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respectively, and some arbitrary but unspecified reference point

r. Let I^, I„ , I denote the currents entering 1, 2, .... ,

n, respectively, from outside the network. Choosing the reference

point of zero potential arbitrarily outside the n-terminal "black

box", and applying Kirchhoff's current law to each of these

terminals, a set of n linear algebraic equations can be written

matrically In

Y V = I (2-1)

where

Y =

11

21

12

22

y 1 V o^nl - n2

In

2n

nn

V,

V = I =

In Eqn. (2-1), Y is an n x n matrix called the "indefinite

admittance matrix". The elements of this matrix can be found

from Eqn. (2-1) to be

y^

I (s)

jk Vj^(s)
(2-2)

V. = 0, if i 5* k
1 '

Thus, the self -admit tance y, , and the mutual-admittance y., cankk ^ jk

be found by connecting all the terminals except terminal k to the

chosen reference point and exciting terminal k with a unit im-

pulse; that is Vj^(s) = 1. Then y is the current Ii^(s) entering

terminal k, and y is the current I.(s) entering terminal j.



Soma important properties of the indefinite admittance matrix

are listed below:

Property 1. The sum of the elements in every column of the

indefinite admittance matrix is zero.

n

y y .. = , for all k (2-3)

j = l ^^

Property 2. The sum of the elements in every row of the indefinite

admittance matrix is zero.

I y = , for all j (2-4)

k=l ^^

The above properties can easily be established by applying

Kirchhoff 's current and voltage latjs. :

"

Property 3. For a passive, reciprocal n-terminal network, the

indefinite adm.ittance matrix is symmetrical.

Property 4. The indefinite admittance matrix is singular and all

of its first cof actors are equal. *

This is due essentially to the fact that the currents in the n

terminals depend only on the differences of potential between

these terminals rather than on the absolute potential of the

terminals

.
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Property 5. The indefinite admittance matrices corresponding to

networks connected in parallel are additive.

This can be seen from the fact that currents entering the

corresponding nodes of parallel netx-7orks are additive. Every

practical linear netv;ork can be split into elementary subnetworks

in such a fashion that these subnetworks, no matter whether they

are in series or in parallel in the original network, are

relatively in parallel with respect to the reference node. This

gives great advantages in analyzing networks of complicated

structure. The following is a simple example in which the same

Indefinite admittance matrix x^ill be obtained by means of

different approaches.

Example. Find the indefinite admittance matrix of the network N

as shown in Fig. 2(a). The zero potential reference node r is

chosen arbitrarily outside of the network.

Solution:

A) Direct method.
r '

Let V,, V- , V_ , V, denote the voltages between node 1, 2, 3,

and 4, respectively, and the reference node r. Then, applying

Kirchhoff's current law to each of these nodes, a set of linear

algebraic equations is written as follows.

at node 1: J = (y,+y,+yc)V, - y.V, - y^V. - y.V1^2^5' 1 ^2 2 ^5 3 14



r

Fig. 2(a). Netx^ork N of the example.

N. N,

Fig. 2(b). Example by Additive Method, Subnetuorks N and N
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at node 2: = - y ^V ^ + (y2+y3'''y6^ ^2 " ^3^3 " ^6^ 4 •

at node 3: = -
y ^V ^ - y ^V ^ + (y3+y4+y5)V3 - y^V^

at node 4: -J = - y^V^^ -
y ^V ^ - y ^W ^ + (y3^+y^+yg)V

4 •

Denote the coefficient matrix of the equations by Y. Then, Y is

a 4 X 4 indefinite admittance matrix of the netv;ork N. That is,

Y =

1

2

3

4

yi+y2+y5

-y,

L-^l
-y;

-y,

y3+y4+y5

-^4

-y-

y2-^y3-'y6 -^3 -y(

-y>

^1+^4+^6

B) Additive method.
\

Let N be split into two four-terminal subnetworks N and N_

with the elements of N divided between N^ and N_ as indicated in

Fig. 2(b). Note that every node of the original network is con-

sidered to be a node of each subnetwork. It is seen that N may -'

be formed by placing the two four- terminal networks N^ and N in

parallel.

Denote the indefinite admittance matrices of N^ and N- by Y_-

and Y „ , respectively. Then, as in part A),
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and

^1

1

2

3

4

1 2 3 4

yi+y5 -^5 -^1

-^5 y^-^vs -u
."'^1 -U ^i^U_

^2

1

2

3

4

^2

2 3

-y^ ^

y2"'"y3'^y6 -^3

^:

-y-

4

^6

The matrix sum of the above two indefinite admittance matrices

of N^ and N_ gives

Y + Y-1 -2

1

2

3

4

yi+y2+y5 -y2 -y.

-y.

-y.

-y-

y2-'y3+y6 -^3

-y-

-y,

-^3
c

^3^^^^-^^^ -U
-y, -^4 yi-^^A-^ye

The resultant matrix is the same as was given in part A)
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Since the indefinite admittance matrix is singular, its

inverse does not exist, and an expression of the solution in the

form X ~ X i ^^ "°*^ obtainable. In order to find the solution

of the network, the zero potential reference node is chosen to be

one of the netv;ork terminals, say the kth. Then the remaining

(n-l) voltages of the (n-1) terminals are measured relative to

that of the kth terminal. The current in the kth terminal, by

Kirchhoff's current lav;, is the negative of the sum of the

remaining (n-l) terminal currents. Having V, and I, , a submatrix

Y is formed by deleting the kth row and the kth column from the

indefinite admittance matrix. The resulting (n-l) x (n-l) sub-

matrix Y, is called the "definite admittance matrix". It is non-—

d

singular and can be inverted to give a relation of the solution

to the network in the form

V = Y I
-d -d -d '

(2-6)

where the (n-l) vector V, contains the voltages of the n-l non-

reference nodes relative to node k and where I, is an (n-l)—

d

vector containing the currents at all of the nodes except the

kth.

The foregoing study of the indefinite admittance matrix

illustrated the principal advantage of this matrix as a general

analysis tool; its additive property provides the flexibility in

describing complex networks by teiminal equations.
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B. The Seg.

The usefulness of linear graph theory in electrical netv;ork

analysis is in separating those properties of netv/orks which

arise from the physics of the network elements from those which

are a consequence of the interconnection of the elements. The

interconnection properties, the well-known laws of Kirchhoff, • .

deal solely with the geometric structure of the netv/ork. Thus,

netv/orks are represented in accordance with their geometric

structure as patterns of line segments called graphs. Each line

segment of the graph represents b circuit element or a combina-

tion of circuit elements in the original network. Each vertex,

or connection point of line segments , represents a node of the

network.

There have been developed some useful classes of subgraphs

such as trees, cotrees, paths, stars, cut sets, and circuits.

Among these, the classes of stars and of cut sets have similar

properties. The former is the set of line segments incident to

a vertex. The latter is a minimal set of edges such that their

removal from the graph leaves two unconnected subgraphs of the

original graph. Both of them are useful in formulating Kirchhof'f's

current law. That is, the algebraic sura of the currents flowing

through the elements of a star or of a cut set in a given

reference direction is zero.

Reed recently introduced a nev: class of subgraphs called

segs. The segs are defined in terms of a segregation of the
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vertices of a graph into two all-inclusive, mutually-exclusive,

non-empty sets, the X set and the NX set. This class of subgraphs

includes both the stars and the cut-sets as special cases. The

concept of a seg is particularly useful for two reasons. First,

its definition is so simple and basic that it readily lends it-

self to mathematical treatment. Second and more important, the

seg makes it possible to formulate Kirchhoff's current law in the

most general known form. That is: "the algebraic sum of the

currents flowing in a seg in a given reference direction is zero".

The definitions essential to establishing the concept of a

seg are listed here.

Definition 1. Vertex Segregation: A vertex segregation is a

classification of the vertices of a graph into two all-inclusive,

mutually-exclusive, non-empty sets; the X set and the NX set.

Definition 2. Bridge: A bridge is an element of a graph with one

vertex in the X set and one vertex in the NX set of a vertex

segregation.

Definition 3. Seg: A seg is the set of all bridges corresponding

to any vertex segregation of a graph. An orientation is assigned

to each edge of a seg, directed from the X set vertex toward the

NX set vertex.

Three segs are indicated by the heavy lines of the graphs in

Fig. 3. A seg may or may not include all elements of a graph.
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Also, it is possible to rearrange any graph such that the X set

and the NX set of vertices are clustered in a convenient way for

a given vertex segregation.
^a;:
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X set NX set

(a)

X set NX set

(b)

"^

X set

(c)

NX set

Fig. 3. Thiee Examples of Segs
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III. STATEMENT OF THE PROBLEM

The study is restricted to networks consisting of 2-terminal

passive elements and dependent sources controlled by admittance

currents and admittance voltages, called controlling variables.

Imperfect transformers may be present in the network, subject to

loose restrictions on their locations. Every controlling variable

is associated with a passive, 2-terminal network element called

a controlling element. A dependent source is simply a source

whose strength (voltage or current) is proportional to another

quantity (voltage or current), namely the controlling variable,

in some other part of the network. The source need not have a

terminal in common with its controlling element. The transmit tance

of a dependent source is the proportionality constant which relates

the controlling variable and the source strength. All trans-

mittances are assumed to be positive real numbers.

There are four possible combinations of the related quantities;

A type-A controlled source is a voltage-controlled current

source in which the output current is proportional to the input

voltage. An example of this controlled source is the idealized

pentode wherein the plate current is proportional to the grid

voltage. The proportionality constant g is commonly known asm

the transconductance

.

A type-B controlled source is a current-controlled voltage

source in which the output voltage is proportional to the input
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current. An example of this controlled source is the rotary d-c

generator whose generated voltage is proportional to the field

current

.

A type-C controlled source is a voltage-controlled voltage

source in which the output voltage is proportional to the input

voltage. Many voltage amplifiers have properties approximating

those of this type of controlled source. Among then, feedback

amplifiers giveavery good approximation. The proportionality.

constant \i is commonly known as the amplification factor.

A type-D controlled source is a .
current-controlled current

source in which the output current is proportional to the input

current. An example of this controlled source is the ideal

transistor. The proportionality constant a is commonly known

as the current-transfer ratio.

It is now possible to state the central problem of this re-

port, A set of Laplace transformed equations is written in a cer-

tain manner for a connected network of arbitrary structure con-

taining passive elements and n dependent sources of one of the types

listed above. These equations contain the controlled and controlling

variables among the unknowns; and are assumed to have a unique

solution for finite transmit tances . The object of this paper is

to prove an assertion based upon intuitive physical reasoning.

The assertion is that these equations have a unique solution in

the limit as the transmit tances approach infinity only if the

controlling elements do not constitute a seg of the network.



19

IV. SOLUTION OF THE PROBLEM
"

The problem is approached by first formulating a set of

equations for an active network in which the controlling elements

are not constrained to constitute a seg. The coefficient matrix

is then examined in the limit as the transmittances approach

infinity. For this case, it is not possible to demonstrate that

the coefficient matrix is either singular or nonsingular. Some

additional information about the structure and/or element values

is required in order to come to a definite conclusion.

A physical argument suggests that the coefficient matrix

might vanish if the network contained a seg of controlling

elements. This idea is explored by formulating the equations for

a general connected active network in vrhich a seg of controlling

elements is imbedded. In order to simplify the approach, types

of dependent sources in the network are considered individually.

In the limiting case, the coefficient matrices of the equations

for each type of dependent sources are clearly found to become

singular. Furthermore, the singularity is shown to follow

directly from the presence of the seg of controlling elements.

A. Active Network Without A Seg of Controlling Elements.

The general diagram of an active network N without a seg of

controlling elements explicitly shown is given in Fig. 4. Network

N is excited by an independent current source J. The admittances

yi » Yo » • . • . » y^ ^^^ the k controlling elements for the k
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dependent sources represented by circles. The a's are the source

transnitt ances , with subscripts relating them to their respective

controlling elements. The controlling elements and sources

constrain a connected passive network N- having arbitrary structure,

and possibly containing imperfect transformers. No magnetic

coupling between N. and the controlling elements is permitted.

Using the indefinite admittance matrix, equations for N are

written in the form

^0-

^A'

K

00
Y.«,

AO

A'O

KG

K'O

^O'O ^O'A ^O'A' ^O'K ^O-K'

00

AO

OA OA'

^AA ^AA'

OK

AK

A'O

KO

A'A A'A

KA KA' KK

K'O K'A K'A

OK'

AK'

^A»n» ^A«n ^A'A ^AlA» ^A»l' ^ A 1 V tA'K *A'K

'kk'

^v»n« ^I'tn ^v » A ^1/ • A » ^v»v ^v«i'«K'K K'K

^0'

\'

K

\'

(A-1)

where

^0' = --^

(4-2)

"A

^a'

^b'
A' 4'

^1'

^2'

S'J K ^K'

>' -- •*
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^a-

\'

\\

\ =

K

\' =

'1'

'2'

^K-

Since each terminal current at a port must be the negative

of the other terminal current at the port, the equations for the

controlling elements are written in the form

-I
K

•^K'

P

P

-P

P

K
(4-3)

where P is k x k diagonal adniittance matrix for the controlling

elements. That is.

P = diag. (y^, y^, ._. ^ y^) (4-4)

Again, using the fact that the terminal currents of a 2-

terminal element are the negatives of each other.

^A - -^A- (4-5)

and

h = -^K- (4-6)

Combining Eqns. (A-1), (4-2), (4-3), (4-5), and (4-6), and

choosing 0' as zero potential reference node, the set of linearly

independent equations is written for the whole passive part of



the network in the form
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J ^00 ^OA ^OA' ^OK ^OK' ^0

'a ^,0 ^AA ^AA- ^^AK ^AK' \
^A

X3

^A'O ^A'A ^A'A' ^A'K ^A'K' \^

^KO ^KA ^KA'
Y -fP

^KK'~^ \
Jk'o ^K'A ^K'A' '^k'k"^ ^•K'-^^ \'

(4-7)

The coefficient matrix in Eqp. . (A-?) is the nonsignular definite

admittance matrix of the x)B.r.sive part of N.

Since the controlling variable (V - V,. , ) . the voltage vec-

tor across the controlling elements, ir, of particular interest

inaiater part of the problem, the following nonsingular transfor-

mation of variables is made:

^0 U ^0

\ u
^A

\' ss u
'^A'

\ u u V\'
\' u \'

(4-8)

where the U's denote identity matrices of appropriate orders.

Using Eqn. (4-8), Eqn. (4-7) is transformed into the following

equivalent matrix equations:
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J ^00 ^OA ^OA' ^OK ^ok'*"^ok' ^0

'a ^AO ^AA ^AA- ^AK ^ak'^'^ak ' \
\ t=

^A'O ^A'A ^A'A' ^A'K ^a'k'*'^a'k' ^A'

^KO ^KA ^KA'
Y +P y +Y

KK KK' \-\'

_^K'0 ^K'A ^K'A' ^k'k"^ ^k'k'^\'k'_ \' -

(4-9)

The dependent sources, which are constrained by the con-

trolling variables, give an additional set of equations. For

type-A dependent sources, these equations are written in matrix

form as

:

^A = ^ ^\ - \'> (4-10)

where Q is a k x k diagonal matrix of transmittances of depen-

dent sources. That is.

Q = diag. (a^, a^, ...., a^) (4-11)

Equations (4-9) and (4-10) must be solved simultaneously.

Combining these into one matrix equation gives

-Q^ U
^a

J ^00 ^OA ^OA- ^OK ^ok'*"^ok' ^0

s
-u

^AO ^AA ^AA' ^AK '^'ak"^^ak' \
u ^•0 ^A'A ^A'A' ^A'K ^a'k'^^a'k' \'

\o ^KA ^KA'
Y +P V 4-V

KK KK' \-

^K'O ^K'A ^K'A' ^k'k"^ ^'k'^'^'k' \'

(4-12)
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The coefficient matrix of the above equation is assumed to

be nonsingular for finite value of transmittance . Since the

solvability of a set of equations is characterized by the

singularity or nonsinj;';ularlty of the coefficient matrix, atten-

tion is focused on the coefficient matrix in the limiting case.

Denote the coefficient matrix in Eqn. (4-12) by C. Then, in

the limit as Q approaches infinity, that is, all the t ransmittances

approach infinity, £ becomes

Lim c
Q-*-»

U

^00 ^OA ^OA' ^OK
^ok''"^ok*

-U
^AO ^AA ^AA' ^AK ^ak'^^ak'

U
^A'O ^A'A ^A'A ' ^A'K ^a'k'^^a'k'

^KO ^KA ^KA'
Y +P
KK

Y +Y
KK KK'

'^KO ^KA ^KA'
Y
KK

P Y +Y
KK KK'

(4-13)

In Eqn. (4-13), the singularity of the coefficient matrix C^

in the limiting case is not obvious. It might be that for some

particular netv/ork structure the coefficient matrix £ may be

simplified such that it will vanish in the limiting case. But in

the absence of more detailed knowledge of N^ , no definite conclu-

sion can be reached.
^

Physical insight gained from the study of high gain operational

amplifiers suggests that as the transmit tances approach infinity.
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one would expect the controlling variables to approach zero and

the controlled variable to remain finite. If the controlling

elements should constitute a seg of the network, in this limiting

case, transmission across the seg would necessarily be zero. Thus

part of the network would be electrically isolated from the re-

maining part. This line of reasoning suggests that a necessary

condition for the unique solvability of the network equations

might be that there must be no seg of controlling elements im-

bedded in the active network. This hypothesis is explored in the

next section.

B. Active Network With A Seg of Controlling Elements.

Let N be the general active network containing n dependent

sources shown in Fig. 5. The passive part of the network con-

sists of two connected passive subnetworks, N- and N_ , bridged by

a seg of controlling elements. Subnetworks N, and N„ are of arbi-

trary structure and may contain imperfect transformers, however

magnetic coupling must be confined within the black boxes labelled

N^ and N^. . .:
".

Using the Indefinite admittance matrix, N. is described by

the partitioned matrix equation
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^0'

^A-

K

M

^O'O'
Y

^O'A '^O'A' ^O'K ^O'M ^0'

"^00' ^00 ^OA ^OA'
Y Y ^0

^'ao' ^AO ^AA ^AA- ^AK ^AM . \
^A'O' ^A'O ^A'A ^A'A' ^A'K ^A'M ^•

^KO' ^KO ^KA ^KA'
Y
KK

Y
KM \

^MO' '^MO "^MA ^MA'
Y
MK

YMM _ \

(4-lA)

where

^0' = -J
- •.

'"
-. .

^0 = J

•

*; ^•' h' ik+l"

h ^b' h ^k+2

^A = •

•
' ^A'

= .
• ^K =

•
• ^M = •

•

• • • •

i
8. S'. \ -

i
n

V
a ^a'' ^1 ^k+l'

^b %' ^2 ^k+2

\ =
•

• ^• = .

•
\-

•
' ^M = •

•

•

• - • •

V ^' ^k
V
n

g. _

(4-15)

Similarly, the subnetwork N_ is described by

^M'

"W

^W

Y y Y
K ' K ' K ' M • K ' V7

Y Y Y
M ' K ' M ' M

'

M ' W

WK' WM' WW

^W'K' ^W'M' ''^W'W

'k'w'

^M'W'

'WW'

^W'W'

W

(4-16)
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^K-

^1-

^2-

^k'

^M'

k+l'

k+2'

^n'

"W ^W

^•

^1-

\y

'k'

^M'

k+l'

k+2'

^n-

^W
=

%•

^W

^t'

(4-17)

It is particularly important to notice that the coefficient

matrix in Eqn. (4-16) is the indefinite admittance matrix of the

passive subnetwork N_ ; and therefore the sum of the elements in

every column (or row) is zero. The singularity of this matrix

is a key part of the argument which follows.

The set of current equations for the seg of controlling

elements is

^K'
P -P

^K

^K' =
-P P \'

^M
R -R

^M

^I'
-R R

^M'

\

(4-18)
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where P is a k x k diagonal matrix of controlling elements re-

lated tothe dependent sources of N.. That is.

diag. (y^ , y, , y ) (4-19)

Also, R is a (n-k) x (n-k) diagonal matrix of controlling ele-

ments related to the dependent sources of N_ . That is,

R = diag. (y^^^, yj^^.2. ..... y„) • (4-20)

The port constraint relationships for the 2-termlnal circuit

elements are '. / '

^A = -^A-

^W = -\r

^K = -^K-

^M = -^M-

(4-21)

Combining Eqns. (4-14), (4-15), (4-16), (4-18), and (4-21),

and choosing 0' as zero potential reference node, the set of

linearly Independent current equations which describes the passive

part of the network N are formulated as

J

I
i

-I
i

I

-I

w

w

' Y
00 OA

AO AA

^A'O ^A'A

KO

MO

Y Y
OA' OK

^AA' ^AK

^A'A' ^A-K

Y Y
KA K^

Y Y
MA M^

Y +P
KK

iMK

-P

OM

AM

KM
-p

MM -R

-R

Y^^.+P Y
KiM'

^fK•

'WK'

ViV

^fM--^^

WM'

w^I'

%'

'a

^A-

^K

^M

^KV' ^]i\^ \'

^MV ^MW ^M'

Y
WW ^WW' \

^ww "^WV ""^1

(4-22)
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In order to introduce the controlling variables into the

equations, the following nonsingular transformation of variables

isapplied.

^0 u \
\ u ^^

\' u
^A-

\ u u V\'
\ = u u ^M-\'

\' u \'

^r u
^M'

\ u
^w

\' u \'

Thus, Eqn. (4-22) is transformed into

(A-23)

J Y
00 ^OA ^OA' ^OK

Y
CM ^OK

Y ' ^0 1

'a ^AO ^AA ^AA- ^AK ^AM ^AK ^AM \
^A ^'a'o ^A'A ^A'A' ^A'K "^An ^AK

Y ^•

^KO ^KA ^KA'
Y +P
KK Y

KM
Y
KK \n \-\'

.

=
^MO ^MA ^MA-

Y
MK ^MM"^^ \k Y

MM \-\' •

-P
^KIK'

Y
KM' ^k:w ^K^W' \'

J

-R
^M-K' ^^fM' ^>fi7 ^^fw• '«'

^w '^WK' ^WM'
Y
WW '^ww' ^w

'w ^'WK* ^\M
Y

^w^^r ^w

(4-24)
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which describes the passive part of N and includes all of the

controlling variables as unknowns, -..

Now it is necessary to introduce the active network con-

straints into the equations. In accordance with the four types

of dependent sources given previously, four cases are now con-

sidered.

Case 1. Type-A Controlled Sources.

A type-A controlled sou"rce is a voltage controlled current

source in which the output current is proportional to the voltage

across the controlling element. Thus, a set of constraint

equations can be written in the form

and

^A = Q (^K - ^•> '

^W = ^ (^M - \'^

(4-25)

(4-26)

In Eq. (4-25), Q is a k x k diagonal matrix of transmit tances

associated with the dependent sources in N. :

Q = diag. (a^, a^, a^^) (4-27)

In Eq. (4-26), S is an (n-k) x (n-k) diagonal matrix of trans-

mittances associated with the dependent sources in N_ : (

S = diag. (a^^^^, aj^^2
°n^ ' " (4-28)

Using the procedure which was applied to the case where a

seg was not explicitly shown, the equations for N are found to be
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Denote the coefficient matrix in Eqn. (4-29) by C^. It is

assumed that C^, is nonsingular for finite value of trausmittances

However, in the limiting case as Q and S approach infinity, C^^

becomes '

I ..

Lira C,
Q-Voo '

'

.

-

s->-»

"o U

u .

^00 ^OA ^'OA' ^OK /^OM
Y
OK

Y
OM

-u ^AO ^AA ^AA' ^AK ''am ^AK "'^AM

u
^A'O ^A'A ^^A' ^A'K ^A'M ^A-K ^^M

^KO ^KA ^KA'
Y +P
KK

Y
KM ^KK

Y
KM

Y
MO ^MA ^MA'

Y
MK ^MM-^^

Y
MK

Y
MM

-P
^ICK' ^K^I' ^KV ^KV

-R
^^fK• ^m' ^^fw ^hM

-u
^WK' ^WM'

Y
WW "^Wl/

u
^V/K' ^WM' ^WW ^\^:

(4-30)

The coefficient matrix C^ in the limiting case is seen t(

vanish by applying Laplace's Expansion according to minors

formed from the first two partitioned rows. This gives



det [Llm C ]

U

U

COY
-U Y

00

AO

OA

AA

" ° ^A'O

Y
KO KA

OA'

AA'

A'A A'A

KA'

Y
^MO ^MA ^MA'

-u

u

OK

AK

"a'A ^AlAt "a»A'K

KK

MK

"M'K

WK'

W'K

MM

^K'K' '^K'M' ^^"

M'M

'WM' "WW

W'M

35

Y
OH

^AM

^A'M

Y
KM

Y,„,

K'W ^K'W'

^M»V» ^M«M» ^M'U ^M»I.T'M'W M'W

'WW'

^t.l'V' ^T.T»M» "uM.T "l.T'l.T'W'W W'W'

(4-31)

In Eqn. (4-31), the 4x4 partitioned submatrix at the lower

right is recognized as the coefficient matrix of Eqn. (4-16),

hence its rows sum to zero. In summing the last four partitioned

rows, the two identity matrices in these rows also sum to zero.

This gives a zero row in the minor of the determinant. Therefore,

det [Lira C ] =

S->co

(4-32)

In comparing Eqn. (4-13) and (4-31) and their corresponding

networks, it becomes clear that the only essential difference in ^

the two cases is that in the latter, a seg of controlling elements

is explicitly included in the description. The conclusion is that
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not only is the coefficient matrix singular in the second case,

but that it is singular as a direct result of the seg of con-

trolling elements.

Network containing the other active source types are now

examined.

Case 2. Type-B Controlled Sources.

A type-B controlled source is a current-controlled voltage

source in which the output voltage is proportional to the current

flowing through the controlling element. Thus, the set of con-

straint equations can be written in the form

\ - \' = Q P ^\ - \'> '
(4-33)

and

^W - \' = S ^ (^M - ^M'> ' .
(4-34)

where P, R, Q, and S have been previously defined.

Combining Eqn. (4-2A), the description of the passive part

of the network, with these new constraint equations gives
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Denote the coefficient matrix in Eqn. (4-35) by C^. In the

limiting case as Q and S approach infinity, C^„ becomes

Lim C,
Q->.oo

S-*-"*

'

Y

U Y

00

AO

OA OA'

AA AA'

OK

AK

OM

AM

u
^A'O ^A'A ^A'A' ^A'K ^A'M

\o ^KA
Y
^KA' ^KK-^P Y

KM

Y
MO ^MA ^MA' ^IK ^MM-^^^

-P

-R

-u

u

^OK
Y
OM

^AK ^AM

^A'K ^A'M

Y
KK ^KM

Y.„, Y„„
MK MM

"^K'K' ^K'M' ^^'

U

U 0.00
Y„,. Y^„ Y^„ Y^,,

'^K ' W

M'K' *M'M' ^M'w ^n'\r

Y Y Y Y
WK' WM' WW WW'

^W'K' ^W'M' \'W ^W'W'_

> -

(4-36)

The resulting matrix is exactly the same as was given for

type-A controlled sources in Eqn. (4-30). Therefore, the same

conclusions are applicable to type-B controlled sources. -^

Case 3. Type-C Controlled Sources.

K'W

Y
M'W

A type-C controlled source is a voltage-controlled voltage

source in which the output voltage is proportional to the voltage

variation across the controlling element. Thus, the set of con-

straint equations can be written in the form
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and

\' = Q ^\ - \'>

\ - \' = S (\ - ^M'^

(4-37)

(4-38)

where Q and S are diagonal matrices of transmittances which were

defined in Eqns . (4-27) and (4-28).

Evidently, this case is similar in every important respect

to that of Case 2. The only difference is the absence of the

scalar multiplication by the matrices of controlling elements,

P and R in this case. This is apparent by comparing Eqns. (4-37)

and (4-38) with Eqns. (4-33) and (4-34).

Case 4. Type-D Controlled Sou rces .

A type-D controlled source is a current-controlled current

source in which the output current is proportional to the current

flowing through the controlling element. The set of constraint

equations for the network with this type of dependent sources

are given below.

I. = Q P (V^ - V^,)
K K'

(4-39)

^W = s ^ (\ - Vm'> (4-40)

Since these constraints differ from those of Case 1, Eqns.

(4-25) and (4-26), only in scalar multipliers P and R, the result

also holds for this case.
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V. CONCLUSIONS

A set of equations describing a general active network were

written and examined in the limiting case as all of the transmit-

tances approached infinity. It was found that these equations had

a unique solution in the limiting case only if the controlling

elements did not constitute a seg of the network. Four types of

dependent sources were considered individually, and the same re-

sult applied in each case regardless of the distribution of the

sources in the network relative to the seg. These results make

it possible to suggest a number of new problems and to make

educated guesses concerning what the answers might be.

The first extension of this work should be to examine a

network containing all four source types distributed arbitrarily

relative to the seg. Since this vrould involve combining the equa-

tions used in this report in a straightforward manner, the same

result is expected to apply to this more general case. 7

Another problem would involve examining the limiting case

when only a subset of the controlling elements constitute a seg.

The same physical reasoning which suggested the present investi-

gation makes it reasonable to suppose the equations would be un-

solvable also in this limiting case.

A very interesting problem which remains to be examined is

suggested by the principle of duality. It is easy to show that

there is a type of closure with respect to duality in the set of
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dependent source types considered. That is, the dual of any

member of the set is itself a member of the set. The dual of the

9
seg, called a cirk, has been well-established . Just as the seg

is a cut-set or disjoint union of cut-sets, the cirk is a circuit

or disjoint union of circuits.

Suppose the equations of this report were changed by replacing

every voltage variable by a current variable and conversely.

Suppose also that the admittance matrices were interpreted as

impedance matrices. Assuming that the dual network exists, one

would expect the dual conclusion to hold. That is, the equations

are not uniquely solvable in the limit if the network contains a

cirk of controlling elements. The original result applies to

planar and nonplanar networks. This dual argument would apply,

of course, only to planar netv/orks.

Another and more general approach would be to reformulate the

equations with the dual condition in mind. An indefinite impedance

matrix exists which provides an approach dual to the indefinite

admittance matrix. Such a development might lead to a "dual"

result for a nonplanar network. The difficulty of explicitly

including the cirk elements in the equations m.ight make this

approach prohibitive. Since the dual argument has not been

carefully explored, no definite conclusion on the dual condition

can be made at this time. -
.

Finally, these results should be examined to see what inferences

are now possible in the general active network problem discussed
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in the introduction. The work of this report suggests that det

F will vanish in the limiting case if the controlling elements

constitute a seg. There is other evidence to support this con-

clusion '. However, the equations used in this report are not

equivalent (related by a nonsingular transformation) to the

equations resulting in the condition, det [F - ^ ] ?* . The

calculations in this report seem to indicate that the controlling

variables must be included among the unknowns in order for the two

approaches to give equivalent results. The reason for this remains

obscure.
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A necessary condition is presented to ensure that a uniquely

solvable set of active network equations remains uniquely solvable

in the limit as the transmit tances approach infinity. This

condition is that the set of controlling elements imbedded in the

network does not constitute a seg of the network.

The problem is approached by first formulating a set of

equations for an active network in which the controlling elements

are not constrained to constitute a seg. In the limit as the

transmittances approach infinity, it is not possible to demon-

strate that the coefficient matrix is either singular or non-

singular. No definite conclusion can thus be reached.

Equations are then formulated for a connected active network

in which a seg of controlling elements is explicitly shown. The

coefficient matrix is assumed to be nonsingular for finite value

of transmittances. In the limiting case, the coefficient matrices

of the equations for each of the four possible types of dependent

sources are clearly found to become singular. The singularity

is shown to follow directly from the presence of the seg of

controlling elements.


