
5.?

/ A STROCTORED APPROACH TO TEACH THE CONTENT OF CS1
TO N ON- MAJOR STUDENTS

Wnn AN EMPHASIS ON ANALYTIC PROBLEM SOLVIMG/

by

MICKEY D. HANEY

B. S. , Peru State College, 1982

A MASTER'S REPORT

submitted In partial fulfillment of tbe

requirements for the degree

MASTER OF SCIENCE

Department of Computer Science

KANSAS STATE UNIVERSITY
Manhattan, Kansas

1987

Approved by:

L.Ji

Major (Pnof essor



\r , .^ AliaD7 303111

. PsH DEDICATION

' 'O ' I dedicate this work to my wife Kathy who supported this effort finan-

V\^^o oially and with never ending patience and love. Also to our first

^^ ^ child, Cecilia or Glenn, who gave support by kicking Kathy while in the
womb.

ACKNOHLEDGEMENTS

Thanks to Dr. Wallentine, Dr. Onger, and Dr. Melton for the support of

this project. A special thanks to the GTA's that were patient with the
change in method that occurred in the implementation of this papers'
content. Also thanks goes to the secretaries in the computer science
office for their motherly guidance and technical support. Lastly, a

large thank you goes to Rhonda, my lawyer sister, for her weekends of
driving to see her brother to edit this paper.



Table of Contents

Table of Contents

1. Introduction: Problem Identification and Goal

2. Definition of Formal Analytic Problem Solving

2.1 Definition of Formal Analytic and
Formal Synthetic Problems

Defined Problem Domain

3.1 Physical Processing Configuration
3.2 Necessary Abstract Analytic Components

3.2.1 Data Abstraction

3.2.2 Procedural Primitive Abstractions
3.2.2.1 Processing a Sentinel File Primitive

3.2.2.2 Decision Primitive

3.2.2.3 Repetition Dependent Primitives
3.2.2.11 Kon- Repetition Dependent Primitives

3.3 Conclusion

Analytic Problem Solving Process 21

1.1 Specification of Pre- and Postcondition Phase

4.1.1 Specification of Input File Component
4.1.2 Specification of Global Memory Component

4.1.3 Specification of Output File Component
4.1.4 Conclusion

4.2 Design Phase

4.3 Pre-ooding Phase
4.3.1 Module Name
4.3.2 Input Variables

4.3.3 Process Variables
4.3.4 Format Variables

4.4 Coding Phase

4.5 Testing Phase
4.6 Documentation Phase

11



lapleinentation of the Course 56

5.1 Phase One

5.2 Phase Two

5.3 Phase Three

5.4 Formal Testing
5.5 Conclusion

Conclusion , , 65

References , 66

Appendix A - CbalkBoard Execution 67

111



CHAPTER 1

INTRODUCTION: PROBLEM IDENTIFICATION AND GOAL

The expansion of the availability of mlcro-oomputers in primary

and secondary institutions has created an interesting probleo for the

mathematics, business, and science teachers In American schools. As

schools have begun to Implement computer science programs into their

eurrieulums, it usually has been the mathematics, business, or science

instructors who have been asked to teach the newly created courses -

often without the benefit of much formal training in this subject much

less training in the methods and concepts of how best to teach it. To

compound this problem of inexperience, appropriate textbooks are often

unavailable. Thus the average instructor of computer science in the

public schools is left at a definite disadvantage as be or she prepares

to teach the subject matter.

I faced these same problems four years ago when I accepted a

full-time Job as a high school computer science instructor. As a recent

college graduate with a major in mathematics, I had taken computer pro-

gramming courses but no courses to prepare me to teach in this subject

area. I discovered in my initial experience in teaching computer sci-

ence that a large percentage of the students in my classes failed to

grasp the overall concept of programming. This failure of the students

reflected my inadequacy in teaching formal analytic problem solving.

Briefly, formal analytic problems can be defined as those problems

where the preconditions and the desired postconditions are given, and

the student is asked to define the translation actions. As applied to

computer programming, the student is given the input description and
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tbe desired result, and he or she Is asked to generate the language

Instructions to perform the translation.

I found in my classes that if I gave my students a problem where

they were to process an input file and produce a report, many were

unable to specify the problem in terms of tbe basic processing confi-

guration of tbe input file, internal memory, and the output file. In

addition, even if some students understood the problem in terms of this

configuration, many were unable to define the steps at the language

level necessary to solve the problem in the given configuration. This

inadequacy in teaching formal analytic problem solving became the

motivation for tbe formulation of tbe content of this paper.

As a high school instructor I formulated a structured approach for

the basic high school computer science course known as Computer Science

1 (hereinafter referred to as CS1) designed to teach my high school

students to solve formal analytic computer science problems. Briefly,

this approach was designed to teach to specify the pre- and postcondi-

tions in terms of a given configuration, to abstract a solution using

aliened actions within the configuration, and to implement that

abstraction into a higb-level language.

In developing this method I utilized the following two basic

assumptions :

(1) That the students were initially unable to solve formal
analytic problems into a high-level language,

(2) That I lacked a proper approach to teach the student to
solve analytic problems.
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Most of the high school students would enroll in CS1 because of

interest, not because they plan to major in computer science in col-

lege. Thus the most important goal in the proposed structured approach

to teaching the CSl course is that of providing the student with an

educational experience where his or her analytic skills are developed,

not necessarily that of teaching the students the intricacies of a pro-

gramming language.

The Association for Computing Machinery (hereinafter referred to

as ACM) defines the following major objectives for CSl:

to introduce a disciplined approach to problem- solving
methods and algorithmic development,

to introduce procedural and data abstraction.

to teach program design, coding, debugging, testing, and
using good programming style.

to teach a block-structured high-level language,

to provide a familiarity with the evolution of computer
hardware and software technology.

to provide a foundation for further studies in computer
science. [1]

The remainder of this report explains a possible course design for

CSl that I developed which allows the above objectives to be met and

that also provides a defined method to enhance the high school

student's analytic skills in computer science. Chapter Two defines

what is meant by a formal analytic problem. Chapters Three, Four, and

Five explain the three basic components of the course design, as fol-

lOHs:

Page 3



(1) A defined problem domain to be used In the creation of
analytic problems for the student to solve.

(2) A synthetic model for illustrating analytic solutions,
for use as a student development model and for providing
a formal testing format for analytic problem solving.

(3) Teaching and testing in terms of analytic problem solv-
ing.

Finally, Chapter Six will provide conclusions concerning the pro-

posed course design.
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CHAPTER 2

DEFINniON OF FORMAL ANALmC PROBLEM SOLVHG

The goal of this paper Is to define a course in which the Intro-

ductory students can enhance their abilities to specify a problem,

abstractly design a solution, and implement that design into a high

level language. In other words, the course is designed to develop the

students' abilities to solve formal analytic problems. This chapter

provides a definition of formal analytic problems.

2.1 Definitions of Formal Analvtlc Problems and Formal Svnthetlc Prob-
lems

There are two basic types of problems that can arise for people to

solve - Informal problass and formal problems. Computer science is

concerned with the solving of formal problems, "Formal problems are

characterized by complete specifications: precisely specified initial

oonditlons, as well as solutions or results of a specified form; and

they must be solved by a completely specified set of actions. "[2] From

this definition is derived the three components of a formal problem as

follows: 1) The initial conditions C preconditions); 2) the desired

result (postconditions); and 3) the actions to perform the translation

(algorithm or program). If all three components of the formal problem

are specified, then a complete specification of the problem is present.

However, when one of the three necessary components is missing, we have

a formal problem that needs solved. Two types of formal problems can

be created depending on which one of the components is not specified -

problems of synthesis and problems of analysis.

In problems of synthesis the student is given the preconditions
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and the actions to obtain the desired result. The student normally

knows the general form of the desired result but using the precondi-

tions must perform the actions to instantiate the desired result. Fol-

lowing a cooking recipe involves solving a problem of synthesis. In

computer science, for example, the student could be given a set of code

(actions} and an input list (preconditions) for that code to process,

and the student is then asked to specify the output (postconditions).

One method to be used in solving synthesis problems is to have avail-

able an input list, an empty memory area, and an empty output area.

The student then executes the instructions making the changes to the

respective areas. The resultant solution of the synthetic problem is

the state of the output file at the termination of the code.

In problems of analysis the student is given the preconditions and

the desired postconditions. The student must then develop the actions

to make the translation from preconditions to postconditions. An exam-

ple is where a traveler is in Manhattan, Kansas and wants to drive to

HcCook, Nebraska, His presence in Manhattan, Kansas is the precondi-

tion, and his arrival in McCook, Nebraska is the desired postcondition.

The goal of the analytic problem is to derive the actions to make the

translation. In computer science, for example, the student is given a

programming problem which contains the input description (precondi-

tions) and desired result (postconditions), and the student is asked to

derive the program instructions to make the translation.

Solving a formal analytic problem depends greatly on the physical

configuration and the allowable procedural abilities. For instance.
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using the trip to MoCook example, if the mode of transportation is a

car, the physical configuration becomes the highway system and the

allc«able procedural actions become driving down a highway and turning

left or right. However, if the mode of transportation is an airplane,

the physical configuration is based on the available air routes and the

allowable actions are ascent, descent, and the respective turns during

the flight.
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CHAPTER 3

DEFINED PROBLEM DOMAIN

As explained in the introduction to this paper, students in CSl

initially have trouble specifying a problem, abstracting a solution,

and implementing the solution into a high-level language (i.e., formal

analytic problem solving). In order to overcome this problem for the

student, the first component necessary for the teaching of formal ana-

lytic problem solving in CSl is the creation of a defined problem

domain. The reason for creating this domain is that in solving any type

of problem, not only computer science problems, it is important that

the students understand the domain or environment in which they are

being asked to solve the problem. For example, if the students are

asked to solve the analytic problem of hou to travel from Manhattan,

Kansas to McCook, Nebraska, they understand because of prior experi-

ences the domain or environment they are asked work within if the the

environment includes driving a car on the highway system. But a major-

ity of the students probably could not solve the problem if asked to

solve it within an environment or domain that Includes the use of an

airplane and the air routes because of their lack of understanding of

this configuration and the allowable actions within it. Likewise in the

teaching of CSl, the students must be provided with a domain that they

understand before they can develop solutions to problems within the

domain.

The proposed course design provides a defined problem domain which

consists of 1) a physical processing configuration (i.e., the highway

system in the above described example) and 2) the necessary abstract
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analytic components consisting of data abstraction (I.e., the cities

between Manhattan and MoCook and the highway numbers in the above

described example) and the allowable procedural abilities necessary to

process within the configuration (i.e., start the oar, turn left,

accelerate, stop, etc. in the above described example). Before

attempting to solve analytic problems In CSl, the student must become

familiar with this defined problem domain. This chapter explains and

illustrates the physical processing configuration and the necessary

abstract analytic components encompassing the defined problem domain.

3.1 Physical Processing Configuration

In order to create a defined problem domain within which the stu-

dent can succeed in solving analytic problems, a physical processing

configuration must be defined. The physical processing configuration

consists of the logical and physical layout of the data storage com-

ponents. In other words, the configuration defines a concrete model

the student must use to solve assigned problems. The physical process-

ing configuration or environment used in this approach consists of

three physical components as follows: 1) Input file of records; 2) glo-

bal memory for program variables; and 3) a single output file. See

Diagram iKS.Ia.

The first component of the configuration, the input file, is

sequential. It can contain records with each record having fields of

some elemental data type. The assumption is made that all data in the

file is correct in terms of range and ordering. A constraint is also

placed on the input file that a single record must be read at one time.
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Input File Global Memory Output File

Diagram J3.1a - Physical Processing Configuration

In other words, the separate input of individual fields in a record is

not allowed. In addition, the constraint of having one valid record and

a sentinel record is placed on the input file.

The second physical component of the configuration is the global

memory for program variables. In this component storage locations or

variables can be created; and these locations or variables can be given

a value using the below described Repetition Dependent Primitives and

Non^Bepetitlon Dependent Primitives. In this component the student is

able to create memory locations of the basic data types. The component

allows random access to the created locations during the execution of

the coded module. Upon the creation of a location, it is assumed to

contain a 'garbage value'.

The third physical component is the output file. This component is

sequential, and its use is constrained to the printing of a whole line

at one time. In other words, the printing of part of a line is not

allowed at the design level. Output to this component can include the

contents of variables and program annotation from the global memory

component.
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The physical processing configuration as described above provides

the processing environment to be used in solving analytic problems. The

reason for its induction is that the students are thus given an

environuent that is constant from problem to problem in which they will

be asked to solve problems given the procedural abilities described

below along with data abstraction.

3.2 Me<;essarY Abstract Analytic Components

Given the above described physical processing configuration, the

abstract analytic components necessary to solve problems within that

configuration must be defined. These components include both data

abstraction and the procedural primitive abilities necessary to process

within the configuration and Instantiate the data abstractions.

3.2.1 Data Abstraction

The first component necessary in analysis is the ability to

abstract the data in the given problem. ACM defines data abstraction

as

"The conceptual approach of combining a data type with a con-
comitant set of operations, and the philosophy that such data
types can be used without knowing the details of the underly-
ing computer system representation." [1]

However, this definition leaves out an important concept in data

abstraction. In abstracting data, the data type, which is "a collection

of data values and the definition of one or more operations on those

values. "[2], must not only be dealt with, but the real world meaning or

the semantic descriptor must be recognized as part of the definition as
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Hell. A semantic descriptor can be defined as the label given to a

particular value that must be instantiated (i.e., a value to be

obtained). This semantic descriptor inherits a data type and also

includes a textual statement of the meaning within the real world

environnent. For instance in the above described Manhattan/McCook exam-

ple, arrival in the city of Beatrice is the Instantiation of a state or

step in achieving the end goal of reaching McCook, and the term

Beatrice is the semantic descriptor for that desired state. In the sam-

ple problem in Chapter Four, the term "call cost" is the semantic

descriptor of some real world value. The call cost when instantiated

contains a value of the inherent data type, real.

In solving the problems within the defined problem domain, the

student must be able to specify the semantic descriptors of the values

that are contained in the input file and the semantic descriptors of

all values that need to be derived to achieve the desired results of

the analytic problem. For example, in the Manhattan/HcCook analytic

problem, the student must be able to specify the cities or semantic

descriptors that need to be achieved or instantiated when driving the

route to the final goal of McCook. In the sample problem from Chapter

Four the final goal is to produce a report; but to produce the report

the 'call cost' of each call must be Instantiated and is but one state

in achieving the final solution.

3.2.2 Procedural Primitive Abstractions

With the ability to specify the desired semantic descriptors that

need to be achieved or instantiated through data abstraction to solve
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the problem, the procedural primitive abilities or abstractions neces-

sary to instantiate these values and solve problems within the physical

configuration must be defined. Within the closure of these primitives,

all required abstract semantic descriptors contained within the defined

problem domain should be procedurally achievable. Therefore, the

remainder this chapter Is devoted to defining the allowable procedural

primitive abstractions to be used in designing solutions.

3.2.2.1 Processing a Sentinel File Primitive

The first procedural ability that is necessary to solve problems

within the physical processing configuration is the ability to process

the input file, also known as processing a sentinel file. The students

are given the following design construct that presents the logic of

inputting one record at a time through the sentinel record:

READ FIRST RECORD
WHILE VALID RECORD

<primitlves>

READ NEXT RECORD
ENENHILE

This design construct is used for every problem when processing a sen-

tinel file is required. An example of the use of this primitive is

found in Diagram #3.2 using (1) to label the pieces of the primitive.

3.2.2.2 Decision Primitive

The second allowable procedural primitive abstraction is the deci-

sion primitive. This primitive provides the ability to control which

Page 13



7^"

other allowable primitives, if any, are to be executed based on a rela-

tional test of previously defined semantic descriptors and program con-

stants. This primitive provides two basic abilities for the students in

relation to semantic descriptors. The first is the ability to expand

the boolean semantic information to allow for Instantiation of detailed

semantic descriptors. For instance, if when necessary to instantiate

the semantic descriptor "in-state call count" from the sample problem

in Chapter Four, "call" in the semantic descriptor can be utilized

through the boolean semantics of the loop condition; but a test must be

introduced before we can include the words "In-state" in the semantic

descriptor. See Diagram #3.2, (2) labeling.

The second ability this primitive allows is the variation in the

method of instantiation of a semantic descriptor. For instance, in

order to instantiate "call cost" where the method depends on whether

the call cost is in-state or out-state, the decision primitive that

asks this question allows "call cost" to be calculated using different

methods. The semantics of the value remain constant both ways, but the

method of instantiation varies.

^.2.2.^ Becetltion Dependent Primitives

Several abstract procedural abilities are based on the repetition

of some value. In the proposed problem domain four procedural design

primitives are necessary to instantiate inter-record semantic descrip-

tors during repetition. These primitives are: 1) Initialize; 2) Accu-

mulate; 3) Increment; and l|) Select.
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The Initialize primitive is used to initially instantiate the

semantic descriptors of all of the other repetition dependent primi-

tives. The Initialize primitive is used before the use of the Process-

ing a Sentinel File primitive to illustrate the procedural need to ini-

tialize all of the inter-record based semantic descriptors. The Ini-

tialize primitive is moved to a high level of abstraction in the

design. When designing the solution, all other semantic descriptors are

assumed to be initialized through the use of a single Initialize primi-

tive. See Diagram *3.2, (3) labeling. In implementation of this design

primitive, the students must find all of the variables associated with

the Accumulate, Increment, or Select primitives and instantiate their

Initial state.

The Accumulate primitive is necessary to derive the summation of

some value that occurs multiple times. The Accumulate primitive can

only be used within the Processing a Sentinel File primitive. The

Implications of the use of this primitive in the design are that the

summation of some semantic descriptor Is instantiated. In design, this

primitive is contained within a process box. See Diagram f3.2, (1)

labeling. In the implementation of this design primitive, the syn-

thetic form of X = X + Y is used.

The Increment primitive is necessary because of the need to count

the number of times some logical state occurs. The Increment primitive

can only be used within the Processing a Sentinel File primitive. The

implications of the use of this primitive in the design are that the

number of times the primitive is executed will be derived. In design.

Page 15



this primitive is contained within a process box. See See Diagram t3.2,

(5) labeling. In the Implementation of this design primitive, the syn-

thetic form of X = X + 1 is used.

The Selection primitive Is necessary because of the need to select

the largest or smallest instantiation of a semantic descriptor based on

Inter-reoord comparison. The Select primitive can only be used within

the Processing a Sentinel File primitive. The implications of this

primitive are that the largest or smallest instantiation of some

repetitive value is selected. In design, this primitive is achieved

through the use of the single sided decision primitive with Initializa-

tion of the current state, testing of the current state, and update of

the current state upon a true relational condition. See Diagram i)3.2,

(6) labeling. In the implementation of this design primitive, the fol-

lowing synthetic form is used:

IF <this_reoord_state [> <] current_state> THEN

ourrent_'state <— thi^record_state

ENDIF

3.2.2.1 Non- Hepetitlon Dependent Primitives

The remaining abstract procedural primitives are not repetition

dependent. Therefore they can be used anywhere in a solution design. In

the proposed defined problem domain five procedural design primitives

are necessary to instantiate intra-record semantic descriptors or

semantic descriptors that can be instantiated without repetition. These
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primitives are: 1) Read; 2) Print; 3) Calculate; 1|) Set; and 5) Build

and Extract.

The Head primitive is necessary to transfer one complete record

from the input file component to the semantic descriptors in the global

memory component of the physical processing configuration. The implica-

tions of this primitive are that a complete record is transferred to

the global memory component to the respective semantic storage loca-

tions for later use, and the intrinsic pointer in the input file is

advanced to the next record. In design, this primitive is included

within an I/O flowchart box. See Diagram if3.2, (7) labeling. In

implementation of this design primitive, the synthetic form of READ

<variable list> is used.

The Print primitive is necessary to transfer information from the

global memory component to the output file component. The implications

of this primitive are that at least one line of formatted output is

produced, and the intrinsic pointer in the output file is advanced to

the next empty line. In design, this primitive is included in an I/O

flowchart box. See Diagram iJ3.2, (8) labeling. In implementation of

this design primitive, the synthetic form of PRINT <varlables and anno-

tatlon> <formatting> based on the respective implementation language is

used.

The Calculate primitive is necessary to mathematically instantiate

a semantic descriptor within the global memory component when the pro-

cedural ability to Instantiate the semantic value does not require

repetition. The implications of this design primitive are that a
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semantic descriptor has been instantiated through some arithmetic

operatlon(s). In design, this primitive is included In a flowchart pro-

cess box. See Diagram t3.2, (9) labeling. In the implementation of

this design primitive, the synthetic form of X = <arithmetio expres-

sion> is used.

The Set primitive is necessary to Instantiate the state of some

semantic descriptor without the use of arithmetic or string operations.

The implications of this design primitive are that the state of some

semantic descriptor is instantiated. In design, this primitive is

included in a flowchart process box. See Diagram #3.2, (10) labeling.

In the implementation of this design primitive, the synthetic form of S

or X = <constant> is used.

The Build and Extract design primitives are necessary to perform

operations on character strings. The selection of the verb is based on

the semantics of the operation. The implications of the use of these

primitives are that a string semantic descriptor has been instantiated

through operations on other string values. In design, these primitives

are included in a flowchart process box. See Diagram S3. 2, (11) label-

ing. In the implementation of these design primitives, the synthetic

form of S = <string expression> is used.

3.3 Conclusion

This chapter presents the defined problem domain in which the stu-

dent will be asked to solve problems. By creating the defined problem

domain for the students, they are no longer asked to design solutions
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to problems at the language abstraction level. Instead they are able to

use a concrete computer model to represent the computer system or phy-

sical environment and are then able to design the solution to the

assigned problems using the allowable procedural primitives at a level

of abstraction closer to English sentence representation used in other

disciplines.
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Diagram #3.23 - Procedural Primitives
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CHAPTEH H

ANALmC PaOBLEM SOLVING PROCESS

In the proposed course design for CS1 once tbe students understand

the defined problec domain they will be asked to solve formal analytic

problems within the domain. As explained in Chapter Two, the goal in

any analytic problem is to completely specify the problem (i.e., to

completely specify the preconditions, the postconditions, and the

actions to perform the translation). The students in CS1, as part of

the analytic problem solving process as presented in the course, must

specify the preconditions and postconditions of the problem as given in

terms of the physical processing configuration. Next they must design a

solution to the problem. Lastly, the students must Implement tbe design

into a high level language. The course provides the following six

phases which are designed to lead the students through these steps to a

complete specification of a formal analytic computer science problem:

1) Specification of Pre- and Postcondition Phase;
2) Design Phase;

3) Pre-coding Phase;
1) Coding Phase;

5) Testing Phase; and
6) Documentation Phase.

For each of the above-listed phases of the problem solving pro-

cess, the inputs to the phase, the desired results frooi the phase, and

the necessary translation algorithms to be used to derive this desired

result from the Inputs are defined. Thus this model of the problem

solving process, in essence, presents a synthetic model for the stu-

dents to solve formal analytic problems within the defined problem

domain.
;

-
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The above listed six phases are explained in this chapter. In

order to dearly illustrate these six components of the model, a sample

problem, which is described below, is used. This problem is selected

because it utilizes all of the primitive procedural and data abstrac-

tion abilities that are within the defined problem domain as presented

in Chapter Three.

SAMPLE PROBLEM:

CS 20x LAB
PHONE COMPANY

Given an input file that contains the information
for one customer to the MUW phone company. The file
contains a header record with :

1. the customer area code '913'

2. customer number '11567 892'

3. monthly service charge 16.75

The remainder of the records are the phone calls that
were made during the month by the above customer and
includes the following information for each :

1. Area code called '913'

2. Number called '5638976'

3. Time of the call '1020' for 10:20
1(. seconds of the call 310

Create a bill to the customer that prints on the top
appropriate headings with the customer phone number
inserting dashes and parentheses in the out area form
stated below.

For each call record, print on the detail line an '0'

If the call was out of the customer area code else
a blank. Then print the number called in following
forms, the minutes of the call, the time of the call,
and the charge based on the following table.

PHONE FORMS in area : 563-8976
out area : (112) 563-8976

BILLING RATES
In area $.20 per minute
Out area $.21 per minute
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Totals to be kept are :

1. Count In-area calls, out-area calls, and all calls.

2. In area call cost, out area call cost
and total call cost.

3. State tax at 3? of all calls.
1. Federal tax at H% of all out-area calls.

5. The amount to be paid by the customer.
6. The number and amount of the most expensive call.

1.1 Scecification of Pre- and Postcondition Phase

In analytic problems the preconditions (input description) and the

desired result (output description) are given, and the student is asked

to generate the actions to make the translation. In the specification

phase of the model, the goal is to formally define both the precondi-

tions and the postconditions of a given textual problem such as the

above described sample problem in terms of the physical processing con-

figuration. This specification is aooomplished in preparation for the

designing of the translation or the solution to the analytic problem

within the defined problem domain.

The terns precondition and postcondition can be defined as fol-

loNs:

Precondition
"A condition that must be true before the current
lnatruction(3) will do what we want,"

Postcondition
"The result of executing an lnstruction(s)"[2]

"The pre- and postconditions are really the values of all the variables

we have used at any point in the algorithm and the current state of the

data list and output list. "[2]
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The specification phase of the model follows these basic defini-

tions. In specifying the problem the students are asked to define the

state of all three components of the physical processing configuration

before and after the activation of the global module as a whole. The

state of the components during the activation of the module is not of

concern. Instead, the students must specify the state of the input

file, global memory, and output file components before the execution of

the module (preconditions). The students must also specify the desired

state of these components after the module has been executed (postcon-

ditions). This specification of the state of the three components of

the physical processing configuration are further explained below

through the use of the sample problem.

It. 1.1 Specification of Incut File Component

— Precondition of the Input File

In solving the sample problem the students must specify the

precondition or state of the input file before the execution of the set

of code (or soon to be derived actions). A modeling component is needed

because the form of the input file will vary from problem to problem.

Diagram f1.1a Illustrates the proposed modeling component as applied to

the sample problem.

This graphical view represents a file which is broken into records

and fields. Each field is labeled with a semantic descriptor and the

type of information. The last row or record Is dedicated to the

description of the sentinel record. If the instructor feels it is
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1 Customer

1 area code
Customer
number

Service
charge header record

1 ohar

1 length 3

cbar
length 7

real

1 Receiver

1
area code

Receiver
number

Time |

of call 1

Seconds
of call

Int

transaction
records

1 char

1 length 3

ohar
length 7

char 14 1

i

1 'TBASH' 'X' 9 1

1

9

Diagram Jl.la - Precondition of Input File

necessary, the range of the field can be defined.

To derive this component the students are required to to analyze

the given textual problem, extract the respective input requirements,

and completely specify these requirements in a defined formal model.

The model allows for the complete abstract specification of the con-

tents of the file in terms of records, fields, and the termination con-

dition.

The selection of a value is made in one of the fields of the last

record to represent the sentinel value. In this case the word 'TRASH'

will be placed in the RECEIVER AREA CODE field. The selection cf the

sentinel value can either be given by the Instructor or defined by the

student, depending on the management of the data set.

— Postcondition of the Input File

Next the students must specify the state of the input file after

the execution of the global module of code. In the environment for this
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course as explained In Chapter Three, one record at a time must be read

from the input file through the sentinel record. The state of the file

after the execution of the module within the scope of the elemental

problems presented in the course will be trivial. Simply stated, all

records will have been read. The students should derive the following

postcondition for the input file component:

Postcondition of the Input File
The file will be read through the sentinel record.

1.1 .2 Epeoifleatlon of Global Memory for Program Variables Component

The pre- and postcondition of the global memory component for a

global module is based on the abstract view that the binding of the

variables to memory locations and the ability to reference these vari-

ables only exists during the activation of the global module. Reference

to these variables exists only upon activation of the module in a com-

piled environment and upon use in an interpreted environment such as

BASIC. These variables become dereferenced upon completion of the glo-

bal module.

— Precondition of Global Memory Component

From the above abstract view it can be understood that no vari-

ables exist before the activation of the module. Thus in a £dobal

module program, the precondition of the global memory component is as

follows:

Page 26



'<, •

Precondition of Global Memory Component
No variables can be referenced

— Postcondition of Global Memory Component

After the execution of the module the variables are dereferenced

and not accessible in compiled environments. However, In an Interpreted

environment the variables exist until they are cleared by a system com-

mand such as editing the program. The assumption is made that no

reference to the variables exists in the global memory component after

the execution of the global module.

In actuality both the pre- and postcondition of this component for

any problem will remain constant from problem to problem and therefore

need not be specified. For completeness, however, the following textual

statement can be Included in the specification:

Preconditions of the global memory component
No variables can be referenced

Postconditions of the Internal memory
Ho variables can be referenced

1.1.3 EDecifloatlon ^ J^hg Output File Component

The third task that the students must perform in the specification

phase is to define the pre- and postcondition of the output file com-

ponent. The major goal in any problem is to input data, process it, and

output results. The specification of the pre- and postconditions of the

output file will represent the desired effect that the module will have
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on tbe output file component.

— Precondition of the Output File Component

The problems for this course are designed to produce results to an

output file. The existence of an output file is the necessary precondi-

tion throughout all of the problems that the students will solve.

Therefore, the major precondition of the global module output file in

anjr problem is as follows:

Precondition of Output File
An output file exists

— Postcondition of the Output File Component

The state of the output file after the execution of the global

module is the desired result of the synthesis of the data values

through the soon to be designed and coded instructions. This state

varies from analytic problem to analytic problem. Therefore, the stu-

dents must specify a prototype of the output file component to model

the desired state of this component after the execution of the global

module. The students should derive the prototype in Diagram Jll.lb as

the postcondition of the output file component for the sample problem.

Problems that are given to the students are normally given in tex-

tual sentence based English. In the creation of a prototype such as

illustrated above, the students must analyze the assigned problem and

extract the requested output values. These requested values iDust then
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1231567 8901231567 8901231567 8901231567 8901231567890

(IDW PHONE COMPANY

CDSTOMEH NUMBER : % % DATE : % t

ITEKIZED BILL

NUMBER CALLED TIME MINUTES COST

i% % % % t ttU Utt.U

raUR MOST EXPENSIVE CALL HAS TO J

AND COST Utt.ilt

NUMBER OF
CALLS COST

m AREA
ODT AREA Hit

tttt.tt
tttt.tt

SUMMARY ant

STATE TAX
FEDERAL TAX
SERVICE CHARGE

ftttt.tt

tttt.tt
tttt.tt
itt.tt

PAY THIS AMOUNT ttttt.tt

Diagram *1.1b - Postcondition of the Output File

be organized Into a machine creatable format with proper annotation

specifying the semantic descriptors of the output values.

The generation of this prototype has a two-fold effect. First, it

forces the students to restate the desired result, and second, it also

presents an exact replica of the output to be generated for use in

design and implementation by the students. The prototype generated for
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any problem presents the logical order of processing. For example, the

goal In the sample problem Is to create this report and by the nature

of the output mechanism must be done from the top of the prototype to

the bottom.

In any prototype pound signs are used to Illustrate variable

numeric fields, and percent signs are used to represent the boundary on

variable character fields. A reference line is induced to map the

columns in the component. The necessary annotation is also Included and

should be the exact annotation that is produced in the implementation

of the solution.

1.1. t Conelusion ts Specification Phase

In summary, the goal of the specification of the pre- and postcon-

dition phase is to specify the pre- and postconditions of the formal

analytic problem within the context of the physical processing confi-

guration. The specification of the pre- and postconditions represent

the given parts of a formal analytic problem. In actuality, as shown

above, only the precondition of the input file component and the

postcondition of the output file component vary from problem to prob-

lem; all of the other pre- and postconditions remain constant. However,

for completeness and to allow the students to better understand the

extension of the model to the specification of submodules later in the

CS1 course, the students are asked to specify all pre- and postcondi-

tions for each analytic problem to be solved. A complete specification

of the sample problem would look like Diagram *i).1c and Diagram Jl.ld.
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INPUT FILE :

Precondition

I
Customer

I
area oode

I char

I
length 3

I
Receiver

I
area code

I
char

I
length 3

•TRASH'

Customer
number

char
length 7

Service
charge

real

header record

-I.

Receiver | Time | Seconds!
number

I of call | of oall| transaction

I I I
records

char
I
char 1

length 7 1

Int

Postcondition :

1. the file will be read through the sentinel record

INTERNAL VARIABLES
Precondition :

1. No internal variables can be referenced
Postcondition :

2. No internal variables can be referenced

Diagram Jt.lc - Specification of Sample problem
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OOTPDT FILE
Precondition :

1. Output file must exist

Postcondition :

123 ')5678901231567890123«56789012315678901 231567890

ICH PHONE COMPANY

CDSTCMER mmSR : % % DATE : % %

ITEMIZED BILL

NOHBES CALLED TIME MINUTES COST

YOOH MOST EXPENSIVE CALL HAS TO J

AND COST tttt.tt

NUMBER OF

CALLS COST

IN AREA
00 T AREA

tttt

tttt
tttt.tt
tttt.tt

SUMMARY tttt

STATE TAX

FEDERAL TAX
SERVICE CHARGE

ttttt.tt

tttt. tt

tttt.tt
ttt.tt

PAY THIS AMOUNT ttttt.tt

Diagram l.ld - Specification of Sample Problem (cont)

The remaining five phases to be completed by the students involve

the specification of the third part of any formal analytic

problemCi. e. , the specifying of the actions to perform the translation
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from precondition to postcondition). The remainder of this chapter

explains those five phases.

H.2 Design Phase

In the first phase of the problem solving process called the

specification phase, the students must formally define the pre- and

postconditions of the given analytic problem within the context of the

physical processing configuration. In the second phase called the

design phase the goal is for the students to define the translation

from the preconditions to the postconditions using the allowable pro-

cedural design primitives within the defined problem domain. In the

design phase the students accomplish this translation through the use

of semantic descriptors and the allowable procedural primitives. The

task of the students is to abstract and define the semantic descriptors

of the values in the problem and place these semantic descriptors with

the procedural primitive that instantiates each descriptor using their

cwn thought processes and the instructor as verification tools. See

Diagram tH.2z and tH.2b. Essentially upon completion of the design

phase, the students have mapped out the basic solution to the analytic

problem.

Students in CS1 generally find the development of the basic steps

for solving an analytic problem to be the most difficult part of the

course. The design phase forces the student to specify these steps out-

side the environment of the computer Itself in an abstract form before

attempting to implement the abstraction using a high-level language.

For instance, since certain semantic descriptors are Instantiated
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through accumulation, the students must specify this process within a

repetition primitive In a form that represents the proper procedural

method of instantiation. The students simply state "Accumulate" along

with the associated semantic descriptor.

This approach to design does not use top-down design strategies.

The course approaches the design by attacking the whole problem at one

level of abstraction. The student must learn to design a global module

before decomposition or top-down strategies can be applied.

In designing the solution to the problem in the design phase, the

students have available two possible forms as follows: 1) Linear Tex-

tual form; and 2) Graphical Flowchart form. The two possible design

forms of the sample problem are illustrated below in Diagram fH.2z and

Diagram #1.2b. The explanation and analysis of reasoning for the design

is left to the reader. There is no logical difference between which

method is used; however, this author strongly recommends the use of the

graphical flowchart form for teaching introductory students because of

its graphical nature in nesting decision structures.

Dpon careful analysis of the two possible forms, differences can

be found in the level of abstraction that was used in the design of the

solution to the sample problem. The design phase has no electronic

validation method. The level of abstraction that is used is totally up

to the instructor teaching the course. For instance, in the graphical

flowchart form the step of printing the headings on the top of the

report using a single I/O box is defined. This defers the analysis and

abstraction of printing all of the lines in the headings to the coding
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phase. This deference can be construed as a first step in top-down

design. In the linear textual form, the printing of each line in the

headings is specified and, therefore, is designed at a lower level of

abstraction.

Diagram JH.Sa - Linear Textual Form of Design

BECIN ALGORITHM
INHIALIZE ACCUMDLATOHS AND SaECTOHS

READ HEADER RECORD
BUILD CUSTOMER PHONE FOR DISPLAY

PRINT TOP HEADING
PRINT LINE
PRINT CUSTOMER DETAIL LHE
PRINT LINE
PRINT REPORT TOP HEADING
PRINT COLUm HEADING
PRINT LINE

INITIALIZE CALL LOOP BI HEADING CALL RECORD

WHILE NOT SENTINEL RECORD
CALCULATE MINUTES OF CALL

IF CALL IS IN AREA THEN
SET AREA DISPLAY TO BLANK
CALCULATE CALL COST
BUILD CALL NUMBER FOR DISPLAY
INCREMENT IN AREA COUNT
ACCUMULATE IN CALL COST

ELSE
SET AREA DISPLAY TO '0'

CALCULATE CALL COST
BUILD CALL NUMBER FOR DISPLAY
INCRE^ENT GOT AREA COUNT
ACCUMULATE OUT AREA CALL COST

ENDIF

BUILD TIME OF CALL FOR DISPLAY
PRINT DETAIL LME

IF COST OF THIS CALL IS GREATER IHAIJ LARGEST THEN
SET LARGEST CALL COST TO IBIS COST
SET LARGEST CALL NUMBER TO IHIS NUMBER
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EHDIF

UPDATE CALL LOOP BY READING NEXT RECORD
ENDHHILE

PRINT LINE
PRINT LARGEST COST LIKES
PRINT SUMMARY HEADINGS
PRINT LINE
PRINT U) AREA SUMMARY
PRINT ODT AREA SUMMARY
PRINT LINE
CALCULATE TOTAL CALL COUNT
CALCULATE TOTAL CALL COST
PRINT TOTAL CALL SOMMARY
CALCULATE STATE TAX
CALCULATE FEDERAL TAX
CALCULATE AffiUNT TO BE PAID
PRINT STATE TAX LINE
PRINT FEDERAL TAX LINE
PRINT SERVICE CHARGE LINE
PRINT LIME
PRINT AMOUNT TO BE PAID LINE.

END ALGORITHM
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Ciagran i"1.2b - Graphical Flowchart For
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\ bf paid \
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\ Print \
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T Print \
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lo bf> ptiid

>! \ Print \
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it ^ tummaru \
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In the design phase of the problem solving process the students

must specify which steps must occur to solve the analytic problem. In

the design phase the implementation of each primitive has not been

specified, but only that they need to occur.

The students must understand that the design for a given problem

cannot be executed by the computer but must be translated into a formal

computer language. The correctness of the design cannot be guaranteed

by any system checker. The correctness can only be measured by visual

inspection and analysis. If the semantic descriptors and the primi-

tives meet the actual needs of the problem, then a correct design has

been developed. It is very important to have a visual inspection by an

outside source to check the design by the students. If the design is

incorrect, then the frustrations are later multiplied. The students

should be able to specify on the abstract level what is to be done

before the actual implementation is to begin.

after careful inspection of the design, implementation of the

design can begin. During the implementation, problems with the design

will surface. The inadequacies that are found in the design during

implementation should be reflected backward in the model in the design

phase. The design component needs to be updated as these problems

arise. When the student submits the final solution, all components

should be cohesive.
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1| . 3 Pre- Coding Phase

The third phase of the problem solving process is called the pre-

ceding phase. During this phase the students must predefine all user-

defined identifiers which form the data dictionary to be used in cod-

ing. The generation of these user-defined identifiers, specifically,

the module name, the input variables, the process variables, and the

format variables, have direct synthetic algorithms from the specifica-

tion and design components which are input to this phase. When the stu-

dents develop these user-defined identifiers, they must generate a

variable name or format list and also determine the proper placement of

reference to each variable within the specification and design com-

ponents. In this third phase of the problem solving process, the stu-

dents must for the first time apply the language dependency rules. The

generation of the identifiers and format lists must adhere to the

language syntax. The variable names that are created during this phase

are the only ones that are to be used during the coding of the solu-

tion. A complete specification of the variables and formats to be used

and their logical positioning in the specification and design com-

ponents allows for direct translation Ir the coding phase.

1.3.1 Module Name

The first user-defined identifier in the pre-coding phase is the

module name. Once defined, this identifier becomes the r.ame of the pro-

gram in the coding phase. In top down design this name is derived fran

the semantic call to this routine. But in the proposed course design a

name for the global module is derived by just creating an appropriate
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name. The name of our sample program will be PHONE_BILL.

1.3.2 Incut Variables

The second step of the pre-oodlng phase is the generation of the

Input variables from the precondition component of the input file. For

every field in this component, a variable of the respective data type

must be generated. Diagram iJll.Sa illustrates the derivation of the

input variables in the pre-coding phase of the sample problem.

Customer
area code

char
length 3

Receiver
area code

char
length 3

•TBASH'

I.

Customer
number

Service |

charge
I customer

I
record

char
length 7

Receiver
number

real

Time
of call

I
Seconds

I

char
I char 4

length 7 I

of call
I call

I
records

Int

Input Variables
COS_AREA_CODE$
COS_HUMBER$
SERVICE.CHARGE
REC_AREA_CODE$
REC_NUMBER$
TIMELOF_CALL$
SECONDS_CF_CALL

CHAR 3

CHAR 7

REAL
CHAR 3

CHAR 7

CHAR 1|

IN TEG EH

Diagram t.3a - Derivation of Input Variables

The generation of these variables can be written directly into the

program file as documentation or declarations or can be written

separately. When the graphical flowchart form is used, the variables
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should be written beside the respective input box that specifies the

record being read for later reference. See Diagram #1.2. When the

linear textual form is used, the variables should be placed fcesSb. When

the linear textual form is used, the variables should be placed beside

the respective textual statement that inputs the record.

I1.3.3 Process Variables

The third category of variables to be generated are the process

variables. One variable is generated for every unique semantic descrip-

tor contained within a process box which begins with the calculate,

accumulate, Increment, set, build, or extract statements frcm the

design phase. For example in Diagram #11. 3b, a process box exists which

instantiates the IN_AREA_COONT, and also a process box exists that

instantiates the OUTLAREiL COUNT. The semantic descriptors in these

process boxes are different and therefore warrant the creation of a

separate variable for each process box. A single variable is created

for multiple process boxes when the semantic descriptors are the same.

For instance in Diagram #l|.3b, one variable is created called CALt^COST

for two separate process boxes. This is done because the semantic

descriptor in both oases is CAU^COST. In this case, only the method of

instantiation varies, not the semantic descriptor of the value. Thus

one variable is used for both process boxes.

When the graphical flowchart form is used the variables should,

for coding reference purposes, be written beside the respective boxes

in the design. The variable should simply take the form of the semantic

descriptor in the box. If linear textual form is used, the respective
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variables should be placed beside or below the primitive that instan-

tiates this semantic value. Below is the generation of the input and

process variables using the graphical flowchart form which was input to

this phase.
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Diagram i!il|.3b INPUT AND PROCESS VARIABLE PLACEMENT IN DESIGN

O^j^ —
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11.3.1 Format Variables

The next step in the pre-ooding phase Is to develop the formats

that are necessary to format output information. This method varies

depending on the language to be used in implementation. If the

language uses a graphical representation, like BASIC, the output pic-

ture itself specifies the formats. A variable needs to be created for

every line in the output file postcondition model to hold the represen-

tation of the format in the coding. The specification of the format

variables should be placed beside the respective line in the output

postcondition that it will format. Also the variable name can be placed

on the design component for use in the coding phase. These two refer-

ence patterns are shown in Diagram m.Sc and Diagram *t.3d.

Fage 111



1231567890123115678901231567890123156789012311567890
mw PHONE COMPANY F1$

CnSTCMER NUMBER : % % DATE : t % F2$

ITEMIZED BILL F3t

NUMBER CALLED TIME MINUTES COST

if

F1$

* t % i % 1mi tttf.i F5$

THE MOST EXPENSIVE CALL WAS '10 % % F6$
AND (:OST tttt.

NUMBER (

.ft

DF

F7»

F8$
CALLS COST F9*

IN AREA Hit mt..*t G1*
OOT AREA mt tm..it G2$

SDMKAfiY MM mn..*« G3»

STATE TAX tm. ft an*
FEDERAL :rAX tm..ft Q5*
SERVICE (3JAHGE tit. ft G6*

PAY IBIS AMOUNT ttttt.tt G7»

Diagram ;i.3c - Format Reference Placement
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Diagram tl.Zi - Flowchart With All Necessary Variables
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In a language such as FORTRAN, formats are numbered, and a numeric

list representation is generated. The numbers need to be posted on the

input specification and the respective format lists generated. These

numbers then need to be placed in the design component by the respec-

tive print primitive that will use this format. Diagram #l|.3e illus-

trates the necessary reference and format list generation for the

language FOHTRAH.

12315678901231567 8901 231567 8901 2315678901231567 890

MOW PHONE COMPANY 1000

1005
COSTOMER NOMBEH : % % DATE : % $ 1010

1 005
ITEMIZED BILL 1020

NDMBER CALLED TIME MIHDTES COST 1025

1005
t % % % % ttti ffttl.tHI 1035

1005

THE HOST EXPENSIVE CALL WAS TO $ i 1010
AND COST titt.U 1015

NDMBER OF 1055
CALLS COST 1060

1 pe K

IN AREA ttti nn.tt 1070
OUT AREA mt fllft.tl 1075

1 06 5
SOMMARY tttt Utii.tt 1080

STATE TAX tfft.ff 1090
FEDERAL TAX Uit.H 1090
SERVICE CHARGE tU.H 1090

,065
PAY THIS AMOONT itttt.ff 1100

1000 FORMAT (16X, 'MJW PHONE COMPANY")
1005 FORMAT (19( '-'))

1010 FORMAT ('COSTOMER NUMBER : ', All, 2X, 'DATE : ', A8)

Diagram *1.3e - FORTRAN Format Reference
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other methods need to be developed for implementation using other

languages. The development of the formats Is an analysis of the output

file postcondition model. Writing of the above-listed structure for-

mats before coding begins can be moved to a dynamic generation of for-

mats during coding when the students become competent in format genera-

tion. The rewriting of the formats becomes unnecessary once the skill

is developed. But the necessity of specifying the variable or number of

each format within the design and output file postcondition model does

not change.

it.H Coding Phase

The solution to the formal analytic problem is developed by the

students in the design phase in an abstract form, and in the pre-coding

phase the user defined identifiers of the coding phase are specified.

The next step in this synthetic model for solving analytic problems

requires the students to code the designed solution into the syntax of

a high-level language. The word "coding" in this report will refer to

the translation by hand, using pencil or pen, of the design into

language instructions. Given correct inputs to this phase, the coding

becomes a synthetic process.

In the coding of the program the language program structure and

the design phase component must be followed directly. For the students

to succeed in the translation of the design into code, access to sample

programs needs to be available to show the syntax of the translations.

The code is derived from the design and specification components
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which are now available for analysis. The coding of the sample problem

is Illustrated below into the language WBASIC. The analysis of the rea-

soning is left to the reader.

Diagram fl.lla - Coding of Sample Problem

900
1000

1010
1020

1030

1010

1050

1060
1070

1080

1090

1100

1110

1120

1130
11K0

1150

1160
1170
1180

1190
1200
1210

1220

1230
1210

1250

1260
1270
1280

1290

1300

1310
1320

1330

1310

1350

1360

1370
2000
2010
2020

COSTOMER NUMBER : ; % DATE : % %'

HEMIZED BILL'

NOMBEH CALLED TIME MINUTES COST'

* % titti Hit fttt.ti'

HEM PROGRAM PHONE_BILL
HEM INITIALIZE ACCUMULATORS AND SELECTORS

IN_AREA_COUNT =

001LAREA_COUNT =

I11_AHEA_CALU.C0ST = 0.0

001L.AREA_CALL_C0ST =0.0
CURRENT_LABGE_CALL = 0.0

I

REM INITIALIZE FORMATS AND HEADINGS
1

REM 1231567890123156789012315678901231567890123111567890
F1$=' MDH PHONE COMPANY'
REM 1

F2$:

REM
F3$ =

REM
F1$=

REM
F5$ =

REM
REM
F6$ =

F7$ =

REM
F8*=

F9$=

REM
Gl$ =

G2$ =

REM

G3$ =

REM
G1$ =

G5$ =

G6$ =

REM
07$=
1

REM
I

YOUR HOST EXPENSIVE CALL WAS TO %

AND COST mt.fi'

NUMBER OF
CALLS COST

IN AREA
OUT AREA

an
ttti

Hit. ti

tiii.tt

SUMMARY mt
STATE TAX
FEDERAL TAX
SERVICE CHARGE

tmt. it

tttt.it
tttt.tt
itt.tt

PAY THIS AMOUNT tittt.it

PROCESSING
READ HEADER RECORD
READ CUS_AREA_CODE$, CUS_HUHBER$, SEHVICE_CHARGE
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2030 ! BUILD CDSTOMEH PHONE FOR DISPLAY
2040 COS_NUILDISFLAY$ = '(• + CUg_AREA_CODE$ + •) ' +

STH$ ( C05_N0MBEH$, 1,3)+'-' +
STR$ ( C0g_N0HBER$, K , 1))

2050 ! PRINT TOP HEADING
2070 PRINT F1$
2080 I PRINT LINE
2090 PRINT HPT$('-', 1|9)

2100 I PRINT COSTOMER DETAIL LINE
2110 PRINT OSING F2$, COg_NUM.DISPLAY$, DATE$
2120 ! PRIMT LINE
2130 PRINT RPT$('-', 1I9)

2110 I PRINT REPORT TOP HEADING
2150 PRINT F3$
2160 PRINT
2170 I PRIKT COLOMJ HEADING
2180 PRINT Fl|$

2190 1 PRINT LINE
2200 PRINT SPT$('-',ll9)

2205 !

2210 I INITIALIZE CALL LOOP BY READING CALL RECORD
2220 HEAD REC_AREA_CODE$, REQ_NUMBER$, TIME_OF_CALL$,

SECONDS_OF_CALL
2230 I

2210 ! WHILE NOT SENTINEL RECORD
2260 WHILE (HEC_AREA_CODE$ <> 'TRASH')
2270 I CALCULATE MINDTES OF CALL
2280 MINDTES = SECONDS.OF_CALL / 60.0
2290 I

2300 1 IF CALL IS IN AREA THEN
2310 IF (REq_AREA_CODE$ = C0g_AREA_C0DE$)
2320 I SET AREA DISPLAY TO BLANK
2330 AREA_DISPLAY$ = ' '

2310 I CALCULATE CALL COST
2350 CALI^COST = MINUTES_OF_CALL • .20
2360 1 BUILD CALL NUMBER FOR DISPLAY
2370 CALL.NOH.DISPLAY$ = ' • +

STH$(REq_N0MBER$,1,3) +
'-' + STR$(REQ.NUMBER, H , 1|

)

23 80 I INCREMENT IN AREA COUNT
2390 IN_AREA_COUNT = IN_AREiLCOUNT + 1

2100 1 ACCUMULATE IN CALL COST
2110 IN_AREA_COST = IN_AREA_C0ST + CALI^COST
2120 Q.SE
2130 SET AREA DISPLAY TO '0'

2110 AREA_DISaAY$ = '0'

2150 1 CALCULATE CALL COST
2160 CALL^COST = MINUTES_OF_CALL • ,21
2170 I BUILD CALL NUMBER FOR DISPLAY
2180 CALL_NU^LDISaAYt = '(' + REC_AREiLCODE$ + •) •

STR$(REq_NUMBER$,1,3) +
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'-• + STR$(REC_HUMBEH, H, I)
21(90 I INCREMENT OUT AREA COUNT
2500 0OX.AHEA_COONT = OUILAREA.COUNT + 1

2510 I ACCOMULAIE OUT CALL COST
2520 001LAREA_C0ST = OUX_AREA_COST + CALU_COST
2530 ENDIF
25140 !

2550 BUILD TIME OF CALL FOR DISPLAY
2560 TIME_DISPLAY$ = STR$(TIMEi_OF_CALL$, 1,2) + ':• +

STR$(TIME_OF_CALL$, 3, 2)

2570 I PRINT DETAIL LME
2510 PRINT USING F5$, AR EA_DIS PL AY$ , CALL_NOM_DISPLAY$,

TIME_DISaAY$, MINUTES_OF_CALL, CALL COST
2550 I

2560 ! IF COST OF THIS CALL IS GREATER THAN LARGEST THEN

2570 IF CALI^COST > CURRENT_LAEG_CALL
2580 1 SET LARGEST CALL COST TO THIS COST
2590 CDRREN'ILLARG_CALL = CALL_COST
2600 I SET LARGEST CALL NUMBER TO THIS NUMBER
2610 CnRREN'!LLAHG_NOM$ = CALI^NUH.DISPLAY$
2620 ENDIF
2630 I

261)0 I UPDATE CALL LOOP BY READING NEXT RECORD
2650 READ REC_AREA_CODE$, HEQ_NOMBER$, TIME_OF_CALL$,

SECONDS.OF_CALL
2660 ENDLOOP
2270 I

2280 I PRINT LINE
2290 PRINT RPT$('-',1I9)

2300 I PRINT LARGEST COST LINES
2310 PRINT USING F6$, CURRENX_LARG_NUM*
2320 PRINT USING F7$, CURRENT_LARG_CALL
23110 I PRINT SUMMARY HEADINGS
2350 PRINT
2360 PRINT F8$

2370 PRINT F9$
2380 I PRINT LINE
2390 PRINT RPT$('-', HI)
21100 I PRINT IN AREA SUMMARY
2H10 PRINT USING G1$, IN_AREA_COUNT, IN_AREiLCOST
21120 I PRINT OUT AREA SUMMARY
21130 PRINT USING G2$, OUTLAHEA. COUNT, OU T_ AH EA_ COS

T

21*1)0 ! PRINT LINE
21)50 PRINT RPT$('-', D1)
21)60 I CALCULATE TOTAL CALL COUNT
21)70 RECOHD_COUNT = IN_AREA_COaNT + OUX_AREA_COUNT
21)80 I CALCULATE TOTAL CALL COST
21)90 TOTAL_CALL^COST = IN_AREA_COST + OUT_AREA.COST
2500 I PRINT TOTAL CALL SUMMARY
2510 PRINT USING G3$, RECOHD_COUNT, TOTA:^CALL_COST
2520 I CALCULATE STATE TAX
2530 STATE.TAX = TOTAL. CALL_COST • .03
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2510 I CALCULATE FEDERAL TAX
2550 FEDERAL.TAX = 00 T_ AREA. COST • .Oil

2560 1 CALCULATE AMOUNT TO BE PAID
2570 CO^COST = TOTAL_CALL_COST + SERVICE.CHARGE

+ STATELTAX + FEDERAL_TAX
2580 I PRINT STATE TAX LINE
2590 PRINT USING Gl|$, STAT^TAX
2600 1 PRINT FEDERAL TAX LINE
2610 PRINT USING G5*, FEDERAI^TAX
2620 I PRINT SERVICE CHARGE LINE
2630 PRINT USING G6$, SERVICE.CHARGE
26H0 ! PRDIT LIKE
2650 PRINT RPT$('-', HI)

2660 1 PRINT AMOUNT TO BE PAID LIME
2670 PRINT USING G7$, CHg.COST
26 80 STOP

The above coding is the translation of the specification, design,

and preceding components into the language WBASIC. The coding phase

follows the design component directly. The students need to be able to

hand code a solution using the necessary keywords from the language and

the user defined identifiers from the pre-coding phase. The goal at

this point is to have a hand-written program that is close to the

desired solution. This coding is now input to the testing phase for

debugging and verification.

lt.5 Testing Phase

Upon the completion of the coding phase, the solution has been

coded into a high-level language. This coding is now submitted to the

testing phase of the analytic problem solving process. The testing

phase includes the removal of language syntax errors and the verifica-

tion of the output that is produced with the desired postcondition of

the output from the specification phase. This verification includes the

correctness of the output values and the physical form of the output.
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The first step in the testing phase requires the students to enter

the coded program using a system editor. Next the source file should

be submitted to the compiler or interpreter for debugging. The result

is then analyzed by the students. Based upon their analyses, the sys-

tem editor is used again to make the necessary changes. The students

repeat these steps until the desired postconditions are achieved.

A correctly tested program will contain no syntactical errors and

Mill produce correct output. This phase is frustrating for the begin-

ning students because the debugging of errors takes experience. The

students' understanding of syntactical forms and their ability to hand

synthesize code are very necessary concepts to support this phase. The

availability of the instructor and laboratory help can greatly reduce

the students' anxiety in the beginning.

In this report no attempt is made to define the methods in the

testing phase. It is only important for the reader to understand the

desired result of this phase and its importance in the problem solving

process. If careful development of the program is undertaken, the

testing phase can be minimized. The magnitude of effort that is

required in this phase is inversely proportional to the amount of

abstract verification effort in the previous phases.

4.6 Documentation Phase

The final phase in the analytic problem solving process is the

documentation of the verified solution. Documentation actually occurs

all through the analytic problem solving process. The specification
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phase involves the documentation of the precondition and postcondition

of the formal analytic problem. The design phase involves the documen-

tation of the design of a solution to the problem. The coding phase

requires the students to document the instructions or the actions Into

a high-level language. This coding by hand is normally discarded as

documentation because the actual source code that is entered in a file

replaces it. However, the student is asked to include additional docu-

mentation during the documentation phase.

One form of documentation the students must generate during this

phase is the global header block at the top of the program. The form

of this documentation can vary based on the instructor's desired form;

but a sample form is presented in this report. The inclusion of the

documentation is felt to be a necessary component in the final solution

for maintenance at later stages in the life of the software solution.

Diagram #l|.6a illustrates one possible form of the global header block.

Another form of documentation that the student may need to gen-

erate is a user manual for the software package. Such a user manual

could include a definition of the purpose and use of the package and

include a tutorial for entering the data and bow to execute the program

once the data is entered.

Other forms of documentation at this point could be internal com-

ments within the program to break up the basic parts of the source

code. The students can be asked to document to any level of abstraction

that Is required by the Instructor. The Important factor Is that the

students have access to illustration material which contains the
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goo REM PHONE EILL
910 I

920 ! PHOGRAMMEH : MICK HANEY
930 I DEVELOPMENT DATE : 11/11/86

935 I LANGOAGE : HBASIC
910 I PBHPOSE :

950 1

960 1 TO PROCESS A PHONE BILL FOR AN INDIVIDUAL OSING IHE
970 I MELTON, ONGER, WALLENTINE PHONE COMPANY.
980 I

990 1 EXTERNAL DO CO MENTATION :

900 I

910 I AVAILABLE IN FOLDER - PHONE BILL
920 I

930 I DATA DICTIONARY
910 1

950 I INPUT VARIABLES
960 I CU5_AREA_C0DE$ area code of ouatomer

Diagram tH.6sL - Possible Global Header Block

desired form and level of abstraction in the documentation.

4.7 C<?ll<;Avi3ioq ^ Analytic IraHiSB .SslllLB Process

The above analytic problem solving process defines the steps

necessary to completely specify the solution to a formal analytic prob-

lem. The students were asked to specify the pre- and postconditions of

a given analytic problem and then specified the actions to perform the

translation. The introduction of this defined process provides three

basic benefits in the course design. First, it provides the instructor

with an illustration method for the development of analytic solutions.

Second, it provides the student with a defined synthetic process to use

in solving assigned problems. Third, it provides a format for complete

testing of analytic problem solving ability.
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CHAPTER 5

IMPLEMENTATION OF THE COURSE

In Chapter One two basic assumptions were asserted. First, tbe

students were unable under more traditional methods of teaching CS1 to

solve formal analytic problems. Second, the instructor lacked a method

to teach these students to solve sucb problems. Tbe goal in this

chapter is to define a course design that concentrates on the teaching

and student developnent of solutions to analytic problems. Briefly,

the first step in the course design is to teach the students the

defined problem domain. In addition, the development of analytic solu-

tions is illustrated. Also, tbe students are asked to solve problems

witbin tbe defined problem domain. This chapter is devoted to describ-

ing a course which concentrates on illustrating the complete develop-

ment of analytic solutions both in presentation by the instructor and

development by tbe students. The three basic phases of the proposed CS1

course are explained in detail below. In addition a formal method of

testing the comprehension of analytic skills is described,

5.1 Phase One

Tbe first phase in the proposed course design includes tbe follow-

ing msijor objectives:

(1) An overview of tbe system that the student will use in
testing solutions to analytic problems;

(2) An overview of the defined problem domain including the
physical processing configuration and reverse analysis of
the necessary abstract analytic components; and

(3) An overview of the language to be used in implementation
of analytic solutions.
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The first major objective of this phase in the course is to teach

the students to use the computer system to be used in the testing phase

of the analytic problem solving process. For example, the students

should be taught to logon the system, execute the necessary operating

system commands, and use the necessary tools such as editors and compi-

lors. The students should perform a lab assignment that tests the

achievement of this objective.

The second major objective is the teaching of the defined problem

domain consisting of the physical processing configuration and the

necessary abstract analytic components. The method of teaching the

defined problem domain is chalkboard execution. Further explanation of

this method is contained in the appendices. In this method the lab

assignment program that was entered and executed for teaching the sys-

tem objective should be used. This set of code is hand executed on a

chalkboard by the students as a class to Illustrate both the physical

processing configuration and the procedural and data abstraction abili-

ties Hithin the configuration. After board executing the set of code

several times, the students begin to derive through instructor guidance

the procedural abilities through reverse analysis. For instance, the

students will see after several board executions that a statement of

the form X = X + Y used within a loop accumulates the value Y. Thus

through reverse analysis, the abstract design primitives are derived,

and also the concept of data abstraction and instantiation is

developed.

The third major objective of this phase is to give the students an
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overview of tbe higb-level language to be used in Implementation of

analytic solutions. This overview should illustrate the program struc-

ture, statements, and the respective syntax that is associated with

these statements. If the lab assignment program utilized to teach tbe

system objective is prepared so that all statements that are necessary

at this level of programming are used, the instructor has access to a

strong aid for illustrating program structure and the statements within

the program. A large amount of time should not be spent on memoriza-

tion of syntax. The goal is to solve analytic problems, and the learn-

ing of syntax Is Inherent through using the language as a final imple-

mentation of the solution and availability of sample code.

After the completion of the first phase, the students have experi-

enced the entering and executing of a program in a certain language and

in a certain system environment. The students should also have an

abstract view of how the program works in terms of the input file, out-

put file, and global memory components of the physical processing con-

figuration. The students should begin to think of data in terms of tbe

actual instantiation and the abstraction of data into semantic descrip-

tors. In addition, the students should be able to understand the

nature of the procedural abilities necessary to solve analytic prob-

lems. Lastly the students should have an understanding of tbe general

form of a program and the use of statements in that program.

5.2 Phase Two

The first phase presented the students with an understanding of

tbe computer system, the defined problem domain, and an overall view
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of tbe language tbat is to be used in ImplenentaUon. In tbis second

pbase tbe students begin to solve formal analytic problems, Tbe objec-

tives of tbis pbase are as follows:

(1) To introduce tbe students to tbe analytic problem solving
process;

(2) To teacb the use of certain procedural primitive abili-
ties introduced during the first pbase of the course; and

(3) To use tbe analytic problem solving process to solve for-
mal analytic problems containing tbe procedural primitive
abilities referred to above.

Tbe introduction of tbe analytic problem solving process described

in Chapter Four is tbe first objective in this second phase. The stu-

dents need to understand what an analytic problem is and the method

tbat will be used to solve these problems, A handout illustrating the

workings of the analytic problem solving process should be made avail-

able to the students.

The second major objective in pbase two are tbe teaching of the

concepts of sentinel file input, formatted file output, and Internal

arithmetic processing. The file input requires tbe concept of repeti-

tion using the sentinel value technique. The arithmetic processing

includes tbe primitive concepts of calculation based on one record,

accumulation, increment, summary calculation, and formatted output

using the print primitive. Using board execution In the previous phase

should already have introduced the student to these concepts.

Tbe third major objective in tbis pbase is for the students to be

able to develop a solution to an analytic problem tbat contains the

above concepts using tbe formal analytic problem solving process. Tbe
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solving of an analytic problem should illustrate the desired conceptual

primitives and the ability to formally derive the solution to this

problem. The method suggested is simply for the instructor to present

an analytic problem that contains the desired concepts and to use the

above synthetic model to solve the given problem. In working this

problem, the illustration of all reasoning for the development needs to

be provided by the instructor. Performing the above task illustrates

the development of a solution to an analytic problem using the problem

solving process and also illustrates the desired procedural primitives

and data abstraction.

The testing Nithin this phase should be the assignment of an ana-

lytic problem that contains the same concepts that were illustrated in

the instruction example. The students should be forced to use the prob-

lem solving process to solve the assigned problem. Each step in the

process needs to be verified by the instructor before the student is

allowed to continue. Several class periods can be dedicated to the

verification by the instructor of each individual phase of the process.

The goal of the lab is to implement solutions to analytic problems. The

solution is not Just the program. It also includes the specification of

pre- and postconditions and the derivation of the actions.

The result of this phase is the exposure of the student to the

complete development of two analytic solutions that contain the desired

procedural primitives, data abstraction, and the use of a computer sys-

tem for verification of that solution. Remember that the teaching of

the solving of analytic problems was stated in Chapter One as one of
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the major factors necessary in the teaching of CS1 students; and using

the above method illustrates twice the development of analytic solu-

tions.

5.3 Phase Three

The second phase illustrated the analytic problem solving process,

the procedural primitive abilities including file processing, formatted

output, and arithmetic abilities, and data abstraction. In this third

phase the ability to make decisions as to what processing is to occur

is added to the concepts presented in phase two. The objectives of

this phase are as follows:

(1) To introduce the students to the decision primitive
explained in 3.2.2.2 of this report;

(2) To introduce the students to the selection primitive
explained in 3.2.2,3 of this report;

(3) To introduce the students to the Set, Build, and Extract
design primitives explained in 3.2.2.4 of this report;
and

(1) To introduce the students to the nesting of the decision
primitive.

The first objective, which is the introduction of the decision

primitive, allows the student to control which other primitives are to

be executed. The result is that the students can now vary the method of

Instantiation of a semantic descriptor and also can now instantiate

more detailed semantic descriptors. For instance, the students can now

instantiate the call cost using different rates and can count both the

Ir^area and out-area calls in the sample problem in Chapter Four of

this report by using a decision structure.
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The second major objective of the third phase, which ia the intro-

duotion of the selection primitive, allows the students to select the

largest and smallest instantiation of a semantic descriptor during

repetition. This primitive is designed using the decision primitive and

therefore ia procedurally achievable after the decision structure has

been introduced.

The third objective of this phase is the introduction of the Set,

Build, and Extract procedural primitives. These primitives allow the

students to perform operations on character data. The operations on

character data include the expanding or extraction of a string of char-

acters to instantiate a new string of characters.

The last major objective in this phase is to teach the student to

nest decision structures. This concept expands the use of the decision

structure to multiple use of the structure within the true or false

side of a decision structure.

The implementation of this phase is done in four parts. The

instructor will introduce an analytic problem that contains a single

decision structure and uses the analytic problem solving process to

derive the coded solution. The students are then assigned a similar

analytic problem and asked to use the analytic problem solving process

to derive a tested and documented solution. Next this process is

repeated using analytic problem which requires the nesting of deci-

sions.

The results of the third phase is the students exposure to the
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procedural oonoepts from the previous phases with the addition of the

decision structure and the detailed generation of values that are asso-

ciated with the decision structure. The oonoepts of selection and

string processing have been introduced. The students have now been

exposed to the complete development of the solution to six analytic

computer problems and formal testing of transfer of this ability should

be occur.

5.1 Testing

The above phases cover one half of a semester to teach the content

of CS1. At this point in time a midterm test is Induced to test the

competence of the students in developing solutions to analytic problems

within the defined problem domain form Chapter Three.

The method suggested for testing comprehension of the primitive

concepts and the students ability to solve analytic problems is to

induce an analytic problem which necessitates the use of all analytic

abilities in the problem domain and the derivation of the solution

using the analytic problem solving process. The form of the test

should be available to the student at the beginning of the semester for

viewing and proper preparation. The suggested time limit is two hours.

5.5 Conclusion

The above phases present a possible implementation of a CS1 course

which concentrates on the complete derivation of analytic solutions.
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Through the implementation of the above course design the students are

exposed to six complete derivations to analytic problems within the

defined problem domain. Three of these exposures were illustrated by

the instructor and three by the students in preparation for formal

testing. The phases are progressive in terms of problem complexity and

follOH the content of the text [3].
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CHAPTER 6

CONCLUSION

The problem that this paper addressed, as defined in chapter one,

was to create a learning enrironment where tbe average high-school stu-

dent could succeed in solving formal analytic problems in tbe course

CS1. To create this environment three basic components were intro

duced. First, a problem domain was defined which included the physical

processing configuration and the abstract analytic abilities necessary

to solve problems within the domain. Second, an analytic problem solv-

ing process was defined for consistent instructor illustration and con-

sistent student development of analytic solutions within tbe defined

problem domain. Third, a course design was defined wbich concentrated

on illustration, development, and testing of the complete process of

solving analytic problems.

The above components wben combined together present a course

design which structures the introductory students' initial experience

in solving formal analytic problems in computer science. Upon comple-

tion of the course design in this paper the students need to be intro-

duced to toi>-down design. Further research is necessary in this method

to extend the problem domain, the analytic problem solving process to

include toi>-down design for decomposition of more complex analytic

problems, and the course design to support these necessary objectives.
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APPENDIX A

CHALKBOARD EXECUTION

The first phase of the course In this paper refers to a method

Nbicfa uas called chalkboard execution. This appendix Is a definition of,

that method. The purpose of the method Is to illustrate the separation

and interaction of of the physical processing configuration, to illus-

trate the synthesis of data through the physical processing configura-

tion, and to allow for reverse analysis of the abstract analytic abili-

ties.

INITIALIZATION

The necessary physical tools are the availability of a chalk board

and a common set of high-level source code that contains the desired

processing concepts. The board is divided into three separate areas

representing the physical processing configuration. One board

represents the input file component, one represents the global memory

component and one board represents the output file component.

The input data is initially placed in the board section dedicated

to the input file component. The data should be in the same form that

Is needed in the specific language. An arrow is positioned before the

first Item In the Input file and represents the intrinsic file pointer.

After each successive field is read this data pointer is moved to the

next field of data. The postcondition of the input file component In

the specified environment states that all records will have been read

and the data pointer should end up after the sentinel record.
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Tbe global memory component board Is Initially clear because

before the activation of the module of code no reference to the inter-

nal memory exists. At the completion of tbe module the memory area

should be erased because at tbe termination of the global module all

reference to Internal memory is lost,

Tbe output board is initially clear also. The precondition of the

output file is simply that the file exists and we assume that tbe file

is empty. Tbe postcondition of the output file uill contain the output

from the module that is to be synthesized using tbe data In tbe Input

file.

BOAHD EXECOTION

Given tbe Initial board setup, tbe common set of code is to be

synthesized on the board by tbe students performing one elemental func-

tion per person and moving tbe responsibility around the room. Verifi-

cation of actions that are performed by the students is necessary by

tbe instructor and guidance is required when necessary. At critical

points in tbe execution the instructor can discuss the present state of

tbe synthetic process.

He begin by starting at the top of the program and executing

Instructions in the logical order that tbe computer would use. In a

compiled language the first section of code will be the declaration of

variables. When this is arrived at in tbe code each student should

draw a box in the memory area and label the box outside with the name

and type of the location. The box should not contain a value because
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the creation of a location does not necessarily define it. Variable

gain a value initially when used in a read statement or on the left

band of an assignment statement.

In an interpreted environment the variables are not created until

the variable is used In the code. The creation of variables in this

enviroiment occurs when the student goes to execute bis instruction and

there exists no variable in the global memory component that is to be

defined. In the Interpreted environment the student performs both a

variable creation and an instruction execution.

We then move to the execution of the actual instructions in the

body of the code. The read statement takes the next value in the Input

file and places it in some variable in the memory section. The data

pointer is advanced by this same student to the next item in the input

file. In reading a record I let one student read one field and not the

whole record. The Importance of this is that the student sees that the

computer reads the data one field at a time and an error can occur in

the middle of a read statement.

The write statement takes values from variables in the global

memory component along with program annotation and transfers them to

the output file component. The implementation again here is to allow

one student to transfer one field to the output to show that an error

can occur in the middle of a write statement. At this time the format-

ting in the language can be discussed. This discussion can also be

deferred to the second session of board execution.
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The arithmetic statements use variables in the memory and program

constants to assign a value to another variable in the memory area. If

arithmetic Is necessary a part of the memory board is dedicated the ALU

in which the student must perform the computation. The student should

perform the computation and place the result in the variable that is

assigned,

Ue do not represent effects by conditional statements on the

board. Each time we arrive at one, the teacher discusses the condition

in terms of the present state of the memory component and the class

decides whether it evaluates to true or false. Upon this decision the

next student executes the respective statement depending on the condi-

tion.

STOP STATE

At the termination of the module the last thing to occur is the

erasing of the internal memory by a student. This represents the

abstraction that the variables in memory are dereferenced upon the ter-

mination of a module. The data pointer in the Input file should be

pointing past the sentinel record. The only thing that remains that is

different from the precondition of the board Is the output that is gen-

erated in the output file.

CONaOSION AND CONCEPTS

The use of this method is further enhanced If the code used is the

same assignment that the student used In the system exercise. The

Page 70



student has entered and executed this set of code and achieved the out-

put. The output on the board should be the same output that was submit-

ted by the student In the lab assignment. This leads the student to a

strong understanding what the program that was used in the system lab

did.

The concepts that can be illustrated using this method are only

limited by the instructors initiative to stop during execution and dis-

cuss the states. The student should see the separation of the input

file, output file, and internal memory components and gain an under-

standing of how they Interact. They see that a value cannot go directly

from the input file to the output file without first being stored in

memory. They see how values can be generated using other values and

program constants and that this instantiation can be stored in a memory

location.

One session of board execution is not felt to be enough to allow

the student complete comprehension of the processing environment. On

the second time through the student sees the processing again and prob-

ably retains more knowledge. The third effort can be done using a dif-

ferent set of code to get rid of the monkey see monkey do aspect.

The method also allow the student to get out of the chair and per-

form in front of peers. This can induce laughter but can also be frus-

trating for some students and requires careful guidance and motivation

on the instructors part. This is not to say that the instructor cannot

bust a student in the chops with a Joke or two for performing the wrong

task.
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ABSTRACT

More and more students are enrolling in introductory programming

courses at the secondary level. The translation of tbe responsibility

of instructing introductory programming courses to tbe secondary level

has created large problem for secondary instructors who have little

formal training in tbe computer science discipline. This report is the

result of tbe efforts by tbe author to develop a course to teach Intro-

ductory students to solve formal analytic computer science problems.

The report defines a problem domain in which tbe students will be

asked to solve formal analytic problems. This problem domain consists

of a physical processing configuration and the necessary abstract ana-

lytic components to solve problems within the physical processing con-

figuration. Next the report defines an analytic problem solving process

which is used to completely specify tbe solution to formal analytic

problems within the defined problem domain. This process includes tbe

specification of the pre- and postcondition of tbe physical processing

configuration and then the design and implementation of tbe actions to

perform the translation from pre- to postcondition into a high level

language.

Lastly, the report defines a possible implementation of a course

which concentrates on illustration and development of complete solu-

tions to formal analytic problems in computer science, Tbe course

defined in this paper has been implemented at the secondary level and

for two semesters at Kansas State Onlversity in tbe CS200 language

labs.


