AN INTER-COMPUTER COMMUNICATIONS SYSTEM
FOR A FERSONAL COMFUTER

by
DANIEL RAY VESTAL

B+sS+sy Cameron Univsrsityg, 1973

A MASTER’S REFORT

submitted in partizl fulfillment of the

requirements for the degree

MASTER OF SCIENCE

Department of Computer Science

KANSAS STATE UNIVERSITY

Manhattsn; Hanssas

1982

Approved byi

rofessor

SPEC

oL
2Uelo?
R¥
982

Y47
S ol

TABLE OF CONTENTS

Table of Contentsssesvsesovssosssssssssesverosnssesssenil
List of T1llustrationSesessessosssossssssrssrersronseseiidl

Chapter

(S

Chapter

*
*
L

NIQNJN

i
1
2
3
2
1
2
3
« 3
Chapter 3
o1
2
3
4
S

u:wzna:m

*
*
L
L

Chapter

NF‘&

Introductionessesossosssssserssssossvsrssraeal
BackgraundGOQOOOF.000!10000.9.000.0000”90‘#1
GCenersl REqUirEHentoooifoo-taoocooooooboooona
&EPOFt Drganization....;..f.................ﬁ

SSStEH DegiQﬂsiQoeftoiIGOfcociQOOOOQGOQQ00016
Introductionssesesssssssssssstsossesnsssssnsd
Design ConsideralionSsssssssrstrssseessesssnasd
Specific System Requirements:csesceossssseses?

SUMHETSQootovcaooroootohorooqtoototttoooovni?

System Inpleﬂentatian........4.{.......¢.o-29
Introductionesscrsessossssssssssssnsssssessl
General Brganizatian..aoo..ooo...oc........Zﬂ
Frogram TerMesssssosssosssssessssrtsossssesescl
Frogram SetparamSisssssssssssssssnsssnnssesedl
Datz File "TermsDat it roresosssersssnssreses33

EnhancementS:csseseos st otosssssssssstssssss sy
Ceneralirseeesssrrrersrrantssssssesssacenss sl

Suggested EnhancementsSssesses s s st srr s s 39

Selected Biblicgrapha.-.f'.c‘......-,..o.............;.39

Appendix Al
Appendix EBE*

Appendix C3

Smart Term Users Manusl
FProgram Smart_term Source Code

Frogram Setpsram Source Code

ii

THIS BOOK
CONTAINS
NUMEROUS PAGES
WITH DIAGRAMS
THAT ARE CROOKED
COMPARED TO THE
REST OF THE
INFORMATION ON
THE PAGE.

THIS IS AS
RECEIVED FROM
CUSTOMER.

1.

3

4.

S

15.

LIST OF ILLUSTRATIONS

A Personzal Computer Used 35 2 Remote Terminaleesesss2
An Algorithm to Simulate 3 Hardware Terminalesssessd
Comparison of Available Frogramming LangQuagesssssse?
System MenUieesessssessossssssrssssssssssressspesssasll
Terminal AlQOrithMeisssosssesssssssrsrssssssssssssssl?
File Transfer AlgorithMmisssesssrsssrrtocsssnssveessld
Alaorithm to View Contents of Buffersscsevesersrsasld
Algorithm to Save Contents of Bufferissssssresssseeld’
Algorithm to Frint Contents of BuffersssesssesveeeelB
Modifiable Communications Farameters.sseesseesssssol?
GCeneral OrganizatiofNessessssesssssorsrrrsssssesrsrseell
WAL DUTEH LS ae v 56 50 556 98 3 436 S8 §56 % 3 6 975 08 S94 0 478 $°% 956 1 4 0 ¥8 POE
Setparams Question/Answer SeqUENCesssssssesssssssee3l

Default Communications Parameterssisescssrsssosrse 32

Parameter Record Elenentso..;o-.-...*.....-.....;..34

iii

CHAFTER 1

INTRODUCTION

1.1 BACHKGROUND: The development of the low cost micro
processor chip has led to the introduction of the personsl
or home computer system, Mass production and the resulting
low prices now offer everyone the opportunity o purchase
their own computer. These relatively irexpensive "hame
computers" qgive their owners many capabilities that, fTewer
than twenty 4ears aqo, were available onlwy on large
"mainframe' computers costimg millioms of dellars . There
are still many functions, however, that are better
accomplished by larger computer ssstenszﬁue to the slower
processing speed and restricted memory size of a3 micro

computer.,

Fersonal computers are often used as 3 remote terminals to
access 3 larger host computer by connecting anm ascoustic
modem between 3 standard telephone and the home computer
(Figure 1) amd then executing 2 simple terminal proaram.

The owner is therefore saved the cost of 3 separate computer
terminal 2nd also has the convenience of workina at the
Place of his choice rather than traveliné to the actual
location of the computer system to qain access to a3

terminal.

Personzal
Computer <::>(::>

Modem Host

/ﬁ:::::;%:) Computer

Telephone

-

Telephone Line

Figs 1« A Personal Computer Used 3z 2 Remote Terminal

There are two principal limitations confromtine the remote
terminal user. First, the user may not be sble to use the
host system whenever he wants. The number of users that can
be connected to a3 host system, 3t any one time, is limited.

If 211 the connect lines are busy the remote terminsl user

wishing to use the host sgystem must wait until one of the
other usars, that was alresdy connected, completes his

session and disconnects from the host system.

Second, while a terminal is connected, much of the time is
spent waitine for input from the terminal user, and is
therefore unproductive, For example, terminals that usge
unconditioned telephone lines to communicate with 3 remote
host normally transfer data at 300 baud. At this transfer
rate #-terminal user would have to type a3t spproximately 300
words/minute (300 baud = azpprox 300 bits/sec = approx 30
char/sec = approX S5+ words/sec = approx 300 wpm) to equal
the speed at which the system can accept data. At a3 more
rezlistic typirmg rate of S50-60 wpm, dataz is beina entered at
approximately 204 of the system’s input capasbility. When
"composing time" between entering statements is comsidered,
the entry rate is, of course, much less. This time spent
waiting is especially important if 3 user is beina charged
for connect time, It is simply not cost effective to pay
for the time during which the terminal is connected to the

host and data is not bheing transferred.

1.2 GENERAL REQUIREMENT - Manyg of the proarams being
marketed to allow a personal computer to act as a remote
terminal perform only those functions normally handled by
hardware in a3 standard terminal. An ASCII charascter is

transmitted when 2 key is t4ped on the kevyboard and any

character received by the modem is displavged/printed.
Figqure 2 is a8 simple azlgorithm for 2 proaram to perform

these functions.

Do forever

Begin
If kewsboard character ready then
heqin
read keyboard
wait until transmitter not busy
send character to tramsmitter
end
If receiver has data then
begin
read receiver
display character from receiver
end
end

End Do_forever loop

Fig., 2. An Algorithm to Simulate 3 Hardware Terminzl

A personal computer can easily be programmed to perform
these functions. However, 3 solution to the limitations of
using a remote terminal is to wtilize the capabilities af
the personal computer to make the maximum effective use of
the time while the terminal is comnected. More effective
use of the connect time can be accomplished by limitinag the
transactions conducted to only those that must be passed
between the machines and then passing those transactions at
the maximum transfer rate. The number of tranmsactions

between the terminzl and the host can be reduced by

performing 3s much processing 3s possible on the micro
computer before the connection is made with the host. For
example,; an editor sytem on the micro computer can be used
to enter and edit the program text or dataz, This can be
accomplished before the connection is made to the host. If
38 reasonably compatible compiler is available, preliminary
debquing_naa glso be performed on the micro computer system
before thg proaram is transferred to the host for finzal
compilation. Once the program has been prepared, the
connection can be made and the program tramnsmitted to the
host, under proaram control by the micro computer, at the
Maximum 3llowzsble speed. It follows that if each remote
user’s session is limited by these techniques more remote

users would be able to access the system.

1.3 REPORT ORGANIZATION - It is the intent of this
project to identify and implement 3 minimum set of functions
that maske effective use of 3 home computer’s capabilities
when it is used as a remote terminal. The general
requirement for this capability has been discussed in
Chapter 1, Chapter 2 refines this requirement into a set of
functions for implementation. In Chapter 3 the actual
project implementation is discussed. Finally, Chspter 4
summarizes the results of this project and discusses

possible enhancements.

CHAFTER 2

SYSTEM DESIGN

2.1 INTRODUCTION = In Chapter 1 the limitations imposed
on 2 remote terminal user and the possible advantages of
using 2 micro computer system 3s 3 remote terminzal were
discussed. The microcomputer’s capabilities for stand-szlone
processing and datas manipulation/storage can be used to
assist the wser in making the most effective use of his time
when using a8 remote terminal. This chapter covers the
design of a micro computer inter—-computer communications
system to provide these features to the remote terminal

user.

2,2 DESIGN CONSIDERATIONS - Duwring the design of this

system the following broad areass were considered.

2+2+1 FUNCTIONALITY - To be more effective than
3 low cost hardware device or a simple terminal program, the
communications system must improve the uvser’s ability to
transfer information. To accomplish this the system must be
able to: (1) prepare text off-line and transmit it later by
more efficient means than manually typing it on—line and
{2) receive and save information so that it can be reviewad

or processed after the communications link is disconnected.

2+.2+.2 PORTABILITY - The usefulness of the system can
be increased by 3 design that allows it to be wused with
{(portable between) a variety of host systems. The onlyg
thing reasonably standard sbout inter-computer
communications is that most computers recoanize the American
Standard Code for Information Interchange (ASCII). To be
portable betweern hosts; therefore; requires the ability to
modify those other parameters that may be host system
specifics (For exsmple communications parameters such as

baud rate and word lenath or securits parameters such as

sign—on and sign—off messaages).

The source programs of this prototype are not imtended to be
readils transportable to other micro computers due to

language and hardware incompatabilites? however, the system
does provide 3 structure that could be modified or used as 3

model from which others could develop similar s4ystems.

2+.2+3 FLEXIBILITY - Since this system is being
developed 3s a3 prototype, the desian must allow the system to
be easily modified so that future enhancements may be easily
implemented. A modulsr approach must be used so that
festures can be added, modified or eliminated completely

without asffecting the remsinder of the system.

2.2.4 - HARDWARE RESTRICTIONS - Bince this project
was personally funded it was implemented amn the hardware
already owned b4 the author?

8. Radio Shack TRS-80 Model II Micro Computer

| with 464K of random asccess memory.

b. Novation Cat Madem - acoustically coupled
FSK Modem, EIA RS-232C Intérfaee.

cs Centronics Model 737 Line Primter - parallel
interface, maximum print speed approximately 22
lines per minute.

2.

2.5 GSOFTWARE SELECTION - Three programming
languaqges were availsble and considered for implementing
this applications Figure 3 shows the major advantages and
disadvantages of each. BASIC was never seriously considered
because of the limitations imposed by itg
interpretation/execution speed. Because this system is a
prototype and many changes couwld be expe&ted, FASCAL was

chosen over Z-80 assembly code primarily because FASCAL

program code is easier to modify.

Language fAdvantages Disadvantages

Z-80 Assembly .Fast +Difficult to
+Efficient Debug/Modify
BASIC +Egsy to write +Slow
{interpreter) +Requires 18K of
RAaM for interpreter
sHard to understand
large programs
PASCAL +Easy to write +Generates 8080
+Fast assembly code
+Easy to understand .Not available on
source code all micros

Fig:. 3+ Comparison of Avzailable Proaramming Languzages

Lnser

This

list

from

SPECIFIC SYSTEM REQUIREMENTS:

2.3.1 MENU DRIVEN FORMAT - The number of commands 3
has to memorize should be limited as much as possible.
can be provided by 3 menu-driven system that presents 3
of commands to the user and then allows him to select

that list. Fiqure 4 depicts the algoerithm for the

system’s primary command menw., The user’s selection

transfers the control of the system to the appropriate

module and then displays the menu sazin when the function is

completed.,

2.3.2 ASCII TERMINAL - To meet the minimum
raquirements of a3 terminal proaram the system must have the
capabilities of transmitting ASCIT characters from the
kegboard and displaying the received characters. The
adlgorithm in Figure 35 includes these functions plus the
capabilities to sernd 3 break sequence and to store the
characters handled by the termimnsl in 2 buffer for later
use., The function of the system buffer is discussed further

in paragraph 2.3:%,

10

MENU

TERMINAL

EXAMINE
EUFFER

SAVE
BUFFER

MODIFY
COMM
FARAMS

Fig.

4,

11

Suystem Menu

SIGN-ON/
SIGN-OFF

TOGGLE
BUFFER
OFTION

FRINT
BUFFER

TRANSFER
FILE TO
HOST

DISFLAY
COMM
FARAMS

(TERMINAL)
¢

KEY ESCAFE

CHAR

F MODEM
INFUT

DISFLAY

CHaR TO MODEM

TRANSMIT
STOP
CHARACTER
STORE
CHAR IN
BUFFER
1

EXIT

Fig: S5+ Terminal Algorithm

2.3.3 FILE TRANSFER ~ The principal feature that
2llows the home computer to excel as 3 remote terminal is
the home computer’s capabilities to create, modify and store
files, To make the best use of the time when a2 terminal is
connected the user needs the capability of preparing
messages before the comnection is made and then transmitting
them a3t maximum basud rate, rather tham typing speed.
Therefore, the most important furmction to design into the
system is 3 capability to transmit the complete contents of
a file created by the system editor as well as direct
kegboard input (see Figure 4). This algorithm keys on the
host system transmitting 3 cursor character to the remote
terminal as an indication that the line of text transmitted
has been received and the host is ready to accept the next

line.

13

(SEND FILE)

LOAD FILE
INTO
BUFFER

—

Y

TRANSMIT
LINE TO
HOST

1
:)
N
GET INPUT

CHAR FROM
MCDEM

Figs. 6+ File Transfer Algorithm

14

2.3.5 RECORD OF TRANSACTIONS - Hhen using a video
terminal the information displayed on the screen is lost
when it scrolls off the screen. When the user is being
charged fer the time connected to the host it is imnefficeint
and expensive to make 3 record of terminal transactions by
hand., Therefore, the capability to store the information
znd to review it later, off lirne, 3t the user’s convenience
is very useful. The terminsal algorithm in Figure S includes
the caspability of storing characters in 2 system buffer for
later use. Figures 7 through ? are aslaorithms for examining,
saving, and printing the contents of the system buffer.
These functions provide the user a3 record of the terminal
transactions and can be used to tranmsfer a3 file from the
host system to the micro computer by listing the proaram to

the terminzl screen and then saving the system bufier.

15

(%XAHINE BUFFER)

DISPLAY
"BUFFER
MPTY"

GET NEXT
BUFFER
CHARACTER

DISFLAY
CHARACTER

Fie:. 7+ Algorithm to View Contents of Buffer

146

SAVE BUFFER

DISPLAY
"BUFFER
EMFTY"

OFEN
SAVE
FILE

ﬁ ‘11
FILL FILE
BUFFER WITH

LINE FROM
BUFFER

WRITE FILE
BUFFER TO
DISK

F BUFFE

EMFTY
?

L

- CLOSE
FILE

. EXIT

Figq:. B, Algorithm to Save Contents of EBuffer

17

<ERINT BUFFéED

DISFLAY
"BUFFER
EMFPTY"

GET NEXT
BUFFER
CHARACTER

l

FRINT
CHARACTER

le—
F
EXIT

Fig. ?. Algorithm to Print Contents of Buffer

18

2.3.64 PROGRAM CONTROL OF COMMUNICATIONS PARAMETERS -
If the system is to be used with more than one host system
it must include the capability to confiqure the system’s
communications parameters to the new hosts. Flexibility is
be built into the system by having the capability to change
the more common communications parameters under progaram
control., Figure 10 is 2 list of the parameters used by the

system that can be modified.

BEaud Rate

Parity

Word Length

Number of Stop Bits
Cursor Character

Number of Fad Characters
Sign—-on Message

Sign—off Message

Fig. 10, Modifiasble Communications Farameters
Z.4 SUMMARY - The high level =zlgorithms discussed in this
chapter provide the essential functions of an inter—-computer

communications system. Chapter 3 discusses their

implementaion into a2 prototype system. .

19

CHAFPTER 3

SYSTEM IMFLEMENTATION .

3.1 INTRODUCTION - This chapter discusses the
implementation amd general operation of the SMART TERM
system. It is the intent of this chapter to focus on the
primary system operstions. Where a3 function is trivial or
the internal proaram documentation is sufficiently detziled,
the carresponding program procedure may not be discussed.
The users’s manual, located in Appendix A, contains the
specific operatina procedures for the system. For clarity,
specific progaram procedures and functions are depicted in
uppercase characters (e.g. PROCEDURE MENU). Specific
keyboard keys are shown between the "less than" and "agreater
than" symbols (e.g. <ESC>», +«T> or <ENTER>*). The actusl
FASCAL code for FROGRAM TERM and FROGRAM SETPARAMS is

locasted in Appendices B and L respectively.

3,2 GENERAL ORGANIZTION - To allow for the imherent
memory limitations of a microcomputer, the system was
implemented 3s two modules/programs and 3 data file, see
Figure 11:. The primary module TERM remains resident in
memory during aperation of the system, executing the primary
functions of the system, unless the <M> MODIFY FARAMETERS

option is selected:. If the modify option is selected,

20

control is chained to the second system module SETFARAMS.
The data file (TERM.DAT) is used to save the user defined
communications parameters and to pass the current value of
the parameters between the modules. Each of these three

system components will be discussed in greater detail.

PROGRAM /PRBGRAM
TERM \SETPARAMS
) \
TERM
,DAT

Fig. 11. General Qrganizzstion

3.3 PROGRAM TERM - This module is composed of four
primary functions! the menu of selections, the terminsal,
the program buffer (and those operations performed on it),
and the programming of the serizl I/0 controller. The
principal procedures that are used to perform these

functions are discussed in the Tollowinge paraqraphs.

Z1

3.3.1 FROCEDURE MENU - This routine directs the flow
of contrel within the system. It displays a list of system
functions to the user (see Figure 12) and then waits for a
character to be typed. Once input is detected by FUNCTION
KEY_PRESSED the keyboard is read by PROCEDURE READ_KEYEOARD
and control is passed to the procedure selected. If the
input was not 23 valid choice the menu is redrawn and the

user is prompted for another input.

SELECT KEY OPTION
<S> <SIGN-ON/SIGN-OFF>
LT> <TERMINAL>
 <RECEIVE TO BUFFER>
<E> <EXAMINE BUFFER>
<P <PRINT BUFFER>
<D <SAVE BUFFER TO DISK:
£H> <TRANSFER FILE TO HOST>
<M <MODIFY PARAMETERS>
2y : ZVERIFY PARAMETERSH,”
<R> <RETURN TO SYSTEM LEVEL>

Fig. 12. #Menu Display

22

3.3.2 PROCEDURE TERMINAL - This procedure performs
those functioms normally provided by any "standard"
terminal. It is essentislly 2 loop that polls the kegboard
and the serial I/0 input port and, if a3 character is
waiting, transmits or displays the character, respectively.
Accomplishing this "poll and handle" sequence for the serisl
port is straightforward, The version of FASCAL used to
implement this system 3llows the proarammer to perform
direct port reads through the "INF" function. FUNCTION
MODEM_INPUT uses INP to read the seriazl I/0 status port and
then tests bit 0 of the byte returned. HWhen the value of
the bit is 1 there is an input data byte ready to be read.
Reading the serial I/0 dataz port returns the input character

to be displayed.

Due to the TRS-80 Model II architecture 3 slightly more
complex method had to be used to handle keygboard input. The
Model II kegboard has 2 separate pracessor for keyboard
control., When a key is typed the keyboard controller
generates an interrupt to inform the operating system that
the keygboard has data waiting to be handled. With this
strateqy there is no hardware status port to poll. MWhile
investigating methods of writing an interrupt handling
routine that could be written within the PASCAL program, it

was discovered that the CP/M operatimg system uses an

internal polling strateey to handle input from the keyboard
and this routine is accessible to a3 Prugraﬁnér, CP/M
includes 3 jump table of operating system I/0 routines as
part of its Basic Imput Output Sssfen (BIOS). To wuse these
routines the programmer loads the CPU reqisters with the
appropriate values and then makes a3 call to the location of
the desired routine within the jump table. The compiler’s
INLINE function is used to load the CFU registers. The
INLINE function allows 2 programmer to enter either assembly
code; or & hexidecimal representation of machine code, into
a2 PASCAL program., The proaram FUNCTION KEYPRESS, and
FROCEDURE READ_KEYBOARD both make calls on the operating
system BIOS routines to perform their functions. FUNCTION
KEYPRESS checks the status of the keygboard for 3 character
waiting. If KEYFRESS is true PROCEDURE READ_KEYEOARD reads

the character from the kegboard.

PROCEDURE TERMIMNAL handles keygboard input as being one of
three types. If an <ESC> key is t4ped the program returns
to the MENU routine, If the <Fl> hkey is tuyped 3 break
sequence is transmitted by PROCEDURE SEND_BREAK. All other
keyboard input is transmitted to the serisal I/0 controller
by PROCEDURE MODEM_CUT. MODEM_OUT loops until the SIO
controller is reasdy to accept the character and then passes

the character to controller for transmission.

3:3.3 THE QYSTEH BUFFER - The system buffer is the
primary dats structure (an array af characters) for the
system. FROGRAM TERM includes procedures that provide the
user the capabilities to examine the current contents of the
buffer, direct the contents to the printer, save the
contents in a Model II disk file, or transfer a Model II
disk file to a host using the proaram buffer 3s 2 temporary

holding area.

3.3.3.1 PROCEDURE EXAMINE_BUFFER - This procedure
displays the contents of the buffer on the Model II video
display. The Model II kegboard includes a <HOLD» keyg that
can be used to stop the display for viewing if the output

scrolls too fast for viewing.

3.3.3.2 PROCEDURE PRINT_BUFFER - As implemented,
this procedure is similar to FROCEDURE EXAMINE_BUFFER except
that it directs the contents of the buffer to the printer
instead of displayging it on the screen. This procedure was
originally intended to 3llow the sysiem to simulate 2
teletype,; with each character being echoed to the printer as
it is displayed on the screen. However, due to the
operational characteristic of the printer firmware this was
impractical. The Centronics 737-1 is a3 dot-matrix printer

capasble of printing 80 characters per second (cps). It

r
&}

accepts data at wp to 2,200 cps and stores the input
characters in a8 buffer within the printer. A line of datsa
is not printed wntil a3 carriage return (CR) code is received
by the printer or 80 characters are counted by the printer
logic. While the printer is busy printing the contents of
its buffer, it cannot accept new characters from the
proaram, therefore, any characters that are received from

the modem are lost.

3.3.3.3 PROCEDURE SAVE_BUFFER =~ This procedure
writes the contents of the SﬁART TERM system buffer to a
Model II disk file. This feature can be used to provide a
record of terminal transactions or, when used in conjunction
with other system options, to transfer a file from the host
to the Model II. To transfer a file from the host, the file
is first loazded into the SMART TERM system buffer. If the
<R» RECEIVE TO BUFFER option has been previously selected,
all terminal transactions are written to the buffer.
Therefore any host system command that causes the program to
be displaged on & remote terminal will cause the program ﬁu
be loaded into the system buffer. If during a terminal
session the number of characters in the buffer exceeds the
maximum buffer size, a stop code (Control S) is sent to the
host and 3 "BUFFER FULL" message is displayed to the user.,
Once the program is in the system buffer the user can then
save the buffer contents to the Model II disk with the <D

SAVE BUFFER TO DISK command.

26

Since most line editor systems list 3 reference line number
with each line, there is a3 feature within this procedure
that 2llows the uwser to strip the line numbers from the
file. As these line numbers may be part of the proaram, as
"in EASIC, or may only be for editor reference the user is
given the option of stripping the line numbers before the
file is saved. The line number is considered to include the
line number digits and the blank spaces between the last
digit and the column where the first character of 3 line may
begin. The first slgorithm implemented discarded the line
nuber and all spaces until the first character of the line
was founds. This provided the desired stripping action but
also removed 311 indentation of progaram lines. With the
current algorithm, if the strip optiomn is chosen, the user
is prompted to supply the number of characters that the
host’s editor places between the line number and the first
character of 3 line. The first character of each line
written to the disk is then determirmed by discarding the
line number and then skipping the qiven number of blank

characters.,

3.3.3.4 PROCEDURE TRANSFER FILE - This procedure
is used to transfer 2 copy of 3 Model II disk file to the
host system. To transfer a3 file the progaram is loaded into
the program buffer and then transmitted a character at a

time to the host. If the program is larger than the maximum

27

buffer size one buffer is transmitted and the buffer is
refilled., This cycle is repesated until the complete file
has been transferred, Transferring s program to the host
system is relatively easy on systems that have the capsasbility
to handle paper tape, since these s4ystems are prepared to
aceept long strings of data from 3 paper tape reader., On
these s4ystems transferring 3 file is simply sending s stream
of characters out the serizl I/0 port and letting the host
system build the file. However, s4ystems that are line
oriented expect to receive 3 line of code from 3 remote
terminal similar to punched card input. The text editor of
the Kansas State University Computer Science Department’s
Interdatas 8/32 expects to receive 8 string of fewer than 80
charscters,; followed by a8 carriage return character. After
handling the line of code the host system’s text editor
returns a3 cursor character to the wser terminal to indicate
that it is prepared to accept the next lime. To transfer a3
file to 3 host system PROCEDURE TRANSFER_FILE simulates a
user entering text through the haost system text editor. It
traznsmits charscters from the buffer until either a3 carriage
return character is encountered, indicating the normal end
of line has been reached, or until the number of characters
tranmitted equals the maximum length of an editor line
{(which is declared as.a global constant). When one of these
conditions is met a carriage return is transmitted to the
host and the host system text editor is allowed to accept

the line. While the host is processing the line the SMART

TERM program loops aswaiting the user defined cursor to be
read from the modem input. For example, after 2 line of
code is acceplted the text editor of the Iﬁterdata 8/32
.transnits the following hexidecimal 5trin§ FF{pad), OD(CR),
0A{LF), FF(pad), FF(pad), 2D("-"), FF(pad), 3E{(">"),
FF(pad), FF(pad) to the remote terminal to end the line and
display the cursor "=->", FROCEDURE WAIT_FOR_HOST ignores
the characters until it receaves the user defined cursor
character and number of pad characters. Once this sequence
of characters is received, indicating the line has been
accepted, the next line is tranmsmitted and this procees

continuwes until the buffer is empty.

3.3.4 SERIAL I/0 CONTROLLER FPROGRAMMING - The Model
II uses a Zilog Z2-80 Serial I/0 (SI Contréller to provide
serial-to-parallel,; parasllel-to-serial conversion. This
device performs 23ll the functions traditionally done by 5
Univeral Assnchronous Receiver Transmitter (UART) plus
additional functions normally performed by the CFU. By
using the INLINE function and accessing the CF/M jump table
3s previously discussed in paraarsph 3.3.2, FPROCEDURE
FROGRAM_SID changes the functions of the SID controller from
within the TERM progaram. FROGRAM SETFPARAMS buwilds three bit
patterns from the user defined communications parsmeters and
these bit patterns are later used as input for the
PROGRAM_SID routine., FROCEDURE SEND_BREAK generates a
"hreak" by causing the modem to send approximatly 200-450 ms

of space tone.

29

3.4 PROGRAM SETFARAMS:! This module consists of a series of
questions (Figure 13) that 3llow the user to define the
communications parameters and the sign—-on and sigrn-off
messaqes. Each question displays the current value of the
parameter (shown in boldface in the figure) and, if there is
3 restricted set of values, the values that the sgsteﬁ will
accept., After the question/answer sequence is completed the
new parameters and the corresponding bit patterns are
written to file TERM.DAT and control is returned to PROGRAM

TERM.

30

(1),

(2).

(3).

(4.

(&),

(73,

(8).

CURRENT BAUD RATE IS 380
ENTER NEW RATE C[1200,600,300,11013
OR PRESS <ENTERX TO CONTINUE

CURRENT FARITY IS EVEN
ENTER NEW VALUE LODD,EVEN,NONEJ]
OR PRESS <ENTER> TO CONTINUE

CURRENT WORD LENGTH IS 7 BITS
ENTER NEW VALUE (5,6,7.,81
OR PRESS <ENTER> TO CONTINUE

CURRENT NUMBER OF STOF BITS IS 1
ENTER NEW VALUE [1,21]
OR PRESS <ENTERX> TO CONTINUE

CURRENT CURSOR IS >
ENTER NEW VALUE L[>,%,-;.1]
OR PRESS <ENTER>» TO CONTINUE

CURRENT NUMBER OF FAD CHARACTERS IS 2
ENTER NEW VALUE [1..93
OR PRESS <ENTER> TO CONTINUE

CURRENT SIGNON MESSAGE IS

SIENIN

ENTER A NEW STRING OF UF TO 30 CHARACTERS
DR PRESS <ENTER> TO CONTINUE

CURRENT SIGNOFF MESSAGE IS

SIENDOFF

ENTER A NEW STRING OF UFP TO 30 CHARACTERS
OR PRESS <ENTER> TO CONTINUE

Figs 13, Setparams Ruestion/Answer Sequence

31

The user defined parameters are normally loaded from file
"TERM.DAT" durina system initislization by TERM FROCEDURE
INITIALIZE., If +or some reason this file cannot be read,
the procedure uses the default values (Figure 14) that are

defined internally.

DEFAULT COMMUNICATIONS PARAMETERS

FARAMETER VALUE
BAUD RATE 3060
WORD LENGTH 7 BITS
FARITY EVEN
STOP BITS 1
SIGN-ON MESSAGE SIGNON
SIGN-OFF MESSAGE SIGNOFF
CURSOR CHARACTER &
FAD CHARACTERS 2

Fig. 14, Defsult Communications Farameters

These values were chosen because they are commonly used by
other systems (e.q. COMFUSERVE, Micronet, etc.). This
fezture was intended to sllow fdr errors when readinag the
data file but may 3lso be used to return the system to a3
known state by erasing the data file and 2llowing the

defaults to be used.

3z

3.5 DATA FILE "TERM.DAT" - This data file consists of one
record of the structure shown in Figure 15. It contains the
last set of wuser defined communications parameters.

Whenever control is passed between the two system modules
the current communications parameters are written to file
"TERM.DAT" by the calling program and then read by the
module accepting contrel. The data elements are primarily
text or inteqer values that sre displayed by FROCEDURE
DISPLAY_FARAMETERS (a3 copy is in each system module)., The
fields C_PATTERN, D_PATTERN, AND E_PATTERN are bit patterns
assembled by the proaram SETPFARAMS and are used to proaram

the serial I1I/0 controller.

33

FARAMETER RECORD

Element Type

Signon Message Packed Arragll..Max_Message_Lengthl of Char
Signoff Message Packed Arrayll..Max_Message_Lengthl of Char
Active Flag EBEoolean

Farity Parameter Strinal4]

Baud Farzameter Stringl4]

Word Lenagth Char
Stop Bits Char
C_Fattern . Integer
D_pattern Integer
E_pattern Integer

Cursor Character Char

Fsd Character Inteqger

Fia. 15 Farameter Record Elements

34

CHAPTER 4

ENHANCEMENTS

4.1 GENERAL - This project has succeeded in identifying
and implementing a minimum set of functions that allows 2
home computer owner to make effective use of his computer’s
capabilities when it is used as 3 terminal to access a3
remote host system. It has been tested on four separste
host systems and has performed well with only minor
discrepancies. The operation of the system during the past
several months has identified several feastures that would
increase the usefulness of the system if added in the

future,

4,2 SUGGESTED ENHANCEMENTS:

4.,2.1 Now that the s4ystem is more clearly specified
and sized the method of passing parameters between the two
programs of the system should be refined. Each time control
is passed between PROGRAM TERM and FROGRAM SETFPARAM the
current values of the communications parameters are first
written to the data file TERM.DAT by the calling program and
then resd by the czlled program. This method works well but

requires four separate accesses of the data file during the

35

modification sequence. If the qlobal wvariasbles of each
module were declared erxactly the same and both programs were
loaded 2t the same address, it would be possible to use 3
common data area that could be shared by the two pProarams
and thereby eliminate the requirement for TERM.DAT and the

data file I/0.

4,2.,2 The file transfer aleorithm should be modified
to include the capability to handle errors. When
transferring a file to 8 host computer the current algorithm
kedys on the return of the host systems’s editor cursor as an
indication that the editor is prepared to accept the next
line of code. If an error occurs, the last charascter of the
error message returned by the host is also & cursor
character ang will key the transmission of the next line,
The enhanced version should inspect the complete string of
returned characters and halt the transfer opersation if an

error message 1is returned.

4,2.3 Experienced users should have the capsbility to
traverse the system without being required to select an
option from the menu. The intent of requiring the user to
select options from 3 menu is to minimize the number of
commands that 2 new user must memorize in order to operate
the system. However, after a2 short period of time Dperating
the system, returning to the menu to make a selection

becomes an irritant rather than an assistance.

3&

The next version should permit the experienced user to

enter designated codes to circumvent the menu.,

4,2.4 A "Help" option should be provided to assist the
user in operating the system. Users manuals 2lways seem Lo
be misplaced or sometimes it is difficult to find the
appropriate explanation of a3 function. An enhanced version
of this system should provide 2n online reference for the
users. Entering "Help" and the function select key (e.q.
HELF <F>») would return 3 display providing an expanded

explanation of that function.

4,2,5 The system could be further automated by adding
an suto-dial modem (models are now available in the $208-
$350 ranqge)., This addition would allow the personal
computer owner to take advantage of lower toll rates or
decreased host usage during late hours. A routine cowld be
implemented to dial the telephone number of the host system
at 3 designated time, send the sign—~on messaqe when the host
computer’s modem tone is detected, and then transfer a3 fTile

without 2ny intervention by the personal computer owner.

4,2,5 A timer option should be added to prevent 3 user
from "timing out". Many systems disconnect any remote
terminal that has not initiated 2 transaction within an
alloted period of time. If the personalrconputer system
kept track of the time since the last transaction it could

warn the user when his time was running out. The function

37

could even be extended to transmit 3 "dummy" transsaction to
the host to reset the timeout clock and rmot require any

action by the operator.

4.,2.7 The capability to transfer data or machine code
files should be added. The system was specifically limited
to the ASCII character set and selected ASCII control codes
{no byte wvalues gre#ter than 127). If dasta or the |
hexidecimal representation of machine code is transmitted
any bit pattern MigS; appear in the byte being transferred,
An option should bé added specifically for data and machine

rode that would transfer the values without displaying them

on the screen.

38

SELECTED BIELIOCRAPHY

Fernandez J., and Ashley R. 8080/8085 Assembly | anguage
Frogramming. NEW YORK! John HWiley & Soms, Inc., 1981.

Grogono, Frogramming in PASCAL, Reading? Addison-WHesley
Fublishing Company, Inc.,; 1980,

Hogzar, Thom, Osborne CP/M liser Guide, Berkeley!
OsbornesMcGraw-Hill, 1981.

Hunt, Daniel 5., " The General ...", Interface Age,
Oct 1981 pp. 104-107.

Jensen; Hathleen and Wirth, Niklaus, FPASCAL User
Manusl and Report, second edition, New York!
Spronger—-Yerlsg, 1978.

PASCAL/MT+, Releazsse 5, Lanquage Reference ard Applications
Guide, Cardiff-by-the-Sea!MT Microsystems, 17980.

P&T CP/M for the TRS-80 Model II, Users Manual, Goletal
Fickels and Trout, 1980.

TRS-80 Model II, Technical Reference Manual, Fort Worth:
Radio Shack, 19830.

Z-80 SIO Serizl Irnput/Output Controller, Froduct
Specificastion, Ziloae CB038-0111 CB038-0120, Feb 1980.

39

AFFPENDIX A

SMART TERM USER’S MANUAL

SMART TERM USERS MANUAL

1., INTRODUCTION: Smart Term is a3 general purpose
communications proaram for The Radio Shack TRS-80 Model II
Micro Computer. It is designed to enhance the Model II‘s
capabilities for transmission and reception of ASCII text by
providing many convenient festures not availsble in the

typical "dumb" terminal system.

2. MAJOR FEATURES:

Z2:.1 One-key transmission of user defined "sigmn—-on" and

"sign—off" messaqes.

r
Y

File Transfer from 3 host system to the Model II

disk or from the Model II to 3 host.
2.3 Froarasm selectable communications parameters.

2.4 O0Optional printed output of a3ll terminal session

transactions.

Al

HARDWARE REQUIREMENTS:

3.1 Radio Shack Model II Micro Computer w/é&4k of

Memory.

3+2 Telephone Modem
3. EIA-RSZ32C standard w/host suystem
compatable features.
b, Baud rate capability of 110, 300, 400 or

1200 baud (300 baud recommended).

3.3 Parallel interface line primter (optional).

A2

4., OPERATION OF THE SYSTEM:

Notation! Commands to the system may be either words or
single keys., Word commands are represented in capital
letters; (e.q. COMMAND), and should he typed exactly as
shown. If a particular key is to be typed it will be shown
between the "less than” and "areater than" symbols (e,q@. <T>
or <ENTER*). A combination of these notations mayg be Lsed
together (e.g.rTERH <ENTER>) indicating the four characters

T, MEwn, "R®, "M" should be t4yped then the "enter" key

typed.,

4.1 Determine the following communications parameters as
they apply to the host system!

3., Baud rate.

bs. MWord lenath.

c. Parity.

d+ Number of stop bits.

2+ Cursor character used by the host system’s
text editor.

f+ Number of “pad characters" transmitted after
the cursor for timing/delay purposes. (If this value cannot
be determined, a2ssume 0 pad characters. If later, during
file tramsfer to the Model II, extraneous characters are

printed after the line number, use the number of extransous

A3

characters printed for the number of pad characters in the

<M MODIFIY FARAMETERS seaquence).

4,2 PBegin execution of the Smart Term progaram by
typing — TERM <ENTER>, The current communications

parameters will then be displavded 3s shown in Figure 1.

CURRENT FARAMETERS =

—e s ooy T e e e S — . T ——

TERMINAL STATUS SIDED OFF
EUFFER OPTION OFF

20000 CHARACTERS OF BUFFER SFACE REMAINING

BAUD RATE 300 FARITY BUEN
WORD LENGTH 7 BITS STOF BITS 1
HOST CURSOR > PAD CHARACTERS 2

SIGNON MESSAGE
SICNOFF MESSAGE SIENOFF

FRESS <ENTER> TO CONTINUE
Fig. 1+ Parameter Display

Compare the parameters listed on the screen to those wou
obtained for the host system and make note of any
differerces. Press <ENTER> to proceed. After a3 brief pause
the screen will fili with 2 menu of selections (Figure 2).
If there were no discrepancies between the values of the

communications parameters obtained for the host and those

Ad

values displagyed as the current communiczations parameters,
you are ready to begin gperstion. If there were, execute
the parameter modification sequence, <Mr, before asttemptirg

any of the other options.

SELECT KEY OPTION
<S> <SIGN-ON/SIGN-OFF >
wT> < TERMINAL>
<Bx “<RECEIVE TO BUFFERX
<E> <EXAMINE BUFFERX
<Pz “FRINT BUFFERX
<D> <SAVE BUFFER TO DISK:
“HZ <TRANSFER FILE TO HOST>
M <MODIFY PARAMETERSX
<V <VERIFY FARAMETERS>
<R <RETURN TO SYSTEM LEVEL>

Fig:. 2, Menu of Options

AD

S. MODES OF OPERATION: This section discusses the system
functions that are available to the wuser, Each function is
discussed in the order it is displayed om the system MENU.
Figure 3 shows the inputs (characters) required to move from
one functionm to another. Referring to the figure may assist
the new user in following the flow of the system while

reading throuah this section.

Section &4, SAMPLE SESSIONS,; shows how these independent
functions may be combined to perform the more sophisticated

features of the system.

S+1. MENU - The menu, Figure 2, lists the primary
functions of the system and allows the user to select an
operation by typing the appropriaste '"select kevw", After
completion of 311 functions, except SIGNON/SIGNOFF, the
system automsticaslly returns to the MENU mode -to allow

selection of other functions.

Ab

SYSTEM

LEU?E__J

/ “TERM"

PARAMETER
DISFLAY

SIGN-OFF : FARAMETERS

—

SIGN—GN/i <R X{ENTER} MODIFY
j

M
SAVE
EUFFER
TO DISK
TERMINAL ¢ \ S5
\
“RETURN:
MENU
<RETURN:
| ,
| RECEIVE |, | TRANSFER
LTU BUFFER FILE TO
<E3 \\\\ HOST
: <P <RETURN:
i
| EXAMINE | <RETURN> PRINT
BUFFER BUFFER

Fig. 3. Inputs Required to Move EBetween Functions.

A7

9¢2 8> SIGN-ON/SIGN-OFF - This option 2llows the user
to transmit either the default sign-on or sign-off messages,
or 8 user defined messaage that has been entered with the <Mx
option, to the host cnnputer'sgsten. The sign-on and sian-
off messsges alternate with each selection of this option
starting with the sign—-on messaqe. After the message is
transmitted,; Smart Term automatically enters the TERMINAL

mode to display any response from the host.

5.3 <«<T>» TERMINAL - In ithe terminal mode the Model IT
acts 3s 3 standard communications terminal. All information
transmitted by the host is displayged on the screen and anu
keyboard entry by the user is transmitted to the host. Due
to peculiarities in the Model II kegboard, the “BREAK>» key
transmits @ "Control C" character to the host} therefore the
“<F1>» specizal furmction keg on the numeric keypad has been
programmed to transmit the bresk sequence. You mayg return

to the MENU mode by typing the <ESC> key.

S+4 RECEIVE TO BUFFER = This selection allows all
transactions that take place in the terminal mode to be
saved inm the system buffer, a3 temporary storsge area, for
viewing with the <E> option, for printing with the <P>x
option, or to be saved to disk with the <D> optiomn. This

option may be "turrned off" by typing the <B* while the Menu

aB

is displayed, and no further information will be saved. You
may determine the amount of empty space remainime in the
sssien buffer by selecting the «<V> VERIFY PARAMETERS option
from the mernw. CAUTION #1. MWhen the <R> RECEIVE TO BUFFER
option is set to "ON" it clears the current contents of the
puffer. Therefore if 4ou want to save the contents of the
buffer gou must use the <F*» or <D> options before resetting
the buffer option to "ON". CAUTION #Z., If while the buffer
option is "ON" the number of characters input exceeds the
maximum buffer size, 3 stop code will be sent to the host
and 2 "BUFFER FULL" messaqge will be displaved. The contents
of the buffer must be handled (saved or discarded) before
you may continue, If You were transferring a3 progaram to the
Model ITI wou nusi save the contents of the buffer currently
received and then transfer the remainder of the program,
Since there may be 3 delay between the time the stop code is
sent and the host system actually stops transmitting
characters, it may be necessaryg to have the host retransmit
the last several lines of the program received before the

"BUFFER FULL"™ condition was reached.,

5.5 <E» EXAMINE BUFFER - This selection 3llows you to
view the contents of the system buffer and then returns to
the menu., If the contents scroll too fast for viewing you
may stop the display by typing the <HOLDX* key. Fressing the

<HOLD> key 3g2in will restart the display.

AT

3.6 +«Pr FRINT BUFFER - This option first prompts the
user to insure the printer is ready and thern primts the

contents of the sgystem buffer.

5.7 +<D> SAVE BUFFER TO DISK - This selection allows
you to save the contents of the system buffer in 3 Model II
disk file. This option can be used to creste 2 permanent
record of 2 terminal session or of 2 file that has been

listed to the terminal. {See Sample Session #1).

5.8 <H> TRANSFER FILE TO HOST - This option is wused
to send 3 copy of a progaram or text file to the host system.
The user is prompted for the name of the file amd the file
is transmitted line by lime to the host. (See Sample

Session #2).

5.9 <«<M»> MODIFY PARAMETERS - During this sequence the
program will request various inputs from gou in order to
preparz the Model II to properly communicate with the host
system. A list of valid responses will be displayed with
each question. One of these responses must be entered or
the system will repeat the question. If the current
parameter displagyed matches the host system parameter gou
may simply type the <ENTER> key to move to the next
questions. The last two questions of this sequence zllow 4You

o change the sign—on and siegn-off messages that maygy be sent

AlD

by the 5> SIGN-ON/SIGN-OFF option to the host. Each
messaqge may corsist of 2 string of wp to 30 characters. If
you desire to change either of these strines simply type in
the message 4ou desire and type <ENTER>. If qou attempt to
exceed 30 charscters the system will accept the first 30
characters and continue. You will have to perform the
modification sequence again if yYou need to correct the
message. After you have completed this sequence the system
will save the parameters 4ou have entered for future wuse,
reprogram the Model II serisl I/0 controller and then

display the new values, (see Sample Session #3).

5,10 <VY>» VERIFY PARAMETERS - This option displaygs the
eurrent values of the system parameters that can be modified
by the user and the unused space remaining in the system

buffer (see Figure 1).

S+11 <Rx RETURN TO SYSTEM LEVEL - Selecting this
option returns gou to the Model IT operating s4ystem where
yout may perform program editing, other processing, or
terminate the session. If the sign—on messaqe option was
used during this seééiun and the sign-off message was not,
the message shown in Figure 4 is displayed to remind the

user that he may still be siqned-on.

ALl

YOU ARE STILL SIGNED ON..+s.
DO YOU WANT TO SIGN OFF - ENTER <Y>ES OR <N:O

IF YOU ANSHWER YES THE PROCRAM WILL TRANSMIT
THE SIGNOFF MESSAGE. HOWEVER,; IT IS YOUR
RESPONSIEILITY TO INSURE YOU ARE CURRENTLY AT A

LEGITIMATE LEVEL WITHIN THE HOST SYSTEM TO ISSUE
THIS COMMAND.

Fig. 4. Sien-off Reminder

Sirnce many host s4ystems will recognize the sigrn—-off message
orily when 1t is sent at a specific level within the host

program, the user is reminded of this fact.

Al2

4. SAMFLE SESSIONS: The following sample sessions
demonstrate how 3 series of commands might be used to
perform 2 typical termirnal session. (These samples assume

the user starts in the MENU mode)

6.1 SAMPLE #1., File Trarnsfer from the host system to

the Model II, If the user would like to transfer a file
from the host system to the Model II disk for storage or

editing he would perform the following sequence!

2. Enter the terminal mode by typing <T>: Access 3
level within the host system that will a3llow 4ou to list the
file to the terminal screen (e.q. 2 "list" or "prinmt lires"

command in the host system editor).

b, FReturmn to the mernu by typing <ESCx>.,

c., Fress the key to turn on the RECEIVE TO EBUFFER
option. If the buffer option was already active, typing the

<B» twice will clear the buffer.

d. Return to the terminal mode by typing the <Tx>,

Al3

es Enter the host system command that will list the
host proaram to the screens Eazach lirne will be displaved as

it is received and will z2lso be stored in the memoryg buffer.

f+« When the last line has been received type <ESC> to

return to the MENU,

h+ Fress =D> to begin the Save to Disk function and

answer the "OUTPUT FILEMAME QUESTION?.." with 2 valid file

fame .

i+ The system will then offer the option
"STRIF LINE NUMBERS - <YXES OR <Nx0 ??7?". If "<Nixo" is
selected the contents of the buffer will be saved exactly as
they exists, If "<Y>es" is selected the system will then
ask, "HOW MANY SPACES BETWEEN LINE NUMEBER AND FIRST
CHARACTER 7?7?7". If the host system inserts spaces between
the line number and the first character of the line, enter
that number of spaces (e.q. 3). If no spaces are inserted
by the host type "0 <ENTER>" or <ENTERX*. The system will
then strip the line number and the number of spaces just
entered from each iine before saving it to the disk. After
the buffer has been saved to disk, the user is returned to

the MENU and may select the next fumction.

Al4

6.2 SAMFLE #2. Transfer file from Model II toc 3 host
computer. If the user would like to transfer a2 file from
the Model II to a3 host system he would perform the following

sequence:

8+ Enter the terminal mode by typing «<T> and
access 3 level within the host system that would 3llow you
to create a2 source file (e.q:. the "crezte mode" of the

host’s editor sgystem).

be Return to the MENU by typing the <ESC> key.

o+ Press the <H>* key to select the TRANSFER FILE TO
HOST option and answer the
"ENTER NAME OF FILE TO TRANSFER«s+s4¢44?"
question with the name of the file you wish to transfer.
When the transfer has been completed the system will return

to the MENU.

d. Press <T> to return to the terminal mode and issue
the aspproprisate commands to the host system editor to save

the transferred file on the host system.

AlS

6.3 SAMPLE #3., Modificstion of the Communications

FParameters

a2+ Beain the modification sequence by typing <M.

bs. The system will respond with the display shown in

Figure 5.

x¥xXXk W A RNING XXXX
WHILE MODIFYING THE PARAMETERS ANY INFORMATION
CONTAINED IN THE BUFFER WILL BE LOST AND THE
RECEIVE TO BUFFER OFTION WILL EE TURNED OFF.

PRESS <ENTERX> TO CONTINUE
OR <ESC> TO RETURN TO THE MENU

Fig, 5. HWarning displayed duringe modification sequence.

If the bwuffer currently holds infermation 4ou do not want
discarded, return to the MENU by typing <ESC> and save or
otherwise handle that information. If the buffer is empty,

or its contents unimportant, type <ENTERX*> to continue{

c+. The system will rnow step throuch the eight displays
shown inm Fiqure 6. Each display shows the current value of
the parameter (Shown in boldface in the figure, reverse
video on the terminal), If there is 2 restricted set of

values, 3 list of entries the system will accept is shown in

Alé

square brackets (e.g. [1200,4600,300,11032. Type one of the
values listed im the square brackets or type <ENTER>» if the
current value matches the host system parameter. MWhen this
sequence is completed the system will display the new

parameter values, as in Fiagure 1, and then use these values

to proaram the Model II Seriazl I/0 controller.

Al7

(1,

(2).,

(3.

(43,

(&),

(7).

(83,

CURRENT BAUD RATE IS 300
ENTER NEW RATE L[C1200,600,300.11013
OR FRESS <ENTER> TO CONTINUE

CURRENT PARITY IS5 BEVEN

- ENTER NEW VALUE [CODD,EVEN,NONE]

OR FRESS <ENTER> TO CONTINUE

CURRENT WORD LENGTH IS 7 BITS
ENTER NEW VALUE [5,6,7,81]
OR PRESS <ENTERX»> TO CONTINUE

CURRENT NUMEER OF STOF BITS IS 1
ENTER NEW VALUE L[1,21
OR PRESS <ENTER> TO CONTINUE

CURRENT CURSOR IS >
ENTER NEW VALUE [Cx,%,-,.]
JR FRESS <ENTER:> TO CONTINUE

CURRENT NUMEBER OF PAD CHARACTERS IS 2
ENTER NEW VALUE [1..91
Ok PRESS <ENTERX> TO CONTINUE

CURRENT SIGNON MESSAGE IS

STENON

ENTEK A NEW STRING OF UP TO 30 CHARACTERS
OR PRESS <ENTER> TO CONTINUE

CURRENT SICGNOFF MESSAGE IS

SIENOFF

ENTER A NEW STRING OF UF TO 30 CHARACTERS
OR PRESS <ENTER> TO CONTINUE

Fig. 6. PFParameter Modification Sequence

AlB

AFFPENDIX B

FROGRAM SMART_TERM SOURCE CODE

(3363 S)

FROGRAM SMART_TERM;

{33 S S)

o —

PROGRAM TITLE: SMART TERM

PROGRAM AUTHOR! DAN VESTAL
PROGRAM FILE: TERM.FAS

. LAST UPDATE: 3 NOV 81
FROGRAM SUMMARY!}

THIS SYSTEM PROVIDES A COMFPLETE INTERCOMMUNICATIONS
PACKAGE FOR THE RADIO SHACK TRS-80 MODEL II

MICRO COMPUTER. IT PROVIDES THE STANDARD TERMINAL
FUNCTIONS OF ASCII INFUT AND OUTPUT THROUGH THE
SERIAL PORT, TRANSFERS FILES BETWEEN THE HOST AND

THE MODEL II, AND FROVIDES OTHER FUNCTIONS TO ASSIST
THE USER,

PEE e T e e T S e TR e)

CONST
MAX_LINE_LENGTH=80; (# LENGTH OF TRANMITTED LINES #)
MAX_MESSAGE_LENGTH=20; (# LENGTH OF SIGNON/OFF MESSAGE #)
MAX_BUFFER_SIZE=20000; (+ RECEIVE BUFFER SIZE #)
BREAK_DELAY=500} (# LOOP COUNTER FOR CARRIER BREAK #)

{# MODEL II MODEM PORT NUMBERS #)
STAT_PORT=$Fé; (¥ STATUS PORT #}
MOD_PORT=$F4; (¢ DATA PORT #)

NULL_CHR=0} (¥ ASCTI CHARACTER CODES #)
Fi_KEY=1} .
LINE_FEED_CHAR=10;

CLEAR_CHR=12;

CARRIAGE_RTN_CHR=13;}

REV_VIDEO=14;

GRAFH_CHR=17}

CNTRL_R=18;

CNTRL_S=19;

ESCAPE_CHR=27;

BLANK_CHR=32}

DELETE_CHR=127;

Bi

TYFE
CHAR_FILE = FILE OF CHAR}
PARAM_RECORD =
RECORD
ON_MESSAGE!PACKED ARRAY[1,.MAX_MESSAGE_LENGTH] OF CHAR;
OFF_MESSAGE!PACKED ARRAY[1.MAX_MESSAGE_LENGTH] OF CHAR;
ACTIV_FLAG!BOOLEAN;
PARITY_PARAMISTRINGIL41; (+ THIS RECORD IS READ FROM AND WRITTEN
BAUD_FARAMISTRING[41; (# TO FILE TERM.DAT. TO SAVE THE CURRENT:
WORD_LNGTHICHAR} (# USER DEFINED PARAMETERS *)
STP_BITSICHAR;
C_PATTERN:INTEGER;
D_PATTERN!INTEGER;
E_PATTERN!INTEGER!
CURSOR_CHARICHAR;
PAD_CHARACTERS!.INTEGER;
END}
PARAM_FILE = FILE OF PARAM_RECORD;

VAR
IN_BUFFER!ARRAY[1..MAX_BUFFER_SIZE] OF CHAR}
END_OF_BUFFER_FOINTER,NR_OF_PADS!INTEGER!
SIGNON_MESSAGE!PACKED ARRAYI1..MAX_MESSAGE_LENGTHIOF CHAR}
SIGNOFF_MESSAGE!{PACKED ARRAY[1..MAX_MESSAGE_LENGTHIOF CHAR}
STORE_FLAG,ACTIVE_FLAG_SET, PRESS{BOOLEAN;
PARITY,BAUD_RATE!STRING(41}
PRINT_FILE!CHAR FILE; (+ TYFE THE PRINTER #)
ENTER_PRESS,ANSWER,HOST_CURSOR,WORD_LENGTH,STOP_EITS!CHAR;
CHAIN_FILEFILE;

' C_REGISTER,D_REGISTER,E_REGISTER!INTEGER}

(33 S R R)

FUNCTION UPPERCASE(IN_CHARICHAR)CHAR;

(3R R R R R B)

(# CONVERT THE INFUT CHARACTER INTO AN UPPERCASE
CHARACTER BY STRIPFING BIT 6 WITH A LOGICAL "AND" #)

VAR
CHAR_ORDI!INTEGER;
BEGIN
IF (IN_CHAR >= ‘a’) AND (IN_CHAR <= ‘z’) THEN
UPPERCASE i= CHR(ORD(IN_CHAR) & 95)
ELSE

END;

B2

(33 R A)
FROCEDURE CLEAR_SCREEN;
s e e e)]
(# CLEAR THE SCREEN AND HOME THE CURSOR #)

BEGIN
WRITE(CHR(CLEAR_CHR))}
END;

{333 ARSI S S S0 I)
FROCEDURE READ_KEYBOARD(VAR KEY _CHARICHAR)
(SRR MR RS)

(# THIS ROUTINE IS WRITTEN IN 8080 ASSEMBLY CODE AND IS
ASSEMBLED BY THE COMFILER. IT PERFORMS A DIRECT READ
OF THE KEYBOARD BY CALLING CPM BIOS ROUTINE CONIN #)

CONST
BIDS_ENTRY_POINT = $EE09;
VAR
CONSOLE_IN,RESULT ; INTEGER}
BEGIN
INLINE("CALL /BIOS_ENTRY POINT/ (¥ CALL CFM BASIC I/0 ENTRY FOINT
"MOV LA / (# MOVE VALUE IN A REGISTER TO L REGISTER #)
"MV H/$0 / (# ZERO OUT H REGISTER *)
“SHLD / RESULT)} (# STORE VALUE IN HL REGISTER IN 'RESULT’ #)
KEY_CHAR != CHR(RESULT)
END;

(HHFHE S LR AP R E R SRR R EEE)

FUNCTION KEY_PRESS!:BOOLEAN;

o s A ALt aax])

(# THIS ROUTINE IS WRITTEN IN 2080 ASSEMBLY CODE AND IS
ASSEMELED BY THE COMPILER. IT PERFORMS A DIRECT READ
OF THE KEYBOARD INPUT STATUS BY CALLING THE CPM BIOS

ROUTINE CONST *)
CONST
BIOS_ENTRY_POINT = $EE0é6;
VAR
CONSOLE_STATUS,RESULT ! INTEGER;
BEGIN
INLINE("CALL /BIOS_ENTRY_POINT/ (# CALL CFM BASIC I/0 ENTRY POINT
"MOVL,A / (* MOVE VALUE IN A REGISTER TO L REGISTER #)
"MVIH/$0 / {(# ZERO OUT H REGISTER #)
"SHLD / RESULT % (¥ STORE VALUE IN HL REGISTER IN ‘RESULT' #)

CONSOLE_STATUS = RESULT;
KEY_PRESS i= (CONSOLE_STATUS = $FF)
END;

B3

(BRI EHHERHHNR)
FUNCTION BUFFER_EMPTY: BOOLEAN;
(3 ERH AR FEERE R R SR)
(# THIS FROCEDURE RETURNS TRUE IF THE BUFFER IS EMPTY #)

BEGIN
BUFFER_EMPTY = END_OF_BUFFER_POINTER <= 1}
END}

(3 S R R R S S R R)
FUNCTION BUFFER_FULL: BOOLEAN;
(B 5 RS SR S)
{# THIS PROCEDURE RETURNS TRUE IF THE BUFFER IS FULL #)

BEGIN
BUFFER_FULL i= END_OF_BUFFER_POINTER >= MAX_BUFFER_SIIE;
END; -

(463043 4003 SRR S R R)
PROCEDURE GET_CHAR_FROM_MODEM(VAR MODEM_CHARICHAR)Y

(48 343 HEHEHHHEHERHHEHHEEHEHRHRHEHRHREHHHHRRHEHHEHER)

(* THIS PROCEDURERETURNS THE CHARACTER READ FRON THE INFPUT FORT#)

BEGIN
MODEM_CHAR = INP(MOD_PORT);
END;

(3F46 385 440 S SR S)

FUNCTION MODEM_INFUT: BOOLEAN;
(AR R)

(# BIT 0 OF THE MODEM STATUS PORT GOES HIGH WHEN THERE IS A
CHARACTER IN THE MODEM DATA FORT. THIS FUNCTION TESTS
BIT 0 AND RETURNS ‘TRUE’ IF THERE IS MODEM INFUT #)

BEGIN ‘
MODEM_INPUT i= TSTBIT(INP(STAT_PORT)0)
END}

(B3 F RT3 F R R E)

FUNCTION MODEM_READY: BOOLEAN;

(I S S S S R B)

(# THIS FUNCTION RETURNS TRUE IF THE SERIAL FPORT IS READY TO
ACCEPT QUTPUT,. IF BIT 2 OF THE STATUS PORT IS HIGH, THE

PORT IS READY, #)
BEGIN

MODEM_READY != TSTBIT{INP(STAT_PORT)2)%
END;

B4

(333 S S S S S)

PROCEDURE MODEM_OUT(OUT_CHARICHARY

{348 48 36364330 300 9 I R)

(# THIS FROCEDURE LOOPS UNTIL THE MODEM PORT IS READY TO
ACCEPT A CHARACTER AND THEN SENDS THE CHARACTER TO THE
THE PORT AND RETURNS #)

VAR
CHAR_SENT!BOOLEAN;
BEGIN
CHAR_SENT != FALSE; (% INIT BOOLEAN #)
REPEAT
IF MODEM_READY THEN
BEGIN
OUTIMOD_PORT1:=0UT_CHAR
CHAR_SENT != TRUE;
END}
UNTIL CHAR_SENT;
END;

(4 PR S)

PROCEDURE DISPFLAY_PARAMETERS;

(3638 33090 S A 3 S R S B 3)

{(# THIS PROCEDURE DISPLAYS A LIST QF THE USER DEFINED
PARAMETERS AND THEIR CURRENT STATUS #)

VAR
ENTER_PRESS!CHAR}
TERM_STRING,FRINT_STRING,STORE_STRING,ON_STRING,OFF_STRING!STRING;
FREE_SPACE!INTEGER;

'BEGIN
CLEAR_SCREEN;

IF ACTIVE_FLAG_SET THEN
TERM_STRING = ‘SIGNED ON'
ELSE
TERM_STRING != ‘SIGNED OFF'}
IF STORE_FLAG THEN
STORE_STRING != ‘ON’
ELSE
STORE_STRING i= ‘OFF"}
FREE_SPACE != MAX_BUFFER_SIZE - END_OF_BUFFER_POINTER +1}

BS

(#* PROCEDURE DISPLAY_ PARAMETERS CONT'D #)

WRITELN({'
WRITELN('
WRITELN;
WRITELN(
WRITELN;
WRITELN(’
WRITELN;
WRITELN(
WRITELN;
WRITE(
WRITELN(
WRITELN;
WRITE('
WRITELN(
WRITELN;
WRITE(
WRITELN(
WRITELN;
WRITELN('
WRITELN;
WRITELN(
WRITELN;
WRITELN('

CURRENT PARAMETERS');
I);
TERMINAL STATUS 7}CHR(14),TERM_STRING,CHR(15))}
BUFFER OFTION y\CHR(14),STORE_STRING,CHR(15))}

‘,FREE_SPACE,' CHARACTERS OF BUFFER SPACE REMAINING");

BAUD RATE ',CHR(14),BAUD_RATE,CHR(15))}
PARITY ",CHR(14),PARTTY,CHR(15))}
WORD LENGTH *,CHR(14),WORD_LENGTH,’ BITS",CHR(15)}
STOP BITS ',CHR{14),STOP_BITS,CHR(15)}
HOST CURSOR +,CHR(14%HOST_CURSOR,CHR{15))}
PAD CHARACTERS " CHR(13),NR_OF _PADS,CHR(15)%
SIGNON MESSAGE ' CHR(14),SIGNON_MESSAGE,CHR(15));

SIGNOFF MESSAGE 'y}CHR(14),SIGNOFF_MESSAGE,CHR(13));

PRESS <ENTER> TO CONTINUE'Y -

READ(ENTER_FRESS);

END;

VAR

(43633 R R 2)

PROCEDURE SAVE_COMM_PARAMETERS;

(36400 43 4640 3 S0 3 IHHEHE R)

(¥ THIS FROCEDURE WRITES THE CURRENT COMMUNICATIONS #)
(* PARAMETERS TO THE FILE TERM.DAT, *)

PARAMETER_RECORD!FPARAM_RECORD)
CURRENT PARAMS_FILE:PARAM_FILE;
CLOSE_CODE!INTEGER;
GOOD_OFEN,GOOD_IO:BOOLEAN;

Bé

(* PROCEDURE SAVE_COMM_PARAMETERS CONT'D #)

BEGIN
WITH PARAMETER_RECORD DO

BEGIN
ON_MESSAGE!=SIGNON_MESSAGE;}
OFF_MESSAGE!=SIGNOFF_MESSAGE!

" ACTIV_FLAG!=ACTIVE_FLAG_SET;
PARITY_PARAM!=PARITY;
BAUD_FPARAM!=BAUD_RATE}
WORD_LNGTH!=WORD_LENGTH;
STP_BITS!=STOP_BITS;
C_PATTERN:=C_REGISTER}
D_PATTERN!=D_REGISTER;
E_PATTERN!=E_REGISTER;
CURSOR_CHAR!=HOST_CURSOR}
PAD_CHARACTERS!=NR_OF_PADS;

END}
ASSIGN(CURRENT_PARAMS_FILE,’A{TERM.DAT")
REWRITE(CURRENT_PARAMS_FILEY
GOOD_OPEN != (IORESULT <> 255)

IF GOOD_OPEN THEN .

BEGIN
WRITE(CURRENT_PARAMS_FILE,PARAMETER_RECORD)}
GOOD_IO i= GORESULT = 0);

IF NOT GOOD_IO THEN
BEGIN
WRITELN(’ ###% ERROR - BAD WRITE TO TERM.DAT ###+)}
WRITELN(’ PRESS <ENTER> TO CONTINUE ")}
READ(ENTER_PRESE);
END}
CLOSE(CURRENT_PARAMS_FILE,CLOSE_CODE)
IF CLOSE_CODE = 255 THEN
BEGIN
WRITELN(" #%#* ERROR - CANNOT CLOSE TERM.DAT ###3");
WRITELN(’ PRESS <ENTER> TO CONTINUE ')
READ(ENTER_PRESS);
END}

END
ELSE

BEGIN
WRITELN(’ ###% ERROR - UNABLE TO OPEN TERM,DAT ###+');
WRITELN(' PRESS <ENTER> TO CONTINUE ")
READ(ENTER_PRESS)

END;

END}

B7

(3640302004520 2 S 2 B I S S A RS)

PROCEDURE CHANGE_PARAMETERS;

(39 4303 B4 B H BRI)

(# THIS FROCEDURE TRANSFERS CONTROL BY CHAINING TO
PROGRAM "SETPARAM.COM" . THE CALLED PROGRAM
CONSISTS OF ONE SUBFPROCEDURE TO CHANGE EACH
COMMUNICATIONS PARAMETER AND A CALL TOCPM TOD
PROGRAM THE UART, CONTROL IS THEN CHAINED BACK
TO THIS PROGRAM, #)

BEGIN

CLEAR_SCREEN;

WRITELN(’
WRITELN;

WRITELN(
WRITELN(
WRITELN(
WRITELN;

WRITELN(
WRITELN(

READ(ANSWER)

##t WARNING ###')}

WHILE MODIFYING THE PARAMETERS ANY INFORMATION')Y
CONTAINED IN THE BUFFER WILL BE LOST AND THE ')
RECEIVE TO BUFFER OPTION WILL BE TURNED OFF. ')}

FRESS <ENTER> TO CONTINUE %
OR <ESC> TO RETURN TO THE MENU)}

IF ANSWER = CHR(BELANK_CHR) THEN

BEGIN

SAVE_COMM_PARAMETERS; (* SAVE ACTIVE FLAG #)
ASSIGN(CHAIN_FILE, A!SETPARAM.COM")
RESET(CHAIN_FILE)
IF IORESULT = 255 THEN

WRITELN{'UNABLE TO OPEN SETPARAM.COM %

ELSE

CHAIN(CHAIN_FILE)

END}

{# ANY INFUT EXCEPT POSITIVE RESPONSE RETURNS TO MENU #)

END;

BS

(34 S 3 A3 SR S S R)

PROCEDURE EXAMINE_BUFFER;

(+ IF THERE IS DATA IN THE BUFFER THIS PROCEDURE DISFLAYS #)
(+ THE CONTENTS OF THE BUFFER ON THE SCREEN #)

VAR
ENTER_PRESS!CHAR}
POINTER!INTEGER;
BEGIN
CLEAR_SCREEN;
IF NOT BUFFER_EMPTY THEN
FOR POINTER != 1 TO END_OF_BUFFER_POINTER DO
WRITE(INSUFFER[POINTER])
ELSE
BEGIN
WRITELN}
WRITELN(' ####+ BUFFER EMPTY ##4+');
END;
WRITELN; WRITELN;
WRITELN(' PRESS <ENTER> TO CONTINUE")
READ(ENTER_PRESS)}
END;

(330 3330 S S RS 2 03 S SRR R S R SR S S)
FPROCEDURE WAIT_FOR_HOST_TO_ACCEPT;
(36903 S0 SR SR 30 30 030 R S0 3 S SR S R SRR)
(# THIS PROCEDURE LOOKS FOR THE PROMPT CHARACTER ACKNOWLEDGING
THAT THE TRANSMITTED LINE HAS BEEN ACCEFTED, DISCARDS THE
PAD CHARACTERS FOLLOWING IT AND RETURNS TO THE CALLING ROUTINE#)

VAR
COUNTER!INTEGER;
IN_CHARICHAR;
BEGIN
COUNTER = 0;
REFEAT
IF MODEM_INFUT THEN (¥ LOOP UNTIL CURSOR RETURNS #)
GET_CHAR_FROM_MODEM(IN_CHAR);
UNTIL IN_CHAR = HOST_CURSOR;
REPEAT
IF MODEM_INFUT THEN
BEGIN
GET_CHAR_FROM_MODEM(IN_CHAR); (* SHUCK PAD CHARS #)
COUNTER != COUNTER + 1}
END;
UNTIL COUNTER = NR_OF_PADS}
WRITEC#))} (% SHOW USER THAT HOST HAS RESPONSED #)
END;

B?

(# THIS PROCEDURE TRANSFERS A FILE TO ANOTHER COMPUTER
BY TRANSMITTING ONE LINE AND THEN WAITING ON THE HOST
TO RESPOND WITH A CURSOR CHARACTER BEFORE TRANSMITTING
THE NEXT. #)

VAR
CLOSE_CODE,LINE_POINTER,CHAR_COUNTER:INTEGER;
XMIT_FILENAME!STRING;

VALUE_ENTEREDICHAR;
IN_FILE:CHAR_FILE;
CR_LAST_CHAR,ALL_DONE,GOOD_OPEN,RESULT:BOOLEAN;

{3330 3030 30 2 A S S S B S S I)
PROCEDURE OPEN_TRANSFER_FILE;
(3043 4 S B S R S S)
(* LOOP UNTIL THE TRANSFER FILE IS OPENED #)
BEGIN
REFEAT
CLEAR_SCREEN;
WRITELN;WRITELN;WRITELN;WRITELN;
WRITELN(’ ENTER NAME OF FILE TO TRANSFERuuen? -)
READLN(XMIT_FILENAME);
IF LENGTH(XMIT_FILENAME) > 0 THEN
BEGIN
ASSIGN(IN_FILE,XMIT_FILENAME)
RESET(IN_FILE);
GOOD_OPEN = IORESULT < 255;
IF NOT GOOD_OFEN THEN
BEGIN
WRITELN(’ ###+ BAD OFEN ON ', XMIT_FILENAME,’ ##%#")
WRITELN(PRESS CENTER> TO CONTINUE ")
WRITELN(' <ESC> TO RETURN TO MENU "
READ(VALUE_ENTERED);
IF VALUE_ENTERED = CHR(ESCAFE_CHR) THEN EXIT}
END}
END}
UNTIL GOOD_OPEN;
END}

(#aa3)
BEGIN
OPEN_TRANSFER_FILE;

END_OF_BUFFER_POINTER i= 1} (* FLUSH BUFFER %)
ALL_DONE i= FALSE; (# INIT BOOLEAN ¥)

B 10

(¥ PROCEDURE TRANSFER_FILE CONTD #)

WHILE NOT ALL_DONE DO (# FILL AND SEND BUFFER UNTIL EOF #)
BEGIN
WHILE (NOT BUFFER_FULL) AND (NOT ALL_DONE) DO
BEGIN
INBUFFERLEND_OF_BUFFER_POINTER] = IN_FILE"}
WRITE(INBUFFER{END_OF _BUFFER_POINTERD)
GET(INFILE)
IF EOF(INFILE) THEN
ALL_DONE = TRUE}
END_OF_BUFFER_POINTER = END_OF_BUFFER_POINTER+!}
END;
LINE_POINTER = 1} CHAR_COUNTER != 1}
WHILE LINE_POINTER < END_OF_BUFFER_POINTER DO
BEGIN
(# XMIT LINE) WHILE (INBUFFER[LINE_POINTER] < CER(CARRIAGE_RTN_CHR
AND (CHAR_COUNTER < MAX_LINE_LENGTH) DO
BEGIN
IF (ORD{INBUFFER[LINE_POINTERI) > 31) AND
(ORD(INBUFFERILINE_FOINTERI) < 127) THEN

(# LOOP HERE UNTIL #) BEGIN
(# 80 CHAR SENT OR #) MODEM_OUT(INBUFFERILINE_POINTER1)
(#* CRISREAD %) CR_LAST_CHAR = FALSE}

END}

LINE_FOINTER != LINE_POINTER + 1}
CHAR_COUNTER = CHAR_COUNTER +1}
END;
IF CR_LAST_CHAR = TRUE THEN (# SEND BLANK LINE #)
BEGIN
MODEM_OUT{(CHR(BLANK_CHR);
MODEM_OUT(CHR(BLANK_CHR)}
END;
(# SENDCR # MODEM_OUT(CHRI(CARRIAGE_RTN_CHR);
CR_LAST_CHAR != TRUE}
(* WHEN EOL #) IF INBUFFERLLINE_POINTER] = CHR(CARRIAGE_RTN_CHR) THE?
LINE_POINTER {= LINE_POINTER + 1} (# SHUCK CR #)
(# RESET COUNTER #) CHAR_COUNTER != 0}
WAIT_FOR_HOST_TO_ACCEFT;
IF KEY_PRESS THEN
BEGIN
READ_KEYBOARD(VALUE_ENTERED)
IF VALUE_ENTERED = CHR(ESCAFE_CHR) THEN EXIT;
END;
END;
END_OF_BUFFER_POINTER = 1} (¥ FLUSH BUFFER #)
END;
CLOSE(IN_FILE,CLOSE_CODE)
END;

B 11

(Wm}

PROCEDURE SAVE_BUFFER;

({ﬂmm*m}

(+ THIS PROCEDURE SAVES THE CONTENTS OF THE
BUFFER TO A DESIGNATED OUTPUT FILE, THE
USER IS GIVEN THE OPTION OF STRIPPING
THE LINE NUMBERS FROM THE CODE BEFORE IT
IS SAVED TO DISK #)

VAR
CLOSE_CODE,LINE_POINTER,BUFFER_FOINTER!INTEGER}
ENTER_FRESS!CHAR}
OUT_FILENAMEISTRING;
QUT_FILEICHAR_FILE;
STRIP_NUMBERS,GOOD_WRITE,RESULT,GOOD_OFEN!BOCLEAN;

(302000 2B S0 3 4 3 S S S S S S)

PROCEDURE FIND_FIRST CHAR}
s T]

(# THIS FROCEDURE FINDS THE FIRST CHARACTER OF
A PROGRAM LINE BY READING CHARACTERS UNTIL
THE LINE NUMBER IS FOUNL OR THE END COF THE
BUFFER 15 REACHED. IT THEN DISCARDS THE

LINE NUMBER AND THE LEADING SPACE BETWEEN
THE LINE NUMBER AND THE FIRST CHARACTER OF
THE PROGRAM LINE., #)

VAR

NUMBER_FOUND{BOOLEAN;

EEGIN

(# FIND FIRST LINE NUMBER #)

NUMBER_FOUND ‘= FALSE;

WHILE (NOT NUMBER_FOUND) AND
{ BUFFER_POINTER <= END_OF_BUFFER_POINTER) DO

BEGIN

IF INBUFFERIBUFFER_POINTER] IN [‘0’.,/9*] THEN
NUMBER_FOUND := TRUE
ELSE
BUFFER_POINTER = BUFFER_POINTER + 1
END;

(# STRIP LINE NUMEER #)

WHILE (INBUFFERLBUFFER_POINTER + 11 IN [0.,‘91) AND
((BUFFER_POINTER + |) <= END_OF_BUFFER_FOINTER) DO
.BUFFER_POINTER := BUFFER_POINTER + 1}

(# REMOVE LEADING SPACES #)

EUFFER_POINT := BUFFER_POINTER + LEADING_SPACES!

END;

B1i2Z

(B3R S I S)

PROCEDURE OPEN_SAVE_FILE}

(343 SRR e)

(# LOOP UNTIL AN QUTPUT FILE IS OPENED #)

BEGIN
REPEAT
WRITELN;{WRITELN;WRITELN;WRITELN;
WRITELN(' - QUTPUT FILENAME.w.? = ')}

READLN(OUT_FILENAME);
IF LENGTH(OUT_FILENAME) > 0 THEN
BEGIN
ASSIGN(OUT_FILE,OUT_FILENAME);
REWRITE(OUT_FILE)
GOOD_OPEN := IORESULT < 255;
IF NOT GOOD_OFEN THEN
BEGIN
WRITELN(’ ###* BAD OPEN ON ',OUT_FILENAME,’ ###')
WRITELN(’ PRESS <ENTER> TO CONTINUE)}
WRITELN(<ESC> TO RETURN TO THE MENU ")
READ(ENTER_PRESS);
IF ENTER_PRESS = CHR(ESCAPE_CHR) THEN EXIT}
END}
END;}
UNTIL GOOD_OPEN;

END;
{34p338)

BEGIN
CLEAR_SCREEN;
IF NOT BUFFER_EMFTY THEN
BEGIN
OFEN_SAVE_FILE;
BUFFER_POINTER := 1}
GOOD_WRITE != TRUE; (s INIT BOOLEAX #)
WRITELN('STRIP LINE NUMBERS - <Y>ES OR Q00 777%
READ(ENTER_FRESS);
IF ENTER_PRESS = ‘Y’ THEN
BEGIN
STRIP_NUMBERS i= TRUE;
FIND_FIRST_CHAR; (% PRIME FIRST LINE #)
END
ELSE
STRIP_NUMEERS != FALSE}
WHILE (BUFFER_POINTER < END_OF_BUFFER_POINTER) AND GOOD_WRITE I

B 13

(* FROCEDURE SAVE_BUFFER CONT'D #)

BEGIN

IF (INBUFFER{BUFFER_POINTER] = CER(LINE_FEED_CHAR))

AND (STRIP_NUMBERS) THEN
(+ WHEN EOL FOUND) BEGIN
(# XMIT LF AND % OUT_FILE" i= CHR(LINE_FEED_CHAR)
(# FIND FIRST OF # PUT(OUT_FILE)
(# NEXT LINE #) FIND_FIRST_CHAR} (#+ OF NEXT LINE #)
END;

(+ WRITE BUFFER #) OUT_FILE~ = INSUFFERIBUFFER_POINTER];
(» CHARACTER TO #) PUT(OUT_FILE);
(% DISK %) GOOD_WRITE i= (IORESULT = 0}
- BUFFER_POINTER != BUFFER_POINTER + 1}

IF BUFFER_POINTER MOD 5 = 0 THEN

WRITE('#')} (% SHOW USER ITS WORKING #)
END;
CLOSE(OUT_FILE,CLOSE_CODE)
IF NOT GOOD_WRITE THEN
BEGIN

CLEAR_SCREEN;

WRITELN; WRITELN; WRITELN;

WRITELN(’ ##%% WRITE ERRGR TO',0UT_FILENAME);

WRITELN; WRITELN;
WRITELN(’ PRESS <ENTER> TO CONTINUE")
READ(ENTER_FRESS);
END;
END -
ELSE
BEGIN
WRITELN;
WRITELNU s+4+ BUFFER EMPTY ####)}
WRITELN(' PRESS <ENTER> TO CONTINUE")
READ(ENTER_FRESS)
END}

END; (# END FROCEDURE #)

B1i4

(33633 RN

PROCEDURE PRINT_EUFFER;}

(93694 3R IR H)

(# IF THERE IS DATA IN THE BUFFER, THIS PROCEDURE PROMPTS THE USER

TO TURN ON THE PRINTER AND THEN PRINTS EACH LOCATION IN THE
BUFFER.: #)

VAR
KEY_FRESS!CHAR}
CLOSE_CODE,POINTER!INTEGER;
PRINT_FILE!CHAR_FILE;

BEGIN
CLEAR_SCREEN;

IF NOT BUFFER_EMFTY THEN

BEGIN
WRITELN(#### INSURE THE PRINTER IS READY #%##');
WRITELN(' THEN PRESS (ENTER> TO CONTINUE’Y
WRITELN(OR <ESC> TO RETURN TO THE MENU";

READ(KEY_PRESS);
IF KEY_PRESS = CHR(BLANK_CHR) THEN (# <ENTER> FRESSED #)
BEGIN
ASSIGN(PRINT_FILE,’LST:")
REWRITE(PRINT _FILE)
FOR POINTER = 1 TO END_OF_BUFFER_POINTER DO
BEGIN
PRINT_FILE" i= INBUFFER[POINTER];
PUT(FRINT_FILE);
END;
CLOSE(PRINT_FILE,CLOSE_CODE)
END;
(# ELSE ¢ESCY> PRESSED #)
END
ELSE
BEGIN
WRITELN;
WRITELN(’ . ##%% BUFFER EMPTY ###+)}
END;
WRITELN; WRITELN; ‘
WRITELN(' PRESS <ENTER> TO CONTINUE";
READ(ENTER_PRESS);
END}

B 15

e s
FROCEDURE STORE_IN MEMORY(STORE_CHARI!CHAR; VAR MEMORY_FULLI!BOOLEA
(34 3 I S S I S I I S S 3 S B 2 B B
(* IF THE BUFFER IS NOT FULL, THIS PROCEDURE TAKES THE INFUT

CHARACTER AND STORES IT IN THE NEXT FREE LOCATION IN THE BUFFER

A BOOLEAN IS RETURNED TO THE CALLING ROUTINE - "TRUE" IF THE

BUFFER IS FULL. #)

BEGIN
IF BUFFER_FULL THEN
BEGIN
MEMORY_FULL = TRUE}
WRITELN('### MEMORY BUFFER FULL ##+')}
END
ELSE
BEGIN
MEMORY_FULL = FALSE;
INBUFFERLEND_OF_BUFFER_POINTER] i= STORE_CHAR;
END_OF_BUFFER_POINTER i= END_OF_BUFFER_POINTER + !}
END}
END}

6 $ 0 E ARSI RRE)

PROCEDURE SEND_BREAK;

(343340 3 0 I A)

{(* THIS PROCEDURE TRANSMITS A BREAK SEQUENCE BY XMITTING AN #
{# UNINTERRUPTED SFACE TONE FROM THE MODEM FOR THE TIME IT #)
(#* TAKES TO COMMFLETE THE DELAY LOOP #)

VAR
DELAY _COUNTER,INSIDE_COUNTER!INTEGER;
BEGIN
OUTLSTAT_PORT] i= $5;
OUTLSTAT _PORT] i= $0BA;
DELAY_COUNTER i= 0}
WHILE DELAY_COUNTER < BREAK_DELAY DO
DELAY_COUNTER != DELAY_COUNTER + 1}
OUTISTAT_PORT] i= §5;
OUTISTAT_PORT] i= $04AA}
END;

B 16

(3300 S S S)

PROCEDURE TERMINAL;

{36304 #0334 30 3 I)

(* THIS PROCEDURE IS AN INFINITE LOOP THAT HANDLES KEYBOARD AND MODEYN
INPUTS UNTIL THE ESCAPE CHARACTER IS TYFED, IF THE STORE FLAG IS

SET ALL TRANSACTIONS ARE STORED IN THE PROGRAM EUFFER, #)

VAR
IN_CHAR, OUT_CHAR!CHAR;
EUFFER_FULL, TERMINAL_WANTED:!BOOLEAN;
INVALID_INPUTS!SET OF CHAR;
CHAR_IN_BUFFER,CLOSE_CODE!INTEGER;
BEGIN
INVALID_INPUTS ‘= [CHR(CLEAR_CHR),CHR(REV_VIDEO),
CHR(DELETE_CHR),CHR(GRAFH_CHR)1}
(# INPUTS THAT MIGHT DESTROY DATA ON THE SCREEN ARE IGNORED #)
TERMINAL_WANTED != TRUE;
WHILE TERMINAL_WANTED DO
BEGIN
IF KEY_PRESS THEN
BEGIN
READ _KEYBOARD(OUT_CHAR)
IF QUT_CHAR = CHR(ESCAPE_CHR) THEN
TERMINAL_WANTED != FALSE (* RETURN TO MENU #)
ELSE
IF OUT_CHAR = CHR(F1_KEY) THEN
SEND_BREAK (# XMIT BREAK SEQUENCE #)
ELSE
MODEM_OUT(OUT_CHAR)} (+ XMIT KEYBOARD CHARACTER #)
END;
IF MODEM_INPUT THEN
BEGIN
GET_CHAR_FROM_MODEM(IN_CHAR);
IN_CHAR != CHR(ORD(IN_CHAR & 1270} (+ STRIP PARITY BIT #
IF NOT (IN_CHAR IN INVALID_INPUTS) THEN
BEGIN
(+ DISPLAY INPUT #) WRITE(IN_CHAR)
(* FROM MODEM # IF STORE_FLAG_SET THEN
BEGIN
IF BUFFER_FULL THEN
BEGIN '
MODEM_OUT(CHR(CNTRL_S)
WRITELN(’ #### BUFFER FULL ####")}
WRITELN(’ PUSH <CTRL)><R> TO CONTINUE";
END;
STORE_IN_MEMORY(IN_CHAR,BUFFER_FULL);
END; (# ENDIF %) '
END;
END;
END;
END;

B 17

(36364033096 3 P48 SR S 3 SR S)

PROCEDURE SIGNON_SIGNOFF;

{3 SR E SRS H S EE Y

(* THIS ROUTINE TOGGLES THE ACTIVE FLAG AND TRANSMITTS TEE
AFPFROPRIATE MESS5AGE DEFENDING ON THE CURRENT VALUE OF
THE ACTIVE FLAG. #}

VAR
POINTER!INTEGER;
BEGIN
CLEAR_SCREEN;
IF ACTIVE_FLAG_SET THEN
BEGIN
FOR POINTER != 1 TO MAX_MESSAGE_LENGTH DO
BEGIN
MODEM_OUT(SIGNOFF_MESSAGE[FPOINTER);
WRITE(SIGNOFF_MESSAGE[POINTERI)
END; :
MODEM_OUT(CHR(CARRIAGE_RTN_CHR);
ACTIVE_FLAG_SET i= FALSE]
END
ELSE
BEGIN
FOR POINTER != 1 TO MAX_MESSAGE_LENGTH DO
BEGIN
MODEM_OUT(SIGNON_MESSAGELPOINTERD)
WRITE(SIGNON_MESSAGEIFOINTERD)
END}
MODEM_OUT(CHR(CARRTAGE_RTN_CHER))
ACTIVE_FLAG_SET != TRUE;
END}
END;

B i8

(34033 S S S S)
FPROCEDURE MENU;
(R)

(+#THIS PROCEDURE DISPLAYS THE MENU OF OPTIONS; ACCEPTS
THE USERS CHOICE, AND THEN PASSES CONTROL TO THE
APPROPRIATE ROUTINE. IF THE INPUT DOES NOT MATCH A
VALID CHOICE THE MENU IS REDRAWN AND THE USER IS
PROMPFTED FOR ANOTHER CHOICE #)

VAR
LOOP_COUNTER : INTEGER}
CHOICE : CHAR}

BEGIN
CHOICE i= ‘A"}
WHILE CHOICE <> ‘R’ DO -
BEGIN
CLEAR_SCREEN;
WRITELN;
WRITELN(’ SELECT KEY OPTION)
WRITELN(’ ===zz===== ==== 1)}
WRITELN;
WRITELN(’ 5> <SIGN-ON/SIGN-OFF>'}
WRITELN("%
WRITELN(<T> <TERMINAL> %
WRITELN(")
WRITELN(' ¢{B> <RECEIVE TO BUFFER>}}
WRITELN(%
WRITELN(' <E> <(EXAMINE BUFFER> "%
WRITELN(' %
WRITELN(P> <{PRINT BUFFER>)}
WRITELN()
WRITELN{' <D> <SAVE BUFFER TO DISK>'%
WRITELN(%
WRITELN(' <H> <TRANSFER FILE TO HOST>")
WRITELN()
WRITELN({M> <MODIFY PARAMETERS> %
WHITELN;
WRITELN(<{V> <VERIFY PARAMETERS> ')
WRITELN;WRITELN;
WRITELN(’ ¢(R> <RETURN TO SYSTEM LEVEL>");

REPEAT } UNTIL KEYPRESS;] (# POLL KEYBOARD UNTIL CHAR READY #)
READ_KEYBOARDI(CHOICE)Y (+ GET CHARACTER #)

B19

CASE UPPERCASE(CHOICE) OF

'5't BEGIN

SIGNON_SIGNOFF;

TERMINAL;

END;

Tt BEGIN

CLEAR_SCREEN;

TERMINAL;

END;

*P't PRINT_BUFFER;
'B"! IF STORE_FLAG THEN

STORE_FLAG != FALSE

ELSE
BEGIN (* TOGGLE STORE FLAG #)
STORE_FLAG = TRUE}
END_OF_BUFFER_POINTER i= 1}
END;

‘D‘t SAVE_BUFFER}
'H’t TRANSFER_FILE}
"E't EXAMINE_BUFFER;
‘M’ CHANGE_PARAMETERS;}
"7t DISPLAY_PARAMETERS;
"R’ WRITELN(’ - RETURNING’)
ELSE} (# INVALID INPUT CAUSES MENU TO PRINT AGAIN #)

END; (# END CASE #)
END; (# END WHILE #)

B20

(**mmmm&mmﬂmmmmm*ﬂﬁﬂ
PROCEDURE PROGRAM_SIO(C_ENTRY,D_ENTRY,E_ENTRY'!INTEGER);
(3598 3+ 35 30 26 30 35 3 202336 6 HESE IR S 03030 36640 0230 2 6 230 4E PP 3P I 440 S 3F 3P 3 S S R R)
(* THIS PROCEDURE IS WRITTEN IN 8080 ASSEMBLY CODE AND IS
ASSEMBLED DURING COMFILATION BY THE MTPLUS COMPILER,

IT LOADS THE REGISTERS WITH THE BIT PATTERNS PREVIOUSLY
READ FROM TERM.DAT AND CALLS THE OPERATING SYSTEMS
SETSIO ROUTINE TO FROGRAM THE SERIAL 1/0 CONTROLLER #)

CONST
CPM_ENTRY_POINT = $40;
BEGIN
INLINE($24 / C_ENTRY / (* LOAD HL REGISTER PAIR WITH C MASK #)
$4D / (¥ MOVE VALUE IN L TO C REGISTER #)
$2A / D_ENTRY / (* LOAD HL REGISTER PAIR WITH D MASK #
$55 / (* MOVE VALUE IN L TO D REGISTER %)
$2A / E_LENTRY / (#* LOAD HL REGISTER PAIR WITHE #
$5D / (# MOVE VALUE IN L TO E REGISTER

$2E / $11 / (* SET XMIT ON CHAR TO CRTL Q #)
$26 / $13 / (# SET XMIT OFF CHAR TO CRTL § #)
$CD / CPM_ENTRY_POINT)

END;

(343403034 3303 040 3 336 S S T)

FROCEDURE INITIALIZE;

(443046 304630 S90S 930 3 S0 S SRR 4638)

(# THIS FROCEDURE READS THE COMMUNICATIONS PARAMETERS FROM
FILE TERM.DAT AND PROGRAMS THE MODEL II UART,

IF TERM.DAT CANNOT BE READ DEFAULT VALUES ARE USED #)

VAR
PARAMETER_RECORD:PARAM_RECORD;
IN_FILE!PARAM_FILE;
CLOSE_CODE!INTEGER;
ENTER_FRESS!CHAR}
GOOD_OPEN,GOOD_IOBOOLEAN;

BEGIN
CLEAR_SCREEN;
ASSIGN(IN_FILE,’AiTERM,DAT");
RESET(IN_FILE)

GOOD_OPEN != IORESULT <> 255;

IF GOOD_OPEN THEN

" BEGIN
READ(IN_FILE,PARAMETER_RECORD);
GOOD_IO ‘= IORESULT = 0;
IF GODD_IO THEN

B2

(# PROCEDURE INITIALIZE CONT'D #)

WITH PARAMETER_RECORD DO
BEGIN

SIGNON_MESSAGE!=ON_MESSAGE;
SIGNOFF_MESSAGE!=OFF_MESSAGE;
ACTIVE_FLAG_SET:=ACTIV_FLAG;
PARITY=PARITY_PARAM;
BAUD_RATE!=BAUD_PARAM;
WORD_ LENGTH:=WORD _LNGTH;
STOP_BITS!=STP_BITS;
C_REGISTER!=C_PATTERN;
D_REGISTER!=D_PATTERN;
E_REGISTER!=E_PATTERN;
HOST_CURSOR!=CURSOR_CHAR;
NR_OF_PADS!=PAD_CHARACTERS;

ENDj
END;
IF (NOT GOOD_QPEN) AND (NOT GOQD_IO) THEN
BEGIN
WRITELN(s+ UNABLE TO READ PARAMETER FILE #%##')}
WRITELN(' DEFAULT PARAMETERS WILL BE USED')
WRITELN(FRESS {ENTER> TO CONTINUE";

READ(ENTER_PRESS)
SIGNON_MESSAGE != 'SIGNON “
SIGNOFF_MESSAGE ‘= ‘SIGNOFF “®
ACTIVE_FLAG_SET != FALSE}
PARITY!='EVEN’}
BAUD_RATE!= 300}
WORD_LENGTH!="7"}
STOP_BITS!='1'}
(# REGISTER PATTERNS FOR VALUES ABOVE #)
C_REGISTER!=3;
D_REGISTER!= =198}
E_REGISTER!=3;
~ HOST_CURSOR!="';
NR_OF_PADS:=
END}
PROGRAM_SIO(C_REGISTER,D_REGISTER,E_REGISTER)} (* SETUP SIO CONTROLLE
END_OF_BUFFER_POINTER = 1}
STORE_FLAG i= FALSE}
DISPLAY_PARAMETERS;
END;

B22

BEGIN (# MAIN FROGRAM #)

(# THIS IS THE MAIN ROUTINE OF THE PROGRAM. AFTER
INITIALIZING IT DISPLAYS A MENU SELECTION OF
FUNCTIONS AVAILABLE TO THE USER, WHEN CONTROL
RETURNS TO THE ROUTINE, IF THE USER HAS NOT
SIGNED OFF, HE IS GIVEN THE OPPORTUNITY TO
TRANSMIT THE SIGNOFF MESSAGE BEFORE RETURNING
TO Q.S5.CONTROL, BEFORE EXITING THE CURRENT
COMMUNICATIONS PARAMETERS ARE SAVED, #)

INITIALIZE;
MENU; (# DISFLAY SYSTEM FUNCTIONS #)
IF ACTIVE_FLAG_SET THEN (# USER HAS NOT SIGNED OFF #)

BEGIN
CLEAR_SCREEN;
WRITELN(’ YOU ARE STILL SIGNED ON';WRITELN;
WRITELN(' DO YOU WANT TO SIGN OFF - ENTER <YJES DR <N>0"%
WRITELN;WRITELN;WRITELN}
WRITELN(’ IF YOU ANSWER YES THE PROGRAM WILL TRANSMIT '}
WRITELN(’ THE SIGN OFF MESSAGE, HOWEVER,IT IS YOUR 0
WRITELN(RESPONSIBILITY TO INSURE YOU ARE CURRENTLY AT A "}
WRITELN(LEGITIMATE LEVEL WITHIN THE HOST SYSTEM TO ISSUE)
WRITELN(THIS COMMAND, ¢
READ(ANSWER);

IF ANSWER = 'Y’ THEN
SIGNON_SIGNOFF; (* DEFAULT IS SIGNON #)
END}
SAVE_COMM_PARAMETERS;
END.

B 23

AFFENDIX C

FROGRAM SETPARAM SOURCE CODE

{ B30 3 B S SR I R R)

PROGRAM SET_PARAMETERS;

{ 3T S S S S SR)

{#=========z=======sc=====co=om==——c=rz==ccoooonosccocomomssoozns
FROGRAM TITLE! SET PARAMETERS

PROGRAM AUTHOR! DAN VESTAL
PROGRAM FILE! SETPARAM.PAS
LAST UPDATE: 3 NOV 81
PROGRAM SUMMARY!

THIS FROGRAM IS A MODULE OF PROGRAM SMART TERM,

A MICRO-COMPUTER INTERCOMMUNICATIONS PACKAGE FOR
THE RADIO SHACK TRS-80 MODEL II MICRO COMFUTER,

THE PROGRAM READS THE CURRENT COMMUNICATIONS
PARAMETERS FROM FILE TERM.DAT, DISPLAYS THEM TO THE
USER AND ALLOWS CEANGES TO BE MADE TO THEIR VALUES.
THE NEW VALUES AND THEIR CORRESPONDING BIT MASKS
ARE THEN WRITTEN BACK TO TERM.DAT AND CONTROL
CHAINED BACK TO THE CALLING FROGRAM,

CONST
MAX_MESSAGE_LENGTH=20} (¥ LENGTH OF SIGNON/OFF MESSAGES #)
BLANK_CHR=32}
TYPE
CHAR_FILE = FILE OF CHAR}
PARAM_RECORD =
RECORD
ON_MESSAGE!PACKED ARRAY[1. MAX_MESSAGE_LENGTH] OF CHAR}
OFF_MESSAGE!PACKED ARRAY[1,.MAX_MESSAGE_LENGTH] OF CHAR;
ACTIV_FLAG!BOOLEAN;
PARITY_PARAMISTRINGL41}
BAUD_PARAMISTRING[41;
WORD_LNGTH!CHAR}
STP_BITS!CHAR;
C_PATTERN!INTEGER}
D_PATTERN!INTEGER}
E_PATTERN!INTEGER;
CURSOR_CHARICHAR;
PAD_CHARACTERS!INTEGER}
END;
PARAM_FILE = FILE OF PARAM_RECORD;

C1

VAR
SIGNON_MESSAGE!PACKED ARRAY[1..MAX_MESSAGE_LENGTHIOF CHAR}
SIGNOFF_MESSAGE!PACKED ARRAY[1,,.MAX_MESSAGE_LENGTHIOF CHAR;
GOOD_READ,ACTIVE_FLAG_SET!BOOLEAN;
PARITY,BAUD_RATE!STRINGL41}
ENTER_PRESS,ANSWER,WORD_LENGTH,STOP_BITS,HOST_CURSORICHAR;
CHAIN_FILE(FILE}

C_REGISTER,D_REGISTER,E_REGISTER!INTEGER;
NR_OF_PADS{INTEGER;
(mlmmﬂ*ﬂﬁm*)
FPROCEDURE CLR_SCREN;
(353533030 30 6 4 340 30 2 3P 3SR PR HH 31)
(# CLEAR THE SCREEN AND HOME THE CURSOR #)
BEGIN
WRITE(CHR(12))}
END;
(33035340 3830 140 S 36 390 2030 0 04 T30 090 S 6 S0 B 434)
PROCEDURE DISPLAY_PARAMETERS;

(S A R S R)

(# DISPLAY THE CURRENT VALUE OF THE COMMUNICATIONS PARAMETERS #)

VAR
TERM_STRING,PRINT_STRING,STORE_STRING,ON_STRING,OFF_STRING:STRING;
FREE_SPACE!INTEGER;

BEGIN
CLR_SCREN;

WRITELN(CURRENT COMMUNICATIONS PARAMETERS")
WRITELN(’ o
WRITELN;

WRITELN(BAUD RATE ', CHR(14),BAUD_RATE,CHR(15))}
WRITELN;

WRITELN(PARITY *,CHR(14),PARITY,CHR(15))}
WRITELN;

WRITELN(WORD I ENGTH ",CHR(14),WORD_LENGTH,’

BITS',CHR(15))}
WRITELN;
WRITELN(' STOP BITS *,CHR(14),STOP_BITS,CHR(15));
WRITELN;
WRITELN¢ HOST CURSOR +,CHR{14),HOST_CURSOR,CHR(15))}
WRITELN;
WRITELN(PAD CHARACTERS ',CHR(14),NR_OF _PADS,CHR(15))}
WRITELN;}
WRITELN(¢ SIGNON MESSAGE *,CHR(14),SIGNON_MESSAGE,CHR(15));
WRITELN;
WRITELN(SIGNOFF MESSAGE ',CHR(14),SIGNOFF_MESSAGE,CHR(15);
WRITELN;
WRITELN(’ PRESS <ENTER> TO CONTINUE"
READ(ENTER_PRESS);

END;

C2

(HEE BRI R B FREFEFSEHEEFFEE S FH SRS EEES)

PROCEDURE GET_BAUD_RATE(VAR MASK!INTEGER);
L e d)

{# THIS PROCEDURE LOOPS UNTIL A VALID BAUD RATE IS ENTERED
AND THEN RETURNS A CORRESPONDING BIT MASK, A VALID
ENTRY CAN BE A CARRIAGE RETURN #)

VAR
GOOD_RATE!BOOLEAN;
NEW_BAUD_RATE!STRINGL41;

BEGIN
CLR_SCREN;
GOOD_RATE != FALSE (# INIT BOOLEAN #);
WHILE NOT GOOD_RATE DO

BEGIN
WRITELN;
WRITELN(CURRENT BAUD RATE IS ',CHR(14),
BAUD_RATE,CHR(15))}
. WRITELN(’ ENTER NEW RATE [1200,600,300,1101 %
WRITELN(OR PRESS <ENTER> TO CONTINUE "
WRITELN;

READ(NEW_BAUD_RATE)
IF LENGTH(NEW_BAUD_RATE) > 0 THEN
IF (NEW_BAUD_RAT = '1200") OR (NEW_BAUD_RATE = ‘600" OR
(NEW_BAUD_RATE = ‘300) OR (REW_BAUD_RATE = 110’} THEN
BEGIN
BAUD_RATE = NEW_BAUD_RATE}
GOOD_RATE != TRUE;
END
ELSE
WRITELN(IS NOT A VALID BAUD RATE"
ELSE
GOOD_RATE i= TRUE; (+ NOTHING ENTERED - USE CURRENT RATE #)
END;
IF BAUD_RATE = ‘110’ THEN
MASK =
ELSE
IF BAUD_RATE = ‘300’ THEN
MASK =3 (# SET BITS O & 1 ON #)
ELSE
IF BAUD_RATE = ‘600’ THEN
MASK = 4 (# SET BIT 2 ON #)
ELSE (# RATE = 1200 #)
MASK = 5} (# SET BIT 2 & 0 ON #)

+
¥

c3

(34633 SRR SRR O S 3)

PROCEDURE GET_PARITY{VAR MASK!INTEGER);
(333833 I SR I S R S)

(# THIS PROCEDURE LOOPS UNTIL A VALID PARITY VALUE IS ENTERED
AND THEN RETURNS A CORRESPONDING BIT MASK. A VALID ENTRY
ENTRY CAN BE A CARRIAGE RETURN #)

VAR
GOOD_PARITY!BOOLEAN!
NEW_PARITY!STRINGL41}
BEGIN
GOOD_PARITY i= FALSE}
WHILE NOT GOOD_PARITY DO

BEGIN
WRITELN;
WRITELN{ CURRENT PARITY IS ',
CHR(14),PARITY,CHR(13))}
WRITELN(ENTER NEW VALUE [ODD,EVEN,NONE] ')}
WRITELN(OR PRESS <ENTER> TO CONTINUE ')}
WRITELN;

READ(NEW_PARITY);
IF LENGTH(NEW_PARITY) > 0 THEN
IF (NEW_PARITY = 'ODD") OR (NEW_PARITY = 'EVEN") OR
(NEW_PARITY = ‘NONE") THEN
BEGIN
PARITY i= NEW_PARITY_RATE;
GOOD_PARITY = TRUE;

END
ELSE
WRITELN(' IS NOT A VALID PARITY")
ELSE
GOOD_PARITY != TRUE}

END;
IF PARITY = 'NONE’' THEN
MASK =0 (# SET BIT 0 OFF #)
ELSE
IF PARITY = ‘EVEN’' THEN
MASK =3 (# SET BITS0 & 1 ON #)
ELSE
MASK i= 1} (* SET BIT 0 ON #)
END;

Ca

(E]

PROCEDURE GET_LENGTH(VAR MASK!INTEGER)

(364636363136 33 S RO)

(#* THIS PROCEDURE LOOPS UNTIL A VALID WORD LENGTH IS ENTERED
AND THEN RETURNS A CORRESPONDING BIT MASK, A VALID ENTRY
CAN BE A CARRIAGE RETURN #).

VAR
GOOD_LENGTH!BOOLEAN;
NEW_LENGTH:CHAR}

BEGIN
GOOD_LENGTH != FALSE;
WHILE NOT GOOD_LENGTH DO

BEGIN
WRITELN;
WRITELN(CURRENT WORD LENGTH IS’
{CHR(14),WORD_LENGTH,’ BITS',CHR(13));
WRITELN(ENTER NEW VALUE [56,7,81 ')}
WRITELN{ OR PRESS <ENTER> TO CONTINUE ")
WRITELN;)

READ(NEW_LENGTH)
IF NEW_LENGTH IN ['5','s",'7','8']1 THEN
BEGIN
WORD_LENGTH {= NEW_LENGTH;
GOOD_LENGTH i= TRUE}
END
ELSE
IF NEW_LENGTH = ‘ * THEN
GOOD_LENGTH != TRUE
ELSE
WRITELN(’ IS NOT A VALID WORD LENGTH")

END;
CASE WORD_LENGTH OF
5t MASK i= 00}
'6't MASK i= 32}
7't MABK i= 64
'8t MASK i= 96}
END; (» END CASE #)
END;

€S

(R S I I)

PROCEDURE GET_BITS(VAR MASK!INTEGER);

{44333 3 3 3 3)

{(#* THE FROCEDURE LOOPS UNTIL A VALID NUMBER FOR STOP BITS IS
IS ENTERED AND THE RETURNS THE CORRESPONDING BIT MASK

A VALID ENTRY CAN BE A CARRIAGE RETURN #)

VAR
GOOD_BITS!{BOOLEAN;
NEW_BITS!CHAR}

BEGIN
GOOD_BITS != FALSE;
WHILE NOT GOOD_BITS DO

BEGIN
WRITELN;
WRITELN(CURRENT NUMBER OF STOP BITS '
+CHR(14),STOP_BITS,CHR(15))}
WRITELN{ ENTER NEW VALUE [1,2] "%
WRITELN(OR PRESS <ENTER> TO CONTINUE ")}
WRITELN;

READ(NEW_BITS)}
IF NEW_BITS IN [’1/,2’1 THEN
BEGIN
STOP_BITS = NEW_BITS;
GOOD_BITS != TRUE}
END
ELSE
IF NEW_BITS =’ THEN
GOOD_BITS != TRUE
ELSE
WRITELN(IS NOT A VALID NUMBER OF BITS")
END;}
CASE STOP_BITS OF
/13 MASK = 4}
'2't MASK i= 12;
END; (+ END CASE #)
END}

Cé

(3436 HE 3 SRS H R FHE)

FROCEDURE GET_CURSOR;

(333330 B3 3 S R)

(#* WHEN TRANSFERRING A FILE TO THE HOST THE "TERM.COM"
PROGRAM WAITS FOR THE HOST TO RETURN A CURSOR AS AN
INDICATION THE LINE TRANSMITTED WAS ACCEFTED.

THIS PROCEDURE ALLOWS THE USER TO CHANGE THE VALUE
OF THE CHARACTER THE FROGRAM KEYS ON, #)

VAR
GOOD_CURSORIBOOLEAN;
NEW_CURSORICHAR;)

BEGIN

GOOD_CURSOR = FALSE}
WHILE NOT GOOD_CURSOR DO

BEGIN
WRITELN;
WRITELN(' CURRENT CURSOR ’
,CHR(14),HOST_CURSOR,CHR(15));
WRITELN{’ ENTER NEW CHARACTER VALUE [Dy#%~1)
WRITELN(’ OR PRESS <ENTER> TO CONTINUE ‘)
WRITELN;}
READ(NEW_CURSOR)} _
IF NEW_CURSOR IN [>')'#/,'~",",'] THEN
BEGIN

HOST_CURSCR = NEW_CURSOR;
GOOD_CURSOR i= TRUE}
END ‘
ELSE
IF NEW_CURSOR = ' ' THEN
GOOD_CURSOR i= TRUE
ELSE
WRITELN(' IS NOT A VALID CURSOR CHARACTER'Y
END;
END;

c7

(33540 340 3 53030 300 23 J0 3 S0 S S S)

PROCEDURE GET_PAD_CHARACTERS;

(H T A 3 2 R R S)

(#* WHEN TRANSFERRING A FILE TO THE HOST THE "TERM.COM"
FROGRAM WAITS FOR THE HOST TO RETURN A CURSOR AS AN
INDICATION THE LINE TRANSMITTED WAS ACCEFTED.

IF THERE ARE PAD CHARACTERS (CHARACTERS USED FOR
TIMING OR DELAY) FOLLOWING THE CURSOR CHARACTER,
THIS PROCEDURE ALLOWS THE USER TO CHANGE THE NUMBER
OF CHARACTERS IGNORED AFTER THE CURSOR., #)

VAR
GOOD_PADS!BOOLEAN;
NEW_PADS!CHAR}

BEGIN
GOOD_PADS $= FALSE}
WHILE NOT GOOD_PADS DO

BEGIN
WRITELN;
WRITELN(CURRENT NUMBER OF PAD CHARACTERS '
/ZCHR(14),NR_OF_PADS,CHR(15))
WRITELN(ENTER NEW CHARACTER VALUE (0,91 ')
WRITELN(OR FPRESS {ENTER> TO CONTINUE ")
WRITELN;

READ(NEW_PADS)
IF NEW_PADS IN [‘0’.'9'] THEN
BEGIN
NR_OF_PADS {= ORD(NEW_PADS)-48; (#* CONVER TO INTEGER #)
GOOD_PADS i= TRUE;
END
ELSE
IF NEW_PADS = * * THEN
GOOD_PADS i= TRUE
ELSE
WRITELN(' IS NOT A VALID NUMBER OF PADS)
END; - |
END}

c8

(S R S S S B)

FROCEDURE GET_ON_MESSAGE;

(34404 S 100 4 35 0B S S S S)

(# THIS PROCEDURE ACCEFTS A NEW SIGN ON STRING OF
MAX MESSAGE LENGTH OR LESS:. OR ACCEPTS A
CARRIAGE RETURN IF NO CHANGE IS DESIRED #)

VAR
SUBSCRIPT!INTEGER;
TEMP_NEW_ON!STRING[MAX_MESSAGE_LENGTHJ;

BEGIN
WRITELN;

WRITELN(THE CURRENT SIGNON MESSAGE IS /)

WRITELN(",CHR(14),SIGNON_MESSAGE,CHR(15))

WRITELN(’ ENTER A NEW STRING OF /,
MAX_MESSAGE_LENGTH,’ CHARACTERS")

WRITELN(OR FRESS <ENTER> TO CONTINUE /3

WRITELN;

READLN(TEMP_NEW_ON);
IF LENGTH(TEMP_NEW_ON) > 0 THEN
BEGIN
FOR SUBSCRIPT i= 1 TO MAX_MESSAGE_LENGTH DO
SIGNON_MESSAGELSUBSCRIPT] != TEMP_NEW_ON[SUBSCRIFTI;
FOR SUBSCRIFT != (LENGTH(TEMP_NEW_ON) + 1)
TO MAX_MESSAGE_LENGTH DO
SIGNON_MESSAGELSUBSCRIPT] i= CHR(ELANK_CHR);
END}
END;

(3530 R R R R RS)

PROCEDURE GET_OFF_MESSAGE;}

(364030303 36 35 90 40 330 430 30 SR - I SRR)

(# ACCEFT A NEW SIGN OFF MESSAGE OR A CARRIAGE RETURN
INDICATING NO CHANGE #)

VAR
SUBSCRIPT!INTEGER;
TEMP_NEW_OFFISTRINGIMAX_MESSAGE_LENGTHI}
CONSOLETEXT;

BEGIN
WRITELN;
WRITELN(’ THE CURRENT SIGNOFF MESSAGE IS ')}
WRITELN({’ y}CHR(14),SIGNOFF_MESSAGE,CHR(15))}
WRITELN{’ ENTER A NEW STRING OF /,

MAX_MESSAGE_LENGTH,” CHARACTERS");

WRITELN({' OR FRESS {ENTER> TO CONTINUE)}
WRITELN;

C9

(#* GET OFF_MESSAGE CONT'D #)

READLN(TEMF_NEW_OFF);
IF LENGTH(TEMP_NEW_OFF) > 0 THEN
BEGIN
FOR SUBSCRIFT = 1 TO MAX_MESSAGE_LENGTH DO
SIGNOFF_MESSAGEILSUBSCRIFT] = TEMP_NEW_OFFLSUBSCRIFTI;
FOR SUBSCRIFT i= (LENGTH(TEMP_NEW_OFF) + 1)
TO MAX_MESSAGE_LENGTH DO
SIGNOFF_MESSAGELSUBSCRIFT] = CHR(BLANK_CHR)
END;
END}

(3333 R 3 SRS I)

PROCEDURE CHANGE_PARAMETERS;

(39033 3 R R R)

(* THIS PROCEDURE CALLS A ROUTINE TO GET THE MASK FOR EACH
PARAMETER AND THEN ASSEMELES THE MASK FOR EACH REGISTER #)

VAR
D_MASK,RATE_MASK,PARITY_MASK,LENGTH_MASK,BIT_MASK!INTEGER;
BEGIN
GET_BAUD_RATE(RATE_MASK);
E_REGISTER i= RATE_MASK;

GET_PARITY(PARITY_MASK);
C_REGISTER i= PARITY_MASK;

GET_LENGTH(LENGTH_MASK)}

GET_BITS(BIT_MASK);

D_MASK != 130} (# SETS DTR AND RTS HIGH FOR REQUESTS #)
D_REGISTER != (BIT_MASK | LENGTH_MASK | D_MASK);

GET_CURSOR_CHAR;
GET_PAD_CHARACTERS}
GET_ON_MESSAGE;
GET_OFF_MESSAGE}

END;

Cio

{3 34R3033E 3 3533 030 T S S S S)

PROCEDURE SAVE_COMM_PARAMETERS;
(3R R R R S R S R H)

{# THIS PROCEDURE WRITES THE VALUES OF COMMUNICATIONS
PARAMETERS TO FILE "TERM.DAT" #)

VAR
PARAMETER_RECORD!FARAM_RECORD;
CURRENT_PARAMS_FILE!PARAM_FILE;
CLOSE_CODE!INTEGER}
ENTER_PRESS!CHAR}
GOOD_OFEN,GOOD_IO!BOOLEAN;

BEGIN
WITH PARAMETER_RECORD DO

BEGIN
ON_MESSAGE != SIGNON_MESSAGE;
OFF_MESSAGE != SIGNOFF_MESSAGE}
ACTIV_FLAG i= ACTIVE_FLAG_SET;}
PARITY_PARAM {= PARITY;
BAUD_FARAM != BAUD_RATE}
WORD_LNGTH = WORD_LENGTH;
STP_BITS i= STOP_BITS;
C_FATTERN = C_REGISTER}
D_PATTERN = D_REGISTER}
E_PATTERN != E_REGISTER;
CURSOR_CHAR != HOST_CURSOR}
PAD_CHARACTERS i= NR_OF_PADS;

END;

WRITELN(‘C,D,E ‘,C_REGISTER,D_REGISTER,E_REGISTER)}

ASSIGN(CURRENT_PARAMS_FILE,’A!TERM.DAT")
REWRITE(CURRENT_PARAMS_FILE)
GOOD_OFEN = (IORESULT <255
IF GOOD_OPEN THEN
BEGIN
CURRENT_PARAMS_FILE~ != PARAMETER_RECORD;
PUT(CURRENT_PARAMS_FIEL)
GOOD_IO i= (IORESULT = 0
IF NOT GOOD_IO THEN
BEGIN
WRITELN(’ ###% ERROR - BAD WRITE TO TERM.DAT ###+)}
WRITELN(’ PRESS <ENTER> TO CONTINUE ")}
READ(ENTER_PRESS)}
END;

C 11

(* SAVE_COMM_PARAMETERS CONT'D #)

CLOSE(CURRENT_PARAMS_FILE,CLOSE_CODE);
IF CLOSE_CODE = 255 THEN
BEGIN
WRITELN(’ #### ERROR - CANNOT CLOSE TERM.DAT ####%')}
WRITELN(' PRESS {ENTER> TO CONTINUE ‘)
READ(ENTER_PRESS)
END;
END
ELSE
WRITELN{’ ###+ ERROR-- UNABLE TO QFEN TERM.DAT ###&");
END;

{33640 S22 3 23 S0 30 R SRS 3R 1630 3 530 4 3R 0 SRR SRS S SR S S S 3R)
PROCEDURE GET_COMM_PARAMETERS(VAR GOOD_IO!BOOLEAN);

(53345 326 30 S 3R R 3E 3R RS 36 30 030 4 30 6 3640 30 3 30020 0 36 S0 3330 3 30 00 SRR 030 3R 00)

(# THIS PROCEDURE READS THE COMMUNICATIONS PARAMETER RECORD
FROM FILE "TERM.DAT" AND ASSIGNS THE VALUES TO FROGRAM
VARTABLES. #)

VAR
PARAMETER_RECORD:PARAM_RECORD)
IN_FILE:PARAM_FILE;
CLOSE_CODE!INTEGER;
GOOD_OFEN:BOOLEAN;

BEGIN
ASSIGN(IN_FILE,’A:TERM.DAT")
RESET(IN_FILE)Y
GOOD_OFEN := IORESULT <> 255}

IF GOOD_OPEN THEN
BEGIN
READ(IN_FILE,PARAMETER_RECORD);
GOOD_IO i= I0_RESULT = 0}

c1iz

(* GET_COMM_PARAMETERS CONT'D #)

IF GOOD_IO THEN
WITH PARAMETER_RECORD DO
BEGIN
SIGNON_MESSAGE != ON_MESSAGE;
SIGNOFF_MESSAGE != OFF_MESSAGE;}
ACTIVE_FLAG_SET i= ACTIV_FLAG}
PARITY = PARITY_PARAM;
BAUD_RATE = BAUD_PARAM;
WORD_LENGTH = WORD_LNGTH;
STOP_BITS != STP_BITS}
C_REGISTER != C_PATTERN;
D_REGISTER = D_PATTERN;
E_REGISTER = E_PATTERN;
HOST_CURSOR = CURSOR_CHAR;
NR_OF_PADS {= PAD_CHARACTERS;
END
ELSE
BEGIN
WRITELN(’ #### ERROR - UNABLE TO READ TERM.DAT")
WRITELN(’ PRESS <ENTER> TO CONTINUE)}
READ(ENTER_FRESS);
END;
END
ELSE
BEGIN
WRITELN(’ ###% ERROR - UNABLE TO OPEN TERM,DAT ####');
WRITELN(PRESS ENTER TO CONTINUE %
READ(ENTER_FRESS);
END;
END;

(3 &

(33 33T)
BEGIN (* MAIN FROGRAM #)

(33503 3 SR R

(# THIS DRIVER READS THE PREVIOQUSLY SAVED COMMUNICATIONS
PARAMETERS, DISPLAYS THEIR CURRENT VALUES, EXECUTES

A CHANGE PROCEDURE, BY CALLING CHANGE_PARAMETERS, FOR
EACH PARAMETER AND THEN SAVES THE NEW VALUES. #)

GET_COMM_PARAMETERS(GOOD_READ); (# GET THE CURRRENT VALUES #)
IF GOOD_READ THEN
BEGIN
DISFLAY_PARAMETERS}
CHANGE_PARAMETERS;
SAVE_COMM_PARAMETERS;
END;
(# RETURN TO PROGRAM TERM #)
ASSIGN(CHAIN_FILE,’A!TERM.COM")
RESET(CHAIN_FILE)
IF IORESULT = 255 THEN (#* ERROR #)
BEGIN
WRITELN(’ ###% ERROR - UNABLE TO OFEN TERM,COM ####')}
WRITELN(’ PRESS <ENTER> TO CONTINUE)}
READ(ENTER_PRESS)
END
ELSE
CHAIN(CHAIN_FILE); (* RETURN TO FROGRAM TERM #)
END.

C14a

AN INTER-COMPUTER COMMUNICATIONS SYSTEM
FOR A FERSONAL COMFUTER

by

DANIEL RAY VESTAL

B.S,, Cameron University, 1973

AN ABSTRACT OF A MASTER’S REFORT

submitted in partiazsl fulfillment of the

requirements for the degree

MASTER OF SCIENCE

Department of Computer Science

KANSAS STATE UNIVERSITY

Manhattan, Kansas

1982

An Inter—-Computer Communications System
for & FPersonal Computer
by
Daniel R. Vestszl

ABSTRACT

Althouah the owner of a3 home computer now has many
capabilities that were available only on expensive main
frame computer systems several Years ago, there may still be
many times when it is necessary for him to use 3 larger
computer system. A personal computer may be used 35 2
remote terminal to access 3 larger host computer by
connecting an scoustically coupled modem between 3 standard
telephone and the home computer,; and then executinag 3 simple
terminal proaram. Manyg of the terminal proarams being
marketed to allow the personal computer tpo act as 2 remote
terminzl perform only those functioms mormzlly handled by
hardware in a3 standard terminal. A personal computer can
easily be programmed to perform the fupctionms of 2 hardware
terminal: however, it also has other capabilities that can
be used to offset the limitations of wusing a remote
terminzl.

This project identifies and implements a3 set of functions
that make effective use of 2 home computer’s capabilities
when it is used as a3 remote terminal, especially the
personal computer’s capabilties to internslly manipulate and
store datz 33 locsl files., This prototype and the
enhancements that are proposed are intended to serve as 3
model for osthers in developing similar systems.

