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 14 

Abstract  15 

As part of an effort to restore the hydrology of Everglades National Park (ENP), incremental raises in 16 

canal stage are proposed along a major canal draining south Florida called C-111, which separates ENP 17 

from agricultural lands. The study purpose was to use monitoring and modeling to investigate the effect 18 

of the proposed incremental raises in canal stage on water table elevation in agricultural lands. The 19 

objectives were to: (1) develop a MODFLOW based model for simulating groundwater flow within the 20 

study area, (2) apply the developed model to determine if the proposed changes in canal stage result in 21 

significant changes in water table elevation, root zone saturation or groundwater flooding and (3) assess 22 

aquifer response to large rainfall events. Results indicate the developed model was able to reproduce 23 

measured water table elevation with an average Nash-Sutcliffe > 0.9 and Root Mean Square Error < 0.05 24 

m. The model predicted that incremental raises in canal stage resulted in significant differences (p < 0.05) 25 

in water table elevation. Increases in canal stage of 9 and 12 cm resulted in occasional root zone 26 

saturation of low elevation sites. The model was able to mimic the rise and fall of the water table pre and 27 

post Tropical Storm Isaac of August 2012. The model also predicted that lowering canal stage at least 48 28 
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hours prior to large storm (>2 year return period storm), reduced water table intrusion into the root zone. 29 

We conclude that the impact of operational changes in canal stage management on root zone saturation 30 

and groundwater flooding depended on micro-topography within the field and depth of storm events. The 31 

findings of this study can be used in fine tuning canal stage operations to minimize root zone saturation 32 

and groundwater flooding of agricultural fields while maximizing environmental benefits through 33 

increased water flow in the natural wetland areas. This study also highlights the benefit of detailed field 34 

scale simulations.  35 

Key words: Water table, Root zone, Groundwater flooding, MODFLOW, Canal-aquifer interactions 36 

  37 



3 
 

1. Introduction 38 

 The C-111 canal constructed in 1966 is the southernmost canal of the central and south Florida canal 39 

system and serves a 259 square-kilometer basin. The primary function of the C-111 canal system is to 40 

provide flood protection and drainage for agricultural areas along the eastern boundary of Everglades 41 

National Park (ENP). Taylor Slough is a natural drainage feature of the Everglades that empties its fresh 42 

water into Florida Bay (Fig. 1).  Past dredging of the C-111 canal redirected water flow, causing water to 43 

flow east from ENP into C-111 (Fig. 1). This resulted in reduced flows in Taylor Slough which impacted 44 

water quality, fisheries and ecology of Florida Bay (U.S. Army Corps of Engineers [USACP] and South 45 

Florida Water Management District [SFWMD], 2011). The re-direction of water flows to the east results 46 

in approximately 6.4 million cubic meters of water a day to be removed from the Taylor Slough system 47 

(US Army Corps of Engineers, 2009).  48 

 To address some of the unintended consequences of the canal system, hydrological modifications are 49 

occurring in south Florida as part of the Comprehensive Everglades Restoration Plan (CERP), which has 50 

the overall goal of restoring the natural ecosystem that was negatively impacted by an extensive canal 51 

network originally constructed to allow for development and provide flood protection (United States 52 

Geological Survey [USGS], 1999). One of the 68 components of the CERP is the C-111 spreader canal 53 

project (U.S. Army Corps of Engineers [USACP] and South Florida Water Management District 54 

[SFWMD], 2011). Through operational adjustments and structural modifications, the goal of the C-111 55 

spreader canal project is to restore the quantity, timing and distribution of water delivered to Florida Bay 56 

via Taylor Slough to levels as near as possible to pre-drainage conditions, while maintaining flood 57 

protection for nearby agricultural lands. In addition, there is a goal to restore hydroperiods that support 58 

pre-drainage vegetation patterns in ENP. To achieve the objectives, operational adjustments are proposed 59 

that include incrementally raising the canal stage by 3.0 cm per year up to a maximum of 12.0 cm at 60 

structure S-18C which is a gated spillway (Fig. 1).  61 



4 
 

 It is anticipated that raising the C-111 canal stage will affect water table levels in the adjacent 62 

agricultural fields (Fig. 1). Earlier research has indicated substantial interaction between the highly 63 

permeable Biscayne aquifer and surface water in south Florida canals (Graham et al., 1997; Genereux and 64 

Slater, 1999; Lal, 2001; Ritter and Muñoz-Carpena, 2006). The hydraulic connection between the 65 

Biscayne aquifer and the C-111 canal causes the shallow water table system to fluctuate with respect to 66 

changes in canal stage. An increase in water table elevation, due to a rise in canal stage could result in 67 

prolonged root zone saturation or temporary groundwater flooding (groundwater flooding occurs in low-68 

lying areas when the water table rises above the land surface [USGS, 2000]) which could affect 69 

agricultural production in agricultural areas adjacent to ENP. Prolonged saturation of the root zone or 70 

short-term groundwater flooding could impact yield potential through impaired root growth caused by 71 

anoxia, reduced stomatal conductance and net CO2 assimilation (Schaffer, 1998). It is not known how the 72 

proposed operational adjustments (involving incremental raises in canal stage) along the C-111 canal 73 

would impact water table elevation which would in turn impact optimum crop growth in adjacent 74 

farmlands.  75 

 MODFLOW, a widely used numerical groundwater flow computer code from the United States 76 

Geological Survey (USGS), has previously been used in investigations of canal-aquifer interactions in 77 

south Florida (Wilsnack et al., 2000; Bolster et al., 2001; Saier et al., 2004; Hughes et al., 2012). In 78 

MODFLOW modeling, various approaches exist for representing a surface water body either as a head 79 

dependent boundary using the river package (McDonald and Harbaugh, 1988) or by using more complex 80 

approaches that implicitly couple a numerical open channel flow model to MODFLOW such as 81 

MODBRANCH developed by Swain (1996). Although MODFLOW based groundwater flow models 82 

have been used to simulate Biscayne aquifer in south Florida (Hughes et al., 2012), most of these models 83 

are regional and lack the spatial resolution to address water resources issues at a field scale, particularly 84 

groundwater flooding issues in agricultural fields that are influenced by small scale micro-topography. 85 

For example Brion et al. (2001) used the South Florida Regional Simulation Model in the south Florida 86 

Everglades with a grid size of 3.2 km x 3.2 km. 87 
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 The purpose of the present study was to investigate through monitoring and modeling the effect of the 88 

proposed incremental raises in the C-111 canal stage on water table elevation levels in agricultural fields 89 

adjacent to ENP. The objectives were to: (1) develop a MODFLOW based model for simulating 90 

groundwater flow within the study area, (2) apply the developed model to determine if the proposed 91 

changes in canal stage result in significant changes in water table elevation, root zone saturation or 92 

groundwater flooding and (3) assess aquifer response to large rainfall events and explore the effect of pre-93 

storm canal stage drawdown in the mitigation of root zone saturation and groundwater flooding of 94 

agricultural lands. 95 

 96 

2. Materials and methods 97 

2.1 Study Area 98 

 The study was conducted in southern Miami-Dade County, close to Homestead, Florida, United 99 

States in a small agricultural area approximately 17 km2 (Fig. 1). The area is located east of ENP between 100 

SFWMD canals C-111 and C-111E which are planned to experience increases in canal stage under the C-101 

111 spreader canal project. The topography at this site is close to flat with elevation ranging 102 

approximately between 1.2 to 2.0 m National Geodetic Vertical Datum (NGVD) 29. The climate is 103 

subtropical with warm wet summers and mild and dry winters. Annual mean temperature is 25oC, mean 104 

annual rainfall is 1460 mm. Typically evapotranspiration is 60 to 70% of rainfall (Duever et al., 1994). 105 

Canal stage upstream in the two canals is controlled by a remotely operated spillway at S177 and a culvert 106 

at S178, respectively. C-111 is the larger of the two canals and the two join to become a single canal at 107 

the southern end of the study area which is managed using a gated spillway at S18C. It is proposed that 108 

stage will be increased by modifying operation of S18C and thus affect canal stage in the reach of C-111 109 

between S177 and S18C. A groundwater flow model was applied to predict the impact of proposed canal 110 

stages on water table elevation in the adjacent agriculture areas.  111 

 Data from six groundwater observations wells were used (Table 1). Data were collected from August 112 

2010 to March 2013. Observation wells 4 and 6 were maintained by the SFWMD while the other wells 113 
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(1, 2, 3, and 5) were maintained by University of Florida (UF), IFAS (Kisekka et al., 2013a). UF wells 114 

were equipped with level loggers (Levelogger, Gold Solinst Canada Ltd., 35 Todd Rd, Georgetown, 115 

Ontario, Canada) to record water table elevation every 15 minutes although daily averages were used in 116 

modeling. UF observation wells were drilled to a depth of 6m. Atmospheric corrections were accounted 117 

for using a STS Barologger (Solinst Canada Ltd) in well 5 (Fig. 1). Data were downloaded weekly and as 118 

a quality control procedure, water table elevations were also measured manually with a Model 102 laser 119 

water level well meter (Solinst, Canada Ltd). Elevations at the top of the well manholes were measured 120 

using a laser level with reference to a SFWMD bench mark with elevation 1.19 m NGVD29 near well 4. 121 

Water table elevation data for wells 4 (C-111AE) and 6 (C-111AW) drilled to a depth of 4 m were 122 

processed by SFWMD and published on DBHydro 123 

(http://www.sfwmd.gov/dbhydroplsql/show_dbkey_info.main_menu). 124 

2.2 Hydrologic system 125 

 The highly permeable Biscayne aquifer system comprises of rocks (primarily limestone) and 126 

sediments. The hydrogeology of Biscayne aquifer consists of two limestone formations: Miami limestone 127 

formation (3-9 m) overlying the Fort Thompson limestone formation (10-14 m). The top of the aquifer is 128 

the land surface (with a thin scarified soil layer) while the bottom of the aquifer is a semi confining layer 129 

that separates the surficial Biscayne aquifer from the less permeable Tamiami and Hawthorn formations. 130 

Detailed lithological logs and descriptions of the geology of Biscayne aquifer can be found in Causaras 131 

(1987). Fisher and Stewart (1991) reported that hydraulic conductivity of Biscayne aquifer limestone 132 

formations could exceed 10,000 m/day. The high hydraulic conductivities could be attributed to 133 

secondary-solution cavities in the limestone formation. The cavities are typically less than 2” in diameter 134 

but they are very abundant making the aquifer behavior like a sponge (Fisher and Stewart, 1991). This 135 

could also explain the high connectivity between the canals and the aquifer. Fisher and Stewart (1991) 136 

also noted that there were significant local variations in hydraulic conductivity within the aquifer.  137 

http://www.sfwmd.gov/dbhydroplsql/show_dbkey_info.main_menu
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 Field determination of hydrogeologic parameters using pumping tests is very challenging for highly 138 

conductive geologic formation such as those found in the Biscayne aquifer. Genereux and Guardiario 139 

(1998) attributed it to the following reasons: 1) very large pumps and conveyance systems that usually 140 

required for producing a drawdown large enough to be measured, 2) large amounts of water generated 141 

that have to be deposed of and 3) violation of assumptions made in the analysis of well pumping data. 142 

Through a large scale canal drawdown experiment Genereux and Guardiario (1998) also reported a 143 

thickness of 13.6 m for our current study site with roughly one third (~4.5 m) accounted for by the Miami 144 

limestone formation. Kisekka et al. (2013b) applied inverse modeling using a quasi-canal-aquifer 145 

interaction model and estimated Biscayne aquifer thickness at our study site to range between 13.5 and 146 

18.2 m). Specific yield at our study site was estimated as 0.102 (ranging between 0.07 and 0.13) by 147 

Kisekka et al. (2013b) which is within range of 0.15 estimated using a large scale canal drawdown by 148 

Bolster et al. (2001). Canal-aquifer interaction hydraulic parameters will be determined using inversing 149 

modeling in the present study. 150 

 Canal C-111 was constructed in 1966 as the principle flood control canal for south Miami-Dade 151 

County and partially penetrates the Biscayne aquifer to a depth of approximately 5 m (i.e., 4 m through 152 

the Miami Limestone formation and 1 m into the Fort Thompson Limestone formation). Flow in C-111 is 153 

south towards Florida Bay and topography is essentially flat ranging between 1.0 to 2.2 m National 154 

Geodetic Vertical Datum (NGVD) 29. The width of the canal increases towards the south with an average 155 

of approximately 29 m at the S177 gated spillway (Fig. 1). Currently little is known about hydraulic 156 

properties of canal bed sediment in the lower C-111; however, presence of a low permeability canal bed 157 

sediment layer which is a mixture of carbonate mud and natural organic matter in several canals within 158 

the C-111 basin has been documented (Chin, 1991; Genereux and Guardiario, 1998; Merkel, 2000). 159 

Using inverse modeling and a quasi-canal-aquifer interaction model, Kisekka et al. (2013b) estimated the 160 

ratio of canal bed thickness to bed sediment hydraulic conductivity as 0.015 (ranging between 0.009 and 161 

0.020) days which is close to the 0.029 days estimated by Bolster et al. (2001) for nearby canal L-31W 162 

(Fig. 1). 163 



8 
 

 164 



9 
 

Figure 1. Study area showing groundwater monitoring sites, agricultural lands adjacent to Everglades 165 

National Park (ENP), and canal network within the C-111 basin of south Miami-Dade County, Florida 166 

and the modeled area is enclosed in the red box. 167 

Table 1. Water table elevation monitoring sites with descriptors. 168 

1Site name Distance from canal C-111 

(m) 

Ground surface elevation 

(m) NGVD29 

Latitude  Longitude  

Well 1 1000 2.07 25.41883 -80.550041 

Well 2 1000 1.86 25.41110 -80.550375 

Well 3 2000 2.07 25.40347 -80.541933 

Well 4 2000 1.19 25.39261 -80.541605 

Well 5 1000 2.23 25.39317 -80.553724 

Well 6 500 1.21 25.39283 -80.549543 

 169 

2.2 Numerical model  170 

 A 2D (two dimensional) conceptual model in (Fig. 2) shows the location of the canals, Biscayne 171 

aquifer limestone layers, observation wells and surface topography. The hydrogeologic system was 172 

modeled as a one layer unconfined aquifer with 2D horizontal flow similar to the approach used by 173 

Bolster et al. (1998). The assumption of predominately horizontal flow was based on earlier investigations 174 

by Genereux and Guardiario (1998) that showed generally zero difference between piezometers installed 175 

at various depths into the Biscayne aquifer. Recently Brakefield (2012) has also demonstrated using 176 

stochastic MODFLOW simulations that conceptualizing Biscayne aquifer as 2D one layer flow system 177 

was adequate for describing subsurface flow within the aquifer. 178 

 MODFLOW was used to simulate groundwater flow in the agricultural lands adjacent to C-111 canal. 179 

The governing equation for saturated flow in porous media implemented in MODFLOW is (McDonald 180 

and Harbaugh, 1988; Harbaugh et al. 2000): 181 
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where h [L] is the hydraulic head or water table elevation, Ss [L-1] is the specific storage of the porous 183 

media, Kxx, Kyy, and Kzz [L T-1] are hydraulic conductivity along the x, y, and z directions, t is time [T], W 184 

[T-l] is a source/sink term, with W > 0 for flow into the aquifer and W < 0 for flows out of the aquifer. 185 

Due to its computational efficiency and the improved ability to control the conversion between wet and 186 

dry cells, the Preconditioned Conjugate-Gradient (PCG) package was used to solve the finite difference 187 

equations at each time step of the MODFLOW stress period. For unconfined flow, MODFLOW modifies 188 

Eq. 1 by substituting the specific storage with the specific yield and allows transmissivity to vary based 189 

on the changes in aquifer saturated thickness.  190 

 191 

Figure 2. Conceptual model of the study area showing topography, location of observation wells, canals 192 

and Biscayne aquifer limestone layers. 193 

2.2.1 Boundary conditions 194 

 The following boundary conditions were used in the simulation: canals stage, evapotranspiration, and 195 

recharge. Fig. 3 shows time series of the boundary, observed water table levels and rainfall during the 196 

study period. The bottom boundary was described as a no-flow boundary consistent with observed 2D 197 

horizontal flow in the study area. Canals C-111 and C-111E formed the west, east, and south boundaries 198 
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of the flow domain. C-111 is the larger of the two canals with an average width of 29 m near the gated 199 

spillway at structure S177. Both canals partially penetrate the Biscayne aquifer with C-111 having an 200 

average depth of approximately 5 m. Water levels in C-111E are controlled using a gated culvert at 201 

structure S178 (Fig. 1). C-111E joins C-111 at the southern tip of the flow domain to become one canal.  202 

 Surface water-groundwater interactions were simulated using the RIVER (RIV) package.  The RIV 203 

package was selected as a simple and adequate representation of the interaction between the C-111 canals 204 

and Biscayne Aquifer. Canal stage data for reaches of C-111 and C-111E surrounding the study area were 205 

obtained from DBHydro. In the RIV package both canal stage and canal conductance (Eq. 2) control the 206 

extent of water exchange between the aquifer and the canals.  207 

d

WLK
C s **
  (2) 208 

where C is canal conductance [L2T-1], Ks is the hydraulic conductivity of the low permeability bed 209 

sediment [LT-1], W is the width of the canal [L], L is the length of the canal reach [L], and d is the 210 

thickness of the sediment layer [L]. The canal conductance multiplier in MODFLOW was set to range 211 

between 702 and 1560 m2/day for headwater and tail water reaches of C-111 based on estimates of the 212 

Ks/d ratio by Kisekka et al. (2013b). Given the substantially smaller size of C-111E compared to C-111, 213 

canal conductance multiplier for C-111E was set to values ranging from 200 to 500 m2/d with lower 214 

values assigned to the headwater side of the S178 gated culvert. Given the relatively flat topography, the 215 

average of tailwater canal stage at S177T and the headwater stage at S18C were used to represent the west 216 

and south boundary conditions for all cells downstream of S177 while head water canal stage at S177H 217 

was used to represent canal stage for all cells north of S177.  Similarly, canal stage at S178 (tail waters) 218 

and S18C (headwaters) represented the east boundary condition for all cells. Canal stage data were 219 

measured by the SFWMD and are publically available on DBHydro. The northern boundary was 220 

described as a general head boundary using groundwater levels from a well installed by University of 221 

Florida IFAS (i.e., well 1). 222 
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 Evapotranspiration was simulated using the EVT package in MODFLOW (McDonald and Harbaugh, 223 

1988) in which the elevation of the evapotranspiration surface was set to 1.0 m and the evapotranspiration 224 

extinction depth to 0.9 m based on ranges reported in Chin (2008) and water table elevation recorded 225 

during the study period. We assumed that for water table depths less than 1 m from the land surface, 226 

evapotranspiration occurred at the potential rate which was computed from micro-meteorological data 227 

obtained from a Florida Automated Weather Network (FAWN; http://fawn.ifas.ufl.edu/) station located 228 

15 km northeast of the study site. The American Society of Civil Engineers (ASCE) standardized 229 

Penman–Monteith equation and the REF-ET tool by Allen (2011) were used to estimate ETo values.  230 

 Recharge to the aquifer was simulated using the RCH package. The recharge amount entering 231 

groundwater was calculated as the difference between rainfall and evapotranspiration. A recharge value 232 

was assigned to each stress period which was one day. To minimize the uncertainty associated with 233 

spatial variability of rainfall in south Florida, gauge adjusted NEXRAD (Next Generation Radar) rainfall 234 

data were used (Skinner et al., 2008). 235 
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 236 

Figure 3.Time series of boundary conditions (canal stage, rainfall and evapotranspiration) and observed 237 

water table elevations. 238 

2.2.2 Space and time discretization 239 

 The finite difference grid consisted of a single layer covering approximately 17 km2. The model layer 240 

was discretized into 69 rows (running east to west) and 46 columns (fig. 4). Nodal spacing for the 241 

columns ranged from 53.5 m to 105.6 m from west to east with the smallest spacing closest to the canal 242 

since this is where greater changes in hydraulic head would be expected. Nodal spacing for the rows was 243 

constant over the model domain and set to 100.6 m. Further reductions in discretization did not appear to 244 
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improve simulation results. All the spatial discretization was implemented using a pre and post processor 245 

for MODFLOW called MODFLOW Graphical User Interface Plug-In Extension (GUI-PIE) version 246 

4.34.00, an Argus One Plug-In Extension (PIE) (Winston, 2000). 247 

 The model simulated conditions from 25 August 2010 to 28 February 2013. The time step and stress 248 

period sizes were set to one day; the multiplier was also set to one day. The period from 25 August 2010 249 

to December 2011 was used to calibrate the model, while the data from 01 January 2012 to 28 February 250 

2013 was used to validate the model. It was assumed that canal stage did not change during each stress 251 

period which was reasonable because 24-hour variations in canal stage were small unless a large rain 252 

event occurred or an operational change in canal stage management was implemented. Initial conditions 253 

over the model domain were obtained from observation well data at the start of the simulation and 254 

interpolated over the model domain using Argus ONE interpolation utilities. 255 
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 256 

Figure 4. Showing model discretization grid for the modeled area, canal C-111 and C-111E and 257 

groundwater observation wells. 258 

2.2.3 Sensitivity analysis and parameter estimation   259 

 Sensitivity analysis and parameter estimation were performed using the sensitivity and parameter 260 

estimation (PES) processes in MODFLOW 2000 (Hill et al. 1998; Hill et al., 2000). PES calculated 261 

parameter values that minimized a weighted least squares objective function using nonlinear regression. 262 

The objective function was minimized using the modified Gauss-Newton (also known as the Levenberg-263 

Marquardt method) as well as prior information on the parameter estimates (Hill et al., 1998). To reduce 264 
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problems associated with inverse modeling such as insensitivity, instability and non-uniqueness, only 265 

parameters identified through sensitivity analysis to have greatest influence on model output were 266 

estimated. The sensitivity equation method was used in the sensitivity analysis package.  267 

 Output from MODFLOW 2000 also includes inferential statistics such as dimensionless scaled 268 

sensitivities (DSS) and composite scaled sensitivities (CSS). These inferential statistics measure the 269 

amount of information provided by the observations and the uncertainty with which the parameters values 270 

are estimated (Hill, 1998). DSS are typically used to compare the importance of different observations for 271 

estimation of a single parameter. CSS are calculated for each parameter using DSS for all the 272 

observations and indicate the amount of information provided by the observations for the estimation of a 273 

single parameter. 274 

2.3 Model validation 275 

 Model validation was implemented using a statistical model evaluation tool called FITEVAL (Ritter 276 

and Muñoz-Carpena, 2012). FITEVAL computes a non-dimensional goodness-of-fit indicator Ceff 277 

(Nash-Sutcliffe coefficient of efficiency), a dimensional goodness-of-fit indicator RMSE (Root Mean 278 

Square Error) as well as model prediction uncertainty ranges. FITEVAL computes a 95% confidence 279 

interval based on a goodness-of-fit probability density function estimated using bootstrap technique. 280 

FITEVAL also provides some reference values as guides for judging model performance. The model is 281 

judged to be very good if the probability that Ceff  > 0.9, good if Ceff is between 0.8 and 0.9, acceptable 282 

for Ceff between 0.65 and 0.8 and unacceptable for Ceff < 0.65 (Ritter and Muñoz-Carpena, 2012).  283 

2.4 Model application: Canal stage operational adjustment scenarios 284 

 Before application of the model, graphical exploration of the temporal variation in water table 285 

elevation in reference to the root zone was completed to determine if under present canal stage 286 

operational criteria water table elevation extended into the root zone during the study period. The 287 

developed model was then applied to evaluate the effect of the proposed incremental raises in canal stage 288 

on water table elevation. Incremental raises in canal stage were proposed in the project implementation 289 

report to be operationalized at S18C by increasing current “open and close” triggers in increments of 3.0 290 
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cm up a maximum of 12 cm (U.S. Army Corps of Engineers and SFWMD, 2011). For numerical 291 

simulation purposes, incremental raises in canal stage were mimicked by adding the proposed increments 292 

of 0.06, 0.09 and 0.12 m to canal stage. Only tail water canal stage at S177 and S178 were modified. 293 

Canal stage of the head waters at S177 and S178, rainfall, and evapotranspiration from the period of 294 

record were used. The initial condition was taken as the interpolated surface for water table elevation at 295 

the start of the simulation. Graphical analysis was used to determine if the proposed increments in canal 296 

stage would result in root zone saturation and groundwater flooding at any of the sites analyzed. The 297 

Two-sample equal variance t-Test was used to determine if the water table elevation before and after the 298 

incremental rises in canal stage were significant. 299 

2.4.1 Assessing aquifer response to large storms  300 

When a large storm is forecasted, the SFWMD uses data products from the National Hurricane Center 301 

(NHC) to make pre-and post-storm operational plans. These include making forecasts of quantitative 302 

precipitation that are accurate within 2-4 days prior to the storm and corresponding regional canal level 303 

lowering to ensure continued flood protection. During the storm event, the SFWMD continues to monitor 304 

flood control structures as well as storm position and intensity. During Tropical Storm Isaac, the SFWMD 305 

requested the USACE to put C-111 in pre-storm mode in order to minimize potential impacts. USACE 306 

approved pre-storm drawdown request and gate openings and pumping were initiated August 23, 2012 307 

(Strowd, 2012).  308 

The period August 21 to August 30, 2012 was chosen for the analysis of Biscayne Aquifer response to 309 

large storms as this period corresponded to Tropical Storm Isaac (> 60 mm total rainfall in one day). To 310 

simulate aquifer response to large storm events, MODFLOW was used with a small time step of 15 311 

minutes. A stress period size of one day was also used to match available tail water canal stage and 312 

precipitation data at S177 and S178 (Fig. 1). Model simulations of aquifer response to recharge were 313 

checked using the water table fluctuation method described in Healy and Cook, 2002 (eq. 3):  314 

differenceHead

ech
Sy

argRe
  (3) 315 
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where Sy is the aquifer specific yield, recharge refers to net input from rainfall and evapotranspiration 316 

and head difference refers to the change in water table elevation resulting from the recharge.  317 

The MODFLOW model was also applied to assess aquifer response to two, five, ten and 25 year return 318 

period storms. Maximum daily rainfall depth for the return periods where obtained from isohyetal maps 319 

for central and south Florida developed by Pathak (2001). Pathak (2001) obtained maximum daily depth 320 

of 114, 168, 203, and 254 mm for two-, five-, ten-, and 25-year return period storms, respectively for our 321 

study area. Based on analysis of over 113 years of rainfall data, large storms (i.e., 2- to 25-year return 322 

storms) in south Florida occur between August and October. With October being a transitional month 323 

between the wet and dry seasons and also corresponds to the time when growers begin to prepare the land 324 

and plant winter vegetables. For this reason, the period from October 25 to November 5, 2012 was 325 

selected to explore canal-aquifer system responses to large storms. Various canal drawdown scenarios 326 

that would minimize root zone saturation and groundwater flooding in the agricultural lands were also 327 

explored. Drawdowns were implemented by incrementally reducing canal stage 48 hours prior to a 328 

forecasted large storm in the reaches of C-111 and C-111E surrounding the study area. The desired 329 

scenario was when the water table elevation did not exceed the elevation of the bottom of the root zone.   330 

 331 

3.0 Results and Discussion  332 

3.1 Sensitivity analysis and parameter estimation results  333 

 The CSS for our study summarized in (Fig. 5) indicated that water table elevation measurements 334 

provided more information in the estimation of specific yield and hydraulic conductivity compared to 335 

estimation of canal conductance. The CSS also indicate that water table elevation data alone did not 336 

provide sufficient information for accurate estimation of canal bed conductance in the reaches of C-111 337 

and C-111E surrounding our study site. The need to have different types of data during parameterization 338 

of groundwater flow models was noted by earlier investigators (Saier et al., 2004; Zechner and 339 

Frielingsdorf, 2004). Zechner and Frielingsdorf (2004) observed that to accurately parameterize a canal-340 

aquifer interaction model with many parameters, in addition to groundwater head observations, other 341 
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observations such as canal seepage and pore-water solute concentration provided more information for 342 

parameter estimation and improved model prediction. However, Saier et al. (2004) using different 343 

combinations of observed data including groundwater head, aquifer discharge to the canal and 344 

groundwater chloride concentration noted that inverse-solution uniqueness was not required for accurate 345 

prediction of groundwater head but was required for prediction of seepage. Implying that water table head 346 

observations are sufficient for calibrating models aimed at prediction of groundwater head, but models for 347 

predicting other state variables such as seepage should been calibrated with more than one type of 348 

observation.  349 

 350 

Figure 5. Composite scaled sensitivities for the parameters selected for estimation in the model were Sy is 351 

specific yield, H is hydraulic conductivity, C1 is canal bed conductance multiplier for the reach of C-111 352 

on the head water side at S177, C2 is canal bed conductance multiplier for the C-111 reach between S177 353 

and the point where C-111 joins C-111E to become a single canal, C3 is canal bed  conductance 354 

multiplier for reach of C-111E on the tail water side of S178 and C4 is canal bed conductance multiplier 355 

for the reach of C-111E on the headwater side of S178.  356 

 During parameter estimation, the least squares objective function was minimized after five iterations. 357 

Based on data from 5 observation wells a hydraulic conductivity value of 12,115 m/day was estimated. 358 

This value was within the range of 7,590 to 14,900 m/day observed by Genereux et al. (1998) based on a 359 
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large scale canal draw down experiment and close to 12,768 m/day estimated by Kisekka et al. (2013b). 360 

Specific yield was estimated as 0.184 which is close to an estimate of 0.15 determined by Bolster et al. 361 

(2001) using data from a large scale canal draw down experiment and to mean of 0.102 estimated by 362 

Kisekka et al. (2013b).  Information from observations was not sufficient to accurately estimate canal 363 

conductance along the reach of C-111 on the headwater side of S177. A canal bed conductance multiplier 364 

for the longest and largest reach i.e., the reach between S177 and the point where C-111 joins C-111E to 365 

become a single canal was estimated as 1,965H m2/day, where H represents the length of the reach in 366 

meters. The canal bed conductance multiplier for C-111E was less than that of C-111 (i.e., 27H m2/day 367 

tail water side of S178 and 10H m2/day head water side of S178). There are no readily available values 368 

for canal bed conductance for the reaches of C-111 and C-111E considered in this investigation, however, 369 

for purposes of comparison, Genereux et al. (1998) estimated a canal bed conductance of 720H for the 370 

nearby L-31W canal which is located near C-111 along the eastern boundary of ENP.  371 

3.2 Model Calibration and validation 372 

 Calibration (August 25, 2010 to December 31, 2011) results reproduced observed water table 373 

elevations (WTEs) at  five observation wells (2 to 6)  with an average Ceff greater than 0.9 (Table 2). 374 

Temporal variations in WTE showed seasonal increases and decreases in WTE. The dry season was 375 

characterized by decrease in WTE due to low rainfall while increased WTE in the wet season was due to 376 

increase in rainfall and changes in canal stage management. The RMSE ranged from 1.0 cm to 7.0 cm 377 

with the lowest value observed at well 6 and the highest value at well 4. Study site topography is 378 

essentially flat implying that small variations in hydraulic head govern which direction water flows, 379 

therefore it was desired to achieve the lowest RMSE possible (e.g., < 6 cm). However, it was not possible 380 

to obtain RMSE < 6 cm at all wells due to limitations e.g., uncertainties in model parameters, model 381 

structure, and model input, all of which introduce uncertainties in model simulations. There could also be 382 

errors in the observed data used for model calibration. This type of error was minimized by comparing 383 

level logger data with manual measurements during each download. Under the C-111 spreader canal 384 
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project the smallest proposed incremental raise in canal stage at S18C is 3 cm. However, the RMSE of 385 

our model predictions are larger than 3 cm at four out of the five observation wells within the study area 386 

domain, for this reason only the 6, 9 and 12 cm incremental raises in canal stage were further analyzed for 387 

their effect on water table elevation.  388 

 Figs. 6 to 10 show FITEVAL summary of the goodness-of-fit statistics for validation of model 389 

predictions at all the observation wells. Overall the agreement between simulated and observed water 390 

table elevations was very good (Ceff  > 0.9 and 1 cm < RMSE < 5 cm) with the exception of site well 4, 391 

at which model performance was determined to be acceptable (0.68 < Ceff < 0.78). The over prediction at 392 

observation well 4 could be attributed to several factors e.g., heterogeneity in hydrogeological conditions 393 

and uncertainty in model input parameters and observed data. The very good performance of the model at 394 

all the other sites indicates boundary conditions definition was sufficient to describe groundwater flow. 395 

The results also indicate that describing canal-aquifer interactions using the simple RIV package 396 

(Harbaugh et al., 2000) in MODFLOW was adequate. The good performance of the RIV package could 397 

be attributed to the underlying assumptions in the RIV package being valid for our study site e.g., there 398 

was negligible change in canal stage during each stress period which was set as one day. Our results are 399 

also within range of model coefficient of efficiency (a measure of agreement between measured and 400 

predicted values) obtained by prior investigators.  Bolster et al. (2001) applied MODFLOW to Biscayne 401 

Aquifer and obtained a model coefficient efficiency of 0.99.  Saiers et al. (2004) using their numerical 402 

model of groundwater flow and solute transport in the Biscayne Aquifer obtained goodness-of-fit model 403 

coefficient efficiency of 0.95. The results also indicated that general groundwater flow was in the south-404 

east direction, which implies that a large increase in hydraulic head west of C-111 could increase rate of 405 

groundwater flows to the eastern side of the canal. Based on the period evaluated, model validation results 406 

indicated that with the exception of well 4, the model developed for the study area was accurate and not 407 

biased implying it could be used to further investigate the impact of proposed incremental raises in canal 408 

stage on water table elevation. 409 
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Table 2.  410 

Table 2. Goodness-of-fit statistics for model calibration for water table elevation predictions using 411 

MODFLOW  412 

Well Ceff1 Calibration RMSE2 Calibration (cm) 

Well 2 0.97-0.98 4.0-5.0 

Well 3 0.94-0.96 4.7-5.7 

Well 4 0.80-0.90 6.0-7.0 

Well 5 0.93-0.95 4.6-5.3 

Well 6 0.99-1.00 1.0-1.2 

1Nash-Sutcliffe coefficient of efficiency 413 

2Root mean square error 414 

 415 

Figure 6. Validation goodness-of-fit indicators from FITEVAL for MODFLOW simulations at well 2 for 416 

the period January 01, 2012 to February 28, 2013. 417 
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 418 

Figure 7. Validation goodness-of-fit indicators from FITEVAL for MODFLOW simulations at well 3 for 419 

the period January 01, 2012 to February 28, 2013. 420 

 421 

Figure 8. Validation goodness-of-fit indicators from FITEVAL for MODFLOW simulations at well 4 for 422 

the period January 01, 2012 to February 28, 2013. 423 
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 424 

Figure 9. Validation goodness-of-fit indicators from FITEVAL for MODFLOW simulations at well 5 for 425 

the period January 01, 2012 to February 28, 2013. 426 

 427 

Figure 10. Validation goodness-of-fit indicators from FITEVAL for MODFLOW simulations at well 6 428 

for the period January 01, 2012 to February 28, 2013. 429 

3.3 Model application results 430 
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 The root zone for all sites was approximately the first 20 cm from the ground surface as measured in 431 

the field. Visual exploration of temporal variation in water table elevation in reference to the root zone 432 

(Figs. 11 to 12) revealed that under current canal stage management criteria for the period August 25, 433 

2010 to February 28, 2013, average daily water table elevation occasionally extended into the root zone at 434 

well 6 and well 4 study sites which also had the lowest ground surface elevation. At well 5 and well 3 435 

sites, where land surface elevation exceeded 2 m, water table elevation was not observed to enter the root 436 

zone. Thus, surface topography might influence water table fluctuations into the root zone more than 437 

distance from the canal. Results from model applications (Figs. 13 to 15) revealed that average daily 438 

water table elevation before (grey shade) and after (blue shade) the  incremental rises in canal stage was 439 

significantly different (p < 0.001) for monitoring well 4, well 6, and well 5 sites. For well 2 and well 3 440 

sites, water table elevation before and after the proposed incremental raises in canal stage were not 441 

significantly different (p > 0.05) . The lack of significant difference in water table levels before and after 442 

the incremental raises in canal stage for wells 2 and 3 could be attributed to that fact canal stage was not 443 

changed north of S177 and S178 (Fig. 1).  444 

 The increase in water table elevation for wells 4, 6, and 5 corresponding to a 6 cm rise in canal stage 445 

ranged between 4.5 and 6.0 cm, while the increases corresponding to 9 and 12 cm were 7.0 to 9.0 cm and 446 

11.0 to 12.0 cm, respectively. The almost equal increase in water table elevation predicted from the 447 

incremental rises in canal stage can be attributed to the high hydraulic connection between Biscayne 448 

Aquifer and the C-111 canal network. Visual analysis in Figs. 13 to 15 shows that low elevation lands (as 449 

found at well 4 and well 6 sites) were predicted to have a shorter growing season with canal stage 450 

increases of 9 cm and beyond resulting in longer periods of saturated conditions in the root zone. For 451 

example, at well 4 and well 6 sites after a 12 cm raise in canal stage, saturated conditions were predicted 452 

to persist until late October or early November. Typically land preparation for agriculture starts in late 453 

September and planting occurs in October. For high elevation sites such as well 5, the proposed increases 454 

in WTE were predicted not to cause root zone saturation or groundwater flooding (where groundwater 455 



26 
 

flooding refers to a situation where water table elevation raises above the ground surface) under 456 

conditions similar to those experienced during the study period.   457 

 458 

Figure 11. Temporal variation in water table elevation in reference to ground surface under current canal 459 

stage operation criteria at spillway S18C for observation of wells well 2 (ground surface elevation of 1.86 460 

m NGVD29) and well 3 (ground surface elevation of 2.07 m NGVD29) on the headwater side of the 461 

spillway at S177 with calibration and validation separated by a vertical dash line. 462 
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 463 

Figure 12. Temporal variation in water table elevation in reference to ground surface elevation under 464 

current canal stage operation criteria at S18C for observation wells well 4, well 5, and well 6 on the tail 465 

water side of the spillway at S177 with calibration and validation separated by a dash vertical line. 466 
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 467 

Figure 13. Temporal variation in water table elevation in reference to the root zone under proposed 468 

incremental raises in canal stage operation at S18C for observation well 4. 469 
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 470 

Figure 14. Temporal variation in water table elevation in reference to the root zone under proposed 471 

incremental raises in canal stage operation at S18C for observation well 5. 472 
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 473 

Figure 15. Temporal variation in water table elevation in reference to the root zone under proposed 474 

incremental raises in canal stage operation at S18C for observation well 6. 475 

 476 



31 
 

3.4 Results of aquifer response to large storms  477 

 Event analysis was conducted for the period from August 21, 2012 to August 30, 2012 which 478 

corresponded to Tropical Storm Isaac. The aquifer responded to the storm by increasing water table 479 

elevation and took approximately two days for the water table elevation to recede back to pre-storm levels 480 

(Fig. 16). The three days of heavy rainfall during Tropical Storm Isaac would be expected to result in 481 

groundwater flooding causing the water table to rise to the ground surface; however this did occur as 482 

shown by observed water table elevations in Fig. 16.  Simulated water table elevation were below ground 483 

surface with the exception of well 4 where ponding was simulated to occur for approximately one day. As 484 

indicated under model validation, performance was ranked as very good at well 6 and well 5 sites and 485 

acceptable at well 4 implying the model adequately represented the physical processes in the system. 486 

Attempts were made to estimate fluctuation in water table elevation resulting from tropical storm Isaac 487 

using equation (3), as a quick way to estimate aquifer response to predicted storms but the results seemed 488 

unrealistic (predicted an increase in water elevation of 0.6 m), i.e., very high compared to observed 489 

fluctuations in water table elevation after tropical storm Isaac therefore the approach was abandoned. 490 

There are three limitations of the water table fluctuation method expressed as equation (3): 1)  although 491 

simple to use, it overly simplifies the complex process of water flow into and out of the aquifer, 2) the 492 

method assumes all the fluctuation in water table are due to recharge and ignores effects of other factors 493 

such as pumping, changes in atmospheric pressure, and entrapped air, 3)  the method is also not suitable 494 

for aquifers that are in close proximity with streams or canals that directly influence water table 495 

fluctuations.  496 

 The absence of flooding at low elevation sites such as at well 4 and 6 could be attributed to the pre 497 

and post tropical storm Isaac canal drawdown that was undertaken by the SFWMD and USACE. This 498 

included regional lowering of canal stage particularly by operating canals C-111 under pre-storm mode 499 

and opening the flood control structures (Strowd, 2012). Tropical Storm Isaac occurred when the fields at 500 

well 5, well 4, and well 6 were fallow, so no risk to crop damage occurred. If a similar event were to 501 

occur when vegetable crops were present and with no pre-storm canal drawdown, sites with lower 502 
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elevations (e.g., well 4 and well 6) would likely experience yield loss due to root zone saturation. The 503 

event would also delay entry into the field by any machinery for agricultural activity. Higher elevation 504 

sites (e.g., well 5) were expected to be less impacted by such a storm as the water table was still below the 505 

root zone. This further illustrates the need for detailed topographic data and field scale simulation of 506 

canal-aquifer system to better relate locations with potential risk of groundwater flooding. This model 507 

could be used to further explore drawdown scenarios for this area prior to major storm events. 508 

 509 

Figure 16. Aquifer response to Tropical Storm Isaac at observation wells south of the spillway at S177. 510 
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 Analysis of canal-aquifer system response and exploration of various canal drawdowns scenarios that 511 

would minimize the impact of root zone saturation and groundwater flooding in agricultural lands due to 512 

large storms revealed that micro-topography within the fields was a major factor. Figs. 17 and 18 show 513 

that 3 out of the 4 sites analyzed for their response to two, five-, ten- and 25-year return period storms 514 

experienced groundwater flooding if canal drawdown was not implemented before the storm. With the 515 

exception of well 5 site with high surface elevation (2.2 m NGVD29), all the other sites experienced 516 

various degrees of groundwater flooding (Figs. 17 & 18). A ten and 25 return period storm caused 517 

groundwater flooding at well 2, well 3 and well 6 sites. Sites with ground surface elevation less than 1.2 518 

m NGVD29 experienced groundwater flooding from all storm sizes analyzed. For agricultural purposes, it 519 

is desired that the water table elevation does not extend into the root zone since this condition could create 520 

anoxic conditions that result in root and / or plant death. Exploration of canal drawdown scenarios 521 

revealed that a 20 cm drawdown in canal stage 48 hours prior to a forecasted storm of 114 mm in 24 522 

hours (2 year return period storm) would eliminate the risk of groundwater flooding at all the sites (Figs. 523 

17 and 18). A 25 cm drawdown was effective in mitigating the impacting of root zone saturation and 524 

groundwater flooding from a 5 year return period storm at all sites, while drawdowns of 30 and 40 cm 525 

were effective for 10- and 25-year return period storms, respectively.  It is worth noting that the influence 526 

of the 48 hour canal stage drawdown prior to a forecasted storm was dependent on the distance from the 527 

canal. As shown by the depressions in the drawdown graphs (Figs. 17 and 18) for well 6, well 5 and well 528 

3 sites which are 500, 1000, and 1000 m from C-111 canal, respectively. Overall these results predict that 529 

canal drawdown is effective as a pre storm water management technique for ensuring continued flood 530 

protection of agricultural lands within the C-111 basin. However, it is critical to remember that 531 

management decisions should be made in view of the uncertainty associated with model predictions as 532 

shown in Figs. 6 to 10. Also, the size of the drawdown should match forecasted storm depth and post 533 

storm activities should ensure the canal drainage continues to provide other services such as control of 534 

salt water intrusion. 535 
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 536 

Figure 17. Canal-aquifer system response to large storms of various sizes for wells north of the spillway 537 

at S177, were YR refers to year and RP refers to return period, graphs also shows that canal stage 538 

drawdown prior to the forecasted storm reduces the risk of root zone saturation and groundwater flooding 539 
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 540 

Figure 18. Canal-aquifer system response to large storms of various sizes for wells south of the spillway 541 

at S177, were YR refers to year and RP refers to return period, graphs also shows that canal stage 542 

drawdown prior to the forecasted storm reduces the risk of root zone saturation and groundwater flooding. 543 

4.0 Conclusion 544 

 The effect of the proposed incremental raises in canal stage on water table levels in agricultural fields 545 

along a section of a major canal draining south Florida (i.e., C-111) and aquifer response to large storms 546 

was investigated using MODFLOW and graphical analysis. The incremental raises in C-111 canal stage 547 

are part of a large scale ecosystem restoration project which has the goal of restoring the hydrology of 548 

Everglades National Park. The MODFLOW model predicted that the incremental raises in canal stage 549 

resulted in significant differences in water table elevation within the adjacent agricultural areas. For the 9 550 

and 12 cm increases in canal stage, water table elevations were predicted to occasionally extend into the 551 

root zone for 3 out of the 5 well sites. Well 3 and well 5 sites (with ground surface elevation exceeding 2 552 

m) were predicted to not be affected by any of the incremental raises in canal stage. The impact of 553 



36 
 

operational changes in canal stage management on the root zone saturation and groundwater flooding 554 

depended on land surface topography and depth of rainfall events. Thus micro-topography within the field 555 

can have a bigger influence on soil water content than distance from the canal. Based on graphical 556 

analysis, low elevation lands (with surface elevation<2 m NGVD29) could have shorter growing seasons 557 

if canal stage is increased 9 cm and beyond due to potential saturation of the root zone. 558 

 The MODFLOW based model was able to mimic the rise and fall of the water table similar to that 559 

measured for Tropical Storm Isaac. Further exploration of canal-aquifer system response to 2-, 5-, 10- and 560 

25-year return period storms and canal drawdowns suggested that if crops are present during storms 561 

greater than a 2-year return period storm, yield losses could occur if pre storm canal drawdown is not 562 

implemented at least 48 hour prior to the forecasted storm particularly in low elevation sites. Overall the 563 

study concludes that canal drawdown is effective as a pre storm water management technique for 564 

ensuring continued flood protection of agricultural lands within the C-111 basin.  565 
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Table 1. Water table elevation monitoring sites with descriptors. 667 

1Site name Distance from canal C-111 

(m) 

Ground surface elevation 

(m) NGVD29 

Latitude  Longitude  

Well 1 1000 2.07 25.41883 -80.550041 

Well 2 1000 1.86 25.41110 -80.550375 

Well 3 2000 2.07 25.40347 -80.541933 

Well 4 2000 1.19 25.39261 -80.541605 

Well 5 1000 2.23 25.39317 -80.553724 

Well 6 500 1.21 25.39283 -80.549543 

 668 

Table 2. Goodness-of-fit statistics for model calibration for water table elevation predictions using 669 

MODFLOW  670 

Well Ceff1 Calibration RMSE2 Calibration (cm) 

Well 2 0.97-0.98 4.0-5.0 

Well 3 0.94-0.96 4.7-5.7 

Well 4 0.80-0.90 6.0-7.0 

Well 5 0.93-0.95 4.6-5.3 

Well 6 0.99-1.00 1.0-1.2 

1Nash-Sutcliffe coefficient of efficiency 671 

2Root mean square error 672 
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