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Abstract 

Kirkwood Buff (KB) theory is one of the most important theories of solutions. The theory 

can relate integrals over radial (pair) distribution functions (rdfs) in the grand canonical ensemble 

to common thermodynamic properties. An inversion of the KB theory has been proposed by Ben-

Naim and this has led to the wide spread popularity of KB theory. The idea of the KB inversion 

procedure is to calculate KB integrals from available thermodynamic properties.  

The KB theory can be used to validate the force field (ff) parameters used in molecular 

dynamics simulations. We have tested a series of small molecule ff parameters using KB theory 

that consists of both atom centered partial atomic charges and extra charge sites. The results 

indicate that using extra charge sites, derived from QM calculations, does not necessarily provide 

a more accurate representation of condensed phase properties. A further study aimed at an ongoing 

project of deriving new biomolecular ff parameters based on KB theory, has developed ff 

parameters for esters in order to represent the ester conjugation of the phospholipid molecule. The 

models were further tested against experimental properties. 

Preferential solvation (PS) is an important concept of solution mixtures that can be 

described using KB theory. The difference between local composition and bulk composition in 

solution mixtures leads to the concept of PS. A generalized explanation based on local mole 

fractions was derived by Ben-Naim using KB theory. However, the original expressions have been 

modified over years. Here, we propose a new approach based on local volume fractions to explore 

PS in binary and ternary solution mixtures. Experimental and simulation data were used to examine 

different approaches to PS. 

A relationship between the rdf and the triplet distribution function can be obtained using 

the Kirkwood Superposition Approximation (KSA). A combination of Fluctuation Solution 



  

Theory and experimental rdfs are used to examine the KSA at a series of state points for pure 

water. The accuracy of several other approximate relationships between the pair and triplet 

correlation functions was also investigated and are in good agreement for regions of the phase 

diagram where the compressibility is small. 
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Abstract 

 Kirkwood Buff (KB) theory is one of the most important theories of solutions. The theory 

can relate integrals over radial (pair) distribution functions (rdfs) in the grand canonical ensemble 

to common thermodynamic properties. An inversion of the KB theory has been proposed by Ben-

Naim and this has led to the wide spread popularity of KB theory. The idea of the KB inversion 

procedure is to calculate KB integrals from available thermodynamic properties.  

The KB theory can be used to validate the force field (ff) parameters used in molecular 

dynamics simulations. We have tested a series of small molecule ff parameters using KB theory 

that consists of both atom centered partial atomic charges and extra charge sites. The results 

indicate that using extra charge sites, derived from QM calculations, does not necessarily provide 

a more accurate representation of condensed phase properties. A further study aimed at an ongoing 

project of deriving new biomolecular ff parameters based on KB theory, has developed ff 

parameters for esters in order to represent the ester conjugation of the phospholipid molecule. The 

models were further tested against experimental properties. 

Preferential solvation (PS) is an important concept of solution mixtures that can be 

described using KB theory. The difference between local composition and bulk composition in 

solution mixtures leads to the concept of PS. A generalized explanation based on local mole 

fractions was derived by Ben-Naim using KB theory. However, the original expressions have been 

modified over years. Here, we propose a new approach based on local volume fractions to explore 

PS in binary and ternary solution mixtures. Experimental and simulation data were used to examine 

different approaches to PS. 

A relationship between the rdf and the triplet distribution function can be obtained using 

the Kirkwood Superposition Approximation (KSA). A combination of Fluctuation Solution 



  

Theory and experimental rdfs are used to examine the KSA at a series of state points for pure 

water. The accuracy of several other approximate relationships between the pair and triplet 

correlation functions was also investigated and are in good agreement for regions of the phase 

diagram where the compressibility is small.  
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Chapter 1 - Introduction 

1.1 Molecular Dynamics Simulations 

Molecular simulations have been used for over five decades to study various types of 

biological systems in order to provide extreme detailed atomic level understanding that cannot be 

easily obtained from the other methods.1,2-5 There are two main types of computer simulation 

techniques available as of today: molecular dynamics (MD)  and Monte Carlo (MC) simulations.6-

9 These two main computer simulation techniques contain their own distinct features. Which one 

is more suitable for a particular study depends on the system and the properties that are going to 

be studied. MC simulations attempt to predict the time independent properties whereas MD 

simulations also predict the time dependent behavior of systems. Besides these two techniques, 

people have also been trying to develop hybrid techniques using the features from the above two 

techniques.2, 7 This dissertation is solely based on molecular dynamics simulations. 

The most important use of computer simulations is to relate macroscopic properties to 

microscopic properties. It is obvious that experiments play the central role in science. However, 

by depending only on experiments, it is not possible to get clear explanations for all the 

observations of complex systems. Therefore, computer simulations have become a powerful tool 

to obtain a better understanding of unexplained phenomenon. At the same time, people use 

computer simulations to test and validate theories. Therefore, simulations act as a bridge between 

experiments and theories. Furthermore, it is possible to conduct computer simulations, under 

difficult, hazardous or expensive conditions, that cannot be easily accessible under laboratory 

conditions. For instance, under extremes of pressure and temperature, or systems involving 

biologically hazardous chemicals, etc.2  
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MD simulations have been used to study a wide variety of important phenomenon in 

physics, chemistry and biology. Over the years, due to the revolutionary advances in computers 

and algorithms, MD simulations have become one of the most important and reliable techniques 

to study complex biological systems.10-13 The molecules and their behavior is best described by 

quantum mechanical models. However, it is not possible to model complex biological systems that 

contain a large number of molecules using quantum mechanics due to inaccessible computer 

demand. In most MD simulations, therefore, classical equations of motion are solved for a finite 

time period.7 Atoms and molecules are represented using simple balls and springs. The main 

objective is to find the forces acting on each molecule in the system. Thus, we can determine the 

change in the properties of the system with the time. The derivative of the potential energy (𝑈) is 

used to calculate the forces acting on each molecule as shown in Equation (1.1) and Equation (1.2). 

𝑚𝑖 𝑟⃗̈𝑖 = 𝑓̈⃗
𝑖 (1.1) 

 

𝑓⃗̈𝑖 = −
𝜕𝑈

𝜕𝑟⃗̈𝑖

 (1.2) 

 

where 𝑓̈⃗
𝑖 is the force exerted on ith particle that has mass of 𝑚𝑖, 𝑟𝑖 is the position of the particle, and 

the second derivative of 𝑟𝑖 with respect to time provides the acceleration (𝑟⃗̈𝑖). High accuracy of the 

potential energy calculation is very important in MD simulations as it determines the next state of 

the system. Numerical integration methods are used to solve the equations of motions.7, 14 Finite 

difference methods are one of the widely applied methods to solve the above differential equations. 

The general idea is to predict the new positions and velocities of the molecules using current and 

previous details of the system and a finite step in time. The Verlet algorithm is one of the most 

popular algorithms that is used in MD to solve the equations of motion.14-15 Equation (1.3) and 
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Equation (1.4) can be obtained using a Taylor expansion about 𝑟(𝑡) to predict the future position 

𝑟(𝑡 + 𝛿𝑡) from the previous position 𝑟(𝑡 − 𝛿𝑡) of the atoms in the system, 

𝑟(𝑡 + 𝛿𝑡) = 𝑟(𝑡) + 𝛿𝑡𝑟⃗̇(𝑡) + 1 2⁄ 𝛿𝑡2 𝑟⃗̈(𝑡) + ⋯ (1.3) 

 

𝑟(𝑡 − 𝛿𝑡) = 𝑟(𝑡) − 𝛿𝑡𝑟⃗̇(𝑡) + 1 2⁄ 𝛿𝑡2 𝑟⃗̈(𝑡) − ⋯ (1.4) 

 

where 𝛿𝑡, 𝑟(𝑡), 𝑟⃗̇(𝑡), 𝑟⃗̈(𝑡) represent integration time step, current position, velocity and 

acceleration, respectively. The velocity can be removed from the addition of Equation (1.3) and 

Equation (1.4) to give Equation (1.5),  

𝑟(𝑡 + 𝛿𝑡) = 2𝑟(𝑡) − 𝑟(𝑡 − 𝛿𝑡) + 𝛿𝑡2 𝑟⃗̈(𝑡) (1.5) 

 

Even though the determination of a new trajectory does not need the velocity, the determination 

of the kinetic energy needs the velocity. Velocities can be obtained from Equation (1.6) if 

necessary. 

𝑟⃗̇(𝑡) =
𝑟(𝑡 + 𝛿𝑡) − 𝑟(𝑡 − 𝛿𝑡)

2𝛿𝑡
 (1.6) 

 

The characteristics of the simulation system determine the magnitude of the time step. Figure 1.1 

shows the simplified version of the main steps in a molecular dynamics simulation. 

Not only equilibrium systems, but also non equilibrium systems can be studied using MD 

simulations. There is no net transport of mass, momentum and heat in equilibrium systems. But, if 

the system is far away from the equilibrium, the link between microscopic dynamical properties 

and non equilibrium macroscopic states is not easy to establish.16 The perturbations from the 

equilibrium states could be seen. These type of systems can be studied using non equilibrium 

molecular dynamics (NEMD) simulations. Therefore, it is possible to obtain microscopic 
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dynamics and macroscopic non equilibrium properties. In non equilibrium molecular dynamics 

simulations external forces are applied to the system.14, 16 This dissertation is solely based on 

equilibrium MD simulations.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.1 Simplified schematic of the main steps in a molecular dynamics simulation17 

 

1.2 Force Fields 

A force field is defined by a set of equations and parameters that are used to calculate the 

potential energy of the system.6, 18-22 The accuracy of the simulation results mainly depend on the 

accuracy of the force field.23 Most force fields use atomistic models instead of considering 

electrons and nuclei to represent the molecules. Thus, we may consider atoms as the building 

blocks of the large biological macromolecules. Even though it has been over four decades since 
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the first molecular dynamics simulation was conducted,24 people consistently try to improve force 

field parameters.25-28 

In classical MD simulations we may separate the potential energy function in to two 

groups: bonded interactions and non bonded interactions. Bond, angle, proper and improper 

dihedral rotations are categorized under the bonded interactions. On the other hand, van der Waals 

interactions and Coulomb interactions are categorized under non bonded interactions. The 

following set of equations typically represent the potential energy of the system. 

𝑉𝑏𝑜𝑛𝑑 = ∑
1

2
𝑘𝑏(𝑟 − 𝑟0)2 (1.7) 

 

𝑉𝑎𝑛𝑔𝑙𝑒 = ∑
1

2
𝑘𝑎(𝜃 − 𝜃0)2 (1.8) 

 

𝑉𝑝𝑟𝑜𝑝𝑒𝑟 𝑑𝑖ℎ𝑒𝑑𝑟𝑎𝑙 = ∑ 𝑘𝜙[1 + 𝑐𝑜𝑠(𝑛𝜙 − 𝜙𝑠)] (1.9) 

 

𝑉𝑖𝑚𝑝𝑟𝑜𝑝𝑒𝑟 𝑑𝑖ℎ𝑒𝑑𝑟𝑎𝑙 = ∑
1

2
𝑘𝜉(𝜉𝑖𝑗𝑘𝑙 − 𝜉0)

2
 (1.10) 

 

𝑉𝑒𝑙𝑒𝑐𝑡𝑟𝑜𝑠𝑡𝑎𝑡𝑖𝑐𝑠 = ∑
𝑞𝑖𝑞𝑗

𝑟𝑖𝑗
 (1.11) 

 

𝑉𝑣𝑎𝑛 𝑑𝑒𝑟 𝑊𝑎𝑎𝑙𝑠 = ∑ 4𝜀𝑖𝑗 ((
𝜎𝑖𝑗

𝑟𝑖𝑗
)

12

− (
𝜎𝑖𝑗

𝑟𝑖𝑗
)

6

)

𝐿𝐽

 (1.12) 

 

A Cartesian coordinates set R is used to define the position of all the atoms. Therefore, one 

can obtain internal coordinates for bond lengths (r), bond angles (θ), proper dihedral angles (𝜙), 

and interatomic distances (rij). A hypothetical molecule that illustrates the potential energy 
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functions is shown in Figure 1.2. Even though the potential energy function remains similar, the 

parametrization process is different in most of the currently available force fields. Most 

importantly, the above simple terms that are used to obtain interaction energies of complex 

biomolecular systems represent a compromise between simplicity and accuracy.  

 

  

  

   

 

   

Figure 1.2 Illustration of several potential energy terms using a simple model23  

 

As denoted in Equation (1.7), Equation (1.8) and Equation (1.10), harmonic energy 

functions have been used to model bond stretching, angle bending and improper dihedral 

interactions. This helps to keep the bonds and angles near their equilibrium values during the 

simulation. Equilibrium bond length, angle and improper dihedral angles are represented by 𝑟0, 

𝜃0, 𝜉0, respectively. Furthermore, associated force constants for bond stretching, angle bending 

and improper dihedral interactions are represented by 𝑘𝑏, 𝑘𝑎, 𝑘𝜉 , respectively. Proper dihedral 

interactions can be calculated using Equation (1.9). This energy term represents the energy barriers 

associated with rotation around a bond which results in a change in the relative positions of atom 

1 and atom 5 in space. The force constant, periodicity and phase are represented by 𝑘𝜙, 𝑛, 𝜙𝑠. Non 

bonded interactions are calculated between different molecules and also within the same molecule. 

When considering the same molecule, the two atoms should be separated by at least three bonds. 

Most importantly, when these two atoms are separated by exactly three bonds, interactions are 

often adjusted using a scaling factor. Different force fields use different scaling factors.18, 20 The 
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Coulomb interactions (electrostatic interactions) can be determined using partial atomic charges 

(𝑞𝑖 , 𝑞𝑗). Generally, the van der Waals interactions can be determined using a Lennard-Jones (12-

6) potential as shown in Equation (1.12). The parameters 𝜀𝑖𝑗, 𝜎𝑖𝑗 represent the well depth which is 

also known as minimum interaction energy and the radius where the LJ potential energy is zero, 

respectively. The repulsion interaction between two atoms due to the overlap of electron clouds is 

represented using 1 𝑟12⁄  term. Moreover, the attractive London dispersion interactions or 

instantaneous induced dipole-induced dipole interactions are represented using − 1 𝑟6⁄ . 

Most of these force field parameters are usually obtained using either experimental data or 

quantum mechanical calculations.23 Equilibrium bond lengths and angles can be determined using 

experimental structural data, such as crystal structures and electron diffraction methods.23 

Multiplicities and phases can be obtained from quantum mechanical calculations.23 Spectroscopic 

data such as IR, Raman and QM data are often used to obtain force constants.23 Van der Waal 

parameters can be obtained from X ray diffraction and neutron diffraction.23 In fixed charge force 

fields the electrostatic interactions are mainly expressed using Coulomb law.23 The charge 

distribution around a molecule is then described by simple partial atomic charges.23 Unfortunately, 

partial atomic charges are not experimental observables.29 Moreover, there is no universally 

approved way of obtaining partial atomic charges in force fields.18 The most common approach is 

to use QM electrostatic potentials to obtain partial atomic charges.18, 30  

There are several popular force fields available to perform MD simulations of biological 

systems such as: CHARMM (Chemistry at HARvard Macromolecular Mechanics),31 AMBER 

(Assisted Model Building with Energy Refinement),20 GROMOS (GROningen MOlecular 

Simulation program package),32 OPLS (Optimized Potentials for Liquid Simulations).33  
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With the CHARMM force field the partial atomic charges were obtained using minimum 

interaction energies and different interaction orientations of a water molecule with model 

compounds.18, 23, 25 In this case they have used one water molecule and model compound at a 

time.23, 25 Then they change the position of the water molecule in order to cover all the interaction 

sites.23 In their geometric optimization process they have used HF/6-31G* basis set.25 These partial 

atomic charges are optimized to reproduce the QM interaction offset distances, scaled energies and 

dipole moments.  Experimental heats of vaporization and molecular volumes are generally used as 

the target data for the van der Waals parameters.34 Force constants were optimized to reproduce 

experimental or QM vibrational spectra.23 For dihedral parameter optimization, they have used 

conformational energetics of the model compounds that are derived using HF/6-31G* level or 

higher basis set.23 

Usually, atom centered partial atomic charges are derived using the 6-31G* basis set and a 

restrained electrostatic potential (RESP) fitting in the AMBER force field.20 These charges were 

tested to reproduce interaction energies, free energy of solvation, liquid enthalpies, densities and 

conformational energies of small molecules.20 For small molecules bond angle parameters were 

obtained by fitting to structural and vibrational frequency data.20 Subsequently, they were 

readjusted to reproduce experimental normal mode frequencies.20 Lattice energies and crystal 

structures were used to obtain van der Waals parameters and tested against liquid properties.20 

Dihedral parameters were obtained from quantum mechanical data.20  

The GROMOS force field parameters were developed using the following approach. 

Partial atomic charges were obtained from quantum mechanical electron densities and further 

optimized using experimental dielectric data. The crystal structures of small molecules were used 

to obtain equilibrium bond lengths and angles.3, 21 Gas phase IR spectroscopic data were used to 
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obtain force constants.21 Non bonded van der Waals parameters were obtained by fitting to the 

experimental thermodynamic data such as: heats of vaporization, densities of pure liquids and free 

energy of solvation.3 Dihedral parameters were obtained using quantum mechanical dihedral 

potentials.3, 21 

The OPLS force field parameters have been derived primarily to reproduce experimental 

liquid properties.20, 33 Experimental densities and heats of vaporization of liquids have been used 

as the target data for parameter optimization.33 Partial atomic charges were derived empirically to 

best represent the condensed phase properties of small molecules.20, 35 Bond stretching and angle 

bending terms were adopted from AMBER force field. Structural parameters were tested against 

vibrational spectroscopy and diffraction data.33 However, later, improved partial atomic charges 

were obtained by adjusting the partial atomic charges using QM data.36 Here, they have used 

hydration free energies as the target data.37 Rotational energy profiles obtained from ab initio 

molecular orbital calculations were used to determine torsional parameters.35  

It is important to point out that most of these force fields were developed and tested using 

a specific water model. Therefore, when performing bimolecular simulations, we should use that 

particular water model with the selected force field. TIP3P38, SPC39 and SPC/E40 are the most 

common water models that have been used widely in simulations. AMBER, OPLS and CHARMM 

force fields mainly use the TIP3P water model, whereas the GROMOS force field uses the SPC 

water model.18 

As explained above, most of the biomolecular force fields have very similar equations for 

calculating potential energy of the system. Yet, the way that they derive parameters and the values 

of the parameters are drastically different. Most of these force field parameters were obtained for 

small molecules.23 The small molecules are treated as the building blocks of biological 
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macromolecules such as proteins, lipids, nucleic acids etc. First, small molecular analogues are 

selected to represent the functional groups of the biomolecules. Then, force field parameters are 

developed to model these small molecules. Force fields for small molecular analogues are usually 

considered as transferable, assuming that these parameters can be assigned to larger molecules 

with similar chemical structures. Therefore, transferability is one of the significant assumptions in 

force field development.23 Furthermore, additivity, which assumes the potential energy of the 

systems can be calculated using the sum of the above described potential terms, is also a very 

important assumption that used in force fields.27 Hence, these fixed charge force fields are also 

known as additive force fields.27   

 

1.2.1 Polarizable Force Fields 

Most of the force fields use fixed atomic charges to represent the charge distribution around 

a molecule.23 These are known as fixed charge, effective charge, or non polarizable force fields. 

As we know, real molecules should be able to change the charges according to the environment. 

Therefore, people have tried to embed this feature in to force fields for decades.41-49 Molecular 

polarization can be divided in to three components: electronic polarization (resulting from the 

redistribution of electrons around an atom or molecule), geometric polarization (resulting from the 

changes of the molecular geometry), and orientational polarization (resulting from the rigid 

rotation of the molecule due to an electric field).45,48 These three components of polarization are 

interrelated. Geometric polarization can be included by using flexible molecules.45 Molecules are 

usually rotating during the simulation and therefore orientational polarization is always countered. 

Force fields that include electronic polarization explicitly are known as polarizable force fields.45 

There are several methods of including the explicit polarization to the system. Commonly, these 

methods can be categorize in to three main groups: induced point dipole models, fluctuation charge 



11 

models and Drude oscillator models.45 The commonly used non polarizable force fields like 

CHARMM, OPLS, AMBER, GROMOS use one of the above methods in their polarizable 

versions of the force fields.42,45,48-49 

In the induced point dipole model, polarization is represented using point dipoles that are 

added to some or all atomic sites of the molecule in the system. Generally atomic sites are atomic 

interaction centers. The interaction between the dipoles and the environment provide the total 

polarization of the system.42,45,48-49 

The idea behind the fluctuating charge model is to treat the atomic partial charges as 

dynamic quantities. This model is able to produce molecular polarizability to all orders in the 

charge moments. Intermolecular and intramolecular charge transfer is allowed by this method and 

the electrostatic energy of the system is minimized at each step to find the instantaneous values of 

partial charges.45 

The Drude oscillator model is also known as the shell model. In this model two charged 

particles are used to implement the polarizable site. One charge particle is defined as the heavy 

core particle and the other particle is a very light or massless shell particle. These two particles are 

connected using a harmonic spring that has a force constant k. The core charge and shell charge 

does not change during the simulation. The shell charge is defined as -qs (qs≥ 0). The core charge 

is defined as +qs. To represent the polarization in this model, the position of the core and shell 

particles change with respect to each other.45, 49 

It is important to point out the main issues with these methods. The polarization 

"catastrophe" is one of the problems associated with the induced point dipole model.45, 48 If two 

point dipoles are aligned closely in the same direction, it can result in unphysical, strong 

interactions, which is known as the polarization catastrophe. One way of avoiding the polarizable 
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catastrophe is by modifying the polarizability tensor so that the polarizability of the point dipoles 

are damped to a finite value at short seperations.45 The main drawback of the fluctuation charge 

model is the nonphysical large charge transfer at large distances resulting in an overestimation of 

the effect resulting in large dipole moments for single molecules.41 In practice, the fluctuation 

charge model allows a redistribution of charge only within each molecule, or just certain parts of 

the molecules.45  In addition, this method does not mimic out of plane polarization in planar or 

linear chemical moieties, because the electronegativity equalization can only proceed along the 

bonds.41 

Comparatively, polarizable force fields are computationally more demanding than non 

polarizable force fields.44-45 Theoretically, these models are supposed to increase the accuracy of 

the simulation results. However, ongoing efforts are devoted to validating the polarizable force 

fields in bimolecular simulations.44, 46, 49-50 Nevertheless, non polarizable force fields still play the 

main role in biomolecular simulations. This dissertation is solely based on non polarizable force 

fields.   

 

1.2.2 Problems Associated with Currently Available Force Fields 

Although there are several well established force fields available for MD simulations of 

biological systems, there is still significant room for improvement.28 In the past few decades people 

have put a significant effort in order to obtain more accurate force field parameters. This includes 

changing the approach of obtaining force field parameters.28 Most of the biologically important 

processes are affected by non bonded interactions. Hence, an accurate description of non bonded 

interactions is one of the main force field challenges.28  
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Binding free energies and protein ligand interaction energies can be used as a test to 

validate non bonded interactions. When MD is applied to computational drug design, it is possible 

to predict correct ligand receptor poses. However, quantitative prediction of binding free energies 

and binding affinities of different ligands is not always possible.51-52 As the non bonded 

interactions are mainly responsible for these ligand receptor binding affinities one can argue that 

the non bonded parameters of currently available force fields need further optimization.53 Protein 

folding is also one of the most important phenomena that have been studied extensively for the 

past three decades.20, 54-57 Most proteins are only slightly stable at room temperature.58-60 Most of 

the thermodynamic properties associated with protein folding require an accurate description of 

non bonded interactions.28 The melting temperature, entropy and enthalpy contributions should be 

correctly predicted when we study protein folding with MD simulations. However, with current 

force fields it is somewhat difficult to reproduce all the thermodynamic properties to compare with 

experiment values.28 

 

1.2.3 Towards the Development of a New Force Field 

Our desire to develop more accurate force field for biomolecular simulations came in the 

early 90’s from the study of cosolvent and biomolecules. Smith and coworkers have performed 

MD simulations of mixtures of small solutes, ions and biomolecules to obtain a deeper 

understanding of the Hofmiester series using several force fields.61-63 Unfortunately, there was no 

straight forward way of validating the observed simulation results with experimental data, because 

there was no distinct binding sites available to obtain experimental structural data. There was a 

clear need of a way to validate computer simulation data with experimental thermodynamic data.28 

In order to overcome this problem, Smith and coworkers have decided to use Kirkwood Buff 
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theory, one of the most important theory of solutions, to relate computer simulation data to 

common thermodynamic properties. At this point I would like to discuss the details of Kirkwood 

Buff theory. 

1.3 Theory of Solutions 

In comparison to gases and solids, liquids and liquid solution mixtures display more 

complicated behavior due to the intermolecular interactions.64 The behavior of gases and solids 

are less problematic as they have very weak and strong intermolecular interactions, respectively. 

Modeling liquids and solution mixtures is more challenging. However, many important systems 

are in the solution phase. Thus, studying properties of the condensed phase has become an 

important research area for many years. 

There are mainly two theories for solutions: McMillan-Mayer theory (MM)65 and 

Kirkwood Buff theory (KB).66 The McMillan-Mayer theory was first derived in 1945 by W. G. 

McMillan and J. E. Mayer.65 In the theory of imperfect gases we use an expansion of the pressure 

in a power series in the density. In MM theory, we use an expansion of the osmotic pressure in a 

power series in the solute density.66 MM theory is exactly a generalization of the theory of 

imperfect gases. For a two component system of solute i and solvent j we have 

𝛽𝜋 = 𝜌𝑖 + 𝐵2
∗(𝑇, 𝜆𝑗)𝜌𝑖

2 + 𝐵3
∗(𝑇, 𝜆𝑗)𝜌𝑖

3 + ⋯ (1.13) 

 

where 𝐵2
∗, 𝐵3

∗ … are the virial coefficients of the osmotic pressure that depend on temperature (T), 

𝜌𝑖 =
𝑁𝑖

𝑉
 is the number density of molecule i and 𝜆𝑗  is solvent activity. 𝐵2

∗ and 𝐵3
∗ require a 

knowledge of the pair correlation function and triplet correlation function, respectively. Thus, 

higher correlation functions are required for further terms in Equation (1.13). Unfortunately, there 

is no clear way of determining higher correlation functions.66 Thus, MM theory can be applied 
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only for very dilute solutions. KB theory, is a more generalized theory that can be applied to 

solution mixtures at any concentration. A large part of this dissertation involves the use of KB 

theory. 

 

1.3.1 Kirkwood Buff Theory/Fluctuation Theory 

Kirkwood-Buff (KB) theory, which is also known as fluctuation theory, was derived by 

John G. Kirkwood and Frank P. Buff and published in 1951.67 Unarguably, KB theory is the most 

important theory of solutions provides the best representation of a solution mixture. This theory 

contains several advantages. KB theory is an exact theory, without any approximations, that can 

be applied to any stable solution mixture that contains any number of components. Additionally, 

it can be applied to molecules of any size and any concentration.28, 66 

In KB theory, we provide relationships between common thermodynamic quantities and 

the particle distribution functions in an equivalent grand canonical ensemble (𝜇VT).66 Hence, it is 

possible to obtain the isothermal compressibility, partial molar volumes, and derivatives of the 

chemical potential of a liquid solution mixture from the details of underlying molecular 

distributions.66  

The pair correlation function, which is also known as radial distribution function (rdf), is 

the most important function in the theory of liquids. The radial distribution function, gij(r), is a 

measure of the probability of finding a j particle at a distance r around a central i particle.66 

Importantly, it is a measure of how the density of a particular species varies with the distance from 

a selected central particle. The radial distribution function can be measured using center of mass-

center of mass or atom-atom distances.  
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Figure 1.3 illustrates a typical rdf that we obtain for a liquid. It is evident that at very short 

distances the rdf is zero. This area is known as the exclusion volume. It means that there is no 

probability to find another particle at this small distance of r due to strong electron-electron 

repulsion. After that we may see the first solvation sphere. This peak represents a high density of 

finding particles from the central particle. The second solvation sphere is usually a broader peak 

than the first solvation sphere. We may see several solvation spheres that vary in character with 

the system. After a few molecular diameters the rdf converges to 1, which indicates the local 

distribution approaches the bulk distribution.   

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.3 Schematic diagram of radial distribution function68 

 

The radial distribution function can be obtained from neutron and X-ray scattering 

experiments.69-71 The rdf is a measure that provides structural information concerning a liquid.66 
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The average number of j particles in a spherical volume of radius r and width dr, around a central 

j particle can be obtained by integration of the rdf to a distance R. This is known as the coordination 

number, 

𝐶𝑁𝑖𝑗 = 𝜌𝑗 ∫ 𝑔𝑖𝑗

𝑅

0

(𝑟)4𝜋𝑟2𝑑𝑟 (1.14) 

 

A KB integral can be defined using the radial distribution function in the grand canonical 

ensemble as shown in Equation (1.15), 

𝐺𝑖𝑗 = 4𝜋 ∫ [𝑔𝑖𝑗
𝜇𝑉𝑇

∞

0

(𝑟) − 1]𝑟2𝑑𝑟 (1.15) 

 

where 𝐺𝑖𝑗 is the Kirkwood Buff integral (KBI) between i and j species, 𝑔𝑖𝑗
𝜇𝑉𝑇

 is the corresponding 

center of mass-center of mass radial distribution function in a grand canonical ensemble. From the 

value and the sign of the KB integrals we can obtain an idea about how the species i and j interact 

with each other in a solution. A value of 𝐺𝑖𝑗 >0 arises due to a favorable net interaction between i 

and j. In other words, an excess of j molecules around i molecules is observed. On the other hand, 

when 𝐺𝑖𝑗 <0 an unfavorable interaction between species i and j is observed and represents a 

depletion of j molecules around a central i molecule. Generally speaking, from the KB integrals 

we can obtain information concerning the local properties of a solution mixture. As explained 

above, typically 𝑔𝑖𝑗 converges to one within a few molecular diameters, except for systems near 

critical points or for solids.28 Hence, the value of 𝐺𝑖𝑗 is mainly determined by small local regions 

around a central i molecule. An excess coordination number 𝑁𝑖𝑗 can be obtained from the KB 

integrals as shown in Equation (1.16). 
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𝑁𝑖𝑗 = 𝜌𝑗𝐺𝑖𝑗 = 𝜌𝑗4𝜋 ∫ [𝑔𝑖𝑗
𝜇𝑉𝑇

∞

0

(𝑟) − 1]𝑟2𝑑𝑟 (1.16) 

 

As we can see above the KB integrals are derived for an open system. Most of the MD 

simulations are performed in closed systems (NpT, NVT, NVE ensembles). For closed systems, 

𝐺𝑖𝑗=-1 and 0 for i=j and i≠j respectively. Therefore, it is not possible to use Equation (1.15) 

directly for closed systems.66 Although, theoretically it is possible to perform MD simulations in 

an open system, there are some complications with the calculations due to particle insertion during 

the simulations.72-75 Thus, a different approach has been considered to obtain KB integrals in a 

closed system (NpT) simulation.76 Here, the idea is to truncate 𝑔𝑖𝑗
𝑁𝑝𝑇

 at a distance R, where the rdf 

converges to one. In this case, an important assumption has to be made that the truncated 𝑔𝑖𝑗
𝑁𝑝𝑇

 

contains all the necessary features of the full 𝑔𝑖𝑗
𝜇𝑉𝑇

.Therefore, we can use Equation (1.17) 

employing the approximation76-78 

𝐺𝑖𝑗 = 4𝜋 ∫ [𝑔𝑖𝑗
𝑁𝑝𝑇

𝑅

0

(𝑟) − 1]𝑟2𝑑𝑟 (1.17) 

 

where, R is the distance that the rdf converges to one. This approximation seems to be a reasonable 

one and a very important assumption for the study of closed systems.66  

The particle fluctuation approach is another method that we can use to obtain the KB 

integrals.66  

𝐺𝑖𝑗 = 𝑉 (
〈𝑁𝑖𝑁𝑗〉 − 〈𝑁𝑖〉〈𝑁𝑗〉

〈𝑁𝑖〉〈𝑁𝑗〉
−

𝛿𝑖𝑗

〈𝑁𝑖〉
)  (1.18) 
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where Ni is the number of i particles inside V, <...> denotes grand canonical averages, and δij is 

the Kronecker delta. Recently, Schnell and coworkers have used an approach based on particle 

number fluctuations to obtain KB integrals for finite volumes.79-81 Here, an expression for the finite 

volume KB integrals are obtained for a finite volume (cube or sphere) and then these integrals are 

linearly extrapolated to obtain a value corresponding to an infinite system.79-81 This approach can 

be beneficial for systems that contain convergence problems with the traditional expression.79 In 

our experience, both approaches result in similar values for the KB integrals. 

Using KB theory it is possible to link macroscopic thermodynamic properties to the 

distribution of the molecules in solution mixtures. For a stable binary solution that contains species 

1 and 2, the relationships between the three KB integrals (𝐺11, 𝐺22, 𝐺12) and the thermodynamic 

properties (𝑉̅1 partial molar volume of species 1, 𝑉̅2 partial molar volume of species 2, 𝜅𝑇 

isothermal compressiblity of the solution mixture, 𝜇12 derivative of the chemical potential of 

species 1 with respect to the number of molecules of species 2 while holding the fixed number of 

molecules 1) can be obtained using following equations.66  

𝑉̅1 =
1 + 𝜌2(𝐺22 − 𝐺12)

𝜂
 (1.19) 

 

𝑉̅2 =
1 + 𝜌1(𝐺11 − 𝐺12)

𝜂
 (1.20) 

 

𝜅𝑇 =
𝜉𝛽

𝜂
 (1.21) 

 

𝜇12 = (
𝜕𝜇1

𝜕𝑁2
)

𝑃,𝑇,𝑁2
′

 (1.22) 
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𝑎11 = (
𝜕𝑙𝑛𝑎1

𝜕𝑙𝑛𝜌1
)

𝑝,𝑇

= 1 + (
𝜕𝑙𝑛𝑦1

𝜕𝑙𝑛𝜌1
)

𝑝,𝑇

=
1

1 + 𝜌1(𝐺11 − 𝐺12)
 (1.23) 

 

𝑓11 = (
𝜕𝑙𝑛𝑓1

𝜕𝑙𝑛𝑥1
)

𝑝,𝑇

= −
𝜌2𝑥1(𝐺11 + 𝐺22 − 2𝐺12)

1 + 𝜌2𝑥1(𝐺11 + 𝐺22 − 2𝐺12)
 (1.24) 

 

where, 

 

𝜂 = 𝜌1+𝜌2 + 𝜌1𝜌2(𝐺11 + 𝐺22 − 2𝐺12) (1.25) 

 

𝜉 = 1 + 𝜌1𝐺11 + 𝜌2𝐺22 + 𝜌1𝜌2(𝐺11𝐺22 + −𝐺12
2 ) (1.26) 

 

where 𝛽 = 1 (𝑅𝑇)⁄ , R is gas constant, 𝑎1 is the molar activity of the species 1, 𝑓1 is the mole 

fraction scale activity coefficient of the species 1, and 𝑥1 is the mole fraction of the species 1. 

 

1.3.2 Inversion of the Kirkwood Buff theory 

Although KB theory is the most important theory of solutions, it was not widely used in 

the early days. At the time this theory was first derived, obtaining the radial distribution function 

for solution mixtures was demanding. The lack of computational power and inaccessibility of the 

experimental diffraction techniques were the main reasons behind the difficulty of obtaining the 

rdf for desired solution mixtures.  

Ben-Naim proposed an inversion of the KB theory in 1977 and this represents a turning 

point in the wide spread popularity of KB theory.66, 82 The idea of the KB inversion procedure is 

to reverse the calculations of the original KB theory. In other words, calculating KB integrals from 

available thermodynamic data. The two theories can be expressed as follows. For KB theory we 

have 

{𝐺𝑖𝑗} → {𝑉̅𝑖, 𝜅𝑇 , 𝜕𝜇𝑖 𝜕𝜌𝑖⁄ } 
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 while for Inversion of KB theory we have 

 

{𝑉̅𝑖, 𝜅𝑇 , 𝜕𝜇𝑖 𝜕𝜌𝑖⁄ } → {𝐺𝑖𝑗} 

 

After the inversion of the Kirkwood Buff theory appeared this theory was more popular 

among scientific community because it is comparatively easier to measure bulk thermodynamic 

properties rather than obtaining the rdf of solution mixtures. The experimental KB integrals can 

then be obtained using experimental quantities as shown in following equations. 

𝐺12 = 𝑘𝑇𝜅𝑇 −
𝜌𝑉̅1𝑉̅2

𝐷
 (1.27) 

 

𝐺11 = 𝑘𝑇𝜅𝑇 −
1

𝜌1
+

𝜌2𝑉̅2
2𝜌

𝜌1𝐷
 (1.28) 

 

where 

𝐷 =
𝑥1

𝑘𝑇
(

𝜕𝜇1

𝜕𝑥1
)

𝑝,𝑇

 (1.29) 

 

However, one major issue with the calculation of KB integrals using thermodynamic data 

is that these calculated KB integrals are very sensitive to the accuracy of the thermodynamic data.28 

To obtain a better understanding of the uncertainty of the KB integrals, it is very important to have 

an idea of a relative importance of the input thermodynamic data. The compressibility, partial 

molar volumes and derivatives of the chemical potential are the thermodynamic properties that we 

use to obtain KB integrals. Derivatives of the chemical potential can be related to the activity 

coefficients and excess Gibbs free energy as shown in following equations. 

𝛽 (
𝜕𝜇1

𝜕𝑙𝑛𝑥1
)

𝑝,𝑇

= 1 + (
𝜕𝑙𝑛𝑓1

𝜕𝑙𝑛𝑥1
)

𝑝,𝑇

= 1 + 𝑓11 (1.30) 
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𝑔𝐸𝑋 =
𝐺𝐸𝑋

𝑁1 + 𝑁2
= 𝑥1𝜇1 + 𝑥2𝜇2 − 𝑥2(𝜇1

𝑃 + 𝑘𝑇𝑙𝑛𝑥1) − 𝑥2(𝜇2
𝑃 + 𝑘𝑇𝑙𝑛𝑥2) (1.31) 

 

𝐷 =
𝑥1

𝑘𝑇
(

𝜕𝜇1

𝜕𝑥1
)

𝑝,𝑇

= 1 +
𝑥1𝑥2

𝑘𝑇
(

𝜕2𝑔𝐸𝑋

𝜕𝑥1
2 )

𝑝,𝑇

 (1.32) 

 

The accuracy of the excess Gibbs free energies or activity coefficients are very important 

to obtain the correct KB integrals for solution mixtures.83 Generally, the contribution from the 

𝑘𝑇𝜅𝑇 term is very small when we calculate 𝐺12 for solution mixtures. The partial molar volume 

data provides a moderate impact on the 𝐺12 values. The key quantity that is needed precisely is the 

excess Gibbs free energy or activity coefficient data since the derivation of KB integrals required 

multiple differentiations of the functions that include these properties.28 Furthermore, it is 

necessary to have a reliable model equation that can accurately fit the experimental data. The 

Wilson, NRTL, van Laar and Redlich-Kister are some of the most popular fitting equations widely 

used to fit activity coefficient data.84 

 

1.4 Towards Accurate Force Fields Based on Kirkwood Buff Theory 

Here, we would like to discuss our ongoing effort to develop more accurate force fields 

based on Kirkwood Buff theory. As we discussed above, current force fields need to be further 

optimized to obtain more reliable simulation data. Although KB theory is the most important 

theory that describes the relative distribution of components in a solution phase, people have not 

used this theory when they derive or test force field parameters for the condensed phase. Generally, 

they use quantum mechanically derived charges and scaled them to obtain macroscopic 

thermodynamic properties.28 Furthermore, most of these force field parameters are based on pure 

liquids and not solution mixtures. Several studies have been carried out to investigate the ability 
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to reproduce the experimental KB integrals with commonly available force fields. These studies 

have shown that experimental KB integrals for solution mixtures were not well reproducible.76, 85-

86 In other words, the correct balance between solvent-solvent, solvent-solute and solute-solute 

molecules are not represented. Furthermore, an incapability to model the correct cosolvent 

biomolecule distribution was also found in these studies.87 Although the obtained KB integrals 

vary drastically among different force fields, most of the other traditional properties such as 

densities, diffusion coefficients, dielectric properties gave somewhat similar values.76, 88 

Previously, Smith and coworkers have performed a case study in order to check the 

accuracy of the current biomolecular force fields by studying binary solution mixtures.28 The 

solutes selected were small molecular analogues for the amino acid side chains. They have studied 

following binary mixtures: methanol-water, benzene-methanol, N-methyl acetamide-water, 

zwitterionic glycine-water to represent two polar molecules, aromatic amino acid side chains, 

peptide group, salt-bridge forming ions, respectively.28 Furthermore, the benzene-methanol 

mixture was chosen to model phenyl alanine molecule in two different environment (solvent 

exposed and buried environment). The KBIs were calculated using the AMBER99sb89, 

CHARMM2790-91, OPLSAA33, 92, GROMOS54a793 force fields. These force fields have been 

continuously updating their force field parameters in an effort to improve their simulation results. 

Some force fields were able to well reproduce the experimental KBI for particular systems. 

However, the most important outcome of this study was that none of the force fields were capable 

of reproducing the correct experimental KBI (excess coordination numbers) for all four systems. 

Generally, the deviation from the experimental data was too positive for the solute-solute excess 

coordination numbers in aqueous mixtures.28 This indicates the lack of a correct representation of 

interaction between the components in solution mixtures.28  
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When we consider current biomolecular force fields, most of the uncertainly lies in the 

representation of the electrostatic interactions.28 Ordinarily, non polarizable force fields use 

Coulomb interactions to calculate electrostatic interactions. The argument is that partial atomic 

charges that are derived from gas phase quantum mechanical calculations are not able to reproduce 

the correct condense phase interactions. Thus, it is very important to use the properties of solution 

mixtures when obtaining partial atomic charges to use in condense phase molecular dynamics 

simulations. Moreover, instead of just studying the properties of pure liquids, we need to focus on 

the properties of solution mixtures over a wide composition range. For example, the free enthalpy 

of solvation and free energy of solvation of model compounds has been used to validate force field 

parameters.21, 36, 94-95 However, these parameters only provide the details about solute-solvent 

interactions. When considering solution mixtures, the solute activity is the main thermodynamic 

property which describes the correct balance between solvent-solvent and solute-solute 

interactions. The composition dependent changes of the solute activity can be used as a guide to 

force field validations.96 The KB integrals are very sensitive to the charge distribution of the 

molecule.97 Based on this idea, Smith and coworkers have been trying to obtain a new force field 

for biomolecular simulations based on Kirkwood Buff integrals.26, 87, 96, 98-105 This force field is 

well known as the Kirkwood Buff derived Force Field (KBFF). It is a non polarizable force field. 

In this approach, the experimental KB integrals were determined and compared with the simulated 

KB integrals. During the parametrization, the partial atomic charges were adjusted to reproduce 

the experimental KB integrals as shown in Figure 1.4. 

Here, indirectly we try to mimic the correct condensed phase polarization using an effective 

charge distribution. We may have to test several charge distributions to obtain the optimized charge 

distribution that gives the closest agreement with the experimental KB integrals. The ultimate goal 
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is to perform more accurate MD simulations of proteins. As a first step, the Kirkwood Buff derived 

force fields were developed to represent small molecular analogues of proteins. Table 1.1 shows 

the completed models to date.  

On the other hand, the KB integrals provide additional information about the solution 

mixtures. For example, the composition dependent changes in the interactions between molecules 

in the system. Some mixtures show higher self-associations at certain compositions. If this to be 

correctly reproduced using models, it will be helpful to validate simulation data compared to 

experiments.28 

 

 

 

 

 

 

 

 

 

 

Figure 1.4 Scenario of parameterizing the force field 

 

Despite all the advantages of using KB theory in the force field parametrization, there are 

some practical difficulties with this approach.28 Comparatively larger simulation boxes may be 

necessary for aggregating systems, although with the current development of computational power 

this is not such a big problem. Sometimes, it is not possible to obtain converged KB integrals with 

short simulations. Therefore, longer simulation times are needed to obtain converged KB integrals.  
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Table 1.1 Currently available KBFF parameters 

 

  

Several charge distributions should be tested to find the optimized effective charges. There 

is no well defined way of adjusting the charges. It is totally dependent on experience and basic 

chemical knowledge. One of the biggest drawbacks is the lack of reliable experimental data for a 

wide range of systems to obtain KB integrals.28    

KB integrals have become one of the most important pieces of data to check the validity 

of condensed phase force field parameters. For example, Mackeral and coworkers have studied 

their new polarizable force field parameters using KB integrals.106 They have been developing a 

polarizable force field based on Drude ocillaters.106 They have done simulations of  NMA water 

mixtures with their polarizable force field and non polarizable force fields. According to their 

simulation results the polarizable force field reproduces the experimental KB integrals more 

Solute Solvent Reference 

Acetone water 98 

Urea water 99 

NaCl water 100 

Guanidinium Chloride water 101 

Methanol water 102 

Amides water 87 

Thiols and sulfides methanol 103 

Aromatics, Heterocycles methanol, water 104 

Alkali halides water 105 

Alcohols water To be published 

Amino acids water To be published 

Alkaline earth halides water To be published 

Esters water, methanol, ethanol To be published 
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accurately compared to an additive force field.106 However, they couldn’t reproduce activity 

derivatives and Gibbs free energy data. In contrast, our KBFF force field could get reasonable 

agreement with all the data, although it is a non polarizable force field.106  

One might argue that polarizable force fields would reproduce the experimental KB 

integrals more accurately than non polarizable force fields. Theoretically, this argument is logical 

because when we include explicit electronic polarization it should represent the charge distribution 

more accurately. Therefore all the interactions should be mimicked correctly. Generally, 

polarizable force fields are more computationally expensive than non polarizable force fields due 

to increase number of charge sites, complex potential energy functions, small time steps, etc.41 

Therefore, the computational cost is one of the main drawbacks associated with polarizable force 

fields when performing longer biomolecular simulations. As explained above, the KBFF non 

polarizable NMA model could reproduce the KB integrals and other important properties with the 

same accuracy as a polarizable model. Therefore, we believe our KBFF models represent the 

balance between solvent and solute interactions more accurately. 

 

1.5 Preferential Solvation in Solution 

Preferential interactions are one of the most promising aspects of liquid solution mixtures. 

Most experiments are carried out in condensed phase. Therefore, solvation is an important concept. 

In a liquid solution mixture, the local composition around any molecule is different from the bulk 

composition, and this idea leads to the concept of preferential interactions and preferential 

solvation.66 It is possible to obtain a clear understanding of preferential solvation using Kirkwood 

Buff theory and it is one of the most important applications of the KB integrals. Ben Naim has 

described a general approach to define preferential solvation based on the concept of solvation 
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thermodynamics and KB integrals.107-109 However, several others have modified the original 

derivation and this has resulted in a great argument regarding the subject.28 

Different approaches for treating preferential solvation in solution mixtures have been 

reported in the literature.110-111 Some of the earliest approaches were not based on the concept of 

solvation thermodynamics. For example, Grunwald and coworkers have studied dioxone-water 

mixtures in the presence of electrolytes.110 Here, they have calculated the standard partial molar 

free energy by changing the solvent.110 According to the traditional concept of solvation, this 

phenomena could only be applied to very dilute systems; such as three (or more component 

system). In 1983, Marcus proposed a model to obtain preferential interactions using quasi lattice, 

quasi chemical theory (QLQC).112 The preferential solvation of ions in mixed solvents were 

studied. Quasi lattice theory uses the number of nearest neighbors (lattice parameter) of the pure 

components to determine the lattice parameters of the components in a solution mixture. The 

number of nearest neighbors of a molecule (solute or solvent) in a mixture can be calculated from 

the weighted mean of the lattice parameters of pure components. Moreover, the theory assumes 

the interaction energies are independent of the other neighbors leading to ideal volumes and an 

ideal entropy of mixing takes place. The relationship between the number of unlike neighbors to 

the number of like neighbors and the interaction energies were given by quasi chemical theory. 

Molar volumes and excess Gibbs energies are required as input in this approach. Several binary 

mixtures were studied using this method.113 Qualitative agreement between QLQC approach and 

KBI approach was discussed using binary solution mixtures.114 UV-visible spectroscopic methods 

can also be used to obtain the preferential solvation parameters of mixed solvents.115-119 In this 

approach, the transition energy value corresponding to the maximum absorption in mixed solvents 

is the measure of local composition. 
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Preferential solvation helps us to understand many chemical and physical properties in 

solution mixtures such as chemical reactivity, spectroscopy, diffusion coefficients, etc. We may 

have a three component solution mixture with a solute S in a mixture of solvents A and B. It would 

be interesting to determine the effect from each solvent component of the system on the properties 

of the solute. Our property of interest (𝜎𝐴𝐵) for solute S in the mixed solvent can be expressed as, 

𝜎𝐴𝐵 = 𝑥𝐴𝜎𝐴 + 𝑥𝐵𝜎𝐵 (1.33) 

 

where 𝜎𝐴, 𝜎𝐵 values are our property of interest in pure solvents A and B, respectively, and 𝑥𝐴, 𝑥𝐵 

are mole fraction of component A and B, respectively.66 Equation (1.33) would be valid for a 

perfect gas system where all the intermolecular interactions are negligible.66 Nevertheless, there 

are non-negligible interactions between the solute S and solvent components. Therefore, it is 

possible to define a spherical volume around the solute molecule S, where the solvent composition 

is different from the bulk composition. This is known as the local mole fraction. With this quantity 

it is possible to rewrite Equation (1.33) as, 

𝜎𝐴𝐵 = 𝑥𝐴
𝐿𝜎𝐴 + 𝑥𝐵

𝐿𝜎𝐵 (1.34) 

 

where 𝑥𝐴
𝐿 and  𝑥𝐵

𝐿  are the local mole fraction of component A and component B, respectively. 

Preferential solvation of the solvent A molecules around solute S can be defined by 𝛿𝐴𝑆, 

𝛿𝐴𝑆 = 𝑥𝐴
𝐿 − 𝑥𝐴 (1.35) 

 

where 𝑥𝐴
𝐿 is the local mole fraction of A component around solute S.  

A general explanation of preferential solvation based on local mole fractions was derived 

by Ben-Naim using KB theory. In particularly, we may consider a binary solution mixture that 
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contains components i and j. It is possible to define a spherical volume around the central particle 

i beyond which the distribution of j molecules around i molecule is equal to the bulk distribution. 

This volume can be defined as the correlation volume 𝑉𝑐𝑜𝑟. The average number of j particles 

around a central i particle within the correlation volume can be defined using Equation (1.36), 

〈𝑁𝑗〉 = 𝑁𝑖𝑗 + 𝜌𝑗𝑉𝑐𝑜𝑟 (1.36) 

 

The local mole fraction of j particles within the correlation volume is then given by, 

𝑥𝑗
𝐿 =

〈𝑁𝑗〉

∑ 〈𝑁𝑘〉𝑘
=

𝑁𝑖𝑗 + 𝜌𝑗𝑉𝑐𝑜𝑟

∑ (𝑁𝑖𝑘 + 𝜌𝑘𝑉𝑐𝑜𝑟)𝑘
 (1.37) 

 

Thus, the preferential solvation of i particle by j particles can be expressed using KB integrals as 

shown in Equation (1.38), 

𝛿𝑥𝑗𝑖 = 𝑥𝑗
𝐿 − 𝑥𝑗 =

𝑥𝑗 ∑ 𝑥𝑘(𝐺𝑖𝑗 − 𝐺𝑖𝑘)𝑘

𝑉𝑐𝑜𝑟 + ∑ 𝑥𝑘𝐺𝑖𝑘𝑘
 (1.38) 

 

There are some attempts to obtain the correlation volume explicitly to determine the 

preferential parameters. However, Ben Naim used an approach to obtain a qualitative 

understanding of the preferential solvation by expanding in a power series about 1/𝑉𝑐𝑜𝑟. The first 

order coefficient of the power series expansion is 𝛿𝑗𝑖
0, 

𝛿𝑗𝑖
0 = 𝑥𝑗

𝐿 − 𝑥𝑗 =
𝑥𝑗 ∑ 𝑥𝑘(𝐺𝑖𝑗 − 𝐺𝑖𝑘)𝑘

𝑉𝑐𝑜𝑟
+ ⋯ (1.39) 

 

The sign of the numerator of the above equation provides the sign of the preferential solvation as 

we approach from an infinitely large distance. According to his view the sign gives the information 

about the relative distribution of species in the solution. Thus, the magnitude is less important. 
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However, various approaches have been suggested to obtain 𝑉𝑐𝑜𝑟 explicitly and these are further 

discussed in Chapter 4. 

In 1997 Matteoli suggested correcting the KB integrals with respect to a reference mixture 

in order to determine the preferential interaction.120 His argument was that for an ideal solution 

mixture, where all the interactions are equal, there should be no preferential interaction. However, 

one can get a value for the preferential interactions using Equation (1.39) due to the difference in 

sizes of the molecules. A great debate has been going on concerning this correction.37 Ben Naim 

has critically explained the meaninglessness of these corrections.37, 121 Furthermore, according to 

his opinion the KB integrals provide information about local densities around a central particle 

without providing any explicit information about molecular interactions.37 He further pointed out 

that preferential interactions and ideal solution behavior are two different properties of the solution 

and no one should be surprised to see preferential solvation in an ideal solution. According to the 

definition of the ideal solution mixtures by Ben Naim the necessary condition is 

𝛥𝑖𝑗 = 𝐺𝑖𝑖 + 𝐺𝑗𝑗 − 2𝐺𝑖𝑗 = (𝐺𝑖𝑖 − 𝐺𝑖𝑗) + (𝐺𝑗𝑗−𝐺𝑖𝑗) = 0 (1.40) 

 

However, Matteoli’s correction has been followed by several other authors.122 A detailed 

discussion of this area can be found in Chapter 4. 

 

1.6 Summary and Organization of the Dissertation 

Computer simulations play a very important role in modern scientific research. We have 

used the most important theory of solution, Kirkwood Buff theory, in order to develop new force 

field parameters and to validate existing force field parameters. Additionally, a promising 

application of KB theory to investigate preferential solvation will be discussed. 
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In Chapter 2 the Kirkwood Buff theory is used to validate a set of charge models. Molecular 

mechanics force fields use relatively simple partial atomic charges that are assigned at nuclear sites 

in order to represent the charge distribution of molecules. This represents a compromise between 

accuracy and computational efficiency. It is important, therefore, to establish whether force fields 

are improved by the addition of these extra charge sites, especially due to the increased 

computational effort that is required. Mobley and coworkers have studied set of chloroethane 

molecules with and without extra charge models. In their study they have used the hydration free 

energy to validate the charge models. Here, we examine if these models represent a significant 

improvement in the known liquid state properties of mixtures of these molecules. In particular, 

approaches based on Kirkwood-Buff theory of solution mixtures have become important tests for 

developing and validating force field parameters. 

In Chapter 3 a Kirkwood Buff derived force field for esters is developed. The main 

objective of this work is to obtain a correct charge distribution to represent the ester linkage of the 

phospholipid molecule. The long term objective is to perform more accurate simulations of protein 

membrane systems. Methyl acetate-water, methyl acetate-methanol, methyl acetate-ethanol, ethyl 

acetate-methanol, methyl propionate-methanol systems are studied to obtain optimized partial 

atomic charges for the ester linkage. We have used alcohol solvents because most of these esters 

are immiscible in aqueous medium. The models are further validated using comparison with other 

thermodynamic and transport properties. 

In Chapter 4 we derive a new approach to obtain preferential interactions in binary and 

ternary mixtures using Kirkwood Buff integrals. Preferential interactions are one of the important 

phenomena that describe the properties of liquid solution mixtures. There are several distinct 

approaches derived to obtain these parameters and a great argument is ongoing about this subject 
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area. Here, we have compared our new approach with the existing approaches. Several binary 

solution mixtures are used to test and validate the different approaches. 

In Chapter 5 we have used an approach based on Fluctuation Solution Theory (FST) to 

investigate the validity of the Kirkwood Superposition Approximation (KSA), which is an 

important approximation that appears in many liquid state theories. Recent advances in FST have 

provided rigorous expressions for integrals over the triplet and pair distributions from bulk 

thermodynamic data. A combination of the FST and experimental rdfs are used to examine the 

KSA at a series of state points for pure water. Moreover, several other approximations between 

triplet and pair distribution are also tested. The analysis indicates, that it is possible to obtain good 

agreement with the fluid thermodynamic result for regions of the phase diagram where the 

compressibility is small. Furthermore, the distant dependent accuracy of these approximations 

were further explored using MD simulation data. 

In Chapter 6 we have provided summary and future work. 
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Chapter 2 -  Are Molecular Mechanics Force Fields Improved by 

Using More Accurate Electrostatics Potentials? 

2.1 Introduction 

Nowadays, molecular dynamics simulations are widely applied to obtain a better 

understanding of complex biological systems.1-15 When using molecular dynamics simulations, 

the precision and accuracy of the simulation results are very important.1, 16-18 The degree of 

consistency of the results attained during the simulations defines the precision, which is 

determined by the degree of sampling.17-19 The accuracy of the simulation results primarily depend 

on the force field parameters.14-15 Therefore, in order to obtain more accurate simulation results, 

people are constantly attempting to improve force field parameters.2, 5-7, 16, 19-23  

Molecular mechanics force fields use relatively simple partial atomic charges that are 

assigned at nuclear sites in order to represent the charge distribution of molecules.2, 5-7, 22, 24-25 This 

represents a compromise between accuracy and computational efficiency.2, 16, 22, 25 It is important, 

therefore, to establish whether force fields can be improved by the addition of extra charge sites 

used to provide an improved description of the real electron density, especially due to the increased 

computational effort that is then required.7, 22, 25-26  

Hydration free energy calculations are one of the widely applied tests for force field 

accuracy.18, 26-34 Most hydration free energy studies have been performed on amino acids side 

chains as it is closely associated with the protein folding.18, 26, 32, 34-35 Nevertheless, recently, diverse 

sets of small molecules have been studied using hydration free energies.26, 28 In particular, 

alchemical free energy calculations have been used to calculate the hydration free energy from 

molecular dynamics simulations.18, 26, 36 This approach involves with the sampling of the molecules 

using molecular dynamics simulations, in water and in the gas phase, together with a series of 
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intermediate unphysical states (alchemical states) spanning the gas and aqueous states.18, 26, 36 

Hence, the potential energy differences between each of these alchemical states can be used to 

calculate hydration free energies.26 Mobley and coworkers have performed a test of force field 

accuracy by calculating hydration free energies of a set of small organic compounds.26, 28 Their 

test set consisted of ethane, biphenyl, and dibenzyl dioxin, as well as a series of chlorinated 

derivatives of each molecule.26 Furthermore, they have investigated several charge models and 

determined their hydration free energies.26 The calculated hydration free energy values were then 

compared with the experimental values.26 Their standard charge model was the AM1-BCC charge 

model. According to their results they found that high quality partial charges from MP2/cc-PVTZ 

SCRF RESP fits to the quantum mechanical electron density (MP2/SCRF charge model) provided 

slightly better agreement with experiment compare to the standard AM1-BCC. The MP2/SCRF 

charge model for chlorinated ethane derivatives was also extended by including additional virtual 

sites designed to more accurately describe the quantum derived molecular electrostatic potentials. 

In particular, virtual sites were added to better represent the potential around the chlorine atoms 

leading to the MP2/ExpSQ-Q charge model.26 

Generally, the calculated hydration free energies were more positive than the experimental 

values for all the charge models.26 This was moderated somewhat for the MP2/ExpSQ-Q charge 

model (with extra charge sites). The addition of virtual sites shifts the hydration free energies of 

many of these compounds to be more favorable. These extra sites provide larger C-Cl bond dipoles 

even while the overall polarity of the molecule remains low. Even for the extra site models the free 

energies were still too positive on the average.26  

However, when we calculate hydration free energies, it should be noted that this quantity 

does not give information about solute-solute interactions. Only solute-solvent and modified 
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solvent-solvent interactions are included in the hydration free energy values. Furthermore, most 

common force fields are developed considering only the properties of pure liquids.6 Therefore, 

when these force fields are used for mixtures the accuracy is initially unknown.  

Here, we examine if the addition of extra (virtual) charge sites represent a significant 

improvement in the known liquid state properties of mixtures containing these molecules. In 

particular, approaches based on the Kirkwood-Buff theory of solution mixtures have become 

important tests for developing and validating force field parameters.37-44 Hence, we have 

determined the Kirkwood-Buff integrals of chloroethane and methanol mixtures using the AM1-

BCC (without extra sites), MP2/SCRF (without extra sites) and MP2/ExpSQ-Q (with extra sites) 

models.  

 

2.2 Methods 

2.2.1 Kirkwood Buff Theory 

The Kirkwood-Buff (KB) theory of solution, also known as Fluctuation Solution Theory, 

was first proposed by Kirkwood and Buff in 1951.45 This theory is an exact theory that can be 

applied to any stable solution mixture.16, 46 This theory has several important advantages such as: 

it can be applied to any number of components, at any concentration, and for any type of 

molecule.16, 19, 45 Basically, using this theory we can relate the microscopic solution structure to 

macroscopic thermodynamic properties.46 The KB inversion procedure was developed by Ben-

Naim.19, 46-47 Here, available thermodynamic properties such as partial molar volumes, chemical 

potential derivatives and isothermal compressabilities can be related to the microscopic 

distribution of molecules in solution.16, 47  

The Kirkwood-Buff integrals (𝐺𝑖𝑗) are defined as, 



44 

𝐺𝑖𝑗 = 4𝜋 ∫ [𝑔𝑖𝑗
𝜇𝑉𝑇(𝑟) − 1]𝑟2

∞

0

 𝑑𝑟 ≈ 4𝜋 ∫ [𝑔𝑖𝑗
𝑁𝑝𝑇(𝑟) − 1]𝑟2𝑑𝑟

𝑅

0

 (2.1) 

 

where gij is the corresponding radial distribution function (rdf).16, 37-39, 46 The distance between 

center of mass of component i and j is represented by r. R is the cut off distance where 𝑔𝑖𝑗
𝑁𝑝𝑇(𝑟) 

converges to one. The integrals measure the deviation of the intermolecular distribution from a 

random or bulk distribution.16, 46 Chemical potentials, partial molar volumes, and compressibilities 

of solution mixtures can be used to obtain the KB integrals according to following equations,42  

𝐺12 = 𝑅𝑇𝑘𝑇 −
𝑉̅1 𝑉̅2

(1 + 𝑓22)𝑉𝑚
 (2.2) 

 

𝐺11 = 𝐺12 +
1

𝑥1
(

𝑉̅2

(1 + 𝑓22)
− 𝑉𝑚) (2.3) 

 

where R is the gas constant, 𝑥1  is the mole fraction of component 1, 𝑉̅1 and 𝑉̅2 are the partial molar 

volumes of component 1 and 2, respectively. 𝑘𝑇 is the isothermal compressibility. 𝑉𝑚 = 𝑉/(𝑁1 +

𝑁2) is the molar volume, and 

𝛽 (
𝜕𝜇2

𝜕𝑙𝑛𝑥2
)

𝑝,𝑇

= 1 + (
𝜕𝑙𝑛𝑓2

𝜕𝑙𝑛𝑥2
)

𝑝,𝑇

= 1 + 𝑓22 (2.4) 

 

with (𝛽 = 1/𝑅𝑇) and f2 is the activity coefficient of the component 2 on the mole fraction scale 

with the pure solvents as the standard states, 𝜇2 is the chemical potential of component 2 .42 

Calculations of the excess molar volumes is used to obtain partial molar volumes from the 

experimental density data as shown in Equation (2.5),42 

𝑋𝑚
𝐸 = 𝑋𝑚 − 𝑥1𝑋𝑚,1

0 − 𝑥2𝑋𝑚,2
0  (2.5) 
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where X is the volume (V) of the solution and 𝑉𝑚,1
0  is the molar volume of pure component 1. The 

excess volume and excess molar Gibbs free energy values were fitted to Redlich-Kister equation 

or Wilson equation.48-50 The Redlich-Kister fitting equation is shown in Equation (2.6),49  

𝑋𝑚
𝐸 = 𝑥1𝑥2 ∑ 𝑎𝑖

𝑛

𝑖=0

(𝑥1 − 𝑥2)𝑖 (2.6) 

 

where ai are fitting constants, x1 and x2 are the mole fractions, and X is either the volume or Gibbs 

free energy. The Wilson fitting equation is shown in Equation (2.7),48  

𝑔 =
𝐺𝐸

𝑅𝑇
= −𝑥1 ln(𝑥1 + 𝛬12𝑥2) − 𝑥2ln (𝑥2 + 𝛬21𝑥1) (2.7) 

 

where 𝐺𝐸 is the excess Gibbs free energy, 𝛬12, 𝛬21 are the Wilson fitting constant. The partial 

molar quantities at any composition can be calculated using the standard relationship as shown in 

Equation (2.8),  

𝑌1 = 𝑋𝑚
𝐸 − 𝑥2 (

𝜕𝑋𝑚
𝐸

𝜕𝑥2
)

𝑝,𝑇

 (2.8) 

 

where X = V or 𝛽G and Y is corresponding to partial molar volume or excess chemical potential 

of component 1, respectively. 

Normally, the KB integrals are not sensitive to the values of the isothermal compressibility 

and for that reason the following equation was used to obtain the isothermal compressibility,51 

𝑘𝑇 = 𝜙1𝑘𝑇,1
0 + 𝜙2𝑘𝑇,2

0  (2.9) 

 

where 𝜙1 = 𝜌1𝑉̅1 is the volume fraction of the component 1 in the solution. Isothermal 

compressibilities for the pure components (𝑘𝑇,1
0 ) were obtained from the literature.52-54 
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2.2.2 Molecular Dynamics Simulations 

All mixtures were simulated using classical molecular dynamics techniques and the 

GROMACS package (version 4.6).55 The simulations were performed in the isothermal isobaric 

(NpT) ensemble at 323 K and 1 bar. The weak coupling techniques was used to modulate the 

temperature and pressure with relaxation times of 0.1 and 5 ps.26 Van der Waals interactions were 

steadily switched off between 0.9 and 1.0 nm.26 The particle mesh Ewald technique was used to 

calculate the electrostatics interactions.56 The real space cut off value was 1.2 nm.26 Bonds were 

constrained using the LINCS algorithm.26 An integration time step of 2 fs was used. Random initial 

configurations were generated in a 10 nm cubic simulation box. The steepest decent method was 

used for energy minimization. This was followed by several equilibration runs and then performed 

a production run of 10 ns. 

Mobley and coworkers have studied several chloroethane molecules with different charge 

models.26 Their approach for calculating hydration free energies used molecules in the gas phase 

and in the aqueous phase, and also at several intermediate states (alchemical states) spanning 

between gas phase and aqueous phase.26, 28 Their general protocol is well described in their 

previous studies.26, 28 We have selected three charge models from their study: AM1-BCC, 

MP2/SCRF, MP2/ExpSQ-Q.26 Their standard charge model was AM1-BCC charge model.26 In 

addition to this standard charge model, they have also used a MP2/SCRF charge model. This model 

is based on MP2/cc-pVTZ calculations with a self consistent reaction field (SCRF) continuum 

electrostatic model to represent the solvent.26 Both of these charge models contain atom centered 

partial atomic charges. The MP2/ExpSQ-Q charge model was an extension of the MP2/SCRF 

charge model with additional virtual charge sites attached to each chlorine atom. The position of 

the virtual charge site is along the carbon-chlorine bond axis at a distance 30% of the carbon 
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chlorine bond length away from the chlorine atom.26 In this study, the AM1-BCC, MP2/SCRF and 

MP2/ExpSQ-Q charge models will be referred to AM1, MP2, MP2-Q respectively. 

In this study we have analyzed chloroethane and methanol mixtures. The main reason that 

we have selected chloroethane was the presence of available experimental thermodynamic data 

required to obtain the experimental KB integrals of chloroethane and methanol mixtures. We have 

studied 1,1 dichloroethane, 1,2 dichloroethane, 1,1,1 trichloroethane and 1,1,2,2 tetrachloroethane 

molecules with methanol using the models developed by Mobley and coworkers based on the 

AMBER force field. These chloroethane and methanol mixtures were studied at 323 K. The 

AMBER methanol model was used in our simulations.57  

In addition to the KB integrals, several other solution properties were examined. The self 

diffusion coefficients were computed using the mean square fluctuation approach.58 Furthermore, 

we have calculated the relative permittivities of these mixtures from the dipole moment 

fluctuations.59 The enthalpy of mixing is computed from Equation (2.10), 

∆𝐻𝑚 = 𝐻𝑠𝑜𝑙 − 𝑥1𝐻1 − 𝑥2𝐻2 (2.10) 

 

where ∆𝐻𝑚 is the enthalpy of mixing, 𝐻𝑠𝑜𝑙 is the molar enthalpy of the solution, 𝐻1and 𝐻2 are the 

molar enthalpy of the pure components 1 and 2, respectively. 

 

2.3 Results 

Partial atomic charges of the three charge models and simulated dipole moments obtained 

from the pure liquids are displayed in Table 2.1. The dipole moment values are not significantly 

different. In particular, after they include additional charge sites (MP2-Q charge model) this results 

in a comparatively higher negative partial atomic charge for Cl. 
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Table 2.1 Partial atomic charges of the three charge models and simulated dipole moment 

values of chloroethane molecules 

 

Molecule C H Cl E μ (D) 

1,1 dichloroethane      

AM1 -0.1124/0.1563* 0.0622/0.0939* -0.1622  2.40 

MP2 -0.2739/-0.0701* 0.1273/0.2289* -0.1335  2.83 

MP2-Q -0.4999/0.5836* 0.1536/0.0504* -0.5814 0.2839 2.61 

1,2 dichloroethane      

AM1 0.0201 0.0761 -0.1722  2.37 

MP2 -0.1247 0.1590 -0.1934  2.85 

MP2-Q 0.0401 0.1053 -0.4159 0.1651 2.83 

1,1,1 

trichloroethane 

     

AM1 -0.1120/0.2640* 0.0730 -0.1236  2.26 

MP2 -0.4914/-0.2683* 0.2247 0.0285  2.38 

MP2-Q -0.6434/0.9553* 0.1926 -0.6638 0.3671 2.17 

1,1,2,2 

tetrachloroethane 

     

AM1 0.1226 0.1135 -0.1180  1.71 

MP2 -0.3949 0.3700 0.0125  1.00 

MP2-Q 0.2145 0.1476 -0.4226 0.2416 1.52 

For asymmetric molecules, charges on the Cl side are denoted using a *. In these simulations the 

number of exclusions is equal to 3. 

 

Computational cost is another important factor that we have to consider with force fields. An 

increase in the number of charge sites is expected to result in an increase in computational cost. 

Hence, the number of nanoseconds per day was calculated for simulation of the pure chloroethane 

compounds. The timings suggest that the MP2-Q charge model was computationally more  
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Table 2.2 Simulated and experimental properties of the pure liquid chloroethanes. All 

simulation and experimental data correspond to 323 K unless otherwise noted.  𝜌 (g/cm-3), D 

(10-5 cm2/s), Epot (kJ/mol), Epot
(inter) (kJ/mol),ε indicate the density, diffusion coefficient, 

potential energy per molecule , intermolecular interaction energy per molecule and relative 

permittivity, respectively. 

 

System Property Expt. Molecular dynamics 

AM1 MP2 MP2-Q 

1,1 dichloroethane ρ 1.1860 1.11 1.14 1.14 

D  4.01 3.34 3.47 

Epot  -18.88 -7.20 -967.02 

Epot
(inter)  -26.09 -27.65 -28.65 

ε  6 10 10 

1,2 dichloroethane ρ 1.2050 1.15 1.19 1.19 

D (313 K) 2.1161 3.04 2.39 2.61 

D   3.39 2.37 2.53 

Epot  -6.60 -2.58 -322.96 

Epot
(inter)  -28.78 -34.77 -33.61 

ε  9 15 12 

1,1,1 trichloroethane ρ 1.2950 1.32 1.32 1.30 

D  2.07 2.02 2.34 

D (303 K) 1.5862 1.52 2.01 2.34 

Epot  -34.91 15.82 -2200.17 

Epot
(inter)  -31.26 -31.89 -31.11 

ε  5 5 5 

1,1,2,2 

tetrachloroethane 

ρ 1.5450 1.53 1.55 1.53 

D  1.16 1.08 1.19 

Epot  -11.95 46.55 -925.35 

Epot
(inter)  -39.99 -40.79 -40.77 

ε  4 2 4 
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expensive (about 10% for mixtures and 20% for pure systems) compared to the AM1 and MP2 

charge models. However, this does not represent a prohibitively higher computational cost. 

The properties of the pure chloroethane liquids are listed in Table 2.2 and compare to 

experimental values where possible. These results do not show a clear improvement in the 

simulated density values after the inclusion of extra charge sites on chlorine atoms. In fact, all of 

these charge models predict somewhat similar results for the density. 

We could not find experimental self diffusion coefficients at 323 K. The experimental self 

diffusion coefficients for pure 1,2 dichloroethane and 1,1,1 trichloroethane molecules at 313 K 

and 303 K, respectively are available.61-62 Therefore, we have performed several additional MD 

simulations for these two systems. The self diffusion coefficients predicted using the MP2 charge 

model is closer to the experimental value than the other two charge models. The MP2 and MP2-Q 

charge models result in very similar self diffusion coefficients. 

The calculated potential energy per molecule values show a very large negative value for 

the MP2-Q charge model compared to the other two charge models. It is due to the higher number 

of interactions within the chloroethane molecules when using the extra virtual charge sites. 

Although we use exclusions of three bonds when performing the molecular dynamics simulations, 

the extra virtual charge sites are not included in the exclusion rules. Hence, we have calculated 

potential energy values corresponding to intermolecular interactions, Epot
(inter) by removing all the 

intramolecular contribution to the total potential energy. Thus, we observe all three charge models 

result in very similar intermolecular interaction energies. 

The three charge models predict very similar values for the above compared properties. 

Therefore, it is difficult to distinguish which charge model provides the best representation of the 

liquid structure based on these properties. 
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The relative free energy for rotation around the central dihedral angles were computed in 

order to explore whether the extra charge sites effect the conformational preferences of the 

chloroethane molecules. The relative free energy (W) can be determined from the probability 

distribution (P), using 𝑊 = −𝑅𝑇 ln 𝑃.  

 

Figure 2.1 Relative free energy of rotation around H-C-C-H dihedral angle of 1,1,2,2 

tetrachloroethane molecule for x1=0.4 simulation. Simulation data correspond to 323 K  

 

We have selected a solution mixture contains 1,1,2,2 chloroethane as this molecule contains four 

extra charge sites. The relative free energy for rotation around the H-C-C-H dihedral angle of 

1,1,2,2 tetrachloroethane molecule is shown in Figure 2.1. The MP2 charge model results in a 

comparatively high free energy for the gauche (g+ and g-) conformations. This can be due to the 



52 

higher positive charge on the H atom in MP2 charge model. Hence, g+ and g- conformations are 

less stable. However, the AM1 and MP2-Q charge distributions result in very similar free energies 

concluding that the extra charge sites do not display a significant effect on the conformational 

changes.  

Furthermore, a conformational analysis of 1,2 dichloroethane and 1,1,2,2 tetrachloroethane 

molecules was performed and the results are given in Table 2.3. The results correspond to mixtures 

of 0.4 mole fraction chloroethane and pure system. The same behavior of the conformational 

distribution can be observed with the other compositions as well. We have studied Cl-C-C-Cl and 

H-C-C-H dihedral angles of 1,2 dichloroethane and 1,1,2,2 tetrachloroethane molecules, 

respectively. In the 1,2 dichloroethane system we observe a similar conformational distribution 

when comparing all three charge models. In the 1,1,2,2 tetrachloroethane system we see a 

relatively low probability for g+ and g- conformations in the MP2 charge model. Therefore, the 

most probable conformation is the trans conformation. This can be due to the higher positive 

charge on H atoms in the 1,1,2,2 tetrachloroethane molecule as assigned in the MP2 charge model 

In this case, the trans conformation is more stable than the g- and g+ conformations. 

 However, the trans conformation ought to be the most stable conformation conformation 

as it gives the minimum steric repulsion. According to the results, we observe the opposite 

behavior. This can be due to solvation effects. It might be possible to observe the most probable 

trans conformations in gas phase, where the intermolecular interaction are very low. But in the 

condensed phase intermolecular interaction play a major role in conformational equilibria. 
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Table 2.3 A conformational analysis of Cl-C-C-Cl and H-C-C-H dihedral angles at 323 K 

 

The methanol-methanol Kirkwood-Buff integrals are displayed in Figure 2.2. When we 

increase the chloroethane mole fraction we observe a higher aggregation of methanol molecules 

as indicated by a higher positive value for the KB integrals. For the 1,1,2,2 tetrachloroethane 

system we did not find the experimental thermodynamic data required to obtain the experimental 

KB integrals. However, we have included the results obtained for 1,1,2,2 tetrachloroethane-

methanol system, as we can observe similar trends compare to the other three systems. The AM1 

charge model reproduced the experimental KB integrals more closely for the 1,1 dichloroethane 

and 1,2 dichloroethane systems. In contrast, the MP2-Q charge model is best for the 1,1,1 

trichloroethane system. However, all three charge models overestimate the methanol aggregation 

for the 1,1,1 trichloroethane system with an increase in chloroethane mole fraction. Clearly, there 

is no significant improvement in the simulated KB integrals with the MP2-Q charge model. 

The methanol-chloroethane KB integrals are displayed in Figure 2.3. Again there is no 

notable difference in the KB integrals between the MP2 and MP2-Q charge models except for the 

1,1,1 trichloroethane-methanol system.  

Chloroethane

Mole fraction 

Charge 

model 

1,2 dichloroethane 

Cl-C-C-Cl 

1,1,2,2 tetrachloroethane 

H-C-C-H 

  g-/g+ Trans g-/g+ trans 

0.4 AM1 0.791 0.209 0.649 0.350 

MP2 0.847 0.152 0.359 0.641 

MP2-Q 0.791 0.209 0.663 0.336 

1.0 AM1 0.789 0.210 0.706 0.294 

MP2 0.710 0.289 0.211 0.789 

MP2-Q 0.781 0.220 0.539 0.461 
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Figure 2.2 Methanol-methanol KB integrals (G22, cm3/mol) for 1,2 dichloroethane (top left), 

1,1 dichloroethane (top right), 1,1,1 trichloroethane (bottom left), 1,1,2,2 tetrachloroethane 

(bottom right) systems as a function of chloroethane mole fraction (x1). The solid lines 

correspond to the experimental data. Crosses, squares and circles correspond to simulation 

data of AM1, MP2, MP2-Q charge models respectively.  

 

The chloroethane - chloroethane KB integrals are shown in Figure 2.4. Here, also we do 

not observe a significant improvement in the simulation results after the inclusion of additional 

charge sites on chlorine atoms. 
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Figure 2.3 Chloroethane-methanol KB integrals (G12, cm3/mol) for 1,2 dichloroethane (top 

left), 1,1 dichloroethane (top right), 1,1,1 trichloroethane (bottom left), 1,1,2,2 

tetrachloroethane (bottom right) systems as a function of chloroethane mole fraction (x1). 

The solid lines correspond to the experimental data. Crosses, squares and circles correspond 

to simulation data of AM1, MP2, MP2-Q charge models respectively. 

 

The simulated KB integrals provide information concerning the variation in the relative 

distribution of molecules over all solvation shells. It is interesting to determine the contribution 

from the first solvation shell to the full KB integrals. Most importantly, we wanted to investigate 

whether, after including extra charge site on the Cl atoms, we can observe a significant difference 

in the local arrangement of the molecules. Figure 2.5 shows the first shell KB integrals compared 

to the full KB integral. We can see that there is a correlation between the first shell KB integrals  
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Figure 2.4 Chloroethane-chloroethane KB integrals (G11, cm3/mol) for 1,2 dichloroethane 

(top left), 1,1 dichloroethane (top right), 1,1,1 trichloroethane (bottom left), 1,1,2,2 

tetrachloroethane (bottom right) systems as a function of chloroethane mole fraction (x1). 

The solid lines correspond to the experimental data. Crosses, squares and circles correspond 

to simulation data of AM1, MP2, MP2-Q charge models respectively. 

 

and the full KB integrals. However, we do not observe a significant change in the data when using 

additional charge sites. Furthermore, the relationship between long range and short range KB 

integrals is not 1:1.  
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Figure 2.5 The correlation between simulated KB integrals and the contribution from the 

first shell. Crosses, squares and circles correspond to simulation data of AM1, MP2, MP2-Q 

charge models respectively. Black, red and blue symbols correspond to methanol-mathanol, 

chloroethane-chloroethane, chloroethane-methanol KB integrals respectively for all the 

compositions. Crosses, squares and circles correspond to simulation data of AM1, MP2, 

MP2-Q charge models respectively. 

 

The calculated relative permittivities of these mixtures are displayed in Figure 2.6. We can 

see that the AM1 charge model displayed different results for the 1,2 dichloroethane-methanol and 

1,1 dichloroethane-methanol systems than the MP2 charge models. However, we do not observe 

a significant difference for the MP2 and MP2-Q charge model. Unfortunately, we do not have 

experimental relative permittivity values to compare. 
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Figure 2.6 Relative permittivity (ε) for 1,2 dichloroethane (top left), 1,1 dichloroethane (top 

right), 1,1,1 trichloroethane (bottom left), 1,1,2,2 tetrachloroethane (bottom right) systems 

as a function of chloroethane mole fraction (x1). Crosses, squares and circles correspond to 

simulation data of AM1, MP2, MP2-Q charge models respectively. 

 

The self diffusion coefficients for the chloroethane and methanol molecules are displayed 

in Figure 2.7 and Figure 2.8, respectively. Unfortunately, the corresponding experimental values 

are unavailable. We do not observe significant difference in chloroethane self diffusion 

coefficients for the three charge models in the 1,1,1 trichloroethane and 1,1,2,2 tetrachloroethane 

systems.  
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Figure 2.7 Chloroethane self diffusion coefficient (D, 10-5 cm2/s) for 1,2 dichloroethane (top 

left), 1,1 dichloroethane (top right), 1,1,1 trichloroethane (bottom left), 1,1,2,2 

tetrachloroethane (bottom right) systems as a function of chloroethane mole fraction (x1). 

Crosses, squares and circles correspond to simulation data of AM1, MP2, MP2-Q charge 

models respectively. 

 

However, the AM1 charge model result in a higher chloroethane self diffusion coefficient 

for the 1,2 dichloroethane and 1,1 dichloroethane systems. Interestingly, for all of these systems 

we do not see any significant difference in chloroethane self diffusion coefficients between the 

MP2 and MP2-Q charge models. Furthermore, all three models predict very similar methanol self 

diffusion coefficients. 
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Figure 2.8 Methanol self diffusion coefficient (D, 10-5 cm2/s) for 1,2 dichloroethane (top left), 

1,1 dichloroethane (top right), 1,1,1 trichloroethane (bottom left), 1,1,2,2 tetrachloroethane 

(bottom right) systems as a function of chloroethane mole fraction (x1). Crosses, squares and 

circles correspond to simulation data of AM1, MP2, MP2-Q charge models respectively. 

 

The enthalpy of mixing values for these mixtures are displayed in Figure 2.9. Generally, 

the enthalpy of mixing values are sensitive to the charge distribution.63 However, with these 

chloroethane-methanol mixtures we cannot observe a significantly different enthalpy of mixing 

value with the different charge models. In 1,2 dichloroethane system we can see that the AM1 

charge model produces a comparatively higher enthalpy of mixing value compared to the other 

two models. Unfortunately, the experimental enthalpy of mixing values are also not available. 
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Figure 2.9 Simulated enthalpy of mixing values (ΔHm, kJ/mol) for 1,2 dichloroethane (top 

left), 1,1 dichloroethane (top right), 1,1,1 trichloroethane (bottom left), 1,1,2,2 

tetrachloroethane (bottom right) systems as a function of chloroethane mole fraction (x1). 

Crosses, squares and circles correspond to simulation data of AM1, MP2, MP2-Q charge 

models respectively. 

 

 

2.4 Conclusions 

The results indicate a significantly higher degree of extra association between chloroethane 

and methanol molecules when using the MP2 charge models (with and without extra sites).The 

comparison of experimental and simulation KB integrals from the MP2 charge models shows a 

slight improvement in the simulation results when including the virtual sites. However, the AM1 
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charge model reproduces the experimental KB integrals more accurately than the MP2 charge 

models. It is difficult to draw clear conclusions for the other calculated properties of the three 

charge models. This can be due to the low polarity of the chloroethane molecules. Therefore, it 

may not be possible to observe significant change in the observed properties with the inclusion of 

extra charge sites. However, using extra charge sites, derived from QM calculations, clearly does 

not necessarily provide more accurate condensed phase properties for liquid mixtures. 
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Chapter 3 - Kirkwood Buff Derived Force Fields for Esters 

3.1 Introduction 

Recently, we have been using Kirkwood Buff (KB) theory to develop new force fields to 

perform more accurate biomolecular simulations.1-10 We have developed force field parameters 

for a set of small organic molecules that can be used as small molecule analogues for large 

macromolecules. As a consequence, we have determined all the force field parameters required 

for peptides and proteins. In order to perform molecular dynamics simulations of lipid membrane 

systems, we have decided to develop force field parameters for lipids. Lipid bilayers are very 

important components in cells.11-16 They mainly act as barriers to maintain the balance of 

molecules inside and outside the cells.12, 17-18 Protein lipid membrane interactions are also very 

important.12, 14-15, 19-24 Using our new force field we expect to obtain more reliable simulation data. 

As a first step to obtain force field parameters for lipid molecules we have partitioned these 

molecules in to four groups; the phosphate group, the glycerol group, hydrocarbon chain and an 

ester group. Then we have attempted to obtain force field parameters for these small molecule 

analogues. In this work, we present the force field parameters for the ester linkage. 

There are several force fields of esters that have been developed in past few years. Kamath 

and coworkers have developed the TraPPE-UA force field for esters.25 They have applied the 

TraPPE-UA force field for the determination of vapor liquid equilibria of carboxylate esters.25 In 

this work they have calculated vapor-liquid coexistence curves, vapor pressures, boiling points 

and critical points of methyl acetate, ethyl acetate, methyl propionate and vinyl acetate. 

Furthermore, pressure-composition diagrams have been calculated for methyl acetate + ethyl 

acetate at 313.15 K and methyl acetate + methanol at 323.15 K. The main objective of this TraPPE 

force field is transferability. This means that the parameters for a particular functional group do 
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not change from molecule to molecule. In their work the Lennard-Jones parameters were taken 

from the TraPPE-UA force field for alkanes,26 alcohols,27 ethers28 and carboxylic acids25, and they 

have used partial charges obtained from the OPLS-UA29 force field. They have mainly developed 

this force field to determine vapor-liquid equilibria of carboxylate esters.25 There are a lot of 

industrial applications of esters such as lubricants, plasticizers, agricultural chemicals, plastic 

production, etc.25 Thus, vapor-liquid equilibrium data are essential for the design of separation 

processes required in the purification of esters. Using this force field, phase equilibria of different 

pure linear esters are accurately predicted. In contrast, overestimation of the bubble pressure has 

been observed for mixtures.25  

OPLS (optimized potential for liquid simulations) is one of the popular force fields that has 

been used in computer simulations for a long time.30-35 In 1991, they provided force field 

parameters for esters.29 They have used Monte Carlo simulations to obtain parameters for liquid 

methyl acetate at 25 °C.29  Here, they have chosen potential parameters in order to reproduce 

experimental thermodynamic and physical properties.29 The OPLS parameters were developed 

using calculations on gas phase molecules.29 After that, these charges were adjusted in order to 

reproduce experimental and thermochemical and structural information for liquids.29 A Mulliken 

population analysis of 6-31G(d) wave functions were used initially to obtain the atomic charges of 

the molecules.29 In this study, they have performed a Monte Carlo simulations for the pure liquids 

and checked for densities and heat of vaporization during the fitting process.29 In addition, they 

have calculated the isothermal compressibility, the coefficient of thermal expansion, and the heat 

capacity.29 The main objective was to obtain relevant parameters to represent common solvents 

and terminal groups for polypeptides.29 When they derive the parameters only liquid phase 
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properties at room temperature have been considered.29, 36 Therefore, the transferability of this 

model is potentially problematic.  

SPASIBA is another force field that has developed parameters for esters in order to 

investigate biomolecules related to lipids.37 They have derived potential energy parameters by 

minimizing the average error between the observed and calculated structures, conformational 

energy differences, vibrational frequencies and predicted quantities for a series of esters.37 Charges 

were derived from ab initio full geometry optimizations with the B3LYP/6-31G** level of theory 

for esters. In their study, they have investigated the moment of inertia and dipole moment to 

compare with the experimental values.37 The calculated values were in good agreement with the 

experimental values.37 

A new transferable united atom force field for esters was developed as an extension of the 

transferable AUA4 force field.38 The main objective of the AUA4 force field was to obtain phase 

equilibria of pure compounds and mixtures.38 They have developed parameters for many major 

organic molecules including linear alkanes,39 branched alkanes,40 olefins,41 benzene,42 etc. Partial 

atomic charges were calculated using an ab initio calculations.38 Here, they have place the selected 

molecule in a dielectric media that has the dielectric constant of the neat liquid for the given 

molecule, and the partial charges were adjusted to reproduce the dipole moment.38 The main 

objective of this force field development was to accurately predict the phase equilibrium of pure 

esters as well as mixtures.38 They have investigated several pure compound properties such as 

saturated liquid densities, vapor pressures, vaporization enthalpies, critical properties, liquid-vapor 

surface tensions.38 Moreover, they have obtained good agreement for the estimation of binary-

mixture pressure composition diagrams.38 Here, they have not introduced empirical binary 

interaction parameters.38 Thermophysical properties of compounds that contain esters are widely 
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applied in industry such as for food chemistry, pharmaceutics, oil and gas industry. Therefore, in 

order to design the industrial processes it is very useful to have a good understanding of relevant 

phase equilibria.38  

MacKerell and coworkers have also derived parameters for esters, with the overall goal of 

extending the CHARMM force field for lipids.13 CHARMM is one of the most promising force 

fields for the simulation of biological systems.43-48 They have used methyl acetate, ethyl acetate 

and methyl propionate as model compounds.13 Ab-initio calculations were used to obtain 

interaction parameters.13 They have tested the interaction parameters using pure liquid simulations. 

Here, they have calculated the heat of vaporization and molecular volume to compare with 

experimental values. Energy differences between conformers were used to modify torsional 

parameters. Moreover, intramolecular parameters were fit to the experimental geometry and 

frequencies.13 They have recently updated their parameters in order to reproduce experimental 

properties for several lipid types.49  

There are several different approaches to obtain force field parameters.43 In our previous 

work, we have pointed out many draw backs of currently available force fields.50 As a result we 

have started to develop a new force field for biomolecular simulations.50-51 Our approach is quite 

different from the traditional approaches and we mainly consider properties of solution mixtures.50-

51 We have been using Kirkwood-Buff theory to help obtain force field parameters.51 Nowadays, 

this theory is widely applied to study solution mixtures and we can obtain proper relationships 

between KB integrals and solution activities, which is a very important factor that we can use in 

force field development.50 Our previous studies have shown that the KB derived force fields can 

reproduce the experimental behavior of many solution mixtures more correctly than other force 

fields.50   
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3.2 Methods 

In this study, several acetate mixtures were simulated using classical molecular dynamics 

simulations. Mainly, we have used methyl acetate-water, methyl acetate-methanol, methyl acetate-

ethanol, ethyl acetate-methanol, methyl propionate-methanol systems to optimize the partial 

atomic charges for the ester linkage. We have used alcohol solvents because most of these esters 

are immiscible in aqueous medium. On the other hand alcohols are polar solvents. In this study, 

all the simulations were carried out at 298 K and 1 atm unless stated otherwise. 

 The KB integrals (Gij) are defined by Equation (3.1), 

𝐺𝑖𝑗 = 4𝜋 ∫ [𝑔𝑖𝑗
𝜇𝑉𝑇(𝑟) − 1]𝑟2

∞

0

 𝑑𝑟 ≈ 4𝜋 ∫ [𝑔𝑖𝑗
𝑁𝑝𝑇(𝑟) − 1]𝑟2𝑑𝑟

𝑅

0

 (3.1) 

where gij is the corresponding radial distribution function (rdf). For a closed system, KB integrals 

can be calculated using above approximation. In this study, we have used different approach to 

obtain the simulated KB integrals rather than the traditional approach. Here, an expression for the 

finite-volume KB integrals are used, and then these integrals are linearly extrapolated to obtain a 

value corresponding to an infinite system.52-54 The main reason that we used this method was due 

to convergence problems associated with the traditional expression. In particular, we observed 

possible convergence problems with the water-methyl acetate system. Using this new approach 

we could obtain the same KB integrals using a different method. Schnell and coworkers have used 

this method to obtain the KB integrals according to, 

𝐺𝑖𝑗 = 𝑉 (
〈𝑁𝑖𝑁𝑗〉 − 〈𝑁𝑖〉〈𝑁𝑗〉

〈𝑁𝑖〉〈𝑁𝑗〉
−

𝛿𝑖𝑗

〈𝑁𝑖〉
) (3.2) 
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where Ni is the number of i particles inside V, <...> denotes grand canonical ensemble averages, 

and δij is the Kronecker delta function. Hence, particle number fluctuations have been used to 

obtain the KB integrals.52-54  

A Kirkwood-Buff analysis of the experimental data for all the acetate mixtures was carried 

out as explained by Ben-Naim and in our previous studies.1-4, 7, 9 Experimental activities and 

densities were taken from the literature for all acetate mixtures.55-59 A simple mixture rule based 

on volume fractions was used to obtain the compressibilities.7, 60-61 Partial molar volumes were 

determined from the experimental density data by calculating the excess molar volume, 

𝑋𝑚
𝐸 = 𝑋𝑚 − 𝑥2𝑋𝑚,2

0 − 𝑥1𝑋𝑚,1
0  (3.3) 

 

where X is the volume (V).  𝑉𝑚 = 𝑉/(𝑁1 + 𝑁2) is the molar volume of the solution and 𝑉𝑚,1
0  is the 

molar volume of pure component 1. 

The excess volume and excess molar Gibbs free energy values of acetate-alcohol and 

acetate-water systems were fitted to the Redlich-Kister equation or NRTL equation.62 The Redlich-

Kister fitting equation is shown in Equation (3.4),  

𝑋𝑚
𝐸 = 𝑥1𝑥2 ∑ 𝑎𝑖

𝑛

𝑖=0

(𝑥1 − 𝑥2)𝑖 (3.4) 

 

where ai are fitting constants, xi are mole fractions, and X is either the volume or Gibbs free energy. 

Partial molar quantities at any composition are then given by the standard relationship, 

𝑌1 = 𝑋𝑚
𝐸 − 𝑥2 [

𝜕𝑋𝑚
𝐸

𝜕𝑋2
]

𝑝,𝑇

 (3.5) 
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where X can be V or βG giving rise to the properties (Y) corresponding to the partial molar volume 

(𝑉̅) and excess chemical potential (β𝜇𝐸 = 𝑙𝑛𝑓) respectively. The NRTL equation is shown in 

Equation (3.6), 

𝑔𝐸

𝑅𝑇
= 𝑥1𝑥2 (

𝜏21𝐺21

𝑥1 + 𝑥2𝐺21
+

𝜏12𝐺12

𝑥2 + 𝑥1𝐺12
) (3.6) 

 

𝑙𝑛𝛾1 = 𝑥2
2 [𝜏21 (

𝐺21

𝑥1 + 𝑥2𝐺21
)

2

+
𝜏12𝐺12

(𝑥2 + 𝑥1𝐺12)2
] (3.7) 

 

𝑙𝑛𝛾2 = 𝑥1
2 [𝜏12 (

𝐺12

𝑥2 + 𝑥1𝐺12
)

2

+
𝜏21𝐺21

(𝑥1 + 𝑥2𝐺21)2
] (3.8) 

 

where 𝜏12 = (𝑔12 − 𝑔22)/𝑅𝑇; 𝜏21 = (𝑔21 − 𝑔11)/𝑅𝑇; 𝐺12 = exp (−𝛼12𝜏12); 𝐺21exp (−𝛼12𝜏21) 

Here, we have indicated the standard notation of the NRTL equation (Equation 3.6-Equation 3.8). 

G12 and G21 values are determined using the above expressions and are not KB integrals. 

Chemical potentials, partial molar volumes, and compressibilities of the solution mixtures 

can be related to the KB integrals according to following equations,63 

𝐺12 = 𝑅𝑇𝜅𝑇 −
𝑉̅1 𝑉̅2

(1 + 𝑓22)𝑉𝑚
 (3.9) 

 

𝐺11 = 𝐺12 +
1

𝑥1
(

𝑉̅2

(1 + 𝑓22)
− 𝑉𝑚) (3.10) 

 

where R is the gas constant, x1 is the mole fraction of component 1, 𝑉𝑚 is the molar volume, and 

𝛽 (
𝜕𝜇2

𝜕𝑙𝑛𝑥2
)

𝑝,𝑇

= 1 + (
𝜕𝑙𝑛𝑓2

𝜕𝑙𝑛𝑥2
)

𝑝,𝑇

= 1 + 𝑓22 (3.11) 
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with (𝛽 = 1/𝑅𝑇) and f2 equal to the solute activity coefficient on the mole fraction scale with the 

pure solute as the standard state. Using this approach suggested by Ben-Naim, experimental 

densities, compressibilities, and activity coefficients were used to determine the experimental KB 

integrals.63 Hence, we use experimental KB integrals, obtained using common thermodynamic 

data, as the target data for developing the force field parameters. 

In this study we have used the SPC/E64 water model together with the KBFF methanol and 

ethanol models.6, 65 All the Lennard-Jones parameters were taken from previous studies.5-6 Bonded 

parameters were taken from the GROMOS force field.66 Acetate dihedral parameters were 

obtained using Equation (3.12).  

𝑉𝜓 = 𝑘𝜓[1 + cos (𝑛𝜓 − 𝛿)] (3.12) 

 

where 𝑉𝜓 is dihedral interaction energy, 𝑘𝜓 is force constant, 𝑛 is periodicity and 𝛿 is phase. The 

carbonyl O-C-O-CH3 dihedral parameters were obtained from fitting to the rotational potential 

curves obtained from QM calculations.67 The corresponding rotational barrier around 90° is about 

14.6 kcal/mol. For the ethyl acetate molecule the C-O-CH2-CH3 dihedral angle was also 

determined from fitting to QM calculations.68 The corresponding rotational barrier around 0° is 

then about 6.84 kcal/mol. For methyl propionate molecule C-C-C-O dihedral angles were obtained 

from our previous work considering the glutamine molecule. The partial atomic charge on acetate 

atoms were then adjusted to reproduce the experimental KB integrals.  

All the simulations were performed in the isothermal isobaric (NpT) ensemble at 300 K 

and 1 atm unless stated otherwise using Gromacs simulation package (version 4.6).69 Berendsen70 

pressure coupling and v-rescale71 temperature coupling techniques were used with relaxation times 

of 5 and 0.1 ps, respectively. All bonds were constrained using Lincs and a relative tolerance of 
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10-4, allowing a 2 fs time step for integration of equation of motions.72 The particle mesh Ewald 

technique was used to calculate the electrostatic interactions.73 Random initial configurations were 

generated in a 10 nm cubic simulation box. All the systems were equilibrated (2 ns) and then 

performed a production run of 20 ns. 

In this study we have determined self diffusion coefficients using the mean square 

displacement approach.74 Dielectric constant values were calculated using the dipole moment 

fluctuations, using a reaction field permittivity of 𝜀𝑅𝐹 = ∞ corresponding to the Ewald conducting 

boundary conditions.75 Furthermore, enthalpy of mixing values were determined using the 

following equation, 

∆𝐻𝑚 = 𝐻𝑠𝑜𝑙 − 𝑥1𝐻1 − 𝑥2𝐻2 (3.13) 

 

where ∆𝐻𝑚 is the enthalpy of mixing, 𝐻𝑠𝑜𝑙 is the molar enthalpy of the solution, 𝐻1 and 𝐻2 are the 

molar enthalpy of the pure components 1 and 2, respectively. 

The Kirkwood Buff derived force field (KBFF) is a non polarizable force field. Bonded 

parameters were taken from the GROMOS96 force field. Non bonded parameters are listed in 

Table 3.1. Bonded parameters are listed in Table 3.2. Non bonded van der Waals interactions were 

calculated using a Lennard-Jones (LJ) potential and electrostatic interactions were calculated using 

a Coulombic potential. The combination rules were applied in order to determine cross terms; 

𝜀𝑖𝑗 = (𝜀𝑖𝑖𝜀𝑗𝑗)1/2 and 𝜎𝑖𝑗 = (𝜎𝑖𝑖𝜎𝑗𝑗)1/2. 
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Table 3.1 Nonbonded parameters for the models 

 

After significant trial and error the best simulated KB integrals were obtained when using 

the charge distribution displayed in Table 3.1.  

  

Model Atom ε 

(kJ/mol) 

σ 

(nm) 

q 

(e) 

methyl acetate     

KBFF C 0.330 0.336 0.585 

 Carbonyl O 0.560 0.310 -0.535 

 CH3 (C) 0.867 0.374 0.000 

 O 0.650 0.319 -0.4 

 CH3 (O) 0.867 0.374 0.35 

ethyl acetate     

KBFF CH3(CH2) 0.867 0.374 0 

 CH2(0) 0.410 0.407 0.35 

     

methyl 

propionate 

    

KBFF CH2 0.410 0.407 0 

 CH3(CH2) 0.867 0.374 0 

methanol     

KBFF O 0.650 0.319 -0.82 

 H 0.088 0.158 0.52 

 CH3 0.867 0.374 0.3 

     

ethanol     

KBFF CH2 0.410 0.407 0.3 

 O 0.650 0.319 -0.82 

 H 0.088 0.158 0.52 

 CH3 0.867 0.374 0.0 

     
water     

SPC/E O 0.6506 0.3166 -0.8476 

 H 0.0 0.0 0.4238 
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Table 3.2 Bonded parameters for KBFF 

Potential functions are: Angles, 𝑉𝜃 = 1 2⁄ 𝑘𝜃(𝜃 − 𝜃0)2 ; Dihedrals 𝑉𝜓 = 𝑘𝜓[1+cos(nψ-δ)] ;      

Improper dihedrals 𝑉𝜔 = 1 2⁄ 𝑘𝜔(𝜔 − 𝜔0)2 

 

3.3 Results 

The simulated KB integrals and the experimental KB integrals for acetate alcohol mixtures 

are compared in Figure 3.1. When we increase the acetate mole fraction, we observe a significantly 

higher association of methanol molecules. This is to be expected, considering the higher methanol-

methanol interaction when we increase the number of acetate molecules in the system. For 

instance, methanol molecules contain both hydrogen bond donor and acceptor properties while 

acetate molecules contain the hydrogen bond accepter properties. Hence, methanol molecules can 

Bonds r (nm)   

C=O 0.123   

C-CH3 0.153   

C-O 0.136   

O-CH3 0.143   

C-CH2 0.153   

CH2-CH3 0.153   

    

Angles kθ (kJ/mol/rad) θ0 (degrees)  

Carbonyl O-C-CHn 685 121  

Carbonyl O-C-O 730 124  

CHn-C-O 610 115  

C-O-CHn 450 109  

C-C-C 520 109.5  

    

Dihedrals kψ ( kJ/mol/rad) δ (degrees) n 

O=C-O-CHn 2.9 180 1 

O=C-O-CHn 24.81 180 2 

C-O-CH2-CHn -4 0 1 

C-O-CH2-CHn 2.09 0 2 

C-O-CH2-CHn 8 0 3 

CHn-CH2-C-O 2.75 0 1 

CHn-CH2-C-O -4.75 0 2 

    

Impropers kω ( kJ/mol/rad) ω0  

C-CHn-O-O 334.8 0.0  
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make stronger hydrogen bond networks compared to the acetate molecules in the solution mixture 

and this leads to self-aggregation. Our models well reproduce the mole fraction dependent KB 

integrals. For all of these acetate alcohol systems the largest deviation from the experimental 

values were obtained for low alcohol mole fraction. Generally, uncertainty of both simulation and 

experimental data is higher at extreme mole fractions.  

 

Figure 3.1 Kirkwood-Buff integrals (Gij, cm3/mol) as a function of acetate mole fraction (x1). 

Solid lines represent the experimental data. All experimental data correspond to 298.15 K. 

The circles are the results for the KBFF parameterization. Black, red, green colors 

correspond to acetate-acetate, acetate-alcohol, alcohol-alcohol KB integrals respectively.  

 

In both the ethyl acetate-methanol and methyl propionate-methanol systems we observe 

that the simulated methanol-methanol KB integrals are somewhat off from the experimental values 

at higher mole fractions of acetate. We have used several values for the partial atomic charges and 
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compared with the experimental KB integrals several times. This was the best charge distribution 

that we could find that reproduce KB integrals reasonably for all the systems including the water-

methyl acetate system. 

 

Figure 3.2 Enthalpy of mixing (ΔHm, J/mol) values as a function of acetate mole fraction (x1). 

Lines represent the experimental data56, 58 and circles represent the KBFF model. All 

experimental data corresponds to 298.15 K.  

 

The enthalpy of mixing values as a function of acetate mole fraction are displayed in Figure 

3.2. We can see unfavorable enthalpy of mixing values for these acetate-alcohol systems from both 

experiment and simulation. For methyl propionate-methanol system we do not have experimental 

data. The simulated enthalpy of mixing values are more favorable than the experimental values for 

all the other three systems. However, the simulation data well reproduce the correct trends in the 
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experimental enthalpy of mixing. The methyl acetate-ethanol system shows a relatively positive 

experimental enthalpy of mixing value and that behavior is well reproduced in our models. 

Generally, it is difficult to get the enthalpy of mixing values correct for most force fields.74 

 

Figure 3.3 Relative permittivity (ε) values as a function of acetate mole fraction (x1). Lines 

represent the experimental data76,77 and circles represent the KBFF model. All the 

experimental data correspond to 298.15 K.  

 

Relative permittivity values are shown in Figure 3.3. Although our models slightly 

underestimate the experimental dielectric constant values, these models well reproduce the trends 

of  variation of  dielectric constants with mole fraction. For methyl propionate-methanol system 

we do not have experimental dielectric constant values. 
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Figure 3.4 Self diffusion constants (D, 10-5 cm2/s) as a function of acetate mole fraction (x1). 

Squares and circles represent alcohol and acetate self diffusion coefficients respectively.  

 

Self diffusion constant values of acetate and alcohol molecules are shown in Figure 3.4. 

Unfortunately, we do not have experimental diffusion constant values. For all the mixtures, we 

observe that the alcohol diffusion constant values are less compared to the acetate diffusion 

constant values. 

The KB integrals provide an overall description of the relative distribution of molecules 

over all solvation shells. Most of the important interactions such as hydrogen bonds are dominant 

within first solvation shell. Thus, we have also calculated first shell coordination numbers for all 

the mole fractions. The main idea was to determine whether there is a significant possibility to 

form hydrogen bonds between acetate molecules and alcohol molecules. The calculated first shell 
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Figure 3.5 First shell coordination number (rmin≈ 0.3 nm) as a function of acetate mole 

fraction (x1). i is carbonyl oxygen atom and j is methanol oxygen atom. Black, red, green, 

blue circles represent methyl acetate-methanol, methyl acetate-ethanol, ethyl acetate-

methanol, methyl propionate-methanol systems respectively. 

 

coordination numbers are displayed in Figure 3.5. To calculate first shell coordination numbers 

we have selected the carbonyl oxygen atom and the “alcohol” O atom. By obtaining atom-atom 

radial distribution function we can find the Rmin corresponding to first solvation shell. Then we 

have obtained coordination numbers correspond to the Rmin values. We do not see any strong 

hydrogen bonds between acetate and alcohol molecules. For all the systems, we do see a decrease 

in the first shell coordination numbers with an increase in the methyl acetate mole fraction.  

 

3.3.1 Water-methyl acetate System 

The water-methyl acetate system is one of the most important systems as many biological 

molecules are in an aqueous environment. One of the major challenges with this water-methyl 

acetate system is that these two components are not fully miscible over the whole composition 

range. There is a relatively large immiscible region. So we had to use a limited range of data for 

the parameterization process. In addition, there is a relatively low number of experimental studies 
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that have investigated water acetate solution mixtures. In this study we have analyzed the water-

methyl acetate system. Here, we could reproduce the experimental KB integrals at higher methyl 

acetate mole fractions. But, unfortunately, at lower methyl acetate mole fraction we couldn't obtain 

the correct simulated KB integrals to match with experimental KB integrals. At lower methyl 

acetate mole fraction (x1=0.025) we observe significant aggregation of methyl acetate molecules 

with G11 about 2000 cm3/mol (but not converged). We do not see this behavior in the experimental  

 

Figure 3.6 Panel (a) shows Kirkwood-Buff integrals (Gij, cm3/mol) as a function of acetate 

mole fraction (x1). Black, red, green colors correspond to acetate-acetate, acetate-water, 

water-water KB integrals respectively. Lines represent the experimental data and circles 

represent the KBFF model. Panel (b) shows Water - methyl acetate enthalpy of mixing (ΔHm, 

J/mol) values as a function of acetate mole fraction (x1). Lines represent the experimental 

data78 and circles represent the KBFF model. All the experimental data correspond to 298.15 

K. 
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KB integrals. 

Figure 3.6 (a) shows the water methyl acetate KB integrals. Water and methyl acetate 

molecules are immiscible in the middle of the composition range. At higher mole fractions of 

methyl acetate all the KB integrals are well reproduced. Figure 3.6 (b) shows the enthalpy of 

mixing values for a water methyl acetate mixture. Enthalpy of mixing values are also very sensitive 

to the partial atomic charges. With our model we could reproduce reasonable enthalpy of mixing 

values at both end of the composition range. 

The main problem associated with the water-methyl acetate solution mixture is that at low 

mole fractions methyl acetate shows very high self association. Here, the methyl acetate-methyl 

acetate radial distribution functions are not converged to one. Therefore, if we use the traditional 

approach to calculate KB integrals it can be inaccurate. Consequently, we have used the particle 

particle fluctuation approach to calculate the KB integrals to ensure the higher aggregation was 

not due to the use of finite system sizes. Therefore, we have performed simulations increasing the 

box size up to 200 Å. However, still the observed radial distribution functions were not converged 

to one. Then, we have simulated several water methyl acetate systems with 4 different box sizes. 

Figure 3.7 shows the KB integrals of a 0.025 mole fraction of methyl acetate using 4 different box 

sizes. Here, we wanted to extrapolate these curves to predict the KB integrals for an infinitely large 

box. But still we do not obtain the correct trend. 

We have also studied these water methyl acetate systems using OPLSAA, AMBER and 

CHARMM force fields because we wanted to investigate whether these force fields can reproduce 

the KB integrals correctly.79-81 The results are shown in Table 3.3. For both lower and higher 

methyl acetate mole fractions we could not obtain reasonable values for KB integrals using 

OPLSAA force field. The AMBER and CHARMM force fields resulted in comparatively lower 
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values for methyl acetate – methyl acetate KB integrals than the KBFF model at x1=0.025. 

However, at x1=0.9 the water-water KB integrals were underestimated. Hence, none of the force 

fields provide perfect results for both the KB integrals and enthalpy of mixing. The KBFF model 

reproduces the sign of the enthalpy of mixing correctly at both composition extremes. 

 

Figure 3.7 KB integrals (Gij, cm3/mol) as a function of the inverse total number of molecules 

in the box for methyl acetate-water system. The methyl acetate mole fraction was 0.025. Total 

number of molecules (N=N1+N2) are corresponding to 4 simulation box sizes;10 nm, 7.5 nm, 

6 nm, 5 nm.  

 

Recently, significant research has been performing concerning mesoscale inhomogeneities 

of aqueous solutions.82-88 Sedlak and coworkers have studied the kinetics and long time stability 

of these large scale supra molecular structures.82-84 They have studied about 100 different solute-

solvent pairs using static and dynamic light scattering techniques.84 For example, a variety of 
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people have studied about mesoscale inhomogeneity in aqueous tertiary butyl alcohol system. 85-

88 However, according to our knowledge, there is no evidence for methyl acetate-water system 

aggregation on the mesoscale. However, we doubt the mesoscale inhomogeneities can be seen in 

methyl acetate-water system. Because, from the simulations, it is possible to observe methyl 

acetate clusters (at lower mole fraction of methyl acetate), that contain dimensions of several nano 

meters which agrees with the experimental observed mesoscopic structure dimensions for other 

systems. According to the experimental evidence, these long lived mesoscopic structures should 

have dimensions on the order of several hundred of nanometers.82, 85  

 

Table 3.3 Comparison of the KB integrals (Gij, cm3/mol) and enthalpy of mixing (ΔHm, J/mol) 

values for KBFF, OPLSAA,80 AMBER,81 CHARMM79 force fields. Methyl acetate molecules 

are denoted as molecule type 1 and water molecules denoted as molecule type 2 

 

 x1=0.025 x1=0.9 

Force field G11 G12 G22 ΔHm G11 G12 G22 ΔHm 

KBFF 2166* -322 16 -52 -78 -53 1639 290 

OPLSAA 41990* -4750 508 97 -58 -730 25977* 439 

AMBER 486 -135 -4 -87 -76 -27 312 -216 

CHARMM 119 -97 -8 -227 -79 -22 239 -299 

Experiment 24 -85 -10 -136 -77 -44 1701 360 

All simulations were performed at 300  K and 1 atm in the NpT ensemble. We have used SPC/E 

water model with KBFF and TIP3P water model with OPLSAA,  AMBER, CHARMM. * indicates 

the KB integrals are not converged. 
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Table 3.4 Properties of the pure acetate models. ρ, Epot, Epot
(intra), Epot

(inter), D, ε, η indicate 

density, potential energy per molecule, intramolecular energy per molecule, intermolecular 

energy per molecule, diffusion coefficient, relative permittivity and viscosity, respectively.  

 

Molecule Property Experiment Simulation Units 

Methyl acetate ρ 0.92657 0.921 g/cm3 

 Epot  -92.75 kJ/mol 

 Epot
(intra)  14.67 kJ/mol 

 Epot
(inter)  -107.42 kJ/mol 

 D  2.75 10-5 cm2/s 

 ε 6.7476 8.14  

 η 0.33689 0.387 cp 

Ethyl acetate ρ 0.89457 0.883 g/cm3 

 Epot  -84.41 kJ/mol 

 Epot
(intra)  21.53 kJ/mol 

 Epot
(inter)  -105.94 kJ/mol 

 D  2.55 10-5 cm2/s 

 ε 6.0677 7.29  

 η 0.30590 0.306 cp 

Methyl 

propionate 

ρ 0.90959 0.887 g/cm3 

 Epot  -88.30 kJ/mol 

 Epot
(intra)  16.25 kJ/mol 

 Epot
(inter)  -104.55 kJ/mol 

 D  2.32 10-5 cm2/s 

 ε  7.26  

 η  0.345 cp 

 

The simulation results for the pure liquid esters are presented in Table 3.4. The density, 

relative permittivity and viscosity data are in reasonable agreement with the available experimental 
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values. Unfortunately, we could not find experimental relative permittivity and viscosity data for 

the methyl propionate system, or diffusion coefficients for all three acetates. 

 

3.4 Conclusions 

Force field parameters for esters have been developed using KB theory. The overall goal 

was to provide an accurate description of lipids. In this work we have used methyl acetate, ethyl 

acetate, methyl propionate as the model compounds for the ester linkage of the lipid molecule. To 

derive a suitable charge distribution for acetate molecules we have studied acetate-alcohol and 

methyl acetate-water mixtures and attempted to reproduce the experimental KB integrals. Our 

model reasonably well reproduce the experimental data for all the acetate-alcohol mixtures. 

Furthermore, these models well reproduce the enthalpy of mixing values and dielectric constant 

values. For the methyl acetate-water system, we could reproduce the experimental KB integrals at 

higher mole fractions of methyl acetate. But, we couldn't obtain reasonable values for the methyl 

acetate-methyl acetate KB integrals at lower mole fractions of methyl acetate. However, this is 

also appears to be a problem with several other force fields. 
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Chapter 4 - Preferential Solvation in Binary and Ternary Mixtures 

4.1 Abstract 

Preferential solvation has become a useful tool to help characterize and understand the 

properties of liquid mixtures. Here, we provide a new quantitative measure of preferential 

solvation in binary and ternary mixtures that uses Kirkwood-Buff integrals as input, but differs 

from traditional measures. The advantages of the new measure are highlighted and compared with 

established literature approaches. Molecular dynamics simulations are performed to further 

investigate the nature of binary mixtures, as described by the new and existing measures of 

preferential solvation. It is shown that the new measure of preferential solvation is rigorous, has a 

simple physical interpretation, can be easily related to the underlying thermodynamic properties 

of the mixture, and naturally leads to zero values for ideal mixtures. 

 

4.2 Introduction 

Most solution mixtures are homogeneous on the macroscopic scale. All but ideal solutions, 

however, can be significantly inhomogeneous on the microscopic scale.1 The local distribution of 

molecules around a central molecule can deviate from the bulk distribution due to variations in 

both the molecule sizes (packing) and the interactions between the different molecules. The mutual 

net attraction (or repulsion) between molecules leading to an inhomogeneous distribution over 

short length scales is generally referred to as preferential solvation (PS). PS has significant 

consequences for the observed physical and thermodynamic properties of a mixture.2-7 

While the concept of PS is relatively simple, attempts to define and quantify PS in liquid 

mixtures have been more difficult. For favorable systems, such as host-guest molecules or strong 

hydrogen bond donor-acceptor pairs in apolar solvents, the effect of solvent composition on the 
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equilibrium constant for association can be used very effectively.8-9 Alternatively, for sparingly 

soluble solutes the effects of cosolvents on the solubility of solutes can be cast in terms of 

preferential interactions and thereby PS.10-14 However, most simple fully miscible liquid mixtures,  

such as alcohol and water mixtures do not fall into either of these categories. The interactions and 

deviations from the bulk distribution are much more subtle in these cases and are not amenable to 

analysis using equilibrium constants or solubilities. This type of system is the focus of the present 

study. For these latter systems, and some of the former, the most common and general quantitative 

approaches have involved the use of Kirkwood-Buff (KB) theory.3, 6, 15-17 

Kirkwood-Buff theory is an exact theory of solution mixtures.18 It relates the 

thermodynamics of any stable multicomponent mixture to the relative distribution of molecules 

within the liquid via a series of Kirkwood-Buff integrals (KBIs) between all molecule pair types. 

These integrals can be obtained from experimental thermodynamic (activity, density, and 

compressibility) data,19 and can then be used to quantify the mutual affinity between the different 

components within a mixture. Hence, information concerning PS should be available from these 

integrals, and the solution “structure” can then be related to the thermodynamic properties.1, 20 

Ben-Naim provided the first rigorous framework for studying PS in binary and ternary mixtures 

using the experimental KBIs.3, 21-22 This has since been extended by others. Unfortunately, these 

extensions have resulted in some controversy regarding the properties of reference or ideal solution 

mixtures, leading to new measures of PS that use corrected expressions, that is outlined in detail 

below. 

The aim of the this work is to provide a general measure of PS using KBIs that is valid for 

all stable mixtures, has a rigorous definition and physical meaning, adopts desirable behavior for 

ideal mixtures, and simplifies many of the previous KBI based approaches. We illustrate this 
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approach using both experimental and simulation data, and then compare and contrast with 

existing measures of PS. In addition, using the simulated KBIs we also examine some of the 

approximations and issues inherent to the previous approaches. 

 

4.3 Theory 

4.3.1 General 

Here we outline the basic theory leading to the most common quantitative descriptions of 

PS. The general approach is due to Ben-Naim,1, 3 and we retain the notation of A, B, C, etc., as 

referring to the different types of species present in solution. First, let us define a distance 

dependent KBI, 

𝐺𝐴𝐵(𝑅) ≡ 4𝜋 ∫ [𝑔𝐴𝐵(𝑟) − 1]𝑟2
𝑅

0

𝑑𝑟 (4.1) 

 

where gAB is the radial distribution function (rdf) between molecules A and B, defined in the grand 

canonical ensemble, and r is the intermolecular (center of mass) distance. We note that the KBIs 

obtained from experimental data, using the usual KB inversion approach,19 correspond to the limit 

R → ∞. However, it is often presumed a local region of solution exists around each central 

molecule such that beyond this local region the distribution of other molecules resembles the bulk 

distribution.1, 23-24 In this case gAB(r) is essentially unity when r is large (but not necessarily 

infinite) and the integral may be considered converged. The size of this local region is generally 

unknown and will depend on the components, the composition, and the state point. However, 

simulation results on many mixtures under ambient conditions indicate that, while deviations from 
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bulk behavior can extend over many nanometers, the rdfs are indeed structureless beyond the first 

few solvation shells and may be safely assumed to be unity.23 

Using the above integral the local average number of B molecules observed within the 

spherical volume V defined by a distance R around a central A molecule can then be written, 

< 𝑁𝐵 >𝐴= 4𝜋𝜌𝐵 ∫ 𝑔𝐴𝐵

𝑅

0

(𝑟)𝑟2𝑑𝑟 = 𝜌𝐵𝐺𝐴𝐵(𝑅) + 𝜌𝐵𝑉 (4.2) 

 

where ρB is the bulk number density (molarity) of B molecules. Consequently, the local mole 

fraction of B molecules around a central A molecule within a sphere of radius R can then be 

expressed as, 

𝑥𝐵𝐴
𝐿 (𝑅) =

< 𝑁𝐵 >𝐴

∑ < 𝑁𝛼 >𝐴𝛼
= 𝑥𝐵

𝑉 + 𝐺𝐴𝐵(𝑅)

𝑉 + 𝑌𝐴(𝑅)
 (4.3) 

 

where the sum is over all components in the mixture. The right hand side was obtained after using 

Equation (4.2) followed by the substitution 𝑌𝐴(𝑅) ≡ ∑ 𝑥𝛼𝐺𝐴𝛼(𝑅). Alternatively, the local number 

density of B molecules around a central A molecule is given by, 

𝜌𝐵𝐴
𝐿 (𝑅) =

< 𝑁𝐵 >𝐴

∑ < 𝑁𝛼 >𝐴𝛼 𝑉𝛼̅

= 𝜌𝐵

𝑉 + 𝐺𝐴𝐵(𝑅)

𝑉 + 𝑌𝐴
𝜙

(𝑅)
 (4.4) 

 

where 𝑉̅𝛼 is the partial molar volume of species α. The right hand side was obtained after using 

Equation (4.2) followed by the substitution 𝑌𝐴
𝜙

(𝑅) ≡ ∑ 𝜙𝛼𝐺𝐴𝛼(𝑅), where 𝜙𝛼 = 𝜌𝛼𝑉̅𝛼 is the 

volume fraction of species α in the bulk mixture. Finally, the local volume fraction of B molecules 

around a central A molecule can also be determined via, 
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𝜙𝐵𝐴
𝐿 (𝑅) = 𝜌𝐵𝐴

𝐿 (𝑅)𝑉̅𝐵 =
< 𝑁𝐵 >𝐴 𝑉̅𝐵

∑ < 𝑁𝛼 >𝐴 𝑉̅𝛼𝛼

= 𝜙𝐵

𝑉 + 𝐺𝐴𝐵(𝑅)

𝑉 + 𝑌𝐴
𝜙

(𝑅)
 (4.5) 

 

Note that 𝜌𝐵𝐴
𝐿 (𝑅) ≠< 𝑁𝐵 >𝐴/𝑉 due to the excluded volume of the central molecule. 

The partial molar volumes appearing in the above equations could be expanded in terms of 

KBIs.18 However, it is simpler to retain the partial molar volumes themselves. Furthermore, the 

partial molar volumes are physically easy to understand, and are available from any analysis for 

which the KBIs are also obtained. 

 

4.3.2 Existing Measures of Preferential Solvation 

The above expressions can be used to determine the deviation of the local solution 

composition from that of the bulk composition. Traditionally, this has focused on changes in the 

mole fraction composition. However, here it will be extended to include volume fractions, and 

thereby number densities, in the following sections. A measure for the PS of a central A molecule 

by B molecules can be defined as, 

𝛿𝐵𝐴(𝑅, 𝑉) ≡ 𝑥𝐵𝐴
𝐿 (𝑅) − 𝑥𝐵 = 𝑥𝐵

𝐺𝐴𝐵(𝑅) − 𝑌𝐴(𝑅)

𝑉 + 𝑌𝐴(𝑅)
 (4.6) 

 

Note that we have written the PS as a function of two variables. The first is the integration distance 

for the KBIs (R), while the second is the volume of the local region (V). According to Equation 

(4.2) these are required to be consistent (V = 4πR3/3). However, some of the approaches discussed 

later will relax this condition. Using volume fractions one finds, 

𝛿𝐵𝐴
𝜙 (𝑅) ≡ 𝜙𝐵𝐴

𝐿 (𝑅) − 𝜙𝐵 = 𝜙𝐵

𝐺𝐴𝐵(𝑅) − 𝑌𝐴
𝜙

(𝑅)

𝑉 + 𝑌𝐴
𝜙

(𝑅)
 (4.7) 
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We will not allow R and V to vary independently in this case. All the above quantities tend to zero 

as the local volume increases. The expressions are useful as they quantify deviations in the local 

solution composition as a function of distance from a central molecule of interest. They are 

problematic, however, as the spatial dependence of the KBIs, and the extent of the local volume 

of interest, are unknown. There are two general solutions to this problem. Both are described 

below. 

Before discussing these approaches it is informative to develop and examine the 

expressions in more detail. A general equation for the partial molar volume of a solute in any 

multicomponent mixture is available and can be used to provide,25-27 

𝑉𝐴
∗ ≡ 𝑉̅𝐴 − 𝑅𝑇𝜅𝑇 = ∑ 𝜙𝛼

𝛼
𝐺𝐴𝛼(∞) = −𝑌𝐴

𝜙
(∞) (4.8) 

 

where 𝑉∗ is known as the pseudo volume, κT is the isothermal compressibility, R the Gas constant 

(not to be confused with the integration distance), and T the absolute temperature.  This expression 

only holds for the fully integrated KBIs. It can be used to simplify the limiting form of the volume 

fraction based PS expressions. For example, 

𝛿𝐵𝐴
𝜙 (𝑅 → ∞) =

𝜙𝐵[𝐺𝐴𝐵(∞) + 𝑉𝐴
∗]

𝑉 − 𝑉𝐴
∗  (4.9) 

 

In this form, the measure of PS only involves one explicit KBI. This seems logical as the KBIs 

indeed directly quantify the deviation from the bulk distribution. However, this is less apparent 

using the mole fraction approach in Equation (4.6). Rearrangement of the above expression 

followed by the use of the definition presented in Equation (4.7) gives, 
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𝜌𝐵𝐺𝐴𝐵(∞) = 𝜌𝐵𝐴
𝐿 (𝑉 − 𝑉𝐴

∗) − 𝜌𝐵𝑉 (4.10) 

 

which provides a rigorous and concise meaning for the fully integrated KBIs and the local density. 

Specifically, ρBGAB(∞) is the difference between the average number of B molecules around a 

central A molecule in a large volume V of solution compared to the average number of B molecules 

that would be found in the same large volume of bulk solution. The exact size of the “large” volume 

of solution is irrelevant as long as it is big enough that the bulk distribution (gAB = 1) is encountered. 

Note that the local number density does not include the volume occupied by the central A molecule. 

All the above expressions are exact for any number of components. For binary solutions 

the expressions are typically presented in an alternative form, 

𝛿𝐵𝐴(𝑅, 𝑉) = −𝛿𝐴𝐴(𝑅, 𝑉) = 𝑥𝐴𝑥𝐵

𝐺𝐴𝐵(𝑅) − 𝐺𝐴𝐴(𝑅)

𝑉 + 𝑥𝐴𝐺𝐴𝐴(𝑅) + 𝑥𝐵𝐺𝐴𝐵(𝑅)
 (4.11) 

 

for the mole fraction based expressions and, 

𝛿𝐵𝐴
𝜙 (𝑅) = −𝛿𝐴𝐴

𝜙 (𝑅) = 𝜙𝐴𝜙𝐵

𝐺𝐴𝐵(𝑅) − 𝐺𝐴𝐴(𝑅)

𝑉 + 𝜙𝐴𝐺𝐴𝐴(𝑅) + 𝜙𝐵𝐺𝐴𝐵(𝑅)
 (4.12) 

 

for the volume fraction based expressions. Expressions for the additional measures  

𝛿𝐴𝐵(𝑅, 𝑉) = −𝛿𝐵𝐵(𝑅, 𝑉), and their volume fraction counterparts, can be obtained from a simple 

index change. It is clear from these expressions that all values approach zero when R → ∞, and 

also when the concentration of either A or B tends to zero. Less obvious, but generally true, is that 

the denominator in the above expressions is positive for volumes larger than the excluded volume 

of the central molecule. Consequently, the sign of the above PS measures in binary systems is 

determined by the numerators, and hence just by the difference in two KBIs. 
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4.3.3 Ben-Naim Limiting Approach 

As mentioned above, the primary disadvantage of the previous expressions for quantifying 

PS in liquid mixtures is that the distance dependence of the KBIs is unknown except for when the 

local volume approaches infinity, at which point the measures themselves are zero. The first 

solution to this problem was presented by Ben-Naim.3 In this approach only the limiting (large 

volume) behavior is used. The limiting PS expressions for binary mixtures are then given by, 

𝛿𝐵𝐴
𝑜 ≡

𝜕𝛿𝐵𝐴

𝜕𝑉−1
|

𝑉−1=0
= 𝑥𝐴𝑥𝐵[𝐺𝐴𝐵(∞) − 𝐺𝐴𝐴(∞)] (4.13) 

 

for the mole fraction approach and, 

𝛿𝐵𝐴
𝜙,𝑜

≡
𝜕𝛿𝐵𝐴

𝜙

𝜕𝑉−1
|

𝑉−1=0

= 𝜙𝐴𝜙𝐵[𝐺𝐴𝐵(∞) − 𝐺𝐴𝐴(∞)] = 𝜌2𝑉𝐴𝑉𝐵𝛿𝐵𝐴
𝑜  (4.14) 

 

for the volume fraction approach, where ρ is the total number density. Note that these limiting 

values no longer depend on R (or V). Hence, the evaluation of the KBIs for a specific local volume 

is avoided. The limiting quantities then describe the change in the PS, or local solution 

composition, as one approaches the central molecule from the bulk solution region (gAB = 1). The 

required KBIs are the values extracted from experiment, using the usual KB inversion approach,19, 

28 and may be used directly and without approximation. The main advantage of this approach is 

that the rigorous link to the solution thermodynamics is retained. The disadvantage of this approach 

lies in the absence of any spatial information, such as changes in the first solvation shell 

composition, that may be more relevant for explaining many experimental (spectroscopic) 

observations.29  
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4.3.4 Solvation Shell Approach 

The second type of approach for determining PS attempts to explicitly evaluate the volume 

in Equation (4.6) or Equation (4.11) that corresponds to a particular solvation shell around each 

central molecule.15, 30 Hence, the value of V is restricted to that of a series of solvation shells, or 

correlation volumes (Vcor’s), around each molecule. In doing so it is also implicitly assumed that 

the finite KBIs can be replaced by the infinite limit KBIs. This leads to expressions of the form, 

𝛿𝐵𝐴(∞, 𝑉𝑐𝑜𝑟,𝐴) = 𝑥𝐴𝑥𝐵

𝐺𝐴𝐵(∞) − 𝐺𝐴𝐴(∞)

𝑉𝑐𝑜𝑟,𝐴 + 𝑥𝐴𝐺𝐴𝐴(∞) + 𝑥𝐵𝐺𝐴𝐵(∞)
 (4.15) 

 

for binary mixtures. However, the use of the infinite limit KBIs is only strictly valid when Vcor,A → 

∞, as indicated in Equation (4.2), and not for an intermediate correlation volume. Whether this 

approximation, 𝛿𝐵𝐴(∞, 𝑉𝑐𝑜𝑟,𝐴) = 𝛿𝐵𝐴(𝑅𝑐𝑜𝑟,𝐴, 𝑉𝑐𝑜𝑟,𝐴), is reasonable requires a comparison with the 

results from Equation (4.11). This suggests a simulation based approach to provide the partially 

integrated KBIs as illustrated below. 

The final step involves the determination of the correlation volumes around each species. 

This has been achieved in a number of different ways.7 However, the results are very similar and 

hence we only describe the approach used by Marcus.15 Here, the correlation volume is related to 

the composition and volumes of the molecules representing the solvation shell in question. For 

binary mixtures the correlation volume(s) are expressed in terms of the molar volumes of the pure 

liquids (indicated by a zero superscript) and the local compositions according to, 

𝑉𝑐𝑜𝑟,𝐴 = 2522.7[−0.085𝑚 + 0.5 ∗ 0.1363(𝑉𝐴
𝑜)

1
3 + 0.1363(𝑚

− 0.5)(𝑥𝐴𝐴
𝐿 𝑉𝐴

𝑜 + 𝑥𝐵𝐴
𝐿 𝑉𝐵

𝑜)1/3]3 

(4.16) 
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where m is an indicator of the solvation shell of particular interest, and all volumes are in cm3/mol 

(1 nm3 = 602.3 cm3/mol). As the correlation volume equation actually uses the local compositions 

that it is intended to determine, the correlation volumes and local compositions have to be 

determined in an iterative manner at each bulk composition. The main advantage of this approach 

lies in the possible insights provided by the various solvation shells that may lead to a deeper 

physical picture of the solution structure. The main disadvantage is an inability to directly relate 

these measures to the underlying solution thermodynamics. We will only consider the first 

solvation shell correlation volumes in this work. 

 

4.3.5 Ideal Solutions 

Ideal solutions are a useful reference frame for understanding the behavior of real liquid 

mixtures. The KBIs for ideal mixtures are neither zero nor independent of composition. A general 

expression for the KBIs in any multicomponent symmetric ideal (SI) mixture has been provided,28, 

31  

𝐺𝐴𝐵
𝑆𝐼 = 𝑅𝑇𝜅𝑇 − 𝑉𝐴

𝑜 − 𝑉𝐵
𝑜 + ∑ 𝜌𝛼(𝑉𝛼

𝑜)2

𝛼
 (4.17) 

 

This leads to the following relationships that can be used to help simplify the corresponding PS 

parameters, 

𝑌𝐴
𝑆𝐼 =  𝑅𝑇𝜅𝑇 − 𝑉𝐴

𝑜 − 𝑉𝑚 + ∑ 𝜌𝛼(𝑉𝛼
𝑜)2

𝛼
= 𝐺𝐴𝛼

𝑆𝐼 + 𝑉𝛼
𝑜 − 𝑉𝑚 (4.18) 

 

𝑌𝐴
𝜙,𝑆𝐼

=  𝑅𝑇𝜅𝑇 − 𝑉𝐴
𝑜 = −𝑉𝐴

𝑜,∗
 (4.19) 
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where Vm = 1/ρ is the molar volume. There is no spatial dependence associated with any of these 

integrals or functions.  

Using the SI results in Equations (4.11) - Equation (4.15) produces finite PS parameters 

when the molecules involved possess different molar volumes. This is particularly evident in 

biomolecular systems where the protein volume is typically large compared to other components 

in the system. Consequently, there have been attempts to ensure that the PS parameters are zero 

for SI mixtures.32-34 One approach is to modify the original expressions to give, 

∆𝛿𝐵𝐴(∞, 𝑉𝑐𝑜𝑟,𝐴) = −∆𝛿𝐴𝐴(∞, 𝑉𝑐𝑜𝑟,𝐴) = 𝑥𝐴𝑥𝐵

∆𝐺𝐴𝐵 − ∆𝐺𝐴𝐴

𝑉𝑐𝑜𝑟,𝐴 + 𝑥𝐴∆𝐺𝐴𝐴 + 𝑥𝐵∆𝐺𝐴𝐵
 (4.20) 

 

where ∆𝐺𝐴𝐵 = 𝐺𝐴𝐵(∞) − 𝐺𝐴𝐵
𝑆𝐼 , etc. Alternative modifications have also been suggested but will 

not be discussed further here.35 These measures are often referred to as “volume corrected” PS 

parameters and are intended to highlight the role of molecular interactions over the effects of 

different molecular volumes. This procedure has been the cause of some controversy. In particular, 

the exact meaning of the volume corrected expressions has been the subject of significant debate.36-

38 Nevertheless, there is clearly a desire for measures of PS that are zero for ideal mixtures. 

 

4.3.6 Conservation of Volume Relationship 

One of the major reasons for correcting the KBIs relates to the proposed expression,16, 35 

𝜌𝐴𝛥𝐺𝐴𝐴𝑉̅𝐴 + 𝜌𝐵𝛥𝐺𝐴𝐵𝑉̅𝐵 = 0 (4.21) 

 

written as an equality for binary mixtures. This relationship is based on the suggestion that if there 

is an excess of A molecules around a central A molecule then there must be an equal volume deficit 

of B molecules that are replaced, i.e. there is a conservation of volume condition on perturbing the 
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molecule distributions from that of an equivalent SI mixture to that of the real mixture. The 

argument is essentially physical in nature and seems reasonable. Indeed, Equation (4.8) for binaries 

can be written, 

[1 + 𝜌𝐴𝐺𝐴𝐴(∞)]𝑉̅𝐴 + 𝜌𝐵𝐺𝐴𝐵(∞)𝑉̅𝐵 = 𝑅𝑇𝜅𝑇 (4.22) 

 

which, after inclusion of the volume due to the central molecule, agrees with the spirit of the above 

condition, to within a term related to the compressibility, but with the reference system being a 

randomly distributed set of molecules.26 Equation (4.22) is exact and, as one has −𝑉𝜅𝑇 =

(𝜕𝑉 𝜕𝑃⁄ )𝑇,𝑁 = (𝜕2𝐺 𝜕𝑝2⁄ )𝑇,𝑁 = −(𝜕2𝐴 𝜕𝑉2)⁄
𝑇,𝑁

−1
, applies to any closed isothermal binary 

system. 

By subtracting the analogous version of Equation (4.22) for ideal mixtures from Equation 

(4.22) for a real mixture one can obtain Equation (4.21) as an equality, but only when the excess 

volume of mixing for the real mixture is zero and independent of pressure.35 Hence, Equation 

(4.21) must be viewed as an approximation,36 albeit a very reasonable one for many systems where 

the excess volume of mixing is small. This is true even for a closed isothermal system at constant 

volume. A particle fluctuation view of Equation (4.22) and the volume conservation condition is 

discussed elsewhere.39-41 

 

4.3.7  New Measure of Preferential Solvation in Liquid Mixtures 

Some of the issues raised in the previous sections have prompted us to re-examine PS in 

multicomponent mixtures. First, we note that the concept of PS, while rigorously defined above, 

is in essence subjective. Consequently, many reasonable choices are possible. Here we choose the 
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following definition that quantifies the difference between the local distribution of A molecules 

around B and C molecules according to, 

𝑃𝑆𝐴|𝐵−𝐶(𝑅) ≡ 𝜌𝐴𝐵
𝐿 (𝑅) − 𝜌𝐴𝐶

𝐿 (𝑅) (4.23) 

 

using the local number density approach. This expression can be used to describe PS in any 

multicomponent mixture, although there will clearly be more possibilities as the number of 

components increases.30 In binary mixtures one simply replaces C with A. The general expression 

for 𝑃𝑆𝐴|𝐵−𝐶(𝑅) in terms of KBIs, obtained using Equation (4.4) or Equation (4.7), is somewhat 

cumbersome to use. However, by employing the Ben-Naim approach described above we find the 

limiting PS of B and C molecules by A molecules can be written quite simply as, 

𝑃𝑆𝐴|𝐵−𝐶
𝑜 ≡

𝜕(𝜌𝐴𝐵
𝐿 − 𝜌𝐴𝐶

𝐿 )

𝜕𝑉−1
|

𝑉−1=0

= 𝜌𝐴[𝐺𝐴𝐵(∞) + 𝑉𝐵
∗ − 𝐺𝐴𝐶(∞) − 𝑉𝐶

∗] (4.24) 

 

for any multicomponent mixture after using Equation (4.8). This dimensionless measure of PS 

tends to zero when ϕA → 0, and also when ϕA → 1; as Equation (4.8) indicates that GAB(∞) →−𝑉𝐵
∗ 

and GAC(∞) → −𝑉𝐶
∗ for any number of components under the latter conditions. The limiting PS is 

also zero for SI mixtures at all compositions as the presence of the pseudovolumes naturally 

accounts for the different excluded volumes of the two central molecules. Hence, we have 

maintained the rigor of the Ben-Naim limiting approach while also capturing the desired behavior 

that led to the development of the previous volume corrected quantities. The “trick” is to 

investigate the change in the distribution of a particular molecule around two different central 

molecules, rather than two different molecules around the same central molecule. If 𝑃𝑆𝐴|𝐵−𝐶
𝑜 > 0 

then one concludes that the A molecules prefer to accumulate around B molecules more than they 

do around C molecules, and vice versa, at a distance close to where gAB = gAC = 1 is satisfied.  
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The above definition of PS can be developed further to provide some insight into the exact 

meaning of the volume corrected quantities. Using the SI results in Equation (4.24) provides, 

𝑃𝑆𝐴|𝐵−𝐶
𝑜 = 𝜌𝐴[𝛥𝐺𝐴𝐵 − 𝛥𝐺𝐴𝐶 + (𝑉̅𝐵 − 𝑉𝐵

𝑜) − (𝑉̅𝐶 − 𝑉𝐶
𝑜)] (4.25) 

 

The volume differences in the above equation are simply the excess partial molar volumes for both 

central molecules. The magnitude of typical excess partial molar volumes is small (0-2 cm3/mol) 

compared to the magnitude of the KBI values observed for mixtures under ambient conditions (0-

10,000 cm3/mol) and so one can write, 

𝜌𝐴(𝛥𝐺𝐴𝐵 − 𝛥𝐺𝐴𝐶) ≈ 𝑃𝑆𝐴|𝐵−𝐶
𝑜 =

𝜕(𝜌𝐴𝐵
𝐿 − 𝜌𝐴𝐶

𝐿 )

𝜕𝑉−1
|

𝑉−1=0

 (4.26) 

 

to a very good approximation. Consequently, the volume corrected KBIs describe the limiting 

change in the local number density difference of A molecules around a central B and C molecule. 

Hence, by correcting the KBIs the measures of PS appear to correspond most closely to the new 

definition used in Equation (4.23), and not the original definition provided in Equations (4.13) or 

Equation (4.14). 

Not all the possible measures of PS in binary and ternary systems are unique. Indeed there 

are several relationships between the various measures for binary and ternary mixtures. In addition 

to the obvious relationship that 𝑃𝑆𝐴|𝐴−𝐵
𝑜 + 𝑃𝑆𝐴|𝐵−𝐴

𝑜 = 0, using Equation (4.8) in Equation (4.24) 

provides, 

𝑉̅𝐴𝑃𝑆𝐴|𝐵−𝐴
𝑜 + 𝑉̅𝐵𝑃𝑆𝐵|𝐵−𝐴

𝑜 = 0 (4.27) 

 

for binary mixtures. Consequently, there is only one unique PS measure for binary mixtures. For 

ternary mixtures these relationships take the form, 
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𝑃𝑆𝐴|𝐴−𝐵
𝑜 + 𝑃𝑆𝐴|𝐵−𝐶

𝑜 + 𝑃𝑆𝐴|𝐶−𝐴
𝑜 = 0 (4.28) 

 

𝑉̅𝐴𝑃𝑆𝐴|𝐵−𝐶
𝑜 + 𝑉̅𝐵𝑃𝑆𝐵|𝐵−𝐶

𝑜 + 𝑉̅𝐶𝑃𝑆𝐶|𝐵−𝐶
𝑜 = 0 (4.29) 

 

where a permutation of indices provides a total of three expressions of each type. The first set of 

expressions can be proved by direct use of Equation (4.24). The second type of expression can be 

obtained from the definition of 𝑃𝑆𝐴|𝐵−𝐶
𝑜  and the subsequent expansion of the pseudovolumes using 

Equation (4.8) followed by simple rearrangement. Physically, the second set of relationships 

simply state that the sum of the local volume fractions is unity and therefore the same around both 

the B and C molecules. Consequently, there are only three unique measures of PS for a ternary 

mixture.  

Before leaving this section we note that a similar approach using the mole fraction based 

δ’s leads to, 

𝛿𝐴𝐵
𝑜 − 𝛿𝐴𝐶

𝑜 =
𝜕(𝛿𝐴𝐵 − 𝛿𝐴𝐶)

𝜕𝑉−1
|

𝑉−1=0

= 𝑥𝐴[𝐺𝐴𝐵(∞) − 𝑌𝐵(∞) − 𝐺𝐴𝐶(∞) − 𝑌𝐶(∞)] (4.30) 

 

which is also zero at xA = 0, xA = 1, and for any multicomponent SI solution. However, the volume 

fraction based expressions in Equation (4.24) provide a more general and simpler practical form, 

especially for ternary mixtures, due to the use of Equation (4.8).  

  

4.3.8 Thermodynamics of Binary Mixtures 

The most common application of PS studies is to binary mixtures. Here, there is only one 

unique measure of PS and we have, 
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𝑉̅𝐵𝑃𝑆𝐵|𝐴−𝐵
𝑜 = −𝜙𝐴𝜙𝐵∆𝐴𝐵 (4.31) 

 

The ∆𝐴𝐵≡ 𝐺𝐴𝐴(∞) + 𝐺𝐵𝐵(∞) − 2𝐺𝐴𝐵(∞) term is instantly recognizable as a measure of the 

deviation from ideality provided by the KB theory of binary mixtures.1 Hence, the proposed new 

measure of PS can be easily related to the solution thermodynamics to give,1, 18 

(
𝜕𝑙𝑛𝛾𝐵

𝜕𝑙𝑛𝑥𝐵
)

𝑝,𝑇

=
𝑃𝑆𝐵|𝐴−𝐵

𝑜

𝜌𝑉̅𝐴 − 𝑃𝑆𝐵|𝐴−𝐵
𝑜  (4.32) 

where γ is the mole fraction scale activity coefficient. This link to both solution “structure” and 

thermodynamics is possible,21 but significantly less clear, using the traditional measures of PS. At 

low concentrations of B this simplifies to, 

(
𝜕𝑙𝑛𝛾𝐵

𝜕𝑙𝑛𝑥𝐵
)

𝑝,𝑇,𝑥𝐵→0

= 𝑃𝑆𝐵|𝐴−𝐵
𝑜  (4.33) 

Consequently, if the B molecules prefer to associate with other B molecules, rather than A 

molecules, then the derivative is negative and the activity of B will decrease on increasing the B 

concentration. Alternatively, if the B molecules prefer to associate with A molecules, rather than 

other B molecules, then the derivative is positive and the activity of B will increase on increasing 

the B concentration. This type of behavior is well known, but can now be quantified and related, 

in a simple manner, to the new definition of PS and the experimentally available KBIs. 

The new measure of PS is also intimately linked to the excess molar Gibbs free energy of 

mixing (
E

mG ) for binary mixtures. Manipulation of Equation (4.32) using standard thermodynamic 

derivatives provides, 

𝑃𝑆𝐵|𝐴−𝐵
𝑜 = 𝜌𝑉̅𝐴

𝑥𝐴𝑥𝐵𝛽(𝜕2𝐺𝑚
𝐸 𝜕𝑥𝐵

2⁄ )𝑝,𝑇

1 + 𝑥𝐴𝑥𝐵𝛽(𝜕2𝐺𝑚
𝐸 𝜕𝑥𝐵

2⁄ )𝑝,𝑇

= 𝜌𝑉̅𝐴

(𝜕2𝐺𝑚
𝐸 𝜕𝑥𝐵

2⁄ )𝑝,𝑇

(𝜕2𝐺𝑚 𝜕𝑥𝐵
2⁄ )𝑝,𝑇

 (4.34) 
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where β = 1/RT. The denominators in the above equation must be positive for stable (miscible) 

binary mixtures. Hence, except for the rare occasions that AV  may be negative, the sign of the new 

PS measure is determined by the curvature of the excess molar Gibbs free energy of mixing. 

 

4.3.9 Thermodynamics of Ternary Mixtures 

The application of PS in ternary mixtures is more complicated as it involves additional 

KBIs to completely characterize the mixture.30 Nevertheless, the new definition of PS provided in 

Equation (4.23) can still be used. Here, we investigate the relationship between the new measure 

of PS and the solution thermodynamics in more detail. A common situation where this arises 

involves protein thermodynamics. Unfortunately, the traditional notation is different in this case. 

Typically, the index 1 is used to denote the primary solvent, index 2 is used for the (infinitely 

dilute) biomolecule solute and index 3 (or higher) is used for any additional cosolvents that may 

appear in the solution. The thermodynamics of ternary (protein) solutions provided by KB theory 

has been outlined in detail elsewhere.13, 42-44 There are many expressions that can be used 

depending on the measure of concentration one adopts. Only selected (most common) examples 

are provided here. 

The chemical potential of an infinitely dilute biomolecule depends on the cosolvent activity 

(a3) according to,27 

𝛽 (
𝜕𝜇2

𝜕𝑙𝑛𝑎3
)

𝑝,𝑇,𝑚2→0

= −𝑚3 − 𝜌3 [
𝑃𝑆3|2−1

𝑜

𝜌3
−

𝑃𝑆1|2−1
𝑜

𝜌1
] = −𝑚3 −

𝑃𝑆3|2−1
𝑜

𝜙1
 (4.35) 

 

where mα = ρα / ρ1 is the molality of species α. The final step was achieved using the relationships 

provided in Equation (4.28) - Equation (4.29). This expression involves bulk solution properties 

and the difference between the cosolvent and water distributions around the biomolecule and 
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water. If the cosolvent displays a stronger affinity for the biomolecule over water than water 

displays for the biomolecule over itself, then the biomolecule chemical potential will decrease on 

addition of more cosolvent. 

Another traditional measure of cosolvent “binding” is the preferential binding or 

interaction parameter. This takes slightly different forms depending on the thermodynamic 

constraints and the concentration scale adopted.27, 45-46 The measure most commonly provided 

from equilibrium dialysis studies is given by,47 

𝑚2

𝑚3
𝛤23 ≡ (

𝜕𝑙𝑛𝑚3

𝜕𝑙𝑛𝑚2
)

𝑇,𝜇1,𝜇3,𝑚2→0

= 𝑃𝑆2|3−1
𝑜 + 𝜌2(𝑉̅1 − 𝑉̅3) (4.36) 

 

and indicates that an affinity of the biomolecule for the cosolvent over the solvent results in an 

increase of the cosolvent molality in the vicinity of the protein on increasing the protein 

concentration. This, of course, is logical but can now also be quantified in a simple and direct 

manner using the new measure of PS. Both Equation (4.35) and Equation (4.36) contain additional 

terms unrelated to the biomolecule in question. However, these are properties of the bulk solution 

and will cancel when comparing different protein forms (native or denatured) and/or different 

proteins. 

Finally, the effect of a cosolvent on the equilibrium (𝐾 = 𝜌𝐷 𝜌𝑁⁄ , with 𝜌2 = 𝜌𝑁 + 𝜌𝐷) 

between a denatured protein (D) and the native protein (N) can be quantified according to,13 

(
𝜕 ln 𝐾

𝜕𝑙𝑛𝑎3
)

𝑝,𝑇,𝑚2→0

= 𝜌3 [
𝑃𝑆𝐷|3−1

𝑜  

𝜌𝐷
−

𝑃𝑆𝑁|3−1
𝑜

𝜌𝑁
] (4.37) 
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Hence, if the denatured protein displays a stronger affinity for the cosolvent (over water) than the 

native protein, then the equilibrium constant will increase on addition of more cosolvent. Again, 

these ternary system results are not so clear with some of the other PS approaches. 

It seems logical that one could directly express the new PS measures in terms of the 

thermodynamic properties as illustrated in Equation (4.34) for binary mixtures. We attempted such 

a process, using our previous results in this area (specifically Equations 4.7- Equation 4.9),41 but 

were ultimately unsuccessful. 

 

4.4 Methods 

Four binary mixtures were chosen for study as they display a range of PS behavior. These 

were: methanol (MOH) and water (HOH) at 300 K; methyl acetate (MAC) and methanol at 300 

K; 1,2-dichloroethane (DCE) and methanol at 323 K; and isopropanol (POH) and water at 300 K. 

All systems correspond to a pressure of 1 bar. The infinite limit KBIs were obtained from the 

experimental data in the usual manner using the expression,19, 41 

𝑥𝛼[𝛿𝛼𝛽 + 𝜌𝛽𝐺𝛼𝛽(∞)] = 𝑥𝛼𝑥𝛽𝜌𝑅𝑇𝜅𝑇 +
(1 − 𝜙𝛼)(1 − 𝜙𝛽)

(1 − 𝑥𝛽)𝜇𝛼𝛽
 (4.38) 

 

where δαβ is the Kronecker delta function and 𝜇𝛼𝛽 = 𝛽(𝜕𝜇𝛼 𝜕𝑥𝛽⁄ )
𝑇,𝑝

 is a composition derivative 

of the chemical potential µα. The composition dependent chemical potential derivatives, partial 

molar volumes and isothermal compressibility were obtained from the composition derivatives of 

the excess Gibbs free energy and volume of mixing, and the pressure derivative of the density, 

respectively, as outlined elsewhere.19, 48 Excess molar Gibbs free energies of mixing were taken 

directly from the literature,49-52 as were the density and excess molar volume data.53-56 The 
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compressibility data was taken to be ideal, which is a minor approximation,57 with pure liquid 

values taken from the literature.58-61 

Classical molecular dynamics simulations of each mixture were performed using the 

Gromacs simulation package (version 4.6).62 The majority of force field models were taken from 

the literature: MOH/HOH;63-64 MAC/HOH;64 DCE(Model MP2/ExpSQ-Q)/MOH;65 and 

POH/HOH.64 The models for MAC and POH were developed by us and will be published shortly. 

The simulations were performed using a time step of 2 fs with bond lengths constrained using the 

LINCS and SETTLE algorithms.66-67 Electrostatic interactions were determined using the particle 

mesh Ewald approach,68 with a 1.0 nm cutoff for electrostatics and a twin range 1.0 and 1.5 nm 

cutoff for van der Waals interactions, except for the Amber based models (DCE/MOH) for which 

the traditional van der Waal and electrostatic cutoffs of 1.0 and 1.2, respectively, were used 

together with a van der Waals switch starting at 0.9 nm. All systems involved initial random 

placement of molecules in cubic boxes of length 10 nm. The systems were equilibrated from 5-10 

ns and followed with 10 ns of production. Temperature and pressure coupling was achieved using 

the v-rescale and Berendsen algorithms at the experimental temperature and pressure,69-70 

respectively. 

Both partially and fully integrated KBIs were obtained from direct integration. Other 

approaches to determine the KBIs are available, and their advantages and disadvantages have been 

discussed in detail.23, 71 However, we found direct integration to be accurate enough for the present 

application. Comparison of the fully integrated KBIs obtained from direct integration with those 

determined via the local particle number fluctuations did not indicate any meaningful differences 

outside the deviations observed between individual block averages. Integration was performed to 

a distance ranging from 1.5 to 2.0 nm.   
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4.5 Results 

The four systems studied here were chosen as they display a range of PS behavior indicated 

by the magnitude of the KBIs. In Figure 4.1 the experimental and simulated fully integrated KBIs 

are compared. Large positive values for the KBIs indicated a tendency for those species to  

 

associate, thereby inferring deviations from the bulk distribution for some or all of the solvation 

shells involved. The trends in the composition dependent KBIs were reasonably well reproduced 

by the simulations, although there were some regions where the agreement was not quantitative. 

Figure 4.1 Experimental (lines) and simulated (symbols) fully integrated KBIs (L/mol) as 

a function of composition for four binary mixtures. 
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For example, in mixtures of DCE/MOH at high DCE mole fractions the tendency for methanol 

self-association was reproduced but significantly underestimated. The MOH/HOH system 

displayed rather subtle changes in the KBIs in comparison with the other three systems where the 

KBIs were significantly larger in magnitude. This can be attributed to the inability of the more 

polar molecule (B) to satisfy its hydrogen bonding requirements as the volume fraction of the less 

polar molecule (A) started to dominate the mixture.72 We note that the degree of agreement with 

experiment is primarily determined by the quality of the force fields used in the simulations, as 

sampling is not usually a concern. Hence, the agreement between experimental and simulated KBIs 

can be used to measure the quality of the models employed.73  However, this was not the focus of 

the current study and none of the concepts or results presented here require agreement with 

experiment in order to be valid. 

In Figure 4.2 the results of a PS analysis of the mixtures using the experimental KBIs are 

presented. The degree of PS varied substantially with composition for all but the MOH/HOH 

system. Quantitatively, most of the PS measures were different, however, they were qualitatively 

very similar and all but the MOH/HOH system suggested a large depletion of B molecules around 

a central A molecule that was characteristic of a preference for self-association at most 

compositions. The volume corrected PS measures differed only slightly from the uncorrected 

values due to the relatively small molecular volumes involved, except for the MOH/HOH mixtures 

where the correction led to a change in sign of the PS due to the relatively small initial values. The 

Ben-Naim and uncorrected solvation shell PS measures displayed the same features. This included 

similar changes in sign and also identical compositions for which their value was zero, as 

determined by the condition GAB(∞) = GBB(∞). Conversely, the corrected solvation shell measures 
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and the values of 𝑃𝑆𝐵|𝐴−𝐵
𝑜  displayed essentially identical features, as expected from Equation 

(4.26), and little or no variation in sign with composition compared to the other PS measures. This  

is a consequence of the fact that the new measure of PS is related to the underlying 

thermodynamics through Equation (4.32), and that all four mixtures studied here are characterized  

by only positive deviations from ideality, i.e. by positive values of the excess molar Gibbs free 

energy of mixing. Clearly, measures of PS that display less variation in sign with composition are 

 logically more attractive as multiple sign changes are significantly more difficult to explain.  

Figure 4.2 Experimental measures of PS as a function of composition for four binary 

mixtures. The values of 
o

BA  have units of L/mol, while the values of 
o

|B A BPS   have been scaled 

down by a factor of 100 for ease of comparison 
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The experimental and simulated PS measures are compared in Figure 4.3. Only two of the 

measures are presented due to the similarities mentioned above. Again, the simulations reproduced  

 

the trends observed in the experimental PS measures with composition. All but the MOH/HOH 

mixtures indicated negative PS values for most compositions. The two PS measures differed in 

sign for the MOH/HOH system, and this difference was reproduced by the simulation data. Hence, 

when a system displays relatively small deviations from ideality the definition of PS adopted for 

the analysis can affect the sign of the results. This did not occur with the new measure described 

Figure 4.3 Experimental (solid lines) and simulated (symbols) PS measures as a function of 

composition for four mixtures. The values of 
o

|B A BPS   have been scaled down by a factor of 

100 for ease of comparison 
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above as both the sign and the magnitude of the PS are closely related to the sign and magnitude 

of the excess molar Gibbs free energy; Equation (4.34).  

The data in the previous figures only involved quantities related to the fully integrated 

KBIs. Using the simulation data one can also obtain the partially integrated equivalents. Selected 

examples are provided in Figure 4.4 and Figure 4.5. In Figure 4.4 the results for the POH/HOH  

 

Figure 4.4 Center of mass based radial distribution functions (top left), KBIs (top right), 

and distance dependent PS measures (bottom) for a simulated mixture of isopropanol (A) 

and water (B) at an alcohol mole fraction of 0.2. KBIs are in L/mol and distances are in 

nm. Vertical dotted lines in the top left panel correspond to the correlation volume radii 

obtained from Equations (4.15) and (4.16) using the simulated KBIs. Dashed lines in the 

bottom left panel correspond to the PS measures, ( , )V  , provided by Equation (4.15) 

using the simulation data. 
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system at an alcohol mole fraction of 0.2 are displayed. At this composition there were significant 

deviations in the local composition. Analysis of the rdfs indicated a series of solvation shells 

surrounding each central molecule (as expected). The enhanced first shell peaks for the POH-POH 

and HOH-HOH rdfs suggested an increase in the tendency to self-associate at this composition. 

This was accompanied by rather small magnitude solvation shells in the POH-HOH rdf. For 

comparison, we have included the first shell correlation volume radii obtained from the iterative  

Figure 4.5 Center of mass based radial distribution functions (top left), KBIs (top right), 

and distance dependent PS measures (bottom) for a simulated mixture of methanol (A) and 

water (B) at an alcohol mole fraction of 0.375. KBIs are in L/mol and distances are in nm. 

Vertical dotted lines in the top left panel correspond to the correlation volume radii 

obtained from Equations (4.15) and (4.16) using the simulated KBIs. Dashed lines in the 

bottom left panel correspond to the PS measures, ( , )V  , provided by Equation (4.15) using 

the simulation data 
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solution of Equations (4.15) and (4.16). The HOH radius matched well with the observed first 

minimum in the HOH-HOH rdf, but at this distance the simulations also suggested the solvation 

shell contained essentially no POH molecules. The POH radius was larger and also close to the 

first minimum in the POH-POH rdf. Clearly, the first correlation volume radius cannot coincide 

with the first minima displayed by multiple rdfs. Indeed, the correlation volume radius is defined 

as a weighted mean involving the distribution and size of all the possible species in solution.15 

Nevertheless, the very short radii suggested for a central water molecule did not appear to agree 

with the simulation results presented here.  

The partially integrated KBIs are also provided in Figure 4.4 and appeared to converge 

reasonably well beyond 1.5 nm certainly sufficient for the present analysis. The distance dependent 

δ’s that form the basis of all the traditional PS measures are displayed in Figure 4.4. At short 

distances there was a clear excluded volume effect where the smallest molecule (in this case HOH, 

B), dominated the composition at the contact distance. Hence, 𝑥𝐴𝐵
𝐿 = 0 and therefore δAB = - xA, 

while 𝑥𝐵𝐴
𝐿 = 1 and therefore δBA = 1 - xB, at small distances. The same was true for the volume 

fraction based measures where ϕA ≈ 0.5. After this initial region (0.7 nm) the δ values were 

consistently negative and rise slowly with distance to zero. At intermediate distances the value of 

δ changed sign in some cases. The results obtained using Equation (4.15) are also presented in 

Figure 4.4 (and Figure 4.5). As expected, the results displayed a consistent sign and tended to the 

results obtained using Equation (4.11). This occurred at distances larger than 1 nm suggesting the 

differences between the KBIs was negligible beyond this distance (see Figure 4.4 and Figure 4.5).  

Similar data for the MOH/HOH mixture at a methanol mole fraction of 0.375 is provided 

in Figure 4.5. Here the measures of PS beyond the excluded volume distance were much more 

subtle and resulted in δ values that were small, oscillated in sign with distance, and appeared 



121 

shorter ranged in nature. The first shell correlation volume radii obtained from the iterative solution 

of Equations (4.15) and (4.16) are also included in Figure 4.5. There appeared to be little if any 

relationship between the correlation volume radii and the solvation shells indicated by the rdfs. 

Furthermore, the correlation volume around water in this system was substantially larger than that 

for the POH/HOH systems, even though POH has a larger volume than MOH.  

In Figure 4.6 we compare and contrast the results provided by Equations (4.11) and (4.15)  

 

Figure 4.6 Simulated measures of PS corresponding to the first solvation shell for four binary 

mixtures. The simulated values of ,( , )BA cor AV   obtained using Equation (4.15) and Equation 

(4.16) are compared to simulated values of , ,( , )BA cor A cor AR V  as provided by Equation (4.11) 
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using the simulated integrals. This directly examines the approximation that 𝛿𝐵𝐴(∞, 𝑉𝑐𝑜𝑟,𝐴) =

𝛿𝐵𝐴(𝑅𝑐𝑜𝑟,𝐴, 𝑉𝑐𝑜𝑟,𝐴). It was observed that, for the systems with strong PS measures, the two 

approaches gave the same sign and were semi-quantitative in nature. The exception was the 

MOH/HOH mixtures where the PS measures were more subtle and opposite signs were observed 

for the different δ values. Consequently, it appears that for many systems the questionable 

approximation used in developing Equation (4.15) might actually be reasonable. Unfortunately, 

without the additional insight from simulation one will never know for sure exactly how good the 

approximation might be for a particular system of interest.  

It may appear somewhat strange that the results of the solvation shell approach, obtained 

assuming fully integrated KBIs, appeared to agree reasonably well with the results obtained using  

the partially integrated KBIs. A possible explanation is provided in Figure 4.7. Here, one observes 

a reasonable linear correlation between the fully integrated KBIs and the corresponding partially 

integrated quantities for all the systems, with the possible exception of the water-water KBIs in 

the POH/HOH system. The correlation was observed whether one integrates to the correlation 

volume radius or the first minimum in the corresponding rdf. Similar results for other systems have 

appeared previously.12 Assuming a simple linear relationship between the KBIs such that 

𝐺𝛼𝛽(∞) = 𝑎𝐺𝛼𝛽(𝑅𝑐𝑜𝑟,𝛼) + 𝑐 suggests that, 

𝛿𝐵𝐴(𝑅𝑐𝑜𝑟,𝐴, 𝑉𝑐𝑜𝑟,𝐴) = 𝑥𝐴𝑥𝐵

𝐺𝐴𝐵(∞) − 𝐺𝐴𝐴(∞)

𝑉𝑐𝑜𝑟,𝐴
𝑎𝑝𝑝 + 𝑥𝐴𝐺𝐴𝐴(∞) + 𝑥𝐵𝐺𝐴𝐵(∞)

= 𝛿𝐵𝐴(∞, 𝑉𝑐𝑜𝑟,𝐴
𝑎𝑝𝑝 ) (4.39) 

 

where 𝑉𝑐𝑜𝑟,𝐴
𝑎𝑝𝑝 = 𝑎𝑉𝑐𝑜𝑟,𝐴 − 𝑐 can be considered an apparent correlation volume. Consequently, 

under these conditions the expressions provided in Equations (4.11) and (4.15) are almost 

identical, differing only in the precise value of the correlation volume. 
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Figure 4.7 A comparison of partially integrated KBIs (L/mol) with the corresponding fully 

integrated values obtained from the simulation of four mixtures. Partial integration was 

performed to the correlation volume radius (R,cor), as provided by Equations (4.15) and 

(4.16), and to the first major minimum in the corresponding rdf (rmin). The results include 

all compositions and are color coded according to the particular mixture: MOH(A)/HOH(B) 

in black; MAC(A)/MOH(B) in red; DCE(A)/MOH(B) in blue; and POH(A)/HOH(B) in 

green. 

 

The distance dependent behavior of the new PS measure obtained from the simulations is 

presented in Figure 4.8. The values of 𝑃𝑆𝐵|𝐴−𝐵(𝑅) describe the preference of water (B) for either 

POH or MOH molecules (A) compared to other water molecules as a function of distance. Both 
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mixtures displayed a negative PS beyond the excluded volume region, with the POH/HOH mixture 

values significantly larger in magnitude. The only exception was the MOH/HOH mixture at high 

MOH mole fractions. Here, the PS was small and positive and oscillated in sign with distance. The 

composition dependence of the PS measures obtained for various solvation shells are also 

displayed in Figure 4.8. The distances chosen corresponded to the first three solvation shells as 

described by the major minima in gAA(r); see Figure 4.4 and Figure 4.5. As expected, the measures 

decreased in magnitude as the solvation shell number increased, with the largest changes observed 

on going from the first to the second solvation shell. Interestingly, the minimum in the PS measures 

occurred close to the compositions where both components occupy equal volumes, i.e. at xA = 0.2 

for POH/HOH and xA = 0.3 for MOH/HOH. However, the significance of this is unknown at 

present. The magnitude of the deviations from the bulk distribution at contact were significant for 

the POH/HOH system varying from 40% to 100% of the bulk water molarity on going from xA = 

0.2 to 0.8. The percentage changes at contact for the MOH/HOH mixture were generally less than 

2% of the bulk water molarity. 

The new measure of PS described here can also be applied to ternary mixtures. We have 

not provided examples here as the number of fully miscible ternary systems studied by KB related 

approaches is relatively low.16 We do, however, expect similar results to the binary systems 

described above. The PS in ternary protein systems has also been the subject of much study,11, 13, 

42, 74-77 and the relationship between the new PS measure and the thermodynamics of proteins in 

mixed solvents is clearly outlined in the thermodynamics of ternary mixtures section. Equation 

(4.11) or (4.20) is not typically used in these application. Hence, the new measure of PS suggested 

here is related in a very simple manner, see Equation (4.36) for example, to the traditional measures 

of PS already in use.  
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4.6 Conclusions 

A new measure of PS in binary and ternary mixtures has been presented. The new measure 

combines the rigor of the Ben-Naim limiting approach with the desired properties for ideal 

mixtures, the absence of which led to the development of the (criticized) volume corrected 

quantities. The main change from the Ben-Naim approach to PS is the focus on the difference in 

Figure 4.8 Simulated distance dependent preferential solvation measures, | ( )B A BPS R  in 

mol/L, as given by Equations (4.23) and Equation (4.4). The top two panels refer to the 

POH(A)/HOH(B) system, while the bottom two panels refer to the MOH(A)/HOH(B) system. 

For comparison, the bulk water densities (ρB) were 26.9, 14.5, 7.5 and 3.1 mol/L at 

compositions of xA = 0.2, 0.4, 0.6, and 0.8, respectively, for the POH/HOH system, with 42.1,  

23.7, 11.7, and 3.3 mol/L at compositions of xA = 0.125, 0.375, 0.625, and 0.875, respectively, 

for the MOH/HOH system. 
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the distribution of a single species around two different central molecules, rather than two different 

molecules around the same central molecule. The use of local volume fractions or densities also 

helps to simplify the expressions for ternary systems. The new measure can be easily related to the 

solution thermodynamics and thereby changes in the activity coefficients. Molecular dynamics 

simulations were used to investigate the nature of existing and new PS measures. It was observed 

that the partially and fully integrated KBIs are related, to a reasonable approximation, in a simple 

linear manner. Hence, it is plausible that existing approximate measures of PS provide realistic 

semi-quantitative data concerning the original precise measures. However, for truly accurate work 

the spatial dependence of a PS measure will require simulation data as input. 
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Chapter 5 - An Experimental Investigation of the Kirkwood 

Superposition Approximation for Fluid Water  

5.1 Abstract 

A combination of Fluctuation Solution Theory and experimental pair radial distribution 

functions are used to investigate the accuracy of the Kirkwood Superposition Approximation, as 

given by the integrals over the pair and triplet distribution functions, at a series of state points for 

pure water. A variety of additional approximate relationships between the pair and triplet 

correlations in fluids are also investigated and generally provide good agreement with the fluid 

thermodynamic results for regions of the phase diagram where the compressibility is small. A 

simple power law relationship between the pair and triplet fluctuations is observed for low to 

moderately high compressibilities. 

 

5.2 Introduction 

Statistical theories of fluids attempt to provide a rigorous link between the macroscopic 

thermodynamics properties and the microscopic molecular properties of fluids.1-4 The distribution 

of molecules in space characterize the main differences between solid, liquid and gas states.3 

However, the characterization of liquids and liquid solution mixtures is much more complicated 

due to the strong intermolecular interactions and random motions of the molecules.3 Liquids and 

liquid solution mixtures are typically characterized by relative probability distribution functions 

or correlation functions.2-4 These n body distribution functions provide an approach to relate the 

structure to the thermodynamic properties.2, 4 
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Most of the theoretical treatments of liquids involve the n body distribution 

functions,  𝑔𝛼𝛽…
𝑛 (𝑟1𝑟2 … 𝑟𝑛).1-2, 5 Although, the two body distribution functions can be obtained 

from scattering studies, information regarding the triplet or higher distribution functions are not 

readily available.5-7 The main solution to this problem is the Kirkwood Superposition 

Approximation (KSA). This is an important approximation that appears in many liquid state 

theories and relates the two body distribution function to three body and higher order distribution 

functions.2 For the three body distribution function this assumption indicates that the probability 

of finding three particles in a particular arrangement can be obtained from the product of individual 

pairwise probabilities.8 For instance, Equation (5.1) indicates the relationship between three body 

distribution function 𝑔111
(3)

and two body distribution function (𝑔11
(2)

) via the KSA for a pure liquid,8  

𝑔111
(3) (𝑟1, 𝑟2, 𝑟3) = 𝑔11

(2)
(𝑟1, 𝑟2)𝑔11

(2)
(𝑟1, 𝑟3)𝑔11

(2)
(𝑟2, 𝑟3) (5.1) 

 

where 𝑟1, 𝑟2, 𝑟3 are the positions of the particle one, two and three, respectively. 

In general, the knowledge of one distribution function requires the knowledge of the other 

lower distribution functions. Therefore, with the intention of obtaining a link between n body 

distribution functions, Kirkwood proposed the superposition approximation in 1935.9 In other 

words, the spirit of the KSA is that all the higher order distribution functions can be expressed in 

terms of the pair distribution function.10 On the other hand, the physical meaning of the KSA can 

be further expressed using the potential of mean force.10-12 For example, if we consider three 

particles located at positions r1, r2 and r3, it is possible to define the mean force acting on the third 

particle (at position r3) resulting from the other two particles at positions r1 and r2. This mean force 

is equal to the sum of the forces obtained if particles 1 and 2 affected particle 3 independently, as 

shown in Equation (5.2).12-13  
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𝑊(3)(𝑟1, 𝑟2, 𝑟3) = 𝑊(2)(𝑟1, 𝑟2) + 𝑊(2)(𝑟1, 𝑟3) + 𝑊(2)(𝑟2, 𝑟3) (5.2) 

 

where 𝑊(𝑛)(𝑟1, 𝑟2 … . 𝑟𝑛) is the potential of mean force, i.e. the average force required to bring n 

particles to a particular configuration. The relationship between the potential of mean force and n 

body distribution functions is shown in Equation (5.3). 

𝑊(𝑛)(𝑟1, 𝑟2 … . 𝑟𝑛) = −𝑘𝐵𝑇𝑙𝑛𝑔(𝑛)(𝑟1, 𝑟2 … . 𝑟𝑛) (5.3) 

 

where 𝑘𝐵 is the Boltzmann constant. 

The development of the theory of liquids is highly influenced by the KSA.10 Integral 

equation methods, one of the most imperative and extremely attractive methods that has been used 

in the theoretical studies of liquids over years, have used the KSA to eliminate a chain of equations 

leading to much more simpler integral equations.10,11 Consequently, the validity of the KSA has 

been studied for over 80 years.10 

A large number of studies exist in the literature that have been conducted using various 

approaches to validate KSA.10 Here, we will summarize some of the main studies and their 

conclusions. One of the most common approaches to study the KSA is based on the coefficients 

of the virial expansion for hard sphere gases.10 Hart and coworkers have calculated virial 

coefficients, with and without the KSA, and obtained an error in the approximation.14 Most of the 

studies have shown that the fourth virial coefficient gives 20-25% error.14-15 However, using the 

KSA they could obtain a reasonable value for the third virial coefficient.14 Boer has critically 

discussed theories of liquids and the inaccuracy of the KSA based on thermal and caloric quantity 

agreement in 1952.16 Kirkwood and coworkers have studied the properties of fluid particles 

interacting according to a LJ potential using the KSA and compared with experimental data.17 
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They have concluded that the calculated equation of state is not in good agreement with the 

experimental data. The pressure of the system is overestimated and underestimated at small and 

high densities, respectively.17 Therefore, they have concluded that the correlation obtained using 

the KSA is not suitable for all densities.17 Several other workers have also discussed the validity 

of the KSA at different densities.2 Moreover, the error of the KSA results in a significantly large 

error for the two and three body distribution function.17 Salsburg and coworkers have studied the 

KSA in a strictly mathematical way and found that the approximation is accurate for one 

dimensional systems but it is impossible to extend this result to multi dimensional systems.18 

 Not only theoretical calculations but also number of molecular simulation approaches, 

such as Molecular Dynamics (MD) and Monte Carlo (MC) methods, have been used to study the 

KSA.19-20 These methods also confirmed the low precision of the KSA. Moreover, these 

computational studies have investigated the validity of the KSA with respect to molecular distance. 

The KSA appears to be more accurate at shorter distances and inaccurate at large distances.10 The 

work of Rowlinson and Alder has revealed that the KSA overestimates the quantity of particles 

when using the calculation for the triplet correlation function.21-22 Moreover, Krumhansl and 

coworkers have stated that the KSA would result in a 15% error for the symmetric triplet 

configuration and a 35% for asymmetric ones.23-24 Temperly and coworkers have stated that the 

KSA might be valid for very high and low densities, such as solid and gases, but not for the liquid 

state.10 Egelstaff and coworkers have shown that the ternary distribution of solid spheres can be 

predicted reasonably accurately using the KSA. In contrast, Bildstein and coworkers have argued 

that the KSA is poor as they observed significant errors at direct contact using computer simulation 

studies.25 Ben-Amotz and coworkers have shown that the KSA is least accurate near the contact 

separation.26  
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Dhabal and coworkers have recently  studied  the KSA approximation for liquid water 

under ambient conditions using MD and Reverse Monte Carlo (RMC) and showed that the triplet 

correlation from RMC datasets are in reasonable agreement with the KSA, but the data from MD 

simulations showed significant disagreement within the first two neighbor shells.27 Piasecki and 

coworkers have revealed the absence of a critical point within the KSA.28 Singer and coworkers 

have provided a different explanation of the KSA using a variational formulation for systems at 

equilibrium in the thermodynamic limit.29 In this work they have used a maximum entropy 

formulation of the KSA.29 They have shown that the KSA fails when the three particles are very 

close to each other.29 Furthermore, a study based on a colloidal model liquid also indicated that 

the KSA would fail for strongly interacting systems.30 In summary, extensive theoretical and 

simulations studies have been performed to examine the KSA using various model systems. 

However, the primary motivation for this study is the lack of information concerning the validity 

of the KSA for real liquids using experimental data.  

In this study, we investigate a different approach to validate the KSA for pure water based 

on Fluctuation Solution Theory (FST). Fluctuation Solution Theory is an important theory of 

liquids which provides a rigorous link between particle number fluctuations and common 

thermodynamic properties.31-32 Moreover, the particle number fluctuations can be expressed using 

two and higher body probability distribution functions.31-32 Recently, Smith and coworkers have 

proposed an approach to link particle number fluctuations to higher order probability distribution 

functions.32-34 In other words, using FST it is possible to obtain higher order distribution functions 

using common thermodynamic properties. There is scarce experimental information available 

regarding the distribution functions beyond the pair correlation function.33 Therefore, it is 

beneficial to have an approach to obtain these higher order distribution functions from 
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thermodynamic data for liquids and liquid solution mixtures. Hence, this provide a route to validate 

the KSA using just experimental data for real liquids.  

Buff and coworkers have used this type of approach to validate the KSA for liquid argon.35 

We have followed their approach to further explore the KSA for pure water at a series of state 

points. We use experimental pair distribution functions obtained from neutron and x-ray scattering 

studies in combination with FST to investigate the KSA. Triplet and pair distributions are then 

related using a variety of additional approximations. 

 

5.3 Theory 

Recently, we applied FST to study the properties of pure liquids.33 In this approach the 

properties of the liquid are expressed in terms of the particle fluctuations for an equivalent system 

open to matter exchange. The main fluctuating quantities of interest here are provided by,33  

𝑏11 ≡
〈(𝛿𝑁1)2〉

〈𝑁1〉
= 1 + 𝜌1𝐺11 (5.4) 

 

𝑐111 ≡
〈(𝛿𝑁1)3〉

〈𝑁1〉
= 1 + 3𝜌1𝐺11 + 𝜌1

2𝐺111 (5.5) 

 

𝑑1111 =
〈(𝛿𝑁1)4〉 − 3〈𝛿𝑁1

2〉2

〈𝑁1〉
= 1 + 7𝜌1𝐺11 + 6𝜌1

2𝐺111 + 𝜌1
3𝐺1111 (5.6) 

 

where 𝜌1 = 〈𝑁1〉 𝑉⁄  is the average number density, V is volume, 𝛿𝑁1 = 𝑁1 − 〈𝑁1〉 denotes a 

fluctuation in the value of the instantaneous number of molecules N1, and the angular brackets 

denote an ensemble average for the Grand Canonical Ensemble (GCE). The above fluctuating 

quantities are essentially the cumulants of the particle probability distribution for the equivalent 
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GCE. The second equalities in Equation (5.4) - Equation (5.6) express these fluctuations in terms 

of integrals over n-body distribution functions 𝑔𝛼𝛽…
(𝑛)

(𝑟1, 𝑟2, … , 𝑟𝑛) according to,33 

𝐺11 ≡ 𝑉−1 ∫[𝑔11
(2)

− 1]𝑑𝑟1 𝑑𝑟2 (5.7) 

 

𝐺111 ≡ 𝑉−1 ∫[𝑔111
(3)

− 1 − 3(𝑔11
(2)

− 1)]𝑑𝑟1 𝑑𝑟2𝑑𝑟3 (5.8) 

 

𝐺1111 ≡ 𝑉−1 ∫[𝑔1111
(4)

− 1 − 4(𝑔111
(3)

− 1) − 3(𝑔11
(2)

− 1)(𝑔11
(2)

− 1) + 6(𝑔11
(2)

− 1)]𝑑𝑟1 𝑑𝑟2𝑑𝑟3𝑑𝑟4 

(5.9) 

 

Hence, the above equations relate the thermodynamics of the fluid to integrals over the 

corresponding distribution functions that describe the structure of the liquid. Note that the 

molecular orientations do not appear in these integrals as the distribution functions correspond to 

those between the molecular centers of mass after averaging over their molecular orientations, and 

after averaging over the positions and orientations of all other molecules in the system. 

The above fluctuations can be expressed in terms of pressure derivatives of the density 

according to,34 

𝑏11 = 𝑘𝐵𝑇𝜌1
′ = 𝜌1𝑘𝐵𝑇𝜅𝑇 (5.10) 

 

𝑐111 = (𝑘𝐵𝑇)2[𝜌1𝜌1
′′ + (𝜌1

′ )2] (5.11) 

 

𝑑1111 = (𝑘𝐵𝑇)3[𝜌1
2𝜌1

′′′ + 4𝜌1𝜌1
′ 𝜌1

′′ + (𝜌1
′ )3] (5.12) 
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where the prime indicates an isothermal derivative with respect to pressure (p), T the absolute 

temperature, and κT the isothermal compressibility. Consequently, if the density derivatives are 

known – usually from an accurate Equation of State – then experimental values for the fluctuations 

can be determined, and subsequently provide the integrals described in Equation (5.7) - Equation 

(5.9). The fluctuations can also be expressed in terms of integrals over the analogous direct 

correlation functions, although we shall not use that approach here. 

The above integrals can be used in pressure or density expansions for a high density fluid. 

The pressure derivatives of the above integrals are given by,33 

𝐺11
′ = 𝛽(𝐺111 − 2𝐺11

2 ) (5.13) 

  

𝐺11
′′ = 𝛽2(𝐺1111 − 7𝐺111𝐺11 + 8𝐺11

3 ) (5.14) 

 

𝐺111
′ = 𝛽(𝐺1111 − 3𝐺111𝐺11) (5.15) 

 

where β = 1/kBT. The pressure derivatives are clearly related to integrals over higher distribution 

functions for the fluid. The above expressions correspond to the integrated versions of the well-

known relationships between the probability density distribution functions,5, 36 

𝑘𝐵𝑇 (
𝜕[𝜌1

𝑛𝑔(𝑛)]

𝜕𝑝
)

𝑇

= 𝜌1𝑘𝐵𝑇𝜅𝑇 (
𝜕[𝜌1

𝑛𝑔(𝑛)]

𝜕𝜌1
)

𝑇

= 𝑛𝜌1
𝑛−1𝑔(𝑛) + 𝜌1

𝑛 ∫[𝑔(𝑛+1) − 𝑔(𝑛)]𝑑𝑟𝑛+1 

(5.16) 

 

which can also be written in terms of just the spatial distribution functions, 

𝑘𝐵𝑇 (
𝜕𝑔(𝑛)

𝜕𝑝
)

𝑇

= 𝜌1𝑘𝐵𝑇𝜅𝑇 (
𝜕𝑔(𝑛)

𝜕𝜌1
)

𝑇

= ∫[𝑔(𝑛+1) − 𝑔(𝑛)(𝑛𝑔(2) − 𝑛 + 1)]𝑑𝑟𝑛+1 (5.17) 
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where the integration is over the molecular positions.  

The expressions in the previous sections indicate that integrals over the pair, triplet and 

quadruplet distributions can be obtained from experiment. This provides a route for testing the 

KSA using purely experimental data for real liquids, as established by Buff and Brout.35 Here we 

extend their approach. The accuracy of the KSA can be characterized by the difference between 

the triplet and quadruplet correlations and their pairwise analogues. Hence, we define, 

∆𝑔111
(3)

≡ 𝑔11
(2)(𝑟1, 𝑟2)𝑔11

(2)(𝑟1, 𝑟3)𝑔11
(2)(𝑟2, 𝑟3) − 𝑔111

(3)
(𝑟1, 𝑟2, 𝑟3) (5.18) 

 

∆𝑔1111
(4)

≡ 𝑔11
(2)(𝑟1, 𝑟2)𝑔11

(2)(𝑟1, 𝑟3)𝑔11
(2)(𝑟1, 𝑟4)𝑔11

(2)(𝑟2, 𝑟3)𝑔11
(2)(𝑟2, 𝑟4)𝑔11

(2)(𝑟3, 𝑟4)

− 𝑔1111
(4)

(𝑟1, 𝑟2, 𝑟3, 𝑟4) 
(5.19) 

 

where the expressions would be zero when the KSA, and the analogous four body approximations, 

hold, respectively. The comparison is facilitated by using the same functional form for the virial 

coefficients used to describe imperfect gases or osmotic solutions.33 The first few virial 

coefficients we require are given by the expressions,33  

𝐵2
∗ = −

1

2
𝐺11 (5.20) 

 

𝐵3
∗ = −

1

3
[𝐺111 − 3𝐺11

2 ] (5.21) 

 

𝐵4
∗ = −

1

8
[𝐺1111 − 12𝐺111𝐺11 + 20𝐺11

3 ] (5.22) 
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where we have used an asterisk to indicate these expressions are valid for any density and are 

therefore different from the usual low density applications for these expressions. Using the same 

manipulations as performed for the traditional virial coefficients, the third virial coefficient using 

the KSA can then be written,  

𝐵3,𝐾𝑆𝐴
∗ = −

1

3
𝐼0 = −

1

3
𝑉−1 ∫ ℎ11

(2)
(𝑟1, 𝑟2) ℎ11

(2)
(𝑟1, 𝑟3)ℎ11

(2)
(𝑟2, 𝑟3)𝑑𝑟1𝑑𝑟2𝑑𝑟3 (5.23) 

in terms of the total correlation function ℎ11
(2)

= 𝑔11
(2)

− 1. Hence, we can evaluate the difference 

between the real triplet correlations and the KSA via,  

∆𝐺111 ≡ 𝐺111
𝐾𝑆𝐴 − 𝐺111

𝐸𝑥𝑝 ≡ 𝑉−1 ∫ ∆𝑔111
(3)

𝑑𝑟1𝑑𝑟2𝑑𝑟3 = −3(𝐵3,𝐾𝑆𝐴
∗ − 𝐵3

∗) (5.24) 

 

The above integrated quantity provides a single measure concerning the accuracy of the KSA. It 

does not provide information concerning the accuracy as a function of distance, and clearly there 

may be some cancellation upon integration. Nevertheless, this approach avoids the necessity for 

theoretical or simulation data and therefore also avoids the assumption that these approaches are 

sufficiently accurate for analysis. 

To evaluate the third virial coefficient using the KSA one requires additional experimental 

data; specifically, the experimental pair distribution as a function of distance. This can be obtained 

from the experimental structure factor, 𝑆(𝑘) = 1 + 𝜌1𝐻11(𝑘), or the total correlation function, via 

Fourier transforms valid for isotropic liquids, 

𝐻11(𝑘) = ∫ ℎ11
(2)

(𝑟)
∞

0

sin (𝑘𝑟)𝑘𝑟−14𝜋𝑟2𝑑𝑟 (5.25) 
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ℎ11
(2)(𝑟) = (2𝜋)−3 ∫ 𝐻11

∞

0

(𝑘) sin(𝑘𝑟)(𝑘𝑟)−1 4𝜋𝑘2𝑑𝑘 (5.26) 

 

The KSA expression for the third virial coefficient is then given by the fact that,35  

𝐼0 = (2𝜋)−3 ∫ [𝐻11

∞

0

(𝑘)]34𝜋𝑘2𝑑𝑘 (5.27) 

 

via the convolution-correlation theorem.37-38 Hence, one can compare the third virial coefficient 

obtained experimentally from the thermodynamic data to that obtained via the KSA using only 

pair correlations to determine the integrated difference indicated in Equation (5.24).  

We can also investigate the severity of the KSA for four body correlations. A simple way 

to evaluate this is to determine the pressure dependence of the KSA approximation for the three 

body correlations. To achieve this we define,  

∆𝐺1111 ≡ 𝐺1111
𝐾𝑆𝐴 − 𝐺1111

𝐸𝑥𝑝 ≡ 𝑉−1 ∫[∆𝑔1111
(4)

− 4∆𝑔111
(3)

] 𝑑𝑟1𝑑𝑟2𝑑𝑟3𝑑𝑟4 (5.28) 

 

Then, if we take pressure derivatives of G111 for the experimental and KSA approximations given 

by the expressions provided in Equation (5.13) – Equation (5.15) one finds, 

∆𝐺1111 = 𝑘𝐵𝑇 (
𝜕∆𝐺111

𝜕𝑝
)

𝑇

+ 3∆𝐺111𝐺11 (5.29) 

 

which provides access to ΔG1111. The difference between the real and KSA approximations for the 

four (and three) body correlations is related to the difference in the fourth virial coefficients via, 

∆𝐺1111 − 12∆𝐺111𝐺11 = −8(𝐵4,𝐾𝑆𝐴
∗ − 𝐵4

∗) (5.30) 
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Unfortunately, the fourth virial coefficient under the KSA approximations does not simplify as 

easily as the third virial coefficient. Indeed, the fourth virial coefficient involves several terms,  

𝐵4,𝐾𝑆𝐴
∗ = −

3

8
𝐼1 −

6

8
𝐼2 −

1

8
𝐼3 (5.31) 

 

𝐼1 = 𝑉−1 ∫[ℎ11
(2)

(𝑟1, 𝑟2)ℎ11
(2)

(𝑟2, 𝑟3)ℎ11
(2)

(𝑟3, 𝑟4)ℎ11
(2)

(𝑟4, 𝑟1)] 𝑑𝑟1𝑑𝑟2𝑑𝑟3𝑑𝑟4 (5.32) 

 

𝐼2 = 𝑉−1 ∫  [ℎ11
(2)(𝑟1, 𝑟2)ℎ11

(2)(𝑟2, 𝑟3)ℎ11
(2)(𝑟3, 𝑟4)ℎ11

(2)(𝑟1, 𝑟4)ℎ11
(2)(𝑟1, 𝑟3)]   𝑑𝑟1𝑑𝑟2𝑑𝑟3𝑑𝑟4 (5.33) 

 

𝐼3

= 𝑉−1 ∫[ℎ11
(2)(𝑟1, 𝑟2)ℎ11

(2)(𝑟2, 𝑟3)ℎ11
(2)(𝑟3, 𝑟4)ℎ11

(2)(𝑟1, 𝑟4)ℎ11
(2)(𝑟1, 𝑟3)ℎ11

(2)(𝑟2, 𝑟4)] 𝑑𝑟1𝑑𝑟2𝑑𝑟3𝑑𝑟4 
(5.34) 

 

only one of which can be easily obtained from the experimental structure factor,  

𝐼1 = (2𝜋)−3 ∫ [𝐻11(𝑘)]44𝜋𝑘2
∞

0

𝑑𝑘 (5.35) 

via the convolution-correlation theorem. 

 

5.4 Methods 

The experimental thermodynamic data for pure water as a function of pressure and 

temperature were determined using the IAPWS-95 Equation of State, developed by Wagner and 

Pruss,39 as implemented in the National Institute of Standards and Technology (NIST) Standard 

Reference Database 10: NIST/American Society of Mechanical Engineers Steam Properties 

Database version 2.22.40 The source code provides the required first and second density derivatives 

as a function of pressure and temperature via a simple subroutine call. Third density derivatives 
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were obtained numerically via a finite difference approach using the second derivatives and a value 

of dp = ±10-20 bar. Calculations were performed in quadruple precision. 

The scattering data for liquid and fluid water were taken from the neutron scattering studies 

of Soper and coworkers.41 The radial distribution functions for a variety of pressures and 

temperatures have been provided, after refinement using computer simulation data in an iterative 

procedure.41 In addition, raw X-ray scattering data were also used to provide an indication of the 

effects of possible experimental errors.42 The state points considered here are indicated in Figure 

5.1, where we also include the values of b11 for the liquid and super critical regions. 

Experimental scattering data suffer from technical issues at low and high scattering 

amplitudes.43-47 Scattering at high amplitudes is a relatively unimportant contribution to the 

thermodynamic properties, however scattering at low amplitudes plays a significant role. 

Fortunately, the limiting value of H11(k) can be checked for consistency by noting that              

𝑆(0) = 1 + 𝜌1𝐻11(0) = 𝜌1𝑘𝐵𝑇𝜅𝑇 = 𝑏11.48 To ensure consistency between the thermodynamic 

and scattering data we have modified the low scattering behavior to obey the Ornstein-Zernike 

approximation – which has been demonstrated to hold even close to the critical point49 – as given 

by, 

𝑆(𝑘) 𝑆(0)⁄ = 1 + 𝑎𝑘2 + 𝑏𝑘4 (5.36) 

 

The a and b parameters were obtained after fitting k values between 10-20 nm-1. This resulted in 

very good fits to the experimental structure factors for all but the T = 673 K and p = 500 bar state 

point which lies closest to the critical point. The integrals described in Equation (5.25), Equation 

(5.26), Equation (5.27) and Equation (5.35) were determined using discrete Fourier transforms. 
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The rdfs extend to 1.5 nm using 500 observations (npt) with intervals (dr) of 0.003 nm which 

provides a maximum k value of 333 nm-1 and intermediate k values that satisfy npt dr dk = 1.  

To determine the value of ΔG1111 we need to evaluate the derivative indicated in Equation 

(5.29). This was obtained after fitting the ΔG111 values to a simple polynomial, 

∆𝐺111 = 𝑐0 + 𝑐1𝑝 + 𝑐2𝑝2 (5.37) 

 

This provides reasonable derivatives for points not too close to the critical point. In particular, the 

state points located at T = 673 K and p = 500 bar and T = 573 K and p = 100 bar were dropped to 

ensure reasonable fits were obtained using the above low order polynomial. 

Classical molecular dynamics simulations of pure water were performed in order to 

investigate the distance dependent accuracy of the KSA and related approximations. Simulations 

of the SPC/E50 water model were performed using the Gromacs simulation package (version 4.6).51 

The simulations were performed at 300.15 K and 1 bar in a 6nm cubic simulation box, using a 

time step of 2 fs with bond lengths constrained using LINCS algorithm.52 Electrostatic interactions 

were determined using the particle mesh Ewald approach,53 with a 1.0 nm cutoff for electrostatic 

interactions and a twin range 1.0 and 1.5 nm cutoff for van der Waals interactions. The system 

were equilibrated from 0.1 ns and followed with 15 ns production run. Temperature and pressure 

coupling was achieved using the Berendsen algorithm. The normalized triplet distributions can be 

computed from the simulation by dividing the real triplet distribution by the equivalent ideal triplet 

distribution.  
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5.5 Results 

The behavior of the pair fluctuations, b11, in the liquid and super critical regions of the 

water p-T phase diagram is illustrated in Figure 5.1. Also included are the state points for which 

the rdfs used here have been determined. The magnitude of b11 increases as one approaches the 

critical point, whereas b11 decreases with increasing pressure along the isotherms and for the state 

points considered here. For comparison, b11 = 1 for an ideal gas and is approximately 0.01 for 

ice.33, 54-55 A detailed FST analysis of the thermodynamics is provided in Table 5.1. The values for 

c111 indicate a negative skewness for the particle number distribution and therefore particle deletion 

is more favorable than addition on the average. Positive values for d1111 indicate the distribution is 

more peaked than a normal distribution and so small net deletions or insertions are favored over 

larger deletions or insertions. Both of these quantities decrease in magnitude as the pressure 

increases, i.e. the particle number distribution tends towards a normal distribution as T decreases 

and p increases. This is the same region of the phase diagram that tends to the incompressible limit 

(IL). 

The experimental water oxygen-oxygen radial distribution functions used in this study are 

presented in Figure 5.2 as a function of temperature and pressure. As expected, they generally 

indicate less structure as the temperature and/or pressure increases. The effect of pressure, 

however, leads to relatively small changes to the rdfs, even for the states closest to the critical 

point. The rdfs displayed in Figure 5.2 were used to determine the corresponding structure factors. 

The small k behavior of the structure factors were then modified using Equation (5.36) to ensure 

thermodynamic consistency. These modified structure factors were then used in determining the 

integrals in Equation (5.27) and Equation (5.35). The results of this process are displayed in Figure 

5.3 and Figure 5.4 for two of the state points investigated here. At 298 K and 1 bar the difference  
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between the original and modified structure factors and rdfs is completely negligible. The 

differences at 423 K and 1900 bar are more significant. However, even here changes to the low k 

behavior of the structure factor have only small effects on the recalculated rdf. The effect on the 

third virial coefficient is sizable, but we consider the thermodynamically consistent structure 

 

Figure 5.1 Contour plot of b11 as a function of temperature and pressure for the liquid (l), 

gas (g) and supercritical (s.c.) regions of pure water as given by the IAPWS-95 equation 

of state. The gray-filled regions were not contoured. Crosses indicate the state points 

considered here. Unlabeled contour values are as follows: 0.1, 0.2, 0.3, 0.425, 1.05, 1.15, 

1.25, 1.35, 1.45. Contours above 1.5 were omitted for clarity, because b11 is increasing 

rapidly as the critical point is approached from any phase. The horizontal dashed line 

indicates the maximum valid pressure of the IAPWS-95 equation of state. The phase 

coexistence curves are shown as bold lines. The triple point and critical point are shown 

as filled black circles. 
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Table 5.1 Fluctuation Solution Theory Based Properties of Fluid Water 

T p 𝜌1 105κT 𝜌1G11 𝜌1
2G111 𝜌1

3G1111 b11 c111 d1111 𝜌1B2
* 𝜌1

2B3
* 𝜌1

3B4
* 

K bar M bar-1          

             

298 1 55.34 4.53 -0.94 1.80 -5.21 0.062 -0.014 0.006 0.468 0.279 0.184 

298 2100 59.68 2.87 -0.96 1.86 -5.49 0.042 -0.008 0.003 0.479 0.295 0.203 

               

423 100 51.20 5.93 -0.89 1.62 -4.33 0.107 -0.064 0.112 0.447 0.259 0.158 

423 1900 55.44 3.42 -0.93 1.78 -5.13 0.067 -0.019 0.016 0.467 0.278 0.182 

               

573 100 39.72 30.5 -0.42 -2.39 49.12 0.577 -2.655 32.834 0.212 0.974 -4.436 

573 500 43.11 14.7 -0.70 0.54 3.28 0.303 -0.552 2.631 0.349 0.306 -0.126 

573 1100 46.12 8.85 -0.81 1.22 -2.19 0.194 -0.195 0.506 0.403 0.242 0.104 

573 1970 49.06 5.80 -0.86 1.51 -3.87 0.136 -0.084 0.137 0.432 0.244 0.141 

573 2800 51.16 4.44 -0.89 1.63 -4.45 0.108 -0.049 0.060 0.446 0.253 0.155 

               

673 500 32.10 71.3 0.28 -9.93 172.36 1.281 -8.087 115.737 -0.141 3.390 -25.791 

673 800 36.62 29.2 -0.40 -1.44 21.12 0.598 -1.646 10.668 0.201 0.642 -1.609 

673 1300 40.58 15.0 -0.66 0.47 2.53 0.341 -0.502 1.762 0.329 0.276 -0.070 

673 3400 48.38 5.20 -0.86 1.50 -3.91 0.141 -0.075 0.099 0.430 0.237 0.136 

             

IL   0 -1 2 -6 0 0 0 1/2 1/3 1/4 

See the text for definitions 

 

factors to be more reasonable. Also shown in Figure 5.3 and Figure 5.4 are the partially integrated 

analogues of Equation (5.27) where the integration is performed over all k values up to K. This 

plot illustrates the known large contributions to the third viral coefficient from the small k (or long 

r) behavior of the structure factor (or rdfs), typically providing 110-120% of the total contribution. 

The results of using the KSA approximation are summarized in Table 5.2. The 

experimental G111 – 3G11
2 values are always negative and vary systematically with pressure along 

each isotherm. The corresponding KSA values are also generally negative, but display 

significantly less variation with temperature and pressure, especially closer to the critical point. 

The ΔG111 values were typically negative – indicating an overall underestimation of the triplet 

correlations by the KSA – for state points away from the critical point. As the critical point is 
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approached the errors become positive and significantly larger in magnitude suggesting the real 

triplet correlations are increasing much slower than the pair correlations. The percentage errors for 

the triplet KSA suggest that this is a poor approximation for the majority of state points. The errors 

indicated by ΔG1111 generally display the opposite sign to that observed for ΔG111 suggesting that 

either the quadruplet correlations were overestimated for state points away from the critical point, 

or ΔG1111 is dominated by the error in the triplet correlations. The contribution of I1, as obtained 

from Equation (5.35), to the fourth virial coefficient was typically of the same order of magnitude 

as the virial coefficient, although this contribution dropped to essentially zero as one approached 

the critical point. 

Figure 5.2 Oxygen-oxygen radial distribution functions obtained by Soper and coworkers as 

a function of temperature and pressure (bar). 
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Figure 5.3 Radial distribution functions (top), structure factors (center), and integrals 

(bottom) for liquid water at 298 K and 1 bar. In the top two panels the original rdf and 

structure factor are shown in black, while the thermodynamically consistent rdf and 

structure factor are shown in red. The integral in the bottom panel is displayed as a function 

of total integration wavevector, K. 
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Figure 5.4 Radial distribution functions (top), structure factors (center), and integrals 

(bottom) for liquid water at 423 K and 1900 bar. In the top two panels the original rdf and 

structure factor are shown in black, while the thermodynamically consistent rdf and 

structure factor are shown in red. The integral in the bottom panel is displayed as a function 

of total integration wavevector, K. 
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Table 5.2 Triplet and Quadruplet Integrals using the Kirkwood Superposition 

Approximation. 

T p 𝜌1 G111-3G11
2 ΔG111 %err ΔG1111 %err 

K bar M KSA exp     

         

298 1 55.34 -324 -274 -50 -9 1313 4 

298 2100 59.68 -403 -249 -155 -30 6210 24 

            

423 100 51.20 -394 -297 -97 -16 4407 14 

423 1900 55.44 -403 -271 -132 -23 6002 20 

            

573 100 39.72 -443 -1853 1410 93     

573 500 43.11 -408 -494 86 30 -19907 -49 

573 1100 46.12 -390 -341 -49 -9 -5967 -27 

573 1970 49.06 -437 -304 -133 -21 8851 27 

573 2800 51.16 -291 -290 -1 0 11774 35 

            

673 500 32.10 78 -9872 9950 103     

673 800 36.62 -186 -1435 1250 116 -164655 -38 

673 1300 40.58 -190 -502 312 109 -101687 -268 

673 3400 48.38 -321 -304 -18 -3 69825 202 

Units: G111 in (cm3/mol)2 and G1111 in (cm3/mol)3 ; %err was calculated as 
KSA exp exp

111 111 111100%( )/ | |G G G  or KSA exp exp

1111 1111 1111100%( )/ | |G G G , respectively. 

 

It is noticeable that the KSA values for G111 – 3G11
2 do not always vary systematically with 

pressure, although the subsequent values for ΔG111 are systematic. In an effort to determine how 

the above results may differ between different experimental determinations of the pair distribution 

function we have compared a variety of results obtained for water at 298 K and 1 bar. These are 

presented in Figure 5.5 and include the experimental neutron diffraction rdf data currently used 

here (Soper, 2000),41 together with a series of refinement results for the structure factor also 

obtained from the Soper group but via X-ray scattering (Soper, 2013).42 All data were made 

thermodynamically consistent by fitting to Equation (5.36). The data shown in Figure 5.5 indicate 

that, while there were some differences between the structure factor data, the final integrated values 

of G111 – 3G11
2 = I0 were very consistent with one notable exception. This exception corresponded  
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Figure 5.5 Radial distribution functions (top), structure factors (center), and integrals 

(bottom) for liquid water at 298 K and 1 bar. Rdfs were taken from Soper 2000 (current 

work) and a series of refinements by Soper 2013. The integral in the bottom panel is 

displayed as a function of total integration wavevector, K 
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to a data analysis procedure that was known to produce spurious results.42 Hence, reasonable 

estimates for the structure factors produce consistent results for the KSA approximation, yet the 

results are not so insensitive to the structure factors that there is no information. We conclude that 

the KSA estimates for G111 – 3G11
2 are sufficiently accurate, although the exact degree of accuracy 

might vary between state points, and therefore the results displayed in Table 5.2 are meaningful. 

The results for the KSA are not particularly encouraging. This conclusion is in agreement 

with a variety of other studies.10, 24, 35 The goal of the KSA was to relate the triplet and pair 

correlations in fluids. Here, we investigate a series of other approaches which can be used to 

achieve a similar goal. The first is due to Moelwyn-Hughes who observed that the change in the 

bulk modulus with pressure along an isotherm is essentially the same over a wide range of state 

points.56 Hence, one can write,56  

(
𝜕𝜅𝑇

−1

𝜕𝑝
)

𝑇

≡ 𝜇 (5.38) 

 

where µ is a constant for a particular temperature. The value of µ does vary with temperature but 

only slightly.33 Using the above definition in Equation (5-10) - Equation (5-12) provides, 

𝑐111 = (2 − 𝜇)𝑏11
2  (5.39) 

 

𝑑1111 = (2 − 𝜇)(3 − 2𝜇)𝑏11
3 − 𝜌1𝑘𝐵𝑇𝜇′𝑏11

2  (5.40) 

 

Both expressions are exact if µ and µ' (= ∂µ/∂p) are evaluated at the state point of interest. The 

Moelwyn-Hughes approach assumes µ is indeed independent of pressure and so µ' = 0. 

Consequently, the triplet and quadruplet fluctuations (correlations) are then simply proportional to 
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powers of the pair fluctuations (correlations). The corresponding relationships between the 

integrals are given by, 

𝜌1
2𝐺111 = (1 − 𝜇) + (1 − 2𝜇)𝜌1𝐺11 + (2 − 𝜇)𝜌1

2𝐺11
2  (5.41) 

 

𝜌1
3𝐺1111 = −(1 − 𝜇)(1 + 2𝜇) − 𝜌1𝑘𝐵𝑇𝜇′ + (5 − 9𝜇 + 6𝜇2 − 2𝜌1𝑘𝐵𝑇𝜇′)𝜌1𝐺11

+ [3(2 − 𝜇)(1 − 2𝜇) − 𝜌1𝑘𝐵𝑇𝜇′]𝜌1
2𝐺11

2 + (2 − 𝜇)(3 − 2𝜇)𝜌1
3𝐺11

3  
(5.42) 

 

and implies triplet probability distribution of the form,  

𝑔111
(3) (𝑟1, 𝑟2, 𝑟3) − 1

≈ 3ℎ11
(2)(𝑟1, 𝑟2) + (2 − 𝜇)[ℎ11

(2)(𝑟1, 𝑟2)ℎ11
(2)(𝑟1, 𝑟3)] + (1

− 2𝜇)ℎ11
(2)(𝑟1, 𝑟2)/〈𝑁1〉 + (1 − 𝜇)/〈𝑁1〉2 

(5.43) 

 

Table 5.3 Triplet and Quadruplet Integrals using Moelwyn-Hughes Isotherms. 

T p 𝜌1 ΔG111 %err ΔG1111 %err 

K bar M     

       

298 1 55.34 0 0 28 0 

298 2100 59.68 0 0 -8 0 

          

423 100 51.20 9 1 -1554 -5 

423 1900 55.44 1 0 -148 0 

          

573 100 39.72 908 60 -566950 -72 

573 500 43.11 116 40 -38360 -94 

573 1100 46.12 26 5 -6275 -28 

573 1970 49.06 7 1 -1337 -4 

573 2800 51.16 2 0 -444 -1 

          

673 500 32.10 1992 21 -1918704 -37 

673 800 36.62 249 23 -124602 -29 

673 1300 40.58 44 15 -14624 -39 

673 3400 48.38 0 0 -189 -1 

Units: G111 in (cm3/mol)2 and G1111 in (cm3/mol)3. Using Equation (5.39) – Equation (5.42) with 

µ = 5.68 and µ' = 0. 
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where the final two terms are only finite upon integration. It should be noted that µ = 1 for an ideal 

gas resulting in a Poisson particle number distribution, µ = 2 corresponds to a Gaussian particle 

number distribution, and µ = 5-11 for common liquids.57 

In Table 5.3 we investigate the accuracy of the above approximation for water as provided 

when adopting a single value of µ = 5.68 (obtained at 298 K and 1 bar) for all temperatures and 

pressures. The results represent a substantial improvement over the KSA, although neither 

approach performs well on approaching the critical point. In Table 5.4 we provide the results for 

the related Gaussian (µ = 2) approximation. The Gaussian limit is approached (but never reached) 

at low temperature and high pressure. Again, the results appear to be very reasonable for the liquid 

state away from the critical point, although the results for the critical fluid region are significant 

worse than in Table 5.3. Both approaches overestimate the magnitude of the triplet correlations as 

one nears the critical point. 

Table 5.4 Triplet and Quadruplet Integrals using the Gaussian Approximation 

T p 𝜌1 ΔG111 %err ΔG1111 %err 

K bar M     

       

298 1 55.34 5 1 474 2 

298 2100 59.68 2 0 213 1 

          

423 100 51.20 25 4 1425 4 

423 1900 55.44 6 1 500 2 

          

573 100 39.72 1683 111 -563027 -72 

573 500 43.11 297 102 -16525 -40 

573 1100 46.12 92 16 2117 10 

573 1970 49.06 35 6 1950 6 

573 2800 51.16 19 3 1285 4 

          

673 500 32.10 7852 81 -5794278 -111 

673 800 36.62 1228 114 -256521 -60 

673 1300 40.58 305 106 -12095 -32 

673 3400 48.38 32 5 1932 6 

Units: G111 in (cm3/mol)2 and G1111 in (cm3/mol)3
. Using Equation (5.39) – Equation (5.42) with 

µ = 2 and µ' = 0. 
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An alternative approach is to assume that the rdfs are independent of pressure. This is 

clearly an approximation as indicated in Figure 5.2. Nevertheless, some of observed increases and 

decreases may cancel on integration leading to a reasonable approximation. The derivatives in 

Equation (5.13) – Equation (5.17) are then zero under these conditions and we find, 

𝑐111 = 1 + 3𝜌1𝐺11 + 2𝜌1
2𝐺11

2  (5.44) 

 

𝑑1111 = 1 + 7𝜌1𝐺11 + 12𝜌1
2𝐺11

2 + 6𝜌1
3𝐺11

3  (5.45) 

 

and, 

𝐺111 = 2𝐺11
2  (5.46) 

 

𝐺1111 = 6𝐺11
3  (5.47) 

 

which implies a triplet distribution function of the form, 

𝑔111
(3) (𝑟1, 𝑟2, 𝑟3) − 1

≈ ℎ11
(2)(𝑟1, 𝑟2)ℎ11

(2)(𝑟1, 𝑟3) + ℎ11
(2)(𝑟1, 𝑟2)ℎ11

(2)(𝑟2, 𝑟3) + ℎ11
(2)(𝑟1, 𝑟2)

+ ℎ11
(2)(𝑟1, 𝑟3) + ℎ11

(2)(𝑟2, 𝑟3) 

(5.48) 

 

and corresponds to a situation where µ = 1/b11. 

The results obtained from such an approximation are provided in Table 5.5. Again, the 

results are very good for the liquid region away from the critical point, with a small general 

underestimation of the triplet correlations. This corresponds to regions where the G111/G11
2 and 

G1111/G11
3 ratios approach the values predicted by Equation (5.46) – Equation (5.47). However, 
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the fluid region is unsatisfactory and the triplet correlations are again overestimated on 

approaching the critical point. 

Table 5.5 Triplet and Quadruplet Integrals Assuming Pressure Independent rdfs. 

T P 𝜌1 G111/G11
2 G1111/G11

3 ΔG111 %err ΔG1111 %err 

K Bar M       

               

298 1 55.34 2.05 6.34 -13 -2 166 5 

298 2100 59.68 2.03 6.25 -9 -2 1040 4 

               

423 100 51.20 2.02 6.07 -8 -1 388 1 

423 1900 55.44 2.04 6.31 -12 -2 1502 5 

               

573 100 39.72 -13.33 -648.69 1739 115 -790896 -101 

573 500 43.11 1.11 -9.66 233 80 -66257 -162 

573 1100 46.12 1.88 4.18 36 6 -9687 -43 

573 1970 49.06 2.02 5.99 -6 -1 -59 0 

573 2800 51.16 2.04 6.28 -14 -2 1476 4 

               

673 500 32.10 -125.55 7747.67 9795 102 -5209463 -100 

673 800 36.62 -8.89 -324.29 1315 122 -438005 -102 

673 1300 40.58 1.09 -8.86 239 83 -63514 -168 

673 3400 48.38 2.04 6.16 -12 -2 891 3 

Units: G111 in (cm3/mol)2 and G1111 in (cm3/mol)3. Using Equation (5.44) and Equation (5.47) 

corresponding to µ = 1/b11 and ρ1kBTµ' = µ-1. 

 

The previous non-KSA approaches appear to work well for regions not too close to the 

critical point. We can make this statement more quantitative by analysis of the results in Table 5.1, 

Table 5.3-Table 5.5 and the data shown in Figure 5.1. It appears that reasonable results are obtained 

when b11 = ρ1 kBT κT < 0.2, i.e. low to moderate compressibility. This covers a large portion of the 

liquid and super critical regions of the phase diagram. Unfortunately, we do not know if this 

condition holds true for other systems. The performance is also shown graphically in Figure 5.6 

for both ΔG111 and ΔG1111. All the methods perform well for b11 < 0.2, while the KSA 

underestimates the three body correlations for low compressibilities but overestimates the 

correlations at moderate compressibilities. 
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The reason for the success of the non-KSA approaches for lower compressibilities appears 

to lie in the fact that when b11 is small then so are c111 and d1111. Hence, it doesn’t matter whether 

one uses µ = 2 (Gaussian), µ = 5.68 (water at 298 K and 1 bar), or µ = 1/b11 = 16.1 (water at 298 

K and 1 bar) one finds ρ1G11 ≈ -1 and the expressions in Equations (5.41) – Equations (5.42) are 

essentially independent of µ as they are then close to the IL, or closed system, values. 

 

The final approximation investigated here involves a simple power law dependence 

between the triplet and pair fluctuations along a particular isotherm. A plot of ln c111 vs ln b11 is 

displayed in Figure 5.7 and suggests the following simple function form, 

Figure 5.6 Observed errors obtained for the triplet and quadruplet integrals as obtained 

from the KSA and a series of approximate relationships between the pair and triplet 

fluctuations (see text for details) as a function of the reduced pair fluctuations. 
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𝑐111 = −𝑦𝑏11
𝑚  (5.49) 

 

𝑑1111 = 𝑦𝑏11
𝑚+1[𝑚𝑦𝑏11

𝑚−2 + 𝑚 − 1] (5.50) 

 

where the second expression has been obtained from the isothermal pressure derivative of c111 

using previous relationships.33 Here, y and m are constants for a particular isotherm. The resulting 

fits provided in Figure 5.7 are excellent for the all the isotherms and pressures considered here. 

Further analysis presented in Table 5.6 also suggests that almost perfect agreement with 

experiment for the triplet and quadruplet correlations can be obtained for all state points considered 

here, i.e. for b11 < 1.25. Additional examination of states along the T = 673 K isotherm suggest 

that reasonable results (< 5% error) can be obtained for the triplet correlations up to b11 ≈ 2.0. 

 

Figure 5.7 The correlation between triplet and pair fluctuations for different isotherms. 

The symbols represent the experimental data. The lines represent fits to the data using 

Equation (5.49) - Equation (5.50).  
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Table 5.6 Triplet and Quadruplet Integrals Assuming a Power Law Dependence. 

T P 𝜌1 ΔG111 %err ΔG1111 %err 

K bar M     

       

298 1 55.34 0 0 35 0 

298 2100 59.68 0 0 24 0 

          

423 100 51.20 0 0 -23 0 

423 1900 55.44 0 0 3 0 

           

573 100 39.72 11 1 -30647 -4 

573 500 43.11 -8 -3 1694 4 

573 1100 46.12 -1 0 240 1 

573 1970 49.06 0 0 12 0 

573 2800 51.16 0 0 -5 0 

           

673 500 32.10 -49 -1 173483 3 

673 800 36.62 26 2 -7285 -2 

673 1300 40.58 6 2 -1065 -3 

673 3400 48.38 0 0 -37 0 

Units: G111 in (cm3/mol)2 and G1111 in (cm3/mol)3 

Using Equation (5.4) – Equation (5.6) and Equation (5.49) - Equation (5.50) corresponding to µ = 

2 + yb11
m-2 and ρ1kBTµ' = (m-2)(µ-2)(1-µ)b11. The values of m and y for each isotherm were as 

follows: 1.58 and 1.14 at 298 K, 2.53 and 18.57 at 423 K, 2.39 and 9.81 at 573 K, 2.12 and 4.81 

at 673 K. The Moelwyn-Hughes isotherm would result in a slope of m = 2. 

 

 

5.5.1 Analysis of the Molecular Dynamics Simulations 

The simulated triplet correlations for pure water obtained with a series of different 

approximations are displayed in Figure 5.8-Figure 5.11. The contour plots were generated by 

fixing r1 at the distances corresponding to first three consecutive peaks of g(2). When r1 is fixed at 

the 1st peak in g(2) all the models and the real triplet correlation display a higher probability 

compared to when r1 is fixed at the second or third peak. Moreover, all tested models show 
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relatively small deviations from the real g(3)(r1, r2, r3) values for r1 distances corresponding to the 

second and third peaks of g(2), compared to the first peak of g(2). Hence, significant uncertainty 

between the real and model values can be observed when r1 is at the 1st peak in g(2). The white 

color regions represent values that are either above or below the range specified by the color bar. 

It is observed that the real figures have a upper left and lower right triangles (when r1 at 1st peak 

in g(2)) with the triplet distribution values corresponding to minus one. This is the most notable 

difference between the real triplet distribution and all the approximate models. In other words, the 

real triplet distribution has a greatly restricted area of space within which it is possible to find all 

three molecules. However, all the models were unable to capture this restricted distribution as they 

use only the pair distribution to predict the triplet distribution.  

The non KSA approximations appear to work well from the experimental analysis 

discussed before. However, the previously explained experimental analysis does not provide any 

information regarding the distance dependent accuracy of these models. However, from the 

molecular dynamics simulations, it is possible to gain information regarding the distance 

dependent accuracies of these models. According to the simulation results it is observed that the 

asymptotic model and the Moelwyn-Hughes (𝜇=5.96) model display higher uncertainty compare 

to the KSA and the pressure independent model (Equation 5.48), especially at shorter distances. 

In general, the greatest disagreement between the approximate models and the real triplet 

correlation can be observed when the distance between two particles is closed to the distance of 

the first peak in g(2). In particular, none of these approximate relations capture all of the features 

of real triplet distribution.  
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Figure 5.8 Triplet correlation functions for pure water at 300.15K and 1 bar. The top three 

panels display the values of g(3)(r1, r2, r3)-1 corresponding to KSA model. The middle three 

panels display the real g(3)(r1, r2, r3)-1. The bottom three panels display the difference 

between model and real values. The distances of first, second and third peaks are 0.275, 0.455 

and 0.685 nm, respectively. 
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Figure 5.9 Triplet correlation functions for pure water at 300.15K and 1 bar. The top three 

panels display the values of g(3)(r1, r2, r3)-1 corresponding to asymptotic model (3g(2)-2). The 

middle three panels display the real g(3)(r1, r2, r3)-1. The bottom three panels display the 

difference between model and real values. The distances of first, second and third peaks are 

0.275, 0.455 and 0.685 nm, respectively. 
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Figure 5.10 Triplet correlation functions for pure water at 300.15K and 1 bar. The top three 

panels display the values of g(3)(r1, r2, r3)-1 corresponding to 𝜇=5.96 (value corresponding to 

the SPC/E water). The middle three panels display the real g(3)(r1, r2, r3)-1. The bottom three 

panels display the difference between model and real values. The distances of first, second 

and third peaks are 0.275, 0.455 and 0.685 nm, respectively. 
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Figure 5.11 Triplet correlation functions for pure water at 300.15K and 1 bar. The top three 

panels display the values of g(3)(r1, r2, r3)-1 corresponding to pressure independent model 

model (Equation 5.48). The middle three panels display the real g(3)(r1, r2, r3)-1. The bottom 

three panels display the difference between model and real values. The distances of first, 

second and third peaks are 0.275, 0.455 and 0.685 nm, respectively. 
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5.6 Conclusions 

We have investigated the applicability of the KSA, together with several other 

approximations relating pair and triplet correlations, for fluid water over a range of temperatures 

and pressures. The KSA does not perform well with a general underestimation of the three body 

correlations at low compressibilities (b11), and a general overestimation of the correlations at 

moderate to high compressibilities. A series of other relationships between the pair and triplet 

correlations were investigated and all gave good results for values of b11 < 0.2. An observed power 

law relationship between the pair and triplet fluctuations reproduced the triplet and quadruplet 

correlations very accurately up to values of b11 ≈ 2.0, which covers most of the fluid region except 

for states close to the critical point. 
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Chapter 6 - Summary and Future Work 

Molecular dynamics simulations have become one of the most important and reliable 

techniques to study complex biological systems. However, the accuracy of the simulation results 

depend on the force field parameters. Kirkwood Buff (KB) theory provides an approach to validate 

and develop force field parameters. Smith and coworkers have been using KB theory with the 

intention of developing more accurate force fields, known as the Kirkwood Buff derived Force 

Fields (KBFF), to eventually perform simulations of biological systems. The protein force field is 

almost compete and the current attempt is to develop force field parameters for phospholipids. As 

a contribution to that, we have developed force field parameters for esters, with the overall goal of 

obtaining accurate force field parameters to model phospholipid molecules, and perform molecular 

dynamics simulations of protein membranes. In addition, a set of small molecular force fields were 

validated using the KB theory. Chapter 2 and Chapter 3 illustrated the approach of validating and 

developing force field parameters based on KB theory.  

Preferential solvation is an important concept describing solution mixtures that can be 

evaluated using the KB theory. The usual approach is based on local mole fractions. Here, we have 

proposed a new approach based on the local volume fraction. Chapter 4 then showed a detailed 

analysis of different preferential solvation measures using both experimental and simulation data. 

An approach based on Fluctuation Solution Theory (FST) has been used to evaluate the 

Kirkwood Superposition approximation (KSA), together with a series of additional approximate 

relationships between pair and triplet correlation functions, for fluid water at a series of state 

points. A comprehensive analysis is described in Chapter 5. Generally, the non KSA 

approximations provide good agreement with the fluid regions of the phase diagram where the 

compressibility is small. A simple power low relationship between the pair and triplet fluctuations 
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is observed for the fluid region. The applicability of the power low relation requires further study 

for the gas region of the phase diagram of water, as well as for other interesting liquids. This would 

allow us to obtain a better understanding of the applicability of the power low relationship in 

attempting to improve current Equation of States methodologies.  
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