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1. INTRODUCTION

1.1 Terminology

The mathematical theory of games of strategy deals with situatioms
involving two or more participants with conflicting interests. The outcome
of such games is usually controlled partly by one side and partly by the
opposing side or sides; it depends to some extent on chance (not controlled
by man power), but primarily on the intelligence and skill employed by the
participants., Most people are familiar with games like poker, bridge, and
chess where there are many conflicting situations and where chance as well
as skill is involved. The theory of games is also appliable in certain
areas of economics, operation research, politics, and military science.

A game of strategy is described by its set of rules. These rules
specify that each participant (either one person or more) is called a
"player”. The rules define the amount of information, if any, each player
receives., If the game requires the use of chance devices, the rules describe
how the chance events shall be interpreted. They also define the terms for
playing such as when the game ends, the amount each player pays or receives
(game payoff), and the objective of each player:

We use the word "move" to mean a point in a game at which one of the
player (or chance, in some cases) picks out an alternative from some set of
alternatives, and use the word "choice" to express the alternative picked
out, For example, "John won by a clever choice in his fifth move".

From the rules one can obtain such general properties of the game as the
number of moves, the number of players, and the payoff. The game is “finite"
if each player has a finite number of moves and a finite number of choices

available at each move, Other games are called "infinite", We distinguish



a game according to the number of players, i.e. as one-person games, two-
person games, and so on,

An important and fundamental concept in game theory is that of a
"strategy". In the actual play of a game, instead of making his decision
at each move each player may formulate in advance of the play a plan for
playing the game from beginning to end. Such a plan must be complete and
cover all possible contingencies that may arise in the play. Such a
complete prescription for the play of a game by the player is called a
"strategy" of that player. A player using a strategy does not lose any
freedom of action since the strategy specifies the player's actions in
terms of the information that might become available.

Consider an n-person game with players PJ.' Pz, « v o P and let 11
n
(for i=1,2,...,n) be the payoff made to Pi at the end of the play. Then if

2 =0

i=1
the game is called an n-person zero-sum game. Otherwise it is called an n-
person non-zero-sum game,

This report, however, considers two-person, zero-sum, finite game omnly
since most parlor games and many military games are of Fhis type. Sometimes,
they are also called "rectangular games" or "matrix games" because the set of
payoffs may be displayed as a rectangular matrix. The following example,
which is taken from Owen [10], is shown in a game tree, then we put the pay-
offs as a rectangular matrix,

Example 1.1.1 A game is played by giving each of two players
an entire suit of cards (thirteen cards). A third suit is shuffled,

and the cards of this third suit are then turned up, one by one.
Each time one has been turned up, each player turns up one of his



cards at will: the one who turns up the larger card "wins" the third
card. If both turn up a card of the same denomination, neither wins.
This continues until the three suits are exhausted. At this point,
each player totals the number of spots on the cards he has "won"; the
“score" (i.e. payoff) is the difference between what the two players

have,
Since the game tree is too large to contain thirteen card suits,

we will give part of the tree of an analogous game using three-card
suits which is shown in Fig. 1l.1l.1.

There is a single chance move, the shuffle, which orders the cards in
one of the six possible ways, each having a probability of 1/6. After this
the moves correspond to the two players, I and II, including the initial
point, several branches are similar to those we have already drawm.

Payoffs: (-2,2) (1,-1) (-1,1) (-2,2),,, Ve \

Ay i/ ¥
[
0 ¥
'\Il' \|l \{'

A(0)

Figure l.1.1

The payoff (-2,2) shown in Fig., 1l.l.l1 means that player I lost 2 to
player II and player II won 2 from player I. Accordingly the sum of the
payoffs of the two players is zero (i.e. =2 + 2 = 0), this is, obviously,
a two-person zero—sum game, Next, let us put the payoffs in a rectangular
matrix, We will give a matrix which only contains the payoffs shown in

Fig. 1.1.1. That is, when the third card suit is ordered in 213, and



player I used the strategy 312 and 321, player 1I used the strategy 123 and
132, the game is determined by player 1's payoff matrix as follows:

Player I1's strategies

123 132
312 -2 1

Player 1's strategies X
21 | -1 -2

The whole payoff matrix for Fig. l1l.1.1 is a 6 x 36 wmatrix.

1.2 Historical development

The theory of games of strategy was first proposed in 1921 by a French
mathematician, Emile Borel. The first successful analysis and the accom-
panying proofs were offered by John von Neumann in 1928, In 1944 his signi-
ficant vork in the field of game theory appeared, The Theory of Games and
Economic Behavior. It was authored by von Neumann [16] and a collaborating
economist, Oskar Morganstern. The real significance of this book was that
it represented one of those rare occasions in scientific publication where a
new field was rather thoroughly explored by the first major work to be
published in that field. In this sense von Neumann and Morganstern published
their work about the same time that linear progr\m:lug appeared on the scene.
It was then recognized that game-~theory problems could be formulated as
special cases of linear programming; the elements of the simplex method of
linear programming as proposed by George Dantzig (see Koopmans [4], pp. 330,
339, 359) were later used to prove the minimax theorem in game theory, and to
provide solutions to games of large size. Since that time a significant
library of books and articles on the subject of game theory has appeared in
scientific literature. A representative sampling of these works appears in

the references at the end of this report. Besides, the n-person zero-sum



games, n-person non-zero—sum games, and infinite games can be found in
Burger [1], Karlin [3], Luce [6], Maschler [7], Owen [10], Rapoport [1l1],

Tucker [13], and von Neumann [16].
2, MATRIX GAMES

2.1 Definition of matrix games
A matrix game ' is played by two players I and II, usually denoted as Py

and Py, respectively. Suppose Py has m strategies, which may be denoted by
the numbers

a=1,2, ¢ ¢, m,
Suppose P, has n strategies, which we may designate by

B=1,2,¢0¢4,n
The two players begin play by choosing their own strategy. Neither has prior
knowledge of the other's choice. There is no cheating or collusion. Both

reveal their selections simultaneocusly. If 1’1 chose strategy o and Pz chose

strategy 8, then the pair of strategies, (a,B), determines a play of the game

and a payoff to the two players. Let nj(a,8) be the payoff to Py and let
na(a,8) be the payoff to Pp. Since the game is zero-sum, we have
11(a,B) + n3(a,B) = 0.

But we prefer to express this by writing
n1(a,8) = w(a,B)
ny{a,B) = —w(a,B).

The game ' is thus described by Pl's payoff matrix,



(%(1,1) 7(1,2) . . « w(1,n)]
n(2,1) n(2,2) . . .« x(2,n)

R- . . L]

*(m,1) 7(m,2) . . . w(m,0)
In this matrix each row represents a strategy for Pl and each column

represents a strategy for Pz. If Pl chooses the strategy a (or row a) and P2
chooses the strategy B (or column B), then P, should pay P, the amount (x,8).

Pl wants n(a,B) to be as large as possible, but he controls only the choice of

his strategy a, P2 wants w(a,B) to be as small as possible but he controls
only the choice of his strategy 8. In terms of this payoff to Pl' we may

refer to P, as the maximizing player and Pz as the minimizing player.

2.2 Relations among expectations
From Dresher [2] we can get the following relations. For any strategy o
which Pl may choose, he can be sure of getting at least

min x(a,B)
Bsn

vhere the minimum is taken over all of Pz's strategies. Pl is at liberty to
choose a; therefore, he can make his choice in such a way as to insure that
he gets at least

max min w(a,8).
agm Bgn

Similarly, for any strategy 8 which Pz may choose, he can be sure of
getting at least

min (-‘l(ﬂ.ﬂ)) = =max 'll’(u,ﬂ).
asm asm

That is, for any strategy B which P2 may choose, he can be sure that Pl gets
no more than

max n(a,8).
agm



Since Pz is at liberty to choose B, he can choose it in such a way that P1

will get at most

min max w(a,B),
Bsn ogm

Therefore, there exists a way for Pl to play so that Pl gets at least

max min «(a,8)
asm Bgn

and there exists a way for Pz to play so that P; gets no more than

nin max w(a,B8).

Bsn agm
In general, those two quantities are different, but they satisfy the
dominance relation contained in the fc':llwins theorem as presented by
Dresher [2]. |
Theorem 2.2.1 Let A and B be two sets, let f be a function of two

variables such that f(x,y) is a real number whenever xcA and yeB, and suppose

that
max min £(x,y)
xeA yeB

and
nin max £(x,y)
yeB xeA

both exist. Then . N

max min £(x,y) < min max £(x,y),
xeA yeB yeB xeA (2.2.1)

Proof: For any fixed x and y, we have, by definition of a minimum,

win £(x,y) < £(x,y)
yeB

and, by the definition of a maximum,

£(x,y) s max £(x,y),
xeA



hence

min f(x,y) s max f(x,y), (2.2.2)
yeB xcA

Since the left-hand side of (2.2.2) is independent of y, we have, by taking
the minimum of both sides,

ain £(x,y) < min max £(x,y). (2.2.3)
yeB yeB xeA

Since the right-hand side of (2.2.3) is independent of x and by taking the
maximum of both sides, we have

max min £(x,y) g min max £(x,y)
xeA yeB yeB xeA

which completes the proof.

The application of the above result to matrices rests on the fact that
a matrix, R = [v(a,8)), where a =1, . . « ymand f=1,. .. ,n, can be
regarded as a real-valued function £ of two variables, such that f£(x,y), for
x=1, ., ,mandy=1, ... , n, is defined by the equation

£(x,y) = n(a,B),

Corollary 2.2.2 Let R= [v(u,B)] be an arbitrary m x n payoff matrix

of a game 'y Then

max min 7(a,B) § min max v(a,B),
a B8 B a

Proof: This follows from Theorem 2.2.1, by taking A to be the set of the
first m positive integers and B to be the set of the first n positive
integers.

Example 2.2.1 Suppose the payoff matrix of a game is given by



3 5 -2 2 1] -2
R= |3 6 -1 2 4] -1 .
4 3 6 7 8 3*
Col. max. 4% 6 6 7 8
Then
max min w(a,B) = 3
a B8
and

min max w(a,B) = &4,
B a

In this game, Pl can receive at least 3. Pl can guarantee this amount by
playing his third strategy. The most Py needs to pay or the most that Py

can get is 4, P2 can assure this upper bound by playing his first strategy.

2,3 Games with a pure strategy
In this section we introduce a special case for playing two-person zero-
sum games with only two choices to each player. These are denoted as 2 x 2
games, When a player plays one row all of the time (or one column all of the
time in the case of player II), he is said to be playing a "pure strategy”.
When one of the players elects to play a pure strategy, the other player will
always logically counter with a pure strategy himself. Let us use some
examples to explain it.
Example 2,3.1 Suppose there is a game I' with payoff matrix
-2 1
R= .
3 5

Here P1 would play his second row all the time, since to do so guarantees

that his opponent cannot win, An intelligent opponent Pz will obviously



see that his best response in this case is to play his first column, thereby
minimizing his losses (3 points per play loss instead of 5). So in this game
Pl and Pz are playing pure strategies.

The same reasoning is used when the game is intentionally biased against

P.. Let us see another example.

1
Example 2,3.2 Suppose there is a payoff matrix
-2 5
R= .
=4 -2

In this case P, will choose the first column on each play, since this
strategy guarantees that he camnot lose. Pl -uat‘counter on each play by
choosing his first row, thereby limiting his losses per play to 2 points
instead of 4. So P, and P, are playing the pure strategies row 1 and
cﬁlumn 1, respectively.

We see then that in a 2 x 2 game when one of the players elects to
play a pure strategy, this automatically insures that his opponent will
counter with a pure strategy (if his opponent wants to behave ratiomally),

since one of the two choices open to his opponent will always be prefer-

able to the other, unless of course they have identical wvalues,

N

2.4 Saddle points

Saddle points are defined by Mckinsey [9] as follows.

Definition 2.4.1 Suppose f is a reai—valued function such that f(x,y)
is defined whenever xeA and yeB; then a point (x*,y*), vhere x*eA and y*cB
is called a “saddle point" of f if (x*,y*) satisfies the following two
conditions:

% * %
(1) £(x,y ) g £(x ,y) for all xcA,

(@) £G*,5%) < £(x*,y) for all yeB,



The following theorem by Mckinsey [9] establishes the necessary and
sufficient conditions for a game to have a saddle point,

Theorem 2,4,2 Let f be a real-valued function such that f(x,y) is
defined whenever xcA and yeB. Moreover, suppose that

nax min £(x,y)
xeA yeB

and

nin max f(x,y)
yeB xecA

both exist, Then a necessary and sufficient condition for

max min f(x,y) = min max f(x,y)
xeA yeB yeB xeA

is that f has a saddle point (:*,y*).
* &
Proof: To see the sufficient condition first, suppose that (x ,v ) is a

saddle point of f, Then, by definition, we have, for all xeA and yeB,

£(x,v") s £(x*,y"), (2,4.1)
* % *
f(x ,y) g f(x ,y), (2.4,2)
Prom (2.4.1) we have
max £(x,y*) < £(x*,y" (2,4,3)
xeA
and from (2,4,2) we have
£(x*,y") < min £(x*,y), (2.4,4)
® yeB

From (2.4.3) and (2.4.4), we have

max f(x,y*) < f(x*,y*) < min f(x*,y) (2.4.5)

xeA yeB

Since

min max f(x,y) < max f(x,y*)
yeB xcA xeA

11



12

*
min £(x ,y) < max min £(x,y),
yeB xeA yeB

we conclude from (2.4.5) that

min max f(x,y) < f(x*.y*) < max min f(x,y). (2.4,6)
yeB xeA xeA yeB

But by Theorem 2.2.1, the first term of (2.4.6) is not less than the third,
hence we conclude that all three members are equal, i.e.

f(x*,y*) = max min f(x,y) = min max f(x,y).
xeA yeB yeB xeA

Next, to prove the necessary condition, let x* be a member of A which

min £f(x,y)
yeB

a maximum, and y* be a member of B which makes

max f(x,y)
xcA

* *
a minimum; i.e. let x and y be members of A and B, respectively, vwhich
satisfy the conditions

min f(x*.y) = max min f(x,y),

yeB xcA yeB
% (2.4.7)
max f(x,y ) = min max f(x,y),
p T yeB xecA
*
We shall show that (x ,y ) is a saddle point of £,
Since we are supposing that
max min f(x,y) = min max f(x,y),
xeA yeB yeB xeA
we gee from (2.4.7) that
*
min £f(x ,y) = max f(x,y*). (2,4.8)

yeB xeA



From the definition of a minimum, we have

min £(x",y) < £Gx*,9")
yeB

and hence from (2,.,4.8) we have

max f(x |y*) f(x* ly*)i

xeA

A

then for all x in A,
£0x,9") 5 £x*,yY
which is condition (1) of Definition 2.4.1. In a similar way, we can show
that condition (2) of Definition 2.4.1 is also satisfied, which completes
the proof,
Corollary 2.4.3 Let R= [r(a,B)] be any m x n payoff matrix of a
game, Then '

max min 7(a,8) = min max w(a,B)
agm Bgn Bsn agm

holds if and only if the game has a saddle point (a*,B*).
Proof: This follows from Theorem 2.4,2, by taking A to be the set of the
first m positive integers, B to be the set of the first n positive integers,
and w{a,B) instead of f(x,y).

Corollary 2.4.4 For every saddle point (af,a*)

v(a*,8*) = max min v(a,8) = min max (ax,B).
a B 8 a

Proof: This coincides with the last equation of the sufficiency proof of
Theorem 2,4,2.
Therefore, by Corollary 2.4.3, Pl can choose a pure strategy a* 80 as to

get at leaat the common value w(u*,ﬁ*) and P, can choose a pure strategy B*.

so as to keep Py from getting more than w(u*,B*). In this case there are pure

strategies a* and B* for the two players such that, for all a and B
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(a,8%) < n(a*,8") < nta”,p) (2.4.9)
By (2.4.9), P; can not do better than to choose u*; similarly, Pz can not do

*
better than to choose B*. We refer to a*. g as "optimal strategies" of P. and

1
Py, respectively. The matrix R = [n(a,R)] is said to have a saddle point at
u*. B* and its value is n(u*,B*), we call it the "value" of the game and
designate it by v,
Example 2,4.1 Consider a game ' with payoff matrix
Row min,
o 7 1 2 0

8 -3 -5

1 7 2 &) 1*
Col, max, 1* 7 8 4

In this example

max min n(x,B) = min mex w(a,B) = 1,
a B B a

So, this game has a saddle point at the third row and the first column., The
value of the game is 1 which, by observation, is the minimum of the third row
and the maximum ?f the first column, Therefore, in playing this matrix game,
the optimal strategy for P; is to chcose row 3 which makes Py sure that he will
get at least 1 and the optimal strategy for P; is to choose column 1 which can
keep Py from getting more than 1,

A game T may have several saddle points depending on the payoff matrix,
In such a case all the saddle points have the same value. Each location of a
saddle point provides another solution or palr of optimal strategies,

Example 2.4.2 Consider a game T with payoff matrix



Row min,
6 5 5 5 s*
1 4 2 1| -1
T 8 5 7 5 st
0 2 6 2] o
Col. max. 8 55 7 s*

max min 7(a,B) = min max n(a,B) = 5,
a B B «

So there is a saddle point, Actually, there are four of them. In this case,
Pl may play the pure strategy row 1, or he may play row 3. P may play either
column 2 or column 4; he may mix these two, if he wishes, in any way. The

value of the game is 5,
3. MIXED STRATEGIES AND THE SOLUTION FOR ALL GAMES

3.1 Concept of mixed strategies

We have discussed a matrix game with saddle points in the froant part, and
we can find the value and the optimal strategies for twe players of the game
directly, so we call it a "strictly determined game"™., But not all matrix games
have saddle points. When a matrix game does not have a saddle point, of
course, we can not find the optimal strategies for Py and P2 and the value of
the game directly, so wve call it a "non-strictly determined game". When a
saddle poinf-exiats, every player must chooses the strategy which corresponds
to the saddle point to assure optimal results, i.e. there exists a pure optimal
strategy for each player to play a game which has a saddle point. However,
when a game has no saddle point, at least one of the players can not find his

pure optimal strategy. So the players should choose their strategies by
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combining their pure strategies, i.e. they must use "mixed strategies",

Before we explain mixed strategies in detail, let us see a game without a

Example 3,1,1 Stone-Water-Scissors-Glass-Paper Came.
The relations among stone, water, scissors, glass, and paper are shown in Fig,
3.1.1 wvhich represents that stone is thicker than glass and paper, water wets
stone and paper, scissors cost more than water and stone, glass is more brittle

than water and scissors, and paper is more flexible than scissors and glass,

(1) Stone

Water (2) (5) Paper

Scissors (3) (4) Glass

Figure 3.1.1

Now, the two players name one of the five objects simultaneously, If both
name the same object, the game is a draw. If we denote the five strategies by
the number in Fig. 3,1.1 and let 1, =1, and O represent the payoff of win,
loss, and draw for P;, then the payoff matrix for P is

1 2 3 4 5

. =

0 -1 -1 1 1

(S Y N T
-

Lol

=t

o

U

|

1

=

.
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Since

max min w(a,B) = =1
a B8

nin max w(a,B) = 1,
B a

these two quantities are not equal, there is no saddle point in this game,
Since the result of a strategy chosen by-a player will depend on what his
opponent chooses. It is very important to discover his opponent's choice of
strategy. But if a player, say P, who chose his strategies so steadily that
his opponent, P;, discovered which strategy P; will use in the next play, then
his opponent P, can choose the optimal strategy to get as much as possible
from each play by knowing Pl's strategy. Of course, it is a disadvantage for
Py. Hence, every player will concentrate on keeping his own intentions secret,
The best way to do this is by using a random device for choosing a strategy.
So, a player, instead of choosing a single strategy, may leave the choice of
the strategy to chance, That is, he may choose a probability distribution
. over his set of strategies and then the associated random device selects the
particular strategy for the play of the game. Such a probability distribution
over the whole set of the pure strategies of a player is a "mixed strategy”.
The game now requires each player to select independently a mixed
strategy. We shall denote mixed strategies by vectors, Let x,; be the pro-
bability of selecting strategy a, (a=1l,2,...,m). Then a mixed strategy for P,
can be denoted as a row vector

m
;' = [xl.ooo.zn] where I xa = 1 and xa 2 0. u‘l,...,ﬂ. (3.101)
a=1

Similarly, let g be the probability of selecting strategy B, (f=1,2,...,n).

Then a mixed strategy for P, is a column vector
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A
b L] n
= vhere I Y, " 1 and yg 3 0, B=1,...,n. (3.1.2)
. f=1 '
I,

We notice that if x = 1 for some «, then x is called a pure strategy.
Similarly, if yg = 1 for some 8, then y is a pure strategy.

The set of all mixed strategies for P; is denoted by S, which is a subset
of m—-dimensional vectors which satisfies (3.1.1)., And the set of all mixed
strategies for P, is denoted by S, which is a subset of n-dimensional vectors
which satisfies (3.1,2).

Having defined mixed strategies as probability distributions, we need to
compute the payoffs which will be measured in terms of expectation, Suppose
Py chooses strategy a and P, chooses mixed strategy y; the expected payoff to
Py is

n
s, = Zt(u.B)ys (3.1,3)
B=1

which is given by the component a of the column vector

o |

8y

joo
]

(3.1.4)

1f ‘l’2 chooses strategy B and Pl chooses mixed strategy x, the expected payoff

to Pl is

m
tB - Z:R(G.B)xu (3.1.5)
a=1



which is the component B of the row vector
£‘ - £'R = [tl’tz.."’tn]. (3.1.6)
When P, and Pz use mixed strategies, x, y, respectively, since their choices
are independent, the expected payoff to ?1 is
n n
E(z,Y) =x'Ry = 2 X 7(a,B)x .y, (3.1.7)
f=1 a=1

-t'y = x's,

19

Suppose Py chooses his strategy by using a mixed strategy x. Then he can

expect to receive at least

min x'Ry
b 4

where the minimum is taken over all possible mixed strategies available to Pz.

Since Plhas the choice of x, he will choose x so that this minimum is as

large as possible. Hence Pl can select a mixed strategy, call it 5*, which

will assure him an expectation of at least

max min x'Ry
i X

irrespective of what P, does. Similarly, for each mixed strategy, y, chosen

by PZ' the most he will have to pay to Py is

max x'Ry
X

where the maximum is taken over all mixed strategies available to P;. Since
P, has the choice of y, he will choose y so that this maximum is as small as
possible. Hence l’2 can select a mixed strategy, call it _v_*. which will make
the expectation of P, at most

min max x'Ry
zZ X

irrespective of what P; does. Then from the above remarks, and from Theorem

2,2,1, we get
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or (3.1.8)

max min E(x,y) < min max E(x,y).
2 1 z Zz

"The minimax theorem" states that these quantities always have a common
value, v, or that

max min x'Ry = min max x'Ry = v, (3.1.9)
E X L Z

This remarkable result is the fundamental theorem of game theory. We shall
prove this theorem in the next section,

1f for some ;* in S, and 1* in S, we have

nt
* *,

=Ry xRt cxMry
or (3.1.10)
OB < B ) < B
for-all x in S, and all y in S, then we call 3(5*,1*) the "value" of the game
(to P;), also denoted by v, and call the pair (;*.’_*) a "solution”" of the game.
Hence we can also write (3.1,10) as
EGy) § v § EED. (3.1.10")

If x" and y" are mixed strategies which satisfy condition (3,1.10), then,
by making use of ;*, P, can make sure that he will get at least E(;*.x') = v,
regardless of what PZ does; and, similarly, by making use of 1*, P, can keep
P; from getting more than v, regardless of what P; does. Therefore we refer

to _x_*, 1* as "optimal (mixed) strategies"”,

3.2 Proof of the minimax theorem
The following theorem, the most important of game theory, has been proved

in many ways. Here we shall give the proof that was given by ven Neumann [16].
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Theorem 3,2,1 (The minimax theorem)
For any matrix R = [v(a,B)] where a=1,2,,.,.,m and B=1,2,,,.,n, ve have that

max min x'Ry = min max x'Ry = v
E X Z =

where xeS; and yeS,. And S;, Sp are the sets of probability distributions
over P;'s and P,'s strategies, respectively.

From this theorem it follows that every finite two-person zero-sum game
has optimal mixed strategies, Before proving the minimax theorem, we start
with some definitionms, )

Definition 3.2,2 Let a;,++.,a; be n real numbers, not all of them are
zero, and let b be any real number, then all points (vectors) [xj,...,x,] of

Euclidean n-dimensional space, E,, such that

n
7 ax, =b
i=1 1%1
form a "hyperplane" of Ep.
n
Definition 3.2.3 If I a;x; = b is the equation (defined by Definition
i=]1

3.2.2) of a hyperplane of E,. Then it cuts E, into two parts:
(1) The set of all points [‘12""‘::] in E, such that
n
Elaixi > b,
(2) The set of all points [x ,...4x ] in E; such that
n
Eaizi < b,
We call them the two "half-spaces" produced by the hyperplane.
Definition 3.2.4 A subset C of E, is said to be "convex", if and only if

for any x, yeC and 0 < t < 1, we have tx + (1-t)y ¢ C.
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Definition 3,2.5 Let K be any set. Then its "convex hull" is the small-
est convex set which contain K,

Definition 3,2.6 Let Xj3,..4,X, be r points in En. Then the point y is
said to be a "convex linear combination" of these r points, Xj,«.. X, if there

exists a vector [“1""":]‘5: such that
Zr:
Y= C Xy
1=1 i=1

Definition 3.2.7 The "length™ of a point (vector) X = [Xj,eeeyx,] of E

= 2
|£| - E*j_ *
i=]

Definition 3.2.8 The "distance" of two points x = [Xj,..04%,] and

is defined by

Y = [¥y900es¥y] of E; is the length of their difference, i.e.

n
i - l-/ xy = 007
b A 1'11 i

When proving the minimax theorem, we will use the following two lemmas,

(This method of proof follows the work of Owen [10]),

Lemma 3,2.9 (Theorem of supporting hyperplane)
Let B be a closed convex set of points in n-dimensional Euclidean space, and
let x = [x;,0404%,] be a point not in B. Then there exist numbers PysecesPp

Plﬂ'l such that

211:1:1 = Pn+l (3.2.1)
1-

and

n
ZPy¥y > Poyps for all yeB, (3.2,2)
i=]1



23

By Definmition 3.2,2, all points x = [:1....,2,‘] which fulfill (3.2.1),
form a hyperplane., By Definition 3.2,3, (3.2.2) is a half-space produced by
the hyperplane (3.2.1), Hence, geometrically, this lemma means that we can
pass a hyperplane through x such that B lies entirely "above" the hyperplane,

This fact is illustrated in Fig. 3.2.1 for the case n = 2 (plane),

The
hyperplane

x
The half space

Figure 3.,2,1

We observe that (3.2.2) clearly excludes (3.2.1), since x belongs to the
hyperplane, x does not belong to the half space., We now prove this lemma.
Proof: Let z be that point in B whose distance from x is a minimum., (Such a

point exists because B is closed.) Now, let

pl - Ii - Xi. i-l’oog’n.
n
- Eziz 2x2 .
i=1 :l.-l

Therefore,
Z‘,p - Z‘.z x, - Zx P
P o n+1?
i.e. (3.2.1) holds. We must show that (3.2.2) also holds,
Now

=1 1-1 1-1
hence



Therefore

i.e, the point zeB satisfies (3.2.2).

that all the points in B satisfy (3.2.2).

tion,

Zpz - Ez 22: % Zx
i=1 1-1 i=1 1 1'1
- Z,(z -x,)?

sz > P L 1»
&P1%1 7 Pon

Suppose that there exists yeB such that

n
P,Y, & Ppoyye
1_111 n+l

(3.2.3)

That is not enough as we have to show

That can be proved by comtradic-

(3.2.4)
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Because B is convex, the line joining y to z must be entirely contained in B,

i.e, for all 0 g r g

1,

¥w=r1y+ (l-r)z € B,

Now the square of the distance from x to w is given by

Therefore

n
dz (!'.!) - Zl(xi-ryi-( l-1) zi) 2 .
i=

2
. 21%’1(" -y,) (xy=ry,=(1-r)z,)

If we evaluate this at r = 0, (i.,e. w = z),

But recall (3,2.4)

221: 221: g * 2:2(: -yi
1-1 1-1 i=}
d2
‘:;- 12? - 22?
r=0 i=m 1 i=1 1



n
2 P,Y, <P
P71 5 Pond

and recall (30 2, 3)

n
2.Peg > Pooae
£:Py% > Fory

242

ar |r=0 <0,

It follows that, for r close enough to zero,
d(z,®) < d(@,2)-
But this contradicts that the point zeB whose distance from x is a minimum,
Therefore, for all yeB, (3.2.2) must hold.
The above lemma is used to prove the next lemma,
Lemma 3.2,10 Let any m x n matrix A= ['131' Then either
(1) there exists an element [xl,...,x-] of S, such that
alij+azsz+...+amjx, 2 0, J=lye..4n,
or (ii) there exists an element [yj,...4¥y] of S, such that
'11yi+‘12’2+"‘+a1n?n <0, i=],...4m.
Proof: In this proof we shall use the delta symbols of Kronecker, which are

defined as
511 =0 if i3,
I | if i=§,
Let
§01) « (8570 8p30e0ee08py)s
§(2) = (8,90 859000008515
sm o (6100 Sppeenssd gle

25
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Thus 6(1)

» for j=l,...,m, is the point of E, with 1 in {ts jth coordinate and
0 in all other coordinates.

Also let
D -

(2)

[a31s 8330 seey ayyl,
[3121 8999 seey a‘:]’

a(n) [aln' ah, evey .'m]o

Thus a(j). for JI=1l,...,n, is the point of E; whose coordinates are the
components of the jth column of matrix A.
Let C be the convex hull of the set of m + n points

‘(1)'001 |6(‘) .‘(1) gene ..(ﬂ.).

Let g = [0,...,0] be the origin of E;, We can consider two cases, geC and g¢C.

(1) If geC, then g is a convex linear combination of the points 6(1)..-..

—6("), a(l),.... a(“}. Hence there is a vector [ul,....un,vl,....vn]esn+n such
that

1 1 n

u]-c( )"‘c . -"'uné (m)""vla( )+o . -‘H’na( ) =2
it can also be expressed as
ulﬁ 11'.'0 [} ownaiﬂ'wlail"'o ° ownain = ( » 1'1. seeplly

from the definition of the delta symbols, we have

uiwlairi'. ® .-l-vnain - 0’ i=1,.,.,m, (3.2.5)
Since [“1""'“m'vl"“'vnlcsn#a' u, is non-negative and hence, from (3.2.5),
we have

V1811+...Wunin s 0. 1"1,...,!. (3.2.6)
We also know that vy 2 0 for j=l,.ee4n, If vlfvz-...-vn-ﬂ, then by (3.2.5),

we have

“1 =0, 1=1,,404,m,
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Hence

Eui"'zvj: 0+1,

which contradicts the fact that [uj,...,up,v],...,V]€Sy4n+ Hence at least

one of v

i for j=1,...,n, is greater than zero. This implies that

V1+..-+Vn > Do (3-207)

So we can let

y1 Vll(vl+...+vn),

yp = valf(vy + ... + v,), (3.2.8)

Yo = Vp/ vy + <0 +vy),
and we see that [yj,...,ynleS5,.
From (3.2.6), (3.2.7), and (3.2.8) we can conclude that
aj1y1t...+aj vy, < 0, 1=1,ve05Ms
which is the condition (ii) of this lemma.

(2) Now, consider the case g¢C. By Lemma 3.2.9, there exists a hyper-
plane which contains g and C lies entirely above the hyperplane. Let the
equation of this hyp;rplane be

m
2ohity = hpyg.
i=1

Since g lies on the hyperplane, we have

hence hp41= 0.
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Thus the equation of the hyperplane is

m

Ezihiti =0, (3.2.9)
and from Lemma 3.2.9, we also have that for every point [tl,...,tm]gc

satisfies

m
h.t, > 0. (3.2.10)
=1 i1

1
In particular, the inequality (3.2.10) must hold for 5( 2...,6(m)of C; thus

hjdy4 +...+hyd 54 > O, i=1,...,m,
from the definition of the delta symbols, we have
hy > 0, i=1,...,m. (3.2.11)
Moreover, (3.2.10) must hold for the points acl),...,a(n); thus
hlalj+"'+hmamj> 0, j=1,...,n. (3.2.12)
From (3.2.11), we have

hy+...+hy > 0. {3.2.13)
Hence we can let
X, = hll(hl + ... + hm),
xp = ha/(h; + ... + hy),
“ vowmow w s w w8 (3.2.14)

X5 = %/(hl + ... + hm).
and we see that [%y,...,XpleS.

From (3.2.12), (3.2.13), and (3.2.14), we conclude that

X134 +...+xmamj> 0, j=1,...,n,
and hence

+...+xma

mjz_O, §=1,...,0,

X1215

which is the condition (i) of this Lemma.
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With the above two lemmas, we are able to prove the minimax theorem.
Proof of the minimax theorem: If condition (i) of Lemma 3.2.10 holds,

then there is an element [xl,...,xm]esm such that

E'lr(c:z,B)xm > Oy B=1l,...,n.
a=1
Hence for every yeS,
n m
E(x,y) =) [ 2 n(a,8)x 1y, > O. (3.2.15)
- Bgl Cl.=l a B

Since (3.2.15) holds for every yeS;, we have

min E(x,y,) > O,
Yy

and hence

max min E(x,y) > 0. (3.2.16)
z X

If condition (ii) of Lemma 3.2.10 holds, then there is an element

[y1s---5yp]€S, such that

n
Z “(G,B)YB i 0, 0‘-=1,...,m.
B=1
Hence for every XxeS;
m n
E(x,y) = 22 [ X n(a.B)yglx, < 0. (3.2.17)
a=1 B=1

Since (3.2.17) holds for every xeS,, we have

max E@sl) & 0,
X

hence
min max E(x,y) < 0. (3.2.18)
Y .
Since either condition (i) or (ii) of Lemma 3.2.10 holds, then at least
one of the inequalities (3.2.16) or (3.2.18) must hold, and hence the

following can not be true

max min E(x,y) < 0 < min max E(x,y). (3.2.19)
.S X Yy X
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Let R, be the matrix which arises from R by subtracting c from each

element of R,
7(l,1)-¢c,...,7(1l,n)~c
a(m,1)-¢,...,n(myn)-c
and let E, be the expectation function for R,, so that for any x and any y

that are members of S; and S,, respectively,

I E
WE)

E (x,y) = [m(a,B)-clx,yg

B=1

2
[}
=

™M=
M=

w(a,B)x,yg- ¢

1 g=1

™
]

Q
]

|

E(x,y) - c. (3.2.20)
Since the inequality (3.2.19) does not hold for the matrix R, the
following conditions cannot hold for R,

max min E (x,y) < 0 < min max E_ (x,¥),
x X b 4 Z

and from (3.2.20), we conclude that the following condition does not hold:

max min E(x,y)-¢ < 0 < min max E(x,y)-c.
X ¥ Y X

Hence the following condition does not hold:

max min E(x,y) < ¢ < min max E(X,y). {3.2.21)
x ¥y ¥y X

Since the inequality (3.2.21) is false for every c, we conclude that the

following is false:

max min E(x,y) < min max E(x,y),
X bA b X

hence the following relation is true:

max min E(x,y) > min max E(x,y). (3.2.22)
X Y Y X
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But (3.1.8) states that

max mnin E(x,y) < min max E(x,y). {3.2.23)
X Yy Yy x

By (3.2.22) and (3.2.23), it follows that

max min E(x,y) = min max E(x,y),
x ¥ ¥ x

or, by (3.1.7)

max min x'Ry = min max x'Ry.
=4 ¥y ¥y X

3.3 Solutions for 2 x 2 matrix games

A 2 x 2 matrix game is the simplest type of matrix game. Therefore,
we first determine solutions for them. The following theorem is proved by
Owen [10].

Theorem 3.3.1 Let R be a 2 x 2 game matrix. Then if R does not have

a saddle point, its unique optimal strategies and value will be given by

i' (adj. R)
x' =
T i (adj. R)i ,
(adj. R)i
l i
i' (adj. R)i , (3.3.1)
(det. R)
v t—i

i' (adj. R)i

where (adj. R) is the adjoint of R, (det. R) is the determinant of R, and

i' = [1,1].
Proof: Let the 2 x 2 payoff matrix of a game is given by
m(1l,1), w1, 2)
R = .
m(2,1), m(2,2)

If there is a saddle point, then we can get the sclution of the game immedi-
ately, if not, we can get the solution of a game by some formulas which are

shown as follows.
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Since there is no saddle point, mixed strategies must be used. Let
x'=[x;,%,] and xf=[yl,y2] be the optimal strategies of P; and P,, respectively.
And the components of x' and y' are positive. Let v be the value of the

game, we have

x'Ry = v,
or xlylﬂ (1 ,l)+le21T (1, 2)+x2Y11T (2 sl)+x2Y2“ (2 ,2) =V,
or xl[n(l,l)yl+ﬂ(1,2)y2]+x2[ﬂ(2,1)y1+ﬂ(2,2)y2] = v. (3.3.2)

Since y is by hypothesis an optimal strategy, the two terms in parentheses
on the left-hand side of (3.3.2) are both less than or equal to v. Suppose
one of them were less than v; i.e., suppose

ﬂ(l,l)y1+w(l,2)y2 < v,

w(z,l)yl+n(2,2)y2 < wv.
Then, since x1>0 and xl+x2=l, the left-hand side in (3.3.2) would be strictly
smaller than v. It follows that both the terms in parentheses in (3.3.2)

must be equal to v. Hence,

m(1,1)y,+7(1,2)y, = v,
ﬂ(Z,l)y1+ﬂ(2,2)y2 = v,

or, in matrix form, '
v 1

Ry = = vj where j = . (3.3.3)
v 1

Similarly, it can be seen that

m(1,1)x947(2,1)xp = v,
m(1,2)xy+7(2,2)xy = v,
or, in matrix form,
x'R = [v,v] =vi'. (3.3.4)
We also know that
x1+x2=l,

11
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or, in matrix form,
x'j=1, (3.3.5)
j'y = 1. (3.3.6)
The four equations, (3.3.3), (3.3.4), (3.3.5), and (3.3.6), allow us to solve

for x, y, and v. If R is non-singular, from (3.3.4), we have

x'=vi'R ,
then by (3.3.5), we have
o1
viR j=1,
or
1
v = =
AR S
and
IR
1 _
=01
iR 1
Similarly, we find
R'lj_
Y= -1
PR

If R is singular, the above is of course meaningless; it can be written

in the following form.

' i' (adj.R)
-x_ = o
i' (adi.R)i ,
(adj.R)i
x =
i' (adj.R)i , (3.3.7)

v = (det.R)

i' (adj.R)ji ,
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where (adj.R) is the adjoint of R and (det.R) is the determinant of R. We
see that (3.3.7) gives the value of the 2 x 2 game, whether R is singular
or not.
Example 3.3.1 Solve the game matrix
1 0
-1 2
First of all, we check whether the game has saddle point or not.
Since mzx mén m(a,B) = 0 and m%n max w(a,R) = 1, the two quantities
a
are not equal and this 2 x 2 matrix game has no saddle point. Therefore,
we can apply Theorem 3.3.1. Now, the adjoint of R is
2 o]
adj.R = v
1 1
And det. R = 2,

2 0]
1' (adj.R) = [1,1] = [3,1],

1 1)
RNIEE

2 0
(adj.R)j =
1 1

i' (adj.R)i = [1,1]

Thus by (3.3.1), we have

o1 3 1
=703 11 = [ 3]
1
112 7
Yy =7 = 1
2 T
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3.4 A graphical method of solution
Whenever the size of the payoff matrix of a game is 2 x n or m x 2
(n)2, m»2), i.e., one of the two players only has two pure strategies, we
can not apply Theorem 3.3.1 to solve it, but we can use a graphical method
to find the solutions and the value of the game. We shall illustrate the
method by some examples of 2 x n matrix games which are given by Mckinsey
[9].
Example 3.4.1 Suppose the payoff matrix of a gameT is
pz's strategies
2 3 11
Pl's strategies s
7 5 2
Since there is no saddle point in this payoff matrix, mixed strategies
must be used. Let [x, 1-x] be the mixed strategy of P1 where x is between
zero and one. If P2 uses his first strategy (pure strategy), then the
expected payoff to Pl will be
2x+7(1-x) = 7-5x%.
Similarly, if P2 uses his second (pure) strategy, then the expected payoff

P i
to 1 18

3x+5(1-x) = 5-2x,

and if P2 uses his third (pure) strategy, then the expected payoff to Pl is
11x+2(1-x) = 2+9x.

We now plot, over the interval [0,1], the three lines y=7-5x, y=5-2x,

and y=2+9x in Fig. 3.4.1.
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Figure 3.4.1

For each choice of x by Pl, he can be certain of getting at least the
minimum of the ordinates of the three lines at x. Thus if P, wants to
choose an optimal x, then he must choose an x which will make the minimum
of the three ordinates as large as possible; hence, from Fig. 3.4.1 it is
apparent that the optimal x will be the segment OP and that the value of the
game is PQ. Therefore we can find an optimal strategy for P1 (in this game,
moreover, we see from the figure that there is only one optimal strategy for
Pl) and the value of the game by solving the two equations

y = 5-2x,

y = 249x,

simultaneously. And we can find that x = 3/11, vy = 49/11. Hence, x' =
[3/11 8/11] is the optimal strategy for P1 and the value of the game is
49/11.

Moreover, from Fig. 3.4.1, it is clear that no optimal mixed strategy
for P2 will contain his first strategy, hence we can determine an optimal
mixed strategy for P2 by using the matrix

3 11
5 2

We solve this 2 x 2 matrix game, and find an optimal strategy for P2 is
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the column vector
9/11
2/11
Since in the original payoff matrix of the game T, P2 has three strategies,

we say that P, has an optimal strategy as y'=[0, 9/11, 2/11].

2
From the minimax theorem it follows that every finite matrix game has a
mixed strategies solution. And the above example has only one optimal strate-
gy for Py and Py In some cases, depending on the payoff matrix, the game
may have many optimal mixed strategies. Now we turn to an example where Py
has many optimal strategies.
Example 3.4.2. Consider a payoff matrix of a game T is
Pz's stratezies
2 4 11
Pl's strategies .
7 4 2
In this payoff matrix, again, there is no saddle point, mixed strategy
must be used. Let [x,1-x] be the mixed strategy of Pl where x is between

zero and one., If P, uses his pure strategy step by step, we can get the

following three equations;

y = 7-5%,
y = 4,
y = 2+9x.

Then we plot this three lines in Fig. 3.4.2. Again, discuss as in Example
3.4.1 and we can find that the value of the game is 4 and that any x will be
optimal for P;, so long as it satisfies OP; < x < OPy. We can find OP; by
solving the following two equations: y=4, y=2+9x simultaneously. And we get

x=2/9, i.e., 0P1=219.
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Figure 3.4.2

Also, we can find OP, by solving the following two equations: y=4, y=7-5x

2
simultaneously. And we get x=3/5, i.e., 0P2=3/5. Thus an optimal strategy
for P1 is any vector [x, 1-x] where 2/9 < x < 3/5. And an optimal strategy
for P, in this game is y'=[0, 1, 0].

If an m X n matrix where both m and n are greater than 2, then it
becomes impracticable to use this method for solving this game. So if the
matrix size is large, we will transform the game into a linear programming
problem as discussed later.

3.5 Dominance

Before introducing other methods for solving a game, we are going to
explain a very important technique which can reduce the size of a matrix to
smaller size. Then we can follow the smaller matrix to solve the original
matrix game. Of course, it makes the problem easier to be solved.

Definition 3.5.1 Given any matrix R = [n(a,B)], where @=1,...,m and
g=1l,...,n. (i) For any two rows i and j, if

w(i,B) > 7(j,B), for all B,
then we say the ith row "dominates" the jth row, or the
jth row is dominated by the ith row.

(ii) Similarly for the case of columns, for any two columns k and

%, if
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m(a,k) > w(a,l), for all a,
then we say the kth column "dominates" the 2th column,
or the fth column is dominated by the kth column,
But how do we apply this concept to a matrix game? The best way is to
give an example, which is taken from May [7], to explain it.

Example 3.5.1 Suppose the payoff matrix for P1 of a game T is

It is easily checked that there is no saddle point. So we want to see
whether we can reduce the size of the matrix or mot. It is seen that the
fourth column dominates the second column. We notice that the columns
are the strategies of PZ’ and P2 wants to minimize Pl's receipt, hence P2
would like to cross out the larger one, i.e., the fourth column (so P2 will

cross out the one which dominates others) and leave the matrix

2 0 1
R = |1 2 5 .
4 1 3

Again, in this matrix, we find that the third row dominates the first
row. The rows are the strategies of P1 and Pl wants to get as much as
possible, therefore, P1 would like to cross out the smaller one, i.e., the
first row (so Pl will cross out the one which is dominated by others) and
leave the matrix

1 2 5

==
|

4 1 3
In this matrix, we see that the third column dominates the second

column. Thus as before, P2 will cross out the one which dominates the
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others, and leave a 2 x 2 matrix
1 2
4 1
The above 2 x 2 matrix Rq does not have a saddle point. So we can
apply Theorem 3.3.1 to solve it, and determine the optimal strategies for
P, and Py, respectively to be x'=[3/4, 1/4] and y'=[1/4, 3/4]. The value
of the game matrix Ry is v=7/4,
Dresher [2] extended this concept to a more general case. Given any
m x n matrix R = [n(a,B)], without any loss of generality we can consider
the elements of the mth row which are not smaller than or equal to another
row for every corresponding element, but are all smaller than or equal to
some convex linear combinations of the corresponding elements of other

rows. That is, there is a member t'=[t tm_l] of Sm— such that

1000 1
m-1

n(m,B) < 2 m(a,R)t for g=1,...,n.
a=1 o

In this case P, can cross out the mth row since P, could always get more by

1

applying mixed strategies to the first m-1 rows. If one of the elements of

1

Eﬁsm—l

of Definition 3.5.1.

is one, then the others are all zeros, and this reduces to the case

Example 3.5.2 If the game T' has a payoff matrix

12 0
R = 3 1] .
0 3

We can check that there is no saddle point in this matrix. Then we
follow Definition 3.5.1 to see whether there is any dominated strategy in

order to reduce the size of the matrix R. The result is that no strategy
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is dominated by any other pure strategies. But we notice that the elements
of the second row are all smaller than the following convex linear combina-
tions of the corresponding elements of the first and third rows, i.e.
3<1/3 12+ 2/3+ 0,
1<1/3 - 0+ 2/3 « 3.
This means that if Pl chooses the first row and the third row with ratio

1 : 2, P, can always get more than choosing the second row. Therefore,

1

certainly, P, will not need the second row anymore and crosses it out to

1

leave the matrix

Since there is no saddle point in R,, we can use Theorem 3.3.1 to solve Ry
and we find that the optimal strategies for Pl and P2, respectively, are
x'=[1/5, 4/5] and y'=[1/5, 4/5]. The value of the game matrix R; is v=12/5.
So far, we have determined the solution and the value of the reduced
matrix game. But, in fact, we need the solution and the value of the
original matrix game. What are the relations between the solutions and the
values of those matrices? The relations are stated in the following theorems
which are presented and proved in Mckinsey [9]."
Theorem 3.5.2 Consider a matrix game T' having payoff matrix
R = [7(a,B8)] where o=1,...,m and R=1l,...,n. Suppose that, for some o, the
ath row of R is dominated by convex linear combination of the other rows of
R; let R' be the matrix obtained from R by crossing out the agg.row; and
let T' be the matrix game whose payoff matrix is R'. Then the value of T'
is the same as the value of ', every optimal strategy for P, in '’ is also

an optimal strategy for P, in T, and if Ei is any optimal strategy for Py in
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1 then x' is an optimal strategy

' and x' is the o-place extension# of x
for P, in T.

or F, in
Proof: Let

w(1,1), . . . , v(1l,n)

ﬂ(mll)l v+« 5 w(m,n)
We can suppose, without loss of generality, that the last row of R is
dominated by a convex linear combination of other rows. Thus there exists a

member t'=[t

I s f h that
1° ’ m—ll o %m-l suc a
m-1
m(m,B) < ) w(a,B)t , Bul,.veslis (3.5.1)
a=1 =,
Let v be the value of T', let Ejl =[xl""’xh-l] be an optimal strategy
for Pl in I'' and let 1f=[y1,...,yn] be an optimal strategy for P2 inT'.

Then, from the definition of the optimal strategy, we have

n
2, @By, v, a=1,...,m-1 (3.5.2)
B=1
and
m-1
ve X2, nla.p)x , 8=1,...,n. (3.5.3)
a=1 ,

To prove this theorem, we must show that v is also the value of T', that

y is an optimal strategy for P, in T', and that [xl,...,x ,0] is an optimal

2 m-1
strategy for Pl in . By the definition of the optimal strategy, we must
show that
n
P m(a,8)y, <, o=1l,...,m (3.5.2")
g=1

# Consider a mixed strategy h'=[hi,...,h ] of S and 1 £ i % ntl, then
the i-place extension of the mixed strategy Ef is the vector
[hl""’hi-%’o’hi’ ..,hn}.
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and

m-1

v< 2o w(e,B)x + n(m,B) ° O, B=1,...,n. (3.5}

B=1 *
Since (3.5.3') is obviously the same as (3.5.3), we need only to prove that
(3.5.2') holds. By (3.5.2), we need only to prove that

n

Z "(mQB)YB V.
B=1

By using (3.5.1) and (3.5.2), we have

n n m-1
z Tr(m,B)YB = Z E W(G:B)tuYB
g=1 B=1 a=1
m-1 ;éil
= TI'(GsB)Y t
a=1 g=1 Ba
m-1

| A
™
<
QH‘

]
)

which completes the proof.

The next theorem is concerned with the case of columns and the proof is
omitted since it is similar to the last one.

Theorem 3.5.3 Consider a matrix game I' has payoff matrix R = [w(a,B)]
where o=1,...,m and B=l,...,n. Suppose that, for some B, the Bth column
"of R dominates some convex linear combination of the other columns of R;
let R' be the matrix obtained from R by crossing out the Bth column; and
let T' be the matrix game whose payoff matrix is R'. Then the value of I'
is the same as the value of I'; every optimal strategy for Pl in T'' is also

an optimal strategy for P. in I', and if ¥, is an optimal strategy for P, in

1 2
', and y is the B-place extension of ¥ then y is an optimal strategy for

P din T.
2
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So by Theorem 3.5.2 and Theorem 3.5.3 we can get the solutions and the
values for the original matrices R in Examble 3.5.1 and Example 3.5.2.

First, we see that, in Example 3.5.1, Pl crossed out the first row and
P2 crossed out the third column and the fourth column. So, for the original
payoff matrix R, the optimal strategies for Pl and P2, respectively, are
x'=[0, 3/4, 1/4] and y'=[1/4,.3/4, 0, 0). The value of the original game is
also 7/4.

Next, in Example 3.5.2, Pl crossed out the second row only. So, for the
original payoff matrix R, the optimal strategies for P1 and P2’ respectively,
are x'=[1/5, 0, 4/5] and xf=[l/5, 4/5]. The value of the game remains 12/5.
3.6 Method of approximating the value of a game

In this section we shall introduce an approximate method of solving
matrix games which will enable us to find the value of such games to any
desired degree of accuracy and also to approximate optimal strategies.
Suppose that two players play a long sequence of plays of a given game where
neither knows an optimal strategy because they are ignorant of game theory,
perhaps, or because the matrix of the game is too large for them to be able
to make the required computations. In the long sequence of plays of a given
game, one can keep track of his opponent's past plays and choose at each play
the optimal pure strategy against the accumulated mixed strategy of the
opponent's past plays. At each play of the long sequence we can calculate
the upper and lower bounds for the value of the game and an approximation
to an optimal strategy for each player.

This method can be illustrated by the following example which is taken

from Dresher [2].



Example 3.6.1 Consider a game I with payoff matrix

Cl c2
Rl 2 1
R2 2 0
R3 -1 3
where Rl’ i=1,2,3, are the strategies of Pl’

ies of P _.
4 o 2

strategy R

1

Suppose the series of plays is begun by Pl and he chooses

in his first play.

Cc3

0
31 >
-3

The successive method for getting an

45

and Cj, j=1,2,3, are the strate-

approximate solution and the upper and lower bounds of the value of the game

is shown by Table 3.6.1.

Table 3.6.1

Rl(N) R2(N) R3(N) v(N) sz(N)

|w

o Y T - e N I
o o e W W |w |w

~J
o

c,(M c¢,(N)y C, ()

jon

o

3.000
1.500
1.000
1.500
1.800
1.000
1.286
1.125
1.000
1.200
1.364

1.000

In Table 3.6.1, the notations of the column headings are explained as

follows:
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(i) Sl(N) is the pure strategy chosen by P. on the Nth play. For instance,

1
in Table 3.6.1, Sl(l)=R1, 81(2)=R2, and Sl(6)=R3.

(ii) SZ(N) is the pure strategy chosen by P, on the Nth play. For instance,

2
in Table 3.6.1, §,(1)=C;, §,(2)=C,, and §,(6)=C,.
(iii) Rj(N), j=1,2,3, are the total receipts of Pl after N of his play if

P2 uses his pure strategy Cj’ j=1,2,3, respectively, constantly.
(iv) Ci(N)’ i=1,2,3, are the total receipts of Pl after N plays of P2 if P1
chooses his pure strategy Ri’ i=1,2,3, respectively, constantly.

(v) v(N) is the minimum that Pl can expect to receive on the average after

N of his plays, or we can express it as

v(N) = %.min Rj ), j=1,2,3. (3.6.1)
]

(vi) v(N) is the maximum that P, can expect to receive on the average after

1

N plays of P2, or we can express it as

T(N) = %fmax c; (M), i=1,2,3. (3.6.2)
i

Table 3.6.1 has been completed as following steps:

Step 1. For the first play of the game, assume that Pl chooses strategy
Rl, i.845 Sl(l)=R1. Then Pl will receive 2, 1, or 0 depending on what P2
chooses (Cl’c2' or C3), therefore the total receipts of Pl are R1(1)=2,
R2(1)=l, and R3(1)=0. The minimum of Rﬁ(l), j=1,2,3, is 0, so by (3.6.1),
v(1)=0.

Step 2. Since P2 wants to minimize Pl's receipt, P2 will, of course,
choose 03 for his first play, i.e., Sz(l)=C3. Then Pl will get 0, 3, or -3
depending on what strategy Pl uses, so the total receipts of P1 after first
play of P2 are Cl(l)=0, Cz(l)=3, and Cs(l)=-3. The maximum of Cl(l) is 3,

so by (3.6.2), wv(1)=3.
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Step 3. For the second play, Py will choose R, since that maximized his
receipts against Pz's first play, i.e., 51(2)=R2. Then P; will receive 2, 0,
or 3 depending on what P2 chooses (Cl’CZ’ or C3), therefore after two plays,
the total receipts of P, are R1(2)=2+2=4, R2(2)=1+0=l, and R3(2)=0+3=3. Also
by (3.6.1), we have v(2)=1/2.

Step 4. Again Pz will minimize Pl's receipt, and choose C2 for N=2,
i.e., 5,(2)=C,. Then Py will get 1, 0, or 3 depending on what strategy P,
uses, so the total receipts of P; after second play of P, are C1(2)=0+l=1,
02(2)=3+0=3, and C3(2)=—3+3=0. By (3.6.2), we have v(2)=3/2=1.5.

The procedures for the successive N are all the same. 1If the minimum
and maximum of Rj(N) and C; (N), respectively, are not unique, the player may
choose any one of the possible pure strategies which satisfy the requirement.

After N steps, an approximation to an optimal strategy will be obtained
from the relative frequencies of each of the pure strategies in Table 3.6.1;
Thus at N=12, Pl has chosen Ry for one time, Ry fpr seven times, R3 for four
times, so we have the approximate optimal strategy for P, at N=12 as

x'(12) = [1/12, 7/12, 4/12].
Similarly, we have the approximate optimal strategy for P, at N=12 as
y'(12) = [0/12, 8/12, &4)12].
The value of the game, v, is approximated by v(N) and V(N). We have for all
N,
v(N) < v < ¥(N).
Thus at N=12, the value of the game v is between 0.75 and 1.00;

Robinson [11] has shown that if

v = lim x(N) and lim y(N)
N Noreo

exist, then these limits are a solution of the game, and the value is
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v = lim ¥(N) = lim w(N). (3.6.3)
Noco Noco

It can be proved that in the previous example we have

lim x'(N) = [0, 2/3, 1/3],
N
lim l' (N) = [0: 2/39 1/3]9
N

and
v = 1.00.

This successive method of solving a game was proposed as a means for
actually computing the value of a game. However, the convergence of (3.6.1)
and (3.6.2) to (3.6.3) is extremely slow, so this method is impractical to
solve a game. Therefore we will introduce an efficient method to solve the

game in the next section.

3.7 Solution of matrix games by linear programming

In this section, we will introduce the most popular method for solving
a matrix game, especially when the size of the payoff matrix of a given game
is large. Since the principle of linear programming is a technique for
maximizing or minimizing some objective function subject to certain con-
straints, we can use it to solve matrix games. °

In order to get the optimal strategies for Pl and P2 and the wvalue of
the game by linear programming methods, we need to transform the matrix game
into a linear programming problem where both the objective function and the
constraints are stated in the form of linear equations. Considér the payoff
matrix of a given game p to be R = [g(a,B)] where @=1,2,...,m and g=1,2,

.,n. Let the wvalue of the game be denoted by v. If the optimal strategy

for P, is §'=[xl,...,xh] of Sm then, by the definition of the optimal

1

‘strategy, we have
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x >0, a=l,...,m, (3.7.1)

>
X =1,
a=1 "

and P1 wants to make v as large as possible, i.e.

maximize v. (3.7.2)
By writing (3.7.1) and (3.7.2), we have not yet reached a linear programming
formulation, because v may be negative. If all the elements of the given

payoff matrix for P, are positive, then, of course, the value of the game

1
(for Pl), v, will be positive, and there is no problem. If some of the

elements of the payoff matrix for P, are negative, then the value of the

1
game may not be non-negative. In this case, we may add an amount large
enough to all entries in the payoff matrix in order to make sure that the
value of the game is positive. This increases the value of the game by the

same amount but does not change the solution. Therefore, we can assume the

value of the game, v, to be positive, then we can define a new variable
X = ” o=1l,...,m. (3.7.3)

If we divide the inequalities of (3.7.1) by v, and use the notation expressed

in (3.7.3), we have

m

2 W(G’B)X =1, B=l,...,n,
=1 a

o

X = ¢ 50, q=l,:..,m (3.7.19)
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= 1
CEL Ka = v »

and further maximizing v in (3.7.2) is equivalent to minimizing 1/v, so we

can state (3.7.1') as

m
. - 1
Minimize z Xu._ ¥ ’
a=1
m
Subject to 2. w(a,B)X > 1, B=livessn (3.7.4)
a=1 o
Xa
where Xu = 0, o=1, M.

Thus, the matrix game as stated in (3.7.4) has been reduced to a linear
programming problem in the usual form.

Similarly, we can get a set of inequalities for P2' If gf=[yl,...,yn]

of Sn is an optimal strategy for P then we have a form which is similar to

2’
(3.7.4) as follows:

n
Maximize 2, Y, = &
= B
g=1
n
subject to 2: “(Q,B)YB < 1, a=l,...,m (3.7.5)
g=1
here Y, = 78 =1
W 8 = >0, p=l,...,n.

The two sets of inequalities are dual to each other; by solving one of

them, the other is solved implicitly. If we have found Xu’ YB (@ =ls...,m

m
and g=1,...,n) and the minimum of :E: X,, which equals the maximum of
n u'—‘l
2. Y then we have the value of the game v, and
=1
xu = Xa v, o=1,...,m,
y =Y v, g=1l,...,n,



51

which is the solution we need.
Here, we present an example which is taken from Levin [5].

Example 3.7.1 Let the payoff matrix of a matrix game be

1 2 -1
Rg = [-2 1 1 ;
2 o 1

Since neither a saddle point exists nor the size of the matrix can be
reduced to a smaller matrix by dominancé, we use the linear programming
methed to solve it.

Since two elements of the matrix R, are negative, the value of the game

may not be non-negative. If we add two to every element of the matrix R,,

we have
3 4 1
R = 0 3 3
4 2 3

The value of the game matrix R, is increased by two but the optimal
strategies for P; and Py remain the same. If v, represents the value of the
game matrix R, and v represents the value of the game matrix R, then
v=v,+2, or v =v-2. N

Let the optimal strategy for P; be denoted by the row vector
x'=[x;,%9,%3] of Sy then, by the definition of the optimal strategy, we have

3x1+0x2+AX3_1 v,
4X1+332+2X3 > v,
1x1+3x9+3%3 > v
where xytxotx3 = 1,
X3, X9, X3 2 0,

and P; wants to make v as large as possible, so P; wants to maximize v.
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Since v is positive, we can define

X
Xy == a=1,2,3
Also
1> %25 %3 20

and

b4 x 1

X AX 4%, = 2+ X2+ X3 =

1 2 3 v v v V

So we can get the form as in (3.7.4)

Minimize X, X, 4K, = N
v

subject to 3Xl+OX2+4X3 > 1,

4X1+3X2+2X 1,

g =

IX, +3X,+3%5 > 1

where Xl, X2, x3 > 0.

Now, we have reduced Pl's problem to a linear programming problem. Similarly,
we can also reduce Pz’s problem to a linear programming problem as follows.
Let 1f=[yl,y2,y3] of S; be an optimal strategy for P, then, we have

3y1+4y2+1y3 < Vv,

Oy, +3y,+3y5 < v,

4y1+2y2+3y3 < v
where y1+y2+y3 =1,

Yy» Y35 ¥3 20
and P2 wants to make Pl's receipt as small as possible, so P2 likes to

minimize v. Again v is positive, we can define

YB = —_=1 g=1,2,3.
Also

Yy, Yy, Y3 > O.



So we can get the form as in (3.7.5)

Maximize Y1+Y2+Y3 =

subject to 3Y,+4Y,+1¥5 < 1,

where

1

—

41 +2Y,+3Y4 < 1

Y, Yy, Y5 > O.
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(3.7.6) and (3.7.7) are dual to each other; by solving one of them, the

other is solved implicitly.

solve the set of inequalities (3.7.7).

So we can choose either one. Here, we choose to

Three iterations are required for the

solution to this problem. They are shown in Table 3.7.1. The simplex

procedure and notation used are standard. Details of the calculations are

e=1/3.
o=undefined.

0=1/4 (this row is replaced).

o= 1 . 3 _ 1 (this row is
4 * 2 10 replaced).
©=1/3
=l-£=;—.
4 " 2 2

omitted.
Table 3.7.1 Simplex solution for P;'s strategies
Table 1
0 Sl 1 3 4 1 0]
0 S2 1 0 3 3 0
0] 53 1 4 2 3 1
Zj 0 0 0 0 0
C.,-Z. 1 1 1 0
J ]
Table 2
0|s; |/a]o 5/2 -5/4 -3/4
0 S2 1 0 3 3 0
117y 1/4 | 1 1/2  3/4 1/4
Z4 1/4 | 1 1/2  3/4 1/4
C.-Z, 0 1/2  1/4 -1/4
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Table 3 .
1|y, [1/10]0 1 -1/2 2/5 0 -3/10] e=Ll.(-LH--1
107 2°7 5.,
0|s, | 7/10]0 0 9/2 -6/5 1 9/10| e=_L.2_ 1 (this rov is
10 ° 2 45 replaced).

11y 1/5 |1 0 1 -1/5 0 2/5 ©=1/5.

3/10 |1 1 1/2  1/5 0 1/10

C;-Z, 0 0 1/2 -1/5 0 1/10

1 1Y, | 8/45]0 1 0 4/15 1/9 -1/5
' 7/45 10 0 1 -4/15 2/9 1/5

1}y, | 2/45]1 0 0 1/15 -2/9 1/5

Z, |17/45 |1 . 1 1 1/15 1/9 1/5

C.-Z, 0 0 0 -1/15 -1/9 =-1/5 | stop when all the elements

From Table 4 of Table 3.7.1, the vaiue of the objective function is
Maximize Y +Y 47, = 1= 17/45 (3.7.8)
1 "2 "3 &
and
Y, = 2/45, Y, = 8/45, and Y4 = 7/45. (3.7.9)
From (3.7.8), we have v = 45/17.

Then we can get

y, = Y; - v = (2/45)- (45/17) = 2/17,
yo = Y, « v = (8/45)+(45/17) = 8/17,
y3 = Y3+ v = (7/45). (45/17) = 7/17.

Hence, y' =[2/17, 8/17, 7/17] is an optimal strategy for P,.

Since (3.7.6) and (3.7.7) are dual to each other, we can find the
optimal strategy for Pl directly from Table 4 of Table 3.7.1. They appear
in the row cj-zj under the columns S;, S», and S3, i.e., -1/15, -1/9, -1/5.

We disregard the minus sign, since negative values for strategies would have

no meaning to the players. But these wvalues are X1, Xy, and X3, and we need

of this row are non-positive.
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xl = Xl v = (1/15)+(45/17) = 3/17,
x2 = Xz' v = (1/9)+(45/17) = 5/17,
x3 = Xs- v = (1/5)+(45/17) = 9/17.

Hence, x' = [3/17, 5/17, 9/17] is an optimal strategy for Pl. The value of
the original game matrix R is
v =v-2
o
= (45/17)-2 = 11/17.

Also we can solve this problem by using the set of inequalities (3.7.6),
and we will get the same solution and value of the game.

When the payoff matrix of a given game can not be reduced below 3 x 3,
linear programming offers an efficient method for finding the optimal
strategies for Pl and PZ and the value of the game. But, sometimes, the size
of the matrix is quite large and the simplex table will be too much to hold.

In this case, the most efficient method for solving these large linear

programming problems is to use computer programs.

4, SUMMARY AND CONCLUSION

In this report, we discuss matrix games, which are also called finite
two-person zero-sum games. There are two participants (two persoms) in the
game. Each one has a finite set of strategies. And the gain of one player
is the loss of the other. The payoffs between the two players for a given
game form a payoff matrix (or game matrix). According to the saddle point
of a payoff matrix, which is explained in Section 2.4, the matrix games can
be distinguished into two kinds: (1) The first kind is strictly determined
games which contain one or more saddle points in the payoff matrix. In this
case, both players use pure strategies. (2) The second is non-strictly de-

termined games which have no saddle points in the payoff matrix, and mixed
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strategies must be used. Both players want to get the optimal result under
a given game. An optimal play will imply a strategy that will either maximize
a player's gain or minimize his loss. The main theorem, the minimax theorem,
which was proved by von Neumann [16], assures that every matrix game has
optimal mixed strategies for both players. Therefore, given any matrix game,
we can find the optimal strategies for both players and the value of the
game.

The solutions for a matrix game can be obtained by a variety of methods.
Some of those methods are discussed in this report. When a payoff matrix has
a saddle point, of course, there is no problem. But when there is no saddle
points, the most efficient method to solve it depends on the size of the pay-
off matrix. If the matrix is 2 x 2, we can use the results presented in
Theorem—3.3.1. If the game matrix is 2 xn or mx 2 (n>2, m>2), a
graphical method can be used. When the size of the game matrix is greater
than or equal to 3 x 3, the technique of dominance is used to check whether
or not the payoff matrix can be reduced to a smaller matrix. If it can be
reduced so that one dimension is 2, then previous methods can be applied to
solve it. If not, the most general method of solution is the simplex al-
gorithm as presented in Section 3.7. That is, the matrix game problem is
restated as a linear programming problem and solved by a method of solution
for linear programming problems using the simplex algorithm. When the payoff
matrix is too large, programs for solving the simplex algorithm are available
for most electronic computers.

Besides those already discussed there are several other types of games.
A brief statement about some of those games follows.

I1f the sum of the payoffs due to each player in a given game is not

zero, we say it is a 'non-zero-sum game'. When a game involves more than
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two persons (participants), we call it n-person game.

In a two-person zero-sum game, one player's receipt is always the other
player's loss. Thus there is no reason to consider the possibility of
cooperation or negotiation between the players. However, the existence of
more than two players and/or payoffs that do not add to zero introduces the
possibility of cooperation and bargaining. For example, in an n-person game
two or more players may decide to cooperate in the hope that by acting to-
gether they can more easily beat the opposition. Similarly, when the sum of
the payoffs is not zero the players may be able to cooperate in such a way
that they will maximize the total payoff rather than maximizing the payoff
to a single player. The theorems of non-zero-sum games and n-person games
can be found in Burger [1], Maschler [7], Rapoport [11], Tucker [13] and
von Neumann [16].

" In a finite game, each player selects a strategy from a finite set of
strategies. The number of such strategies may be large, as in chess, but
finite. A natural generalization is to consider games in which a player
chooses a strategy from an infinite set of strategies. Such a game is called
an "infinite game". There are several reasons for developing a theory of
infinite games. Many military and economic problems, when viewed as games,
involve an infinite number of strategies. For example, a military budget
can be thought of as being divisible in an infinite number of ways between
offense and defense. In economics a commodity may have an infinite number
of price possibilities. The solution of infinite games is not ﬁiscussed in
this report, but the reader can refer to Karlin [3], Luce [6], Owen [10],

and Tucker [13] for the details of those games.
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A matrix game is also called a two-person zero—sum game, The game is a
conflict of interest which involves two persons. Whenever one of the two
players wins an amount which is lost by another player, that is, the sum of
the payoffs of the two players is zero.

The strictly determined games always possess one or more saddle points,
so both of the players use the pure strategies. In Section 2.3, we also
explained that if one of the players uses a pure strategy all the time in a
2 x 2 matrix game, then another player will also use a pure strategy all
the time that will assures him to get the optimal result.

The non=-strictly determined game is the case of a game without saddle
points, then mixed strategies must be used., The main theorem, the minimax
theorem, which was originally proved by von Neumann in 1928, insures that
any matrix game has the optimal strategies for both players, at the same
time, the value of the game maximizes one's receipt and minimizes another's
loss,

We have discussed several methods for solving a matrix game in Section
3. The most general method for solving a game, whose payoff matrix is
greater than or equal to 3 x 3, is to use linear programming method, that
is, a game can be written as a linear programming problem (see Section 3.7),
and the solution of the latter gives also that of the former.

Also some further topics of game theory are briefly stated in the last

section of the report.



